patch-2.4.6 linux/include/asm-mips/bitops.h
Next file: linux/include/asm-mips/bootinfo.h
Previous file: linux/include/asm-mips/bcache.h
Back to the patch index
Back to the overall index
- Lines: 760
- Date:
Mon Jul 2 13:56:40 2001
- Orig file:
v2.4.5/linux/include/asm-mips/bitops.h
- Orig date:
Wed Jul 5 22:15:26 2000
diff -u --recursive --new-file v2.4.5/linux/include/asm-mips/bitops.h linux/include/asm-mips/bitops.h
@@ -1,10 +1,10 @@
-/* $Id: bitops.h,v 1.7 1999/08/19 22:56:33 ralf Exp $
- *
+/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
- * Copyright (c) 1994 - 1997, 1999 Ralf Baechle (ralf@gnu.org)
+ * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org)
+ * Copyright (c) 2000 Silicon Graphics, Inc.
*/
#ifndef _ASM_BITOPS_H
#define _ASM_BITOPS_H
@@ -19,6 +19,12 @@
#include <linux/config.h>
/*
+ * clear_bit() doesn't provide any barrier for the compiler.
+ */
+#define smp_mb__before_clear_bit() barrier()
+#define smp_mb__after_clear_bit() barrier()
+
+/*
* Only disable interrupt for kernel mode stuff to keep usermode stuff
* that dares to use kernel include files alive.
*/
@@ -35,25 +41,6 @@
#define __bi_restore_flags(x)
#endif /* __KERNEL__ */
-/*
- * Note that the bit operations are defined on arrays of 32 bit sized
- * elements. With respect to a future 64 bit implementation it is
- * wrong to use long *. Use u32 * or int *.
- */
-extern __inline__ void set_bit(int nr, void *addr);
-extern __inline__ void clear_bit(int nr, void *addr);
-extern __inline__ void change_bit(int nr, void *addr);
-extern __inline__ int test_and_set_bit(int nr, void *addr);
-extern __inline__ int test_and_clear_bit(int nr, void *addr);
-extern __inline__ int test_and_change_bit(int nr, void *addr);
-
-extern __inline__ int test_bit(int nr, const void *addr);
-#ifndef __MIPSEB__
-extern __inline__ int find_first_zero_bit (void *addr, unsigned size);
-#endif
-extern __inline__ int find_next_zero_bit (void * addr, int size, int offset);
-extern __inline__ unsigned long ffz(unsigned long word);
-
#if defined(CONFIG_CPU_HAS_LLSC)
#include <asm/mipsregs.h>
@@ -64,92 +51,281 @@
*/
/*
- * The following functions will only work for the R4000!
- */
+ * set_bit - Atomically set a bit in memory
+ * @nr: the bit to set
+ * @addr: the address to start counting from
+ *
+ * This function is atomic and may not be reordered. See __set_bit()
+ * if you do not require the atomic guarantees.
+ * Note that @nr may be almost arbitrarily large; this function is not
+ * restricted to acting on a single-word quantity.
+ */
+extern __inline__ void
+set_bit(int nr, volatile void *addr)
+{
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
+ unsigned long temp;
+
+ __asm__ __volatile__(
+ "1:\tll\t%0, %1\t\t# set_bit\n\t"
+ "or\t%0, %2\n\t"
+ "sc\t%0, %1\n\t"
+ "beqz\t%0, 1b"
+ : "=&r" (temp), "=m" (*m)
+ : "ir" (1UL << (nr & 0x1f)), "m" (*m));
+}
-extern __inline__ void set_bit(int nr, void *addr)
+/*
+ * __set_bit - Set a bit in memory
+ * @nr: the bit to set
+ * @addr: the address to start counting from
+ *
+ * Unlike set_bit(), this function is non-atomic and may be reordered.
+ * If it's called on the same region of memory simultaneously, the effect
+ * may be that only one operation succeeds.
