patch-2.4.19 linux-2.4.19/arch/ppc64/kernel/mf.c

Next file: linux-2.4.19/arch/ppc64/kernel/mf_proc.c
Previous file: linux-2.4.19/arch/ppc64/kernel/local_irq.h
Back to the patch index
Back to the overall index

diff -urN linux-2.4.18/arch/ppc64/kernel/mf.c linux-2.4.19/arch/ppc64/kernel/mf.c
@@ -0,0 +1,1202 @@
+/*
+  * mf.c
+  * Copyright (C) 2001 Troy D. Armstrong  IBM Corporation
+  *
+  * This modules exists as an interface between a Linux secondary partition
+  * running on an iSeries and the primary partition's Virtual Service
+  * Processor (VSP) object.  The VSP has final authority over powering on/off
+  * all partitions in the iSeries.  It also provides miscellaneous low-level
+  * machine facility type operations.
+  *
+  * 
+  * This program is free software; you can redistribute it and/or modify
+  * it under the terms of the GNU General Public License as published by
+  * the Free Software Foundation; either version 2 of the License, or
+  * (at your option) any later version.
+  * 
+  * This program is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  * GNU General Public License for more details.
+  * 
+  * You should have received a copy of the GNU General Public License
+  * along with this program; if not, write to the Free Software
+  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
+  */
+
+#include <asm/iSeries/mf.h>
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <asm/iSeries/HvLpConfig.h>
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <asm/nvram.h>
+#include <asm/time.h>
+#include <asm/iSeries/ItSpCommArea.h>
+#include <asm/iSeries/mf_proc.h>
+#include <asm/iSeries/iSeries_proc.h>
+#include <asm/uaccess.h>
+#include <linux/pci.h>
+
+extern struct pci_dev * iSeries_vio_dev;
+
+/*
+ * This is the structure layout for the Machine Facilites LPAR event
+ * flows.
+ */
+struct VspCmdData;
+struct CeMsgData;
+union SafeCast
+{
+	u64 ptrAsU64;
+	void *ptr;
+};
+
+
+typedef void (*CeMsgCompleteHandler)( void *token, struct CeMsgData *vspCmdRsp );
+
+struct CeMsgCompleteData
+{
+	CeMsgCompleteHandler xHdlr;
+	void *xToken;
+};
+
+struct VspRspData
+{
+	struct semaphore *xSemaphore;
+	struct VspCmdData *xResponse;
+};
+
+struct IoMFLpEvent
+{
+	struct HvLpEvent xHvLpEvent;
+
+	u16 xSubtypeRc;
+	u16 xRsvd1;
+	u32 xRsvd2;
+
+	union
+	{
+
+		struct AllocData
+		{
+			u16 xSize;
+			u16 xType;
+			u32 xCount;
+			u16 xRsvd3;
+			u8 xRsvd4;
+			HvLpIndex xTargetLp;
+		} xAllocData;
+
+		struct CeMsgData
+		{
+			u8 xCEMsg[12];
+			char xReserved[4];
+			struct CeMsgCompleteData *xToken;
+		} xCEMsgData;
+
+		struct VspCmdData
+		{
+			union SafeCast xTokenUnion;
+			u16 xCmd;
+			HvLpIndex xLpIndex;
+			u8 xRc;
+			u32 xReserved1;
+
+			union VspCmdSubData
+			{
+				struct
+				{
+					u64 xState;
+				} xGetStateOut;
+
+				struct
+				{
+					u64 xIplType;
+				} xGetIplTypeOut, xFunction02SelectIplTypeIn;
+
+				struct
+				{
+					u64 xIplMode;
+				} xGetIplModeOut, xFunction02SelectIplModeIn;
+
+				struct
+				{
+					u64 xPage[4];
+				} xGetSrcHistoryIn;
+
+				struct
+				{
+					u64 xFlag;
+				} xGetAutoIplWhenPrimaryIplsOut,
+					xSetAutoIplWhenPrimaryIplsIn,
+					xWhiteButtonPowerOffIn,
+					xFunction08FastPowerOffIn,
+					xIsSpcnRackPowerIncompleteOut;
+
+				struct
+				{
+					u64 xToken;
+					u64 xAddressType;
+					u64 xSide;
+					u32 xTransferLength;
+					u32 xOffset;
+				} xSetKernelImageIn,
+					xGetKernelImageIn,
+					xSetKernelCmdLineIn,
+					xGetKernelCmdLineIn;
+
+				struct
+				{
+					u32 xTransferLength;
+				} xGetKernelImageOut,xGetKernelCmdLineOut;
+
+
+				u8 xReserved2[80];
+
+			} xSubData;
+		} xVspCmd;
+	} xUnion;
+};
+
+
+/*
+ * All outgoing event traffic is kept on a FIFO queue.  The first
+ * pointer points to the one that is outstanding, and all new
+ * requests get stuck on the end.  Also, we keep a certain number of
+ * preallocated stack elements so that we can operate very early in
+ * the boot up sequence (before kmalloc is ready).
+ */
+struct StackElement
+{
+	struct StackElement * next;
+	struct IoMFLpEvent event;
+	MFCompleteHandler hdlr;
+	char dmaData[72];
+	unsigned dmaDataLength;
+	unsigned remoteAddress;
+};
+static spinlock_t spinlock;
+static struct StackElement * head = NULL;
+static struct StackElement * tail = NULL;
+static struct StackElement * avail = NULL;
+static struct StackElement prealloc[16];
+
+/*
+ * Put a stack element onto the available queue, so it can get reused.
