
CSC, Finland September 21-24, 2009

  Cray Performance Analysis Toolset Overview

  Recent Release Highlights

 Measuring Performance

 What’s Next

September 21-24, 2009 2 © Cray Inc.

  Assist the user with application performance analysis and
optimization
•  Help user identify important and meaningful information from

potentially massive data sets
•  Help user identify problem areas instead of just reporting data
•  Bring optimization knowledge to a wider set of users

  Focus on ease of use and intuitive user interfaces
•  Automatic program instrumentation
•  Automatic analysis

  Target scalability issues in all areas of tool development
•  Data management

  Storage, movement, presentation

September 21-24, 2009 3 © Cray Inc.

  Supports traditional post-mortem performance analysis
•  Automatic identification of performance problems

  Indication of causes of problems
  Suggestions of modifications for performance improvement

  CrayPat
•  pat_build: automatic instrumentation (no source code changes needed)
•  run-time library for measurements (transparent to the user)
•  pat_report for performance analysis reports
•  pat_help: online help utility

  Cray Apprentice2

•  Graphical performance analysis and visualization tool

September 21-24, 2009 4 © Cray Inc.

  CrayPat
•  Instrumentation of optimized code
•  No source code modification required
•  Data collection transparent to the user
•  Text-based performance reports
•  Derived metrics
•  Performance analysis

  Cray Apprentice2
•  Performance data visualization tool
•  Call tree view
•  Source code mappings

September 21-24, 2009 5 © Cray Inc.

 When performance measurement is triggered
•  External agent (asynchronous)

  Sampling
o  Timer interrupt
o  Hardware counters overflow

•  Internal agent (synchronous)
  Code instrumentation

o  Event based
o  Automatic or manual instrumentation

  How performance data is recorded
•  Profile ::= Summation of events over time

  run time summarization (functions, call sites, loops, …)
•  Trace file ::= Sequence of events over time

September 21-24, 2009 6 © Cray Inc.

 Millions of lines of code
•  Automatic profiling analysis

  Identifies top time consuming routines
  Automatically creates instrumentation template customized to your

application

  Lots of processes/threads
•  Load imbalance analysis

  Identifies computational code regions and synchronization calls that could
benefit most from load balance optimization

  Estimates savings if corresponding section of code were balanced

  Long running applications
•  Detection of outliers

September 21-24, 2009 7 © Cray Inc.

  Important performance statistics:

•  Top time consuming routines

•  Load balance across computing resources

•  Communication overhead

•  Cache utilization

•  FLOPS

•  Vectorization (SSE instructions)

•  Ratio of computation versus communication
September 21-24, 2009 8 © Cray Inc.

  No source code or makefile modification required
•  Automatic instrumentation at group (function) level

  Groups: mpi, io, heap, math SW, …

  Performs link-time instrumentation
•  Requires object files
•  Instruments optimized code
•  Generates stand-alone instrumented program
•  Preserves original binary
•  Supports sample-based and event-based instrumentation

September 21-24, 2009 9 © Cray Inc.

  Analyze the performance data and direct the user to
meaningful information

  Simplifies the procedure to instrument and collect
performance data for novice users

  Based on a two phase mechanism
1.  Automatically detects the most time consuming functions in the

application and feeds this information back to the tool for further (and
focused) data collection

2.  Provides performance information on the most significant parts of the
application

September 21-24, 2009 10 © Cray Inc.

  Performs data conversion

•  Combines information from binary with raw performance
data

  Performs analysis on data

  Generates text report of performance results

  Formats data for input into Cray Apprentice2

September 21-24, 2009 11 © Cray Inc.

