PROFESSIONAL COMPUTER
PROFESSIONAL COMPUTER
PROFESSIONAL COMPUTER

CBM USER MANUAL

MODEL 2001-16, 16N, 32, 32N

CBM 2001-16,- 32, 3016 3032"
PROFESSIONAL COMPUTER

USER MANUAL

JUNE 1979
P/N 320856-3

The information in this manual has been reviewed and is believed to be entirely reliable. However,
no responsibility is assumed for inaccuracies. The material in this manual is for information
purposes only and is subject to change without notice.

first edition
© Commodore Business Machines, Inc., 1979
“All rights reserved”

Commodore Business Machines
3330 Scott Blvd.
Santa Clara, Ca. 95051

TABLE OF CONTENTS

Chapter 1. Welcome to your CBM COMPUErvviinnenn s 1
Unpacking your CBM and turning it on

Chapter 2. GEttiNG STAMEM . .. eeevteae e e

Chapter 3. Basic keyboard input i 30
CBM keyboard
Screen editor

Chapter 4. Beginning BASICot 38
The PRINT statement
Variables
Direct and program statements
Literals
Functions

Chapter 5. Elementary programming «eeeeeessssssssosssereenoennns 51
Unconditional and conditional looping
Dataentry

Chapter 6. Advanced programming techniqueso v, 57
String variables and functions
Subroutines
FOR NEXT loops
Subscripted variables

Chapter 7. CBM communication with the outside world 76
CBM interfaces and lines
Commands and operations for
peripheral devices
|EEE-488 bus

Chapter 8. Machine language programmingeveeraveeencaenanaonaes 110
Allocation of memory
Commands from BASIC
Machine language monitor

Chapter 9. Errors and 'DiagnostiCS . . v v ittt e 127
Debug techniques
BASIC error messages
OSerror messages

1.1

2.1

2.2

2.3

2.4

2.5

3.1

6.1

6.2

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.1

7.12

LIST OF FIGURES

Rear view of CBM 2001

The Keyboardottt ettt teraarae e e e enneaens

The characters without shifting.................. ...

The characters with the shiftkeyinuse
Rocket drawing using the graphics keysccoicviiiiinian...
Graphics keys used todraw rocket.........cocviaiiiiiin

CBMkeyboardscanlines ittt
Functions expressed in terms of built-in BASIC functions
Principal pointersintoCBMRAM
Simplifiedviewof CBM
EdgeconnectorsJtandJ2........ .. o i i,
CBM IEEE connectorpinoutccoiiiiiininnian..
Receptacles forthe lEEE interface
IEEE standardconnectors
Parallel user portinformation
6622 VIAaddressesinCBM i
Parallel userportexamplecci v iiiiniinnnnn. ..
Connector J3 contact identification
Second cassette interfaceport............

CBM second cassette edge connectorJ3.

Edgeconnectordd

31

62

74

76

76

77

77

78

78

80

81

81

81

82

82

7.13
7.14
7.15
7.16
7.7
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26

8.1

LIST OF FIGURES(continued)

Multiple file STTUGLUFE ... revnennnnee s
OPEN for write from CBM ...« onvnvornmmrnrerme s
OPEN forreadto CBM ... ocveenrenn e esees
SHALUS WOFT BITOTS « ¢« v v nveenmmasne s e st
Default pAramEters«o.wueraeemremmrer e et
Examples of default parameterscoc.covrarerrrres
IEEE bus contact identification ..o
Transfer bus handshake SEqUENCEecerrererserrsres
Byte transfer from talkerto listener.coven i
Signals described by IEEEbUS groups .. «....coeeemreenre s
Status codes for IEEEDUSvvvirvennnmner e
|EEE-488 register addresses in CBM .ttt
Code assignments for command modeoperation..............
Example Floating Point NUMDerscoenenenerrere-rs
Machine Language Monitor Listingcocovmernrnnenee
CBM MEMOTY DUS « . vevvneevaees e e
Memory map by functional blockscocverneeoens
ASCH code inmain MEeMOTY . ..ot cvrvrrmrreennemans e
ASCli 6bitcode PP

CBM graphic character Codesvnvnerrnrreeeses

82

88

92

93

99

101

101

102

103

104

106

107

107

108

113

LIST OF APPENDICES

CBM Operating System

BASIC statements

BASIC commands—intrinsic functions
Expressions and operators

Space and speed hints

Suggested reading

Chapter 1. WELCOME TO YOUR CBM COMPUTER

Congratulations and welcome to the exciting new world of Commodore computers. The potentials of
your CBM computer are virtually limitless. This book, by its very nature, is limited, however used in
conjunction with: the Commodore hardware and programing manuals; or if using Commodore
peripherals, the manuals packed with these; or for specialized use a programmer (who knows BASIC), or
a “software” house many of which exist in all areas.

Commodore Systems Divisions:
3330 Scott Blvd.
Santa Clara, Ca. 95050

USA

360 Euston Road
London NWI 3B1
England

3370 Pharmacy Avenue
Agincourt

Ontario, M1W 2k4
Canada

The CBM computer has a built-in monochrome television monitor, which displays characters in a format
that appears to you to be forty characters by twenty-five lines.

At the heart of your CBM System is an MCS 6502 microprocessor. This microprocessor totally controls
operation of the screen, keyboard, cassettes, and additional peripherals which can be added to the CBM.
The product is so construed that you cannot damage the CBM from the keyboard. The operating system
cannot be destroyed because the computer software, or operating instructions are contained in a fixed
memory. (Called Read-Only-Memory) This allows both the first time user and the sophisticated user to
use the CBM with impunity.

In order to satisfy the needs of the serious user as well as the first time user of a computer product, we
have used three formats in this manual.

Summary discussions in this type font are designed to answer the questions of a professional
programmer. When you are first using your CBM manual, read these sections lightly and spend time on the
more detailed explanations which are in the type font of the preceding paragraph. After you have used the
CBM a bit, the italicized summary sections will be useful when you want to review how a particular
instruction works.

The third type of format gives a detailed description of how the CBM implements a section. These
sections are for people who use the CBM at the machine level. The first time reader may find these
sections difficult to follow and we recommend he/she use them only on re-reading the material when
more familiar with the CBM operating system. The language which you will use to communicate with your
CBM is called BASIC, an acronym for Beginners All-purpose Symbolic Instruction Code.

It should be noted that there is other reference material written about BASIC, with different types

of usage in mind, which are available to the public. We have included a list of such suggested reading in
the appendix. Some of these manuals may be more useful to satisfy a specific need which is not covered
in this particular manual.

The ultimate teaching device for learning how the CBM works is the CBM itself. In some cases, we will
ask you to use the CBM along with the text, rather than just continuously reading what to do. In any
case, this documentation is sufficient to allow you to get started on an example. By constructing similar
examples of your own, any questions which might arise are answered by the machine itself. Of course,
we invite comments on this material and particularly on examples which you as an individual have used
to resolve any unclear statement.

Lastly, since this manual cannot presume to provide all technical information of hardware or
programming aspects of the MCS 6502 microprocessor, we direct you to two other Commodore
publications: There is a manual available from your dealer called Hardware Manual which also includes
descriptions of the auxilliary devices which generate the control signals necessary to allow the CBM to
operate. Detailed specifications of the computer and the language in which it operates are available in a
book called Programming Manual. This is available for purchase from your CBM dealer or either can be
purchased from Commodore directly.

UNPACKING YOUR CBMAND TURNING iT ON

Please check the carton for any special unpacking instructions and carefully examine your CBM for any
concealed damage. If anything is amiss, report this immediately to both the place of purchase and the

shipping agent.

Remove your CBM from its protective shipping carton and place it on the counter, desk, or other suitabie
surface, then plug it into any standard, grounded electrical outlet. (In some countries no plug is provided.)

The power switch is located in the left rear of the CBM. Closing the switch to the left turns the CBMon and
closing it to the right turns it off. (There is a white dot on the power switch to indicate it is in the power-on
position, or an ON/OFF label.)

Immediately, when the power switch is turned on, power is supplied to the internal circuits. There is a
time-out circuit in a special condition (reset condition) which initializes them into a known state. If the
screen has had power immediately prior to this time, you will see on the screen a variety of strange
characters which reflect the current contents of the computer memory which is controlling the screen.
The screen memory transfer to the screen is done with circuitry outside control of the main
microprocessor, and so, even when the computer is not operational, the screen always displays the
current contents of the screen memory.

TV BRIGHTNESS
ADJUSTMENT

POWER
SWITCH

i

IEEE-488 1.5A FUSE
O e ron ™ 2ND CASSETTE INTERFACE J1 | (510 BLO)
INTERFACE J3
PARALLEL 3-WIRE AC
USER PORT J2 POWER CORD

SERIAL NUMBER
AND
ELECTRICAL SPEC.

Figure 1.1. Rear view of CBM showing switch,
fuse, line cord and Interfacing connectors.

At the end of the power-on cycle, the computer initializes the internal memory, blanks the screen
temporarily, and then displays on the screen a message like the following:

###COMMODORE BASIC### ###COMMODORE BASIC###
15359 BYTES FREE 31743 BYTES FREE
READY or READY
O O

The 15359 or 31743 refers to available users’ programmable memory. A byte is the fundamental data element
of the CBM computer and corresponds roughly to one letter or digit of information. A 16K CBM will display
15359 bytes free and a 32K CBM will display 31743 bytes free.

If you fail to get the power-up display the first time, try turning the power switch slowly off, then back on.

Chapter 2.

Getting Started

Touring the keyboard

But, before you begin communicating with your CBM, we need to take a brief tour of the keyboard.

Keytop legends bear much resemblance to those of a standard typewriter keyboard, but there are a few
differences.

The letters are all in virtually the same place as on a standard typewriter keyboard, but, for your
convenience in numerical computations, the numbers are separate and laid out very much like a

calculator keyboard. (See figure 2.1)

@ ' U B S o + & N C O
. 2 - — s . e P - » ~ H
2 @ W E R T Y U I o P t ¢ >
- o5 1 , — - T - -
J5k A 8 D' F 6 H J K L sop

- -

sy Z X' EC OV B N M

- *> s

Figure 2.1. The keyboard

On most typewriters, if you strike a letter key, without shifting, you will get a lower case letter. On
your CBM, if you press a letter key without shifting, you will get a capital letter. (See Figure 2.)

Figure 2.2. The characters without shifting.

If, on the other hand, you simultaneously press the shift key and a letter key, you will get the
particular graphic that appears below the letter: (See figure 3.)

The graphics characters are a special set of symbols unique to CBM. They are used to draw pictures
and lines on the screen and to perform simple animation. The graphics can be printed on the screen
just like any other letter or digit.

For now, locate the @ key and press it a number of times to get a row of characters —AAAAA—onN
the screen. Do not use the[sHIFT |key. If you did, you'd get *1).

Figure 2.3. The characters with the [sHiFT] key in use.

INST . . ,
Next, press the | peL | key labeled @ on the keyboard illustration (above). Type a different letter. Then

press 'B’ESI again. Did you see the character erase?

(Note again: without shifting, you're getting DELETE. Shifting would get you INSERT.)

Play a little game where you type in more letters and DELETE them too.

Remember that no matter what key you press, there is no way to damage your CBMby normal
keyboard operation. (Of course, CBMis not intended to survive hard falls or attacks with sharp objects
- but with normal care it will give you years of service.) Do not ever be afraid to experiment.

Test out the keyboard by trying the following sequence of keystrokes. Don’t worry about making
typing mistakes; you already know how to correct them.

Exercise 1 — Testing the keyboard

Enter the following key sequence:

% | W1 BPACE] oBM [RETURN]

The key is a special signal to CBMthat you have finished typing a line and it should do
something with it. This feature allows you to edit the line and get it typed correctly before your CBM
can act on it.

The important thing about this exercise is to get the following display on the screen after you've done:

HI CBM

?SYNTAX ERROR
READY.

Try it again if you wish, CBMis just telling you that it does not understand what you said. CBM speaks
a language called BASIC which was invented by some people at Dartmouth University especially for
making the resources of a computer quickly and easily available to those with no previous experience.
“Syntax” is, of course, the same word you encountered when studying grammar: it refers to the rules
of language. So, “Syntax Error” means you haven't followed the rules exactly. And, in BASIC, you
must be exact.

Exercise 2 — Using the cursor
(...and introduction to screen editing)

By this time your have probably found that (if you are not a typist or even if you are) it's sometimes
challenging, to say the least, to type lines into your CBM correctly the first time. Sure, you can use the
DeT | key to erase the last character typed, as we explained earlier. But what if you typed something
~ wrong at the beginning of the line? You could delete characters back to that point, then retype.

But there is an easier way: CBM has a feature called screen edit which allows you to move the cursor
to any position on the line and at that point either insert, delete, or retype.

(The movement of the cursor is non-destructive to the characters over which it passes. The
characters will not be deleted or changed as you move the cursor around the screen.)

Locate this row of keys on top of the right hand numeric keypad.

* -

CLR INST
HOME CUR‘SOR CUFLSOR DEL

These are all double function keys, their action depending on whether or not a key is used.

Press the labeled | c g | key top. See the cursor move to the top left corner of the screen? This is
HOME

the “HOME” position.

Il cBm
?SYNTAX ERROR

READY.

The same key pressed while the key is pressed clears the screen. Hold down this time

and then press | CLR
HOME

If there were any characters on the screen, then they were all erased...or “cleared.”

With SHIFT — screen is cleared

Both functions of CLR - and cursor is homed.

this key affect
y HOME +——

the screen. Without SHIFT — screen remains

same and cursor is homed.

The best exercise to learn the individual cursor movement keys is to move the cursor right, down, left,
and up in a sort of circle path to return to the original starting position. You will move the cursor on

the screen in a path like this: ®)

-t ©

To move from @ to D press the| CURSOR | key several times.

. i
For points @ to ® press cunuson . The remaining two sides of the movement require use of the

=

Key. Move from @ to @ by holding down and pressing | CURSOR

=

(If you press the last key too many times and wind up in position (® you have discovered
another feature called “wrap-around” which has moved the cursor to the end of the previous
line. Type cunson without the shift key held down to move the cursor back to position @ .

=

The home stretch from ® to @ is easy. You can either hold down [SRIFT Jand type |cursor
g

CLR
repeatedly until the cursor is in position 1 or type | HOME [once to move the cursor “HOME.” Try it both

ways. Try moving the cursor around the screen between two arbitrary points. Practice until you are
confident you can put the cursor where you want it on the screen.

Exercise 3 — Using graphics

If you have accomplished moving the cursor, then you can use your CBMlike an electronic sketch
pad. The characters on the front of each keytop are called graphics. When you hold down the
key as you type, the graphics are printed instead of letters or numbers.

Now let’s draw a figure that should look very much like this by the time we get through.

AN\

Figure 2.4 Rocket drawing using the graphics keys

Follow the instructions exactly as shown in the diagram that follows:

CLR
Remember the | uome | and keys? Use these keys now to clear the screen.

Move the cursor to the right 6 spaces; as shown in the diagram. Press and type the
graphics. Now you use the cursor keys to get the cursor in position to type the next line.

NOTE: Shaded keys are keys that must be accompanied by pressing the key.

coL 1 2 3 4 5 6 7 8 9 10

LINE

o B @) o move v
) Cach e e
3 0

., 9O ®

6 () (e) (37

7) (v m]

8 @ @

9 @ &

Figure 2.5. Graphics keys used to draw rocket

NOTE: Do not press at any time in this exercise. Your CBM will think you've finished; it will not
understand and will display:

If this happens, first clear the screen again and start over.

Now type NEW [RETURN |.

Your screen will now show:

Exercise 4 — Creating a program

When you have finished this exercise, you will have drawn a picture on the screen. You probably wenttoa lot
of work to create this picture. You'd like to preserve it so you can view it again.

So let’s turn each line of the picture into a program step and see what happens.

The importance of a program to a computer can be likened to the importance of a driver to a car. The
car does nothing without a driver and the computer does nothing without a program.

A program is stored as a list of steps or instrucions in CBM’s memory. Before we can create a program
in its memory, we should make CBM forget about any previous program. This is what we did when we

typed the word NEW. Use the command any time you want to enter a NEW program.

CLR
Press the | Home | key. Make absolutely sure you do not press . You want the cursor in the

“HOME” position.

(If you were to press , your CBM would clear the screen. Awful, after all that work.)

Now type E ’ . The number 1 tells CBM “This is the first thing to do.” The ? tells CBM to print,
and the quotes tell CBM to print a MESSAGE.

(If you make an error, do not try to correct it. Instead press , then move the cursor up and type
the correct number, the question mark, and the quotes. Then press [RETURN |

Now type [Z][?] [RETURN] The 2 telis CBMthat this is the second thing to do.

For the third line, type E , and for the fourth line, type [4][7]| “ {[_RreTuRn].

Notice that the only thing that changed has been the number (1, 2,3 and 4) that tells CBM “this is the -thing
to do.” So now tell CBM the 5th, 6th, 7th, 8th, and 9th things to do, just like we've done with the first four. Be
sure to keep the numbers in the right sequence.

Stop when you reach the line containing the word “NEW,” because you don’'t want that word included in
your program. Using the key, move the cursor down the screen until it is below the word “READY”.

f
CURSOR
]

Would you believe you've just created a computer program?

9

Exercise 5 — Listing and running your program

Clear the screen and type:

LisT

LIST is a command to your CBM to print the lines of program stored in memory onto the screen so thatyou

can look at them. You should see something like this on your screen

LiST

PRINT"

PRINT"

PRINT"

PRINT"

PRINT”

PRINT”

PRINT" /A\
ZN

PRINT”
PRINT"”
EADY.

1
2
3
4
5
6
7
8
9
R
a

The ? that you have typed in as ashort hand for PRINT has been expanded outin the listing. Other than that,
everything should be as you typed itin. If there is an extra line which should not be there, it may be deleted

by typing just the number of the line followed by)
LIST your program again if you wish. When everything is just as-you want it to be type RUN[RETURN |,

There! Your picture will appear on the screen. RUN tells CBMto execute the BASIC program you have
entered, starting at the lowest line number step and proceeding with subsequent steps in ascending line

number order.

Exercise 6 — Amending the program

RUN your program again. If you did not clear the screen first, you may have seen the old rocket disappear at
the top of the screen and the new rocket roll up from the bottom of the screen.

This phenomenon is called “scrolling.” When CBM is printing in the bottom-most line of the screen,
everything moves up rather than the cursor moving to a lower line. CBM cannot scroll the other way,
however. Information that scrolls off the top of the screen is lost.

We can use this scrolling effect to our advantage to produce an animation in which it appears as though a
stream of rockets are blasting off from the bottom of the screen and are streaking off the top. Todo thiswe
will learn BASIC language command.

Type this linein 1 @ @[SPACE| GOTO [SPACE] 1 [RETURN]

The line number (1QQ) was chosen so that it would be greater than any you had used previously and thus
would be the last step of your program to execute.

10

-GOTO is a BASIC command to break the sequential execution of statements and “go to” the line number
specified. If you entered the rocket picture with line numbers exactly as shown, line 1 is the first line of the
program which prints the rocket picture. Change the target line of the “go to” to correspond to your firstline
number if it is not line 1. The effect of line 100 is to repeatedly print the rocket and scroll it off the screen.

But, because we don’t want the rockets to be touching nose to tail, we'd like to add some space between
them. When we typed LIST, we noticed that the last line number was 9. (We've since added line 100). Any
numbers greater than 9 and smalier than 100 will be positioned correctly in line number sequence by our
PET. So let’s add the statements: 190 2 -~

11 2 -

12 72

Now let's LIST once more:

LIST

PRINT"”

PRINT™

PRINT"”

PRINT"

PRINT"

PRINT"

PRINT"

PRINT” AN
9 PRINT” VN
18 PRINT”

11 PRINT”

12 PRINT”

1
2
3
4
5
6
7
8

108¢ GOTO 1
READY.
n

Now type RUN. As soon as you CBM will execute your program.

Rockets should be flashing on the screen so fast that it may be difficult to see them. The speed at which
characters are printed on the screen can be controlled while the program is running by pushing the key
OFF | . Hold this key down while you watch the screen. Now, release the key. Use of this key reduces the
RVS printing speed to about 2 lines per second.