+ */
+extern __inline__ void __set_bit(int nr, volatile void * addr)
{
- int mask, mw;
+ unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
- addr += ((nr >> 3) & ~3);
- mask = 1 << (nr & 0x1f);
- do {
- mw = load_linked(addr);
- } while (!store_conditional(addr, mw|mask));
+ *m |= 1UL << (nr & 31);
+}
+
+/*
+ * clear_bit - Clears a bit in memory
+ * @nr: Bit to clear
+ * @addr: Address to start counting from
+ *
+ * clear_bit() is atomic and may not be reordered. However, it does
+ * not contain a memory barrier, so if it is used for locking purposes,
+ * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
+ * in order to ensure changes are visible on other processors.
+ */
+extern __inline__ void
+clear_bit(int nr, volatile void *addr)
+{
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
+ unsigned long temp;
+
+ __asm__ __volatile__(
+ "1:\tll\t%0, %1\t\t# clear_bit\n\t"
+ "and\t%0, %2\n\t"
+ "sc\t%0, %1\n\t"
+ "beqz\t%0, 1b\n\t"
+ : "=&r" (temp), "=m" (*m)
+ : "ir" (~(1UL << (nr & 0x1f))), "m" (*m));
}
-extern __inline__ void clear_bit(int nr, void *addr)
+/*
+ * change_bit - Toggle a bit in memory
+ * @nr: Bit to clear
+ * @addr: Address to start counting from
+ *
+ * change_bit() is atomic and may not be reordered.
+ * Note that @nr may be almost arbitrarily large; this function is not
+ * restricted to acting on a single-word quantity.
+ */
+extern __inline__ void
+change_bit(int nr, volatile void *addr)
+{
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
+ unsigned long temp;
+
+ __asm__ __volatile__(
+ "1:\tll\t%0, %1\t\t# change_bit\n\t"
+ "xor\t%0, %2\n\t"
+ "sc\t%0, %1\n\t"
+ "beqz\t%0, 1b"
+ : "=&r" (temp), "=m" (*m)
+ : "ir" (1UL << (nr & 0x1f)), "m" (*m));
+}
+
+/*
+ * __change_bit - Toggle a bit in memory
+ * @nr: the bit to set
+ * @addr: the address to start counting from
+ *
+ * Unlike change_bit(), this function is non-atomic and may be reordered.
+ * If it's called on the same region of memory simultaneously, the effect
+ * may be that only one operation succeeds.
+ */
+extern __inline__ void __change_bit(int nr, volatile void * addr)
{
- int mask, mw;
+ unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
- addr += ((nr >> 3) & ~3);
- mask = 1 << (nr & 0x1f);
- do {
- mw = load_linked(addr);
- }
- while (!store_conditional(addr, mw & ~mask));
+ *m ^= 1UL << (nr & 31);
}
-extern __inline__ void change_bit(int nr, void *addr)
+/*
+ * test_and_set_bit - Set a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is atomic and cannot be reordered.
+ * It also implies a memory barrier.
+ */
+extern __inline__ int
+test_and_set_bit(int nr, volatile void *addr)
{
- int mask, mw;
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
+ unsigned long temp, res;
- addr += ((nr >> 3) & ~3);
- mask = 1 << (nr & 0x1f);
- do {
- mw = load_linked(addr);
- } while (!store_conditional(addr, mw ^ mask));
+ __asm__ __volatile__(
+ ".set\tnoreorder\t\t# test_and_set_bit\n"
+ "1:\tll\t%0, %1\n\t"
+ "or\t%2, %0, %3\n\t"
+ "sc\t%2, %1\n\t"
+ "beqz\t%2, 1b\n\t"
+ " and\t%2, %0, %3\n\t"
+ ".set\treorder"
+ : "=&r" (temp), "=m" (*m), "=&r" (res)
+ : "r" (1UL << (nr & 0x1f)), "m" (*m)
+ : "memory");
+
+ return res != 0;
}
-extern __inline__ int test_and_set_bit(int nr, void *addr)
+/*
+ * __test_and_set_bit - Set a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is non-atomic and can be reordered.
