

SpecTcl 1.1 User’s Guide

Please
Recycle

 SUN MICROSYSTEMS, INC. THROUGH ITS SUN MICROSYSTEMS LABORATORIES DIVISION (“SUN”) WILL LICENSE
THIS SOFTWARE AND THE ACCOMPANYING DOCUMENTATION TO YOU (a “Licensee”) ONLY ON YOUR
ACCEPTANCE OF ALL THE TERMS SET FORTH BELOW.

Sun grants Licensee a non-exclusive, royalty-free right to download, install, compile, use, copy and distribute the Software,
modify or otherwise create derivative works from the Software (each, a “Modification”) and distribute any Modification in
source code and/or binary code form to its customers with a license agreement containing these terms and noting that the
Software has been modified. The Software is copyrighted by Sun and other third parties and Licensee shall retain and
reproduce all copyright and other notices presently on the Software. As between Sun and Licensee, Sun is the sole owner of all
rights in and to the Software other than the limited rights granted to Licensee herein; Licensee will own its Modifications,
expressly subject to Sun’s continuing ownership of the Software. Licensee will, at its expense, defend and indemnify Sun and
its licensors from and against any third party claims, including costs and reasonable attorneys’ fees, and be wholly responsible
for any liabilities arising out of or related to Licensee’s development, use or distribution of the Software or Modifications. Any
distribution of the Software and Modifications must comply with all applicable United States export control laws.

THE SOFTWARE IS BEING PROVIDED TO LICENSEE “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED. IN NO EVENT WILL SUN BE LIABLE HEREUNDER FOR ANY
DIRECT DAMAGES OR ANY INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES OF ANY
KIND.

Contents

Preface. xv

1. Introduction to SpecTcl . 19

SpecTcl Features . 20

A Technical Note on SpecTcl. 20

SpecTcl and its Grid Geometry Manager 20

SpecTcl Versus Other Constraint-Based Builders. 21

2. Getting Started with SpecTcl . 23

The “Hello, world” Tutorial . 23

Starting a New Application . 24

Designing an Application . 24

Editing Code. 25

Saving the Application . 26

Quitting SpecTcl . 27

Building an Executable . 27

Building and Testing . 27

iii

Running the Application Stand-Alone 28

Inserting Debugging Information . 29

The Example Applications . 30

The Layout Tutorial . 31

Adding Labels to an Empty Grid. 31

Completing the Labels . 32

Improving the Labels’ Appearance . 33

Creating the Add Button. 33

Creating Change and Delete Buttons and Another Column 34

Creating the Entry Widgets . 35

Adding Finishing Touches . 36

Examining Run-Time Actions and Resizeability 37

3. Basics. 39

The Big Picture . 40

About Help . 40

Help Facility . 40

Help Area . 40

Message Area . 41

Widget Basics . 41

Creating Widgets . 41

Selecting a Widget . 42

Navigating and Selection . 43

Copying, Cutting, Pasting, and Deleting Widgets. 43

Editing Widget Properties. 44

iv SpecTcl 1.1 User’s Guide—August 1997

Editing the Text Area. 44

Editing the Property Sheet . 45

Editing Properties through Tools on the Toolbar 47

Using and Changing Widget Names 48

Editing Widget Default Properties. 48

Grid Basics . 49

Inserting a Row or Column . 49

Inserting a Row and Column . 50

Resizing a Row or Column . 50

Deleting a Row or Column . 50

Beyond the Main Grid. 51

4. Managing Layout . 53

WYSIWYG versus Portable. 53

Traditional GUI Builders. 53

SpecTcl. 54

About the Grid . 56

More on Dynamic Alignment and Resizing 57

Dynamic Alignment . 57

Dynamic Resizeability. 57

Placing Widgets in Grid Cells. 58

Controlling Widget Size . 58

Automatic Sizing . 58

The Effect of padx and pady On Widget Size. 59

Tying Widget Size to Cell Size . 60

Contents v

Changing a Widget’s Row or Column Span. 60

Setting Specific Sizes . 61

Controlling Rows and Columns. 61

Establishing Minimum Sizes for Rows and Columns 61

Setting Resizeability of Rows and Columns. 61

Controlling Widget Resizeability. 62

Resizing the Application Window. 63

Resizeability Considerations . 63

Positioning a Widget within its Cell . 64

The wadx and waxy Properties . 64

The Sticky Property . 65

Aligning Widgets . 65

Aligning Multi-Line Text within a Widget 65

Using the Justify Property . 66

Using the Anchor Property. 66

5. Common Properties of Widgets . 67

Anchor Property . 67

Borderwidth Property . 68

Justify Property . 68

Relief Property . 69

Sticky Property. 70

6. Labels, Buttons, and Menus . 73

The Label Widget . 73

About Buttons . 75

vi SpecTcl 1.1 User’s Guide—August 1997

The Button Widget. 75

The Checkbutton Widget . 77

The Radiobutton Widget. 79

About Menus . 80

The Menubutton Widget. 80

The Menubar . 81

Standard Button Menu Entries. 82

Checkbutton Menu Entries . 82

Radiobutton Menu Entries . 83

7. Other Widgets . 85

The Entry Widget . 85

When the User Presses Return . 86

Retrieving the Entry Text . 87

Processing Events Twice . 88

The Listbox Widget . 88

When the User Selects a Listbox Entry 89

Reacting to the User’s Choice. 90

The Scale Widget . 91

The Text Widget . 93

The Frame Widget . 95

Creating a Multi-Cell Subgrid . 96

Selection with a Subgrid Present . 96

Selecting a Widget’s Parent or Child 97

Passing Window Space to Children. 97

Contents vii

The Scrollbar Widget . 99

Attaching Scrollbars . 100

The Canvas Widget . 101

The Message Widget . 101

8. Tcl and Tk. 103

About Tcl . 103

Entering Commands Interactively. 104

Tcl Commands . 104

Setting Variables. 106

Getting the Value of a Variable. 106

Getting the Result of a Command . 106

Grouping. 107

Tcl Built-in Commands . 107

proc . 107

List-related Commands. 108

Tcl Command Information . 109

For MS Windows . 109

For UNIX. 109

9. Advanced Topics . 111

Using Multiple Assemblies. 111

Widget Names in SpecTcl Scripts . 112

Introduction and Terminology . 112

Main Window Assembly. 113

Assembly in a Frame . 113

viii SpecTcl 1.1 User’s Guide—August 1997

Automatic Qualification by Base . 114

Explicit Qualification by Base. 114

Substitutions in Commands . 114

Building a Macintosh Application . 115

Execution Options in UNIX . 116

Index . 117

Contents ix

x SpecTcl 1.1 User’s Guide—August 1997

Figures

Figure 1-1 A SpecTcl Application - Design and Execution 19

Figure 2-1 “Hello, world” Design and Execution Environment 23

Figure 2-2 Design Window for “Hello, world!”. 24

Figure 2-3 The Property Sheet . 24

Figure 2-4 Edit Code Window . 25

Figure 2-5 Executing exRadiobutton2.ui - Text Style Selected 30

Figure 2-6 Executing exRadiobutton2.ui - Sticky Selected 30

Figure 2-7 The Layout Example in Execution . 31

Figure 2-8 Resizing the Application Window During Execution 37

Figure 3-1 Overview of SpecTcl’s Main Window . 39

Figure 3-2 A Selected Widget . 42

Figure 3-3 A Selected Grid Cell . 44

Figure 3-4 A Text Area for Editing the Text Property. 44

Figure 3-5 A Property Sheet . 45

Figure 3-6 Numbering Rows and Columns in the Grid 49

Figure 3-7 Inserting a Row and Column. 50

xi

Figure 4-1 Placing Widgets in the Grid . 58

Figure 4-2 Self-Sizing Buttons. 59

Figure 4-3 The Effect of padx and pady on Widget Size 59

Figure 4-4 Widgets and Various Sizing Constraints 60

Figure 4-5 Changing Widget Row and Column Spans. 60

Figure 4-6 Resizeability of Rows and Columns . 62

Figure 4-7 Designing exResize.ui for Resizeability. 63

Figure 4-8 Executing exResize.ui - Resizing the Application Window 63

Figure 4-9 The Effect of wadx and wady on Widget Position 64

Figure 4-10 The Effect of the Sticky Property on Widget Position 65

Figure 4-11 The Effect of the Justify Property on Multi-line Text 66

Figure 4-12 The Effect of the Anchor Property on Text Position. 66

Figure 5-1 Positioning Text or Image with the Anchor Property 67

Figure 5-2 Effect of Borderwidth Property . 68

Figure 5-3 Aligning Multi-Line Text with the Justify property. 68

Figure 5-4 Setting Border Style with the Relief Property 69

Figure 5-5 Widgets with Different Sticky Properties 70

Figure 5-6 Using the Sticky Tool . 70

Figure 6-1 Executing exLabel1.ui . 73

Figure 6-2 A Label Displaying Multiple Lines of Text 74

Figure 6-3 Design Window of exLabel2.ui . 74

Figure 6-4 A Button with an Image . 76

Figure 6-5 Design Window and Script of exButton.ui 76

Figure 6-6 Executing exCheckbutton.ui . 77

Figure 6-7 Design Window and Script of exCheckbutton.ui 78

xii SpecTcl 1.1 User’s Guide—August 1997

Figure 6-8 Executing exRadiobutton.ui . 79

Figure 6-9 Design Window and Script of exRadiobutton.ui 79

Figure 6-10 Menu Application . 80

Figure 6-11 Design Window of exMenubutton.ui 81

Figure 7-1 Executing exEntry.ui . 85

Figure 7-2 Design Window and Script for exEntry.ui 86

Figure 7-3 Executing exListbox.ui Application. 88

Figure 7-4 Design Window and Script of exListbox.ui 89

Figure 7-5 Executing exScale.ui . 91

Figure 7-6 Design Window and Script of exScale.ui 92

Figure 7-7 Executing exText.ui . 93

Figure 7-8 Design Window of exText.ui . 93

Figure 7-9 Designing and Executing exFrame.ui 95

Figure 7-10 A Multi-Cell Subgrid. 96

Figure 7-11 Selecting within the Grid and Subgrid. 96

Figure 7-12 Executing exFrame.ui and Resizing the Application Window 97

Figure 7-13 Executing exScrollbar.ui . 99

Figure 7-14 Designing exScrollbar.ui . 100

Figure 7-15 Executing exMessage.ui . 101

Figure 7-16 Design Window and Script for exMessage.ui 102

Figure 9-1 Executing exAssemM.ui - Subassemblies in Frames 111

Figure 9-2 An Assembly in the Main Window . 113

Figure 9-3 An Assembly in a Frame . 113

Figure 9-4 Macintosh Output Preferences . 115

Figure 9-5 Unix Output Preferences . 116

Figures xiii

xiv SpecTcl 1.1 User’s Guide—August 1997

Preface

The SpecTcl User’s Guide and Reference describes SpecTcl and how to use it to
produce cross-platform applications with graphical user interfaces.

Who Should Use This Book

This guide is written for you if you are a Tcl/Tk programer and want to use
SpecTcl or are a programmer and want to learn Tcl/Tk and SpecTcl.

Before You Read This Book

Although you do not have to be a professional programmer, many parts of this
guide depend on a familiarity and comfort with programming languages and
concepts. If you do not already know Tcl/Tk, we assume that you have used
other procedural languages, such as C or Pascal, or scripting languages, such
as Perl, C shell, Bourne shell, or Korn shell.

How This Book Is Organized

Here is a brief description of the chapters in this book:

Chapter 1, “Introduction to SpecTcl,” describes the product briefly.

Chapter 2, “Getting Started with SpecTcl,” guides you, step by step, through:

• Design, save, build, test, and execute, using a very small application.
• The widget layout process, using a somewhat larger application.

xv

Chapter 3, “Basics,” introduces the tool palette, command tools, the grid, and
other facilities that you use each time you use SpecTcl.

Chapter 4, “Managing Layout,” explains how to lay out widgets in SpecTcl
applications and why this process differs from the layout process in traditional
GUI builders.

Chapter 5, “Common Properties of Widgets,” provides information about
certain properties that are important the layout process in SpecTcl or have
some other special significance. (Tcl/Tk documentation covers most properties
in greater depth.)

Chapter 6, “Labels, Buttons, and Menus,” explains these basic widgets and
provides examples to demonstrate their use.

Chapter 7, “Other Widgets,” continues with last chapter’s coverage of specific
widgets, this time with more complex widgets, such as listboxes.

Chapter 8, “Tcl and Tk,” takes a minimalist approach to describing Tcl/Tk.
Although most SpecTcl users already know Tcl/Tk, if you happen to be new to
Tcl/Tk, this might serve as a stop gap. We recommend you acquire something
more substantial on the subject; see “Related Books,” below.

Chapter 9, “Advanced Topics,” provides information that is only slightly more
advanced than the material that precedes it.

Related Books

For information about Tcl/Tk we recommend the following books:

Practical Programming in Tcl and Tk
(Second Edition)
by Brent B. Welch
Prentice Hall PTR, 1995
ISBN 0-13-616830-2

Tcl and the Tk Toolkit
John K. Ousterhout
Addison Wesley, 1994
ISBN 0-201-63337-X

xvi SpecTcl 1.1 User’s Guide—August 1997

What Typographic Changes and Symbols Mean

The following table describes the type changes and symbols used in this book.

Table P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
system% You have mail.

AaBbCc123 Command-line placeholder:
replace with a real name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide.
These are called class options.
You must be root to do this.

Menu=>Cmd Select the Cmd command from
the Menu menu

Edit=>Copy means to select the
Copy command from the Edit
menu.

Code samples are included in boxes and may display the following:

% UNIX C shell prompt system%

$ UNIX Bourne and Korn shell
prompt

system$

Superuser prompt, all shells system#

Preface xvii

Acknowledgments

This guide is written at the SunScript group of SunLabs, a division of Sun
Microsystems. SunScript is directed by John Ousterhout.

All members of the SpecTcl project contributed to this guide; specifically:

• Ray Johnson, manager

• Ioi Lam, developer

• Bryan Surles, developer

• Allan Pratt, writer

My thanks to the project for contributing written material, review comments,
and suggestions. Thanks also to Ken Corey, one of the original SpecTcl
developers, who spent time getting me up to speed on SpecTcl and to Steve
Uhler, the developer originally responsible for the design of SpecTcl.

A special thanks to Shlomtzi Shaham for testing the widget-layout tutorial.

— Allan Pratt

xviii SpecTcl 1.1 User’s Guide—August 1997

Introduction to SpecTcl 1

SpecTcl provides a development environment to build applications with
graphical user interfaces that run on multiple platforms.

The figure, below, shows a simple application in execution (foreground) and
the design environment in which it was developed (background).

Figure 1-1 A SpecTcl Application - Design and Execution

SpecTcl design
environment

Application in
execution

19

1

SpecTcl Features

These are some of SpecTcl’s important features:

• Lets you design graphical user interfaces interactively and graphically.

• Creates applications on one platform—Unix, Windows, or Macintosh—that
can run on any of the other platforms with no changes to the application.

• Uses a geometry “smart” enough to keep elements aligned across all
platforms.

• Enables fast development of applications that require many more lines of
code in traditional procedural languages.

• Provides more flexibility at run time than many languages, which simplifies
many tasks; for example, generating menus at run time.