The program you have created contains what is called an “infinite loop.” Statement 10@ does not containa
condition to stop running the program and cease printing the rocket, but unconditionally goes to the start
of the program over and over. It will continue like this forever uniess you pull the plug.

(Pulling the plug or shutting off the power-on switch not only stops the program, it also destroys the
program statements. You've put in a lot of time typing them and may not want them destroyed.)

1"

CBM has a key to press: ser%': _This is a STOP function when you do not press the [SHIFT] key. This will

effectively “pull the plug” on this program, without losing the program statements.

CBM will respond with something like:
BREAK IN LINE 8

This message means that execution of your program was stopped when it reached line 8 (or whatever line it

was in your case) because you pressed the ;}r%h; key.

At this point you may want to save your program. See the section on “Using your Cassette to Save a
Program.”

Exercise 7 — Screen editing

One of the handiest features of CBM is the ability to easily modify the program you have entered, as we have
just seen.

You can change a single character or you can add characters to lines you already have. You can see exactly
what you are changing because the changes are visible as you enter them.

Let's try it.

(But before we start a new program, let’s type NEw and press . This is important: it clears
all previous programs in your CBM and thus avoids any confusion.)

Type in: 10 PRINT “HELLO, HOW HOW ARE YOU?”

We have one too many HOWs in the line. Let’s type LIST so we can see the line on the screen.

LIST

10 PRINT "HELLO, HOW HOW ARE YOU?”

READY.
]

!
Now press and CURuSOR together. Repeat.

This will move the cursor up two lines from its lower position to the first position of line 10.

=

Now press | CURSOR | (without the key) several times until it is over the space after the Win HOW. Now

=>

INST
press | peL | 4 times. The extra HOW and a space are gone! Press to tell your CBM you've finished

- - t
editing this line. Now press CURSOR to get to a blank line on the screen. Type LIST.

LIST

10 PRINT “HELLO, HOW ARE YOU?”
READY.
]

12

You see how easy that was.

Do the same thing again until you have eliminated the HOW:

LIST

10 PRINT “HELLO, ARE YOU?”

READY.
-

Now let’s insert the missing HOW.

ft
Press and CUREOR together. Repeat as before. Now position the cursor over the A in ARE by

pressing | CURSOR | several times.

INST
Now press | SHIFT | and | peL | then

SHIFT| and | 'BST | then

SHIFT| and 'gg: then

INST
SHIFT| and | pg, | then | space | and | RETURN

S O x

IIIIu

n
then CURBSOR to get past the READY in the display. Type LIST. You now have:

14 PRINT “HELLO, HOW ARE YQOU?”

READY.
.

With editing that easy you need have no fear of making typing errors. Agreed?
Let's try another interesting screen edit. First, type NEW to clear out the old program.

Enter: 1T0PRINT “ANYTHING” [RETURNl

(This time we won’t type LIST each time we make a correction.)

1
Press and CURSOR | SO that you position the cursor over 1 in line #10.

P

Press 2 then press| CURSOR | until it reaches the A in ANYTHING” Now type EVERYTHING” and

=

1

press [RETURN|. Now press and cuhfoa together so that you position the cursor over the 2 in line

-

#20. Press 3 then | cuRsoR | over to the E in EVERYTHING and type NOTHING”. Press three times.

=

(Because EVERYTHING is three letters longer than NOTHING.) Press . Now type LIST and

press| RETURN |.

13

You'll read:
10 PRINT “ANYTHING”

20 PRINT “EVERYTHING
30 PRINT “NOTHING

Interesting? Think of the applications. If you want to repeat a complex statement several times in the same
program . .. or if you want to change just a part of a statement on onelineand enter that amended statement

on another line.

Exercise 8 — Using the reverse field

Every key on the keyboard, with the exception of a few which we shall note, prints almost exactly whatyou
see onto the screen. We say “almost” because the screen displays characters in white on a black

OFF
background. Thereis a | rRvs |key which, when pressed, cuases all subsequent characters to be displayed in

reverse field — black on white — on that line.

TypeA B C 252 A B Candyoulll see:

Your CBM displays 128 unique symbols which, with the addition of reverse fieid, really adds up to a total of
256 different characters that can be displayed.

Reverse field remains in effect until a) you type RETURN or you hold down theand type gsg .

As an example, type:

OFF 0
A B [gys| A B C |SHIFT R\F,EABC

You’'ll see:

ABIN:I6 ABC

Exercise 9 — Programming cursor movement

Cursor control characters may be programmed into PRINT statements. Itis often desirable to clear the CBM
display under program control. We will do it in a direct statement.

r - H%LNF:E

14

Note that you did not clear the screen by typing these keys, but that a reverse field heart appeared on the

screen.

When you have typed an odd number of quote marks you are in this special cursor control character

insertion mode.
([Z_JRepresents a single quote mark, for this discussion. And one is an odd number.)

The [Z' is arepresentation of a CLEAR SCREEN control character. Do not type RETURN yet. Instead type:

< f
CURSOR CURSOR
= 4

These print out as w

which are cursor control characters for CURSOR RIGHT and CURSOR DOWN.
If you now type a second |I] you will have entered an even number of quote marks and you will leave the

-

special mode. Typing CURfoR will again move the cursor, but this time, without printing anything. Any time

you want to enter or leave the control character insertion mode you may do one of two things:

Enter asecond [*7], or press the key.

Editing: a Review

When you press one of the CBM’s cursor control keys, you may be in one of two editing modes, as you have
already seen.

I. DIRECT CURSOR CONTROL

The cursor is moved as soon as you press the cursor control key.
In DIRECT mode, the User is creating program mode. The cursor control keys allow the User to insert or
delete characters at will unless he specifically indicates (by typing a quotation mark) that the cursor
moveme be a part of the created code.

When entering program code, the User can correct typographical errors in one of four ways.
A. Delete all characters back to the error, then retype.

B. If no quotation marks have been used, backspace (cursor left) over the intervening characters until
the cursor is positioned over the error, retype the character, then forward space (cursor right) to the
next desired character position to be typed.

C. If a quotation mark has been used, press to leave the program line. Then move the cursor up

and over to one space past the error. Press [insT] to delete the error, pres [stiFr] and lggz tocreate
DEL

an opening, and type in the correct character, then forward space to the next desired character position
to be typed. Programmed cursor control is no longer in effect.

15

D. Another method is to close the quotes (type the ending quotation mark) then backspace to the offend-
ing character and retype. Again, programmed cursor control is no longer in effect.

There may be occasions when itis appropriate to lengthen a statement line. If the cursor is moved to the end
of an existing line, the additional characters may be typed in. The cursor willwrap around to the nextlower
line if more than 40 positions are used. If the lower line contains a program statement, it can be over-typed.
Extra characters remaining from that previously typed line must be deleted or they will be incorporated into

the line being edited.

Original Program

10 PRINT “"NOW 1S THE TIME FOR ALL”

20 PRINT "THE END”

Move the cursor until it is positioned over the closing quotes in statement 10, and type GOOD MEN TO".

10 PRINT ““NOW 1S THE TIME FOR ALL GOOD M
EN .TO" THE END”

delete “THE END” by spacing over the characters, using the bar.
Now LIST

10 PRINT “NOW 1S THE TIME FOR ALL GOOD M
EN TO”

26 PRINT “THE END”

If you wish to insert characters within a statement line, position the cursor over the first character to be

e NST] wi . .
shift right, press |INST) with the key. If the new spaces increase line length to greater than 40

spaces, a space will open up between the line being edited and the next program line, and the charactersto
the right of the insertion will move into the opened space. This is diffidult to show on paper, so just follow
the instructions and watch the result on your screen.

1. Type this program
10 PRINT “NOW IS THE TIME TO”
20 PRINT “THE END”
2. List the program
-3. Move the cursor to the letter T in the word TO in statement 10.

INST
4. Hold the key and press the | peL| key 17 times

(Here’s where the screen will show a space being opened between statement lines)
5. Type FOR ALL GOOD MEN
6. Press
7. LIST the program again
Using Direct Cursor Control while coding a string literal:

To edit a string literal, such as a print message or a data statement, the user must press the key and
leave the statement line. A literal cannot be edited (except for character deletion and retyping) while it is
being originated, because all cursor controls except delete and insert are programmable. The user must

16

leave the statement line via a carriage return, then move the cursor back to the offending character and
retype. Furthermore, to program cursor controls within the string after having left the line, the user mustuse

the 'B'SI function to open up spaces into which he can then type the appropriate control character.

The user can, of course, close the quotes, and thereby signal CBM that he is through with the literal
message. However, once the second quote mark has been typed, CBM will no longer recognize cursor
movements as a part of created code, and the cursor will move according to the function represented by the
key pressed.

Il. PROGRAMMED CURSOR CONTROL
The cursor movement is executed during a program run. It is part of a PRINT statement and has been
enclosed within quotation marks.

(Reverse Field)

Function Keys to Press ASCII Character
CURSOR UP SHIFT| | cRsR 145 o]
CURSOR DOWN chsR 17 o]
CURSOR LEFT SHIFT| | CRSR 157]
CURSOR RIGHT CRSR 29 1]
CLEAR SCREEN SHIFT| | nome| 147 [v]
HOME CURSOR HOME 19
INSERT CHARACTER* [M7 DeL 148 [|
DELETE CHARACTER* DL 20
REVERSE FIELD RvS 18 (R
RESET REVERSE SHIFT| | RUS 146 -

“The INSERT and DELETE functions are not programmable. Use CHR$ (20) to delete during program
run and CHR$ (148)s to insert during program run.

PET uses the quotation mark to signal the beginning of a string literal, asina DATA or PRINT statement.
When attempting to edit a program line, the USER should be aware thatif PET seesan opening quote, it will
consider all cursor movement instructions as part of the string.

17

I1l. PROGRAMMED EDIT FUNCTIONS :
The User can control the position of the cursor on the screen in order to PRINT in a specific position.

The User can control the position of the cursor on the screen in order to.PRINT in a specific position. For
example:

10PRINT " 3 clear screen

20FOR1=1T0O 10

30 PRINT " @ cursor down
40 NEXT |

S0 FORJ=1TO 10

60 PRINT | * X cursor right
70 NEXT J

80 PRINT "“HI”

Will PRINT the work “HI” in column 11 on LINE 11. This program can be more simply written.

10PRINT “ @, :FOR1=1T0 10:Print” [8] "' : Next
20FOR J=1TO 10:Print"] Y INEXTPrint HE”

OR, even simpler using a single PRINT statement:

10 PRINT Q@EIEI@EIE1 eI EENNNNMNANIIN HI”

Exploring BASIC

BASIC is a language very much like English. It uses words you recognize—such as PRINT and READ and
GOTO—and these words mean almost the same thing in BASIC as they mean in English.

BASIC has rules very similar to English—only not as many. And there aren’t as many exceptions to the
BASIC rules, either. Let's look at some comparisons:

English Rule Basic Rule

A sentence starts with a capital letter and ends with A program line starts with a line number and ends
a period. with a carriage return.

A sentence must contain a subject and a predicate A program line must contain a keyword and an

(verb). operand.
Words sometimes have two meanings, like run Words have only one meaning: RUN (execute a
(athletic activity) and run (turn on a machine). BASIC program).

18

i’'s must be dotted, t's must be crossed. Functions must have arguments enclosed in paren-
theses.

If you quote someone verbatim, you must use quota- CBM will quote your English verbatim if you enclose
tion marks. your message in quotation marks.

Use period and two spaces to separate sentences if Use a colon to separate statements if they are on the
they are on the same line. same program line.

And both languages have rules governing such things as punctuation and syntax.

If you don’t use English correctly, you may be misunderstood by people who listen to you. If you don’t use
BASIC correctly, you WILL be misunderstood by the CBM!BASIC is easier to learn than English and BASIC
programs aren’t difficult to write. You'll find it useful to know how to use BASIC, and, if you aren’t careful,
you might find it a lot of fun.

The first BASIC command we shall explore will tell your CBM to PRINT something onthe screen. Thisisone
of the more useful commands, for with it you can make your CBM display data, draw pictures, or play games.

Now enter the following by pressing this sequence of keys. (We’ll call it “typing” from this point on.)

Exercise 10 — Printing on the screen

PRINT®HEL L O[SPACE] CBM " [RETURN]

Did your CBM print HELLO CBM onthe screen? Ifit did not, then try itagain. PRINT is acommand which tells
your CBM what to do with the rest of the line. This example has a message between quotes. The quotes tell
your CBM to print out the message exactly as it appears within the quotes without any further processing.

PRINT“HELLO CBM”
HELLO CBM

READY.
]

Exercise 11 — Using the built-in clock

Now, let us speak to your CBM in BASIC and get it to tell you what time itis. Your CBM has a built-in clock that
starts from 0 the moment you turn on the computer.

To discover the elapsed time, type:

?TIMES|RETURN|] or PRINT TIMES |RETURN

The ? is a shorthand which you may use instead of always typing PRINT when you want your CBM to print
something. The $ at the end of the word TIME tells CBM to printthe time in hours/minutes/seconds. Though
the elapsed time may be different, you should see a display something like this:

19

’TIMES

001130

The first two digits are elapsed hours, the second two digits are elapsed minutes, and the last two digitsare
elapsed seconds — which, in the above example, means that CBM has been running for 00 hours, 11

minutes, and 30 seconds. The time you see on your CBM, however, will depend entirely on how long you

have had it on thus far. CBM's clock is crystal-controlled and very accurate. It is also a 24 hour clock which
means it will count up to 23:59:59 then roll over to 00:00:00.

Exercise 12 — Setting the clock

It is very easy to set your CBMclock. Assume it will be 12:30 p.m. in a few seconds. Press the following
sequenceofkeys: T 1 M E $ = “ 1 2 3 0 0 0"

When the designated time (12:30 p.m.) comes up on your watch, press[RETURN |Jand CBM will set the time.

Substitute your current local time and try setting the clock as in the previous example. (if the time is 9:30, be
sure to type “093000”-you need 6 digits.)

Now, whenever youtype: ? T | M E $|RETURN

your CBM will tell you the correct time. Remember that if you turn the power off, the clock will stop running
and you will have to reset it when you turn the power on again. Once you have reset it, though, you have a
highly accurate built-in clock available at all times. Justtypein? T 1 M £ § and there it is.

Exercise 13 — Solving mathematical problems

BASIC is essentially an algebraic language which means that you can use your CBM much as you would a
pocket calculator. Though it packs the power of several programmable calculators put together, it is as
easy to use as a simple four-function calculator. Furthermore, everything you type into it is instantly
displayed on the screen, and that makes it easier to keep track of what you are doing.

To perform arithmetic on your CBM, simply tell itin BASIC to print your answer. Note how much itlooks like

a direct question:
q ?2 2 + 2 |RETURN

When you press the RETURN key, CBM prints the result on the screen.

CBM arithmetic is not complex or mysterious. But, like human arithmetic, it does have rules. One of the most
important rules is the order of operation:

20

1. exponentiation
2. multiplication and division
3. addition and subtraction

In direct mode, type: 79*3+7*6-5%4/3*2

CBM will respond:
55.6666667

You (because you're the one in charge here) decide how to group the expression so the result will be
correct. You do this with parentheses.

TYPE: 2(9*8+7)*6-5*4/3*2
SCREEN DISPLAYS: 460.666667

TYPE: 2(9*8+7*6-5)*(4/3*2)
SCREEN DISPLAYS: 290.666667

TYPE: ?({9*8+7%6-5%4)/3)*2
SCREEN DISPLAYS: 62.6666667

TYPE: 2(9*8+7*6-5*(4/3))*2
SCREEN DISPLAYS: 214.666667

CBMdoes all the work inside the parentheses first, before it does anything outside of them. Once inside
parentheses CBM does multiplication and division, then addition and subtraction. After all the work inside
the parentheses is done, CBM moves outside and does everything indicated there.

Let’s look now at some of the arithmetic functions and find out how to use them. First, type NEW, to delete
the program we were using. Now, type these program lines:

100 FORI=11t0 10
120 PRINT 11*1,SQR(1)
130 NEXT I

and RUN.

The result represents | (the count or index), | squared (the * means multiply), and the square root of |.
SQR(X) is the Square Root function, and finds the square root of whatever number you put inside the
parentheses. Like all BASIC functions, SQR(X) requires an argument-any number you choose, enclosed in
parentheses. Arithmetic expressions can be used if you like instead of numbers, like SQR(5*20).

All the arithmetic functions are used in a similar fashion. Turn to the BASIC keywords (Appendix C) and
find the section on Arithmetic functions. You can check out the way each one works by substituting it for
one of the functions in line 120 of the program. The brief description of the function, along with actually
trying it yourself, will show you how to use it.

Try using the string functions, too. You'll need a new program to do that (be sure to type in NEW first):

21

NEW

19 FOR1=1T0 10

20 INPUT”ENTER A STRING";A$
30 PRINT LEN (A$)

4@ NEXT |

Lines 10 and 40 you already know about. In Line 20, the new item is the dollar sign. This tells CBM you are
entering letters or graphics instead of numbers. Line 30 prints the function we selected for this example.
Since you know your name best, use your name as the data you INPUT in line 20. CBM should print the
number of letters and spaces in your name when yoy RUN the program. CBM does count spaces in strings—
even if that’'s almost the only place it wants them!

* * *

Now let’'s go a step beyond.

First type these lines. Note the comments in italics; they explain each piece of the program lines.

NEW<—‘———{ This command climinates all previous pr()gram.s'J

110 LET X=5
120 LET Y=10
130 LET Z=X+Y
110 PRINT 2=

And these are operands.

: (I this case, the operands
These are are aritlimetic expressions.)

key words.

These are
line numbers.

Line 110, 120 and 130 are called “assignment statements”, because they are used to assign values to letters
of the alphabet. Line 140 is a PRINT statement and causes CBM to print the value of the letter Z. (CBM knows
the value of Z because statement 130 told it that Z is the sum of X and Y.)

Of course, this is a trivial program. You've already learned how to type ? 5 + 10 and have CBM print the
answer. But it gets more interesting as we go along.

Now, if you RUN this program, CBM will print:

You, as the programmer, can put any number you like in statements 110 and 120. You don't have to use 5
and 10.

It would be cumbersome to have to retype lines 110 and 120 every time you wanted to change the numbers.
So, CBM’s BASIC allows you to change the numbers during program execution, using the INPUT keyword.
Let's change the program to show you how to INPUT data:

100 PRINT “"ENTER A NUMBER"” This eliminates the previous
119 INPUT X line 110 (LET X=5)

115 PRINT “ANOTHER NUMBER" This eliminates the previous
12 INPUT Y line 120 (LET Y=10)

22

Since lines 130 and 140 stay the same, we won't retype them. Here, line 100 prints a message. When you run
the program, CBM will printthe message so you’ll know what you’re supposed to do. By using this “prompt,”
anyone can use your program, because he'll be told what to do and won’t have to guess. Line 110 will force
CBM to wait until you type in a number and press RETURN.

If you press RETURN without entering any number, CBM will think you don’t want to continue running the
program. It will jump out of the program and tell you it's READY for whatever you want it to do next. Line
115 like line 100, prints a message prompting you to enter another number, and line 120 makes CBM
wait for you to do so.

Now RUN the program.

PET will show: ENTER A NUMBER
'l
T—{ the cursor will flash here.
Type a number—say 23—and ENTER A NUMBER

press RETURN. CBMprints: 293

ANOTHER NUMBER
'l

the cursor will flash here. I

Type another number—perhaps 12—and press RETURN. CBM will print the answer—35—and say READY.
Your screen should look like this:

NEW

READY.

110 LET X=5
120 LET Y=10
130 LET Z=X+Y
140 PRINT Z
RUN

15

READY.

100 PRINT "ENTER A NUMBER"
110 INPUT X

115 PRINT "ANOTHER NUMBER"
120 INPUT Y

RUN

ENTER A NUMBER

223

ANOTHER NUMBER

712

35

READY.
]

T——{1/10 cursor should be flashing here.]

23

Now if we typed LIST, the program would look like this:

100 PRINT "ENTER A NUMBER"
110 INPUT X
115 PRINT "ANOTHER NUMBER™

120 INPUT Y .
130 LET Z-X+Y AR
140 PRINT Z

Note that your CBM automatically places the line numbers in ascending order, too.

