patch-2.4.19 linux-2.4.19/arch/ppc64/kernel/iSeries_setup.c

Next file: linux-2.4.19/arch/ppc64/kernel/iSeries_setup.h
Previous file: linux-2.4.19/arch/ppc64/kernel/iSeries_proc.c
Back to the patch index
Back to the overall index

diff -urN linux-2.4.18/arch/ppc64/kernel/iSeries_setup.c linux-2.4.19/arch/ppc64/kernel/iSeries_setup.c
@@ -0,0 +1,900 @@
+/*
+ * 
+ *
+ *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
+ *    Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
+ *
+ *    Module name: iSeries_setup.c
+ *
+ *    Description:
+ *      Architecture- / platform-specific boot-time initialization code for
+ *      the IBM iSeries LPAR.  Adapted from original code by Grant Erickson and
+ *      code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
+ *      <dan@net4x.com>.
+ *
+ *      This program is free software; you can redistribute it and/or
+ *      modify it under the terms of the GNU General Public License
+ *      as published by the Free Software Foundation; either version
+ *      2 of the License, or (at your option) any later version.
+ */
+ 
+#include <linux/config.h>
+#include <linux/init.h>
+#include <linux/threads.h>
+#include <linux/smp.h>
+#include <linux/param.h>
+#include <linux/string.h>
+#include <linux/bootmem.h>
+#include <linux/blk.h>
+#include <linux/seq_file.h>
+
+#include <asm/processor.h>
+#include <asm/machdep.h>
+#include <asm/page.h>
+#include <asm/mmu.h>
+#include <asm/pgtable.h>
+#include <asm/mmu_context.h>
+
+#include <asm/time.h>
+#include "iSeries_setup.h"
+#include <asm/naca.h>
+#include <asm/paca.h>
+#include <asm/iSeries/LparData.h>
+#include <asm/iSeries/HvCallHpt.h>
+#include <asm/iSeries/HvLpConfig.h>
+#include <asm/iSeries/HvCallEvent.h>
+#include <asm/iSeries/HvCallSm.h>
+#include <asm/iSeries/HvCallXm.h>
+#include <asm/iSeries/ItLpQueue.h>
+#include <asm/iSeries/IoHriMainStore.h>
+#include <asm/iSeries/iSeries_proc.h>
+#include <asm/proc_pmc.h>
+#include <asm/iSeries/mf.h>
+
+/* Function Prototypes */
+
+extern void abort(void);
+#ifdef CONFIG_PPC_ISERIES
+static void build_iSeries_Memory_Map( void );
+static void setup_iSeries_cache_sizes( void );
+static void iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr);
+#endif
+void build_valid_hpte( unsigned long vsid, unsigned long ea, unsigned long pa,
+		       pte_t * ptep, unsigned hpteflags, unsigned bolted );
+extern void ppcdbg_initialize(void);
+extern void iSeries_pcibios_init(void);
+extern void iSeries_pcibios_fixup(void);
+extern void iSeries_pcibios_fixup_bus(int);
+static void iSeries_setup_dprofile(void);
+
+/* Global Variables */
+
+static unsigned long procFreqHz = 0;
+static unsigned long procFreqMhz = 0;
+static unsigned long procFreqMhzHundreths = 0;
+
+static unsigned long tbFreqHz = 0;
+static unsigned long tbFreqMhz = 0;
+static unsigned long tbFreqMhzHundreths = 0;
+
+unsigned long dprof_shift = 0;
+unsigned long dprof_len = 0;
+unsigned int * dprof_buffer = NULL;
+
+int piranha_simulator = 0;
+
+extern char _end[];
+
+extern int rd_size;		/* Defined in drivers/block/rd.c */
+extern unsigned long klimit;
+extern unsigned long embedded_sysmap_start;
+extern unsigned long embedded_sysmap_end;
+
+extern unsigned long iSeries_recal_tb;
+extern unsigned long iSeries_recal_titan;
+
+extern char _stext;
+extern char _etext;
+
+static int mf_initialized = 0;
+
+struct MemoryBlock {
+	unsigned long absStart;
+	unsigned long absEnd;
+	unsigned long logicalStart;
+	unsigned long logicalEnd;
+};
+
+/*
+ * Process the main store vpd to determine where the holes in memory are
+ * and return the number of physical blocks and fill in the array of
+ * block data.