+ * If two examples of this operation race, one can appear to succeed
+ * but actually fail. You must protect multiple accesses with a lock.
+ */
+extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
{
- int mask, retval, mw;
+ int mask, retval;
+ volatile int *a = addr;
- addr += ((nr >> 3) & ~3);
+ a += nr >> 5;
mask = 1 << (nr & 0x1f);
- do {
- mw = load_linked(addr);
- retval = (mask & mw) != 0;
- } while (!store_conditional(addr, mw|mask));
+ retval = (mask & *a) != 0;
+ *a |= mask;
return retval;
}
-extern __inline__ int test_and_clear_bit(int nr, void *addr)
+/*
+ * test_and_clear_bit - Clear a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is atomic and cannot be reordered.
+ * It also implies a memory barrier.
+ */
+extern __inline__ int
+test_and_clear_bit(int nr, volatile void *addr)
+{
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
+ unsigned long temp, res;
+
+ __asm__ __volatile__(
+ ".set\tnoreorder\t\t# test_and_clear_bit\n"
+ "1:\tll\t%0, %1\n\t"
+ "or\t%2, %0, %3\n\t"
+ "xor\t%2, %3\n\t"
+ "sc\t%2, %1\n\t"
+ "beqz\t%2, 1b\n\t"
+ " and\t%2, %0, %3\n\t"
+ ".set\treorder"
+ : "=&r" (temp), "=m" (*m), "=&r" (res)
+ : "r" (1UL << (nr & 0x1f)), "m" (*m)
+ : "memory");
+
+ return res != 0;
+}
+
+/*
+ * __test_and_clear_bit - Clear a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is non-atomic and can be reordered.
+ * If two examples of this operation race, one can appear to succeed
+ * but actually fail. You must protect multiple accesses with a lock.
+ */
+extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
- int mask, retval, mw;
+ int mask, retval;
+ volatile int *a = addr;
- addr += ((nr >> 3) & ~3);
+ a += nr >> 5;
mask = 1 << (nr & 0x1f);
- do {
- mw = load_linked(addr);
- retval = (mask & mw) != 0;
- }
- while (!store_conditional(addr, mw & ~mask));
+ retval = (mask & *a) != 0;
+ *a &= ~mask;
return retval;
}
-extern __inline__ int test_and_change_bit(int nr, void *addr)
+/*
+ * test_and_change_bit - Change a bit and return its new value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is atomic and cannot be reordered.
+ * It also implies a memory barrier.
+ */
+extern __inline__ int
+test_and_change_bit(int nr, volatile void *addr)
+{
+ unsigned long *m = ((unsigned long *) addr) + (nr >> 5);
+ unsigned long temp, res;
+
+ __asm__ __volatile__(
+ ".set\tnoreorder\t\t# test_and_change_bit\n"
+ "1:\tll\t%0, %1\n\t"
+ "xor\t%2, %0, %3\n\t"
+ "sc\t%2, %1\n\t"
+ "beqz\t%2, 1b\n\t"
+ " and\t%2, %0, %3\n\t"
+ ".set\treorder"
+ : "=&r" (temp), "=m" (*m), "=&r" (res)
+ : "r" (1UL << (nr & 0x1f)), "m" (*m)
+ : "memory");
+
+ return res != 0;
+}
+
+/*
+ * __test_and_change_bit - Change a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is non-atomic and can be reordered.
+ * If two examples of this operation race, one can appear to succeed
+ * but actually fail. You must protect multiple accesses with a lock.