Using INPUT makes it easier to check the numbers, doesn'tit? Now you just type RUN, and each time you
do so, you can use different numbers. Butityou have 10 pairs of numbers, typing RUN each time can STILL

be tedious!

So, BASIC has two features which allows you to do an operation (in this case, add a pair of numbers) as
many times as you like without typing RUN. One of these features is the GOTO statement. It forces CBM to
GO TO aline you specify, instead of doing whatever it would normally do. (In this case, CBM would normally
stop and print READY when it finishes the sum.) You can do that with this statement:

150 GOTO 199

Now CBM will print the sum, then go back to line 100 and print the “ENTER A NUMBER" message. Try it. Add
up several pairs of numbers. When you're ready to go on, just press RETURN without having given CBM any
data (numbers) and it will jump out of your program and wait patiently for you to tell it what to do next.
(You'll see CBM’s READY message and the flashing cursor.)

The second feature is called a FOR-NEXT loop. It allows CBM to perform an operation (or a sequence of
operations) FOR as many times as you like. The word NEXT is the last line of the sequence, and tells CBM

that it has completed all the repeatable operations.

Type these lines.

99 FORI1=1TO 1¢
150 NEXT |

In this example, | is called the “index.” CBM keeps track of the number of times it performs the sequence of
operations (lines 100 through 140) and keeps the count in the index. You set the index to 1 in statement 90
and tell CBM to count to 10. Everytime CBM reaches statement 150 it increments, or adds to, the count, and
goes back to statement 90. Then CBM checks to see if the number in the index is greater than the number of
repeats you wanted. If it is, then CBM looks for something else to do. If the count is less than or equalto the
number of repeats (in this case, 10), it performs the whole sequence again.

In brief, CBM will let you enter a pair of numbers FOR as many times as you request. And CBM will do as much
as you ask to each pair of numbers before going after the NEXT pair.

24

Exercise 14 — Animating your CBM

It's each to move an object smoothly across the CRT, thanks to CBM’s programmable cursor controls. The
listings below give you the fundamental right-left-up-down motions. Later we will show you how to

program an unidentified flying object.
Move a ball right & left across the screen. (Note: all symbols are shown as they appear on screen).

10 PRINT ¢ E 7 clear the screen*

20 FORI=1TO 39

30 PRINT “ ”. space ball cursor left*

40 NEXT D n [‘]

SPFORI=1TO 39 " left

60 PRINT ”. space the cursor le

73 NEXT D l]] [[] n [D cursor left ball cursor left*
80 GO TO 20

Move a ball up & down on the screen

1@ PRINT * B ”, clear the screen*
= 9
JOFOR I=1TO 24 space cursor left cursor down

30 PRINT D l]] @ n m 7 ball cursor left*

40 NEXT
S FORI=1TO 24
space cursor left

60 PRINT “D m IE] u [ﬂ ” cursor up ball cursor left*

Note: While “cursor up” character and “ball” character (the shifted “Q” character) look alike, they obviously
perform quite different functions as you will perceive . . . provided you press the right key.

70 NEXT
80 GOTO 29

And, of course, moving a ball diagonally across the screen (top left to bottom right).

19 PRINT * ”: home cursor*
gg gg&%z“IDTO[@Mn D] » space cursor down
ball cursor left*
40 NEXT
=1TO?24
gg 51%};\1; « 0 » . space cursor left cursor left
D D] D] B n []] ’ cursor up cursor left*
70 NEXT
80 GOTO 20

*After you type, in sequence, a quotation mark and a cursor key, you’ll see a symbol appear to indicate the
cursor movement or action. This is a guide to these symbols.

CBM Shows Key guide
reverse field heart E] clear screen
reverse field right bracket D] cursor right
reverse field dot E cursor up

25

ball shifted Q graphic

reverse field capital Q cursor down

reverse field capital S home cursor

reverse field square with line graphic cursor left

EI=IERNE] - |

space space

Using your cassette to save a program

After the effort of entering and debugging your BASIC program, you may want to save iton cassette tape for
later use.

Once your cassette unit has been attached to the CBM, place a blank cassette inthe recorder un_it, and press
“REW” to be sure the tape is fully rewound. When rewinding is complete, press “STOP” on the cassette unit.
You are ready now to save your program. ’

It's a good idea to save your program by name. Having completed the rocketship drawing and converted it
to a program, let's save it, using the name “ROCKETSHIP.”

Type SAVE “ROCKETSHIP” and press[RETURN]. CBM will display:

SAVE'ROCKETSHIP”

PRESSPLAY & RECORD ON TAPE #1

Press the correct buttons, and display reads:

SAVE 'ROCKETSHIP"

PRESS PLAY & RECORD ON TAPE #1
OK

WRITING ROCKETSHIP

Now, when CBMis ready, and the cursor flashes, you should rewind the tape and verify that your program
really did get saved. When the tape is fully rewound, type the word VERIFY and press [RETURN]. CBM will
tell you which cassette unit button to press. Do so, and CBMwill assure you it is VERIFYING. Then, when
CBMis READY, you now can be sure your tape has an accurate copy of your program.

If you see VERIFY ERROR, rewind your tape and try it again. If you still get VERIFY ERROR, save your
program and start over. (Note: be sure to use music-quality low noise cassette tapes.)

You can use any name you like for your program. Because your CBM will only display 16 of the characters
used in a program name, you’ll probably want to keep the names short.

When you name your programs, remember that CBMdoesn’t need to have the whole name typed on the
keyboard in order to find it, when you ask CBMto load it. If you name your program “ROCKETSHIP”, you

26

may ask CBMto LOAD “ROCK”—and it will find the right program and load it. This means you must be
careful to avoid naming one program “ROCK” and another program on the same tape“ROCKET”. CBM
won't know which is which, and will load the first program with the letters ROCK in its name.

You do not need to incorporate the program name into the program itself. CBM savesthe program nameina
file header when it saves the program, and that the only identification it looks for.

This means you can save your program in small pieces as you write it. You may find it worthwhile to SAVE
your work every 20 to 30 lines or so, to avoid losing it in event of a power failure. But, since you may not want
to type the full program name each time, CBMis designed not to REQUIRE a name:

Type SAVE and press [RETURN] CBM will display:

SAVE

PRESS PLAY & RECORD ON TAPE #1

and, when you do so, CBMwill show

SAVE

PRESS PLAY & RECORD ON TAPE #1
0]

WRITING

And as soon as the program is saved, CBM will add the word READY to the display.

You may want to save your program more than once on the same tape to be sure you have a good copy. As
cassette tapes age, they frequently stretch or wrinkle, especially at the ends. A second, or even a third SAVE
may prevent loss of your program and will prove to be worth the extra few minutes it takes to save and verify

the extra copies.

Using your cassette to load a program

Using a cassette drive with the CBM computer is your easy access to a ilibrary of BASIC programs, either
created by you or purchased from COMMODORE or other commercial software firms.

Take a cassette, open the cover, and place the cassette in just as you would a normal audio cassette. Do not
push any cassette keys at this time.

Now, hold down the key and touch and release the ;T%': key. If you see:

LOAD
PRESS PLAY ON TAPE #1

BREAK
READY.
]

27

then you've released the key before you released the SRT%'}', key. Don't fret . .. just try again.

Hold the key down, touch and release the | &rop |key. Now you can release the key.

If you've done all this correctly, you should see:

LOAD

PRESS PLAY ON TAPE #1

UN
Pressing the Syor | and the keys caused the command LOAD to be typed on the screen and
CBM responded by asking you to operate the cassette.

(If you wish, you can also tell your CBM to load the program by typing in LOAD and instead
of the above procedure.)

Press the key labeled “PLAY” on the cassette unit.
Your screen should now display:

LOAD

PRESS PLAY ON TAPE #1
oK

SEARCHING

This means your pressing of the key is acknowledged and CBM is now searching for data on the tape. Ina
few seconds (about 5-10) you will see:

LOAD

PRESS PLAY ON TAPE #1
OK

SEARCHING

FOUND PROGRAM

LOADING
s

CBM has found a program on the tape and is transferring it from the cassette into its memory. This is the
operation referred to as “loading.”

When loading is complete, the program will automatically begin executing. Also, the cassette motor will be
turned off.

(We’re assuming that your CBM’s program is labeled “PROGRAM” for the sake of this example. It could
be labeled virtually anything else.)

28

Chapter 3. BASIC KEYBOARD UNIT

Whenever the blinking cursor appears on the screen, the computer transfers data from the
keyboard to the screen memory.

Keyboard data is transferred by the interrupt routine to the screen memory each time a new
key is struck. Only after a carriage return is the keyboard data transferred to the operating

program, and then a whole line is transferred at once.

There are two exceptions to this, neither one of which causes the cursor to blink. One of them
is the use of GET, which will be discussed in a later section, and the other one is when
the keyboard data is accessed directly using machine language programs.

The CBM keyboard has been optimized for use as a computer keyboard, though the organization
is similar to that of a typewriter so a touch typist does not feel totally out of place.

However, some important changes have been made:
1. Because of the high use of numbers and calculations with the computer, a calculator-like
number pad has been added to the right of the main keyboard.
2. The number pad has all of the mathematical operators in a form that is normal for BASIC.
3. The various keys for screen movement and editing are located on the numeric pad.

4. The characters which are normally the shift of the numbers on a standard keyboard no
longer require shifting. These characters are quite often used in BASIC, and it is
convenient to have them available without shifting.

5. All standard characters are unshifted, so that a complete 64-character graphics set is
available by use of the shift keys. These graphics give the CBV significant line drawing ability.

CBM KEYBOARD
The keyboard consists of 73 keys, including two shift keys, either one of which may be pressed to cause

the upper or shifted characters displayed on the keyboard to be operational. Lower characters

are always used unless one of the two shift keys is pressed simultaneously. Each key has

a thin, transparent plastic film covering the keytop which should be removed. This protection was
left in place to protect the keys against scratching during shipping. To remove the film, carefully
peel it off by using the sticky side of a piece of masking tape so as to avoid scratching the keytops.

There are 64 printed characters on the keyboard with 64 upper case, or shifted characters on

the same keys. The rest of the keyboard consists of function characters. Some of the functions

are obvious: like carriage return or cursor right and left. Reverse on allows all subsequent characters to
be diplayed in reverse field - black on white.

The reverse key is operational on a memory basis. From the time the key is struck, the

function is operational until it is terminated by a RETURN pressed or printed, or by pressing reverse-off
{the shifted reverse key). This concept of reversal of function, up and down, right and left is carried
through to the function keys, so that the complementary functions are usually combined, with one being
the shift of the other.

The keyboard is scanned using a 6520 PIA, a four line to ten line decoder and the interrupt

routine from the CRT controller. Each time the interrupt occurs from the CRT, the keyboard is scanned
using a left to right scan. The keyboard is organized on a 2x 5 row matrix with the matrix

being repeated 8 times across the keyboard. To implement noise protection and N key roli

over, the keyboard scan routine keeps the final value of the last scan in a buffer.

Until that key is released, no other keyboard scans are acknowledged unless a later scanned key
is struck. The later scanned key is then considered to be the next key closure. The algorithm does not

30

OLP6S=89d 80¥6G=Vd sossaippe JalsiBai eleq vid
ueds pieoqAay INSD "¢ 8inbiy

apoo9a(Q pleogisyy

(7 - —= —
EEEE) ([FEEE e)EE)E)(E(E
LnEEEE |[EEEEEEEEEE
weellmEEE 1D EEEEEREEE(E
EEEE) EEEEREREREE
MeMeE)| |[eMEMEMEMEME

rr \

1

£L8d s8d DKE bEd €a8d a8d LeEd oad

31

give classical N key roll over but does allow for legitimate rejection of noise and trapping of the keys
in the order that they are struck.

The keyboard is left scanning the last row, which contains the stop key. This allows the routine in
BASIC, that checks for the stop key to sample the input 110 device, without having to perform any
of the normal functions of scanning. The user can take advantage of this by reading the input character

for that row.

The shift key is a special multiple key closure and is treated separately. If either of the two shift keys
is pressed, the software sets a special shift switch which is used to change the decode of the key.

All key closures are translated using a ROM-based look-up table for the key. The shift key is encoded into
bit 8 of the ASCII character which is then translated into the screen representation in the standard way.

Once the hardware translation is done, the encoded value is transferred into a 10 character keyboard
queue. The keyboard queue is loaded every time a new key closure is sensed and is unloaded as soon as
characters can be transferred to the screen.

This input queue is scanned by the GET routine directly to allow input without going to the screen. The
input stack may be scanned by a user program. The user program can look at the pointer at location 158
to determine whether or not it is greater than zero; if it is, that means that there is data in the keyboard
queue. The keyboard queue is located at 623-632. The first character may be taken out; all subsequent
characters moved down, and a load index pointer decremented by one.

This is a dangerous routine, unless written in a machine language with the interrupt masked, because a
new key closure could store a new value during a time that you are scanning and changing the queue.
Both the GET and keyboard input routine take care of that automatically by only operating during the
interrupt or with the interrupt masked.

Whenever the screen editor routine is operational, a special two-level operating system is in play. The
first level enables the cursor to flash and writes data from the keyboard to screen memory at the current
cursor position. The routine then moves the cursor one character further down in memory. The process is
repeated, trying to keep the keyboard queue empty.

The second level flashes the cursor and translates and stores characters from the keyboard into the
keyboard queue. Meanwhile, the first level operating system always watches the input stream for a
carriage return. After the carriage return is printed, this routine automatically transfers the entire line to
the operating system. The rest of the operating system does not see the characters until they have been
typed and a carriage return is sent. This allows for total editing of the line, prior to handing it to the
operating system.

An interesting trick for the more advanced programmer is to use the CBM to write its own programs. By
printing out a line to the screen, forcing a carriage return into the keyboard queue and then returning
control to BASIC, new line numbers may be entered into the memory. Another example of the use of the
» keyboard queue is the LOAD/RUN sequence which is implemented by the keyboard scan program when a
shift-run is encountered, the routine automatically forces “LOAD, CARRIAGE RETURN, RUN CARRIAGE
RETURN” into the keyboard queue. When control is returned to the input routine, the load followed by the
run is automatically transferred in the proper order.

It should be noted that this keyboard queue is only ten characters long and if it is exceeded, dramatically
bad effects can happen to your system. The only known recovery from exceeding this queue is to power

32

the system off, back on and start over. When fooling with the queue, remember thatif the useris typing onthe
keyboard and you do not have the interrupt turned off, the operating system is going to kill you.

SCREEN EDITOR
Typing on the keyboard, while the cursor is active, transfers what is typed on the keyboard directly to

the screen. This function is like a simple computer terminal which requires you to retype a whole line
until you get it right, but the CBM lets you edit your mistakes before you enter a line. The editor is best
_understood with a CBM to illustrate it. The user should follow discussions on his own CBM, as many of the
examples are much more difficult to describe than to see.

To follow these examples, two concepts are necessary. One is that when we type a ?the BASIC operating
system is going to interpret the ? the same as PRINT.

The second concept is that when we follow a ? by a Quote, all characters after the Quote, until the next Quote
is encountered,
are treated by BASIC as characters that you will want to have printed onto the screen.

In this section you are operating the computer in what is known as a direct mode. (i.e. rather than
programming mode). BASIC is executing each instruction like print as soon as you type it into the system
and hit carriage return. We will see in the future that this is not the way most programs are operated. It

does make the machine useful as a super calculator.

The first thing that we want to do is have the machine type a simple message. You should have already
done this with your users’ guide. However, we hope by now that you understand a little better. We type
the line:

?“HI THERE”

Z2IDC-mX

You will see that BASIC responds by printing HI THERE. It should be noted that each time we struck
a key on the keyboard, the cursor moved automatically one place to the right, allowing us to type in the
next character, and nothing else happened until after the carriage return. When the carriage return
occurred, the HI THERE appeared almost immediately on the screen.

Let us talk about the simplest function; that is, immediately correcting a mistake. Retype the line

?HI THERE B. What we were trying to type was HI THERE CBM, but we hit the character B rather than
C. For those of you who are touch typists, you may have already made this mistake. In order to allow
you to immediately correct this mistake, there is a key which allows us to erase a previously struck
character. This key is called the delete key, located in the upper right-hand side of the keyboard.

If we strike the delete key once, you will see that the B has disappeared. Typing the C results in an
overstrike of that position. We can now finish typing BM; then hit carriage return, causing the CBM to
print out HI THERE CBM, a blank line, and READY.

The delete key is the fundamental editing tool which allows you to strike out as many characters as you
want from where you are and then retype. This is the simplest form of editing. It is implemented by

33

decrementing the screen pointer from where you are by one and striking a blank over where the screen
pointer is. We can go back and erase the READY that is right in front of our cursor by just continuously
stfiking the delete key. Notice two facts as you are striking; (1) if you strike slowly, the cursor will move
one character at a time, and (2) if you strike fast, the cursor will actually move several characters
before you see it blink. This phenomenon occurs because it takes 15 times as long to blink 2 characters
as it does to overstrike one. Also, notice that the CBM wraps around the screen. The screen memory is
organized so that deleting the previous character in memory moves the pointer back over that character.
Because of the fact that the characters scan from right to left in 40-column chunks, for example deleting
the character at the beginning of the line, and then striking the delete key at the beginning of the line,
deletes the 40th character of the previous line. Just keying back 40 strokes erases the READY from the
line above, however, this is a pretty slow way of editing.

There are three cursor movement keys on your CBM. One key moves the cursor right or left; the second key
moves it up and down, and the third key moves it home (upper left-hand corner) and clears the screen.

CURSOR RIGHT AND LEFT
The cursor right key moves the pointer one character to the right. If we strike it now five times, you will

see that it moves us five columns over. It accomplishes this by changing the cursor pointer in memory.
The cursor left key is on the same key as the cursor right and is evoked by shifting prior to striking. If we
type that four times, you will see that now we are back one character to the right of where we started. If
we strike it two more times, it moves us around the corner of the previous line. Cursor left, of course, just
moves the cursor pointer one character less in memory. Going to the left, it moves one character at a
time. Obviously, by doing this, we are able to edit the screen. However, faster editing can often be
achieved by use of the cursor up and down keys.

CURSOR UP AND DOWN
The cursor down moves the pointer 40 columns to the right from its current position. This gives it the

same visual effect as moving it down one line on the screen. For an example, try spacing over forty
positions with the cursor right. The cursor is now on the same position on the screen, but down one line.
To cause the cursor to move up, hold down the shift key while striking the cursor up/down key once; this
gets us back to our original position.

Cursor up moves the screen memory pointer “up” 40 characters from its current position, or rather, 40
characters less in screen memory than the current position.

SCREEN EDITING
We can now use the cursor movement characters to get up in position on the second H in the HI THERE

CBM message. Once you are there, you can now delete the T by striking the delete key. You will notice that
all the characters to the right of the character being deleted are moved to the left one character. You will
now see the delete is actually a matter of moving all the characters in memory left one, rather than just
substituting a blank.

INSERT/DELETE
Before analyzing insert and delete, we should be reminded that the screen memory is organized such that

any single line may consist of 40 or 80 characters. (See section on screen memory.) Insert and delete are
concerned with the characters on a line. Whenever the delete key is struck, all of the characters,
starting from the position of the cursor, to the end of the line, are automatically shifted one character to
the left, replacing the character preceding the cursor. The cursor is then moved to the position of the
replaced character.

The last character in the line is automaticailly blanked. Insert is the reverse of this process. If we want to

34

fix the line that we just got through taking the T out of, we needtoputaT back between the blank and the
HERE. In order to do that, we have to make a space in which to type the T. To accomplish this, we strike
the shifted insert key with a single stroke. After striking T, you will note that this now creates a screen
which says HI THERE CBM, with the cursor blinking over the first character of the insert. To insert more
than one character, strike the insert key more than once; this moves all the characters on the line to the
right, and the cursor points to the first character of the insert. This then allows us to insert several
characters on the line. For example, if we hit the insert key three times, type T’s until the cursor is
positioned over the H, then delete all of the extra T’s; we will then see that the back and forth movement
in the line is automatically handled and we end up with a perfectly recomposed message. It should be
noted that in no time has the computer responded to these commands, other than making a change on
the screen. This is because we have not yet pressed carriage return to tell the CBM that the line is
complete.

