MIT/GNU Scheme User’s Manual

For MIT/GNU Scheme 10.1.10
2018-11-22

by Stephen Adams
Chris Hanson
and the MIT Scheme Team

This manual documents the use of MIT/GNU Scheme 10.1.10.

Copyright (©) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013,
2014, 2015, 2016, 2017, 2018, 2019 Massachusetts Institute of Technology

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with no Front-Cover Texts and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License.”

Table of Contents

Introduction 1
1 Installation................ 3
1.1 Unix Installation ... 3
1.2 Windows Installation................. .. i i 5
1.3 Portable C Installation o i i 5)

2 Running Scheme................ 7
2.1 Basics of Starting Scheme.......... 7
2.2 Customizing Scheme....... i 7
2.3 Memory Usagevvit i 8
2.4 Command-Line Optionsco i, 9
2.5 Custom Command-line Options............ ..., 11
2.6 Environment Variables i 12
2.6.1 Environment Variables for the Microcode 12

2.6.2 Environment Variables for the Runtime System 13

2.6.3 Environment Variables for Edwin......................... 14

2.6.4 Environment Variables for Microsoft Windows 14

2.7 Starting Scheme from Microsoft Windows...................... 15
2.8 Leaving Scheme i 15

3 Using Scheme 17
3.1 The Read-Eval-Print Loop............coooi it 17
3.1.1 The Prompt and Level Number........................... 17

3.1.2 Interruptingo 18

3.1.3 Restarting. ... 18

3.1.4 The Current REPL Environment 19

3.2 Loading Files....... ..o 20
3.3 World Imagesooniii e 22
3.4 Garbage Collection, 22

4 Compiling Programs........................... 25
4.1 Compilation Procedures, 25
4.2 Declarations.ttt 26
4.2.1 Standard Names...........oiiiiiiiiiiiii .. 26

4.2.2 In-line Codingouuiiiii e 26

4.2.3 Operator Replacement ..., 28

4.2.4 Operator Reduction ..., 29

4.3 Efficiency Tipsot 31
4.3.1 Coding style.o 32

4.3.2 Global variables 33

i MIT/GNU Scheme 10.1.10

4.3.3 Type and range checking 35

4.3.4 Fixnum arithmetic.......... ... 35

4.3.5 Flonum arithmetic........... ... i i, 36

5 Debugging 39
5.1 Subproblems and Reductionsl 40
5.2 The Command-Line Debugger............. 40
5.3 Debugging Aidsc.viiiii e 43
5.4 Advising Procedures.......... ... 46

6 Profiling................... ... 51
7 GNU Emacs Interface 53
8 Edwin..... 55
8.1 Starting Edwin........ ... i 55
8.2 Leaving Edwin i 56
8.3 Scheme Mode 56
8.4 Evaluation i 57
85 REPL Mode......ooii e 57
8.6 The Edwin Debugger.......... ..o 58
8.7 Last Resorts. ... e 59
Appendix A Release Notes 61

Appendix B GNU Free Documentation License .. 63
B.1 ADDENDUM: How to use this License for your documents. ... 69

Appendix C Environment-variable Index....... 71
Appendix D Option Index 73
Appendix E Variable Index 75

Appendix F Concept Index 77

Introduction

This document describes how to install and use MIT/GNU Scheme, the UnCommon Lisp. It
gives installation instructions for all of the platforms that we support; complete documen-
tation of the command-line options and environment variables that control how Scheme
works; and rudimentary descriptions of how to interact with the evaluator, compile and
debug programs, and use the editor. The release notes are included as an appendix.

This document discusses many operating-system specific features of the MIT/GNU
Scheme implementation. In order to simplify the discussion, we use abbreviations to refer
to some operating systems. When the text uses the term unix, this means any of the unix
systems that we support, including GNU/Linux and the BSD variants. We use the term
Windows to collectively refer to the modern Microsoft Windows 32-bit operating systems:
Windows XP, Windows Vista, Windows 7, and Windows 8. We use the term PC to refer
to any computer running Windows. Thus we consider a PC to be a system with a DOS-like
file system, using backslashes for directory separators, drive letters, CR-LF line termination,
and (potentially) the hideous 8.3 short filenames.