+ * Attention! You must have the spinlock before calling!
+ */
+void free( struct StackElement * element )
+{
+	if ( element != NULL )
+	{
+		element->next = avail;
+		avail = element;
+	}
+}
+
+/*
+ * Enqueue the outbound event onto the stack.  If the queue was
+ * empty to begin with, we must also issue it via the Hypervisor
+ * interface.  There is a section of code below that will touch
+ * the first stack pointer without the protection of the spinlock.
+ * This is OK, because we know that nobody else will be modifying
+ * the first pointer when we do this.
+ */
+static int signalEvent( struct StackElement * newElement )
+{
+	int rc = 0;
+	unsigned long flags;
+	int go = 1;
+	struct StackElement * element;
+	HvLpEvent_Rc hvRc;
+
+	/* enqueue the event */
+	if ( newElement != NULL )
+	{
+		spin_lock_irqsave( &spinlock, flags );
+		if ( head == NULL )
+			head = newElement;
+		else {
+			go = 0;
+			tail->next = newElement;
+		}
+		newElement->next = NULL;
+		tail = newElement;
+		spin_unlock_irqrestore( &spinlock, flags );
+	}
+
+	/* send the event */
+	while ( go )
+	{
+		go = 0;
+
+		/* any DMA data to send beforehand? */
+		if ( head->dmaDataLength > 0 )
+			HvCallEvent_dmaToSp( head->dmaData, head->remoteAddress, head->dmaDataLength, HvLpDma_Direction_LocalToRemote );
+
+		hvRc = HvCallEvent_signalLpEvent(&head->event.xHvLpEvent);
+		if ( hvRc != HvLpEvent_Rc_Good )
+		{
+			printk( KERN_ERR "mf.c: HvCallEvent_signalLpEvent() failed with %d\n", (int)hvRc );
+
+			spin_lock_irqsave( &spinlock, flags );
+			element = head;
+			head = head->next;
+			if ( head != NULL )
+				go = 1;
+			spin_unlock_irqrestore( &spinlock, flags );
+
+			if ( element == newElement )
+				rc = -EIO;
+			else {
+				if ( element->hdlr != NULL )
+				{
+					union SafeCast mySafeCast;
+					mySafeCast.ptrAsU64 = element->event.xHvLpEvent.xCorrelationToken;
+					(*element->hdlr)( mySafeCast.ptr, -EIO );
+				}
+			}
+
+			spin_lock_irqsave( &spinlock, flags );
+			free( element );
+			spin_unlock_irqrestore( &spinlock, flags );
+		}
+	}
+
+	return rc;
+}
+
+/*
+ * Allocate a new StackElement structure, and initialize it.
+ */
+static struct StackElement * newStackElement( void )
+{
+	struct StackElement * newElement = NULL;
+	HvLpIndex primaryLp = HvLpConfig_getPrimaryLpIndex();
+	unsigned long flags;
+
+	if ( newElement == NULL )
+	{
+		spin_lock_irqsave( &spinlock, flags );
+		if ( avail != NULL )
+		{
+			newElement = avail;
+			avail = avail->next;
+		}
+		spin_unlock_irqrestore( &spinlock, flags );
+	}
+
+	if ( newElement == NULL )
+		newElement = kmalloc(sizeof(struct StackElement),GFP_ATOMIC);
+
+	if ( newElement == NULL )
+	{
+		printk( KERN_ERR "mf.c: unable to kmalloc %ld bytes\n", sizeof(struct StackElement) );
+		return NULL;
+	}
+
+	memset( newElement, 0, sizeof(struct StackElement) );
+	newElement->event.xHvLpEvent.xFlags.xValid = 1;
+	newElement->event.xHvLpEvent.xFlags.xAckType = HvLpEvent_AckType_ImmediateAck;
+	newElement->event.xHvLpEvent.xFlags.xAckInd = HvLpEvent_AckInd_DoAck;
+	newElement->event.xHvLpEvent.xFlags.xFunction = HvLpEvent_Function_Int;
+	newElement->event.xHvLpEvent.xType = HvLpEvent_Type_MachineFac;
+	newElement->event.xHvLpEvent.xSourceLp = HvLpConfig_getLpIndex();
+	newElement->event.xHvLpEvent.xTargetLp = primaryLp;
+	newElement->event.xHvLpEvent.xSizeMinus1 = sizeof(newElement->event)-1;
+	newElement->event.xHvLpEvent.xRc = HvLpEvent_Rc_Good;
+	newElement->event.xHvLpEvent.xSourceInstanceId = HvCallEvent_getSourceLpInstanceId(primaryLp,HvLpEvent_Type_MachineFac);
+	newElement->event.xHvLpEvent.xTargetInstanceId = HvCallEvent_getTargetLpInstanceId(primaryLp,HvLpEvent_Type_MachineFac);
+
+	return newElement;
+}
+
+static int signalVspInstruction( struct VspCmdData *vspCmd )
+{
+	struct StackElement * newElement = newStackElement();
+	int rc = 0;
+	struct VspRspData response;
+	DECLARE_MUTEX_LOCKED(Semaphore);
+	response.xSemaphore = &Semaphore;
+	response.xResponse = vspCmd;
+
+	if ( newElement == NULL )
+		rc = -ENOMEM;
+	else {
+		newElement->event.xHvLpEvent.xSubtype = 6;
+		newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('V'<<8)+('I'<<0);
+		newElement->event.xUnion.xVspCmd.xTokenUnion.ptr = &response;
+		newElement->event.xUnion.xVspCmd.xCmd = vspCmd->xCmd;