That is why we have been talking about a screen editor. All editing is accomplished between the keyboard
and the screen memory, without interfering in any way with the rest of the operating system. This allows
the user to compose perfect text and hand it to the computer without the programmer who is using the
data, whether it be BASIC or the user program, to worry about the intermediate steps of making
corrections. It is best symbolized by:

What You See Is What You Get.

LINES ON A CBM SCREEN

Physically, a line on the screen consists of 40 columns of information. However, traditionally in the
computer business, many data inputs are organized for 80 column data cards and, of course, much more
data can be put into 80 columns than into 40. Therefore, although the CBM screen can display only 40
characters per line, the user is given all the flexibility of an 80-column line. This is accomplished by
allowing the screen to define more than 40 characters as a line. If we move our cursor over to the
beginning of the line below HI THERE, and start typing NOW IS THE TIME FOR ALL GOOD MEN TO
COME TO THE AID OF THE PARTY, we will see that after typing the E, the space is automatically on the
next line. You will soon see the screen considers this to be an 80-column line although the HI THERE CBM
right above is only considered to be a 40-column line.

The thing that allows the CBM to accomplish this is that internally, there is a table of pointers at the
beginning of the line. Each line has a marker that indicates whether it is the beginning of a line or a
continuation line. This marker is kept in the negative bit position of the index pointer. Whenever a cursor
up or cursor down occurs, the editor examines the status of these line pointers in order to initialize the
CBM to their proper line number. At any time while the cursor is on the screen, there is a separate value
kept which is the beginning pointer for the first complete line from which the cursor operates. The screen
position is then kept as a separate pointer telling the CBM whether it is greater or less than 40 characters.
Whenever scrolling occurs, the line pointers are moved up in such a way that the concept of the first line
second line is maintained until the line disappears on the screen. This line pointer table is located in
memory locations 224-248.

Now that we understand that the CBM can allow 80 columns, let us see what happens when we do the
insert at the beginning. To print this line, we have to put a ?” at the beginning of the characters. We move
the cursor up and left, until the cursor blinks on the N of NOW. If we insert twice, we can then type a ?”
(it should be noted that this causes the characters on the line to all move to the right). If we now carriage
return, the CBM prints NOW IS THE TIME on two consecutive lines, spaces a line and types READY. If we

35

go up and make a change in the middle of the line, we can see that it makes no difference where we hit
the carriage return in the line. If we space up to the word PARTY the first time that it is on the screen, now
even though the cursor is blinking on the P, a carriage return causes the entire line to be reprinted. The
basic rule is that when a carriage return is struck, regardless of where it occurs in the line, the entire line
is transferred, whether it be a 40-or 80-column line. Sophistication in using the editor will become more
apparent as you use it when writing programs.

SCROLLING

Now that we have a mixture of 40-and 80-column lines on the screen; let 0s investigate what happens
when we try to move the cursor off the bottom. To do this, we just cursor down until the cursor is at the
base of the screen. Hitting the next cursor down causes the entire screen to move up one line. Any time
we attempt to print past the thousandth character on the screen, the screen editor automatically moves
the entire screen up one line.

Lines move up on the screen by a one line or two line jump depending on the status of the top line on the
screen. This is accomplished in hardware by checking the top line pointer plus one. If an 80-column line
is to be scrolled off the top, the 81st character through to the thousanth character are moved to the top of
the screen memory, and the bottom 80 characters of memory are filled with blanks. If only a 40-column
line is to be moved off the top, the 41st character is moved to the first, etc., and 40 characters are blanked
at the bottom of memory. The cursor is positioned automatically in the same position at the bottom of the
screen as it was when you tried to move the cursor down; or in the case of a carriage return andlor
printing, the cursor is moved automaticaily to the left-hand side of the bottom line.

This process is totally automatic and is caused by attempting to print carriage return or space off the
bottom of the screen. There is no other program control over the movement. As we will see when we write
a program that causes scrolling, the scrolling speed on the CBV is too fast to read. If the reverse key is
held down while printing is occurring, the scrolling will be slower by a factor of 20.

HOME AND CLEAR

Striking the home key moves the cursor to the upper left-hand corner of the screen (the first location of
the screen memory). Holding the shift key down and pressing the clear key gives you a blank screen with
. the cursor blinking in the upper left-hand corner. This is accomplished by moving blanks into all thousand
screen positions and again homing the cursor. Clear or home can be given at any place on the screen.

The CBM basically moves data from the keyboard to the screen and then when a carriage return is struck
moves the screen data into a program. This allows the user the flexibility of making a correction on the
screen without having any effect on the program that is going to receive the corrected version. Keys are
provided to allow movement around the screen and to insert or delete, as well as type over any character
on the screen. This allows the entire screen to act as an editing place for user-controlled input.

36

NOTES

37

Chapter 4. BEGINNING BASIC

The combination of instructions to solve a particular problem cannot be taught in a text book. It is a
creative process. Someone who knows how to use the computer uses his intuition or careful planning to
figure out instruction sequences to allow solution of his problem. All that we can cover in this book and
all the CBMcan be - except when it is provided with pre-programmed software - is a tool to use for solving
problems. This book cannot teach you to solve your particular problem. It can, however, teach you how to
use the CBM as an instrument.

THE PRINT STATEMENT
A computer can calculate numbers all day but it is of no value unless the computations can be displayed.
We will begin our discussion of BASIC with the PRINT statement for that reason.

When typing text, PRINT can be abbreviated as ?. A statement such as this:
PRINT “HELLO”
is an instruction to the computer telling it to display on the screen all characters between the quotes --in
this case a word of greeting. On the other hand:
PRINT 1024 *8
is an instruction to print the product of 1024 muitiplied *8.

It is useful to note that BASIC allows you to print more than one value at a given time. Rather than having
it write a line, print ‘A’ and on a second line print ‘B’, it is possible to write the line:

PRINT 1024t 2,1024 4 3
which will print the square of 1024, a few spaces, and then the cube of 1024. Details of the exact format is
contained in the next section. The point here is that you can print as many values across a series of lines
as you can write down.

Unless the computer has been instructed otherwise by means of CMD command, all print outputs are
directed to the built-in screen. The characters are printed in the next available print position on the
screen, under the control of BASIC and an editor which is keeping track of the screen position. Although
the physical representation on the screen is 25 lines by 40 characters, the printing of up to 80 characters
is accomplished by the screen automatically folding over the 41st character onto the next line. The
computer automatically scrolls the screen up one or two full lines when it reaches the one-thousandth
character on the screen. '

The command PRINT has two major forms under the control of BASIC. (1) The standard print single
character which allows for printing the field specified after the print statement has ended in the form
print variable. If the data is presented in this form, the field is printed starting at the current screen
position and followed by a carriage return. (2) Data presented in the form PRINT A, B, then BASIC
automatically tabulates printing ‘A’ starting at the current screen position then spacing over 10
characters, prints ‘B’ followed by a carriage return. In order to cause BASIC to not send the carriage
return after B, a ; (semicolon)is used. PRINT A;B; results in the ‘A’ being printed, then followed by no
extra spaces, variable ‘B’ is printed. The cursor is left at the end of the ‘B’ field. If the variable A is more
than seven characters, ‘B’ will be printed after spating 20 characters,when using PRINT A,B.

BASIC obeys the following rules for printing characters. When the field to be printed is a string, there are
no leading or trailing characters sent. If the field to be printed is a number, BASIC first checks its size.
If the number is less than .01 or greater than or equal to 999999999.2, BASIC prints it using scientific

notation. For example, .0034 is printed as 3.4 E-03 and — 1234567890.5 is printed as — 1.2345678E + 09. If
the number falls between these values, the most significant 9 digits are printed, plus a decimal point if

38

needed. Trailing zeroes after the decimal point are not printed. BASIC always prints a skip character after
a number (unless it is printed as a string).

It should be noted that in order to take full advantage of the CBM’s ability to compose text material on the
screen, unlike most BASICs, the apparent space between fields is always a skip (cursor right) character in
the CBM, which causes the screen to advance the screen pointer by one character; it does not result in any
of the data screen being covered.

Because the CBM allows the inclusion of all cursor positioning as literal characters within a string, the
programmer has full control of the screen print position. The cursor control characters available to use
as literals are clear screen, home cursor, cursor right, left, up and down. By use of these literals, one can
compose fields of any length and in any size starting in any one of the 1,000 character positions
displayable on the CBM screen.

We previously discussed how the CBM screen memory consists of a thousand characters of storage
located at memory location 8000 hexa-decimal. Characters are represented in screen memory in six bit
ASCII code, concatenated with two additional bits. One of these bits is a reverse field and the second one
is the upper-lower case bit.

When printing to the screen, the print subroutine in the operating system automatically translates ASCII
characters into the screen memory form. The various screen control characters are simply movement
characters for the screen printer. The home character moves the printer pointer to the beginning of the
screen. The clear character moves the printer pointer to the beginning of the screen, and inserts the
representation for blank in all of the 1000 characters on the screen.

In BASIC, numbers are represented as 5-byte binary quantities, except in the special case of integers,
which are represented in two bytes. As far as printing is concerned, BASIC prints integers the same as it
does floating point numbers. In fact, BASIC automatically converts integers to floating point and then the
floating point print routine converts the floating point numbers into printable characters.

VARIABLES
We have already seen that the CBM can be used as a large calculator which performs mathematical

functions and then can print the results. However, in many cases, programming consists of developing
intermediate values or performing operations until something equals a certain value. in order to
implement programming at any level, we need to establish the use of functions which can have a variety
of values at any one time. A function that can have any value is defined in both algebra and in
programming as a variable. If you are not familiar with the concept of a variable through mathematics;
then a book on beginning algebra, or perhaps one of the very rudimentary texts on BASIC might help you.
All of our discussions after this will concern themselves with the use of variables.

In BASIC, variables are defined by two character alpha numerics. If the variable is a numeric variable then
it has no trailing character. The character A is considered to be the variable A. Characters AA is a
different variable. Characters A1 is a third variable, but all three are defined as numeric values. If the
variable contains alphanumeric data, it is defined as a string. A string variable now ends with a $. Thus,
A and A$ are numeric and string values respectively and are different variables. AAS$, likewise, is different
from AA, etc. BASIC distinguishes a variable by the fact that the first character is always an
alphabetic character. The second character may be either numeric or alphabetic. An integer variable
ends with %, e.g.A%. '

ARRAYS
Arrays are the fourth type of variable which can be defined in BASIC. Arrays are differentiated by the

39

parentheses which follow them. Parentheses define the particular value within an array which is to be
used in an expression.

A(0,1) refers to the first character in the second row of a two-column array and is different from A, A$ and
A%. All may be specified in the same program. Specific definitions and memory alliocation techniques
for each of the types of variables follows, but first let us address some examples of how one uses

a variable.

Equal is used in two ways: If encountered in an IF-THEN type of statement, equal means the standard
mathematical function: the value to the left of the expression is compared and must equal the value of
the right. Otherwise, when following a variable such as in the expression A=2+2, = means replace the
value in A with the resuitant of the expression to the right.

Originally BASIC required the word LET before any variable assignment, but in CBM the LET is optional
and may be omitted. A=2is equivalent to LET A=2.The command CLR sets all variables in CBM to zero.
To understand how variables operate in BASIC, try the following examples on your CBM. Remember to
press RETURN after each command you enter.

CLR
7A

CBM prints 0.

Now type
A=2+2
?A

This time CBM prints 4.

Now type
7B

CBM prints 0.

Now replace the value of B with twice the value in A, by typing
B=2"A
7B

CBM prints 8.

Now change the value of A by typing
A=2+3

?2A .
CBM prints 5. If you now type

B
CBM prints 8, the same value as before. Until we give a new expression for B or re-execute the one which
says B=2"A, the value of B will remain 8.

FLOATING POINT VARIABLES
BASIC always assumes operation, or operates totally, in floating point arithmetic. Therefore, each normal

variable is assigned space in memory for a standard floating point number.

Four bytes contain a binary representation of that precision. It gives us the capability of specifying about
9 digits precision of a decimal number. Accuracy of most calculations is limited to this representation.
Each variable is also assigned a 1-byte exponent limited to having a maximum value of + 33. Exponents
less than — 34 yieid numbers too small to distinguish from zero.

STRING VARIABLES
A string variable can contain a function, whether it be a number, graphics character, or standard ASCI|
character. There is a specific set of instructions that allow extraction and packing of data into strings which

40

will be discussed later on. The string is limited to the 80 characters of the input buffer. There is a specific
set of functions that allow the construction of strings up to 255 characters (see later text).

INTEGERS
As we have indicated, an integer is simply a whole number. Floating point variables are stored in BASIC

with five bytes; one for the exponent and four for the mantissa, which gives an accuracy of 9 digits. in
many cases, variables can be expressed in much simpler numbers. In order to allow the user most
memory efficiency, particularly in the case of arrays which can take significant amounts of memory, the
CBM has implemented the concept of storing certain numbers as two-byte integer values. Any integer
value between minus 32,767 to plus 32,767 may be stored in the form of a two-byte number with the
highest bit of the number containing the sign.

USE OF PROGRAM AND DIRECT STATEMENTS

Throughout the text, until now, we have been using the program technique which allowed us to get the
CBM to respond directly to the print statement. In this case, BASIC is obeying the command we are giving
it directly, as we type it from the keyboard and hit carriage return. This is so-called direct mode. In this
mode, we can use the CBM as a super calculator. For instance, if we want the CBMto add two numbers and
divide the result by a third, we can ask it the question ?(2 + 8)/5. If you have typed that on the CBM, you
should get the answer of 2 followed by a READY. The CBM will obey any statement given it from the
keyboard, except when it is in the process of executing a BASIC program. In addition to using it as a
super calculator and for teaching with the CBM, the direct mode is quite useful for debugging of
computer programs. Variables can be assigned intermediate values and then small sections of the
program can be executed with GOTO statements to assess why any particular piece of code is not
working correctly. Break points can be put in programs and current status of variables checked with print
commands, again in direct mode, without having to modify your main program. However, except for
debugging or in the case of using the CBM as a super calculator, in order to get the computer to act as a
true computing element, one has to write or load a BASIC program. The difference between execution in
direct mode and a program is that several statements can be grouped together in logical order and then
BASIC will execute all of the statements before asking the user for control.

Suppose we want BASIC to print our HI THERE message vertically as opposed to horizontally. We can
easily accomplish this in a program but not very easily in a direct statement. Rules for program entry are
very simple. Any statement you want to be treated by BASIC as a program statement must be preceded
by a line number. A line number may be any number from 0 to 63,999.

A good habit to develop when typing in lines of a program is to use increnments of 10 or 100. Instead of
1, 2, 3, etc., use 10, 20, 30. This will give you space later to add lines and make corrections in your
program. All you need to remember is that BASIC interprets each line number in order.

To print HI THERE, vertically, each line of our program will type one letter of the message. we are going

to start with line 10 and make each line a multiple of 10.

10?'H”
20?“'”

3077
407“H”
50?“E”
GO?MRH
70?HE"

Whether you are typing in a program or giving direct commands like RUN, you have got to hit RETURN to
tell the CBM to take a look at what you have typed and act accordingly. The lines ten through seventy

41

constitute a program which tells the CBM to print out Hl THERE.
The program is now resident in memory. To execute the program, type RUN. This gives us the HI THERE
printed in the vertical format:

mImI—-4-—I

You will note that we do not have a space between the | and T. One of the reasons we use the numbers in
the multiple of ten is that we can now insert a correction between lines 20 and 30. First, display the
program by typing LIST. This gives us the program printed as follows:

10? PRINT “H”
207 PRINT “I”
30? PRINT “T”
407 PRINT “H”
50? PRINT “E”
60? PRINT “R”
70?7 PRINT “E”

Now type:
25?“”

Press return and relist the program, and we will see that line 25 is inserted between lines 20 and 30. If we
run the program now, we get:

H
1

moxXmI -

This example demonstrates the use of line numbers and the ability to insert lines numbers to make a
correction in a program.

There is another way to get the same effect. First delete the space by typing 25 followed by a carriage
return. Then list the program and see that line 25 has been deleted. Now position the cursor on the space
following the | on line 20, and insert a cursor down. First by hitting the insert key, and then the cursor
down key, if you don’t hit the insert key first, the cursor will move down immediately. But because you
inserted the cursor-down (it looks like a reverse field Q), the cursor will not move until instruction 20 is
executed. Do not farget to hold down shift before striking insert.

“When we now run the program, you see this also gives you the effect of a space on the next line. This
would not always be true, except we had been cheating and using the automatic scrolling capability of
the CBM which clears out the field. Had we programmed a home prior to printing a program, we would not
have received such a nice result. Try programming a home 5?“HOME”, then try a clear 5?“CLEAR”.

The screen editor will allow you to take a program and make changes on any of the lines you display on
the screen. The list command has several features to help you get the right lines to the screen to edit. List
takes programs and prints the contents of the basic program which is stored in memory. The command
L-I-S-T starts at the first line number in memory and lists to the screen device all the instructions to the

42

end. The longer programs features of list which allow you to list only a single line number LIST 20 which
lists just line 20, LIST 10-50 which lists lines 10 through 50 included, LIST-50 which means list all the
numbers from the beginning of the program through line 50 included, and LIST 50- which lists all of the
lines from line 50 to the end of the program. Some combination of the above can be used to find and
correct any piece of program which is currently stored in memory. Try each of the above commands on
your CBM just to see what they do with our little program.

BASIC is an interpretive language related to the direct commands we are execut}ng. BASIC executes a
command by taking the last line typed to it and analyzing the line working from left to right looking for key
words and expressions which it recognizes. Every time it encounters a key word such as PRINT (or ?
which is the token for PRINT), it interprets this word into a command which means something to BASIC.
Command words are stored in memory with bit 8 on to tell BASIC that it is a command word, or key word.
As a program line is entered into RAM memory through the use of the carriage return, BASIC takes the
line number and searches through memory, until it finds the same number, or the number just greater. If
it is the same line number, then the entire line in memory is deleted and a new line is inserted in memory.
In the pre-interpreted state all the key words are replaced with the single character token for the key word.
This allows the interpreter to store commands in the most memory-efficient form. The only data stored
is the data typed in by the programmer such as literals, pointers to the variables, and the keywords.
PRINT, even though it takes five characters to type, only takes one character in memory.

BASIC is called an interpreter because the actual execution of the instructions is done by analyzing the
keyword that needs to be executed in the program line, then executing that keyword under the control of
a series of subroutines. This is a trade-off which results in very memory-efficient storage programs but
longer execution times than would be true of a machine language program. Because CBM BASIC uses
tokens in memory and stores them on 1/O devices whenever a program is loaded and saved, the actual
coding of data on tape or in memory is not transferable to other machines. It is generally not possible to
use BASIC instructions typed in from other machines.

When you create a BASIC program you are operating under two levels of editor: the screen character
editor and the BASIC line editor. The screen editor allows you to change characters within a line until the
carriage return transfers it to main memory. The BASIC line editor allows you to add new lines and modity
and delete old lines.

To delete a line, you type the line number immediately followed by a carriage return. To modify a line,
list it first on the screen and alter it then type a carriage return to re-enter it. To replace a line, enter the
same line number with new text and type carriage return.

There are two ways to execute a BASIC program. The first of these is to type RUN. The command RUN
first clears all the program variables and initializes the program pointers. Then it executes each
instruction of the program in order, starting at the lowest number. Execution continues until there are no
more instructions, and END is encountered, or the stop key is pressed. RUN may have as an argument the
number of the first instruction to be executed. For example, if you type RUN30, our sample program will
print THERE instead of HI THERE. RUN is executed in direct mode. A GOTO statement, also executed in
direct mode, operates the same as RUN except that none of the variables are re-initialized. The GOTO, of
course, must specify the line number of the first statement to be executed, e.g. GOTO 30.

LITERALS
In our HI THERE examples we have used PRINT commands with characters to be printed enclosed in

quotes. In the CBM these are called literal strings. Data is also kept in the CBM in binary floating-point

43

numbers. Much of the data you want to work with in programs is not numeric but alphanumeric -- the way
we talk back and forth as human beings.

These characters are specified to the CBM with literal strings. More specifically a literal is any value
contained within a set of quotes.