• Lets you integrate Tcl/Tk scripts with scripts generated in SpecTcl.

• Lets you alternate quickly between design and execution, without waiting
for long compilations; you can add something new and get immediate
feedback on how it works.

• Produces executable files that use Tcl/Tk; your users don’t require SpecTcl.

• Lets you develop and test simple applications separately, and combine them
later into subassemblies of a larger application.

A Technical Note on SpecTcl

If you are interested in the technical issues addressed by SpecTcl’s designers,
this section is written for you; otherwise, you can skip the section without
missing anything you will need to develop SpecTcl applications.

SpecTcl and its Grid Geometry Manager

SpecTcl uses a grid geometry manager that can be described as constraint
based. Some of this is hidden from you, as a programmer, because its generally
more convenient to work with abstractions such as rows and columns and
their widgets, than to work directly with constraints. Some constraints have
been mapped onto other entities; for example, the widget sticky property is an
abstraction that ties the way a widget is sized to the way its column is sized.

20 SpecTcl 1.1 User’s Guide—August 1997

1

Rather than specifying the size and location of a widget by itself, we constrain
the widget with respect to other widgets. The notion of a grid, the sticky
property of widgets, and the attributes of columns and rows are just high-level
abstractions of low-level mathematical constraints.

For further information on SpecTcl’s grid and a general explanation of the
widget-layout process, see Chapter 4, “Managing Layout.”

SpecTcl Versus Other Constraint-Based Builders

Constraint-based GUI builders are not new, but many are overly general and
allow the programmer to specify constraints that are either ambiguous or
unsolvable. By using a manageable subset of constraint-based concepts, we
have designed SpecTcl as a more reliable programming tool.

To demonstrate the potential for ambiguity in specifying constraints, let’s look
at an example. Suppose we want to constrain the width of window A to be
equal to the sum of the widths of windows B and C. Or, we can write the
constraint as (A = B + C). If we make B bigger, we know that the system must
either make A bigger or C smaller to satisfy the constraint. The ambiguity is
that we don’t know which.

It’s very easy to specify either an ambiguous or unsolvable constraint in a
general constraint-based system.

The grid geometry manager avoids these problems by allowing only a limited
number of constraints all of which we know how to solve in an efficient
manner. The result is a mechanism with most of the power of a general
constraint-based system but with none of its pitfalls.

Introduction to SpecTcl 21

1

22 SpecTcl 1.1 User’s Guide—August 1997

Getting Started with SpecTcl 2

This chapter presents the following material to get you started using SpecTcl:

• To introduce you to SpecTcl’s tools and the phases of the development
process, the “Hello, world” tutorial builds a very basic application.

• To introduce you to the example applications, provided with your release,
we show and describe one of the example applications.

• To demonstrate the widget layout process, a second tutorial builds a still
simple, but more typical application.

The “Hello, world” Tutorial

Let’s begin the first tutorial with a picture of the design and execution
environments of “Hello, world.”

Figure 2-1 “Hello, world” Design and Execution Environment

At design time:

to here in the grid:
Drag this palette button

At execution time:

this dialog box appears
when you press this button,

23

2

Starting a New Application

When you start SpecTcl, an empty grid appears, where you can start a new
application. To start with an existing application, select File=>Open ... , and
enter the application name (for example, app.ui) in the dialog box.

Note – The notation File=>Open means “Select Open from the File menu.”

Designing an Application
To create “Hello, world!,” a one-button application:

1. Drag a button from the palette to the grid:

Figure 2-2 Design Window for “Hello, world!”

2. To access button properties, double-click on the button; see Figure 2-2.

Figure 2-3 The Property Sheet

 double-click on the button.
To open the button’s property sheet,

to this grid cell
drag this widget
To create the button,

Edit command property here
and press Return.

To see more properties,
click here.

24 SpecTcl 1.1 User’s Guide—August 1997

2

Double-clicking on any widget opens its property sheet, so you can view and
edit its properties.

Note – To see or edit a property value that’s wider than its property-sheet
entry, use the left and right arrow keys to scroll left and right.

3. To edit this button’s command property: a) click in the command entry in
the property sheet, b) enter the command ShowGreeting , and c) press the
Return key.

Pressing Return makes the new (or changed) entry part of the interface.
ShowGreeting is a user-defined Tcl command, described in the next
section.

Editing Code

The Edit=>Edit Code command provides a very simple ASCII editor that lets
you enter a script.

Figure 2-4 Edit Code Window

Use the edit-code editor to:

• Enter proc definitions—that is, user-defined Tcl commands that you can
invoke throughout your application.

See text for definitions of the
Dismiss, Apply, and Revert
buttons.

Getting Started with SpecTcl 25

2

• Enter code, outside any proc, that you want executed once—after the
interface is loaded but before the user works with the interface.

• Source-in Tcl statements from another file; for example:

uplevel #0 "source foo.tcl"

Here’s why you need the uplevel statement. Code that you enter in the
Edit Code window that is not in any proc is, nonetheless, placed in a proc
by SpecTcl: a proc that is called when the application is started. The
uplevel statement ensures that your statements are evaluated at the outer-
most (global) level.

To demonstrate the edit code feature, let’s continue with the “Hello, world!”
example:

1. Select Edit=>Edit Code .

At first, the edit code window comes up empty.

2. To define the Tcl ShowGreeting command mentioned in the last section,
enter these commands in the edit-code window:

proc ShowGreeting {} {
tk_messageBox -message “Hello, world!” -type ok

}

The tk_messageBox command is a built-in Tk command that posts its
message in a dialog box.

3. Click on the Dismiss button.

The buttons along the bottom of the edit-code window do the following:

• The Dismiss button confirms your edits and closes the editor window.

• The Apply button confirms the edits you have made so far, but leaves the
window open for more changes.

• The Revert button “undoes” any changes (even confirmed ones), and
returns the interface to its state when the edit-code window opened.

Saving the Application

When you’re done with additions and changes, save your application. To
demonstrate, let’s save the “Hello, World” application as hello.ui :

1. Select File=>Save As .

26 SpecTcl 1.1 User’s Guide—August 1997

2

2. Enter hello.ui in the dialog box and press Save.

SpecTcl always saves the application in a file with a .ui (user interface)
suffix. If you omit the .ui , SpecTcl appends it.

SpecTcl saves your application in the .ui file in a form it can read and update
when you next select File=>Open

Use File=>Save As ... when you need to specify a new file name. Use
File=>Save if you are saving successive changes to the same file.

Quitting SpecTcl

When you are finished with SpecTcl, select File=>Quit . If you have not saved
your changes, SpecTcl prompts you to see whether you want to do so, so they
are not lost when SpecTcl terminates. Then SpecTcl stops executing.

Building an Executable

When you select Commands=>Build , SpecTcl creates an executable file—a Tcl
version of your .ui file:

file-name.ui.tcl

Note – SpecTcl cannot read or reprocess the .ui.tcl file. So, any changes that
you make to the .ui.tcl file are lost the next time you do a build.

For further information on application execution, see “Running the
Application Stand-Alone” on page 28.

For the Macintosh only there is an additional Build command. We suggest:

• Use Commands=>Build while you are developing an application.
• Use Commands=>Build Application ... when you are ready to release

your application; see “Building a Macintosh Application” on page 115.

Building and Testing

To combine the build and execute phases, use the Build and Run Test
command—a convenient way to alternate between developing your
application and trying it out. (Save your application before the build.)

Getting Started with SpecTcl 27

2

To demonstrate the command, let’s continue with the “Hello, world!” example:

1. Select Commands=>Build and Test

Your application’s main window appears.

2. Press the button in your application.

The “Hello, world!” dialog box appears:

When a button is pressed, SpecTcl executes the Tcl commands in the
button’s command property.

3. To stop your application, select Commands=>Stop Test .

This also returns SpecTcl to design mode.

Note – To see the same application centered, with a three-dimensional button,
select File=>Open ... of exHello.ui in the examples directory. See “The
Example Applications” on page 30.

Running the Application Stand-Alone

Whether you use UNIX, Windows, or the Macintosh, you can build a ui.tcl
file that is executable, but there are some differences between the different
platforms:

28 SpecTcl 1.1 User’s Guide—August 1997

2

• In MS Windows, the application’s .ui.tcl file is executable because every
Tcl file is registered with Windows as executable. You can double-click on
the icon for a ui.tcl file to execute the application.

• In Unix, the .ui.tcl file is executable and wish is executed with your
application as a script. So you can also double-click on a ui.tcl file to
execute the application. For further information and options, see “Execution
Options in UNIX” on page 116.

• With the Macintosh, you can choose either of these alternatives:
• Select Commands=>Build , which builds a ui.tcl file, but you cannot

execute it by double-clicking.
• Select Commands=>Build Application ..., which creates a double-

clickable .ui.tc l file. This the best way to distribute an application that
you are ready to release. For further information, see “Building a
Macintosh Application” on page 115.

Inserting Debugging Information

You can often debug a Tcl script by adding puts commands strategically,
writing out variables as they change. In all platforms, the puts command
writes a string to output. In UNIX, the string is written to standard output; in
Windows or the Macintosh, a console window appears, which displays the
string output.

To demonstrate, let’s modify the “Hello, World” application, described earlier:

1. To display the property sheet, double-click on the button.

2. Edit the command property, replacing it with:

puts “Hello, World, from %W”

Note – The %W in the puts string, above, is a directive to SpecTcl. Within a
widget’s command property, SpecTcl replaces %W with the widget’s name. For
further information, see “Substitutions in Commands” on page 114.

3. Select File=>Save .

4. Select Commands=>Build and Test .

When the application appears, press the button as before. Instead of a dialog
box, you see the output: Hello, World from .button#1 .

Getting Started with SpecTcl 29

2

The Example Applications

A name such as appName.ui in this guide refers to an application in the
examples directory, provided in your release materials. Here is an example
application that shows you something unique about SpecTcl widgets.

Figure 2-5 Executing exRadiobutton2.ui - Text Style Selected

This particular example shows how the label automatically becomes taller to
accommodate larger amounts of text. This is an integral part of the window
geometry used by SpecTcl, as explained in Chapter 4, “Managing Layout.”

We recommend you try this now to acquaint yourself with these examples:

1. Select File=>Open ... and, in the dialog box, enter examples for the
directory and exRadiobutton2.ui for the file name.

2. Select Commands=>Build and Test .

3. Click on the Text Style button.

The application should now look like Figure 2-5.

4. Now, click on the Sticky property button.

The application should now look like Figure 2-6:

Figure 2-6 Executing exRadiobutton2.ui - Sticky Selected

You can try various things at execute-time and then examine the properties of
widgets. Then, you can look at the code by selecting Edit=>Edit Code .

30 SpecTcl 1.1 User’s Guide—August 1997

2

The Layout Tutorial

This section demonstrates the widget-layout process in SpecTcl, by guiding
you through the creation of an example application step by step. The figure
below shows the completed application in execution:

Figure 2-7 The Layout Example in Execution

In this section, each subsection shows a few steps in the design process for the
exLong.ui application. Each subsection begins with a figure. The left and
right parts of the figure show how the application looks at the beginning and
the end of the section, respectively.

Adding Labels to an Empty Grid

When you start SpecTcl or select File=>New , you begin with an empty grid. To
add two label widgets:

1. Click on the palette’s label widget:

When you click on it (rather than dragging it), the palette widget stays
selected so you can easily create several labels. For further information, see
“Clicking or Dragging on Palette Widgets” on page 41.

=>

Getting Started with SpecTcl 31

2

2. To create two labels, as shown above, click on each grid cell of the first
column.

Each time you click in a cell, SpecTcl creates a label widget in that cell.

Completing the Labels

Make sure the palette widget is still selected. Let’s continue by finishing the
labels:

1. To create the last label, click below the second one, as shown in the figure,
above, left.

If a palette widget is selected and you click below the grid, SpecTcl makes
room for the widget by creating a new row. Then, it places the new label in
the new row.

2. To deselect the palette widget, click on it once again.

Otherwise, you’ll continue to create label widgets.

3. To change the labels to read Name, Company, and E-mail , as shown in the
figure, click on the first label, to select it, and then edit the text area, as
shown in the figure.

At first, the text area contains label , the default text property of the
selected widget.

4. Similarly, select the second and third labels and edit their text properties to
read Company and E-mail , respectively.

=>
To create another label,

click about here.
and a new row to contain it,

Edit the text property

x

in this text area.

32 SpecTcl 1.1 User’s Guide—August 1997

2

Improving the Labels’ Appearance

To align the labels:

1. Double-click on the Name label, to bring up its property sheet.

2. In the property sheet, edit the Sticky entry to be ew (that is, East West).

This constrains the label to be (and stay) the width of its column.

3. Edit the anchor entry to be w.

This position the text to the left within the label widget.

4. Make the same changes to properties of the Company and E-mail labels.

Note – There is also a justify property, but justify aligns multiple lines of text;
it doesn’t affect the placement of text within a widget.

Creating the Add Button

To create the Add button:

1. Drag a palette button widget, , to a place below the E-mail label.

This creates a new row and a new button—the way it did for the third label.

=>

=>

x
Drag a palette button
to about here

Getting Started with SpecTcl 33

2

2. To open the button’s property sheet, double click on the new button.

3. In the property sheet, edit these properties (to values as specified in
parentheses): anchor (w), borderwidth (4), sticky (ew), and text (Add).

Creating Change and Delete Buttons and Another Column

To add a new column and the Change and Delete buttons:

1. Click on the rightmost gridline, as shown in the figure, and then double-
click on it.

The first click selects the gridline; double-clicking creates another column.

2. To copy the Add button, first click on it, then select Edit=>Copy .

3. To create the Change button, first click on the grid cell to the right of the
Add button, then select Edit=>Paste .

Clicking on the grid cell selects it, to prepare for the paste operation. You
can tell which cell is selected by noting which column and row handles are
highlighted. Note the highlighted handles in the figure above, which show
that a paste would insert a widget in row 3, column 3.

4. Similarly, click in the grid cell that receives the Delete button and select
Edit=>Paste .

The paste operation gives you a button widget that has all the properties of
the Add button, except for a generated item_name.

5. To change the text on the two new buttons, select each button, in turn, and
edit the text area.

=>

Click on this gridline; then, to create
another column, double-click on it.

Column handles

R
o
w

h
a
n
d
l
e
s

34 SpecTcl 1.1 User’s Guide—August 1997

2

Creating the Entry Widgets

To add the entry widgets:

1. Drag an entry widget, , to the cell beside the Name label.

At this point, the entry widget occupies one column.

2. To resize the Name entry widget, drag its middle resize handle to the right.
To locate the exact place to drag, move the cursor over the entry widget and
watch the cursor change from the text cursor, , to a right-side cursor, .
When you see the right-side cursor, start to drag.

Drag the resize handle to the right until the entry widget occupies two
columns. See the middle portion of the figure above.

=>

to here.

=>

column

Drag this

columncolumn

Getting Started with SpecTcl 35

2

3. Do the same thing to create Company and E-mail entry widgets; that is,
create them and change them to span two columns.

4. To edit properties of the entry widget, double-click on the widget.

The property sheet appears.

5. In the property sheet, edit these properties to these values (specified in
parentheses): sticky (ew) and borderwidth (4).