  Craypat / Cray Apprentice2 5.0 released September 10, 2009

•  New internal data format
•  FAQ
•  Grid placement support
•  Better caller information (ETC group in pat_report)
•  Support larger numbers of processors
•  Client/server version of Cray Apprentice2
•  Panel help in Cray Apprentice2

September 21-24, 2009 © Cray Inc. 12

  Access performance tools software

 % module load xt-craypat apprentice2

  Build application keeping .o files (CCE: -h keepfiles)

 % make clean
 % make

  Instrument application for automatic profiling analysis
•  You should get an instrumented program a.out+pat

 % pat_build –O apa a.out

  Run application to get top time consuming routines
•  You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

 % aprun … a.out+pat (or qsub <pat script>)

September 21-24, 2009 © Cray Inc. 13

September 21-24, 2009 © Cray Inc. Slide 14

  Generate report and .apa instrumentation file

% pat_report –o my_sampling_report [<sdatafile>.xf |
<sdatadir>]

  Inspect .apa file and sampling report

  Verify if additional instrumentation is needed

You can edit this file, if desired, and use it

to reinstrument the program for tracing like this:

pat_build -O mhd3d.Oapa.x+4125-401sdt.apa

These suggested trace options are based on data from:

/home/crayadm/ldr/mhd3d/run/mhd3d.Oapa.x+4125-401sdt.ap2, /home/
crayadm/ldr/mhd3d/run/mhd3d.Oapa.x+4125-401sdt.xf

--

HWPC group to collect by default.

 -Drtenv=PAT_RT_HWPC=1 # Summary with instructions metrics.

--

Libraries to trace.

 -g mpi

--

User-defined functions to trace, sorted by % of samples.

Limited to top 200. A function is commented out if it has < 1%

of samples, or if a cumulative threshold of 90% has been reached,
or if it has size < 200 bytes.

 # Note: -u should NOT be specified as an additional option.

43.37% 99659 bytes

 -T mlwxyz_

16.09% 17615 bytes

 -T half_

6.82% 6846 bytes

 -T artv_

1.29% 5352 bytes

 -T currenh_

1.03% 25294 bytes

 -T bndbo_

Functions below this point account for less than 10% of samples.

1.03% 31240 bytes

-T bndto_

. . .

--

 -o mhd3d.x+apa # New instrumented program.

 /work/crayadm/ldr/mhd3d/mhd3d.x # Original program.

September 21-24, 2009 15 © Cray Inc.

  biolibs Cray Bioinformatics library routines
  blas Basic Linear Algebra subprograms
  heap dynamic heap
  io includes stdio and sysio groups
  lapack Linear Algebra Package
  math ANSI math
  mpi MPI
  omp OpenMP API
  omp-rtl OpenMP runtime library (not supported on Catamount)
  pthreads POSIX threads (not supported on Catamount)
  shmem SHMEM
  stdio all library functions that accept or return FILE*

construct
  sysio I/O system calls
  system system calls

September 21-24, 2009 16 © Cray Inc.

September 21-24, 2009 © Cray Inc. Slide 17

  Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

  Run application

% aprun … a.out+apa (or qsub <apa script>)

  Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf |
<datadir>]

  View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

 MUST run on Lustre (/work/… , /lus/…, /scratch/…, etc.)

  Number of files used to store raw data

•  1 file created for program with 1 – 256 processes

•  √n files created for program with 257 – n processes

•  Ability to customize with PAT_RT_EXPFILE_MAX

September 21-24, 2009 18 © Cray Inc.

July 15, 2008 Slide 19

  Full trace files show transient events but are too large

  Current run-time summarization misses transient events

  Plan to add ability to record:

•  Top N peak values (N small) ‏

•  Approximate std dev over time

•  For time, memory traffic, etc.

•  During tracing and sampling

July 15, 2008 Slide 20

  Currently support MPI functions

  Still a problem for samples in some library functions

•  Miss immediate caller (leaf function does not create a frame) ‏

•  Cannot find previous frame (frame pointer optimized out) ‏

  Solution based on ideas, or even code, from dyninst

•  Use information from .eh_frame sections (offsets from sp)‏

•  Disassemble function

July 15, 2008 Slide 21

  Looking for ways to reduce both

•  Overhead of data collection during run-time

•  Time to process data and generate a report or graphical view

  New file format and post-processing architecture in 5.0

  5.0 release has modest improvements in both areas

  5.1 and succeeding releases should have

•  Much improved processing time

•  Better remote access to large data files

•  Analysis based on patterns and thresholds, generating advice

CSC, Finland September 21-24, 2009