+ */
+extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
{
- int mask, retval, mw;
+ int mask, retval;
+ volatile int *a = addr;
- addr += ((nr >> 3) & ~3);
+ a += nr >> 5;
mask = 1 << (nr & 0x1f);
- do {
- mw = load_linked(addr);
- retval = (mask & mw) != 0;
- } while (!store_conditional(addr, mw ^ mask));
+ retval = (mask & *a) != 0;
+ *a ^= mask;
return retval;
}
#else /* MIPS I */
-extern __inline__ void set_bit(int nr, void * addr)
+/*
+ * set_bit - Atomically set a bit in memory
+ * @nr: the bit to set
+ * @addr: the address to start counting from
+ *
+ * This function is atomic and may not be reordered. See __set_bit()
+ * if you do not require the atomic guarantees.
+ * Note that @nr may be almost arbitrarily large; this function is not
+ * restricted to acting on a single-word quantity.
+ */
+extern __inline__ void set_bit(int nr, volatile void * addr)
{
int mask;
- int *a = addr;
+ volatile int *a = addr;
__bi_flags;
a += nr >> 5;
@@ -159,10 +335,39 @@
__bi_restore_flags(flags);
}
-extern __inline__ void clear_bit(int nr, void * addr)
+/*
+ * __set_bit - Set a bit in memory
+ * @nr: the bit to set
+ * @addr: the address to start counting from
+ *
+ * Unlike set_bit(), this function is non-atomic and may be reordered.
+ * If it's called on the same region of memory simultaneously, the effect
+ * may be that only one operation succeeds.
+ */
+extern __inline__ void __set_bit(int nr, volatile void * addr)
{
int mask;
- int *a = addr;
+ volatile int *a = addr;
+
+ a += nr >> 5;
+ mask = 1 << (nr & 0x1f);
+ *a |= mask;
+}
+
+/*
+ * clear_bit - Clears a bit in memory
+ * @nr: Bit to clear
+ * @addr: Address to start counting from
+ *
+ * clear_bit() is atomic and may not be reordered. However, it does
+ * not contain a memory barrier, so if it is used for locking purposes,
+ * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
+ * in order to ensure changes are visible on other processors.
+ */
+extern __inline__ void clear_bit(int nr, volatile void * addr)
+{
+ int mask;
+ volatile int *a = addr;
__bi_flags;
a += nr >> 5;
@@ -172,10 +377,19 @@
__bi_restore_flags(flags);
}
-extern __inline__ void change_bit(int nr, void * addr)
+/*
+ * change_bit - Toggle a bit in memory
+ * @nr: Bit to clear
+ * @addr: Address to start counting from
+ *
+ * change_bit() is atomic and may not be reordered.
+ * Note that @nr may be almost arbitrarily large; this function is not
+ * restricted to acting on a single-word quantity.
+ */
+extern __inline__ void change_bit(int nr, volatile void * addr)
{
int mask;
- int *a = addr;
+ volatile int *a = addr;
__bi_flags;
a += nr >> 5;
@@ -185,10 +399,34 @@
__bi_restore_flags(flags);
}
-extern __inline__ int test_and_set_bit(int nr, void * addr)
+/*
+ * __change_bit - Toggle a bit in memory
+ * @nr: the bit to set
+ * @addr: the address to start counting from
+ *
+ * Unlike change_bit(), this function is non-atomic and may be reordered.
+ * If it's called on the same region of memory simultaneously, the effect
+ * may be that only one operation succeeds.
+ */
+extern __inline__ void __change_bit(int nr, volatile void * addr)
+{
+ unsigned long * m = ((unsigned long *) addr) + (nr >> 5);
+
+ *m ^= 1UL << (nr & 31);
+}
+
+/*
+ * test_and_set_bit - Set a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is atomic and cannot be reordered.
+ * It also implies a memory barrier.