+ */
+
+unsigned long iSeries_process_Condor_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
+{
+	/* Determine if absolute memory has any
+	 * holes so that we can interpret the
+	 * access map we get back from the hypervisor
+	 * correctly.
+	 */
+	
+	unsigned long holeFirstChunk, holeSizeChunks;
+	unsigned long numMemoryBlocks = 1;
+	struct IoHriMainStoreSegment4 * msVpd = (struct IoHriMainStoreSegment4 *)xMsVpd;
+	unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
+	unsigned long holeEnd   = msVpd->nonInterleavedBlocksEndAdr;
+	unsigned long holeSize = holeEnd - holeStart;
+
+	printk("Mainstore_VPD: Condor\n");
+
+	mb_array[0].logicalStart = 0;
+	mb_array[0].logicalEnd   = 0x100000000;
+	mb_array[0].absStart     = 0;
+	mb_array[0].absEnd       = 0x100000000;
+
+	if ( holeSize ) {
+		numMemoryBlocks = 2;
+		holeStart = holeStart & 0x000fffffffffffff;
+		holeStart = addr_to_chunk(holeStart);
+		holeFirstChunk = holeStart;
+		holeSize = addr_to_chunk(holeSize);
+		holeSizeChunks = holeSize;
+		printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
+				holeFirstChunk, holeSizeChunks );
+		mb_array[0].logicalEnd   = holeFirstChunk;
+		mb_array[0].absEnd       = holeFirstChunk;
+		mb_array[1].logicalStart = holeFirstChunk;
+		mb_array[1].logicalEnd   = 0x100000000 - holeSizeChunks;
+		mb_array[1].absStart     = holeFirstChunk + holeSizeChunks;
+		mb_array[1].absEnd       = 0x100000000;
+	}
+
+	
+	return numMemoryBlocks;
+}
+
+#define MaxSegmentAreas 32
+#define MaxSegmentAdrRangeBlocks 128
+#define MaxAreaRangeBlocks 4
+unsigned long iSeries_process_Regatta_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
+{
+	struct IoHriMainStoreSegment5 * msVpdP = (struct IoHriMainStoreSegment5 *)xMsVpd;
+	unsigned long numSegmentBlocks = 0;
+	u32 existsBits = msVpdP->msAreaExists;
+	unsigned long area_num;
+
+	printk("Mainstore_VPD: Regatta\n");
+
+	for ( area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
+		unsigned long numAreaBlocks;
+		struct IoHriMainStoreArea4 * currentArea;
+
+		if ( existsBits & 0x80000000 ) {
+			unsigned long block_num;
+
+			currentArea = &msVpdP->msAreaArray[area_num];
+			numAreaBlocks = currentArea->numAdrRangeBlocks;
+
+			printk("ms_vpd: processing area %2ld  blocks=%ld", area_num, numAreaBlocks);
+
+			for ( block_num = 0; block_num < numAreaBlocks; ++block_num ) {
+				/* Process an address range block */
+				struct MemoryBlock tempBlock;
+				unsigned long i;
+
+				tempBlock.absStart = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
+				tempBlock.absEnd   = (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
+				tempBlock.logicalStart = 0;
+				tempBlock.logicalEnd   = 0;
+
+				printk("\n          block %ld absStart=%016lx absEnd=%016lx", block_num,
+							tempBlock.absStart, tempBlock.absEnd);
+
+				for ( i=0; i<numSegmentBlocks; ++i ) {
+					if ( mb_array[i].absStart == tempBlock.absStart )
+						break;
+				}
+				if ( i == numSegmentBlocks ) {
+					if ( numSegmentBlocks == max_entries ) {
+						panic("iSeries_process_mainstore_vpd: too many memory blocks");
+					}
+					mb_array[numSegmentBlocks] = tempBlock;
+					++numSegmentBlocks;
+				}
+				else {
+					printk(" (duplicate)");
+				}
+			}
+			printk("\n");
+		}
+		existsBits <<= 1;
+	}
+	/* Now sort the blocks found into ascending sequence */
+	if ( numSegmentBlocks > 1 ) {
+		unsigned long m, n;
+		for ( m=0; m<numSegmentBlocks-1; ++m ) {
+			for ( n=numSegmentBlocks-1; m<n; --n ) {
+				if ( mb_array[n].absStart < mb_array[n-1].absStart ) {
+					struct MemoryBlock tempBlock;
+					tempBlock = mb_array[n];
+					mb_array[n] = mb_array[n-1];
+					mb_array[n-1] = tempBlock;
+				}
+				
+			}
+		}
+	}
+	/* Assign "logical" addresses to each block.  These
+	 * addresses correspond to the hypervisor "bitmap" space.