The primary distribution site for this software is
http://wuw.gnu.org/software/mit-scheme/

Although our software is distributed from other sites and in other media, the complete
distribution and the most recent release is always available at our site.

To report bugs, use the bug-reporting tool at
http://savannah.gnu.org/projects/mit-scheme/

Please include the output of the identify-world procedure (see Section 2.1 [Basics of
Starting Scheme], page 7), so we know what version of the system you are using.

http://www.gnu.org/software/mit-scheme/
http://savannah.gnu.org/projects/mit-scheme/

1 Installation

This chapter describes how to install MIT/GNU Scheme. The release is supported under
various unix and Windows operating systems. Read the section detailing the installation
for the operating system that you are using.

1.1 Unix Installation

We will use as an example the installation for GNU/Linux. The installation for other unix
systems is similar. There are several references to ARCH below; these refer to the computer
architecture that Scheme is compiled for: either ‘1386’ ‘x86-64’, or ‘svm1’.

MIT/GNU Scheme is distributed as a compressed ‘tar’ file. The tar file contains both
source and binary files; the binary files are pre-compiled Scheme code for a particular
computer architecture. The source files are C programs that need to be compiled.

Requirements
At a minimum, you will need a C compiler (e.g. ‘gcc’) and a ‘make’ program, and a “curses”
library. For example, here are the packages that must be installed on some popular systems:
e Debian-like systems: gcc make libncurses-dev
e CentOS-like systems: gcc make ncurses-devel

e macOS systems: Xcode

Additionally, if you want support for X11 graphics, you’ll need:
e Debian-like systems: libx11-dev
e CentOS-like systems: 1ibX11-devel
e macOS systems: XQuartz (from https://www.xquartz.org/)

Steps
In order to install the software, it’s necessary to configure and compile the C code, then to
install the combined C and Scheme binaries, with the following steps.

1. Unpack the tar file, mit-scheme-VERSION-ARCH.tar.gz, into the directory
mit-scheme-VERSION. For example,

tar xzf mit-scheme-VERSION-i386.tar.gz
will create a new directory mit-scheme-VERSION.
2. Move into the src subdirectory of the new directory:
cd mit-scheme-VERSION/src
3. Configure the software:
./configure

By default, the software will be installed in /usr/local, in the subdirectories bin
and 1ib. If you want it installed somewhere else, for example /opt/mit-scheme, pass
the —-prefix option to the configure script, as in ./configure —--prefix=/opt/mit-
scheme.

https://www.xquartz.org/

4 MIT/GNU Scheme 10.1.10

The configure script accepts all the normal arguments for such scripts, and additionally
accepts some that are specific to MIT/GNU Scheme. To see all the possible arguments
and their meanings, run the command ./configure --help. However, do not specify
the following options, which are all preconfigured to the right values; doing so will
probably cause the build to fail:

—--enable—-native-code
——-enable-host-scheme-test
--enable-cross-compiling
--with-compiler-target
--with-default-target
—--with-scheme-build

4. Build the software:
make

5. Install the software:
make install

Depending on configuration options and file-system permissions, you may need super-
user privileges to do the installation steps.

6. Build the documentation:

cd ../doc
./configure
make

7. Install the documentation:
make install-info install-html install-pdf

Depending on configuration options and file-system permissions, you may need super-
user privileges to do the installation step.

Plugins

After you have installed Scheme you may want to install several plugins. Scheme no longer
uses dynamically loaded microcode modules installed with Scheme. The micromodules have
been converted into plugins: new subsystems that use the C/FFI to dynamically load the
same code. Instead you configure, build, and install additional plugins after installing the
core system.

By default, the following plugins are built and installed: edwin, imail, x11, and
x11-screen. (The latter two only if X11 libraries are installed on your system.) To get all
of the functionality previously available in version 9.2 you will need to build and install
the remaining plugins included in the src subdirectory: blowfish, gdbm, mcrypt, and
pgsql. These plugins are all configured, built, and installed in the GNU standard way.
See the README file in each plugin’s source directory for complete details.