To allow the maximum composition of screen data, the CBMhas a special set of graphics characters and
the ability to store and execute cursor control characters which are fed to it by means of literals or other
more sophisticated techniques.

We have already discussed in a section on CBM keyboard input how the CBM stores its data in ASCII.
Graphics characters are stored as an extension to this set. Graphics are produced by shifting from the
original 64 character set and they are stored in memory with a special indicator to differentiate them from
the lower characters on the keys. A literal can be used to draw a line just as easily as it can be used to
print HI THERE.

Any combination of characters within the CBM keyboard may be typed in as a literal and this includes all
cursor movement and the reverse field. CBM has a special mode in the screen editor which assumes that
you are typing in a literal whenever a quotation mark is typed. From the time that the first quotation mark
is typed until the time that a closing quotation mark is entered, all characters are transferred directly to
the screen in a format so that the software which transfers the input line to BASIC will transfer them as
control characters if that is appropriate.

You can see the cursor movement characters flagged with reverse field within a literal. Type a single
quote and see this happen. Reverse field looks like an “R”. Home is an “S” and clear is a shifted “S” or
heart. Cursor down is a “Q’” and cursor up is the shifted “Q” or hole character. Cursor right is a right
bracket and cursor left is the shift of that character and looks like a vertical line through the 5th column of
dots. Insert is a shifted “T”’ which looks like a second vertical line.

You cannot enter a character in reverse field into a literal but you can turn on reverse field with the control
character before your character is printed. The only characters that are allowed to appear in reverse field
between quotes are those which are interpretted as control characters.

Delete is the only editing character that will still work within a literal. Once an odd number of quotes has
been typed on a line, you lose the ability to move the cursor about the screen until either a closing quote
or a carriage return is typed.

You should note at least one time while you are editing that you have fallen into the aforementioned trap
of trying to move the cursor after a quote has been typed. Either type a phoney closing quote or a carriage
return, then cursor up to edit your mistake.

Another method of inserting cursor control characters into already existing text is to use the insert
function. It has the same effect as an opening quote. For example, if you type insert three times and then
try to do a cursor movement, the control characters will be flagged with reverse field just as before. This
mode is easy to get out of because you need only enter as many new characters as the number of times
you struck the insert function. It is suggested that you make up your own examples to play with this.
Examples may also be suggested to you as you make a few editing mistakes.

The ability to readily manipulate the graphics and the cursor movement characters can allow whatever
depth of graphical capability you have the time and patience to program. The computer should be fun. We
recommend that you develop your own programming skills with the text and contionually experiment

with the use of imbedded graphics and cursor movement characters. Remember that you cannot hurt the

a4

machine - the worst that can happen is that you clear the screen accidently after typing in a bunch of
stuff.

REVERSE FIELD

We have shown in the examples of quote mode and insert how once a mode has been established for a
line, the CBM will continue with that function until it is either cancelled by a new control character or a
carriage return. Reverse field works in the same way. It remains in effect until a reverse field off character
is typed or a carriage return is entered.

As described in a previous section on screen memory, reverse field characters are stored with a special
bit on to indicate the black spots in the characters coming from ROM will be all white and all the white
spots will be black. As you will see when you type an example, this gives a very desirable highlighting
effect and doubles the number of potential characters which the CBM can display. This feature is so
useful that it is not only implemented on the CBM display but in some of the CBM hard copy printers
as well.

Here is an example of how reverse field works: Clear the screen and type HI (space). Next hit reverse
field on andtype THERE .Finally type reverse field off, (shifted reverse field on), type (space), CBM.
This gives us a line in which we have highlighted THERE.

Reverse field remains on from the first time the control character is typed and all characters
subsequently typed on the screen will be printed in reverse field until the mode is terminated as we
previously mentioned. This applies equally to keyboard input as well as characters printed from a literal
string.

To get the CBM to type out in reverse field we use a literal with the control character for reverse-field-on
inserted. TYPE ?*'HI (reverse field on) THERE (reverse field off) CBM”’. Note that the reverse field on and off
characters occupy a space on the screen when programming and that they appear in reverse field, but the
THERE is not in reverse field yet. The effect of the quote is to postpone the action of a control character
until the literal is interpreted. Since the reverse field is turned on by setting a bit of each character in
screen memory, a screen position is not required for reverse field on or off when the stream of characters
is received by the program which prints it on the screen. Reverse field remains on until a reverse field off
character or a carriage return is typed.

TERMS AND OPERATORS

The communication with BASIC is either with numbers or with alphanumeric literals. Numbers are always
presented in decimal form even though the microprocessor in the CBM operates in binary mode. In order
to keep the two straight, CBM will assume that whenever we are talking about a number, we are
representing it in decimal form. Later when we talk about hexadecimal numbers, they will always be
preceded by a $--e.g. $00 10 is equal to 16.

As BASIC receives lines, the interpreter divides the characters it sees into several classes. Such as
commands, functions and operators. PRINT is a command to BASIC with a specific function that CBM can
perform.

A function can be something like square root or a variable, or a special function. Whenever you typeTlon
the keyboard, you get a constant of 3.14159265, which can be used in an expression.

An operator is a character that is interpreted by BASIC as an arithmetic function which is to be performed
in evaluating an expression. The following set of operators are defined for BASIC:

Plus sign (+) causes two values to be added together using floating point representation with the results

45

being calculated in a floating point accumulator. The accuracy is limited to 9 significant digits. Minus
subtracts the value to the right of the minus from the value to the left of the minus sign.

« is the BASIC multiply. The value to the right of the multiply is muitiplied by the value to the left.

| is BASIC's divide. All the numbers to the right of the slash are divided into the expression to the left of
the slash.

* means exponentiation. All the values to the left of 1 are raised to power of the value on the right.

Open and close parentheses cause values inside them to be single expressions. All expressions inside
parentheses are evaluated as a single value. Parentheses may be nested and are evaluated outward,
starting from the innermost set of parentheses. In order of precedence, the memory aid “My Dear Aunt
Sally” will help you remember the precedence of operators Multiplication first, then Division, Addition,
Subtraction. Expressions within parentheses are evaluated first starting from the innermost set of
parentheses. The following set of examples should be tried on your CBM to show the operation of the

~ operators and their precedence.

Addition
?22+2

Subtraction
24-2

Multiplication
7672

Division
?12/2

Use of Parenthesis
?4+8/2
?(4+8)2

Order of Operations
?2(2+4*(8-4)2)*3

FUNCTIONS

There are three functions which are available in BASIC which are, at the time of writing, unique to the
CBM. The first of these isTl: Whenever this character is used in an expression, BASIC translates it from the
keyboard character ofTlto the value of 3.14159265 etc. It can be used anywhere in any expression and will
always be evaluated as this number. Example: 21T

TI$ and the value Tl are two ways to communicate with the real time clock within BASIC. As previously
indicated, every time a screen refresh occurs, (1/60th of a second), a value within the CBMis updated. This
value is measured as a 24-hour real-time clock. It is availabie to the programmer in its binary form by the
expression T, which gives the value the current number that BASIC is keeping. This number is kept as a
three byte binary number whose value is stated in numbers of 60ths of a second, or so called jiffies. To
evaluate the amount of time that a particular operation has taken, Tl can be stored in a variable at the
beginning of the sequence and then the difference calculated by subtracting that variable from the Tl at.
the end. This function is accurate to 1/60 of a second.

Ti$ presents and accepts data in the form of hours, minutes,and seconds. When the expression TI$ is
used, it always presents data in string form with two characters for hours, two characters for minutes,
and two characters for seconds. The value of time in the computer is kept in a 24-hour clock. If it is ten

46

minutes past 1 p.m. in the afternoon, TI$ would be printed as 131000. To set the value of the real time
clock, type the expression TI$ = with the number being typed in quotes in 24-hour time. For example, to
set the clock to 2:45 and 30 seconds in the afternoon, type TI$ =144530".

As a personal experience, you should set the value TI$ = to the right time now and after you have done
some additional reading, go back and print it. As with all the other variables, the power-on sequence to
the computer zeros the real time clock.

Care must be taken in use of the value Tl. Remember that the expression Tl automatically goes back to
zero at midnight. One of the authors wrote a loop in a program for graphics display where the program is
waited until the variable Tl is greater than a constant and the value of Ti when the display is put on the
screen. This expression never reached the computed value as Tl goes through midnight. The only way to
compensate for this is to watch for when the time might go through midnight, and readjust the stored
value when it might.

Functions are preprogrammed capabilities of BASIC which can be treated as a single value. Functions
range anywhere from m, which is a predefined function, to sine, which is a capability of BASIC to
compute the sine of a number. When BASIC encounters the code for function, it evaluates the expression
for the function, calculates the resulting value, and uses the value in the command. The use is really quite
simple. If A equals sine of n radians, the expression would be written:

A =SIN(n)

In this statement, we are actually using two functions, m, and sine; BASIC would evaluate this expression
by expanding the value of =, evaluating the function sine and finally storing the result in the variable
space for A. In the expression:

A =2+SIN(n)
after the sine is computed, it is multiplied by 2 and stored in A.

The trigonometric functions, sine, cosine, tangent and arc tangent are all available in CBM BASIC. The
expressions for SIN, COS, TAN all have as their only argument an angle-given in radians. To convert from
degrees to radians, multiply the number of degrees by n/180. For example:
?SIN(90+n/180)
calculates Sin of 90 degrees. To obtain the cosine of 45 degrees:
PRINT COS (45+n/180)

To compute the tangent of 40 degrees. For example:
?TAN (40+r/180)

Each of these functions are computed by tables. Because n is limited to 9 significant digits, in general,
values should be less than 1000 degrees or 6m.

The accuracy of BASIC functions is five parts in ten to the tenth as long as the argument is below 20
radians. Expressions which use the values in radians are a function of the value of n which is accurate
only to ten to the ninth. Arc tangent is the only inverse trigonometric function specified as a function in
BASIC. The function arc tangent computes the value in radians of the expression given on the argument.
Answers are always given between plus or minus 17. The accuracy is 5 parts in 10" In normal use the
result is in radians.

?ATN(.5)

To convert the number to degrees use the following example:
?180/n+ATN(.5)

47

The following general expressions can be used to compute the value of arc sine and arc cosine as a
function of arc tangent.
ARC SIN (X)=ATN(X/SQR(—X*X + 1)
ARC COS (X)= — ATN(X/SQR(— X+X + 1)+ 1.5708

Both the above expressions give the results in radians to be converted to degrees by muitiplying the total
expression by 180/n. (It should be noted that in both the expressions there is a possibility of performing a
division by zero which will result in a basic error. Before using the expression, the arc cosine should be
checked for zero and before using the expression arc sine, X should be checked for it being equal to the
value of one.

MATHEMATICAL FUNCTIONS
The largest legal number that BASIC can handle is +1.70141183 E + 38. Any larger number gives an

2overflow error. The smallest magnitude that can be distinguished from 0 is 2.93873588 E — 39. Any
smaller

number will result in an underflow.

ABS

Absolute value is specified in the form ABS(X). The function returns the value of the expression as a
positive number. There is no inherent accuracy loss. For example:

PRINT ABS(— 145).

145
INT

This expression basically rounds the current value of the parameter to the next lowest integer.
For example:

INT(.23)=0
INT(-2.5)= -3
INT(1.79) =1

Other than the inherent inaccuracy of dropping significant digits, this expression introduces no
additional inaccuracy. However, small inaccuracies in the argument could cause problems. For example,
the number four might, in fact, be stored in BASIC as 3.99999999. When this number is used in the
argument for an integer, the resuit is 3, not 4.

SGN
This expression returns a 1if the sign of the number is greater than zero, a zero if the value is zero, and a
—1if the sign is negative. For example:
?SGN(—45)
-1
?7SGN(+ 10)
1

SQR
This function calculates the square root of any number greater than zero. If a minus number is used, the

result is an ?ILLEGAL QUANTITY ERROR. Accuracy of the expression is 5 parts in 10 to the tenth for the
entire range. 2SQR(16)
4

The following two functions seed themselves with natural algorithms. The aigorithms are base E which
is 2.71828183.

EXPONENT
The parameter defines the power to which the base E is raised. The limit of the parameter is 88.02969189.

48

A number greater than that will result in an overflow. A form of the expression is EXP(X). Aithough the CBM
only allows the flow function for E, other functions are available by ratioing to the Log:
?EXP(1)

Basic logrithmic function is given with the parameter LOG(X) which is logged to base E.
To calculate the LOG to base 10, the expression is written:

LOG(X)/LOG(10)
RANDOM
The random functions are useful for many statistical programs and games. Three basic random functions are
provided. The random number generator uses an algorithm which develops avalue between zero and one. The
argument can be either positive, zero, or negative. Positive numbers always return the next value of a random
number sequence generated by a numerical algorithm in BASIC. it always starts with the same value, or seed
from power-on. However, the seed for the random can be initialized by using the minus value. A truly random
number is obtainable by using a zero parameter. The basic program reads four unrelated interval timers which
are counting so fast relative to the occurrence of real time events, that a true random number is obtained if the
RND(0) is connected with some external event such as program initialization, or striking a key in responfe to
the question in Black Jack, DO YOU WANT A HIT? Either of these gives a truly random number. Repetitive
access to the random function in a program is not random because the relationship of the time is predictable
from the time that the program is initialized. So in a fixed program sequence, the only truly random number is
the first one. A solution to this is to use the RND (0) to generate a truly random seed, use the RND(-AND(0) to
theoretically pure random number for statistical analysis and definitely gives an adequate random sequence
for game play.
The RND of a minus number is not truly random at all. The parameter is passed as a seed to the random
number generation sequence. This technique can be used in debugging programs in a sense that a
predictable repeatable sequence can be obtained by RND minus for program development. As previously
discussed, it is also the way in which the RND of zero can be passed as the parameter to the random
number generator.

Another technique is to take the RND of time which is also a random number, although for gaming
purposes, it is not as desirable as the use of RND zero.

Suppose in a game program you want to simulate rolling a six-headed die. Initially, you can seed the
random number generator with the instruction

D=RND(-TI)

Subsequently, you can compute the value of the die with

D=INT(6*RND(1)+ 1)
PEEK, POKE:
PEEK is a function which allows the user to look at any location in the CBM memory. The parameter
contains the memory address in decimal in the CBM which you want to look. The result is a decimal
number between 0 and 255. BASIC is currently constructed so that the contents of any address greater
than hexadecimal C000 is automatically returned as zero. This is a legal constraint, posed by the
company who wrote the BASIC software to protect their copyright.

Example: To look at memory location 25, the expression is written:
?PEEK(25)

POKE
POKE is not a function but is written like a command. It allows the user to deposit a number into 1/0O or

read/write memory. The parameters are specified in a list after the command. The first parameter is the
memory address of where to put the information. It may range from 0 to 65536. The second parameter is
the actual value to be deposited. It must be between 0 and 255. For example, if we wanted to put the
character A at the first location of the screen memory we would write

POKE 32768,1

Some locations in memory cannot be changed (ROM) and others should not be changed (BASIC and
system variable RAM or /0). if you POKE the latter, be prepared to reset your machine.

49

USR
The USR is a function which is designed to pass a parameter to a language program using the jump

address located at memory location one and two in the CBM. See the section on machine language
programming for a detailed description and use of this function.
FRE
This function tells you how many bytes are left in memory. Although it is a true function since it can be
used in an expression, it is normally used in direct mode in the form:

?FRE(0)
FRE forces a BASIC action called garbage collection. This consolidates all unused bytes into one large
block so that they can be efficiently allocated.
Several functions exist to aid in formatting data when it is printed on the screen or hardcopy printer.
TAB
This format function places the cursor at the column specified in the argument. The argument goes
through the INT routine. The legal range is 0<X<255. If the cursor is past the location specified, thetab is
ignored. Note: TAB uses skip characters, not spaces.
POS
This function returns the position of the cursor. The position is reset to zero at each carriage return.
Note: HOME and CLEAR do not affect POS even though the cursor is set to the first column.
SPC
This format function prints out the number of skips specified in the argument (which goes through INT).
Legal range is 0<X<255.

NOTES

50

Chapter 5. ELEMENTARY PROGRAMMING

Use of decision logic in writing programs.

A major advance in BASIC programming is the ability to loop back and re-execute lines of a program. It
may be done in two ways - unconditionally with a GOTO and conditionally with an IF-THEN.
GOTO is written to specify a target line number where execution will always branch. GOTO may also be
written with a space between GO and TO. CBM BASIC will recognize both forms.
GO TO 50
GOTO 100
IF-THEN has three forms:
IF (condition) THEN (statement)
IF (condition) GOTO (line number)
IF (condition) THEN (line number)
Conditions are written as two arithmetic expressions separated by a relational operator. CBM BASIC
provides six relational operators: <, >, =,<>,<=,>=.

Until now we have been developing programs which do single functions in serial order. You should be
familiar with the concept that says that first line 10 is executed, then line 20, and other line numtbers in
ascending order.

If we wanted to take and print numbers betwenn 1 and 20, their square and square root values on the
screen, we could write the linear program as before:

10 PRINT 1,1,1
20 PRINT 2,2*2, SQR(2)
30 PRINT 3,3*3, SQR(3)

The big disadvantage of this is that we would have to keep typing in lines until the 20th line.
200 PRINT 20,20*20, SQR(20)

UNCONDITIONAL LOOPING

However, with our concepts of variables and the addition of a loop, we can write a program that

computes values and prints them out without having to type such a long program.

The program reads as follows:
10 PRINT “VALUE”,“SQUARE”, SQUARE ROOT”

Line 10 prints a heading for the column of numbers. It is executed only once.

201 =1+1
Line 20 computes the next number to use. The first time this line is executed, | has

never been referenced so it has an initial value of 0.
30 PRINT Li*1, SQR (I)

Line 30 is like lines 10-200 of the previous program except that the constants have been replaced by a
variable.
40 GOTO 20

Line 40 contains a GOTO command which directs execution back to start again at line 20.

BASIC stores text lines so that a pointer to the next line precedes each line. Using this technique, the
interpreter can quickly examine only the line numbers, determine if a line does exist, and transfer
execution to that line.

GOTO is not limited to branching to a lesser line number but it can branch to a greater number too. You

51

will see a future example of the concept of using GOTO to skip a portion of code.

As before, we type RUN to start our program. The program will continue to print values of | until the STOP
key is pressed. Rapid scrolling of the screen memory makes the screen almost impossible to read, but
use of the reverse key slows the scrolling rate. Holding down the reverse key slows the scrolling by a-

factor of 20.

To stop the loop, press the STOP key. When you want to restart a program either type CONT to cause the
program to resume where it left off or RUN to begin at the beginning.

While this program makes use of the GOTO, it does not really help us to solve the problem we tried to
address - printing just 20 numbers on the screen. However, before we address that, let us introduce a
small mistake into the program. You should see a common error and its cure. If we retype:
40 GOTO 10

and then execute, instead of printing a heading at the top of our program. We will intersperse the heading
with the computed value. Jumping to the wrong place in the program is the most common error made in
programming. Luckily it is most visible in this case. By stopping the program we can use the screen
editor to correct line 40 to go to line 20. You have now fixed the first in a long life of program bugs.

CONDITIONAL LOOPING
The IF-THEN statement allows you to specify a case to test and if the case is true, the statement after the

THEN is executed. A test is specified by putting one of six relational operators between two expressions.
= equal
<> not equal
> greater than
< less than
> = greater than or equal to
< = less than or equal to

If A<B then print “A LESS THAN B”

If the expression is true, the instructions on the same line with the IF statement are executed. If the
expression is false, the program jumps to the next numbered line. if you are in doubt about < and > and
what they mean, remember that the arrow points to the value you would like to see less than the other.
In our example, we can add the statement:

40 IF 1< =20 THEN GOTO 20

The IF-THEN lets us make a variety of decisions at the time we are executing the program. This allows us
to limit the program and cause actions to happen. In this case, we execute the program from 1to 20 and
then finally drop through the instruction.

We can also write the IF statement to skip around the unconditional GOTO. Add two new lines and
restore line 40:

351F =20 GOTO 50
40 GOTO 20
50 END

The program will execute through 20 values and when | is equal to 20, go to the END statement.

Most BASIC interpreters required you to include an END statement to finish your program. This is a
vestige of when BASIC operated non-interactively from cards. END can be used optionally in CBM BASIC
to force program execution to end at a specific point.