Adding Finishing Touches

To add the finishing touches:

1. To place a border around the application, add a row or column, as
appropriate, by clicking and double-clicking on gridlines on the border.

2. To set the minimum size for the border, drag the right gridline of the last
column, and watch the message area at the bottom of the window.

The message area displays the size of rows and columns as you move a
gridline. The border of exLong.ui in the examples directory is 10. You can
continue this process for each row or column that’s part of the border.

Note that there’s a trick to resizing some of these rows and columns. For a
column, always move the right gridline. For a row, always move the bottom
gridline.

3. For columns 2 and 3, click repeatedly on the column handles, until they
show as arrowheads, as shown in the figure, above, right. Note that column
1 does not have arrowheads.

Arrowheads on column handles

=>

indicate automatic resizeability

36 SpecTcl 1.1 User’s Guide—August 1997

2

At execution time, when the user resizes the application window, columns or
rows that have arrowheads are automatically resized. For further information,
see “Setting Resizeability of Rows and Columns” on page 61.

Examining Run-Time Actions and Resizeability

The version of exLong.ui in the Examples directory has a script. To see it,
open the application and then select Edit=>Edit Code . We suggest you run it.

When you press a button, a procedure does a puts identifying the button;
when you press return; a procedures does a puts identifying the entry and
giving it contents.

For a complete explanation of the interaction between the script and the entry
widgets, see “The Entry Widget” on page 85.

The figure shows two views of the exLong.ui application in execution, before
and after the user resizes the application window.

Figure 2-8 Resizing the Application Window During Execution

Note that although the window on the right is definitely larger, some elements
have changed size and some have not.

Compare the two pictures with the design goals:

• To provide the entry widgets with more horizontal space.

• To keep the labels the same size.

• To keep both the left and right sides of the row of buttons aligned with the
widgets above them.

.

Getting Started with SpecTcl 37

2

38 SpecTcl 1.1 User’s Guide—August 1997

Basics 3

This chapter describes basic features of SpecTcl. To understand the design
window and its tools, consider this pictorial overview:

Figure 3-1 Overview of SpecTcl’s Main Window

Toolbar: Click on these tools to

Help area: identifies items as you move the cursor. Message area:
provides feedback.

Palette:

to the main grid.

To create widgets,
drag any icon

change property of selected widget.
Click to insert/delete item
and start/stop test run.

Text area

Main grid

39

3

The Big Picture

Some people prefer to gain familiarity with basic tools and features first and
then go on to concepts; others prefer to start with a conceptual overview. To
start with the overview, skip to Chapter 4, “Managing Layout,” which explains
why the layout process in SpecTcl may be different than what you’re used to.

About Help

SpecTcl provides a help facility and some contextual help.

In addition, there is a Tcl/Tk HTML help facility you can view with your
network browser at:

http://sunscript.sun.com/man/tcl8.0/contents.html

This contains the Tcl/Tk Manual, including Tcl and Tk commands and
keywords.

Help Facility

For on-line Help in SpecTcl, select Help on the Help menu; then click on one of
the following entries when the table of contents appears:

• Quick Tips
• Glossary of Terms
• Widget options
• Interfacing the user interface with an application
• Known Problems
• Tour of the SpecTcl user interface
• SpecTcl Tutorial
• Miscellaneous
• Changes since the last release

If you are an experienced SpecTcl user, you will find helpful reminders; if you
are new to SpecTcl there is also introductory information.

Help Area

As you move the mouse within the design window, the help area at the
bottom, left of the window (see Figure 3-1 on page 39) provides help for the
item beneath the cursor. For example, “Select the point size for the font”

40 SpecTcl 1.1 User’s Guide—August 1997

3

appears when the cursor is over the font tool. Help is available for these item
categories: the palette icons, tools in the toolbar, command tools, gridlines, row
and column handles, and widgets in the grid.

Message Area

At the bottom, right of the SpecTcl window is the message area, which
provides feedback on your interaction with SpecTcl; see Figure 3-1 on page 39.
Information provided by the message area include:

• The name of the widget and its grid position after widget creation.

• The height or width of a row or column, respectively, as you move a
gridline.

Widget Basics

This section describes creating and selecting widgets.

Creating Widgets

You can create widgets in the current grid or extend the grid by clicking
outside it.

Clicking or Dragging on Palette Widgets

To create a widget, do either:

• Drag a widget from the palette to the a particular grid cell.

When drag the palette widget, the palette widget becomes unselected as
soon as the new widget is created.

• Click on a palette widget, then click in one or more grid cells.

When you click, rather than drag, the palette widget stays selected; each
time you click on the grid it creates a new widget. To turn this off, click
again on the palette widget.

Basics 41

3

Creating Widgets Outside the Current Grid

If you drag a widget from the palette to an area to the right of the grid, SpecTcl
creates a new column and places the new widget in that column. Similarly, if
you drag the palette widget and drop it below the grid, SpecTcl creates a new
row and places the new widget in that row.

This works similarly for the other way of creating widgets: clicking on a palette
widget and then clicking to the right of, or below, the grid.

Selecting a Widget

To work with a widget, it must be selected. To select it, click on it.

Figure 3-2 A Selected Widget

In the figure, the checkbutton on the left is selected, which you can tell because
the handles appear. Note the other, unselected checkbutton.

Selecting a widget shows:

• The grid area that the widget currently occupies. Note the handles in the
figure; they mark the periphery of the occupied area.

• Which widget you are currently working with.

When you create or paste a widget, it is automatically selected.

Here are examples of what you can do with a selected widget:
• Use widget menu commands, such as Edit=>Widget Properties .
• Edit its text property in the text area.
• Change widget properties with a toolbar tool.

Note – The notation Edit=>Widget Properties means “Select Widget
Properties from the Edit menu.”

Handles

42 SpecTcl 1.1 User’s Guide—August 1997

3

Navigating and Selection

The following commands let you move the selection from one widget to
another:

• Commands=>Navigate=>Next Widget
• Commands=>Navigate=>Previous Widget
• Commands=>Navigate=>Select Parent
• Commands=>Navigate=>Select 1st Child

You can use the first two commands (Next and Previous Widget) to move
systematically through a series of buttons in a frame so as to repeat the action
of a command tool. Or you could move through all the widgets contained
directly in the main grid.

You can use the last two commands (select 1st child and select parent)
to move the selection from a widget in a subgrid (the frame) to the frame itself
(the parent) and back again (to the first child of the frame).

For further information on frames and their widgets, see “Selecting a Widget’s
Parent or Child” on page 97.

Copying, Cutting, Pasting, and Deleting Widgets

Both Copy (that is, Edit=>Copy) and Cut place a widget on the clipboard, so
it can be subsequently pasted. Delete just discards the selected widget. These
commands are all on the Edit menu.

To copy or cut and then paste a widget, use steps such as these:

1. Select the widget to be copied or cut by clicking on it.

2. Choose Edit=>Copy or Edit=>Cut .

3. Click on the cell to receive the widget, which selects the cell.

4. To paste it into the selected cell, choose Edit=>Paste .

Basics 43

3

This figure shows two row and column handles are highlighted, which
indicates the selected grid cell:

Figure 3-3 A Selected Grid Cell

To delete a widget, first select the widget. Then select Edit=>Delete , or press
the Delete key if you have one.

Editing Widget Properties

This section details the various ways to edit (or set) widget properties:

• Editing the text area is a convenient way to set the text property.
• Editing the widget’s property sheet lets you modify any property.
• Editing properties with the toolbar is easy with certain properties of the

selected widget; see “Editing Properties through Tools on the Toolbar” on
page 47.

Editing the Text Area

Buttons and labels typically display text, and this text is considered to be a
property (or attribute) of the widget. The text property is quite common, so
SpecTcl provides the text area, shown below, as a convenience.

Figure 3-4 A Text Area for Editing the Text Property

Selected grid cell, at
intersection of highlighted handles

Text area -to edit the text property
 of the selected widget.Edit this text!

44 SpecTcl 1.1 User’s Guide—August 1997

3

To edit a widget’s text property easily, a) select the widget and b) edit the text
in the text-entry area.

To select the text in the text area, for easier editing, do one of these:

• Double-click on the text in the text area.

• Select Edit=>Edit Text Property .

This changes the text property directly, without a Return.

If you do press Return, SpecTcl inserts a newline character in the text property,
providing multi-line text.

Editing the Property Sheet

You can view and edit all widget’s properties through its property sheet. To
display the property sheet do either:

• Double-click on the widget, or
• Click on the widget and select the menu command: Edit=>Widget

Properties ...

Either action displays the widget’s properties; for example:

Figure 3-5 A Property Sheet

Click here to see
more properties:

Press arrow to see a menu
with: warning , question ,
and other bitmap values.

Basics 45

3

Editing a Property Entry

To modify an entry in the property sheet:

1. Set the cursor in the entry.

2. Enter or edit an entry.

3. Press the Return key to confirm the new value.

Note the red print as you edit an entry. When you press the Return key, the
new property becomes part of the interface and the print returns to black.

Clicking on the OK Button

By clicking on the OK button, you confirm the last property change, and close
the dialog box.

Clicking on the Default Button

Resets the properties to the default properties for this class of widget (for
example, button or label) and this project. For further information, see “Editing
Widget Default Properties” on page 48.

Clicking on the Revert Button

When you click on the Revert button, you reset the property sheet to the values
it last loaded—that is, the properties displayed when you 1) opened the
property sheet or 2) selected another widget. This enables you to edit several
property values and then have an “undo” for those changes.

46 SpecTcl 1.1 User’s Guide—August 1997

3

Editing Properties through Tools on the Toolbar

With each tool on the toolbar, you can set one property of the selected widget.

Tip – To reapply the last action of the toolbar, select Commands=>Reapply
the Toolbar , or enter Ctrl-r. To apply the same property to multiple widgets,
set the first widget’s property with a tool, then repeat the tool action by
selecting another widget and reapplying it, as just described. To move quickly
through a group of widgets, see “Navigating and Selection” on page 43.

Sticky; see “Sticky Property” on page 39.

Justifies multi-line text: left, right, or center. Displays current

Font style: plain, bold, italic, or bold, italic.

Font size: 8, 10, 12, ... 36. Current size is displayed in the small

Foreground; displays a panel of colors.

Background; displays a panel of colors.

Relief: plain, raised, sunken, ridge, and groove.

Borderwidth: 0, 1, 2, 4, 8, 12. Current borderwidth is displayed in

Orientation: toggles scrollbars and sliders between vertical and

the circle.4

12

horizontal.

circle.

justification; cycles between left (shown here), right, and center.

Basics 47

3

Using and Changing Widget Names

When you create a widget, SpecTcl generates a name for it, using the widget’s
class name and a serial number; for example, label#1 and radiobutton#2. When
you move the mouse, the help area displays the name of each widget as the
cursor passes over it.

The widget name is in the property sheet—as the item_name property, where
you can view and edit it. Widget names can contain letters, digits, and
underscores (_). SpecTcl reserves the pound sign (#) for names it generates.

Names in a script begin with a period. If item_name is label#1, you refer to it
as .label#1 in a script; for example:

.label#1 config -background red

This naming convention is derived from Tk, but also differs from it, as
explained later in this guide.

If your application loads multiple user interfaces (.ui files), there are
additional widget-name conventions; for further information, see “Using
Multiple Assemblies” on page 111 and “Widget Names in SpecTcl Scripts” on
page 112 in Chapter 9, “Advanced Topics.”

Editing Widget Default Properties

You can set default properties for any palette widget. These default properties
override the system default properties that appear when you create a widget;
for example, button on new buttons, which is a system default text property.

SpecTcl saves the default properties that you set in the application’s .ui file,
which means:

• Default properties are available across multiple SpecTcl sessions.

• Default properties are set on a per-project basis; that is, the defaults you set
on one project do not apply to another project.

To set default properties, do one of the following:

• Select Edit=>Default Properties=> widget-class; for example,
Edit=>Default Properties=>button .

• Double-click on any palette widget.

48 SpecTcl 1.1 User’s Guide—August 1997

3

When the property sheet appears, use it the way you do standard property
sheets. Newly set default properties are available for use immediately—when
you create the next widget of the given type or when you click on Default
button in its property sheet.

Grid Basics

This section starts you using the grid—shows how to do work with it without
much commentary. For a more systematic presentation of the grid and its
geometry, see Chapter 4, “Managing Layout.

In SpecTcl, you always work within a grid structure. When you create a
widget, it always go in a particular grid cell. The figure shows the way rows
and columns are numbered.

Figure 3-6 Numbering Rows and Columns in the Grid

In each cell of the main grid, you can place at most one widget.

Inserting a Row or Column

To insert a row or column to the grid:

1. Select a gridline by clicking on it.

The gridline turns red, showing it’s selected.

2. To create the new row or column: click on the insert tool on the
toolbar, press the Insert key, or select Edit=>Insert .

If you clicked on a column gridline, it adds a column to the right of the
selected gridline. If you clicked on a row gridline, it adds the row below the
selected gridline.

1 2 3

1

2

3

4 5

Basics 49

3

Inserting a Row and Column

To simultaneously create a new row and column:

1. Select a grid cell, by clicking on an empty grid cell.

2. Click on the insert tool or select Edit=>Insert .

In Figure 3-7, the left side shows a selected grid cell—its row and column
handles show it’s selected. The right side shows the same grid after the insert
operation. A new grid cell is selected: at the intersection of the new row and
column, to the left and above the previously selected row and column.

Figure 3-7 Inserting a Row and Column

Resizing a Row or Column

To resize a column, drag its right gridline left or right. As you drag the
gridline, note that the column size is displayed, as it changes, in the message
entry in the lower right of the main window. Similarly, you can resize a row, by
dragging its lower gridline.

Resizing a row or column can affect many things, such as the size of the
widgets it contains; see Chapter 4, “Managing Layout, for further information.

Deleting a Row or Column

You cannot delete a column or row that contains widgets; therefore, to delete
either one:

The selected handles...

=>

... indicate the
selected grid cell

New column
and row

50 SpecTcl 1.1 User’s Guide—August 1997

3

1. First, move any widgets out of the column or row that you want to delete.

To move a widget, just drag it to another place in the grid; to delete a
widget, select it and then select Edit=>Delete (or press the Delete key if
you have one).

2. Click in any cell within the empty column (or row) you wish to delete.

3. On the toolbar, click on the Delete tool or (press the Delete key).

Beyond the Main Grid

Although one grid cell can only accommodate a single widget, the widget can
be a container widget or frame, which can hold several widgets. For example,
to group radiobuttons, place them in a frame.

Frames have rows and columns and many other characteristics of the main
grid. In fact, you can think of frames as subgrids. For further information, see
“The Frame Widget” on page 95 .

Basics 51

3

52 SpecTcl 1.1 User’s Guide—August 1997

Managing Layout 4

Very likely, you’ll find using SpecTcl to build an application to be quite
different than what you’re used to, because SpecTcl uses a grid geometry
manager. Geometry managers arrange widgets on the screen, and they
definitely affect the way you layout the widgets of your application. This
chapter explains the grid geometry and provides a conceptual model of the
layout process it supports.

WYSIWYG versus Portable

With current platforms—UNIX, Windows, and the Macintosh—you can create
a graphical user interface (GUI) builder that is either WYSIWYG or portable
across those platforms, but not both. And, we decided portability was, and is,
SpecTcl’s most important design objective.