+	 * Convert all addresses into units of 256K chunks.
+	 */
+	{
+	unsigned long i, nextBitmapAddress;
+	printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
+	nextBitmapAddress = 0;
+	for ( i=0; i<numSegmentBlocks; ++i ) {
+		unsigned long length = mb_array[i].absEnd - mb_array[i].absStart;
+		mb_array[i].logicalStart = nextBitmapAddress;
+		mb_array[i].logicalEnd = nextBitmapAddress + length;
+		nextBitmapAddress += length;
+		printk("          Bitmap range: %016lx - %016lx\n"
+		       "        Absolute range: %016lx - %016lx\n",
+				mb_array[i].logicalStart, mb_array[i].logicalEnd, 
+				mb_array[i].absStart, mb_array[i].absEnd);
+		mb_array[i].absStart     = addr_to_chunk( mb_array[i].absStart & 0x000fffffffffffff );
+		mb_array[i].absEnd       = addr_to_chunk( mb_array[i].absEnd & 0x000fffffffffffff );
+		mb_array[i].logicalStart = addr_to_chunk( mb_array[i].logicalStart );
+		mb_array[i].logicalEnd   = addr_to_chunk( mb_array[i].logicalEnd );
+	}
+	}
+
+	return numSegmentBlocks;
+
+}
+
+unsigned long iSeries_process_mainstore_vpd( struct MemoryBlock *mb_array, unsigned long max_entries )
+{
+	unsigned long i;
+	unsigned long mem_blocks = 0;
+	if ( __is_processor( PV_POWER4 ) )
+		mem_blocks = iSeries_process_Regatta_mainstore_vpd( mb_array, max_entries );
+	else
+		mem_blocks = iSeries_process_Condor_mainstore_vpd( mb_array, max_entries );
+
+	printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
+	for ( i=0; i<mem_blocks; ++i ) {
+		printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
+		       "                             abs chunks %016lx - %016lx\n",
+			i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
+			mb_array[i].absStart, mb_array[i].absEnd);
+	}
+
+	return mem_blocks;
+}
+
+/*
+ * void __init iSeries_init_early()
+ */
+
+
+
+void __init
+iSeries_init_early(void)
+{
+#ifdef CONFIG_PPC_ISERIES
+	ppcdbg_initialize();
+	
+#if defined(CONFIG_BLK_DEV_INITRD)
+	/*
+	 * If the init RAM disk has been configured and there is
+	 * a non-zero starting address for it, set it up
+	 */
+
+	if ( naca->xRamDisk ) {
+		initrd_start = (unsigned long)__va(naca->xRamDisk);
+		initrd_end   = initrd_start + naca->xRamDiskSize * PAGE_SIZE;
+		initrd_below_start_ok = 1;	// ramdisk in kernel space
+		ROOT_DEV = MKDEV( RAMDISK_MAJOR, 0 );
+
+		if ( ((rd_size*1024)/PAGE_SIZE) < naca->xRamDiskSize )
+			rd_size = (naca->xRamDiskSize*PAGE_SIZE)/1024;
+	} else
+	
+#endif /* CONFIG_BLK_DEV_INITRD */
+	  {
+                
+	    /*		ROOT_DEV = MKDEV( VIODASD_MAJOR, 1 ); */
+	  }
+
+	iSeries_recal_tb = get_tb();
+	iSeries_recal_titan = HvCallXm_loadTod();
+
+	ppc_md.setup_arch	 	= iSeries_setup_arch;
+	ppc_md.setup_residual	 	= iSeries_setup_residual;
+	ppc_md.get_cpuinfo	 	= iSeries_get_cpuinfo;
+	ppc_md.irq_cannonicalize 	= NULL;
+	ppc_md.init_IRQ		 	= iSeries_init_IRQ;
+	ppc_md.init_ras_IRQ		= NULL;
+	ppc_md.get_irq		 	= iSeries_get_irq;
+	ppc_md.init		 	= NULL;
+
+ 	ppc_md.pcibios_fixup        = iSeries_pcibios_fixup;
+	ppc_md.pcibios_fixup_bus    = iSeries_pcibios_fixup_bus;
+
+	ppc_md.restart		 	= iSeries_restart;
+	ppc_md.power_off	 	= iSeries_power_off;
+	ppc_md.halt		 	= iSeries_halt;
+
+	ppc_md.time_init	 	= NULL;
