

The Cray Linux Environment

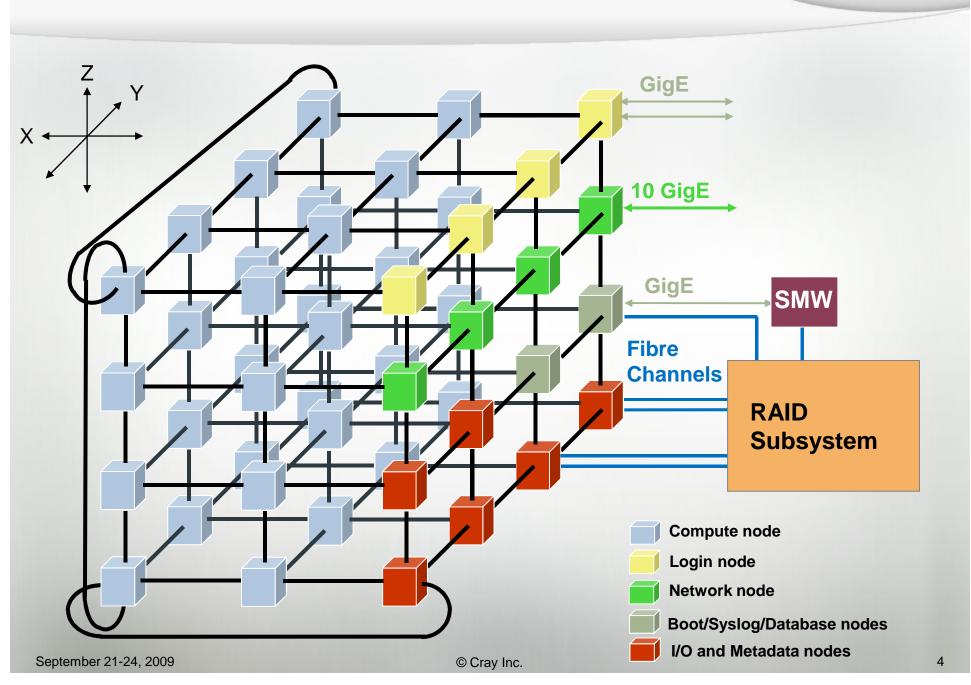
Kevin Roy

CSC, Finland

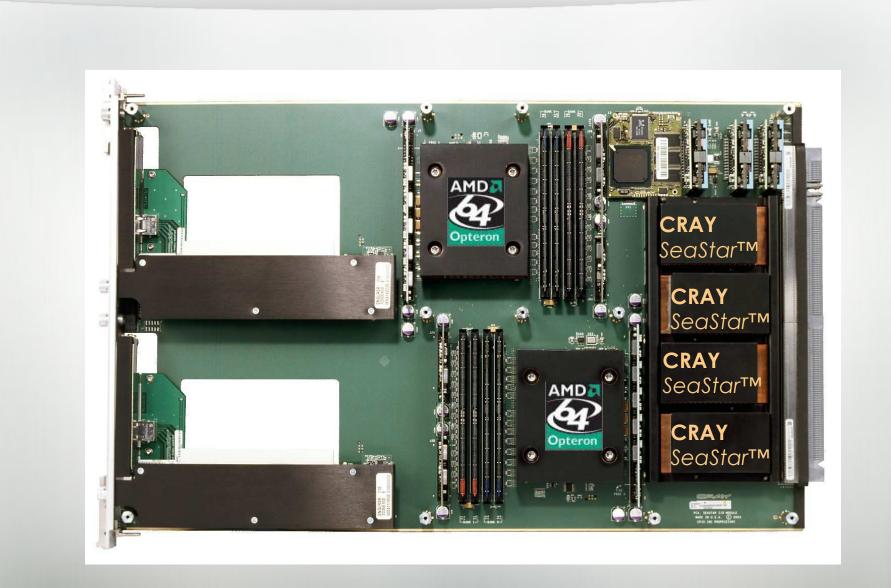
© Cray Inc.