Cleanup

After installing Scheme and your desired plugins, you can delete the source directory:

cd ../..
rm -rf mit-scheme-VERSION

Chapter 1: Installation 5

1.2 Windows Installation
This section describes how to install MIT/GNU Scheme on Windows 2000, Windows XP,
Windows Vista, or Windows 7.

MIT/GNU Scheme is distributed as a self-installing executable. Installation of the soft-
ware is straightforward. Simply execute the downloaded file and answer the installer’s
questions. The installer will allow you to choose the directory in which MIT/GNU Scheme
is to be installed, and the name of the folder in which the shortcuts are to be placed.

To uninstall the software, open up the Control Panel, run ‘Add/Remove Programs’, and
double-click on ‘MIT/GNU Scheme’.

1.3 Portable C Installation

This section describes how to generate binaries from the portable C distribution. These
binaries should run with little or no trouble on most modern architectures and operating
systems. It will probably require tweaking for systems that haven’t been tested.

When built this way, the system runs slower than when it is built using the native-code
compiler. For this reason, you will usually want to use native-code binaries when running
on a 32-bit Intel architecture machine. However, the portable-code binaries can address
larger amounts of virtual memory than the native-code binaries, so it is reasonable (and
supported) to use both kinds on the same machine.

1. Unpack the tar file, mit-scheme-c-VERSION.tar.gz, into the directory mit-scheme-
c-VERSION. For example,

tar xzf mit-scheme-c-VERSION.tar.gz
will create a new directory mit-scheme-c-VERSION.
2. Move into the new directory:
cd mit-scheme-c-VERSION/src
3. Build the program:
./etc/make-liarc.sh

This will take a long time; on fairly fast machines with lots of RAM it takes about
an hour. On older machines it will take longer or fail altogether, at which point you
should ask for help. Note that you can pass configure options to the script.

./etc/make-liarc.sh --help
./etc/make-liarc.sh --prefix=/usr

4. Install the program:
make install

Depending on configuration options and file-system permissions, you may need super-
user privileges to do the installation step.

2 Running Scheme

This chapter describes how to run MIT/GNU Scheme. It also describes how you can
customize the behavior of MIT/GNU Scheme using command-line options and environment
variables.

2.1 Basics of Starting Scheme
Under unix, MIT/GNU Scheme is invoked by typing

mit-scheme

at your operating system’s command interpreter. Under Windows, MIT/GNU Scheme is
invoked by double-clicking on a shortcut. In either case, Scheme will load itself and print
something like this:

Copyright (C) 2015 Massachusetts Institute of Technology
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Image saved on Wednesday November 25, 2015 at 3:49:35 PM
Release 9.2.1 || Microcode 15.3 || Runtime 15.7 || SF 4.41 || LIAR/i386 4.118

This information, which can be printed again by evaluating
(identify-world)

tells you the following version information. ‘Release’ is the release number for the entire
Scheme system. This number is changed each time a new version of Scheme is released.
‘Microcode’ is the version number for the part of the system that is written in C. ‘Runtime’
is the version number for the part of the system that is written in Scheme.

Following this there may be additional version numbers for specific subsystems. ‘SF’
refers to the scode optimization program sf; ‘LIAR/ARCH’ is the native-code compiler, where
ARCH is the native-code architecture it compiles to; ‘Edwin’ is the Emacs-like text editor.
There are other subsystems you can load that will add themselves to this list.