+	ppc_md.get_boot_time    = iSeries_get_boot_time;
+	ppc_md.set_rtc_time	 	= iSeries_set_rtc_time;
+	ppc_md.get_rtc_time	 	= iSeries_get_rtc_time;
+	ppc_md.calibrate_decr	 	= iSeries_calibrate_decr;
+	ppc_md.progress			= iSeries_progress;
+
+	ppc_md.kbd_setkeycode    	= NULL;
+	ppc_md.kbd_getkeycode    	= NULL;
+	ppc_md.kbd_translate     	= NULL;
+	ppc_md.kbd_unexpected_up 	= NULL;
+	ppc_md.kbd_leds          	= NULL;
+	ppc_md.kbd_init_hw       	= NULL;
+
+#if defined(CONFIG_MAGIC_SYSRQ)
+	ppc_md.ppc_kbd_sysrq_xlate	= NULL;
+#endif
+	
+	hpte_init_iSeries();
+	tce_init_iSeries();
+
+	/* Initialize the table which translate Linux physical addresses to
+	 * AS/400 absolute addresses
+	 */
+
+	build_iSeries_Memory_Map();
+
+	setup_iSeries_cache_sizes();
+
+	/* Initialize machine-dependency vectors */
+
+
+#ifdef CONFIG_SMP
+	smp_init_iSeries();
+#endif
+
+	if ( itLpNaca.xPirEnvironMode == 0 ) 
+		piranha_simulator = 1;
+#endif
+}
+
+/*
+ * void __init iSeries_init()
+ */
+
+void __init
+iSeries_init(unsigned long r3, unsigned long r4, unsigned long r5, 
+	   unsigned long r6, unsigned long r7)
+{
+	/* Associate Lp Event Queue 0 with processor 0 */
+	HvCallEvent_setLpEventQueueInterruptProc( 0, 0 );
+
+	{
+		/* copy the command line parameter from the primary VSP  */
+		char *p, *q;
+		HvCallEvent_dmaToSp( cmd_line,
+				     2*64*1024,
+				     256,
+				     HvLpDma_Direction_RemoteToLocal );
+
+		p = q = cmd_line + 255;
+		while( p > cmd_line ) {
+			if ((*p == 0) || (*p == ' ') || (*p == '\n'))
+				--p;
+			else
+				break;
+		}
+		if ( p < q )
+			*(p+1) = 0;
+	}
+
+        if (strstr(cmd_line, "dprofile=")) {
+                char *p, *q;
+
+                for (q = cmd_line; (p = strstr(q, "dprofile=")) != 0; ) {
+			unsigned long size, new_klimit;
+                        q = p + 9;
+                        if (p > cmd_line && p[-1] != ' ')
+                                continue;
+                        dprof_shift = simple_strtoul(q, &q, 0);
+			dprof_len = (unsigned long)&_etext - (unsigned long)&_stext;
+			dprof_len >>= dprof_shift;
+			size = ((dprof_len * sizeof(unsigned int)) + (PAGE_SIZE-1)) & PAGE_MASK;
+			dprof_buffer = (unsigned int *)((klimit + (PAGE_SIZE-1)) & PAGE_MASK);
+			new_klimit = ((unsigned long)dprof_buffer) + size;
+			lmb_reserve( __pa(klimit), (new_klimit-klimit));
+			klimit = new_klimit;
+			memset( dprof_buffer, 0, size );
+                }
+        }
+
+	iSeries_setup_dprofile();
+
+	iSeries_proc_early_init();	
+	mf_init();
+	mf_initialized = 1;
+	mb();
+
+	iSeries_proc_callback( &pmc_proc_init );
+}
+
+#ifdef CONFIG_PPC_ISERIES
+/*
+ * The iSeries may have very large memories ( > 128 GB ) and a partition
+ * may get memory in "chunks" that may be anywhere in the 2**52 real
+ * address space.  The chunks are 256K in size.  To map this to the 
+ * memory model Linux expects, the AS/400 specific code builds a 
+ * translation table to translate what Linux thinks are "physical"
+ * addresses to the actual real addresses.  This allows us to make 
+ * it appear to Linux that we have contiguous memory starting at
+ * physical address zero while in fact this could be far from the truth.