+		newElement->event.xUnion.xVspCmd.xLpIndex = HvLpConfig_getLpIndex();
+		newElement->event.xUnion.xVspCmd.xRc = 0xFF;
+		newElement->event.xUnion.xVspCmd.xReserved1 = 0;
+		memcpy(&(newElement->event.xUnion.xVspCmd.xSubData),&(vspCmd->xSubData), sizeof(vspCmd->xSubData));
+		mb();
+
+		rc = signalEvent(newElement);
+	}
+
+	if (rc == 0)
+	{
+		down(&Semaphore);
+	}
+
+	return rc;
+}
+
+
+/*
+ * Send a 12-byte CE message to the primary partition VSP object
+ */
+static int signalCEMsg( char * ceMsg, void * token )
+{
+	struct StackElement * newElement = newStackElement();
+	int rc = 0;
+
+	if ( newElement == NULL )
+		rc = -ENOMEM;
+	else {
+		newElement->event.xHvLpEvent.xSubtype = 0;
+		newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('C'<<8)+('E'<<0);
+		memcpy( newElement->event.xUnion.xCEMsgData.xCEMsg, ceMsg, 12 );
+		newElement->event.xUnion.xCEMsgData.xToken = token;
+		rc = signalEvent(newElement);
+	}
+
+	return rc;
+}
+
+/*
+ * Send a 12-byte CE message and DMA data to the primary partition VSP object
+ */
+static int dmaAndSignalCEMsg( char * ceMsg, void * token, void * dmaData, unsigned dmaDataLength, unsigned remoteAddress )
+{
+	struct StackElement * newElement = newStackElement();
+	int rc = 0;
+
+	if ( newElement == NULL )
+		rc = -ENOMEM;
+	else {
+		newElement->event.xHvLpEvent.xSubtype = 0;
+		newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('C'<<8)+('E'<<0);
+		memcpy( newElement->event.xUnion.xCEMsgData.xCEMsg, ceMsg, 12 );
+		newElement->event.xUnion.xCEMsgData.xToken = token;
+		memcpy( newElement->dmaData, dmaData, dmaDataLength );
+		newElement->dmaDataLength = dmaDataLength;
+		newElement->remoteAddress = remoteAddress;
+		rc = signalEvent(newElement);
+	}
+
+	return rc;
+}
+
+/*
+ * Initiate a nice (hopefully) shutdown of Linux.  We simply are
+ * going to try and send the init process a SIGINT signal.  If
+ * this fails (why?), we'll simply force it off in a not-so-nice
+ * manner.
+ */
+static int shutdown( void )
+{
+	int rc = kill_proc(1,SIGINT,1);
+
+	if ( rc )
+	{
+		printk( KERN_ALERT "mf.c: SIGINT to init failed (%d), hard shutdown commencing\n", rc );
+		mf_powerOff();
+	}
+	else
+		printk( KERN_ALERT "mf.c: init has been successfully notified to proceed with shutdown\n" );
+
+	return rc;
+}
+
+/*
+ * The primary partition VSP object is sending us a new
+ * event flow.  Handle it...
+ */
+static void intReceived( struct IoMFLpEvent * event )
+{
+	int freeIt = 0;
+	struct StackElement * two = NULL;
+	/* ack the interrupt */
+	event->xHvLpEvent.xRc = HvLpEvent_Rc_Good;
+	HvCallEvent_ackLpEvent( &event->xHvLpEvent );
+
+    /* process interrupt */
+	switch( event->xHvLpEvent.xSubtype )
+	{
+	case 0:	/* CE message */
+		switch( event->xUnion.xCEMsgData.xCEMsg[3] )
+		{
+		case 0x5B:	/* power control notification */
+			if ( (event->xUnion.xCEMsgData.xCEMsg[5]&0x20) != 0 )
+			{
+				printk( KERN_ALERT "mf.c: Commencing partition shutdown\n" );
+				if ( shutdown() == 0 )
+					signalCEMsg( "\x00\x00\x00\xDB\x00\x00\x00\x00\x00\x00\x00\x00", NULL );
+			}
+			break;
+		case 0xC0:	/* get time */
+			{
+				if ( (head != NULL) && ( head->event.xUnion.xCEMsgData.xCEMsg[3] == 0x40 ) )
+				{
+					freeIt = 1;
+					if ( head->event.xUnion.xCEMsgData.xToken != 0 )
+					{
+						CeMsgCompleteHandler xHdlr = head->event.xUnion.xCEMsgData.xToken->xHdlr;
+						void * token = head->event.xUnion.xCEMsgData.xToken->xToken;
+
+						if (xHdlr != NULL)
+							(*xHdlr)( token, &(event->xUnion.xCEMsgData) );
+					}
+				}
+			}
+			break;
+		}
+
+		/* remove from queue */
+		if ( freeIt == 1 )
+		{
+			unsigned long flags;
+			spin_lock_irqsave( &spinlock, flags );
+			if ( head != NULL )
+			{
+				struct StackElement *oldHead = head;
+				head = head->next;
+				two = head;
+				free( oldHead );
+			}
+			spin_unlock_irqrestore( &spinlock, flags );
+		}
+
+		/* send next waiting event */
+		if ( two != NULL )
+			signalEvent( NULL );
+		break;
+	case 1:	/* IT sys shutdown */
+		printk( KERN_ALERT "mf.c: Commencing system shutdown\n" );
+		shutdown();
+		break;
+	}
+}
+
+/*
+ * The primary partition VSP object is acknowledging the receipt
+ * of a flow we sent to them.  If there are other flows queued
+ * up, we must send another one now...
