
1/5

High Performance Computing

Assignment. The Mandelbrot set

Write a MPI program that calculates the Mandelbrot set and presents the result graphi-
cally using the MPE graphics library.

The Mandelbrot set
A Mandelbrot set is a set of points in the complex plane. A complex number z = a+bi
consists of two components: the real part a and the imaginary part b (where i is −1).
Imaginary numbers can for instance be represened by a structure

typedef struct {
 double real;
 double imag;
} complex_type;

-2 2

-2

2

Real

Im
ag

in
ar

y

2/5

The Mandelbrot function computes iterations of a complex number z using the function
z z ck k+ = +1

2 , where zk is iteration number k of the complex number z and c is a complex
number giving the position of the point in the complex plane. The initial value of z is
zero. The iterations are continued until the magnitude of z is greater than 2 (which indi-
cates that z will go to infinity) or until the number of iterations reaches some pre-defined
limit (often 256). The magnitude of z is the length of the vector described by z, i.e.

a b2 2+ .

To compute the function z z ck k+ = +1
2 , we note that z a abi bi a b abi2 2 2 2 22 2= + + = − +

(because i = −1). Thus, the square of a complex number z is a complex number with a
real part a b2 2− and an imaginary part 2ab.

Hence, if zreal is the real part and zimag is the imaginary part of a complex number z, the

next iteration can be computed by z z z creal real imag real= − +2 2 and z z z cimag real imag imag= +2 ,

where creal and cimag of course are the real respectively imaginary parts of the complex

number c.

Computing the Mandelbrot set
A function for computing the value of one point in the complex plane and returning the
number of iterations, using the structure for imaginary numbers defined above, looks like
this:

int calc_mandel(complex_type c)
{
 int count, max;
 complex_type z;
 double len2, temp;
 max = 255; /* Max nr of iterations */
 count = 0;
 z.real = z.imag = 0.0;
 do { /* Mandelbrot function */
 temp = z.real*z.real - z.imag*z.imag + c.real;
 z.imag = 2.0*z.real*z.imag + c.imag;
 z.real = temp;
 len2 = z.real*z.real + z.imag*z.imag;
 count++;
 } while ((len2<4.0) && (count<max));
 return count;
}

Note that we compare the square of the length (in len2) against 4.0 instead of
comparing the length against 2.0. This saves us a square root operation.

3/5

We compute the Mandelbrot function for all points of a rectangular window of size
HEIGHT*WIDTH (where in our case HEIGHT=WIDTH). A suitable window size is for
instance 800*800 pixels (but this depends on what resolution your display has).

A point (x,y) in the graphical window is translated to a point c in the complex plane by
multiplying the x and y coordinates with the scaling factors

scale_real = (real_max – real_min) / WIDTH
scale_imag = (imag_max – imag_min) / HEIGHT

The sequential code for computing the Mandelbrot function over the pixels in a window
of size WIDTH*HEIGHT will then be something like this:

real_min = imag_min = -2.0;
real_max = imag_max = 2.0;
scale_real = (real_max-real_min)/(double)WIDTH;
scale_imag = (imag_max-imag_min)/(double)HEIGHT;

for (y=0; y<HEIGHT; y++) { /* Compute one row at a time */
 for (x=0; x<WIDTH; x++) {

 c.real = real_min + ((double) x*scale_real);
 c.imag = imag_min + ((double) y*scale_imag);

 color = calc_mandel(c);
 set pixel (x,y) in the graphical window to color;
 }
}

Zooming in
When the current area of the Mandelbrot set has been calculated and displayed, the user
should be able to zoom in on a rectangular area of the window. Use the procedure
MPE_Get_drag_region to select a rectangular area defined by two points (x1,y1)
and (x2,y2). The selected area in the graphical window can be translated to an area in the
complex plane in the folowing way:

new_real_min = real_min + (real_max-real_min)*(double)x1/WIDTH;
new_imag_min = imag_min + (imag_max-imag_min)*(double)y1/HEIGHT;
new_real_max = real_min + (real_max-real_min)*(double)x2/WIDTH;
new_imag_max = imag_min + (imag_max-imag_min)*(double)y2/HEIGHT;

We also have to update the scaling factors, in the same way as above. After this, we
calculate and draw the zoomed region in the same way as above. You can continue to
zoom in repeatedly, and find interesting pictures for instance like this:

4/5

Parallel implementation
Implement the parallel program as a master–slave computation. You can for instance give
each slave one row of the window to compute. The master only keeps track of which
rows have been computed, and gives slaves a new row as soon as they have finished the
previous one. Note that the slaves can display their results themselves, they do not have
to send the calculated pixels to the master.

When a window is ready, the master waits for the user to zoom in on a region. It sends
the new coordinates of the selected region to the slaves and starts sending out new rows
to the slaves in the same way as above.

Termination
Make sure that your program terminates gracefully. The user can for instance indicate
that he/she wants to quit by just clicking in the graphical window instead of dragging the
mouse. Thus, if the area that is selected by MPE_Get_drag_region is smaller than 10
pixels (for instance), the program terminates instead of zooming in.

5/5

Timing measurement
The master process should measure how log time it takes to compute a window, and print
out this value to standard output after each window has been completed. Try to make
your implementation efficient. Check that you don’t have any unnecessary communi-
cation in the program. Also try to keep the slaves as busy as possible, while there are
calculations left to be done.

Please try to code your programs so that somebody else also may understand what they
do. Write plenty of comments in your code!