+ * To avoid confusion, I'll let the words physical and/or real address 
+ * apply to the Linux addresses while I'll use "absolute address" to 
+ * refer to the actual hardware real address.
+ *
+ * build_iSeries_Memory_Map gets information from the Hypervisor and 
+ * looks at the Main Store VPD to determine the absolute addresses
+ * of the memory that has been assigned to our partition and builds
+ * a table used to translate Linux's physical addresses to these
+ * absolute addresses.  Absolute addresses are needed when 
+ * communicating with the hypervisor (e.g. to build HPT entries)
+ */
+
+static void __init build_iSeries_Memory_Map(void)
+{
+	u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
+	u32 nextPhysChunk;
+	u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
+	u32 num_ptegs;
+	u32 totalChunks,moreChunks;
+	u32 currChunk, thisChunk, absChunk;
+	u32 currDword;
+	u32 chunkBit;
+	u64 map;
+	struct MemoryBlock mb[32];
+	unsigned long numMemoryBlocks, curBlock;
+
+	/* Chunk size on iSeries is 256K bytes */
+	totalChunks = (u32)HvLpConfig_getMsChunks();
+	klimit = msChunks_alloc(klimit, totalChunks, 1UL<<18);
+
+	/* Get absolute address of our load area
+	 * and map it to physical address 0
+	 * This guarantees that the loadarea ends up at physical 0
+	 * otherwise, it might not be returned by PLIC as the first
+	 * chunks
+	 */
+	
+	loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
+	loadAreaSize =  itLpNaca.xLoadAreaChunks;
+
+	/* Only add the pages already mapped here.  
+	 * Otherwise we might add the hpt pages 
+	 * The rest of the pages of the load area
+	 * aren't in the HPT yet and can still
+	 * be assigned an arbitrary physical address
+	 */
+	if ( (loadAreaSize * 64) > HvPagesToMap )
+		loadAreaSize = HvPagesToMap / 64;
+
+	loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
+
+	/* TODO Do we need to do something if the HPT is in the 64MB load area?
+	 * This would be required if the itLpNaca.xLoadAreaChunks includes 
+	 * the HPT size
+	 */
+
+	printk( "Mapping load area - physical addr = 0000000000000000\n"
+                "                    absolute addr = %016lx\n", 
+			chunk_to_addr(loadAreaFirstChunk) );
+	printk( "Load area size %dK\n", loadAreaSize*256 );
+	
+	for (	nextPhysChunk = 0; 
+		nextPhysChunk < loadAreaSize; 
+		++nextPhysChunk ) {
+		msChunks.abs[nextPhysChunk] = loadAreaFirstChunk+nextPhysChunk;
+	}
+	
+	/* Get absolute address of our HPT and remember it so
+	 * we won't map it to any physical address
+	 */
+
+	hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
+	hptSizePages =  (u32)(HvCallHpt_getHptPages());
+	hptSizeChunks = hptSizePages >> (msChunks.chunk_shift-PAGE_SHIFT);
+	hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
+	
+	printk( "HPT absolute addr = %016lx, size = %dK\n",
+			chunk_to_addr(hptFirstChunk), hptSizeChunks*256 );
+
+	/* Fill in the htab_data structure */
+	
+	/* Fill in size of hashed page table */
+	num_ptegs = hptSizePages * (PAGE_SIZE/(sizeof(HPTE)*HPTES_PER_GROUP));
+	htab_data.htab_num_ptegs = num_ptegs;
+	htab_data.htab_hash_mask = num_ptegs - 1;
+	
+	/* The actual hashed page table is in the hypervisor, we have no direct access */
+	htab_data.htab = NULL;
+
+	/* Determine if absolute memory has any
+	 * holes so that we can interpret the
+	 * access map we get back from the hypervisor
+	 * correctly.