2.2 Customizing Scheme

You can customize your setup by using a variety of tools:

e Command-line options. Many parameters, like memory usage and the location of
libraries, may be varied by command-line options. See Section 2.4 [Command-Line
Options|, page 9.

e Command scripts or batch files. You might like to write scripts that invoke Scheme
with your favorite command-line options. For example, you might not have enough
memory to run Edwin or the compiler with its default memory parameters (it will print
something like “Not enough memory for this configuration” and halt when started), so
you can write a shell script (unix) or .bat file (Windows) that will invoke Scheme with
the appropriate -—heap and other parameters.

e Scheme supports init files: an init file is a file containing Scheme code that is loaded
when Scheme is started, immediately after the identification banner, and before the
input prompt is printed. This file is stored in your home directory, which is normally

8 MIT/GNU Scheme 10.1.10

specified by the HOME environment variable. Under unix, the file is called .scheme.init;
on the PC it is called scheme.ini.

In addition, when Edwin starts up, it loads a separate init file from your home directory
into the Edwin environment. This file is called .edwin under unix, and edwin.ini on
the PC (see Section 8.1 [Starting Edwin], page 55).

You can use both of these files to define new procedures or commands, or to change
defaults in the system.

The -—no-init-file command-line option causes Scheme to ignore the .scheme.init
file (see Section 2.4 [Command-Line Options], page 9).

e FEnvironment variables. Most microcode parameters, and some runtime system and
Edwin parameters, can be specified by means of environment variables. See Section 2.6
[Environment Variables|, page 12.

e Icons. Under Windows, and with some window managers under X11, it is possible to
create icons that invoke Scheme with different parameters.

2.3 Memory Usage

Some of the parameters that can be customized determine how much memory Scheme uses
and how that memory is used. This section describes how Scheme’s memory is organized
and used; subsequent sections describe command-line options and environment variables
that you can use to customize this usage for your needs.

Scheme uses four kinds of memory:
e A stack that is used for recursive procedure calls.

e A heap that is used for dynamically allocated objects, like cons cells and strings.
Storage used for objects in the heap that become unreferenced is eventually reclaimed
by garbage collection.

e A constant space that is used for allocated objects, like the heap. Unlike the heap,
storage used for objects in constant space is not reclaimed by garbage collection; any
unreachable objects in constant space remain there until the Scheme process is termi-
nated. Constant space is used for objects that are essentially permanent, like procedures
in the runtime system. Doing this reduces the expense of garbage collection because
these objects are no longer copied.

e Some extra storage that is used by the microcode (the part of the system that is
implemented in C).

All kinds of memory except the last may be controlled either by command-line options or
by environment variables.

MIT/GNU Scheme uses a two-space copying garbage collector for reclaiming storage in
the heap. The second space, used only during garbage collection, is dynamically allocated
as needed.

Once the storage is allocated for the constant space and the heap, Scheme will dynam-
ically adjust the proportion of the total that is used for constant space; the stack and
extra microcode storage is not included in this adjustment. Previous versions of MIT/GNU
Scheme needed to be told the amount of constant space that was required when loading
bands with the ——band option. Dynamic adjustment of the heap and constant space avoids
this problem.

Chapter 2: Running Scheme 9

If the size of the constant space is not specified, it is automatically set to the correct size
for the band being loaded; it is rarely necessary to explicitly set the size of the constant
space. Additionally, each band requires a small amount of heap space; this amount is
added to any specified heap size, so that the specified heap size is the amount of free space
available.

The Scheme expression ‘(print-gc-statistics)’ shows how much heap and constant
space is available (see Section 3.4 [Garbage Collection], page 22).

2.4 Command-Line Options

Scheme accepts the command-line options detailed in the following sections. The options
may appear in any order, with the restriction that the microcode options must appear before
the runtime options, and the runtime options must appear before any other arguments on
the command line. Any arguments other than these options will generate a warning message
when Scheme starts. If you want to define your own command-line options, see Section 2.5
[Custom Command-line Options|, page 11.

Note that MIT/GNU Scheme supports only long options, that is, options specified by
verbose names, as opposed to short options, which are specified by single characters. As
of release 7.7.90, all options start with two hyphens, for compatibility with GNU coding
standards (and most modern programs). Prior to this release, options started with a single
hyphen. While the single-hyphen style continues to work, it is deprecated and will someday
stop working.