Traditional GUI Builders

Traditional GUI builders use a place geometry, which is WYSIWYG. When a
user positions a widget at design time, the coordinates of the widget are saved
and used to position the widget at run-time. This means that the position and
size of widgets are set and fixed at design time.

Advantages

Such GUI builders vary, but they typically share these advantages:

53

4

• They are easy to learn and to use, because you more or less “draw” the
interface the way you draw with a graphical editor.

• They have the easiest possible conceptual model, because there’s no
difference between their design-time and run-time appearance.

• They impose few restrictions in how and where to place widgets.

Disadvantages

And, traditional builders typically have these disadvantages:

• Applications that look good on the platform on which they’re built, cannot
be executed on another platform unless the interface is realigned. In other
words, the interface is not portable.

Widgets on different platforms are roughly comparable, but the differences
are large enough to create an out-of-focus look if you mechanically translate
applications from one platform to another. This comes from differences in
widget shape, style, the fonts they display, and placement strategies. Of
course, some builders don’t support all these platforms with or without
realignment.

• An application’s interface is usually static and not very flexible. That is, a
font change, transposing two widgets, or a change in border style can force
you to realign the widgets of the application interface.

• The interface cannot usually resize itself automatically in response to the
user resizing the application window.

SpecTcl

The following subsections look at SpeTcl’s design goals, explain why a
constraint-based system was chosen, and describe some of the implications of
that choice.

Design Goals

When SpecTcl was designed, its primary design goal was, and is, portability.
Since portability was deemed more important and WYSIWYG doesn’t allow
for easy portability we decided to sacrifice WYSIWYG for portability.

54 SpecTcl 1.1 User’s Guide—August 1997

4

SpecTcl uses a grid geometry manager, described next, to work around the
problems found in traditional GUI builders.

A Geometry Based on Constraints

At a conceptual level, the grid geometry manager is constraint-based. Instead
of specifying widget positions as fixed screen positions, widgets are located
with respect to each other. In SpecTcl’s grid, when you say two widgets are in
the same column, you are stating a relationship, but are not specifying fixed
positions. The size and position of that column varies in ways you, as a
programmer, can control.

Similarly, widget sizes vary according to what the widget currently displays
(the size of the text or image that it displays). Widget size can also vary with
the size of its row or column, if the widget’s properties make this constraint.

Constraints in Disguise

Here are some aspects of widgets and their grid that are actually constraints on
widget size and location:

• Row size - this specifies a minimum vertical distance between two
horizontal gridlines and has secondary affects on the widgets placed in the
row.

• Column size - this specifies a minimum horizontal distance between the two
vertical gridlines that form the column and has secondary affects on widgets
placed in that column.

• Sticky property - a sticky property of ew ties the widget width to the width
of its column, ns ties the widget height to the height of its rows, and nsew
ties widget size to its grid-cell size. The term “ties” signifies a dynamic
relationship. If, at run-time, one entity changes, any entities tied to it also
change.

• Row resizeability - if a row is set to be resizeable, widgets tied to it, as
described above are resized when the row is automatically resized.

• Column resizeability - if a column is set to be resizeable, widgets tied to it,
as described above are resized when the column is automatically resized.

Managing Layout 55

4

Characteristics of Grid-Based Applications

Because of the grid, SpecTcl applications have these characteristics:

• An application that you create on one platform can run on another platform
without modification and its interface remains aligned.

• An application’s interface is not static. In fact, it adjusts automatically to
many changes to maintain its alignment dynamically.

As a programmer, you can take this one step further—to make your
application responsive to real-time changes, a particularly useful feature for
a web application. For example, you can let users choose between reading
an English or Spanish display, while the interface stays aligned in both
cases.

• A well-designed interface can respond appropriately when the user resizes
the application window.

At design time, as a programmer, you can control the way the application
allocates additional space to widgets at run-time.

About the Grid

Normally, you might think of a grid as a regular, rigid entity, like the grid in a
spreadsheet application. But SpecTcl uses a smart grid that adapts itself flexibly
to real-time changes. The smart grid is different than a spread sheet in the
following ways:

• You can reposition and resize each column and row to fit your situation.

• Columns and rows can change size and position in response to real-time
changes.

• You can create subgrids—with the frame widget—and nest them to any
level.

• The grid is not WYSIWYG; in fact, it is visible only at design time.

What the grid provides is a conceptual model of the way widgets are related
to each other; for example, their alignment.

In short, this is not your average grid; it responds intelligently to many
situations as they arise.

56 SpecTcl 1.1 User’s Guide—August 1997

4

More on Dynamic Alignment and Resizing

To begin the conceptual model, this section presents further information on
dynamic alignment and control of dynamic resizing.

Dynamic Alignment

You can align widgets, horizontally or vertically along gridlines and have
SpecTcl maintain that alignment dynamically. Although widgets and gridlines
might change in size and position, they can be constrained to do so in ways
that retain their alignment.

Applications that change in real time can especially benefit from dynamic
alignment. For example, suppose your application displays stock-market
quotes for the top 5 most volatile stocks on a particular market. Then, column
headers and values can adjust when a new stock enters the display—to
accommodate a new stock and new values, either of which might require a
change in column size. Dynamic alignment enables the new column to retain
the alignment used in other columns.

Most applications need this feature to adjust across different platforms, which
usually display slightly different fonts and require other minor adjustments.

Dynamic Resizeability

With SpecTcl dynamic resizing, users can size the application window to suit
their own situation and find that the user interface responds in an intelligent
way—expanding (or contracting) some areas when it benefits the user and
leaving areas as is when it doesn’t.

As a programmer, you don’t, in general, know your users’ window resources,
which might vary substantially from user to user. So, the amount of screen an
application uses can only be right for everyone if it changes dynamically,
under user-directed program control.

Rows and columns provide a vehicle for you, as a programmer, to express
which screen areas get extra space and which don’t. Your decision will be
influenced by the type of widgets in that area. For example, a wider entry
widget can accommodate more text, but a larger button might just look silly.

Managing Layout 57

4

The following sections lead you through the layout process, showing the
choices you can make and how SpecTcl reacts to them. The layout process is
presented in these broad categories:

• Placing widgets in cells of the grid.
• Controlling columns and rows.
• Positioning widgets within their cells.

Placing Widgets in Grid Cells

When you drag a new widget to the user interface, you drag it to a particular
row and column of the grid. The area occupied by the widget, is called a cell,
When you select a widget, the handles delimit its cell, as shown in the figure,
below.

Figure 4-1 Placing Widgets in the Grid

You can place one widget, and only one, in a given cell. A frame (container)
widget lets you circumvent this restriction; see “The Frame Widget” on
page 95.

Controlling Widget Size

SpecTcl enables you to specify the size of application widgets in several ways.

Automatic Sizing

When you leave a widget’s height and width zero (the default), widgets are
sized automatically to accommodate what they display—text or image. With
text, widget size depends on the length and font size of the text—and on
padding, as shown in Figure 4-3.

cell

1 2 3

1

2

3

4

4

5

58 SpecTcl 1.1 User’s Guide—August 1997

4

For example, in Figure 4-2, the six buttons (in frame containers), would be the
same size if they displayed the same characters and font:

Figure 4-2 Self-Sizing Buttons

As text on labels changes in production applications, the user interface can
adjust automatically, so that no text is crowded or truncated. Automatic
resizing of widgets is especially convenient if your user interface displays
labels in multiple languages.

The Effect of padx and pady On Widget Size

You can pad the size of a button, which is primarily based on the text (or
image) that it displays, through its padx and pady properties, as shown here:

Figure 4-3 The Effect of padx and pady on Widget Size

To give a better visual comparison, a sticky value of w (West) keeps the buttons
against the left cell wall.

From left to right, these
buttons differ only in text length.

From top to bottom, these
buttons differ only in font size.

padx = 0

padx = 10

padx = 20

Managing Layout 59

4

Tying Widget Size to Cell Size

There is a useful alternative to letting widgets self-size: you can constrain the
height or width of a widget to that of its row or column. The figure shows
widgets with each of these alternatives:

Figure 4-4 Widgets and Various Sizing Constraints

To place such constraints on a widget, set its sticky property, as explained in
“Sticky Property” on page 70.

You can then resize the widget by resizing its row or column, as shown later in
this chapter.

Changing a Widget’s Row or Column Span

You can extend a widget’s cell across column and row boundaries. To do so,
select the widget and drag a handle, as shown in the figure:

Figure 4-5 Changing Widget Row and Column Spans

Constrained to
column width.

Self-Sized. Constrained to
row height.
Constrained to
row and column
sizes.

Drag this handle to change the
number of columns spanned.

Drag this handle to change the
number of rows spanned.

Drag corner handle to change
both rows and columns spanned.

60 SpecTcl 1.1 User’s Guide—August 1997

4

Setting Specific Sizes

It’s rarely better to set height and width explicitly, but in exceptional situations
it might be appropriate. For widgets that display text, set the width property to
the number of average-sized characters to be displayed in the specified font. If
you display more characters than the explicit width specifies, truncation is
likely.

Controlling Rows and Columns

Two important user-interface parameters that you set by column and row are:

• Minimum sizes for columns and rows

• The resizeability of columns and rows

You can also extend this column and row resizeability to the widgets they
contain, on a widget-by-widget basis, as explained later in this chapter.

Establishing Minimum Sizes for Rows and Columns

When you move a column gridline, the widths of the newly positioned
columns establish minimum column widths. If the width of a self-sizing
widget exceeds the width of its cell, the column expands automatically to
accommodate the widget. But the columns won’t automatically contract to less
than these minimum widths. Similarly, new row positions establish minimum
row heights.

Setting Resizeability of Rows and Columns

As previously mentioned, you set the resizeability of a SpecTcl application on a
row-by-row and column-by-column basis. You specify whether the column (or
row) size is to vary or stay fixed, when the application window is resized. You
can also set the resizeability of rows and columns in the subgrid within a frame
(a container widget).

Managing Layout 61

4

Arrowheads in this figure show the rows and columns that are resizeable:

Figure 4-6 Resizeability of Rows and Columns

The grid in the figure above demonstrates how SpecTcl indicates resizeability:

• Column 2 is resizeable, as indicated by arrowheads on its column handles.

• Columns 1 and 3 are not resizeable.

• The rows are not resizeable.

To make a column resizeable:

1. Click on the column handle.

This selects it, turning it red, as shown by the darker handle in column 2
above.

2. Click again on the column handle.

Each click, after the column handle is selected, toggles the
column—resizeable and non-resizeable.

You toggle row resizeability similarly, by clicking repeatedly on the
appropriate row handle.

Controlling Widget Resizeability

A widget can get extra horizontal (or vertical) space only if its column (or row)
gets extra space. So, a first step for the widget is to set the resizeability of its
row or column appropriately. The next step is to set its sticky property
appropriately. The widget can get extra horizontal space (with sticky = ew),

Column handles

Row handle

Row handle

1 2 3Col:

62 SpecTcl 1.1 User’s Guide—August 1997

4

extra vertical space (with sticky = ns), or both (with sticky = nsew). When the
user resizes the application window, widget resizing depends on all the factors
just mentioned. For further information on the sticky property, see “Sticky
Property” on page 70. The next section demonstrates these issues.

Resizing the Application Window

To demonstrate resizeability in an application, Figure 4-7 shows the
exResize.ui application, in the examples directory, at design time:

Figure 4-7 Designing exResize.ui for Resizeability

Figure 4-8 shows the exResize.ui application in execution. On the left, the
user has resized the application window to use minimal space; on the right, the
user has resized it to use more space.

Figure 4-8 Executing exResize.ui - Resizing the Application Window

Resizeability Considerations

When you design for resizeability, consider that widgets vary widely in how
(and whether) their expansion benefits the user. For example, row 2 in
Figure 4-7 is set resizeable because the text widgets can display significantly
more text when they have more vertical space.

Managing Layout 63

4

On the other hand, larger buttons might just look awkward. And, remember
that when a button expands, the font size of its text stays the same, unless you
change it. To determine what’s best, experiment, and note the visual effect.

The three columns (also in Figure 4-7) are set expandable, again because of the
text widgets. However, this also keeps column headers (labels) and entries (at
the bottom) aligned with the text widgets as they expand.

Consider opening exResize.ui , in SpecTcl, and then note the following
elements which make it work:

• For the labels, the sticky property has been set explicitly to ew, so that they
expand horizontally if their grid column expands. For text and entry
widgets, the sticky property is set by default to enable expansion.

• Note that the columns (and the center row) have been set resizeable by
clicking on column and row handles (as shown in the previous section).

Positioning a Widget within its Cell

This section describes properties that affect widget position in their grid cells.

The wadx and waxy Properties

You can specify values that maintain a minimum distance between widgets
and their grid cells through the wadx and wady properties.

Figure 4-9 demonstrates horizontal minimums by showing buttons with wadx
values of 0, 10 , and 20 :

Figure 4-9 The Effect of wadx and wady on Widget Position

The wady property is similar—specifying the minimum number of pixels
between a widget and its grid cell in the vertical direction.

wadx values: 0 10 20

64 SpecTcl 1.1 User’s Guide—August 1997

4

The Sticky Property

Figure 4-10 shows ways the sticky property can position the widget within its
grid cell. From the left, the buttons have sticky properties n (North West), s
(South), and sw (South East):

Figure 4-10 The Effect of the Sticky Property on Widget Position

For further information on the sticky property, see “Sticky Property” on
page 70.

Aligning Widgets

Suppose you have a column with entries of various widths that you want to
align (either left or right). To do so, set the sticky property of each entry—to w
for left-alignment; to e for right-alignment. The entries stay aligned, then, even
if individual entries are resized, or if the column is moved or resized.

Similarly, rows of widgets can be aligned by setting their sticky property to n
or s .

If you set the sticky property to ew, the widgets will be constrained to be the
same width, and both left and right aligned. Similarly, If you set the sticky
property to ns , the widgets will be constrained to be the same height, which
keeps both tops and bottoms of the widgets in alignment.

Note that this is alignment with a difference. In SpecTcl, the sticky property is,
in effect, a stay aligned command.

Aligning Multi-Line Text within a Widget

The justify and anchor properties both affect the way multi-lined text is
displayed.

Sticky values: nw s se

Managing Layout 65

4

Using the Justify Property

You can align multi-line text in a label (or button) by setting its justify property
to center (the default), left , or right , as shown in Figure 4-11:

Figure 4-11 The Effect of the Justify Property on Multi-line Text

For further information on the justify property, see “Justify Property” on
page 68.

Using the Anchor Property

You can also position the text within the widget if the widget is large enough
for this to show. To be more precise, you are positioning a imaginary rectangle
that surrounds the text. To do this type of positioning, use the anchor property.

Figure 4-12 shows ways the anchor property can position the “rectangle” that
holds the text within a label. From the left, the buttons have anchor properties
of nw (North West), s (South), and e (East).

Figure 4-12 The Effect of the Anchor Property on Text Position

For further information, see “Anchor Property” on page 67.

justify property: center left right

anchor=nw anchor=s anchor=e

66 SpecTcl 1.1 User’s Guide—August 1997

Common Properties of Widgets 5

This chapter describes certain properties that apply to several widgets.
Properties that you don’t find here might be described in the section that
describes the individual widget. For further information on most properties,
see the documentation for Tcl/Tk.