+	 */
+	numMemoryBlocks = iSeries_process_mainstore_vpd( mb, 32 );
+
+	/* Process the main store access map from the hypervisor
+	 * to build up our physical -> absolute translation table
+	 */
+	curBlock = 0;
+	currChunk = 0;
+	currDword = 0;
+	moreChunks = totalChunks;
+
+	while ( moreChunks ) {
+		map = HvCallSm_get64BitsOfAccessMap( itLpNaca.xLpIndex,
+						     currDword );
+		thisChunk = currChunk;
+		while ( map ) {
+			chunkBit = map >> 63;
+			map <<= 1;
+			if ( chunkBit ) {
+				--moreChunks;
+
+				while ( thisChunk >= mb[curBlock].logicalEnd ) {
+					++curBlock;
+					if ( curBlock >= numMemoryBlocks )
+						panic("out of memory blocks");
+				}
+				if ( thisChunk < mb[curBlock].logicalStart )
+					panic("memory block error");
+
+				absChunk = mb[curBlock].absStart + ( thisChunk - mb[curBlock].logicalStart );
+
+				if ( ( ( absChunk < hptFirstChunk ) ||
+				       ( absChunk > hptLastChunk ) ) &&
+				     ( ( absChunk < loadAreaFirstChunk ) ||
+				       ( absChunk > loadAreaLastChunk ) ) ) {
+					msChunks.abs[nextPhysChunk] = absChunk;
+					++nextPhysChunk;
+				}
+			}
+			++thisChunk;
+		}
+		++currDword;
+		currChunk += 64;
+	}
+					
+	/* main store size (in chunks) is 
+	 *   totalChunks - hptSizeChunks
+	 * which should be equal to 
+	 *   nextPhysChunk
+	 */
+	naca->physicalMemorySize = chunk_to_addr(nextPhysChunk);
+
+	/* Bolt kernel mappings for all of memory */
+	iSeries_bolt_kernel( 0, naca->physicalMemorySize );
+
+	lmb_init();
+	lmb_add( 0, naca->physicalMemorySize );
+	lmb_analyze();	/* ?? */
+	lmb_reserve( 0, __pa(klimit));
+
+	/* 
+	 * Hardcode to GP size.  I am not sure where to get this info. DRENG
+	 */
+	naca->slb_size = 64;
+}
+
+/*
+ * Set up the variables that describe the cache line sizes
+ * for this machine.
+ */
+
+static void __init setup_iSeries_cache_sizes(void)
+{
+	unsigned i,n;
+	unsigned procIx = get_paca()->xLpPaca.xDynHvPhysicalProcIndex;
+
+	naca->iCacheL1LineSize = xIoHriProcessorVpd[procIx].xInstCacheOperandSize;
+	naca->dCacheL1LineSize = xIoHriProcessorVpd[procIx].xDataCacheOperandSize;
+	naca->iCacheL1LinesPerPage = PAGE_SIZE / naca->iCacheL1LineSize;
+	naca->dCacheL1LinesPerPage = PAGE_SIZE / naca->dCacheL1LineSize;
+	i = naca->iCacheL1LineSize;
+	n = 0;
+	while ((i=(i/2))) ++n;
+	naca->iCacheL1LogLineSize = n;
+	i = naca->dCacheL1LineSize;
+	n = 0;
+	while ((i=(i/2))) ++n;
+	naca->dCacheL1LogLineSize = n;
+
+	printk( "D-cache line size = %d  (log = %d)\n",
+			(unsigned)naca->dCacheL1LineSize,
+			(unsigned)naca->dCacheL1LogLineSize );
+	printk( "I-cache line size = %d  (log = %d)\n",
+			(unsigned)naca->iCacheL1LineSize,
+			(unsigned)naca->iCacheL1LogLineSize );
+	
+}
+
+/*
+ * Bolt the kernel addr space into the HPT
+ */
+
+static void __init iSeries_bolt_kernel(unsigned long saddr, unsigned long eaddr)
+{
+	unsigned long pa;
+	unsigned long mode_rw = _PAGE_ACCESSED | _PAGE_COHERENT | PP_RWXX;
+	HPTE hpte;
+
+	for (pa=saddr; pa < eaddr ;pa+=PAGE_SIZE) {
+		unsigned long ea = (unsigned long)__va(pa);
+		unsigned long vsid = get_kernel_vsid( ea );
+		unsigned long va = ( vsid << 28 ) | ( pa & 0xfffffff );
+		unsigned long vpn = va >> PAGE_SHIFT;
+		unsigned long slot = HvCallHpt_findValid( &hpte, vpn );
+		if ( hpte.dw0.dw0.v ) {
+			/* HPTE exists, so just bolt it */
+			HvCallHpt_setSwBits( slot, 0x10, 0 );
+		} else {
+			/* No HPTE exists, so create a new bolted one */
+			build_valid_hpte(vsid, ea, pa, NULL, mode_rw, 1);
+		}
+	}
+}
+#endif /* CONFIG_PPC_ISERIES */
+
+extern unsigned long ppc_proc_freq;
+extern unsigned long ppc_tb_freq;
+
+/*
+ * Document me.