IF-THEN instructions have three forms: The first is IF expression GOTO line number. The second is
IF-THEN line number where GOTO is implied. The third form is IF expression THEN followed by a

52

statement to be executed before proceeding to the next line. Expressions in this form might change our
tabie to draw a line between the 10th and 11th value on the screen.
32iIF1=10THEN PRINT “____”

If we try to execute this, you will see that a line is now drawn between the tenth and eleventh value on the
screen because of the statement at line 32. It should be noted that the logical conditions of the IF and
IF-THEN are only two; either the next line is executed, or the THEN statement is executed. Take care
when placing additional programming statements on the line. For example, in:
IF X=5THEN 50:Z=A

the Z would not be executed, because the line either drops through or executes statement
50. However, in

IF X=5THEN PRINT .X:Z=A
the PRINT X and Z = A will be executed if X=5.

The IF-THEN lets us make a variety of decisions at the time we are executing the program. This allows us
to limit the program and cause actions to happen at various points. It is the concept of the unconditional
jump plus the concept of testing values that allows the computer to be used as both control element and
legitimate computing element. The intelligent combination of logical decisions with repetitive operations
makes a program really work. '
DATA ENTRY

Before a computer program can perform useful work, it has to be able to access a data base of some sort.
The program could require only simple data such as YES or NO responses to a game or simulation. A
more complex payroll program might need rates, hours, and tax information. in CBM BASIC there are two
ways to get information into variables.

READ AND DATA STATEMENTS
Only a short time ago when there were no timeshare systems, BASIC could not accept input other than

cards included with the program. Thus, DATA statements were typed and scattered throughout the
program. The command READ was designed to pull out this DATA into variables which could be used by
the program.

When BASIC began running in an interactive environment through timeshare, verbs such as INPUT and
GET allowed direct communication with the BASIC program. READ has been relegated to inputting
parameters that change but not as often -- e.g. tables, etc.

The syntax of READ is the verb followed by a list of variables into which the DATA is to be read.
READ A, B,C, D

READ processes DATA statements as they are encountered in the program. DATA statements at line 10
and 30 might be processed by a READ statement at line 20. DATA is processed sequentially and commas
and end of lines are considered terminators

10 DATA 2, —53, IE10

20 READ A;B

30 DATA 3.14, 1,06E23

Blanks and graphic characters are automatically thrown away unless they are surrounded by quotes. The
quotes are considered to be delimiters for literal characters.
String data can be typed without quotes if it does not contain literals.

50 DATA ABC, DEF

53

Commas within quotes will not be treated by BASIC as field terminators.
60 DATA *,"“ "

It is also possible to type mixed alphanumeric and data fields. Numeric fields may be treated as alpha.
10 DATA 123, ABC, 345
20 READ A, A$, B

It is advisable for the programmer to know how many data statements he has put into the machine or

use some kind of a delimiter at the end of the data. If it is not done, the data is continuously read, and the

program will index its way through all of the data statements. Finally, DATA will be exhausted and when
the next READ is encountered an ?0UT OF DATA ERROR

will occur. Sometimes you may also see this error if you carriage return through READY on the screen

because the CBM thinks you already told it to READ Y.

SYNTAX error results when an attempt to read alpha field into a numeric variable is made.

READ and DATA are implemented in the following manner: The first byte of text contains a zero. This is
really not part of the first line but is a dummy line consisting only of a terminator. When RUN is typed, a
data statement pointer is directed to this byte. Since it is pointing to a terminator, the first READ
command initiates a search for a DATA statement token.

There is one other command available to the programmer which allows him to reuse the stored data.
RESTORE restart the DATA search back to the beginning of memory.

The following brograrﬁ would correctly operate continuously re-reading DATA;

10 DATA 10, 20, 30, 40, 50, 60, 70
201=1

30 READ A: PRINT A

401=i+1

50 IF I8 THEN 30

60 RESTORE

70 GO TO 20

INPUT

When interactive response to DATA requirements became possible, the concept of INPUT from the
keyboard was introduced. Since the classical input device to BASIC was a TTY, the format of input
statements was limited by this device.

Operation of INPUT is considerably enhanced when coupled with the powerful CBM screen editor.
The form of the statement is the verb INPUT followed by a variable list. INPUT satisfies the variables in
sequence.

INPUT A, B, C

When BASIC encounters this instruction, it prints a question mark to the screen then activates the screen
editor, blinking the cursor for input. Because you are under control of the screen editor, cursor movement
characters are allowed up until the carriage return is issued as a terminator.

After carriage return is received, data is handed back to BASIC one character at a time. Data is then
interpreted by BASIC using its input buffer and rules of interpretation.

Leading blanks are supressed, so if you are inputting a string which requires blanks or literals, it is
necessary to enclose the input characters within quotes.

The editor picks up only the characters between the question mark and the current position of the cursor.

54

This allows input of data from a pre-constructed form on the screen.

INPUT data may be delimited by commas as with the DATA statement. When more fields are provided
than are actually required, BASIC responds with
?EXTRA IGNORED
and takes only those characters it requires to satisfy the INPUT list.
On the other hand, when not enough data is inputted, BASIC will respond with
7
and begin blinking the cursor again to get additional input.

If an alphabetic field is encountered during the interpretation of a numeric field, BASIC responds with a:
?REDO FROM START

In CBM, if input is followed by only a carriage return with no other typing, it is considered by BASIC to be a

termination of the program, same as a stop key. This particular feature is a carryover from the days of

teletype BASIC when this was the most convenient way of terminating a program.

The stop key is not operative while the CBM waits for input.

INPUT has a special feature which allows you to indicate to the user what input characters are desired
and in what form they are to be. A literal which follows the input command is printed prior to the time the
carriage return is typed. For example:
10 INPUT “BIRTHDAY”’; A
it would print:
BIRTHDAY?

and wait for you to input your birthday in standard numeric form to value A. Here is an example of INPUT
to calculate the third leg of a right triangle:

10 INPUT “FIRST LEG”; A

20 INPUT “SECOND LEG”;B

30IFA=00RB=0THEN 10

40? “THIRD IS”’; SQR (A*A + B*B)

50 GOTO 10

If you run this program and put in values 3 and 4 respectively, you will get a 5.

We can change our program to see how to combine values on a single line. We delete line 20, list line 10, and
change it to:
10 INPUT “FIRST LEG, SECOND LEG"”; A, B

This change, when you execute it, will accept values typed as 3, 4. You will see that either form is
acceptable, however, good programming practice protects the user from getting confused as to how
many fields go on a particular line. although it is definitely not good programming practice, it is possible
to mix alpha and numeric values.

10 INPUT “NAME, BIRTHDAY”’; A$, A

GET

A major problem with INPUT is that it does not allow real-time programming. All processing comes to a
grinding halt while the user takes his time to enter some characters and strike RETURN. CBM BASIC has
been equipped with a special function which will yield one character at a time from the keyboard or tell
if a key has been pressed.

The command is GET. GET is identical in syntax to INPUT. It is possible to specify a list of variables but

55

generally this is not a good idea because the purpose of GET is to scan the keyboard and return with a
single key closure. When a numeric value is specified
GET A
only numeric keys will be accepted as input. All others will cause the message:
?SYNTAX ERROR

Use of the numeric value is confusing because if no key has been struck, the value returned is zero.
Otherwise it will have a value 1-9 for keys 1-9.

The most desireable way to use GET is with a string variable. If a key has not been pressed, the string
will have a null value (length = 0); otherwise the string will contain the character corresponding to the key
that was pressed. See the next section for a detailed explanation of how strings work.

GET calls a routine which examines the keyboard interrupt buffer. If the buffer is empty, the variable
contains a value of null or zero. I there are characters, the first is taken out of the queue and returned.
Since the length of queue is 10 characters, calling GET 10 times in a loop is a good way to insure that the
queue is empty when waiting for a response. This is particularly useful in interactive games.

The following routine will wait for a key to be pressed and exit only with the value of a key closure:
10 GET A$
20 IF A$="""THEN 10

In this case, "’is a literal which contains no characters and is a null string.

NOTES

56

Chapter 6. ADVANCED PROGRAMMING TECHNIQUES

We have been describing numeric functions primarily, but almost any useful program also has to deal
with alphanumeric data. BASIC has a set of functions to deal with these data. Also, all alphanumeric data
may be expressed as a continuous connection of characters which is viewed by BASIC as the value of a
single variable.

CBM BASIC, has a $ notation which is used to express variables which are strings of alphanumeric data.
All of the rules which apply to normal variables apply to the string variable.

Following the naming conventions, we can create a variable A$ not equal to A% and not equal to A.
Type A$ =“NOW IS THE TIME” and PRINT A$ to show the value of the string. This technique can define a
string of a length up to about 70 characters, depending on the number of characters of the line number -
all that can be entered on a line. However, the limitation on the number of characters that can be stored
in a string is 255. You can build strings larger than can be entered. The accumulation of characters from
an 1/0 device and the construction of data is accomplished by the concatenation of strings. The operator
that is used is + .

We can modify the expression A$ which we have been developing by typing A$ =A%+ FOR ALL”. Print
A$% and you can see that the literal we typed in had a space at the beginning. Unlike numbers which are
formatted by BASIC, the value of the literal is taken literally. A string can contain all combinations of bits
including those that form control characters such as cursor down, and carriage return. This will be
illustrated soon.

BASIC allows string expressions up to 255 characters long. These can be output to the screen or to any
output device which accepts more than 79 characters. Input, however, is usually restricted to 79
characters because of the size of the input buffer. This problem can be handled by breaking strings into
substrings before they are input or by using GET to input each character individually. The substrings or
individual characters can then be recombined into the original string by concatenation.

COMPARISON OF STRINGS
The ASCII table is defined in Figure 2.4. It contains the order in which characters within the CBM are

represented when two strings are compared. Characters within a set of strings are compared starting at
the leftmost character to the end of the field specified.

Using the ASCII table, we can compare a string containing an A’ to one containing a “B” in the same
position. The result is that the second string is greater than the first.

A string containing a blank is less than a “1”, which is less than an “A”, which is less than a “B”. The
string “A” is less than the string “ABC” or any string containing “A” as the first character. All characters
are compared in sequence with the first unequal character defining the relationship between the strings.
Thus the same relational functions may be used for both strings and numbers.

< > for unequal

= for equal

< for less than
> for greater than

Immediately the string comparison feature can be applied to help you construct ordered lists such as a

check file or a telephone directory. Comparisons can also be used to search ordered lists such as a file or
a telephone directory.

57

Try the following program to develop a feeling for sequences and matching functions:

10 INPUT A$

20 INPUT B$

30 IF A$=B$ THEN ? “A$=B$":GOTO 10
40 IF A$ <$B THEN ? “A$ <B$:GOTO 10
50 PRINT “A$ >B$”: GOTO 10

NUMBERS AND ASCII CODES
Two complementary pairs of operations on strings and numbers allow us to put unconventional things

into character strings.

STR$
STR$ is a function of one argument. It returns a string that is the character representation of the

numeric expression:

10X =3.1
20 ?STR$ (X)
RUN
3.1
READY

Positive numbers are preceded by a blank in the STR$ equivalent. Negative numbers have a sign in the
corresponding position.

VAL

VAL is the complement of STRS. It converts a string to a number which may be used for computations. If
the first

non-blank character of the string is not numeric, then the value of the function is zero.

VAL(“Z)
0
READY

On the other hand, VAL will convert as many digits as it can up to an invalid character.

VAL (“3.14 AB”)

3.14
VAL is an excellent function to use with INPUT since it can prevent an inexperienced user from causing a
REDO from START.

CHR$
We have shown that strings may be assigned printable ASCII characters through either literals or direct

INPUT, but some devices require control characters which cannot be produced by normal means. For
example, a CBM printer uses shifted carriage return as a special terminator to indicate a carriage return
with no line feed when it performs overprinting. CHR$ allows you to specify such control characters by
giving the ASCII code number. CHRS$ is a function to convert a number into internal ASCII
representation. The value of the argument must be 0<{=X< = 255.

10 A$ = CHR$(65) + CHR$(66)

20 PRINT A$

RUN

AB
READY.

in the above examples, 65 is the ASCIi code for “A” and 66 is a “B”’. We converted the codes to characters
before concatenating them and printing them out.

58

ASC
ASC turns a character into an ASC!l code number which may be used in numerical calculations. The

parameter is a string.
?ASC(“A”)
65
If the string consists of multiple characters, then this function will return the code for the first character
of the string.
?ASC(“1237)
49
The ASCII code for “1” is 49.

SEGMENT OF STRINGS
In many cases it is desirable to access just part of a string in developing an ordered list. Consider the

problem where in response to an INPUT, a person’s name is typed in. It might consist of their first name,
middle intitial, and last name. It is important that for sorting, however, that not all Johns be together, but
that the list be ordered by last name.

In order to be able to separate parts of strings and use them in expressions, CBM BASIC provides three
functions. Most of your programming with strings will consist of using one of these three functions to
analyze pieces of a constructed string. We will present the use of the functions and define all three at
once as they are essentially the same function. Three combinations are provided mainly for programming
convenience.

LEFTS$, RIGHTS, and MID$

The function specified as LEFT$(string variable, I) gives the leftmost “I” characters of the string
specified. If |

is negative, or zero, or greater than 255, then an ILLEGAL QUANTITY ERROR is printed. RIGHT$(STRING
VARIABLE, 1) gives the rightmost “I” characters of the string expression. When “I” is less than zero, or greater
than 255, an ILLEGAL QUANTITY ERROR is printed.

There are two expressions for MID$. The first most general one is MID$(STRING VARIABLE, I, J). This
expression gives “J” characters from the string starting with the “I”’th character. If “I”’ is greater than the
length of the string, then this will give a null string. If either “I” or “J” negative, or greater than 255, an
ILLEGAL QUANTITY ERROR s printed. For “'J” greater than the number of characters left in the string, all
the characters from “I” to the end of the string are returned.

The second expression is MID$(STRING VARIABLE, |) which is the same as specifying a ““J” greater than
the length of the string. All the characters starting in the “I”” position until the end of the string are
returned. If “1” is greater than the length of the string, then a null string is returned and if “I” is negative,
or greater than 255, and ILLEGAL QUANTITY ERROR is printed.

All of these variables combined will define a new function which allows us to take either the left number
of characters, right number of characters, or a given number of characters starting at a given position of
the string.

To find the last name from our previous example, we can analyze characters starting from the rightmost
character of the string until the first blank is encountered. To implement this program we need one more
function.

LENGTH OF A STRING
The LEN function gives an exact count of the number of characters contained in a string. Non-printing

59

characters and blanks are all counted as part of length.

Strings are stored in BASIC with a 3-byte vector. Two bytes are a pointer to the location in memory where
the string is stored and the third byte is the length, the LEN function extracts this byte.

We can now write a general purpose program to extract the last name from a full name.
10 INPUT“NAME:FIRST, MI, LAST” A%

20 | =LEN(AS$)
30 IFMID$(AS,1,1) =" "THEN 60
401=1-1

50 IF >0 GOTO 30

60 PRINT “LAST NAME = "; MID$(AS, I + 1)
Two variants of MID$ are used here. Line 30 uses the case where a length is specified as the first
parameter. We are using a length of 1 to search for the blank delimiting the last name. Line 60 does not
specify a length in the MID$. Everything beyond the position of the blank is taken.

STRING STORAGE
Strings are stored in the space between the end of your BASIC program and the highest RAM locations.

As each new string is added, a chain grows downward from the top of memory.
Storage is optimized by never creating a copy of a string assigned to a literal. In this case the vector for
the string points to where the literal occurs in text in memory. Likewise, if an expression A$ = B$ is
executed, both A$ and B$ will share the same copy of the string. New string is required only if a
concatenation or INPUT is executed.
A LARGER EXAMPLE OF STRING FUNCTIONS
Using the string functions described thus far we can write a routine which will shuffle a deck of cards for
us and deal them out one at a time. The following routine has applications in many games like poker or
bridge. Note use of the CBM graphics card symbols:

i8s F'F INT "' :REM SET UF DECK WITH ALL 52 CARD:

118 CH="ASEE3 !4* o ET RS RT T 2I SRS

128 CE=Ci+TAPIVIOLYSECETISSIRTRIRQWeY

138 CHSCHCANIHIEI50 T SSHIHT IS

148 Sl i+ T ANZHISGRTHEATHS AR T RISk Y

i%a REM FULL B mw

Zen FE=Z&INTLENS FoE2vdo-1
281 MHi=h Il'ss-* CF F .U : ’r’$=§=§IL$ CCELR+LLLD

.1;45

438 REPM SHRE ;fﬂ' THE DECK
432 —;}A.Tr‘:‘ —;.En—?iii.i‘:ﬁ—i} O TO435
423 =1
435 =T3+PID#CER+2
433 HOFREIMT A CARD
448 Isi’.’Hi
ZE)

.
L4

Pl B O R

[X Mot B 1 AR

-
74
i e

RERTY. ,
The string C$ is initialized to contain a deck of cards. Two characters represent each card; the suit and
rank. As a card is dealt, N$ contains the rank and Y$ contains the suit. The deck string, C$, shrinks each
time so that unique cards are always dealt.

Statement 105 clears the screen. This is done just for show so that the program can illustrate the dealing
of cards. C$ is initialized in statements 110 through 140. C$ is concatenated because the literal
assignment is too large to fit on one line.

60

Statement 200 uses RND to generate an index into C$. The random index is in the range 1to LEN(C$) — 1.
In 201 the index is used to pull N$(rank)Y$(suit) from C$ by the MID$ function.

432 through 435 removes the card from the string so that it will not be dealt again. Since the second
argument of LEFT$ cannot be zero, the R>1 test in 432 prevents an ILLEGAL QUANTITY ERROR.

440 prints each card for our program as it is pulled. 450 tests for the end of the deck and 460 allows the
user to reshuffle.

USER DEFINABLE FUNCTIONS
To this point we have covered all the functions intrinsic to BASIC. Those familiar with mathematics are

used to many more functions in that realm, especially trigonometric. While one could write code to
approximate certain functions in line it becomes very tedious and from a documentation standpoint a
simple expression might become unreadable. Fortunately ,the facility exists in CBM BASIC to define
functions in terms of other functions.

A function is defined in a DEF statement:
100 INPUT B
110 INPUT C
120 DEF FN A(V)=V/IB+C

The name of the function is “FN” followed by any legal variable name. Recall that a variable is either a
letter or a letter followed by a letter or digit.
Thus the following are valid function names:

FNX
FNJ7
FNKO
FNR2

The most severe limitation of user-defined functions is that they must be contained in their entirely on
one line (80-characters). String functions cannot be defined.

The variable in parentheses following the variable name is called a dummy variable. A function may be
defined to be any expression but it may have only one argument. Other variables used in the expression
are considered to be global (have the same value as in the rest of the program), and their current values
are used in the evaluation.

After the funtion definition has been executed, a user defined function can be used as in the following
example:

130 Z=FNA(3)

1407Z

When the DEFFN statement is executed, a simple variable entry is made in the variable table. The first
character of the name has bit 7, the most significant bit, set to indicate it is a function name. Associated
with the name are two pointers: an address of the text where the function is stored and an address of
where the dummy variable is stored. The code to execute a function is re-entrant so that a function may
be defined in terms of other DEF FN. An out of memory error will occur in time as the available stack

space is consumed by recursion.

Figure 6.1 shows some user-defined functions which are ready to be used in CBM BASIC programs.