These are the microcode options:

--band filename

Specifies the initial world image file (band) to be loaded. Searches for filename
in the working directory and the library directories, using the full pathname of
the first readable file of that name. If filename is an absolute pathname (on
unix, this means it starts with /), then no search occurs—filename is tested
for readability and then used directly. If this option isn’t given, the filename is
the value of the environment variable MITSCHEME_BAND, or if that isn’t defined,
all.com; in these cases the library directories are searched, but not the working
directory.

--heap blocks
Specifies the size of the heap in 1024-word blocks. Overrides any default. The
size specified by this option is incremented by the amount of heap space needed
by the band being loaded. Consequently, ——heap specifies how much free space
will be available in the heap when Scheme starts, independent of the amount
of heap already consumed by the band.

-—constant blocks
Specifies the size of constant space in 1024-word blocks. Overrides any default.
Constant space holds the compiled code for the runtime system and other sub-
systems.

--stack blocks
Specifies the size of the stack in 1024-word blocks. Overrides any default. This
is Scheme’s stack, not the unix stack used by C programs.

10

MIT/GNU Scheme 10.1.10

—--option-summary

——emacs

Causes Scheme to write an option summary to standard error. This shows the
values of all of the settable microcode option variables.

Specifies that Scheme is running as a subprocess of GNU Emacs. This option
is automatically supplied by GNU Emacs, and should not be given under other
circumstances.

—-interactive

——nocore

If this option isn’t specified, and Scheme’s standard I/O is not a terminal,
Scheme will detach itself from its controlling terminal, which prevents it from
getting signals sent to the process group of that terminal. If this option is
specified, Scheme will not detach itself from the controlling terminal.

This detaching behavior is useful for running Scheme as a background job. For
example, using Bourne shell, the following will run Scheme as a background job,
redirecting its input and output to files, and preventing it from being killed by
keyboard interrupts or by logging out:

mit-scheme < /usr/cph/foo.in > /usr/cph/foo.out 2>&1 &
This option is ignored under non-unix operating systems.
Specifies that Scheme should not generate a core dump under any circum-

stances. If this option is not given, and Scheme terminates abnormally, you
will be prompted to decide whether a core dump should be generated.

This option is ignored under non-unix operating systems.

--library path

Sets the library search path to path. This is a list of directories that is searched
to find various library files, such as bands. If this option is not given, the
value of the environment variable MITSCHEME_LIBRARY_PATH is used; if that
isn’t defined, the default is used.

On unix, the elements of the list are separated by colons, and the default value
is /usr/local/lib/mit-scheme-ARCH. On PCs, the elements of the list are
separated by semicolons, and the default value is c:\local\mit-scheme.

—--fasl filename

Specifies that a cold load should be performed, using filename as the initial file
to be loaded. If this option isn’t given, a normal load is performed instead.
This option may not be used together with the —-band option. This option is
useful only for maintenance and development of the MIT/GNU Scheme runtime
system.

The following options are runtime options. They are processed after the microcode options
and after the image file is loaded.

--no-init-file

This option causes Scheme to ignore the ${HOME}/ . scheme. init or scheme.ini
file, normally loaded automatically when Scheme starts (if it exists).

Chapter 2: Running Scheme 11

--suspend-file
Under some circumstances Scheme can write out a file called scheme_suspend
in the user’s home directory.! This file is a world image containing the complete
state of the Scheme process; restoring this file continues the computation that
Scheme was performing at the time the file was written.

Normally this file is never written, but the --suspend-file option enables
writing of this file.

--eval expression ...
This option causes Scheme to evaluate the expressions following it on the com-
mand line, up to (but not including) the next argument that starts with a
hyphen. The expressions are evaluated in the user-initial-environment.
Unless explicitly handled, errors during evaluation are silently ignored.

--load file ...
This option causes Scheme to load the files (or lists of files) following it on the
command line, up to (but not including) the next argument that starts with
a hyphen. The files are loaded in the user-initial-environment. Unless
explicitly handled, errors during loading are silently ignored.