+ */
+void __init
+iSeries_setup_arch(void)
+{
+	void *	eventStack;
+	unsigned procIx = get_paca()->xLpPaca.xDynHvPhysicalProcIndex;
+
+	/* Setup the Lp Event Queue */
+
+	/* Allocate a page for the Event Stack
+	 * The hypervisor wants the absolute real address, so
+	 * we subtract out the KERNELBASE and add in the
+	 * absolute real address of the kernel load area
+	 */
+	
+	eventStack = alloc_bootmem_pages( LpEventStackSize );
+	
+	memset( eventStack, 0, LpEventStackSize );
+	
+	/* Invoke the hypervisor to initialize the event stack */
+	
+	HvCallEvent_setLpEventStack( 0, eventStack, LpEventStackSize );
+	
+	/* Initialize fields in our Lp Event Queue */
+	
+	xItLpQueue.xSlicEventStackPtr = (char *)eventStack;
+	xItLpQueue.xSlicCurEventPtr = (char *)eventStack;
+	xItLpQueue.xSlicLastValidEventPtr = (char *)eventStack + 
+					(LpEventStackSize - LpEventMaxSize);
+	xItLpQueue.xIndex = 0;
+	
+	/* Compute processor frequency */
+	procFreqHz = (((1UL<<34) * 1000000) / xIoHriProcessorVpd[procIx].xProcFreq );
+	procFreqMhz = procFreqHz / 1000000;
+	procFreqMhzHundreths = (procFreqHz/10000) - (procFreqMhz*100);
+
+	ppc_proc_freq = procFreqHz;
+
+	/* Compute time base frequency */
+	tbFreqHz = (((1UL<<32) * 1000000) / xIoHriProcessorVpd[procIx].xTimeBaseFreq );
+	tbFreqMhz = tbFreqHz / 1000000;
+	tbFreqMhzHundreths = (tbFreqHz/10000) - (tbFreqMhz*100);
+
+	ppc_tb_freq = tbFreqHz;
+
+	printk("Max  logical processors = %d\n", 
+			itVpdAreas.xSlicMaxLogicalProcs );
+	printk("Max physical processors = %d\n",
+			itVpdAreas.xSlicMaxPhysicalProcs );
+	printk("Processor frequency = %lu.%02lu\n",
+			procFreqMhz, 
+			procFreqMhzHundreths );
+	printk("Time base frequency = %lu.%02lu\n",
+			tbFreqMhz,
+			tbFreqMhzHundreths );
+	printk("Processor version = %x\n",
+			xIoHriProcessorVpd[procIx].xPVR );
+
+}
+
+/*
+ * int as400_setup_residual()
+ *
+ * Description:
+ *   This routine pretty-prints CPU information gathered from the VPD    
+ *   for use in /proc/cpuinfo                               
+ *
+ * Input(s):
+ *  *buffer - Buffer into which CPU data is to be printed.             
+ *
+ * Output(s):
+ *  *buffer - Buffer with CPU data.
+ *
+ * Returns:
+ *   The number of bytes copied into 'buffer' if OK, otherwise zero or less
+ *   on error.