Anchor Property

The anchor property positions text within a button or label; for example, note
the position of the word button within the outsized button, below.

Figure 5-1 Positioning Text or Image with the Anchor Property

Anchor can be n, s, e, w (compass points North, South, East, West), c
(centered), and intermediate compass points ne (North-East) and so forth. The
button in the figure has an anchor property of se for South-East. To left justify
text, use w; to right justify, use e, to center, use c.

The anchor property uses compass

s

w e

se

n

points to position text or image.

Anchor property: se.

67

5

Borderwidth Property

The borderwidth property specifies the width of the widget’s border, in pixels.
The figure shows buttons with a borderwidth of 1, 2, and 4, respectively.

Figure 5-2 Effect of Borderwidth Property

Note – When you use a 3-dimensional border, the display is effective only for a
borderwidth of 4 (or more). See also, “Relief Property” on page 69.

Justify Property

The justify property applies only to multi-line text, like the text you see in the
buttons, below. Those lines are centered, left justified, or right justified,
depending on the justify property: center , left , or right , respectively.

Figure 5-3 Aligning Multi-Line Text with the Justify property

center

left

right

The justify property aligns text lines:

68 SpecTcl 1.1 User’s Guide—August 1997

5

See also, “Anchor Property” on page 67, which positions the block of text
within the widget.

Relief Property

All widgets have a relief property that provides alternatives for border style:
plain, raised, sunken, ridge and groove. To see the design window for the
application below, select File=>Open exRelief.ui . The application
demonstrates the relief property alternatives, as applied to various widgets:

Figure 5-4 Setting Border Style with the Relief Property

To provide the space for a 3-dimensional effect, set the borderwidth property
to 4 or higher. To see a figure that shows the difference, see “Borderwidth
Property” on page 68.

plain

raised

sunken

ridge

groove

The relief property specifies these border styles:

Common Properties of Widgets 69

5

Sticky Property

If you place a widget in a grid cell larger than itself, the widget is centered in
the grid cell, away from the sides, like label1 in the figure. To examine the
design window, below, for the application, select File=>Open exSticky.ui .

Figure 5-5 Widgets with Different Sticky Properties

The sticky property controls this placement, enabling you to “stick” the widget
to any of the grid-cell walls, which are described as North, South, East and
West, and represented in the property as: n, s , e, and w. In the figure, above,
label2 is stuck to the top; it has a sticky property of n (North). Label3 and
label4 have a sticky property of s and ew, respectively.

Setting the Sticky Property

When you click on the sticky tool, shown below, it displays a panel of selection
alternatives, also shown:

Figure 5-6 Using the Sticky Tool

Choose this to stick sides of widget to both cell sides.

Choose this to stick widget to top of cell.

70 SpecTcl 1.1 User’s Guide—August 1997

5

To use the sticky tool:

1. First, click on the widget you want to change.

2. Click on the sticky tool to display a panel of alternatives.

3. Click on the alternative that shows the way the widget should be positioned
in its grid cell.

The second way is to use the property sheet:

1. Double-click on the label you want to set—to bring up the property sheet.

2. Change the sticky property—to n for label2 and to ew for label4.

Common Properties of Widgets 71

5

72 SpecTcl 1.1 User’s Guide—August 1997

Labels, Buttons, and Menus 6

This chapter presents information that applies to specific widgets—labels,
buttons, radiobuttons, checkbuttons, and menubuttons. All references to
specific application, such as exLabel1.ui , refer to applications in the
examples directory.

For information common to all widgets, see Chapter 5, “Common Properties of
Widgets.”

The Label Widget

A label widget typically labels something else, as the “Name” label, below,
identifies the entry widget. In addition, SpecTcl labels perform other display
services explained later in this section.

Figure 6-1 Executing exLabel1.ui

A label can display text or an image, but not both.

73

6

Displaying Multiple Lines of Text

Labels can display multiple lines of text, as demonstrated in the figure by
exLabel2.ui.tcl in execution:

Figure 6-2 A Label Displaying Multiple Lines of Text

The figure shows exLabel2.ui displaying two strings. With more text to
display, a label automatically expands, in this case mostly in height.

The following properties are key in making the application executes as it does:

• The label’s textvariable property is ltext (a Tcl variable).
• The label’s wraplength property is 250, to constrain the display width.
• The label’s justify property is left ; see also, “Justify Property” on page 68.
• The button’s command property is ShowText , so the ShowText proc is

called when the button is pushed.

The figure shows exLabel2.ui in the design window (excerpt):

Figure 6-3 Design Window of exLabel2.ui

To view the script, open exLabel2.ui and select Edit=>Edit Code :

proc ShowText { } {
 global ltext toggle

 append sticky \
 "Sticky property: specifies which widget sides and grid-cell " \

 "sides should stay together: n s e w or a combination, such as ew."

74 SpecTcl 1.1 User’s Guide—August 1997

6

 set tStyle \
 "Specifies text is plain, bold, italic, or bold-italic."

 # Flip/flop between displaying long and short strings
 set toggle [expr 1 ^ $toggle]
 if {$toggle} {
 set ltext $sticky
 } else {
 set ltext $tStyle
 }
}

global toggle
set toggle 0

The set ltext commands causes text to be displayed in the label, because
ltext is the label’s textvariable property. To create the long sticky string, the
script uses the append statement, which concatenates its arguments. At
execution, when you press the button, ShowText determines which string it’s
displaying by checking the string length, and toggles between the two strings.

Displaying an Image

Labels can also display an image file; for further information, see “Displaying
an Image” on page 76, which describes buttons but applies equally to labels.

Important properties: anchor, justify, image, and textvariable.

About Buttons

Although the next section is titled “The Button Widget,” in effect it describes
characteristics common to buttons, checkbuttons, and radiobuttons. See also,
“The Checkbutton Widget” on page 77 and “The Radiobutton Widget” on
page 79.

The Button Widget

A button lets a user request an action, as specified by the button’s command
property. Specifically, when the user presses a button, radiobutton, or
checkbutton, the Tcl commands in the widget’s command property are
executed.

Labels, Buttons, and Menus 75

6

Buttons typically display one or two words, such as “Save” or “OK,” but they
can also display an image or multi-line text.

Displaying Multi-Line Text

Buttons can display multi-line text; for an example, see the multi-line label
described in “The Label Widget” on page 73, which functions similarly.

Displaying an Image

A button can display an image, as demonstrated by running exButton.tcl :

Figure 6-4 A Button with an Image

Post message , in the figure above, is in a separate label, because buttons can
display text or an image, but not both simultaneously.

Here is the design window for exButton.ui , followed by its script:

proc ShowImage {w} {
set iw [image create photo -file exButton.gif]
$w config -image $iw

}

ShowImage .button#2

Figure 6-5 Design Window and Script of exButton.ui

76 SpecTcl 1.1 User’s Guide—August 1997

6

The ShowImage proc, above, first creates an image attribute, using a .gif file,
then it reconfigures the button with the image attribute.

Because the call to ShowImage (the last line of the script) is executed as the
application is loaded, the user first sees the application with the image already
loaded (as shown in Figure 6-4 on page 76).

Types of Images

There are two types of images:

• photo images, as shown above
• bitmap images

For photo images, only GIF and PPM/PGM formats are currently supported.
For bitmap images, X11 bitmap format (e.g., as generated by the bitmap
program).

Important properties: command, image, and textvariable.

The Checkbutton Widget

Checkbuttons let the user toggle options on or off, as demonstrated in the
figure by exCheckbutton.ui.tcl (in the examples directory) in execution.

Figure 6-6 Executing exCheckbutton.ui

Variable Property - On/Off State

The variable property of checkbuttons specifies a Tcl variable that holds the on-
off state of the checkbutton (usually 1 and 0).

Labels, Buttons, and Menus 77

6

If you have several checkbuttons, make certain the variable property of each
one is unique, to prevent your buttons from turning each other on and off.

Showing Checkbutton Values

The figure shows the design window for exCheckbutton.ui (left) and its
script (right):

Figure 6-7 Design Window and Script of exCheckbutton.ui

To view this directly, open exCheckbutton.ui.tcl in SpecTcl and then
select Edit=>Edit Code .

These properties are key to operation of the script:

• The command property of each radiobutton is ShowSw, so that ShowSw is
called when the checkbutton is pressed.

• The variable property of the checkbuttons is sw(0), sw(1), and sw(2),
respectively; so that the on/off states of the checkbuttons are saved as
elements of the sw array.

The global statement in the proc makes the sw array in the proc refer to the
array elements in the variable properties of the checkbuttons.

When you press a checkbutton, the puts statement writes out the on/off
values; for example:

Binary is 1
Hash is 0
Verbose is 1

For descriptions of generic button characteristics, see “About Buttons” on
page 75.

proc ShowSw { } {

 global sw

 set swList [list Binary Hash Verbose]

 foreach i {0 1 2} {

 puts "[lindex $swList $i] is $sw($i)"

 }

 puts "\n"

}

78 SpecTcl 1.1 User’s Guide—August 1997

6

Important properties: command, onvalue, offvalue, and variable.

The Radiobutton Widget

Radiobuttons let the user select one alternative from a set, as demonstrated in
the figure by exRadiobutton.ui in execution. Selecting one radiobutton
turns the others off.

Figure 6-8 Executing exRadiobutton.ui

Referencing Radiobutton Values

Here is the design window for exRadiobutton .ui (left) and its script (right).

Figure 6-9 Design Window and Script of exRadiobutton.ui

Demonstrating the Radiobuttons

These properties are key to operation of the script:

• The variable property of each radiobutton is rbutton , which ties the
radiobuttons together.

proc ShowButtons {} {

 global rbutton displayText

 # Display user's choice in a label,

 # using button's value as index into a list.

 set fruit_list [list kiwis guavas pineapples]

 set displayText [lindex $fruit_list $rbutton]

}

Labels, Buttons, and Menus 79

6

• The value property of the radiobuttons is 0, 1, and 2, respectively. One of
these values is placed in rbutton when a radiobutton is pressed.

• The command property of each radiobutton is ShowButtons , so that
ShowButtons is called when any radiobutton is pressed.

• The textvariable property of the label is displayText . When you set
displayText to a string, the label displays the string.

At execution, when the user presses a radiobutton, ShowButtons is called.
ShowButtons uses rbutton , the variable property, as an index into a list; the
value of rbutton is 0, 1, or 2, depending on the radiobutton.

Another global, displayText, is the textvariable of the label. ShowButtons sets
displayText to element $rbutton of the list.

For descriptions of generic button characteristics, see “About Buttons” on
page 75.

Important properties: command, value, and variable.

About Menus

To create menus, you use the frame widget, menubutton widgets, and add
commands, as described in the following sections.

The Menubutton Widget

A menubutton displays a menu when you press it, as demonstrated in the
figure by exMenubutton.ui (in the examples directory) in execution:

Figure 6-10 Menu Application

For generic button characteristics, see “About Buttons” on page 75.

80 SpecTcl 1.1 User’s Guide—August 1997

6

Important properties: indicatorOn, menu, and textvariable.

The Menubar

At the top level of most applications with menus is a menu bar: a frame widget
containing several menubuttons. The figure demonstrates this with the design
window of exMenubutton.ui :

Figure 6-11 Design Window of exMenubutton.ui

To explain similar applications, we present the steps to recreate
exMenubutton.ui (in the examples directory):

1. Drag a frame widget from the tool palette to the grid.

This creates a subgrid with a single grid cell. You need five more cells. (This
is a brief description of the process, but see “The Frame Widget” on page 95,
for a better description.)

2. To create more subgrid cells, 1) click on the right wall of the subgrid cell to
select the gridline, then 2) double-click on the gridline to create another cell.

3. Create five menubuttons, by dragging a palette menubutton to each subgrid
cell (except for the empty one before Help).

One subgrid cell is left empty so Help is right-adjusted, as customary.

4. Change the item_name property of each menubutton; for example, change
menubutton#1 to fileMenubutton, menubutton#1, to editMenubutton, and
so forth (names are in the script shown below).

5. Set the menu property of each menubutton to m.

6. Drag an entry widget from palette to grid.

Labels, Buttons, and Menus 81

6

Standard Button Menu Entries

To create a menu, use the menu command to create a menu object as the child
of one of the menubuttons. Then add entries to it, as explained next.

Here are the commands to create the File and Edit menus (the other menus,
which use checkbuttons and radiobuttons, are described later):

menu .fileMenubutton.m
 .fileMenubutton.m add command -label “Open” \
 -command {puts “Open”}
 .fileMenubutton.m add command -label “Close” \
 -command {puts “Close”}

menu .editMenubutton.m
 .editMenubutton.m add command -label "Undo" -command \

{puts "Undo"}
 .editMenubutton.m add separator
 .editMenubutton.m add command -label "Cut" -command \

{tk_textCut .entry#1}
 .editMenubutton.m add command -label "Copy" -command \

{tk_textCopy .entry#1}
 .editMenubutton.m add command -label "Paste" -command \

{tk_textPaste .entry#1}

The -command option on add command is the command that is executed when
the entry is selected. Most menu entries included here just identify themselves
by writing out their names, but a few do more.

The Copy, Cut , and Paste commands transfer information between the
clipboard and the entry widget, so you can try it out.

Checkbutton Menu Entries

Here are the commands to create the Preferences menus, which create menu
entries that are checkbuttons:

menu .preferencesMenubutton.m
 .preferencesMenubutton.m add check -label “Opt1” \
 -variable opt1 \
 -command {puts “Opt1 is $opt1”}
 .preferencesMenubutton.m add check -label “Opt2” \
 -variable opt2 \
 -command {puts “Opt2 is $opt2”}

82 SpecTcl 1.1 User’s Guide—August 1997

6

These differences characterize menus with checkbuttons:

• The command that adds entries is add check .
• When you add an entry, you specify a different variable property for each

entry, as with other checkbuttons.

Radiobutton Menu Entries

Here are the commands to create the Style menus, which create menu entries
that are radiobuttons:

menu .styleMenubutton.m
 .styleMenubutton.m add radio -label “plain” \
 -variable stylevar -value 0 \
 -command {puts “Style is $stylevar”}
 .styleMenubutton.m add radio -label “italic” \
 -variable stylevar -value 1 \
 -command {puts “Style is $stylevar”}
 .styleMenubutton.m add radio -label “bold” \
 -variable stylevar -value 2 \
 -command {puts “Style is $stylevar”}

These differences characterize menus with radiobuttons:

• The command that adds entries is add radio .
• When you add an entry, you specify the same variable property for all

radiobutton, as with non-menu radiobuttons.
• Also, for each entry, you specify a unique value property.

Labels, Buttons, and Menus 83

6

84 SpecTcl 1.1 User’s Guide—August 1997

Other Widgets 7

This chapter continues where the last chapter left off. It provides information
that applies to other specific widgets—the entry, listbox, scale, text, frame,
scrollbar, and canvas widgets. Specific applications mentioned, such as
exEntry.ui , refer to applications in the examples directory.

If this chapter doesn’t describe a property of one of these widgets, try
Chapter 5, “Common Properties of Widgets.”