61

FUNCTIONS EXPRESSED IN TERMS OF BUILT-IN BASIC FUNCTIONS

SECANT, SEC(X)

DEF FNA(X) = 1/COS(X)
FOR X < >n/2

COSECANT, CSC(X)
DEF FNB(X) = 1/SIN(X)
FOR X< >0

CONTANGENT, COT(X)
DEF FNC(X) = COS(X)/SIN(X)
FOR X< >0

INVERSE SINE, ARCSIN(X)
DEF FND(X) =ATN (X/SQR(—X*X + 1))
FOR ABS(X) < 1

INVERSE COSINE, ARCCOS(X)
DEF FNE(X)= — ATN.(X/SQR(—-X*X + 1))+ /2
FOR ABS(X) < 1

INVERSE SECANT, ARCSEC(X)
DEF FNF (X)= ATN (SQR(X*X —1)) + (SGN(X)—1)*n/2
FOR ABS(X) > 1

INVERSE COSECANT, ARCCSC(X)
DEF FNG(X) = ATN (1/SQR(X*X — 1)) + (SGN(X) — 1)*n/2
FOR ABS(X) > 1

INVERSE COTANGENT, ARCCOT(X)
DEF FNH(X) = — AIN(X) + n/2
FOR ANY X

HYPERBOLIC SINE, SINH(X)
DEF FNI(X) = (EXP(X) — EXR(— X))/2
FOR ANY X

HYPERBOLIC COSINE, COSH(X)
DEF FNJ(X) = (EXP(X) + EXP(— X))/2
FOR ANY X

HYPERBOLIC TANGENT, TANH(X)
DEF FNR(X) = — EXP(— XY(EXP(X) + EXP(—-X))*2 + 1
FOR ANY X

HYPERBOLIC SECANT, SECH(X)
DEF FNL(X) = 2(EXP(X) + EXP(— X))
FOR ANY X

62

HYPERBOLIC COSECANT, COSH(X)
DEF FNM(X) = 2/EXP(X) — EXP(— X))
FOR X< > 0

HYPERBOLIC COTANGENT, COTH(X)
DEF FNN(X)=EXP(—X)/(EXP(X)+EXP(—X))*2+1
FORX< >0

INVERSE HYPERBOLIC SINE, ARCSINH(X)
DEF FNO(X) =LOG(X + SQR(X*X + 1))
FOR ANY X

INVERSE HYPERBOLIC COSINE, ARCCOSH(X)
DEF FNP(X) = LOG(X + SQR(X*X — 1))
FORX> =1

INVERSE HYPERBOLIC TANGENT, ARCTANH(X)
DEF FNQ(X) = LOG((1 + X)/(1 — X))/2
FOR ABS(X)< 1

INVERSE HYPERBOLIC SECANT, ARCSECH(X)
DEF FNR(X) = LOG((SQR(— X*X + 1) + 1)/X)
FORO< X < =1

INVERSE HYPERBOLIC COSECANT, ARCCOSH(X)
DEF FNS(X) = LOG((SGN(X)*SQR(X*X + 1) + 1)/X)
FORX < >0

INVERSE HYPERBOLIC COTANGENT, ARCCOTH(X)
DEF FNT(X) = LOG((X + 1}/(X = 1))/2
FOR ABS(X) > 1

GOSUB-RETURN
We have seen how to use the DEF FN to create a single variable function which can be used like any

intrinsic function. The major limitation of DEF FN is that it can consist of only a single algebraic
expression and it must fit on one line.

Often several lines of code will be repeated through a program. These program lines can be collected in
one place and executed by a GOSUB command:
GOSUB 5000

The lines of code are called a subroutine. GOSUB means go to the subroutine. It differs from GOTO in
that GOSUB remembers at which line number it was executing before the GOSUB and can return
automatically to the following line after executing the subroutine code.

A subroutine is stored as a series of lines in BASIC starting at the line number specified by the GOSUB.
The last line of the subroutine must be a RETURN statement. This tells BASIC you want to resume
executing the mainline code after the GOSUB.

63

Example;
10 REM THIS IS THE MAINLINE CODE
20 GOSUB 50

30 STOP
50 REM THIS IS A SUBROUTINE
60 RETURN
If we could take a snapshot of execution, we would see the lines executed in this order
10-20-50-60-30

Five bytes are pushed onto the stack when a GOSUB is executed: a GOSUB token, and two bytes each for
the line number and text address of the GOSUB. The line number following the GOSUB is stuffed into the
currently executing line number and the GOTO routine handles the branch. RETURN restores the line
number and text address from the stack to resume mainline execution. All F O R entries in front of the
GOSUB entry are also eliminated.
The physical limitation on the number of GOSUB'’s in effect at one time is 23. After this many there is very
little stack space left.
Example of subroutines
Consider the factorial function:

nl=1x2x3x..xn ‘
You cannot define this function with the DEF FN command. On the other hand, you can use the following

simple routine to find n! for any given n (up to 34). (NF denotes n factorial)
10 INPUT N
100 I=1:NF=1
110 NF =NF*1
120 I=1+1
130 IFI <=N GOTO 110

140 PRINT NF
The routine on lines 100-140 could be used many times during a program using different values for N. For
example, suppose you want a binomial coefficient:

(7) wrwn

The program would be

10 PRINT “M ="; INPUT M
15 PRINT “R ="; INPUT R
20 N =M:GOSUB100:X =NF
30 N =R:GOSUB100:Y =NF
40 N =M - R:GOSUB100:Z =NF
50 BC=X/1(Y*Z)

60 PRINT BC

70 END

100 I=1NF=1

110 NF =NF*I

120 I=i+1

130 IF1 <=N GOTO 110

140 RETURN

64

TYPE RUN
for the values M=11 R=6.
RESULT IS 462

Subroutines act like a “black box” or complex function within the program. Certain fixed variables are
used to input the data and other fixed variables (or sometimes the same variable) are used to output the
results. For example, in the subroutine on lines 100-140, the variable N is input and the variable NF is
output as shown:

N —> suB100 |=—> NF

NF =N!

When we make N equal to M, R, and M-R respectively, we get NF equal to M!, R! and (M-R)!.
Of course, some subroutines do not need inputted variables as they might just perform a specified
function such as printing a special form on the screen:

sSuB —> print form

NESTED SUBROUTINES
The subroutine on page 45 itself could be used as a subroutine in a program that repeatedly caiculates

the binomial coefficient. Merely change line 70 to
70 RETURN
The subroutine, denoted SUB 10, beginning on line 10 and ending on line 70 has the following structure:

M—> M) -
SUB10 — BC BC=\R
R —>

Ny PNF

SuUB100

Subroutines that are used by other subroutines are called nested subroutines. In this case, SUB100 is
nested in SUB10. Many programs have subroutines nested in subroutines in nested subroutines...The
only limit is the amount of memory available.

Subroutines can also be nested in more than one subroutine. An input subroutine, for example, that
accepts specific characters from the keyboard, prints a winking cursor, and prints the given characters
on the screen, might be called on many times in the main program itself and also in various other
subroutines.

CAUTIONS

A common error in using subroutines is to allow a mainline execution to fall into a following subroutine
and result in a RETURN WITHOUT GOSUB ERROR. Put a STOP or END statement in your code to prevent

65

this
10 GOSUB 20 10 GOSUB 20

20 RETURN 15 END
20 RETURN

Sometimes, you might have a tendency to make everything into a subroutine. If a given subroutine is used
just once, then it should be incorporated into a program where it is used to save execution time and

memory space. On the other hand, subroutines are incredibly powerful programming tools and allow you
to structure your program into blocks. '

FOR-NEXT LOOPS
FOR-NEXT simplifies the writing of BASIC programs by allowing one to specify complex loop structures
with a single statement.

FORI=ATOBSTEPC

The end of the loop is specified by the statement
NEXT

Nested FOR NEXT loops are permitted as long as each loop uses a unique variable. Use of identical loop
variable names may result in NEXT WITHOUT FOR errors.

Exiting a FOR-NEXT loop via a branch will leave the FOR entry on the stack. The best way to handle this is
to assign the maximum limit to the variable then exit the loop through a NEXT.

We have seen how repeated operations can be performed using a counting variable such as | in the
routine.

10 1=1

20 I=1+1

30 IFI <=10THEN GOTO 20

In this case, any routine appearing in lines 21-29 will be repeated 10 times. In addition, the variable | will
have values which range from 1to 10 in increments of 1.

This looping process can be genralized in the case:
10 I=A
20 I=1+C
30 IFI <=BTHEN GOTO 20

The values of | will range from A to B in increments of size C.

Since this process is cumbersome to use, BASIC also provides you with the FOR-NEXT statement:
10 FORI=ATOBSTEPC
20 NEXT

| is the counting variable, A is the initial value, B is the ending value, and C is the increment.

A, B, C may not only be constants, but they can be any valid arithmetic expression
10 FORI=A(2)+1TO J*2 STEP -1

On the other hand, the counting variable can be any floating variable but cannot be integer (1%) or
subscripted I(1,4). When the increments are of size 1(C = 1) you need not include the STEP in the program.

10 REM COMPUTATION OF FACTORIAL
20 NF =1
30 FORI=1TON

66

40 NF=NF*|
50 NEXT

Note how much shorter and more clearly this routine is written compared to the same factorial
computing program written without FOR-NEXT.

Whenever a FOR is executed, a 16-byte entry is pushed onto the stack. Before this is done, a check is
made to see if there are any entries already on the stack for the same loop variable. If so, that FOR entry
and all other FOR entries that were made after it are eliminated from the stack. This is done so that a
program which jumps out of the middle of a FOR loop again will not use up 16-bytes of stack space
each time.

NEXT matches the most recent stack entry or the variable specified as a parameter and resets the stack
to that point. If no match is found, a NEXT WITHOUT FOR error occurs.

GOSUB execution also puts a 5-byte entry on the stack. When RETURN is executed, the stack is searched
for a FOR entry that cannot be matched, When all the FOR entries on the stack have been searched, a
pointer
is left on a GOSUB entry. This assures that if you GOSUB to a section of code in which a FOR loop is
entered but never existed, the RETURN will still be able to find the most recent GOSUB entry.
RETURN eliminates the GOSUB stack entry and all FOR entries made after the GOSUB entry.
NESTED FOR-NEXT LOOPS
FOR-NEXT loops, like subroutines, can be nested, That is, a FOR-NEXT loop may be contained in another
and so on. When doing so, it is important not to use the same counting variable as this will result in

?NEXT WITHOUT FOR ERROR

10 FOR I=1TO 10

15 PRINT “1”

20 FORJ=1TO 10

25 PRINT “J*

30 FORK=1TO 10

35 PRINT "K*“

40 NEXT

50 NEXT

60 NEXT

Lines 40-60 of the above example are confusing at first glance because one cannot tell which NEXT
corresponds to which FOR. Optionally one may specify a variable following NEXT. The variable refers to
the counting variable used in the corresponding FOR but in no way is it required by BASIC to execute
the NEXT.

40 NEXT K

50 NEXT J

60 NEXT |

CBM BASIC will also allow you to write one NEXT that terminates all three FORs at one time
40 NEXT K, J, 1

A NEXT WITHOUT FOR error will result, however, if you are careless in specifying the order of K,J,I.

It is interesting, however, to see how compact the notation appears and how powerful the FOR-NEXT
expressions can be when they are nested.

67

Some hints
You may change the value of the counting variable during the {ooping sequence.
For example,
10 FORI=1TO 8
20 X=X+1
30IFI=7THEN I=8
40 NEXT
50 PRINT X
will compute the value
X=1+2+3+4+5+6+7=28

Similarly, when you exit a FOR-NEXT loop using a branch, you should assign the counting variable the
end value and then exit the loop via a NEXT statement. For instance, you should use

10 FORI=1TO 10

20 IF FNA()=0THEN I=10

30 NEXT:RETURN
instead of

{0 FORI=1TO 10

20 IF FNA(l)=0 THEN RETURN

30 NEXT

SUBSCRIPTED VARIABLES
Array variables need not be declared with a DIM statement if they have only one dimension and contain

less than 10 elements. The total number of elements in an array can be computed by multiplying the
(number of elements in each dimension)+ 1 by the other subscripts. Thus A(9,8) contains (9+1)*(8+1)
elements. Subscripts start at 0 and go up to the maximum value

A(0,0)-----A(0,8)

A(9,0) A(9,8)
Limits on the number of dimensions and size of a dimension are determined by size of memory available
and space available on a line following a DIM. CBM BASIC restrict the total number of
array elements to 256. Each array element requires at least 5-bytes of storage.

If a single dimension array requires more than 10 elements, the DIM statement must be executed before
the first reference. Otherwise, a REDIM’ED ARRAY error will occur.
Example: List of account balances

$100
$135
$567.86
<$987>
$22
<$63>
$50
<$21>
$21

OCOONOOOO A WN

Suppose we need to write a simple program which allowed you to INPUT an account number and a
transaction and keep a running total on each account. We could refer to each account balance as A1, A2,

68

A3, A4, A5, etc. This is acceptable but would require a lot of parallel logic to accomplish the summation

10 INPUT “ACCOUNT, CHARGE"’; I, C

20IF 1=1THEN A1=A1+C

30iIFI=2THEN A2=A2+C

etc.
This list can be stored in a single variable which is actually a list of variables. This list is an array of
values and an individual value is accessed by an index. The index we can use is the account number. Our
program can be reduced to:

10 INPUT “‘account, charge”’; I,C

20 Alh=A()+C

30 GOTO 10
The list we have represented has 9rows and 1 column. Thus it is a 1 dimensional array. A multiple column
table can also be represented. This is a two dimensional array.

Account # Balance #ofiransactions

$100
$135
$57.86*
<$987>
$22
<$63>
$50
<$21>
$21

P O N e T Y

OCO~NOOAWN =

Our table has 9 rows and 2 columns. To access a certain entry position, you must specify the row index
and column index of where it is contained. For example, the quantity denoted by a * isinrow 3, column 1.

In order to use such a table in a BASIC program, you must provide a statement, to describe the number of
rows and columns contained in the array variable.

Such a description is a DIMension statement. For our table of 9 rows and 2 columns we could write
DIM A(9,2)

Let us rewrite our program to update the column containing the number of transactions
10 INPUT “ACCOUNT, CHARGE™; I, C
20 AL =A(,1)+C
30 A(l,2)=A(l,2) + 1
40 GOTO 10

Now suppose that we had a table for each of 5 companies and each company had 9 accounts and each
account had a balance and each balance had a number of transactions. We can describe this as piling
sheets of paper on top of each other and refering to each sheet by number.

69

3

L

N\
N\
N

We have created by this example a multi-dimensional subscripted variable. These arrays correspond to
matrices used in mathematics.

In mathematics, a vector is an ordered collection of numbers:
v={vy, Va,een,Vs)
The above vector has n components and is calied a vector of dimension n.

For example,
v=(3,9,2)
is a vector of dimension 3.

Order is important here since if
w=(3,2,9)
W#v.

Vectors can be stored in memory using subscripted variables. These variables are used in the same way
as the variabies we have seen so far -X, 1%, A$, etc. That is, they call whatever value is stored in that
variable or return a zero or null (*“ ”) if the value has not been previously specified.

Like vectors, subscripted variables have the power to execute a large number of operations using a single
notation. They are especially useful when combined with FOR-NEXT loops as the next example shows.

Example: Dot Product
The dot product of two vectors v & w is a vector, denoted by v ® w, whose ith component (uow)i is v X Wi'

For example, in the four dimensional case, if
v= (v, vy, Vs, V)

and w = (w,, w,, Wi, w,)

Then vew =(v, X Wy, v, X Wy, v3 X W3, v, X W,)

Suppose we had
v=(5,6,7,11,4,6, 1}
w =(9,5,2,1,0,3,2)
Then a program to compute the dot product v ® w might look like
FORI=1TO 7:READ V(I):NEXT
FORI=1TO 7:READ W(I):NEXT
~ FORI=1TO 7:VW(I) = V(I)*W(I):NEXT
FORI=1TO 7:?2VW(I):NEXT

70

DATA 5,6,7,11,4,6.1
DATA 9,5,2,1,0,3,2

SUBSCRIPTED STRING VARIABLES
It was mentioned previously that subscripted variables can be

decimal: A(l)

integer: A%(l)

string: A$(l)
Subscripted string variables are extremely useful as shown in the next program which prints a bar graph
of the U.S. GNP from 1966 through 1974.

GROSS NATIONAL PRODUCTS
(IN $ BILLIONS)

66 $ 753
67 $ 796
68 $ 869
69 $ 936
70 $ 982
71 $ 1063
72 $ 1171
73 $ 1307
74 $ 1413

The program listing is:
READY

16 SP$="":FORI=1TO4@ SPE=SFF+" " NEXT
2B AL =" ARG I Y RS (IS RSO = AECS =" P
21 AECEI=" 1" ASCTI="
26 FORI=GTOS: READVC DD NEX
48 PRINT*IPSPC(E) "GROSS MATIOMAL PRODUCT™
S8 PRIMTSPCS123"CIN & EBILLIONS»N"
166 FORI=GTOS
3 =YD 0SS0 EIHT M
FRINT" Q' STRECEE+I 2" $"STRECWCIDD;
FRINT" @' LEFT$CSFE, Y—90 A Sk (K=Y) > " "
46 HEXT
S08 DATA 753,796,865, 936, 962, 1063, 1171, 1307, 1413
READY.

Ll o Y
[AV I X

ORI LS

The subscripted values V(0), V(1),...,V(8) are the GNP’s for each of the 9 years. The subscripted strings
AS$(0), A%(1),...A%(7) give accuracy to the graph by printing these graphics:

string prints ASC
A$(0) nuli(by

default)
AS$(1) | 165
AS$(2) | 180
A$(3) | 181
AS$(4) - 161
A$(5) I 182 (R)
A$(6) I 170 (R)
A$(7)] 167 (R)
THE HEADING

GROSS NATIONAL PRODUCT
(IN $BILLIONS)

is printed in lines 40 and 50 and then a FOR-NEXT loop on lines 100-140 prints out the eight bars. Line 120
prints out each bar and line 130 prints a cursor up and then the associated year, STR$(66 + 1) and GNP,
STRS(V(1)).
Each bar is made up of Y reverse field spaces and the string A$(8*(X-Y)). The Y is determined by the
formula

Y =INT(V(1)/45;

=INT (GNP/45)

Here, 45 is purely a scale adjustment. The proportions of the bars remain the same when values other
than 45 are used.

Fine tuning on the bar length is accomplished using the subscripted string variable

AS$(8*(X-Y))
Here 8*(X-Y) will range over the decimal values 0 through 7.99...9 but A$ automatically truncates the
decimal part.

DIMENSION STATEMENTS
When using more than 10 subscripts for any variable, a dimension statement must be given. It takes the

form, DIM A$(K), where K is the largest subscript of A$ used in the program. When variables are
redimensioned without a CLR statement or when a dimension statement appears after the variable has
been used, a 7REDIM’D ARRAY ERROR occurs. When a dimension statement is made, space is reserved
in memory for the given number of variables, including the variable whose subscript is 0. It is good
programming sense, therefore, to begin subscripts at 0 and not 1.

Because the variables are divided in storage between arrays and simple variables insertion of an
additional simple variable is a bit more complicated once an array has been defined. First, the entire array
storage area must be block moved upward by seven bytes and the pointers adjusted upward + 7. Finally,
the simple variable can be inserted at the end of simple variable storage.

72

If large arrays are defined and initialized first before simple variables are
assigned, much execution time can be lost moving the arrays each time a
simple variable is defined. The best strategy to follow in this case is to
assign a value to all known simple variables brfore assigning arrays. This
will optimize execution speed.

Function of NEW and CLR on data pointer:
CLR
String pointer equated to top of memory
Data pointer to start of text -1
End of array table to start of variables
End of simple variables to start of variables
NEW
String pointer equated to top of memory
Data pointer to start of text -1
End of array table to start of text +3
End of simple variables to start of text +3
Start of variables to start of text + 3

73

WYY Wao oju; ssejutod fedidulld 29 ainbi4

7818 GlLL S 2601 GZol
sbunys sAele sajgelieA sjuawalels
olsvg
/N /N AN /N /N /N /N welboud jeordky
820l G20l tveot
2618 000
/N /N uonezijeniul ye
(]
rel o 8 S
- o s 2 e c
£ £ s 8 2 £ %
o ® = 3 g 2 o
m L © > N .w N
5 ° 5 5 c : :
) < 2 = S = s
L8 @ & @ 17 o 3
0S 8y 9¥ 144 v 29 oY M33d .
IS 6% LY GP 1537 €9 7)M33d . 952

ANVH NGO OLNI SH3LNIOd TVdIONIYd

74

NOTES

75

Chapter 7. PET INTERFACES AND LINES

As indicated in Figure 7.1, there are four connectors provided, accessible through slots in the rear and
side of the CBM that enable the user to interface the computer with external devices.