+ */
+extern __inline__ int test_and_set_bit(int nr, volatile void * addr)
{
int mask, retval;
- int *a = addr;
+ volatile int *a = addr;
__bi_flags;
a += nr >> 5;
@@ -201,10 +439,40 @@
return retval;
}
-extern __inline__ int test_and_clear_bit(int nr, void * addr)
+/*
+ * __test_and_set_bit - Set a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is non-atomic and can be reordered.
+ * If two examples of this operation race, one can appear to succeed
+ * but actually fail. You must protect multiple accesses with a lock.
+ */
+extern __inline__ int __test_and_set_bit(int nr, volatile void * addr)
+{
+ int mask, retval;
+ volatile int *a = addr;
+
+ a += nr >> 5;
+ mask = 1 << (nr & 0x1f);
+ retval = (mask & *a) != 0;
+ *a |= mask;
+
+ return retval;
+}
+
+/*
+ * test_and_clear_bit - Clear a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is atomic and cannot be reordered.
+ * It also implies a memory barrier.
+ */
+extern __inline__ int test_and_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
- int *a = addr;
+ volatile int *a = addr;
__bi_flags;
a += nr >> 5;
@@ -217,10 +485,40 @@
return retval;
}
-extern __inline__ int test_and_change_bit(int nr, void * addr)
+/*
+ * __test_and_clear_bit - Clear a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is non-atomic and can be reordered.
+ * If two examples of this operation race, one can appear to succeed
+ * but actually fail. You must protect multiple accesses with a lock.
+ */
+extern __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
{
int mask, retval;
- int *a = addr;
+ volatile int *a = addr;
+
+ a += nr >> 5;
+ mask = 1 << (nr & 0x1f);
+ retval = (mask & *a) != 0;
+ *a &= ~mask;
+
+ return retval;
+}
+
+/*
+ * test_and_change_bit - Change a bit and return its new value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is atomic and cannot be reordered.
+ * It also implies a memory barrier.
+ */
+extern __inline__ int test_and_change_bit(int nr, volatile void * addr)
+{
+ int mask, retval;
+ volatile int *a = addr;
__bi_flags;
a += nr >> 5;
@@ -233,14 +531,41 @@
return retval;
}
+/*
+ * __test_and_change_bit - Change a bit and return its old value
+ * @nr: Bit to set
+ * @addr: Address to count from
+ *
+ * This operation is non-atomic and can be reordered.
+ * If two examples of this operation race, one can appear to succeed
+ * but actually fail. You must protect multiple accesses with a lock.
+ */
+extern __inline__ int __test_and_change_bit(int nr, volatile void * addr)
+{
+ int mask, retval;
+ volatile int *a = addr;
+
+ a += nr >> 5;
+ mask = 1 << (nr & 0x1f);
+ retval = (mask & *a) != 0;
+ *a ^= mask;
+
+ return retval;
+}
+
#undef __bi_flags
-#undef __bi_cli()
-#undef __bi_save_flags(x)
-#undef __bi_restore_flags(x)
+#undef __bi_cli
+#undef __bi_save_flags
+#undef __bi_restore_flags
#endif /* MIPS I */
-extern __inline__ int test_bit(int nr, const void *addr)
+/*
+ * test_bit - Determine whether a bit is set
+ * @nr: bit number to test
+ * @addr: Address to start counting from
+ */
+extern __inline__ int test_bit(int nr, volatile void *addr)
{
return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
}
@@ -249,6 +574,14 @@
/* Little endian versions. */
+/*
+ * find_first_zero_bit - find the first zero bit in a memory region
+ * @addr: The address to start the search at
+ * @size: The maximum size to search
+ *
+ * Returns the bit-number of the first zero bit, not the number of the byte
+ * containing a bit.