+ */
+void iSeries_setup_residual(struct seq_file *m)
+{
+	
+	seq_printf(m,"clock\t\t: %lu.%02luMhz\n",
+		procFreqMhz, procFreqMhzHundreths );
+	seq_printf(m,"time base\t: %lu.%02luMHz\n",
+		tbFreqMhz, tbFreqMhzHundreths );
+	seq_printf(m,"i-cache\t\t: %d\n",
+		naca->iCacheL1LineSize);
+	seq_printf(m,"d-cache\t\t: %d\n",
+		naca->dCacheL1LineSize);
+
+}
+
+void iSeries_get_cpuinfo(struct seq_file *m)
+{
+
+	seq_printf(m,"machine\t\t: 64-bit iSeries Logical Partition\n");
+
+}
+
+/*
+ * Document me.
+ * and Implement me.
+ */
+int
+iSeries_get_irq(struct pt_regs *regs)
+{
+	/* -2 means ignore this interrupt */
+	return -2;
+}
+
+/*
+ * Document me.
+ */
+void
+iSeries_restart(char *cmd)
+{
+	mf_reboot();
+}
+
+/*
+ * Document me.
+ */
+void
+iSeries_power_off(void)
+{
+	mf_powerOff();
+}
+
+/*
+ * Document me.
+ */
+void
+iSeries_halt(void)
+{
+	mf_powerOff();
+}
+
+/*
+ * Nothing to do here.
+ */
+void __init
+iSeries_time_init(void)
+{
+	/* Nothing to do */
+}
+
+/* JDH Hack */
+unsigned long jdh_time = 0;
+
+extern void setup_default_decr(void);
+
+/*
+ * void __init iSeries_calibrate_decr()
+ *
+ * Description:
+ *   This routine retrieves the internal processor frequency from the VPD,
+ *   and sets up the kernel timer decrementer based on that value.
+ *
+ */
+void __init
+iSeries_calibrate_decr(void)
+{
+	unsigned long	cyclesPerUsec;
+
+	struct div_result divres;
+	
+	/* Compute decrementer (and TB) frequency 
+	 * in cycles/sec 
+	 */
+
+	cyclesPerUsec = ppc_tb_freq / 1000000;	/* cycles / usec */
+
+	/* Set the amount to refresh the decrementer by.  This
+	 * is the number of decrementer ticks it takes for 
+	 * 1/HZ seconds.
+	 */
+
+	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
+
+#if 0
+	/* TEST CODE FOR ADJTIME */
+	tb_ticks_per_jiffy += tb_ticks_per_jiffy / 5000;
+	/* END OF TEST CODE */
+#endif
+
+	/*
+	 * tb_ticks_per_sec = freq; would give better accuracy
+	 * but tb_ticks_per_sec = tb_ticks_per_jiffy*HZ; assures
+	 * that jiffies (and xtime) will match the time returned
+	 * by do_gettimeofday.
+	 */
+	tb_ticks_per_sec   = tb_ticks_per_jiffy * HZ;
+	tb_ticks_per_usec = cyclesPerUsec;
+	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
+	div128_by_32( 1024*1024, 0, tb_ticks_per_sec, &divres );
+	tb_to_xs = divres.result_low;
+	setup_default_decr();
+}
+
+void __init
+iSeries_progress( char * st, unsigned short code )
+{
+	printk( "Progress: [%04x] - %s\n", (unsigned)code, st );
+	if ( !piranha_simulator && mf_initialized ) {
+	    if (code != 0xffff)
+		mf_displayProgress( code );
+	    else
+		mf_clearSrc();
+	}
+}
+
+
+void iSeries_fixup_klimit(void)
+{
+	/* Change klimit to take into account any ram disk that may be included */
+	if (naca->xRamDisk)
+		klimit = KERNELBASE + (u64)naca->xRamDisk + (naca->xRamDiskSize * PAGE_SIZE);
+	else {
+		/* No ram disk was included - check and see if there was an embedded system map */
+		/* Change klimit to take into account any embedded system map */
+		if (embedded_sysmap_end)
+			klimit = KERNELBASE + ((embedded_sysmap_end+4095) & 0xfffffffffffff000);
+	}
+}
+
+static void iSeries_setup_dprofile(void)
+{
+	if ( dprof_buffer ) {
+		unsigned i;
+		for (i=0; i<MAX_PACAS; ++i) {
+			paca[i].prof_shift = dprof_shift;
+			paca[i].prof_len = dprof_len-1;
+			paca[i].prof_buffer = dprof_buffer;
+			paca[i].prof_stext = (unsigned *)&_stext;
+			mb();
+			paca[i].prof_enabled = 1;
+		}
+	}
+}

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)