+ */
+static void ackReceived( struct IoMFLpEvent * event )
+{
+	unsigned long flags;
+	struct StackElement * two = NULL;
+	unsigned long freeIt = 0;
+
+    /* handle current event */
+	if ( head != NULL )
+	{
+		switch( event->xHvLpEvent.xSubtype )
+		{
+		case 0:     /* CE msg */
+			if ( event->xUnion.xCEMsgData.xCEMsg[3] == 0x40 )
+			{
+				if ( event->xUnion.xCEMsgData.xCEMsg[2] != 0 )
+				{
+					freeIt = 1;
+					if ( head->event.xUnion.xCEMsgData.xToken != 0 )
+					{
+						CeMsgCompleteHandler xHdlr = head->event.xUnion.xCEMsgData.xToken->xHdlr;
+						void * token = head->event.xUnion.xCEMsgData.xToken->xToken;
+
+						if (xHdlr != NULL)
+							(*xHdlr)( token, &(event->xUnion.xCEMsgData) );
+					}
+				}
+			} else {
+				freeIt = 1;
+			}
+			break;
+		case 4:	/* allocate */
+		case 5:	/* deallocate */
+			if ( head->hdlr != NULL )
+			{
+				union SafeCast mySafeCast;
+				mySafeCast.ptrAsU64 = event->xHvLpEvent.xCorrelationToken;
+				(*head->hdlr)( mySafeCast.ptr, event->xUnion.xAllocData.xCount );
+			}
+			freeIt = 1;
+			break;
+		case 6:
+			{
+				struct VspRspData *rsp = (struct VspRspData *)event->xUnion.xVspCmd.xTokenUnion.ptr;
+
+				if (rsp != NULL)
+				{
+					if (rsp->xResponse != NULL)
+						memcpy(rsp->xResponse, &(event->xUnion.xVspCmd), sizeof(event->xUnion.xVspCmd));
+					if (rsp->xSemaphore != NULL)
+						up(rsp->xSemaphore);
+				} else {
+					printk( KERN_ERR "mf.c: no rsp\n");
+				}
+				freeIt = 1;
+			}
+			break;
+		}
+	}
+	else
+		printk( KERN_ERR "mf.c: stack empty for receiving ack\n" );
+
+    /* remove from queue */
+	spin_lock_irqsave( &spinlock, flags );
+	if (( head != NULL ) && ( freeIt == 1 ))
+	{
+		struct StackElement *oldHead = head;
+		head = head->next;
+		two = head;
+		free( oldHead );
+	} 
+	spin_unlock_irqrestore( &spinlock, flags );
+
+    /* send next waiting event */
+	if ( two != NULL )
+		signalEvent( NULL );
+}
+
+/*
+ * This is the generic event handler we are registering with
+ * the Hypervisor.  Ensure the flows are for us, and then
+ * parse it enough to know if it is an interrupt or an
+ * acknowledge.
+ */
+static void hvHandler( struct HvLpEvent * event, struct pt_regs * regs )
+{
+	if ( (event != NULL) && (event->xType == HvLpEvent_Type_MachineFac) )
+	{
+		switch( event->xFlags.xFunction )
+		{
+		case HvLpEvent_Function_Ack:
+			ackReceived( (struct IoMFLpEvent *)event );
+			break;
+		case HvLpEvent_Function_Int:
+			intReceived( (struct IoMFLpEvent *)event );
+			break;
+		default:
+			printk( KERN_ERR "mf.c: non ack/int event received\n" );
+			break;
+		}
+	}
+	else
+		printk( KERN_ERR "mf.c: alien event received\n" );
+}
+
+/*
+ * Global kernel interface to allocate and seed events into the
+ * Hypervisor.
+ */
+void mf_allocateLpEvents( HvLpIndex targetLp,
+			  HvLpEvent_Type type,
+			  unsigned size,
+			  unsigned count,
+			  MFCompleteHandler hdlr,
+			  void * userToken )
+{
+	struct StackElement * newElement = newStackElement();
+	int rc = 0;
+
+	if ( newElement == NULL )
+		rc = -ENOMEM;
+	else {
+		union SafeCast mine;
+		mine.ptr = userToken;
+		newElement->event.xHvLpEvent.xSubtype = 4;
+		newElement->event.xHvLpEvent.xCorrelationToken = mine.ptrAsU64;
+		newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('M'<<8)+('A'<<0);
+		newElement->event.xUnion.xAllocData.xTargetLp = targetLp;
+		newElement->event.xUnion.xAllocData.xType = type;
+		newElement->event.xUnion.xAllocData.xSize = size;
+		newElement->event.xUnion.xAllocData.xCount = count;
+		newElement->hdlr = hdlr;
+		rc = signalEvent(newElement);
+	}
+
+	if ( (rc != 0) && (hdlr != NULL) )
+		(*hdlr)( userToken, rc );
+}
+
+/*
+ * Global kernel interface to unseed and deallocate events already in
+ * Hypervisor.