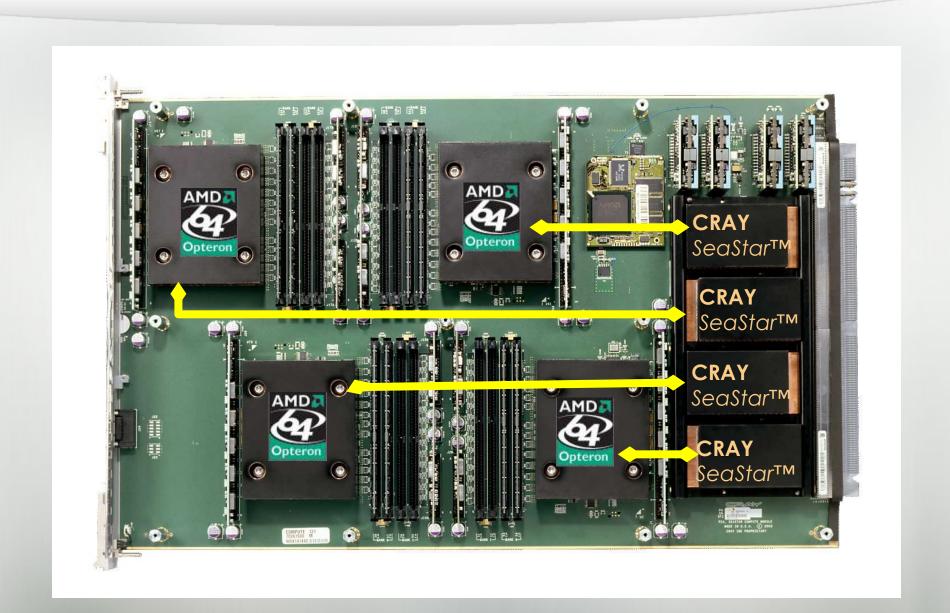
September 21-24, 2009

Agenda


- Overview
- CLE Features
- CLE Programming
- The Storage Environment

What is CLE?


- CLE is the Cray Linux Environment.
- There is:
 - A full Linux run on the service and login nodes
 - A stripped down Linux kernel runs on the compute nodes and is CNL Compute Node Linux.
- The combination of these two environments is called CLE.
- We talk little of the Linux running on the service nodes because it is a full Linux.
- The most recently available version is CLE 2.2
- Many sites still run CLE 2.1


Where do these OS' run? Service Blade

Where do these OS' run? Compute Blade

The CLE feature list

- Version 2.1
 - Based on SLES 10 SP1
 - Contains Lustre 1.6
 - DVS
 - First phase of the node health checker
 - CSA
 - VC2 awareness
 - NUMA Kernel changes
 - EAL3 evaluation
- Released in 2008 Q4
- There are regular updates

- Version 2.2
 - Based on SLES 10 SP2
 - Feature and performance upgrades to the Node Health Checker
 - Attribute Management
 - Checkpoint/Restart
 - LDAP integration with CSA
 - Infiniband Support

- Released in 2009 Q2
- There will be regular updates

CLE Features

- In order to maintain high performance and increase system reliability certain services, features and hardware is not available or have restricted availability on compute nodes.
- The ones that may be relevant to application programmers are:
 - Paging and Virtual Memory
 - NFS Home file system.
 - Sockets
 - Dynamic Libraries
 - System calls

Paging & Virtual Memory

- Virtual Memory is much larger than physical memory.
- In some cases data is overflowed to disk and performance suffers.
 - This is called Paging
- Paging is not available on the XT series as there are no local disks.
 - Less moving parts per node
 - For most applications this is a unnecessary component
 - Local "file system" is placed in memory. This is why file system is kept small.
 - Use of /tmp consumes application memory and is not recommended and at some sites is restricted.
 - One effect of this can be seen when using PGI scratch files which by default are created in /tmp.

NFS - The Home Filesystem

- The home file system is available from servers within the XT infrastructure and is mounted via NFS.
- NFS is available on the login nodes
- The NFS service at this time is considered intrusive for inclusion on the compute node OS.
- Besides the effect on the compute node OS the NFS service is not a parallel high performance one.
- Data needs to be moved to Lustre so that it is available to the compute nodes.
- DVS can make this available.
 - This is a decision made by individual sites.

TCP/IP Programming

- TCP/IP does work on the XT but is not supported on compute nodes.
- You may see warnings when compiling using the Cray compiler drivers.
- There is no direct connection from compute nodes to systems outside the XT infrastructure so TCP/IP connections are not possible.
- This is possible with RSIP, but you should discuss your needs with CSC, as there are implications.

Dynamic Libraries

- By default the Cray compiler drivers build static executables.
- Some applications are built expecting dynamic libraries
 - These should be switched off with the compiler and moved to static linking.

- Dynamic libraries are possible at this time if:
 - Dynamic libraries are made available to the compute nodes (placed in Lustre)
 - The runtime link path is set to this new location.
- OpenFOAM works in this way.
- This will be better packaged in the future.