The Entry Widget

The entry widget provides a one-line place for the user to enter text, as
demonstrated in the figure by exEntry.ui in execution:

Figure 7-1 Executing exEntry.ui

In each of the three entry widgets, above, the user can enter text directly and
use the usual editing commands.

85

7

When entering text, users must be able to signal when they’re finished. As
programmer, you can either supply a button for this, or have users press the
Return key, or both. To connect the events for pressing the Return key to your
script, you write bind commands, described later in this section.

Setting Properties for the Application

These properties are key to operation of the script:

• The item_name property of the entries are entryName , entryCompany , and
entryEmail , respectively.

• The textvariable property of the entries are ename, ecompany , and email ,
respectively.

Here is the design window for exEntry.ui (left) and an outline of the script
(right - details later):

Figure 7-2 Design Window and Script for exEntry.ui

To see the full script select File=>Open ... for exEntry.ui , and then select
Edit=>Edit Code .

When the User Presses Return

These bind commands transfer control to the ShowEntry and ShowEmailEntry

procs when the user presses Return:

bind .entryEmail <Key-Return> {ShowEmailEntry %W}
bind Entry <Key-Return> {ShowEntry %W}

bind Entry <Key-Return> {ShowEntry %W}

bind .entryEmail <Key-Return>

{ShowEmailEntry %W}

proc ShowEntry {w} {

...

}

proc ShowEmailEntry {w} {

...

}

86 SpecTcl 1.1 User’s Guide—August 1997

7

A bind command connects an event to the statements that process the event. To
show two different ways to bind, let’s connect the Key-Return event to:

• ShowEntry for all entry widgets.
• ShowEmailEntry for the .entryEmail widget.

In the bind Entry statement, Entry (a bindtag) refers to all entry widgets.
This statement binds the Key-Return event for any entry widget to the
ShowEntry proc. (There is also an All bindtag, with which you could bind the
Key-Return event for any widget, since all widgets are referenced by the All
bindtag.)

The bind .entryEmail statement connects the Key-Return event for the
.entryEmail widget to the ShowEmailEntry proc.

The %W in the argument to either proc, means something special to SpecTcl.
SpecTcl replaces %W with the name of the widget associated with the event.

For further information on the bind command and binding, see one of the Tcl
books recommended in “Related Books” on page xvi.

Retrieving the Entry Text

The two procs just write out the widget that invoked them, the proc name, and
the text that the user typed. Both procs are designed to let you enter text and
press Return in the various entries and track what happens.

Here is the ShowEmailEntry proc

proc ShowEmailEntry {w} {
global email
append s “Widget name: $w \n”
append s “proc name: ShowEmailEntry \n”
append s “text: $email \n”
puts $s

}

The global statement connects the email in the proc with the email that is the
textvariable property of the entryEmail widget. The proc builds a string s with
the information mentioned and writes it out.

Here is the ShowEntry proc:

proc ShowEntry {w} {
append s “Widget name: $w \n”
append s “proc name: ShowEntry \n”

Other Widgets 87

7

append s “text: [$w get] \n”
puts $s

}

This proc is similar, but we don’t know the name of the widget, because
pressing Return in any entry widget transfers control here. So, the widget
name parameter, w, is used, and the $w get command fetches the text.

Processing Events Twice

A single event can trigger more than one action, if more than one bind
statement is involved. When you try out the exEntry.ui application, note
that when you press return in the E-mail-address entry, both procs are called.

When this is inappropriate, you can avoid it; either: 1) bind each widget to a
particular proc (that is, avoid the bind Entry statement), or 2) use only the bind
Entry statement.

There is another way to avoid multiple event-handling calls, because the bind
statements are executed in a particular order, with the more general ones
executed last. So, you can place a break statement at the end of the proc that
handles the event for the individual widget. This stops event processing for
this event and avoids calling.

Important properties: exportselection and takefocus.

The Listbox Widget

The listbox widget lets the user select one of a number of displayed entries, as
demonstrated by exListbox.ui (in the examples directory) in execution.

Figure 7-3 Executing exListbox.ui Application

A label with
multi-line text

A label with
an image

A listbox

attribute

A scrollbar widget

Highlighted entry

88 SpecTcl 1.1 User’s Guide—August 1997

7

The user has clicked on the “listbox” entry, which is highlighted, and the
application displays related text and a .gif-file image. If you open
exListbox.ui and execute it, resize the application window if some of the
text is not visible.

Important properties: xscrollcommand and yscrollcommand.

Setting Properties for the Application

To connect the widgets to the script, set these properties:

• For the button, set command to ListboxInit .

• For the labels, set item_name to textLabel (left) and imageLabel (right).

Here is the design window for exListbox.ui followed by a sketch of its
script.

Figure 7-4 Design Window and Script of exListbox.ui

When the User Selects a Listbox Entry

The bind command transfers control to the ShowSel proc when the user
releases the first mouse button over any listbox entry:

bind .listbox#1 <ButtonRelease-1> {ShowSel}

bind .listbox#1 <ButtonRelease-1> {ShowSel}
proc ListboxInit {} {

...
}
proc ShowSel { } {

...
}

Other Widgets 89

7

Reacting to the User’s Choice

As mentioned, when a user clicks on an entry in listbox#1, control passes to the
ShowSel proc, to react to this event. The script includes one proc to initialize
the listbox and another to determine the user’s choice and react. Here is the
first:

proc ListboxInit {} {
ListboxInit places a list of names in the listbox
global txt

set txt(label) “A label widget typically ...”
set txt(button) “A button lets the user...”
set txt(checkbutton) “A checkbutton lets the user...”
set txt(listbox) “A listbox lets the user...”

.listbox#1 delete 0 end

foreach fname { label button checkbutton listbox } {
.listbox#1 insert end $fname

}
}

The set txt(...) statements place text to be displayed in an array. Note that
the in array elements, such as txt(button) , the string indexes such as
button are not predefined. The txt array is declared global so the other proc
can use it.

The .listbox#1 delete command empties the listbox. Then .listbox#1
insert commands append label , button , and so forth in the foreach loop.

And here is the proc that reacts to the user’s listbox selection:

proc ShowSel { } {
ShowSel displays text and an image file that correspond to
a user’s listbox choice

global txt

Find the user’s choice and display the related text
set i [.listbox#1 curselection]
set choiceName [.listbox#1 get $i]
.textLabel config -text $txt($choiceName)

Now display the related image file
set fname exListbox.${choiceName}.gif

90 SpecTcl 1.1 User’s Guide—August 1997

7

set iw [image create photo -file $fname]
.imageLabel config -image $iw

}

ShowSel is called after the user clicks on a listbox entry. The .listbox#1

curselection command returns an index (i, between 0 and n-1) into the
listbox entries. The .listbox#1 get $i command gets the text of the i-th
entry.

The i-th element of txt is the display text set in the first proc. The .gif files are
conveniently named exListbox.label.gif, exListbox.button.gif, and so forth.

When you execute this example, be sure to expand the application window if
some of the text doesn’t fit at first.

Important properties: selectMode.

The Scale Widget

The scale widget, with its moveable slider, provides a way to view, and change,
the value of a variable—graphically, as demonstrated by exScale.ui in
execution:

Figure 7-5 Executing exScale.ui

To demonstrate the scale widget, the application ties the scale widget’s Tcl
variable (its variable property) to the width property of a label (marked
“resizeable”). So the scale’s slide shows the width of the label, and when you
move the slide, you resize the label.

Important properties: bigincrement, command, from, label, orient, showvalue,
sliderlength, sliderrelief, takefocus, tickinterval, troughcolor, and variable.

Moving this slide,

The label’s width property
is tied to the scale value.

Tickinterval of 10.

Scale value.

Press these buttons to
bump the Tcl variable
(the variable property).

changes the Tcl variable
and the resizable label.

Other Widgets 91

7

Here is the design window for exScale.ui (in the examples directory):

Figure 7-6 Design Window and Script of exScale.ui

Adding a Script

You can look at the command properties of the examples, but here are the main
points:

• For the scale widget, the command property is ShowVal , so that when the
scale value changes, the ShowVal proc is called.

• For the -5 button, the command property is:

set x [.scale#1 get]; .scale#1 set [expr $x - 5]

The scale widget (.scale#1) has its own set and get commands. They are
used here to get the current scale value, subtract 5, and set the scale to the
new value.

• The plus button is similar.

• If you select Edit=>Edit Code , you see:

proc ShowVal { } {
global val

.resizeLabel config -width $val
}

This proc reconfigures the “resizable” label so that it’s width changes
directly with the value of the scale.

Note that as you move the scale to 0, the label grows wider, because the value
0 has a special meaning. It means the label should size itself to display its text.

92 SpecTcl 1.1 User’s Guide—August 1997

7

The Text Widget

The text widget provides an easy, versatile way to display text to the user in
specified fonts, sizes, and colors, as demonstrated by exText.ui in execution,
below, which has both text widget and scrollbar widgets.

Figure 7-7 Executing exText.ui

And here is the design window for exText.ui :

Figure 7-8 Design Window of exText.ui

You can open exText.ui in the examples directory or create it as follows:

1. Drag a text widget from the palette to one of the cells in column1.

Text widget

Scrollbar widget

Column handle with arrowheads

Other Widgets 93

7

2. To resize the text widget, drag the right column gridline of its grid cell to the
right and the bottom gridline downward.

When you move the gridlines, the widget sides move too, because of the
widget’s default sticky property: nsew.

3. From the palette, drag a scrollbar widget to the cell that’s to the right of the
text widget.

4. From the Commands menu, select Attach Scrollbars .

This enables scrollbar movements to control the text widget; for further
information, see “Attaching Scrollbars” on page 100.

5. Click once on the column handle, at the top of column 1, to select it, then
click on it again to change the column handle to show arrowheads, as
shown in the figure.

The arrowheads indicate that resizeability has been turned on. Then, during
execution, the text widget can grow wider—to display more text—when you
widen the application window.

When you save the application and place it in execution:

• Copy and paste some text into the text widget; too much text to display at
one time.

• Verify that the scrollbars work.

• Widen the application window, and verify that the text widget also widens.

94 SpecTcl 1.1 User’s Guide—August 1997

7

The Frame Widget

The exFrame.ui application, shown below, demonstrates the frame’s
grouping capabilities. The application has a frame that’s a 3 by 3 subgrid, with
numbered buttons in subgrid cells. The large button (with 23) to the right of
the frame is there for contrast: to show that the frame is subdividing a cell of
the main grid.

Figure 7-9 Designing and Executing exFrame.ui

Starting at the left, the figure shows two views of the application at design
time: 1) with a button selected (a child of the frame) and 2) with the frame
itself selected. At the right, it shows the application at run-time.

As a subgrid, the frame widget shares many features of the main grid:

• The frame has rows and columns, which you can add more of or delete.

• You can resize rows and columns to establish new minimum heights and
widths, respectively.

• Rows and columns are resized automatically as widgets with different space
requirements enter or leave.

• Each cell of the frame can contain at most one widget, which can also be
another frame.

• If the frame has the appropriate sticky property (combinations that include
ns or ew), the frame can pass extra space to those rows and columns that
are set resizeable, as discussed later in this section.

Design time
Button in frame selected

Design time
Frame selected

Run-time

Other Widgets 95

7

Creating a Multi-Cell Subgrid

This figure shows the steps to create a frame with two columns:

Figure 7-10 A Multi-Cell Subgrid

1. Drag a frame widget from the palette to the grid, as shown, above left.

2. With your mouse, if you move the cursor from left to right over the frame,
you see a double-arrow and the gridline turns green, as shown above
middle.

3. While it is green, double-click on it to create the additional column, as
shown, above, right.

Or, single clicking while it is green selects the gridline, so you can resize the
column, as you would in the main grid.

Selection with a Subgrid Present

If you click repeatedly in a cell of the subgrid, the selection toggles between
two states, shown in the figure:

Figure 7-11 Selecting within the Grid and Subgrid

• In the figure on the left, you can tell that the entire frame is selected because
its resize handles are visible.

Use this selection to edit properties of the frame itself.

96 SpecTcl 1.1 User’s Guide—August 1997

7

• In the figure on the right, you can tell that the first cell of the frame is
selected, because its row and column handles are dark, delineating that cell.

Use this selection to paste a widget into a cell of the subgrid.

When a frame is in the SpecTcl window, dark lines show whether the selection
is within the main grid or the subgrid. When the selection is in the main grid,
the main grid has dark lines; when the selection is within the subgrid, the
subgrid has dark lines.

Selecting a Widget’s Parent or Child

It’s not always obvious how to select a frame. You can click on an empty cell in
the frame if there is one. Otherwise, click on a widget within a cell, and press
the up-arrow key, which selects the parent—the frame itself. Similarly, to select
the first child, press the down-arrow key. You can navigate up and down a
number of nested frames by using the up- and down-arrow keys. You can also
move between parent and child widgets by selecting one of these menu
commands:

• Commands=>Navigate=>Select Parent
• Commands=>Navigate=>Select 1st Child

Passing Window Space to Children

The figure shows the exFrame.ui application in execution before and after
the user expands the application window:

Figure 7-12 Executing exFrame.ui and Resizing the Application Window

Before Run-time

After

Other Widgets 97

7

Look at the design window for exFrame.ui again, as shown in Figure 7-9 on
page 95. Resizeability was set on for both column 2 and row 2 and off
elsewhere. Note that Figure 7-12 on page 97 shows that the application’s
expansion is consistent with these settings:

• The button at (2, 2), with the 11, is expanded both horizontally and
vertically.

• Other buttons are expanded horizontally or vertically, but not both.

To prepare an application to work this way, do the following:

1. To set the resizeability of a row or columns on, click on the row or column
handle involved, until you see the arrowheads that signal resizeability.

You must do this for each row and column that is to change size as the user
resizes the application window. Other rows and columns stay fixed.

2. Set buttons that are to expand horizontally to a sticky property that includes
ew.

In exFrame.ui , all buttons have a sticky property of nsew, which includes
this step and the next.

3. Set buttons that are to expand vertically to have a sticky property that
includes ns .

4. To select any button, click on it.

This is a step towards selecting the frame.

5. To select the frame, select Commands=>Navigate=>Select Parent .

Because the frame is, by definition, the parent of the widgets it contains.

6. To set the frame’s sticky property, first select Edit=>Widget Properties ...

If there were an empty cell in the frame, you could double-click on it, but
there isn’t.

7. When the property sheet appears, set the sticky property to nsew.

Or, you can use the sticky tool and select the largest element, in the lower
right hand corner. Caution: If you use the sticky tool, you must choose the
order specified here; if you do not have the resizeability of any row or
column set on, your choice of sticky for the frame is restricted.

98 SpecTcl 1.1 User’s Guide—August 1997

7

If the user expands the application window, the frame and its elements might
get extra space, depending first on the resizeability of the frame’s row and
column. Extra space depends also on the frame’s sticky property:

• Extra height - If the frame’s sticky property contains n and s , the height of
the frame expands to fill its grid cell and the frame can get extra height.

• Extra width - Similarly, if the frame’s sticky property contains e and w, the
width of the frame expands to fills its grid cell and the frame can get extra
width.

If the frame as a whole can get extra space, the widgets within the frame can
also get extra. You can set each row and column within the frame as resizeable
or not, the way you do for the main grid. For further information, see “Using
Multiple Assemblies” on page 111.

The figure below shows the application

Important properties: selectMode.