The following options allow arguments to be passed to scripts via the
command-line-arguments procedure.

command-line-arguments [procedure]
Returns a list of arguments (strings) gathered from the command-line by
options like --args or --.
Note that this was named command-line in MIT/GNU Scheme release
9.2 and earlier, but has been renamed to avoid a conflict with R7RS.

--args argument . ..
This option causes Scheme to append the arguments, up to (but not includ-
ing) the next argument that starts with a hyphen, to the list returned by the
command-line-arguments procedure.

-—- argument ...
This option causes Scheme to append the rest of the command-line arguments
(even those starting with a hyphen) to the list returned by the command-line-
arguments procedure.

--edit This option causes Edwin to be loaded and started immediately when Scheme
is started.

2.5 Custom Command-line Options

MIT/GNU Scheme provides a mechanism for you to define your own command-line options.
This is done by registering handlers to identify particular named options and to process them
when Scheme starts. Unfortunately, because of the way this mechanism is implemented,
you must define the options and then save a world image containing your definitions (see

1 Under unix, this file is written when Scheme is terminated by the ‘SIGUSR1’, ‘SIGHUP’, or ‘SIGPWR’ signals.
Under other operating systems, this file is never written.

12 MIT/GNU Scheme 10.1.10

Section 3.3 [World Images]|, page 22). Later, when you start Scheme using that world image,
your options will be recognized.

The following procedures define command-line parsers. In each, the argument keyword
defines the option that will be recognized on the command line. The keyword must be a
string containing at least one character; do not include the leading hyphens.

simple-command-line-parser keyword thunk [help] [procedure]
Defines keyword to be a simple command-line option. When this keyword is seen on
the command line, it causes thunk to be executed. Help, when provided, should be a
string describing the option in the --help output.

argument-command-line-parser keyword multiple? procedure [procedure]
[help]
Defines keyword to be a command-line option that is followed by one or more
command-line arguments. Procedure is a procedure that accepts one argument;
when keyword is seen, it is called once for each argument. Help, when provided,
should be a string describing the option. It is included in the --help output. When
not provided, --help will say something lame about your command line option.

Multiple?, if true, says that keyword may be followed by more than one argument
on the command line. In this case, procedure is called once for each argument that
follows keyword and does not start with a hyphen. If multiple? is #£f, procedure is
called once, with the command-line argument following keyword. In this case, it does
not matter if the following argument starts with a hyphen.

set-command-line-parser! keyword procedure [procedure]
This low-level procedure defines keyword to be a command-line option that is defined
by procedure. When keyword is seen, procedure is called with all of the command-line
arguments, starting with keyword, as a single list argument. Procedure must return
two values (using the values procedure): the unused command-line arguments (as a
list), and either #f or a thunk to invoke after the whole command line has been parsed
(and the init file loaded). Thus procedure has the option of executing the appropriate
action at parsing time, or delaying it until after the parsing is complete. The execution
of the procedures (or their associated delayed actions) is strictly left-to-right, with
the init file loaded between the end of parsing and the delayed actions.

2.6 Environment Variables

Scheme refers to many environment variables. This section lists these variables and de-
scribes how each is used. The environment variables are organized according to the parts
of MIT/GNU Scheme that they affect.

Environment variables that affect the microcode must be defined before you start
Scheme; under unix or Windows, others can be defined or overwritten within Scheme by
using the set-environment-variable! procedure, e.g.

(set-environment-variable! "EDWIN_FOREGROUND" "32")

2.6.1 Environment Variables for the Microcode

These environment variables are referred to by the microcode (the executable C program
called mit-scheme under unix, and mit-scheme.exe on the PC).

Chapter 2: Running Scheme 13

MITSCHEME_BAND
The initial band to be loaded. The default value is all.com.

MITSCHEME_LIBRARY_PATH
A list of directories. These directories are searched, left to right, to find bands
and various other files. On unix systems the list is colon-separated, with the de-
fault /usr/local/lib/mit-scheme-ARCH. On PC systems the list is semicolon-
separated with the default c:\local\mit-scheme.