+ */
extern __inline__ int find_first_zero_bit (void *addr, unsigned size)
{
unsigned long dummy;
@@ -285,18 +618,20 @@
".set\tat\n\t"
".set\treorder\n"
"2:"
- : "=r" (res),
- "=r" (dummy),
- "=r" (addr)
- : "0" ((signed int) 0),
- "1" ((unsigned int) 0xffffffff),
- "2" (addr),
- "r" (size)
+ : "=r" (res), "=r" (dummy), "=r" (addr)
+ : "0" ((signed int) 0), "1" ((unsigned int) 0xffffffff),
+ "2" (addr), "r" (size)
: "$1");
return res;
}
+/*
+ * find_next_zero_bit - find the first zero bit in a memory region
+ * @addr: The address to base the search on
+ * @offset: The bitnumber to start searching at
+ * @size: The maximum size to search
+ */
extern __inline__ int find_next_zero_bit (void * addr, int size, int offset)
{
unsigned int *p = ((unsigned int *) addr) + (offset >> 5);
@@ -320,11 +655,8 @@
".set\tat\n\t"
".set\treorder\n"
"1:"
- : "=r" (set),
- "=r" (dummy)
- : "0" (0),
- "1" (1 << bit),
- "r" (*p)
+ : "=r" (set), "=r" (dummy)
+ : "0" (0), "1" (1 << bit), "r" (*p)
: "$1");
if (set < (32 - bit))
return set + offset;
@@ -341,8 +673,10 @@
#endif /* !(__MIPSEB__) */
/*
- * ffz = Find First Zero in word. Undefined if no zero exists,
- * so code should check against ~0UL first..
+ * ffz - find first zero in word.
+ * @word: The word to search
+ *
+ * Undefined if no zero exists, so code should check against ~0UL first.
*/
extern __inline__ unsigned long ffz(unsigned long word)
{
@@ -370,8 +704,11 @@
#ifdef __KERNEL__
-/*
- * ffs: find first bit set. This is defined the same way as
+/**
+ * ffs - find first bit set
+ * @x: the word to search
+ *
+ * This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
@@ -379,8 +716,10 @@
#define ffs(x) generic_ffs(x)
/*
- * hweightN: returns the hamming weight (i.e. the number
- * of bits set) of a N-bit word
+ * hweightN - returns the hamming weight of a N-bit word
+ * @x: the word to weigh
+ *
+ * The Hamming Weight of a number is the total number of bits set in it.
*/
#define hweight32(x) generic_hweight32(x)
@@ -390,14 +729,12 @@
#endif /* __KERNEL__ */
#ifdef __MIPSEB__
-/* For now I steal the Sparc C versions, no need for speed, just need to
- * get it working.
- */
-/* find_next_zero_bit() finds the first zero bit in a bit string of length
- * 'size' bits, starting the search at bit 'offset'. This is largely based
- * on Linus's ALPHA routines, which are pretty portable BTW.
+/*
+ * find_next_zero_bit - find the first zero bit in a memory region
+ * @addr: The address to base the search on
+ * @offset: The bitnumber to start searching at
+ * @size: The maximum size to search
*/
-
extern __inline__ int find_next_zero_bit(void *addr, int size, int offset)
{
unsigned long *p = ((unsigned long *) addr) + (offset >> 5);
@@ -438,6 +775,18 @@
* holds on the Sparc as it does for the ALPHA.
*/
+#if 0 /* Fool kernel-doc since it doesn't do macros yet */
+/*
+ * find_first_zero_bit - find the first zero bit in a memory region
+ * @addr: The address to start the search at
+ * @size: The maximum size to search
+ *
+ * Returns the bit-number of the first zero bit, not the number of the byte
+ * containing a bit.
+ */
+extern int find_first_zero_bit (void *addr, unsigned size);
+#endif
+
#define find_first_zero_bit(addr, size) \
find_next_zero_bit((addr), (size), 0)
@@ -451,7 +800,6 @@
int mask, retval, flags;
unsigned char *ADDR = (unsigned char *) addr;
- ADDR += nr >> 3;
mask = 1 << (nr & 0x07);
save_and_cli(flags);
retval = (mask & *ADDR) != 0;
FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)