The Scrollbar Widget

The scrollbar widget provides a scrolling capability for another widget. For
example, you can use a scrollbar to scroll through lines of text in the text
widget, as demonstrated by exScrollbar.ui.tcl in execution:

Figure 7-13 Executing exScrollbar.ui

For large movements through the text, you can drag the scrollbar up or down.
For small movements, click one of the arrows: a click moves by one line of text.

Other Widgets 99

7

Attaching Scrollbars

To attach scrollbar to another widget, do the following:

1. Create a scrollbar widget next to a widget that works together with a
scrollbar.

2. If the orientation of the scrollbar widget is wrong, use the orientation tool to
change it.

3. Select Commands=>Attach Scrollbars.

SpecTcl searches for scrollbar widgets that are adjacent in the grid to
widgets that can accept scrollbars. It then changes the properties of the
widgets concerned so that they work together.

Following the design window for exScrollbar.ui , shown below, we provide
detailed steps.

Figure 7-14 Designing exScrollbar.ui

To create the application:

1. Drag a text widget to the grid.

2. Drag a scrollbar widget to the grid cell next to the text widget.

3. Select Command=>Attach Scrollbars .

SpecTcl links the two widgets for you.

Note – In case you have to undo it, here’s some more information on Attach
Scrollbars : 1) SpecTcl sets the command property of the scrollbar to refer to
the text widget, %B.text#1 yview , and 2) it sets the yscrollbar property of the
text widget to refer to the scrollbar, %B.scrollbar#1 set . If you delete the

Scrollbar widget
Text widget

100 SpecTcl 1.1 User’s Guide—August 1997

7

scrollbar widget, clear the text widget’s yscrollbar property to avoid an
undefined reference to the scrollbar. (For further information, see the Tk
documentation.)

Important properties: jump and orient

The Canvas Widget

The canvas widget is a general-purpose widget that you can program to
display a number of different objects, such as lines, polygons, images, and so
forth. For further information on the canvas widget, see one of the Tcl/Tk
books described in “Related Books” on page xvi.

The Message Widget

The message widget displays a long text string by breaking it up into several
lines, as shown by the exMessage.ui application in execution:

Figure 7-15 Executing exMessage.ui

The message widget’s aspect property controls the dimensions of the formatted
text. When you execute this application, click on the different buttons to see the
formatting affect with aspects of 150, 500, and 1000.

Other Widgets 101

7

Here is the design window for exMessage.ui (left) and its script (right).
Select Edit=>Edit Code to see (or edit) the code after opening
exMessage.ui :

Figure 7-16 Design Window and Script for exMessage.ui

When you type a long text string into the entry widget and press Return, the
message widget display the reformatted text. The bind statement in the script
causes the ShowText proc to be called. ShowText simply sets one variable to
the value of the other, but these global variables are the textVariable properties
of the message widget and the entry widget, respectively.

The buttons reconfigure the message widget to have the various aspects.

Important properties: aspect, textVariable.

bind .entry#1 <Key-Return> {ShowText}

proc ShowText {} {

global entryText msgText

set msgText $entryText

}

102 SpecTcl 1.1 User’s Guide—August 1997

Tcl and Tk 8

This chapter gives you a quick start learning Tcl and shows a few examples of
the way SpecTcl uses Tk. If you already know Tcl, you might prefer to skip it.

If you are new to Tcl, we include this chapter to:

• Provide you with enough basic information to understand the sample
scripts quoted in this guide.

• Give you the flavor of the language, so you can decide whether to learn
more.

If you plan to use Tcl very much, consider getting one of the excellent books on
Tcl and Tk available through bookstores or publishers; for titles, see “Related
Books” on page xvi in the preface.

About Tcl

Tcl is all about strings—in the form of commands, constants, variables, lists,
and expressions, but still strings. Tcl determines what to do with different
strings by their context within Tcl commands.

Tcl is interpreted, rather than compiled. This provides a lot of flexibility and
makes it easy to try something, correct it, and try it again—without having to
wait for compilation.

103

8

Entering Commands Interactively

One of the best features of Tcl is the ability to enter commands interactively
and get immediate feedback as to whether you understand the command. We
recommend you enter example scripts as you read this chapter.

Provided with Tcl is tclsh, an interactive shell; to start it, enter:

tclsh

Or, you can start wish , which is an interactive shell (released with Tcl/Tk) for
building Tk applications:

wish

An interface window will appear. This is intended to display a Tk interface,
but you can ignore it and Tcl commands are processed as with tclsh.

Using either tclsh or wish, you can enter a set command, like the following:

set x 123

and the shell responds:

=> 123

Note – The notation => is used after Tcl commands to indicate the result of the
command, the string 123 in this case; => is not part of the result itself.

Tcl Commands

To discuss Tcl commands, we need a definition for word: A word is one or
more contiguous “printing” characters. For example, here are three words:

• this_is_a_word
• 123.5
• /

Words are separated from each other by non-printing characters called white
space: characters that don’t print, such as space characters, tabs, and newlines.
And by means of grouping, you can, in effect, include white space within
words; for further information, see “Grouping” on page 107.

A Tcl command is a series of words. The first word in a command is the
command name; subsequent words are command arguments. For example,
here are set , append , and puts commands, respectively:

104 SpecTcl 1.1 User’s Guide—August 1997

8

set x 5

append foo a b c

puts {Hello, World!}

A command typically ends at the end of the line. You can also end a Tcl
command with a semicolon(;); for example:

Set x 5.0; set y 7.5

Command Syntax

In summary, Tcl commands consists of a series of words interpreted as follows:

command-name arg1 arg2 arg3 ...

You can include white space in an argument by grouping; see “Grouping” on
page 107.

The Tcl interpreter:

• Separates the words of a command into its name and arguments.

• Performs $ variable substitution, explained below.

• Passes command and command arguments to other procedures which
interpreted the arguments on a command-by-command basis.

Commands that Span Lines

Commands end at the end of the line, unless the last character of the line is a
backslash; for example,

set x \
5

Sets a variable x to 5, as expected.

Comments

Comments begin with a pound sign (#). The # must be the first word of the
command. For example, this is not a valid comment, because the # becomes
part of the set command:

set x 5 # Begin initialization

Something similar, however, does work:

Tcl and Tk 105

8

set x 5; # Begin initialization

A commands doesn’t usually need a semicolon at its end; the semicolon,
above, signals that the # begins a new command and is therefore a comment.

Setting Variables

You don’t have to declare Tcl variables. They are defined when their values are
first set—often in set commands such as this one:

set w .label#1
=> .label#1

The variable w now has as its value the name of the label.

set num 469
=> 469

set compound_rate 57.9
=> 57.9

set st "This is a string"
=> "This is a string"

These variables all contain character strings; the values 469 and 57.9 are not
automatically converted to binary values as in some languages. You can
nonetheless use numeric values in arithmetic expressions, as explained later.

Getting the Value of a Variable

To embed the value of a variable into a command, prefix the variable with a
dollar sign; for example:

set i 5
=> 5
expr $i + 3
=> 8

In the expr (expression) command, above, the Tcl interpreter replaces $i by the
value of i, 5, before the expression is evaluated.

Getting the Result of a Command

To embed the result of one command in another, enclose it in brackets; for
example:

set i 5

106 SpecTcl 1.1 User’s Guide—August 1997

8

=> 5
set j [expr $i + 3]
=> 8

Within the set j command, the expr command is evaluated first, as 8 and
becomes:

set j 8

Grouping

Since white space usually separates Tcl command arguments, to include white
space in argument requires quoting:

• Enclose the characters in double quotes; for example: "one word".
• Enclose the characters in braces {}; for example: {Also one word}.

To group characters and enable $ substitution, use double quotes; for example:

puts "The name of the widget is $w"
=> The name of the widget is .label#1

To group characters and disable $ substitution, use braces; for example,

puts {$x refers to the value of x.}
=> $x refers to the value of x.

Tcl Built-in Commands

There are many Tcl built-in commands, and we have already covered a few,
such as set and puts .

Tip – Information about each built-in Tcl command comes with the Tcl release.
For platform-specific ways to access it, see “Tcl Command Information” on
page 109.

Here are two built-in commands that are used all the time.

proc

When you set the command property of a button, you can include any Tcl
command, as explained in “Designing an Application” on page 24. This
includes commands you define yourself—with the proc command.

Tcl and Tk 107

8

The proc command has the following form:

proc proc-name { args } {
proc-body

}

A proc can have zero or more arguments. Once you define a proc, you can use
it the way you use any built-in Tcl command.

For example, here is a proc that just prints its arguments (to standard output or
the console):

proc print {a b c} {
puts “The values a, b, and c are: $a, $b, and $c”

}

To call it, you can place a command like the following in a button’s command
property:

print "whatever’s right" 5 7.9

And the following line is printed:

The values a, b, and c are: whatever’s right, 5, and 7.9

List-related Commands

Here are a few commands that work with lists:

• list arg1 arg2 ...

The list command creates a list from its arguments: arg1 becomes element
0, arg2 becomes element 1, and so forth. To use this command, you can
embed it in a set command; for example,

set fruits [list apples oranges grapefruit]

• lindex list i

The lindex command returns the i-th element of the list; using the list
created above:

lindex $fruits 0
=> apples
lindex $fruits end
=> grapefruit

For the lindex command, end represents the last list value.

108 SpecTcl 1.1 User’s Guide—August 1997

8

• llength list i

The llength command returns the length of the list; using the list created
above:

llength $fruits
=> 3

Tcl Command Information

The way you access information about Tcl built-in commands depends on
which platform you use. However, on all platforms there is an HTML help
facility you can view with your network browser at:

http://sunscript.sun.com/man/tcl8.0/contents.html

This URL contains the Tcl/Tk Manual, including Tcl and Tk commands and
keywords.

For MS Windows

When you select Help=>Help in Windows, a standard Windows Help facility
window appears to describe Tcl and Tk commands. As it first appears,
WinHelp displays the table of contents, as follows:

• Tcl Application
• Tcl Built-in Commands
• Tcl Library Procedures
• Tk Applications
• Tk Built-in Commands
• Tk Library Procedures

If you double-click on Tcl Built-in Commands, you can then go through the
command definitions one by one. And there’s a search facility.

For UNIX

There are UNIX man pages for all Tcl and Tk commands:
• For Tcl, see man page entries for: append, array, break, catch, ... (include

the whole list). There is also a man entry for Tcl; for example, to learn
about the list command, enter:

man list

• For Tk, see man page entries for: button, label, ... (include the whole list).

Tcl and Tk 109

8

110 SpecTcl 1.1 User’s Guide—August 1997

Advanced Topics 9

This chapter describes advanced topics of SpecTcl.

Using Multiple Assemblies

A simple application typically uses a single .ui.tcl file. With a more
complex application, it’s sometime convenient to develop your user interface
in parts, which we’ll call assemblies, with each assembly having its own
.ui.tcl file. During execution, your application must explicitly load the
required assemblies. For example, you might have a listbox, scrollbars, and a
text entry in one assembly, and a group of interacting radiobuttons in another.

Let’s demonstrate multiple assemblies with an application that loads the same
scale assembly twice. Although this won’t happen much in practice, this shows
that two assemblies can work together even when the widgets were originally
assigned identical names. Figure 9-1 demonstrates this with exAssemM.ui ,
which has two frames and exAssemS.ui.tcl , which is loaded in each frame:

Figure 9-1 Executing exAssemM.ui - Subassemblies in Frames

111

9

If you select File=>Open ... to open exAssemM.ui and select Edit=>Edit
Code, you see:

source exAssemS.ui.tcl
exAssemS_ui .frame#1
exAssemS_ui .frame#3

This code loads the assembly twice: into frame#1 and frame#3, respectively.

(To load the same code into the main window would be:
source exAssemS.ui.tcl
exAssemS_ui .

)

Here is the command in the Add button.

set x [%B.scale#1 get]; %B.scale#1 set [expr $x + 5]

The command gets the value of the scale and then increments it by 5. As you
see, the widget name, .scale#1 is qualified by %B, (base). SpecTcl expands %B
to .frame#1 and .frame#3, when the scale assembly is loaded into frame#1 and
frame#3, respectively. Widget names, name qualification, and the %
abbreviations are explained further in the next section.

Widget Names in SpecTcl Scripts

The next few paragraphs discuss the facilities that enable assemblies to work
correctly.

Introduction and Terminology

Suppose you refer to a widget name from within a SpecTcl script or command
property. Then the form this widget name takes depends on whether you
loaded the .ui file into the main window or into a frame.

Let’s start with some terminology. You might skim this now and come back
later. Root is the window that contains all the other windows. Base is a
qualifier to use as a prefix to the basic widget name: null for a main window,
because no qualification is needed.

112 SpecTcl 1.1 User’s Guide—August 1997

9

Main Window Assembly

Let’s consider the case with the assembly loaded into the main window:

Figure 9-2 An Assembly in the Main Window

In the main-window case, you refer to all widgets in a command property as if
they were top-level widgets; for example, you refer to button#2 as a
.button#2 even though it’s contained in frame#1.

Assembly in a Frame

Let’s contrast the last case with the .ui.tcl assembly loaded into a frame:

Figure 9-3 An Assembly in a Frame

In this case, you refer to all widgets in the command property as if they were
directly contained in assemF; for example, you refer to button#2 as
assemF.button#2 even though it’s contained in frame#1.

.ui loaded in

frame#1

button#1 button#2

main window (.)
base or qualifier: null
root: . (the main window)

name : .button#2

name : .frame#1

.ui loaded into

frame#1

button#1 button#2

a frame (assemF)
base name (qualifier): .assemF
root: assemF

name : .assemF.button#2

name : .assemF.frame#1

Advanced Topics 113

9

Automatic Qualification by Base

When you drag a button onto the palette, the statements that SpecTcl generates
in the .ui.tcl file are automatically qualified by the base. If the .ui.tcl file
is loaded into a frame f3 the base is .f3 ; if it’s loaded into the main window,
the base is null, because no qualification is necessary.

Explicit Qualification by Base

When you select Edit=>Edit Code and enter a script you do not have to
qualify widget names if you know the .ui file you’re creating will always be
loaded into the main window. However, if the .ui file might be loaded into a
frame, by all means qualify any widget names by the base. To make this easier,
SpecTcl provides some % substitutions, as explained next.

Substitutions in Commands

If you want to allow for the possibility that a .ui.tcl file might be loaded
into a frame, you should use fully-qualified widget names.

Here are some per cent sign (%) substitutions that are convenient, but which
you can only use in a widget command property. The names used as examples
are widgets in Figure 9-3.

To show you these % substitutions in working commands, here are the
commands in the Add and Subtract buttons, respectively in the application in
Figure 9-1 on page 111:

%B Base name of the widget. This is the qualifier
we’ve been discussing: null for the main window
and .assemF for the example in the figure.

%M Name of the geometry master—the direct
container of the widget; frame#1 for button#2 in
the figure.

%W Fullly-qualified name of the widget; for example,
.assemF.button#2 or .assemF.frame#1.

%R Name of the widget’s root (parent of all widgets),
which is . for the main window and .assemF for
the figure.