+ */
+void mf_deallocateLpEvents( HvLpIndex targetLp,
+			    HvLpEvent_Type type,
+			    unsigned count,
+			    MFCompleteHandler hdlr,
+			    void * userToken )
+{
+	struct StackElement * newElement = newStackElement();
+	int rc = 0;
+
+	if ( newElement == NULL )
+		rc = -ENOMEM;
+	else {
+		union SafeCast mine;
+		mine.ptr = userToken;
+		newElement->event.xHvLpEvent.xSubtype = 5;
+		newElement->event.xHvLpEvent.xCorrelationToken = mine.ptrAsU64;
+		newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('M'<<8)+('D'<<0);
+		newElement->event.xUnion.xAllocData.xTargetLp = targetLp;
+		newElement->event.xUnion.xAllocData.xType = type;
+		newElement->event.xUnion.xAllocData.xCount = count;
+		newElement->hdlr = hdlr;
+		rc = signalEvent(newElement);
+	}
+
+	if ( (rc != 0) && (hdlr != NULL) )
+		(*hdlr)( userToken, rc );
+}
+
+/*
+ * Global kernel interface to tell the VSP object in the primary
+ * partition to power this partition off.
+ */
+void mf_powerOff( void )
+{
+	printk( KERN_ALERT "mf.c: Down it goes...\n" );
+	signalCEMsg( "\x00\x00\x00\x4D\x00\x00\x00\x00\x00\x00\x00\x00", NULL );
+	for (;;);
+}
+
+/*
+ * Global kernel interface to tell the VSP object in the primary
+ * partition to reboot this partition.
+ */
+void mf_reboot( void )
+{
+	printk( KERN_ALERT "mf.c: Preparing to bounce...\n" );
+	signalCEMsg( "\x00\x00\x00\x4E\x00\x00\x00\x00\x00\x00\x00\x00", NULL );
+	for (;;);
+}
+
+/*
+ * Display a single word SRC onto the VSP control panel.
+ */
+void mf_displaySrc( u32 word )
+{
+	u8 ce[12];
+
+	memcpy( ce, "\x00\x00\x00\x4A\x00\x00\x00\x01\x00\x00\x00\x00", 12 );
+	ce[8] = word>>24;
+	ce[9] = word>>16;
+	ce[10] = word>>8;
+	ce[11] = word;
+	signalCEMsg( ce, NULL );
+}
+
+/*
+ * Display a single word SRC of the form "PROGXXXX" on the VSP control panel.
+ */
+void mf_displayProgress( u16 value )
+{
+	u8 ce[12];
+	u8 src[72];
+
+	memcpy( ce, "\x00\x00\x04\x4A\x00\x00\x00\x48\x00\x00\x00\x00", 12 );
+	memcpy( src,
+		"\x01\x00\x00\x01"
+		"\x00\x00\x00\x00"
+		"\x00\x00\x00\x00"
+		"\x00\x00\x00\x00"
+		"\x00\x00\x00\x00"
+		"\x00\x00\x00\x00"
+		"\x00\x00\x00\x00"
+		"\x00\x00\x00\x00"
+		"\x00\x00\x00\x00"
+		"\x00\x00\x00\x00"
+		"PROGxxxx"
+		"                        ",
+		72 );
+	src[6] = value>>8;
+	src[7] = value&255;
+	src[44] = "0123456789ABCDEF"[(value>>12)&15];
+	src[45] = "0123456789ABCDEF"[(value>>8)&15];
+	src[46] = "0123456789ABCDEF"[(value>>4)&15];
+	src[47] = "0123456789ABCDEF"[value&15];
+	dmaAndSignalCEMsg( ce, NULL, src, sizeof(src), 9*64*1024 );
+}
+
+/*
+ * Clear the VSP control panel.  Used to "erase" an SRC that was
+ * previously displayed.
+ */
+void mf_clearSrc( void )
+{
+	signalCEMsg( "\x00\x00\x00\x4B\x00\x00\x00\x00\x00\x00\x00\x00", NULL );
+}
+
+/*
+ * Initialization code here.