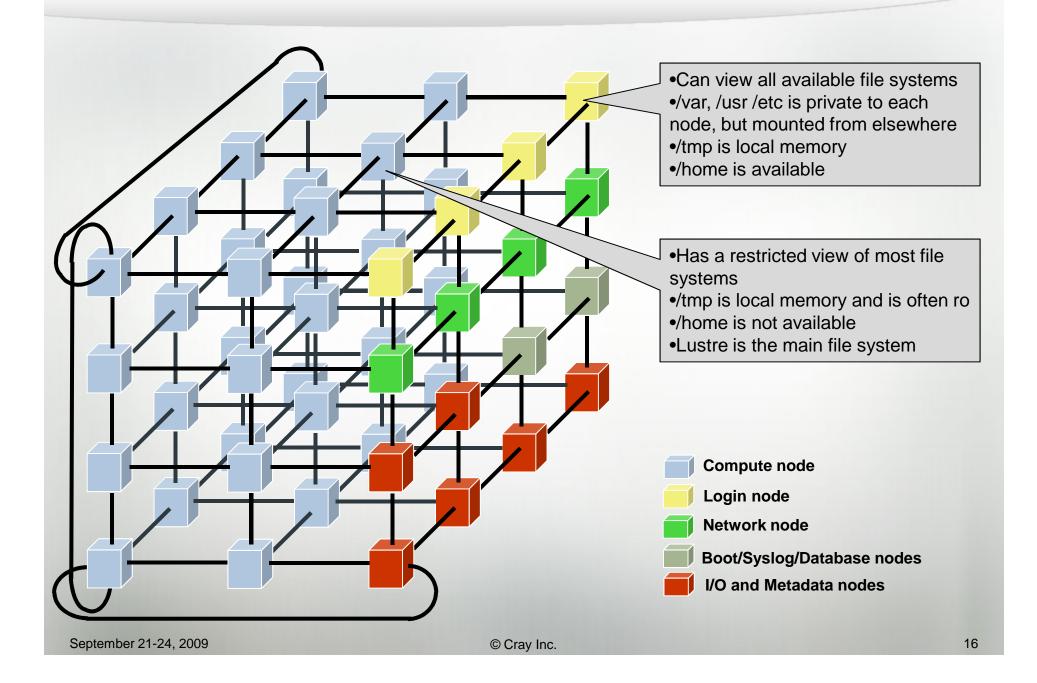
System Calls

Some codes still use

Call system('rm old_checkpoint')

- This requires shell features and commands.
- These commands are not always available
 - Can be too big
 - Can depend on shared libraries that are not normally available
- There is a command called busybox which encapsulates many useful shell functions
- In many cases calling a c code equivalent is much more efficient

Busybox


- Busybox is a space efficient implementation of the most common shell commands.
- Can be launched directly on compute nodes (using ALPS) to make various enquiries
- To run "Is" on the compute nodes:
- aprun –n 1 /usr/bin/busybox Is
- See "man busybox" for the full list of available commands

The Storage Environment

- We have already discussed some aspects of the storage environment.
 - We will also revisit Lustre on Thursday and talk about performance.
- In this section we will cover
 - Scratch file systems
 - Home file system
 - Parallel file system (Lustre)

File Systems

- Cray XT systems have separated service work from compute intensive batch work.
- You login in to anyone of a number of login or service nodes.
 - `hostname` can be different each time
 - `xthostname` usually gives the "machine name"
 - Load balancing is done to choose which node you login to
- You are still sharing a fixed environment with a number of others
 - Which may still run out of resources
- Successive login sessions may be on different nodes
 - I/O needs to go to disk, etc.

© Cray Inc.

File Systems

- You start in your home directory, this is where most things live
 - ssh keys
 - Files
 - Source code for compiling
 - Etc
- The home directories are mounted via NFS to all the service nodes
- The /work file system is the main lustre file system,
 - This file system is available to the compute nodes
 - Optimized for big, well formed I/O.
 - Small file interactions have higher costs.
- /opt is where all the Cray software lives
 - In fact you should never need to know this location as all software is controlled by modules so it is easier to upgrade these components

File Systems

- /var is usually for spooled or log files
 - By default PBS jobs spool their output here until the job is completed (/var/spool/PBS/spool)
- /proc can give you information on
 - the processor
 - the processes running
 - the memory system
- Some of these file systems are not visible on backend nodes and maybe be memory resident so use sparingly!
 - You can use commands to investigate what is actually on the compute nodes:
 - aprun -n 1 /usr/bin/busybox -l /

Lustre

Lustre

- Designed for parallel I/O
- Is most probably the largest file system
- Could be the only writable file system from a compute node
- Designed for large data transactions
- The performance is easily tuneable dependent on requirements of the application
 - Large data files could be spread across many I/O nodes to increase performance
 - Large numbers of files could be stored one per storage node to increase concurrency

Increasing Lustre Performance

- This is covered in greater depth later but in order to get a flavour of Lustre performance …
- We apply attributes to files or directories
 - For directories the attributes apply to all files contained in it
- We can describe
 - A stripe size
 - A stripe count (how many lustre nodes to spread a file across)

As a quick test:

- we can create two directories
- Apply "Ifs setstripe 0 -1 16" to one of them
- Create two identical files and put one in each directory
- In each directory simply copy the file to a new file name and measure the performance

Increasing Lustre Performance

- The previous example shows good speed up if the file is large
- For small files this will not be the case
- For many files this may not always be the case
- Later this week we will discover how to best use the parallel Lustre file system

The Cray Linux Environment

Questions / Comments Thank You!

CSC, Finland

© Cray Inc.

September 21-24, 2009