patch-2.4.19 linux-2.4.19/arch/mips64/sgi-ip32/ip32-timer.c

Next file: linux-2.4.19/arch/mips64/tools/Makefile
Previous file: linux-2.4.19/arch/mips64/sgi-ip32/ip32-setup.c
Back to the patch index
Back to the overall index

diff -urN linux-2.4.18/arch/mips64/sgi-ip32/ip32-timer.c linux-2.4.19/arch/mips64/sgi-ip32/ip32-timer.c
@@ -7,21 +7,46 @@
  *
  * Copyright (C) 2001 Keith M Wesolowski
  */
-#include <linux/irq.h>
 #include <linux/kernel.h>
 #include <linux/init.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/param.h>
+#include <linux/string.h>
+#include <linux/interrupt.h>
+#include <linux/kernel_stat.h>
+#include <linux/mc146818rtc.h>
+#include <linux/timex.h>
+
 #include <asm/mipsregs.h>
 #include <asm/param.h>
 #include <asm/ip32/crime.h>
 #include <asm/ip32/ip32_ints.h>
+#include <asm/bootinfo.h>
+#include <asm/cpu.h>
+#include <asm/mipsregs.h>
+#include <asm/io.h>
+#include <asm/irq.h>
+
+extern volatile unsigned long wall_jiffies;
+extern rwlock_t xtime_lock;
 
-extern u32 cc_interval;
+u32 cc_interval;
+
+/* Cycle counter value at the previous timer interrupt.. */
+static unsigned int timerhi, timerlo;
 
 /* An arbitrary time; this can be decreased if reliability looks good */
 #define WAIT_MS 10
 #define PER_MHZ (1000000 / 2 / HZ)
+/*
+ * Change this if you have some constant time drift
+ */
+#define USECS_PER_JIFFY (1000000/HZ)
+
 
-void __init ip32_timer_setup (struct irqaction *irq) {
+void __init ip32_timer_setup (struct irqaction *irq)
+{
 	u64 crime_time;
 	u32 cc_tick;
 