MITSCHEME_CONSTANT
The size of constant space, in 1024-word blocks; overridden by --constant.
The default value is computed to be the correct size for the band being loaded.

MITSCHEME_HEAP_SIZE
The size of the heap, in 1024-word blocks; overridden by --heap. The default
value depends on the architecture: for 32-bit machines the default is ‘4096’,
and for 64-bit machines the default is ‘16384’.

MITSCHEME_STACK_SIZE
The size of the stack, in 1024-word blocks; overridden by --stack. The default
value is ‘128°.

2.6.2 Environment Variables for the Runtime System

These environment variables are referred to by the runtime system.

HOME

HOMEDRIVE

HOMEPATH Directory in which to look for init files. E.g. c:\users\joe or /home/joe.
Under Windows, the environment variables HOMEDRIVE and HOMEPATH, set by
the operating system, are used instead. Under unix, HOME is set by the login

shell.
TMPDIR
TEMP
TMP Directory for various temporary files. The variables are tried in the given order.

If none of them is suitable, built-in defaults are used: under unix, /var/tmp,
/usr/tmp, /tmp; under Windows, \temp, \tmp, and \ (all on the system drive).

MITSCHEME_INF_DIRECTORY
Directory containing the debugging information files for the Scheme system.
Should contain subdirectories corresponding to the subdirectories in the source
tree. For example, if its value is f:\random, runtime system debugging files
will be expected in f:\random\runtime, while Edwin debugging files will be
expected in f:\random\edwin. By default, the information is searched for on
the library path.

MITSCHEME_LOAD_OPTIONS
Specifies the location of the options database file used by the load-option
procedure. The default is optiondb.scm on the library path.

14 MIT/GNU Scheme 10.1.10

2.6.3 Environment Variables for Edwin
These environment variables are referred to by Edwin.

EDWIN_BINARY_DIRECTORY
Directory where Edwin expects to find files providing autoloaded facilities. The
default is edwin on the library path.

EDWIN_INFO_DIRECTORY
Directory where Edwin expects to find files for the ‘info’ documentation sub-
system. The default is edwin/info on the library path.

EDWIN_ETC_DIRECTORY
Directory where Edwin expects to find utility programs and documentation
strings. The default is edwin on the library path.

ESHELL Filename of the shell program to use in shell buffers. If not defined, the SHELL
environment variable is used instead.

SHELL Filename of the shell program to use in shell buffers and when executing shell
commands. Used to initialize the shell-path-name editor variable. The default
is /bin/sh on unix systems and cmd.exe on Windows systems.

PATH Used to initialize the exec-path editor variable, which is subsequently used for
finding programs to be run as subprocesses.

DISPLAY Used when Edwin runs under unix and uses X11. Specifies the display on which
Edwin will create windows.

TERM Used when Edwin runs under unix on a terminal. Terminal type.

LINES Used when Edwin runs under unix on a terminal. Number of text lines on the
screen, for systems that don’t support ‘TIOCGWINSZ’.

COLUMNS Used when Edwin runs under unix on a terminal. Number of text columns on
the screen, for systems that don’t support ‘TIOCGWINSZ’.

2.6.4 Environment Variables for Microsoft Windows
These environment variables are specific to the Microsoft Windows implementation.

MITSCHEME_FONT
A string specifying a font name and characteristics, for example ‘Courier New
16 bold’. Allowed characteristics are integer, specifying the font size in points,
and the following style modifiers: ‘bold’, ‘italic’, ‘regular’, ‘underline’ and
‘strikeout’. You should specify only fixed-width fonts as variable-width fonts
are not drawn correctly.

Once in Edwin, the font can be changed with the set-font and set-default-
font commands.

MITSCHEME_GEOMETRY
Four integers separated by commas or spaces that specify the placement and
size of the MIT/GNU Scheme window as a left,top,width,height quadruple.
The units are screen pixels, and ‘-1’ means allow the system to choose this
parameter. E.g. ‘-1,-1,500,300’ places a 500 by 300 pixel window at some

Chapter 2: Running Scheme 15

system-determined position on the screen. The width and height include the
window border and title. The default value is ‘-1,-1,-1,-1".