114 SpecTcl 1.1 User’s Guide—August 1997

9

set x [%B.scale#1 get]; %B.scale#1 set [expr $x + 5]
set x [%B.scale#1 get]; %B.scale#1 set [expr $x - 5]

In the first application, %B is empty, and the references become simply
.scale#1 . In the second application, %B expands to either .frame#1 or
.frame#3 , depending on the frame.

Building a Macintosh Application

On the Macintosh, a normal Build command creates a ui.tcl file. (If you
double-click on this ui.tcl file, it runs SpecTcl, which isn’t very useful.) To
create a double-clickable version of your application, use this command:
Commands=>Build Application

To bring an application into execution a “stub” file is used. To view (or edit)
the choice of stub file or creator code, select Preferences=>Options ... When
the dialog box appears, click on the Output tab, and you will see a display like
the following:

Figure 9-4 Macintosh Output Preferences

We ship a version of wish 8.0 that is used as a “stub” to create double-clickable
applications. You can, however, override this stub file with your own modified
or enhanced copy of wish. You can also change the creator code so that your
generated application can use its own icons and so forth.

Advanced Topics 115

9

Execution Options in UNIX

In UNIX, you can execute the application’s .ui.tcl file the way you would
any executable file. And, unless you would like to alter the execution defaults,
you can skip the rest of this section.

Before changing the execution defaults, you need to understand the way the
ui.tcl file works. SpecTcl begins each ui.tcl file with a stub that causes
wish first to execute and then to interpret the Tcl statements in the file. To view
or edit the stub, select Preferences=>Options When the dialog box
appears, click on the Output tab, and you will see a display like the following:

Figure 9-5 Unix Output Preferences

This enables you to view and edit the stub or the file permissions that SpecTcl
uses with the file.

116 SpecTcl 1.1 User’s Guide—August 1997

Index

Symbols
%B, 114
%M, 114
%R, 114
%W, 114

A
Aligning

Multi-Line Text, 65
Widgets, 65

Alignment
Dynamic, Concepts of, 57

An Assembly
Loading it into a Frame, 113

An Assembly, Loading into the Main
Window, 112

Anchor Property, 66, 67
Application

Executing, 28
Steps to Create, 24

Application Window
Resizing, 63

Assemblies, Multiple, 111
Attach Scrollbars Command, 93, 99

B
Basics of SpecTcl, 39 to 51
Books, Tcl/Tk Recommendations, xvi
Border Style, See Relief Property
Borderwidth Property, 68
Build and Test Command, 27
Build Application Command

(Macintosh), 27, 115
Build Command, 27
Button Widget, 75

See also Checkbutton Widget,
Menubutton Widget, and
Radiobutton Widget.

Buttons, 75 to 83
General Information, 75

C
Canvas Widget, 101
Checkbutton Widget, 77
Child of a Widget

Selecting, 97
Column

Deleting, 50
Inserting, 49, 50
Resizing, 49, 50
See also Grid

117

118

Column handles, 62
Column Span of Widgets, 60
Columns

Setting Resizeability, 61
Size Minimums for, 61

Commands-Menu Commands
Attach Scrollbars, 93, 99
Build, 27
Build and Test, 27
Build Application (Macintosh), 27,

115
Reapply the Toolbar, 47
Stop Test, 27

Constraint-Based Geometry
Management, 20

Constraints
Other Constraint-Based Builders, 21
Represented as Properties, 55

Copy, Edit=>Copy Command, 43
Cut, Edit=>Cut Command, 43

D
Debugging Information

Inserting, 29
Default Properties, 48
Delete, Edit=>Delete Command, 43

E
Edit Commands, 24

Copy, Cut, Delete, and Paste, 43
Edit Code, 25
Edit Default Properties, 48
Edit Text Property, 44
Edit Widget Properties, 45
Insert, 49, 50
See also Toolbar Tools

Editing, see Edit commands.
Entry Widget, 85
Example Applications

exAssemM.ui, 111
exButton.ui, 76
exCheckbutton2.ui, 77

exEntry.ui, 85
exFrame.ui, 95
exHello.ui, 24
exLabel.ui, 73
exListbox.ui, 88
exLong.ui, 31
exMenubutton.ui, 80, 81
exMessage.ui, 101
exRadiobutton.ui, 79
exRadiobutton2.ui, 30
exRelief.ui, 69
exResize.ui, 63
exScale.ui, 91
exScrollbar.ui, 99
exSticky.ui, 70
exText.ui, 93

Examples Directory, 30
exAssemM.ui Example Application, 111
exButton.ui Example Application, 76
exCheckbutton2.ui Example

Application, 77
Executing an Application, 28
exEntry.ui Example Application, 85
exFrame.ui Example Application, 95
exHello.ui Example Appllication, 24
exLabel.ui Example Application, 73
exListbox.ui Example Application, 88
exLong.ui Example Application, 31
exMenubutton.ui Example

Application, 80, 81
exMessage.ui Example Application, 101
exRadiobutton.ui Example

Application, 79
exRadiobutton2.ui Example

Application, 30
exRelief.ui Example Application, 69
exResize.ui Example Application, 63
exScale.ui Example Application, 91
exScrollbar.ui Example Application, 99
exSticky.ui Example Application, 70
exText.ui Example Application, 93

SpecTcl 1.1 User’s Guide—August 1997

F
Frame Widget, 95

G
Geometry

Grid, 20, 21, 55
Geometry Management

Constraint Based, 20
Geometry Mangement

Other Constraint-Based Builders, 21
Grid

Aspects Different from Typical
Grids, 56

Basics of, 49
Concepts of grid geometry, 55
Geometry Manager, 20, 21
See also Frame Widget

H
Help, 40

for SpecTcl, 40
for Tcl/Tk, 40

Help Area
Shown in Figure, 39

I
Insert, Edit=>Insert, 49, 50
Inserting a Row and Column, 50
Inserting a Row or Column, 49

J
Justify Property, 66, 68

L
Label Widget, 73
Layout of Widgets, 53 to 65
Listbox Widget, 88

M
Main Window

SpecTcl, 39
Menubutton Widget, 80
Menus

Checkbutton Menu Entries, 82
Creating, 80
Creating a Menubar, 81
Radiobutton Menu Entries, 83
Standard Menu Entries, 82

Message Area, 41
Shown in Figure, 39

Message Widget, 101
Minimum Sizes

for Columns, 61
for Rows, 61

Multi-Line Text
Aligning, 65

Multiple Assemblies., 111

N
Names

of Widgets in Scripts, 48, 112
Navigating

Next Widget, 43
Previous Widget, 43
Select 1st Child, 97
Select Parent, 97

New, Edit=>New Command, 24

O
Open..., Edit=>Open... Command, 24
Output Preferences

Macintosh, 115
UNIX, 116

P
padx, pady Properties

Visual Explanation of, 59
Palette, 41

Shown in Figure, 39

Index 119

120

Parent of a Widget
Selecting, 97

Paste, Edit=>Paste Command, 43
Percent sign substitutions, 114
Placement in Grid Cell, See Sticky

Property
Portability

As Design Goal, 53
Preferences, Output

Macintosh, 115
UNIX, 116

Properties
Anchor, 66, 67
As Constraints, 55
Borderwidth, 68
Common to Widgets, 67 to 70
Default, Editing, 48
Justify, 66
Relief, 69
Sticky, 65, 70
wadx, 64
wady, 64
Widget, Editing, 24, 45

Properties, Justify, 68
Property Sheet, 45

Q
Qualification of Widget Names,

Automatic, 114
Qualification of Widget Names,

Explicit, 114
Quit, File=>Quit, 27

R
Radiobutton Widget, 79
Reapply-the-Toolbar Command, 47
Relief Property, 69
Resizability

of Widgets, 63
Resizeability

Considerations, 63
Dynamic, Concepts of, 57

of Columns, Setting, 61
of Rows, Setting, 61
of Widgets, Setting, 62

Resizeability, Controlling, 62
Resizing

the Application Window, 63
Resizing Application Window

Space Distribution to Frame, 97
Resizing Widgets, 60

Automatic, 58
to Specied Sizes, 61

Row
Deleting, 50
Inserting, 49, 50
Resizing, 49, 50
See also Grid.

Row handles, 62
Row Span of Widgets, 60
Rows

Setting Resizeability, 61
Size Minimums for, 61

S
Save As, File=>Save As... Command, 26
Save, File=>Save Command, 26
Scale Widget, 91
Script, Creating a, 25
Scrollbar Widget, 93, 99
Scrollbars

Attaching, 100
See also Anchor Property
Selecting

a Grid Cell, for a Paste command, 43
a Widget, 42
Another Widget with the Same

Parent, 43
Child of a Widget, 97
Parent of a Widget, 97

Sizing
Automatic, 58

Space Distribution
Within Frame, 97

SpecTcl 1.1 User’s Guide—August 1997

SpecTcl
Basics, 39 to 51

Sticky Property, 70
and Widget Positioning, 65
Explained as Size Constraints, 60

StickyProperty, 70
Stop Command, 27
Subgrid, see Frame Widget
Substitution

of %B, %M, %W, and %R, 114

T
Tcl and Tk, 103 to 109
Tcl/Tk

Book Recommendations, xvi
HTML Help, URL for, 40

Testing, 29
Text Area

Shown in Figure, 39
Text Area, Editing the Text Property, 44
Text Widget, 93
Tollbar

Shown in Figure., 39
Toolbar Tools, 47
Tools, Toolbar, 47
Tutorial, 23 to 37

U
User Interfaces

Multiple, 111

W
wadx Property, 64
wady Property, 64
Widget Names

Advanced, 112
Automatic Qualification by Base, 114
Explicit Qualification by Base, 114
in Basic Scripts, 48

Widgets
Aligning, 65

Automatic Sizing, 58
Button, 75
Canvas, 101
Checkbutton, 77
Common Properties, 67 to 70
Entry, 85
Frame, 95
Label, 73
Layout of, 53 to 65
Listbox, 88
Menubutton, 80
Message, 101
Placement in Grid, 58
Placement in Grid Cell, See Sticky

Property
Radiobutton, 79
Resizeability of, Setting, 62
Resizeability, Controlling, 62
Resizing, 60
Resizing to Specified Sizes, 61
Row and Column Span, 60
Scale, 91
Scrollbar, 93, 99
Selecting, 42
Text, 93

Widgets, Resizing, 60
Window, SpecTcl Main, 39
WYWSIWYG

Versus Portability, 53

Index 121

122

 SpecTcl 1.1 User’s Guide—August 1997

		Preface

		Who Should Use This Book

		Before You Read This Book

		How This Book Is Organized

		Related Books

		What Typographic Changes and Symbols Mean

		Table�P�1 Typographic Conventions

		Acknowledgments

		1. Introduction to SpecTcl

		SpecTcl Features

		A Technical Note on SpecTcl

		SpecTcl and its Grid Geometry Manager

		SpecTcl Versus Other Constraint-Based Builders

		2. Getting Started with SpecTcl

		The “Hello, world” Tutorial

		Starting a New Application

		Designing an Application

		Editing Code

		Saving the Application

		Quitting SpecTcl

		Building an Executable

		Building and Testing

		Running the Application Stand-Alone

		Inserting Debugging Information

		The Example Applications

		The Layout Tutorial

		Adding Labels to an Empty Grid

		Completing the Labels

		Improving the Labels’ Appearance

		Creating the Add Button

		Creating Change and Delete Buttons and Another Col...

		Creating the Entry Widgets

		Adding Finishing Touches

		Examining Run-Time Actions and Resizeability

		3. Basics

		The Big Picture

		About Help

		Help Facility

		Help Area

		Message Area

		Widget Basics

		Creating Widgets

		Clicking or Dragging on Palette Widgets

		Creating Widgets Outside the Current Grid

		Selecting a Widget

		Navigating and Selection

		Copying, Cutting, Pasting, and Deleting Widgets

		Editing Widget Properties

		Editing the Text Area

		Editing the Property Sheet

		Editing a Property Entry

		Clicking on the OK Button

		Clicking on the Default Button

		Clicking on the Revert Button

		Editing Properties through Tools on the Toolbar

		Using and Changing Widget Names

		Editing Widget Default Properties

		Grid Basics

		Inserting a Row or Column

		Inserting a Row and Column

		Resizing a Row or Column

		Deleting a Row or Column

		Beyond the Main Grid

		4. Managing Layout

		WYSIWYG versus Portable

		Traditional GUI Builders

		Advantages

		Disadvantages

		SpecTcl

		Design Goals

		A Geometry Based on Constraints

		Constraints in Disguise

		Characteristics of Grid-Based Applications

		About the Grid

		More on Dynamic Alignment and Resizing

		Dynamic Alignment

		Dynamic Resizeability

		Placing Widgets in Grid Cells

		Controlling Widget Size

		Automatic Sizing

		The Effect of padx and pady On Widget Size

		Tying Widget Size to Cell Size

		Changing a Widget’s Row or Column Span

		Setting Specific Sizes

		Controlling Rows and Columns

		Establishing Minimum Sizes for Rows and Columns

		Setting Resizeability of Rows and Columns

		Controlling Widget Resizeability

		Resizing the Application Window

		Resizeability Considerations

		Positioning a Widget within its Cell

		The wadx and waxy Properties

		The Sticky Property

		Aligning Widgets

		Aligning Multi-Line Text within a Widget

		Using the Justify Property

		Using the Anchor Property

		5. Common Properties of Widgets

		Anchor Property

		Borderwidth Property

		Justify Property

		Relief Property

		Sticky Property

		Setting the Sticky Property

		6. Labels, Buttons, and Menus

		The Label Widget

		Displaying Multiple Lines of Text

		Displaying an Image

		About Buttons

		The Button Widget

		Displaying Multi-Line Text

		Displaying an Image

		Types of Images

		The Checkbutton Widget

		Variable Property - On/Off State

		Showing Checkbutton Values

		The Radiobutton Widget

		Referencing Radiobutton Values

		Demonstrating the Radiobuttons

		About Menus

		The Menubutton Widget

		The Menubar

		Standard Button Menu Entries

		Checkbutton Menu Entries

		Radiobutton Menu Entries

		7. Other Widgets

		The Entry Widget

		Setting Properties for the Application

		When the User Presses Return

		Retrieving the Entry Text

		Processing Events Twice

		The Listbox Widget

		Setting Properties for the Application

		When the User Selects a Listbox Entry

		Reacting to the User’s Choice

		The Scale Widget

		Adding a Script

		The Text Widget

		The Frame Widget

		Creating a Multi-Cell Subgrid

		Selection with a Subgrid Present

		Selecting a Widget’s Parent or Child

		Passing Window Space to Children

		The Scrollbar Widget

		Attaching Scrollbars

		The Canvas Widget

		The Message Widget

		8. Tcl and Tk

		About Tcl

		Entering Commands Interactively

		Tcl Commands

		Command Syntax

		Commands that Span Lines

		Comments

		Setting Variables

		Getting the Value of a Variable

		Getting the Result of a Command

		Grouping

		Tcl Built-in Commands

		proc

		List-related Commands

		Tcl Command Information

		For MS Windows

		For UNIX

		9. Advanced Topics

		Using Multiple Assemblies

		Widget Names in SpecTcl Scripts

		Introduction and Terminology

		Main Window Assembly

		Assembly in a Frame

		Automatic Qualification by Base

		Explicit Qualification by Base

		Substitutions in Commands

		Building a Macintosh Application

		Execution Options in UNIX

		Index