+ */
+void mf_init( void )
+{
+	int i;
+
+    /* initialize */
+	spin_lock_init( &spinlock );
+	for ( i = 0; i < sizeof(prealloc)/sizeof(*prealloc); ++i )
+		free( &prealloc[i] );
+	HvLpEvent_registerHandler( HvLpEvent_Type_MachineFac, &hvHandler );
+
+	/* virtual continue ack */
+	signalCEMsg( "\x00\x00\x00\x57\x00\x00\x00\x00\x00\x00\x00\x00", NULL );
+
+	/* initialization complete */
+	printk( KERN_NOTICE "mf.c: iSeries Linux LPAR Machine Facilities initialized\n" );
+
+	iSeries_proc_callback(&mf_proc_init);
+}
+
+void mf_setSide(char side)
+{
+	int rc = 0;
+	u64 newSide = 0;
+	struct VspCmdData myVspCmd;
+
+	memset(&myVspCmd, 0, sizeof(myVspCmd));
+	if (side == 'A')
+		newSide = 0;
+	else if (side == 'B')
+		newSide = 1;
+	else if (side == 'C')
+		newSide = 2; 
+	else
+		newSide = 3;
+
+	myVspCmd.xSubData.xFunction02SelectIplTypeIn.xIplType = newSide;
+	myVspCmd.xCmd = 10;
+
+	rc = signalVspInstruction(&myVspCmd);
+}
+
+char mf_getSide(void)
+{
+	char returnValue = ' ';
+	int rc = 0;
+	struct VspCmdData myVspCmd;
+
+	memset(&myVspCmd, 0, sizeof(myVspCmd));
+	myVspCmd.xCmd = 2;
+	myVspCmd.xSubData.xFunction02SelectIplTypeIn.xIplType = 0;
+	mb();
+	rc = signalVspInstruction(&myVspCmd);
+
+	if (rc != 0)
+	{
+		return returnValue;
+	} else {
+		if (myVspCmd.xRc == 0)
+		{
+			if (myVspCmd.xSubData.xGetIplTypeOut.xIplType == 0)
+				returnValue = 'A';
+			else if (myVspCmd.xSubData.xGetIplTypeOut.xIplType == 1)
+				returnValue = 'B';
+			else if (myVspCmd.xSubData.xGetIplTypeOut.xIplType == 2)
+				returnValue = 'C';
+			else
+				returnValue = 'D';
+		}
+	}
+
+	return returnValue;
+}
+
+void mf_getSrcHistory(char *buffer, int size)
+{
+    /*    struct IplTypeReturnStuff returnStuff;
+     struct StackElement * newElement = newStackElement();
+     int rc = 0;
+     char *pages[4];
+
+     pages[0] = kmalloc(4096, GFP_ATOMIC);
+     pages[1] = kmalloc(4096, GFP_ATOMIC);
+     pages[2] = kmalloc(4096, GFP_ATOMIC);
+     pages[3] = kmalloc(4096, GFP_ATOMIC);
+     if (( newElement == NULL ) || (pages[0] == NULL) || (pages[1] == NULL) || (pages[2] == NULL) || (pages[3] == NULL))
+     rc = -ENOMEM;
+     else
+     {
+     returnStuff.xType = 0;
+     returnStuff.xRc = 0;
+     returnStuff.xDone = 0;
+     newElement->event.xHvLpEvent.xSubtype = 6;
+     newElement->event.xHvLpEvent.x.xSubtypeData = ('M'<<24)+('F'<<16)+('V'<<8)+('I'<<0);
+     newElement->event.xUnion.xVspCmd.xEvent = &returnStuff;
+     newElement->event.xUnion.xVspCmd.xCmd = 4;
+     newElement->event.xUnion.xVspCmd.xLpIndex = HvLpConfig_getLpIndex();
+     newElement->event.xUnion.xVspCmd.xRc = 0xFF;
+     newElement->event.xUnion.xVspCmd.xReserved1 = 0;
+     newElement->event.xUnion.xVspCmd.xSubData.xGetSrcHistoryIn.xPage[0] = (0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[0]));
+     newElement->event.xUnion.xVspCmd.xSubData.xGetSrcHistoryIn.xPage[1] = (0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[1]));
+     newElement->event.xUnion.xVspCmd.xSubData.xGetSrcHistoryIn.xPage[2] = (0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[2]));
+     newElement->event.xUnion.xVspCmd.xSubData.xGetSrcHistoryIn.xPage[3] = (0x8000000000000000ULL | virt_to_absolute((unsigned long)pages[3]));
+     mb();
+     rc = signalEvent(newElement);
+     }
+
+     if (rc != 0)
+     {
+     return;
+     }
+     else
+     {
+     while (returnStuff.xDone != 1)
+     {
+     udelay(10);
+     }
+
+     if (returnStuff.xRc == 0)
+     {
+     memcpy(buffer, pages[0], size);
+     }
+     }
+
+     kfree(pages[0]);
+     kfree(pages[1]);
+     kfree(pages[2]);
+     kfree(pages[3]);*/
+}
+
+void mf_setCmdLine(const char *cmdline, int size, u64 side)
+{
+	struct VspCmdData myVspCmd;
+	int rc = 0;
+	dma_addr_t dma_addr = 0;
+	char *page = pci_alloc_consistent(iSeries_vio_dev, size, &dma_addr);
+
+	if (page == NULL) {
+		printk(KERN_ERR "mf.c: couldn't allocate memory to set command line\n");
+		return;
+	}
+
+	copy_from_user(page, cmdline, size);
+
+	memset(&myVspCmd, 0, sizeof(myVspCmd));
+	myVspCmd.xCmd = 31;
+	myVspCmd.xSubData.xSetKernelCmdLineIn.xToken = dma_addr;
+	myVspCmd.xSubData.xSetKernelCmdLineIn.xAddressType = HvLpDma_AddressType_TceIndex;
+	myVspCmd.xSubData.xSetKernelCmdLineIn.xSide = side;
+	myVspCmd.xSubData.xSetKernelCmdLineIn.xTransferLength = size;