@@ -45,3 +70,169 @@
 
 	setup_irq (CLOCK_IRQ, irq);
 }
+
+struct irqaction irq0  = { NULL, SA_INTERRUPT, 0,
+			   "timer", NULL, NULL};
+
+void cc_timer_interrupt(int irq, void *dev_id, struct pt_regs * regs)
+{
+	u32 count;
+
+	/*
+	 * The cycle counter is only 32 bit which is good for about
+	 * a minute at current count rates of upto 150MHz or so.
+	 */
+	count = read_32bit_cp0_register(CP0_COUNT);
+	timerhi += (count < timerlo);	/* Wrap around */
+	timerlo = count;
+
+	write_32bit_cp0_register (CP0_COMPARE, 
+				  (u32) (count + cc_interval));
+	kstat.irqs[0][irq]++;
+	do_timer (regs);
+
+	if (!jiffies)
+	{
+		/*
+		 * If jiffies has overflowed in this timer_interrupt we must
+		 * update the timer[hi]/[lo] to make do_fast_gettimeoffset()
+		 * quotient calc still valid. -arca
+		 */
+		timerhi = timerlo = 0;
+	}
+}
+
+/*
+ * On MIPS only R4000 and better have a cycle counter.
+ *
+ * FIXME: Does playing with the RP bit in c0_status interfere with this code?
+ */
+static unsigned long do_gettimeoffset(void)
+{
+	u32 count;
+	unsigned long res, tmp;
+
+	/* Last jiffy when do_fast_gettimeoffset() was called. */
+	static unsigned long last_jiffies;
+	u32 quotient;
+
+	/*
+	 * Cached "1/(clocks per usec)*2^32" value.
+	 * It has to be recalculated once each jiffy.
+	 */
+	static u32 cached_quotient;
+
+	tmp = jiffies;
+
+	quotient = cached_quotient;
+
+	if (tmp && last_jiffies != tmp) {
+		last_jiffies = tmp;
+		__asm__(".set\tnoreorder\n\t"
+			".set\tnoat\n\t"
+			".set\tmips3\n\t"
+			"lwu\t%0,%2\n\t"
+			"dsll32\t$1,%1,0\n\t"
+			"or\t$1,$1,%0\n\t"
+			"ddivu\t$0,$1,%3\n\t"
+			"mflo\t$1\n\t"
+			"dsll32\t%0,%4,0\n\t"
+			"nop\n\t"
+			"ddivu\t$0,%0,$1\n\t"
+			"mflo\t%0\n\t"
+			".set\tmips0\n\t"
+			".set\tat\n\t"
+			".set\treorder"
+			:"=&r" (quotient)
+			:"r" (timerhi),
+			 "m" (timerlo),
+			 "r" (tmp),
+			 "r" (USECS_PER_JIFFY)
+			:"$1");
+		cached_quotient = quotient;
+	}
+
+	/* Get last timer tick in absolute kernel time */
+	count = read_32bit_cp0_register(CP0_COUNT);
+
+	/* .. relative to previous jiffy (32 bits is enough) */
+	count -= timerlo;
+
+	__asm__("multu\t%1,%2\n\t"
+		"mfhi\t%0"
+		:"=r" (res)
+		:"r" (count),
+		 "r" (quotient));
+
+	/*
+ 	 * Due to possible jiffies inconsistencies, we need to check 
+	 * the result so that we'll get a timer that is monotonic.
+	 */
+	if (res >= USECS_PER_JIFFY)
+		res = USECS_PER_JIFFY-1;
+
+	return res;
+}
+
+void __init ip32_time_init(void)
+{
+	unsigned int epoch = 0, year, mon, day, hour, min, sec;
+	int i;
+
+	/* The Linux interpretation of the CMOS clock register contents:
+	 * When the Update-In-Progress (UIP) flag goes from 1 to 0, the
+	 * RTC registers show the second which has precisely just started.
+	 * Let's hope other operating systems interpret the RTC the same way.
+	 */
+	/* read RTC exactly on falling edge of update flag */
+	for (i = 0 ; i < 1000000 ; i++)	/* may take up to 1 second... */
+		if (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP)
+			break;
+	for (i = 0 ; i < 1000000 ; i++)	/* must try at least 2.228 ms */
+		if (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP))
+			break;
+	do { /* Isn't this overkill ? UIP above should guarantee consistency */
+		sec = CMOS_READ(RTC_SECONDS);
+		min = CMOS_READ(RTC_MINUTES);
+		hour = CMOS_READ(RTC_HOURS);
+		day = CMOS_READ(RTC_DAY_OF_MONTH);
+		mon = CMOS_READ(RTC_MONTH);
+		year = CMOS_READ(RTC_YEAR);
+	} while (sec != CMOS_READ(RTC_SECONDS));
+	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
+		BCD_TO_BIN(sec);
+		BCD_TO_BIN(min);
+		BCD_TO_BIN(hour);
+		BCD_TO_BIN(day);
+		BCD_TO_BIN(mon);
+		BCD_TO_BIN(year);
+	}
+
+	/* Attempt to guess the epoch.  This is the same heuristic as in
+	 * rtc.c so no stupid things will happen to timekeeping.  Who knows,
+	 * maybe Ultrix also uses 1952 as epoch ...
+	 */
+	if (year > 10 && year < 44)
+		epoch = 1980;
+	else if (year < 96)
+		epoch = 1952;
+	year += epoch;
+
+	write_lock_irq (&xtime_lock);
+	xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
+	xtime.tv_usec = 0;
+	write_unlock_irq (&xtime_lock);
+
+	write_32bit_cp0_register(CP0_COUNT, 0);
+	irq0.handler = cc_timer_interrupt;
+
+	ip32_timer_setup (&irq0);
+
+#define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4 | IE_IRQ5)
+	/* Set ourselves up for future interrupts */
+        write_32bit_cp0_register(CP0_COMPARE,
+				 read_32bit_cp0_register(CP0_COUNT)
+				 + cc_interval);
+        change_cp0_status(ST0_IM, ALLINTS);
+	sti ();
+}

FUNET's LINUX-ADM group, linux-adm@nic.funet.fi
TCL-scripts by Sam Shen (who was at: slshen@lbl.gov)