MITSCHEME_FOREGROUND
A value specifying the window text color. The color is specified as hex blue,
green and red values (not RGB): e.g. 0x££0000 for blue.

MITSCHEME_BACKGROUND
A value specifying the window background color. See MITSCHEME_FOREGROUND.

HOMEDRIVE
HOMEPATH These variables are used together to indicate the user’s home directory. This is
the preferred way to specify the home directory.

USERNAME

USER Specifies the login name of the user running Scheme. This is used for several
different purposes. USERNAME is preferred; USER is used if USERNAME is not
defined. If neither of these variables is defined, an error is signalled when the
username is required.

USERDIR Specifies a directory that contains the home directories of users. One of the
places in which Scheme looks for the user’s home directory, by searching for a
subdirectory with the user’s login name.

2.7 Starting Scheme from Microsoft Windows

The Microsoft Windows version of MIT/GNU Scheme runs as a graphics-based application.
Scheme is normally started using shortcuts; the installer automatically generates several
different predefined shortcuts for your convenience.

The rest of this section gives some tips on how to set up shortcuts that run Scheme. If
you are unfamiliar with this concept you should read about it in the system help.

e Under Windows, shortcuts can be common or personal. When setting common short-
cuts it is important to make the shortcut properties independent of the vagaries of the
environment of the user who is running them.

e Give the shortcut an accurate Description.

e Use an absolute pathname to mit-scheme.exe in the shortcut Command line.

e If you specify the —-1library command-line option then you do not have to worry about
the MITSCHEME_LIBRARY_PATH environment variable.

e Set the shortcut’s Working Directory to something sensible. On Windows you can use
‘%HOMEDRIVEY%HOMEPATHY,” to make Scheme start up in the user’s home directory.

e There are several icons available in the Scheme executable—choose one that best rep-
resents the options given on the command line.

e If you want the shortcut to start up Edwin automatically, put --edit at the end of
the command line.

2.8 Leaving Scheme

There are several ways that you can leave Scheme: there are two Scheme procedures that you
can call; there are several Edwin commands that you can execute; and there are graphical-
interface buttons (and their associated keyboard accelerators) that you can activate.

16

MIT/GNU Scheme 10.1.10

e Two Scheme procedures that you can call. The first is to evaluate

(exit)

which will halt the Scheme system, after first requesting confirmation. Any information
that was in the environment is lost, so this should not be done lightly.

The second procedure suspends Scheme; when this is done you may later restart where
you left off. Unfortunately this is not possible in all operating systems; currently it
works under unix versions that support job control (i.e. all of the unix versions for
which we distribute Scheme). To suspend Scheme, evaluate

(quit)
If your system supports suspension, this will cause Scheme to stop, and you will be
returned to the shell. Scheme remains stopped, and can be continued using the job-
control commands of your shell. If your system doesn’t support suspension, this pro-
cedure does nothing. (Calling the quit procedure is analogous to typing C-z, but it
allows Scheme to respond by typing a prompt when it is unsuspended.)

Several Edwin commands that you can execute, including save-buffers-kill-scheme,
normally bound to C-x C-c, and suspend-scheme, normally bound to C-x C-z. These
two commands correspond to the procedures exit and quit, respectively.

Graphical-interface buttons that you can activate. Under Windows, closing the console
window (Scheme’s main window) causes Scheme to be terminated. Under any operating
system, closing an Edwin window causes that window to go away, and if it is the only
Edwin window, it terminates Scheme as well.

17

3 Using Scheme

This chapter describes how to use Scheme to evaluate expressions and load programs. It
also describes how to save custom “world images”, and how to control the garbage collector.
Subsequent chapters will describe how to use the compiler, and how to debug your programs.

3.1 The Read-Eval-Print Loop

When you first start up Scheme from the command line, you will be typing at a program
called the Read-Eval-Print Loop (abbreviated REPL). It displays a prompt at the left
hand side of the screen whenever it is waiting for input. You the