+	mb();
+	rc = signalVspInstruction(&myVspCmd);
+
+	pci_free_consistent(iSeries_vio_dev, size, page, dma_addr);
+}
+
+int mf_getCmdLine(char *cmdline, int *size, u64 side)
+{
+	struct VspCmdData myVspCmd;
+	int rc = 0;
+	int len = *size;
+	dma_addr_t dma_addr = pci_map_single(iSeries_vio_dev, cmdline, *size, PCI_DMA_FROMDEVICE);
+
+	memset(cmdline, 0, *size);
+	memset(&myVspCmd, 0, sizeof(myVspCmd));
+	myVspCmd.xCmd = 33;
+	myVspCmd.xSubData.xGetKernelCmdLineIn.xToken = dma_addr;
+	myVspCmd.xSubData.xGetKernelCmdLineIn.xAddressType = HvLpDma_AddressType_TceIndex;
+	myVspCmd.xSubData.xGetKernelCmdLineIn.xSide = side;
+	myVspCmd.xSubData.xGetKernelCmdLineIn.xTransferLength = *size;
+	mb();
+	rc = signalVspInstruction(&myVspCmd);
+
+	if ( ! rc ) {
+
+		if (myVspCmd.xRc == 0)
+		{
+			len = myVspCmd.xSubData.xGetKernelCmdLineOut.xTransferLength;
+		}
+		/* else
+			{
+			memcpy(cmdline, "Bad cmdline", 11);
+			}
+		*/
+	}
+
+	pci_unmap_single(iSeries_vio_dev, dma_addr, *size, PCI_DMA_FROMDEVICE);
+
+	return len;
+}
+
+
+int mf_setVmlinuxChunk(const char *buffer, int size, int offset, u64 side)
+{
+	struct VspCmdData myVspCmd;
+	int rc = 0;
+
+	dma_addr_t dma_addr = 0;
+
+	char *page = pci_alloc_consistent(iSeries_vio_dev, size, &dma_addr);
+
+	if (page == NULL) {
+		printk(KERN_ERR "mf.c: couldn't allocate memory to set vmlinux chunk\n");
+		return -ENOMEM;
+	}
+
+	copy_from_user(page, buffer, size);
+	memset(&myVspCmd, 0, sizeof(myVspCmd));
+
+	myVspCmd.xCmd = 30;
+	myVspCmd.xSubData.xGetKernelImageIn.xToken = dma_addr;
+	myVspCmd.xSubData.xGetKernelImageIn.xAddressType = HvLpDma_AddressType_TceIndex;
+	myVspCmd.xSubData.xGetKernelImageIn.xSide = side;
+	myVspCmd.xSubData.xGetKernelImageIn.xOffset = offset;
+	myVspCmd.xSubData.xGetKernelImageIn.xTransferLength = size;
+	mb();
+	rc = signalVspInstruction(&myVspCmd);
+
+	if (rc == 0)
+	{
+		if (myVspCmd.xRc == 0)
+		{
+			rc = 0;
+		} else {
+			rc = -ENOMEM;
+		}
+	}
+
+	pci_free_consistent(iSeries_vio_dev, size, page, dma_addr);
+
+	return rc;
+}
+
+int mf_getVmlinuxChunk(char *buffer, int *size, int offset, u64 side)
+{
+	struct VspCmdData myVspCmd;
+	int rc = 0;
+	int len = *size;
+
+	dma_addr_t dma_addr = pci_map_single(iSeries_vio_dev, buffer, *size, PCI_DMA_FROMDEVICE);
+
+	memset(buffer, 0, len);
+
+	memset(&myVspCmd, 0, sizeof(myVspCmd));
+	myVspCmd.xCmd = 32;
+	myVspCmd.xSubData.xGetKernelImageIn.xToken = dma_addr;
+	myVspCmd.xSubData.xGetKernelImageIn.xAddressType = HvLpDma_AddressType_TceIndex;
+	myVspCmd.xSubData.xGetKernelImageIn.xSide = side;
+	myVspCmd.xSubData.xGetKernelImageIn.xOffset = offset;
+	myVspCmd.xSubData.xGetKernelImageIn.xTransferLength = len;
+	mb();
+	rc = signalVspInstruction(&myVspCmd);
+
+	if (rc == 0)
+	{
+		if (myVspCmd.xRc == 0)
+		{
+			*size = myVspCmd.xSubData.xGetKernelImageOut.xTransferLength;
+		} else {
+			rc = -ENOMEM;
+		}
+	}
+
+	pci_unmap_single(iSeries_vio_dev, dma_addr, len, PCI_DMA_FROMDEVICE);
+
+	return rc;
+}
+
+int mf_setRtcTime(unsigned long time)
+{
+	struct rtc_time tm;
+
+	to_tm(time, &tm);
+
+	return mf_setRtc( &tm );
+}
+
+struct RtcTimeData
+{
+	struct semaphore *xSemaphore;
+	struct CeMsgData xCeMsg;
+	int xRc;
+};
+
+void getRtcTimeComplete(void * token, struct CeMsgData *ceMsg)
+{
+	struct RtcTimeData *rtc = (struct RtcTimeData *)token;
+
+	memcpy(&(rtc->xCeMsg), ceMsg, sizeof(rtc->xCeMsg));
+
+	rtc->xRc = 0;
+	up(rtc->xSemaphore);
+}
+
+static unsigned long lastsec = 1;
+
+int mf_getRtcTime(unsigned long *time)
+{
+/*    unsigned long usec, tsec; */
+	
+	u32 dataWord1 = *((u32 *)(&xSpCommArea.xBcdTimeAtIplStart));
+	u32 dataWord2 = *(((u32 *)&(xSpCommArea.xBcdTimeAtIplStart)) + 1);
+	int year = 1970;
+	int year1 = ( dataWord1 >> 24 ) & 0x000000FF;
+	int year2 = ( dataWord1 >> 16 ) & 0x000000FF;
+	int sec = ( dataWord1 >> 8 ) & 0x000000FF;
+	int min = dataWord1 & 0x000000FF;
+	int hour = ( dataWord2 >> 24 ) & 0x000000FF;
+	int day = ( dataWord2 >> 8 ) & 0x000000FF;
+	int mon = dataWord2 & 0x000000FF;
+
+	BCD_TO_BIN(sec);
+	BCD_TO_BIN(min);
+	BCD_TO_BIN(hour);
+	BCD_TO_BIN(day);
+	BCD_TO_BIN(mon);
+	BCD_TO_BIN(year1);
+	BCD_TO_BIN(year2);
+	year = year1 * 100 + year2;
+
+	*time = mktime(year, mon, day, hour, min, sec);
+
+	*time += ( jiffies / HZ );
+    
+	/* Now THIS is a nasty hack!
+	 * It ensures that the first two calls to mf_getRtcTime get different
+	 * answers.  That way the loop in init_time (time.c) will not think
+	 * the clock is stuck.
+	 */
+	if ( lastsec ) {
+		*time -= lastsec;
+		--lastsec;
+	}
+    
+	return 0;
+
+}
+
+int mf_getRtc( struct rtc_time * tm )
+{
+
+	struct CeMsgCompleteData ceComplete;
+	struct RtcTimeData rtcData;
+	int rc = 0;
+	DECLARE_MUTEX_LOCKED(Semaphore);
+
+	memset(&ceComplete, 0, sizeof(ceComplete));
+	memset(&rtcData, 0, sizeof(rtcData));
+
+	rtcData.xSemaphore = &Semaphore;
+
+	ceComplete.xHdlr = &getRtcTimeComplete;
+	ceComplete.xToken = (void *)&rtcData;
+
+	rc = signalCEMsg( "\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00", &ceComplete );
+
+	if ( rc == 0 )
+	{
+		down(&Semaphore);
+
+		if ( rtcData.xRc == 0)
+		{
+			if ( ( rtcData.xCeMsg.xCEMsg[2] == 0xa9 ) ||
+			     ( rtcData.xCeMsg.xCEMsg[2] == 0xaf ) ) {
+				/* TOD clock is not set */
+				tm->tm_sec = 1;
+				tm->tm_min = 1;
+				tm->tm_hour = 1;
+				tm->tm_mday = 10;
+				tm->tm_mon = 8;
+				tm->tm_year = 71;
+				mf_setRtc( tm );
+			}
+			{
+				u32 dataWord1 = *((u32 *)(rtcData.xCeMsg.xCEMsg+4));
+				u32 dataWord2 = *((u32 *)(rtcData.xCeMsg.xCEMsg+8));
+				u8 year = (dataWord1 >> 16 ) & 0x000000FF;
+				u8 sec = ( dataWord1 >> 8 ) & 0x000000FF;
+				u8 min = dataWord1 & 0x000000FF;
+				u8 hour = ( dataWord2 >> 24 ) & 0x000000FF;
+				u8 day = ( dataWord2 >> 8 ) & 0x000000FF;
+				u8 mon = dataWord2 & 0x000000FF;
+
+				BCD_TO_BIN(sec);
+				BCD_TO_BIN(min);
+				BCD_TO_BIN(hour);
+				BCD_TO_BIN(day);
+				BCD_TO_BIN(mon);
+				BCD_TO_BIN(year);
+
+				if ( year <= 69 )
+					year += 100;
+	    
+				tm->tm_sec = sec;
+				tm->tm_min = min;
+				tm->tm_hour = hour;
+				tm->tm_mday = day;
+				tm->tm_mon = mon;
+				tm->tm_year = year;
+			}
+		} else {
+			rc = rtcData.xRc;
+			tm->tm_sec = 0;
+			tm->tm_min = 0;
+			tm->tm_hour = 0;
+			tm->tm_mday = 15;
+			tm->tm_mon = 5;
+			tm->tm_year = 52;
+
+		}
+		tm->tm_wday = 0;
+		tm->tm_yday = 0;
+		tm->tm_isdst = 0;
+
+	}
+
+	return rc;
+
+}
+
+int mf_setRtc(struct rtc_time * tm)
+{
+	char ceTime[12] = "\x00\x00\x00\x41\x00\x00\x00\x00\x00\x00\x00\x00";
+	int rc = 0;
+	u8 day, mon, hour, min, sec, y1, y2;
+	unsigned year;
+    
+	year = 1900 + tm->tm_year;
+	y1 = year / 100;
+	y2 = year % 100;
+    
+	sec = tm->tm_sec;
+	min = tm->tm_min;
+	hour = tm->tm_hour;
+	day = tm->tm_mday;
+	mon = tm->tm_mon + 1;
+	    
+	BIN_TO_BCD(sec);
+	BIN_TO_BCD(min);
+	BIN_TO_BCD(hour);
+	BIN_TO_BCD(mon);
+	BIN_TO_BCD(day);
+	BIN_TO_BCD(y1);
+	BIN_TO_BCD(y2);
+
+	ceTime[4] = y1;
+	ceTime[5] = y2;
+	ceTime[6] = sec;
+	ceTime[7] = min;
+	ceTime[8] = hour;
+	ceTime[10] = day;
+	ceTime[11] = mon;
+   
+	rc = signalCEMsg( ceTime, NULL );
+
+	return rc;
+}
+
+
+

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)