As outlined in Figure 7.2, edge card connectors are utilized which are, in fact, direct extensions of the
CBM main logic assembly board itself. There are two contacts to each position of the connector. The
contact identification convention for J1 and J2 is also illustrated in Figure 7.2.

POWER
SWITCH

IEEE488 1.6 A FUSE
ME"‘,"“O‘?S’N?;';‘}%S;O" 2ND CASSETTE INTERFACE J1 | (SLG BLO)
INTERFACE J3
PARALLEL 3-WIRE AC
USER PORT J2 POWER CORD

SERIAL NUMBER

AND
ELECTRICAL SPEC.

Figure 7.1. Simplitied view of CBM showing switch,
fuse, line cord and interfacing connectors.

FROM CBM MAIN LOGIC ASSEMBLY BOARD

Top View
etati \Upper
nsulation
12 3 4 56 7 8 9 1011 12,7 cope
: :: :: = = = = = =3 Lower
A B C D E FH J K L MN Contact
Rear or Edge-on View through stots in CBM {or Pin)

Figure 7.2. Simplified views of edge connectors J1 and J2
to illustrate contact identification convention.

|EEE-488 INTERFACES (Connector J1)
The standard IEEE-488 connector is not used on the CBM. Instead, a standard 12 position, 24 contact edge

connector with .156 inch spacing between contact centers is provided. This permits it to be compatible
with all of the other connections to the CBM.

Keying slots are located between pins 2-3 and 9-10.

Table 7.3 shows the CBM contact identification characters, the connection for a standard |IEEE connector,

76

the IEEE mnemonics and the signal definitions.

Electrical drive capability and line impedance matching is in accordance with IEEE-488 specifications.

Standard
CBM Pin c IEEE é.EEEl Signat
Characters on;ector 'gnal Definition/Label
in Mnemonic
Numbers
Upper Pins
1 1 Dio1 Data input/output line #1
2 2 D102 Data input/output line #2
3 3 Di03 Data input/output line #3
4 4 DI04 Data input/output line #4
5 5 EO! End or identify
6 6 DAV Data valid
7 7 NRFD Not ready for data
8 8 NDAC Data not accepted
9 9 IFC Interface clear
10 10 SRQ Service request
11 11 ATN Attention
12 12 GND Chassis ground and |EEE
cable shield drain wire
Lower Pins
A 13 Di05 Data input/output line #5
B 14 DI06 Data input/output iine #6
c 16 D107 Data input/output line #7
D 16 D108 Data input/output line #8
E 17 REN Remote enable
F 18 GND DAYV ground
Lower Pins
H 19 GND NRFD ground
J 20 GND NDAC ground
K 21 GND IFC ground
L 22 GND SRQ ground
M 23 GND ATN ground
N 24 GND Data ground (D101-8)

Table 7.3. CBM contact identification characters.
IEEE-488 identification characters,
associated labels and descriptions.

RECEPTACLES FOR THE IEEE INTERFACE
A list of frequently used 12 position, 24 contact receptacies that are suitable for connection to the CBM

edge card connector J1 and J2 is shown here:

Manufacturer Part Number
Cinch 251-12-90-160
Sylvania 6AG01-12-1A1-01
Amp 530657-3
Amp 530658-3
Amp 530654-3

Table 7.4. Receptacles recommended for CBMIEEE-488
connectors or parallel user port.

77

IEEE-488 CONNECTORS
The |IEEE-488 standard receptacles are not directly connectable to the CBM edge connector; some of

these are shown in Table 7.5, and belong to the Cinch Series 57 or Champ Series (Amphenol). Aiso shown
are their matching plugs.

Connector . ..
Manufacturer Identifier Description
Cinch 5710240 Solder-plug
Cinch 5720240 Solder-receptacle
Amp 552301-1 Insulation displacement piug
Amp 552305-1 Insulation displacement receptacle

Table 7.5. IEEE standard connectors

Commodore has available a 1 meter long |EEE-488 dual connector-CBMedge connector, cable. Please
contact your local dealer or Commodore for price and delivery.

PARALLEL USER PORT (Connector J2)
The lines for this interface are brought out from the CBM main logic board to a 12 position, 24 contact

edge connector with a .156 inch spacing between contact centers. See Table 7.4 for suitable mating
connectors.

Keying slots are located between pins 1-2 and 10-11.

Table 3-1 shows the CBM pin identification characters, the corresponding labels and their descriptions.
Note that the connections 1-12, the top line of contacts (see Figure 7.6), are primarily intended for use by
the CBM service department or qualified dealers. When using the incorporated ROM diagnostic, a special

connector is used; this jumpers some of the top contacts to the bottom contacts. /t is strongly advised
that the top connectors 1-12 be used only with extreme caution.

Pin Sianal .
Identification igna Signal
Character Label Description
Ground Digital ground.
2 T.V. Video Video output used for external display,

used in diagnostic routine for verifying
the video circuit to the display board.

3 IEEE-SRQ Direct connection to the SRQ signal on
the IEEE-488 port. It is used in verify-
ing operation of the SRQ in the diag-
nostic routine.

4 |IEEE-EOI Direct connection to the EOI signal on
the |IEEE-488 port. It is used in verify-
ing operation of the EOI in the diag-
nostic routine.

5 Diagnostic When this pin is held low during power
Sense up the CBM software jumps to the diag-
nostic routine, rather than the BASIC
routine.

Table 7.6. Parallel user port information.
CBM pin identification characters, the corresponding
signal labels and their descriptions.

Table continued on next page.

78

Table 7.6. Parallel user port information (continued).

Pin Sianal Signal
Identification I..Iglr)‘:l D an:‘
Character a escription
6 Tape #1 Used with the diagnostic routine to
READ verify cassette tape #1 read function.
7 Tape #2 Used with the diagnostic routine to
READ verify cassette tape #2 read function.
8 Tape Write Used with the diagnostic routine to
verify operation of the WRITE func-
tion of both cassette ports.
9 TV. T.V. vertical sync signal verified in
Vertical diagnostic. May be used for external
TV display.
10 TV. T.V. horizontal signal verified in
Horizontal diagnostic may be used for TV display.
11,12 GND Digital ground.
A GND Digital ground.
B CA1 Standard edge sensitive input of
6522VIA.
C PAQ
D PA1 Input/output lines to peripherals,
E PA2 | and can be programmed independ-
F PA3 ently of each other for input
or output.
H PA4
J PAS
K PAG
L PA7
M CB2 Special 1/0 pin of VIA.
N GND Digital ground.

VERSATILE INTERFACE ADAPTER
The lines on the bottom side of the user port connector originate from a Versatile Interface Adapter

(VIA MOS Technology part #6522).
The signals CA1, PA0-7, and CB2, are directly connected to a standard 6522 VIA located at hexadecimal

address E840. (Decimal address 59456).

The parallel port consists of eight programmable bi-directional /O lines PAQ-7, an input handshake line
for the eight lines,CA1, which can also be used for other edge-sensative inputs and a very powerful
connection, CB2. This has most of the abilities of CA1, but can also act as the input or output of the VIA

shift register.

A detailed specification for the VIA is below. All signals on the VIA that are not connected to the user
port are utilized by the CBM for internal controls. Please note that the user should avoid interfacing these

signals in any way.

79

Table 7.7 shows the decimal and hexadecimal addresses in the CBM associated with the VIA.

. Hexa- .

Decimal Decimal $E840+ Addressed Location

59456 E840 2000 Output register for 1/0 port B.

59457 E841 oo Output register for |/O port A
with handshaking.

59458 E842 0019 1/0 Port B Data Direction
register.

59459 ES843 2011 1/0 Port A Data Direction
register.

59460 E844 0100 Read Timer 1 Counter low order

byte Write to Timer 1 Latch
low order byte.

50461 E845 0101 Read Timer 1 Counter high
order byte. Write to Timer 1
Latch high order byte and
initiate count.

59462 E846 0110 Access Timer 1 Latch low order
by te.

59463 E847 o111 Access Timer 1 Latch high order
byte.

59464 E£848 1000 Read low order byte of Timer 2

and reset Counter interrupt.
Write to low order byte of
Timer 2 but do not reset

interrupt.

59465 E849 1001 Access high order byte of Timer
2; reset Counter interrupt on
write.

59466 E84A 1010 Serial 1/0 Shift register.

59467 E84B 1911 Auxiliary Control register.

59468 E84C 1100 Peripheral Control register.

59469 E84D 1101 Interrupt Flag register {IFR).

59470 E84E 1110 Interrupt Enable register.

59471 E84F 1111 Output register for |/O Port A,

without handshaking.

Table 7.7. VIA 6522 Decimal and Hexadecimal addresses in CBM.

PROGRAMMING THE USER PORT
Data lines PAO-7 are individually programmed to function for input or output as required. This is done by

using a software POKE 59459 command to place a number into the data direction register. Table 7.8
shows a practical example of input/output selection.

The programming need only be carried out at the beginning. From then on POKE 59471 can be used to
drive the pins programmed as outputs, and PEEK(59471) will read all the inputs.

80

Command Binary .

Statement Representation Lines Mode
POKE 59459,255 1111111 PAQ-7 Output
POKE 59459,0 00000000 PAG-7 Input
POKE 59459,240 11110000 PA®-3 Input

PA4-7 Output

Table 7.8. Parallel user port example.
Programming of lines PAO-7 for input/output operation.

SECOND CASSETTE INTERFACE (Connector J3)
This interface is brought out from the CBM main logic board to a 6 position, 12 contact edge connector

with .156 inch spacing between contact centers (See Figure 7.9).
A keying slot is located between pins 2-3.

This port is intended for use with the Commodore second cassette system only. Any other connections
are made at the risk of the user. Please note that + 5 volts is not intended for use as an external power
supply.
Table 7.10 shows the CBM pin identification characters, labels and descriptions. Table 7.11 shows some
typical receptacles that are suitable for the second cassette connector.

FROM CBM MAIN LOGIC ASSEMBLY BOARD

Top
View

Upper
Contact

N L2345 o6 o

Insulation

Lower

A B C DE F\?oorn;iarf)t

Rear or Edge-on View through slot in CBM

Figure 7.9. Simplified view of edge connector J3
with contact identification.

Note A-1, B-2, etc., imply a pin A to pin1, pin B to pin 2, connection.
In some special units, pins 1 through 6 were not connected.

Pin
Identification Label Description
Characters

A-1 GND Digital ground.

B-2 +5 Positive 5 volts to operate cassette circuitry
only.

C-3 Motor Computer controlled positive 6 volts for
cassette motor.

D-4 Read Read line from cassette.

E-5 Write Write line to cassette.

F-6 Sense Monitors closure of mechanical switch on
cassette when any button is pressed.

Table 7.10. Second cassette interface port.
CBM pin identification characters, labels and associated descriptions.

81

Manufacturer Identifier
Sylvania 6AJB7-6-1A1-01
Viking 2KH6/1AB5
Viking 2KH6/9AB5
Viking 2KH6/21AB5
Amp 530692-1
Sullins ESM6-SREH
Cinch 250-06-90-170

Table 7.11. A selection of suitable receptacles for connecting
with the CBM second cassette edge connector J3.

MEMORY EXPANSION CONNECTOR (Connector J4 and J9

The memory expansion connector provides access to the buffered
and decoded input/output lines from the 6502 microprocessor. Figure
7.12 shows a simplified view of the 80-position connectors used. The
spacing between contact centers is 0.1 inch.

Note that the 40 top edge “B” connections (or pins) are ground
returns for the corresponding 40 lower edge “A” connections.

DAUGHTER BOARD EXPANSION CONNECTORS (J4, J9, J1@, J11)

The CBM main logic board has been designed to support a daughter board which attaches to memory
expansion connectors J4 and J9, and expansion power connectors J10 and J11. Table 7.12 shows
suitable connectors which the user may attach for his own boards. All connector pins are on .1" grid.
J4 and J9 are 2x25 (row, column) configuration, and J10 and J11 are 2x7. Table 7.13A lists the
daughter board power connections and table 7.13B lists the memory expansion connections.

Memory expansion bus table 7.13B

Daughter board power connections table 7.13A

® 600 0 0 0 @0 OC o0 00

1234567 1234567
J10

pin # function pin # function

1 -5V Raw power 1 +9 unregulated

2 -5V Raw power 2 key

3 key 3 key

4 +12V Raw power 4 +9 unregulated

5 +12V Raw power 5 ground

6 Ground 6 +9 unregulated

7 Ground 7 Ground
Manufacturer contact grid identifier
Spectra-strip 2x7 8@2-1¢4
Spectra-strip 2x7 8@2-114
Spectra-strip 2x25 8@2-g5¢
Spectra-strip 2x25 8@2-150
Circuit-Assembly | 2x7 CA-14-IDSC
Circuit-Assembly | 2x25 CA-50-IDSC

Table 7.12. A selection of suitable receptacles
for connecting with CBM daughter board pin
connectors J4, J9, J1@, and J11

1 2 3 45 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 25
Side A® © © © 000000000000 0000600000

SideB® @ © 0000060006000 0606060600600090¢0

82

pin # function pin # function
Side A1 ground 14 BA12
2 BA@ 15 BA13
3 BA1 16 BA14
4 BA2 17 BA15
5 BA3 18 SYNC
6 BA4 19 IRQ
7 BA5S 20 Memory Management
8 BA6 21 BO2
9 BA7 22 BR/W
10 BAS8 23 BR/W
11 BA9 24 DMA
12 BA1g 25 ground
13 BA11 Side B1-25 ground
pin # function pin # function
Side A1 ground 14 SEL 6
2 BDg 15 SEL 7
3 BD1 16 SEL 8
4 BD2 17 SEL 9
5 BD3 18 SEL A
6 BD4 19 SEL B
7 BDS5 20 CAS
8 BD6 21 RAS
9 BD7 22 RES
10 SEL 2 23 RDY
11 SEL 3 24 NMT
12 SEL4 25 ground
13 SEL 5 Side B1-25 ground

Table 7.13C shows the PET pin numbers, line labels and line descriptions.

Connector Line . L

Pin Numbers{ Labels Line Description
J9-1 GND Logic Ground
J9-2 BAD Address bit @, used for memory expansion. Buffered. (7
J9-3 BA1 Address bit 1, used for memory expansion. Buffered. ! l
J9-4 BA2 Address bit 2, used for memory expansion. Buffered.
Jg9-5 BA3 Address bit 3, used for memory expansion. Buffered. H@i
J9-6 BA4 Address bit 4, used for memory expansion. Buffered. k“
J9-7 BAS Address bit 5, used for memory expansion. Buffered.
J9-8 BAG Address bit 6, used for memory expansion. Buffered.
J9-9 BA7 Address bit 7, used for memory expansion. Buffered. r
J9-25 GND Logic Ground.
J9-10 BAS8 Address bit 8, used for memory expansion. Buffered. /}U
Jo-11 BA9 Address bit 9, used for memory expansion. Buffered. i
J9-12 BA10 Address bit 1@, used for memory expansion. Buffered. N\
J9-13 BA11 Address bit 11, used for memory expansion. Buffered.
J9-14 BA12 Address bit 12, used for memory expansion. Buffered.
Jg9-15 BA13 Address bit 13, used for memory expansion. Buffered.
J9-16 BA14 Address bit 14, used for memory expansion. Buffered.
Jo-17 BA15 Address bit 15, used for memory expansion. Buffered.
J9-19 iRQ Interrupt request line to the microprocessor.
J9-21 BO2 Buffered phase 2 clock.
J9-22 BR/W Buffered read/write from 6502 microprocessor.
J4-10 SEL 2 4K byte page address select for memory locations 2¢@@-2FFF.
J4-11 SEL 3 4K byte page address select for memory locations 39p@-3FFF.
J4-12 SEL 4 4K byte page address select for memory locations 40@p-4FFF.
J4-13 SEL S 4K byte page address select for memory locations 50@@-5FFF.
J4-14 SEL 6 4K byte page address select for memory locations 600@-6FFF.
J4-15 SEL 7 4K byte page address select for memory locations 70@@-7FFF.
J4-16 SEL 8 4K byte page address select for memory locations 80@0-8FFF.
Ja-17 SEL 9 4K byte page address select for memory locations 900@-9FFF.
J4-18 SEL A 4K byte page address select for memory locations AQPP-AFFF.
J4-19 SEL B 4K byte page address select for memory locations B@@@-Bfff.
J4-22 RES Reset for 6502 microprocessor. Note: connected to 74LS00 output.
J4-23 RDY Ready line to the microprocessor.
J4-24 NMI Non maskable interrupt to microprocessor.
J9-1 GND Logic ground.
J4-2 BDg@ Data bit 8. Buffered.
J4-3 BD1 Data bit 1. Buffered.
J4-4 BD2 Data bit 2. Buffered.
J4-5 BD3 Data bit 3. Buffered.
J4-6 BD4 Data bit 4. Buffered.
Ja-7 BD5 Data bit 5. Buffered.
J4-8 BD6 Data bit 6. Buffered.
J4-9 BD7 Data bit 7. Buffered.
J4-20 RAS Dynamic RAM RAS.
J4-21 CAS Dynamic RAM CAS.
J4-25 GND Logic Ground.

83

ADDITIONAL BASIC COMMANDS
By this time, the user is probably familiar with the use of the commands INPUT and PRINT. INPUT

permits the output or display of data. These commands are common to all forms of BASIC.

To add flexibility to the CBM computer system, several commands have been added to classical BASIC in
the CBM, and future Commodore products will take advantage of the resulting extra capability. In general,
enhanced flexibility of data interchange between the CBM and peripheral devices is possible, thanks to
the use of these extra commands.

To communicate with any device, a combination of the additional commands is used:
a) OPEN/CLOSE Open or close logical file.

b) PRINT# Write data from CBM to I/O device.

c) CMD Same as PRINT# but leaves |IEEE device an active
listener on bus after execution of command.

d) INPUT# Read data from /O device to CBM.

e) GET# CBM accepts one character from /O device.

INPUT/OUTPUT COMMAND PARAMETERS
In order to use the additional commands referred to in the above, four parameters must be taken into

consideration:

a) Logical file number (LF)
b) Device number (D)

c) Secondary address (SA)
d) File-name (FN)

These parameters can appear, for example, when using the OPEN# command in the form of the
statement:

OPEN LF,D,SAFN .
LOGICAL FILES
Files are used to store and retrieve data, as for example in the case of a magnetic tape or disc file. A
convenient extension of this idea is to regard any device which can receive and/or generate data as a
logical file. To the CBM operating system, data might just as well have come from, or be going to, a
storage system such as magnetic tape.

For example, imagine that an external digital voltmeter is set up so that it can transmit voltage readings
upon request to the CBMvia the IEEE bus. Sometime during the “voltmeter program’ the programmer will
have to open a file and assign a logical file number to refer to the voltmeter. Once this has been done, The
CBM can use a “read” command (INPUT#) which uses the logical file number to refer to the voltmeter.
When no further data is required from the voltmeter, the logical file can be closed.

More generally, the advantages offered by the use of logical files are:

a) Every device number secondary address combination
can be associated with its own unique logical file number
within a program.

b) Multiple files within a single device can be refered to

by means of distinct logical file numbers. This approach is
to be used in the newly developed disc storage system for
the CBM.

¢) Once alogical file number has been defined in an OPEN

84

statement, within a program, only this number need be used

in the following input/output statements. This eliminates the

need for further restatement of device number, secondary

address (where used) and file name (where used).
Although it is permissable to identify and use many logical files in a given program, the CBM operating
system has to keep track of the files that are currently in use in the program. The greatest number of files
that can be controlled by the CBM at one time is ten. A logical file number can be any integer in the
range 1 through 255.

DEVICE NUMBERS
All devices which the CBM communicates with are assigned numbers. The first four of these are reserved

for the following peripherals:

Device
Number Device
0 Keyboard

Default- 1 Cassette 1 panel mounted; (add on: 16N, 32N
2 Cassette 2 add-on
3 Video screen

All other devices are automatically assumed by the CBM to be IEEE devices, and control is transferred to
the device which will have been allocated a number within the range 4 through 30. Except in special
cases, a specific number would be allocated to each |IEEE device to allow the CBM and a particular device
to communicate using the parallel IEEE-488 bus.

On many |EEE devices, the allocation of the device number is made by means of a switch, or in the case
of less expensive products, by the connection of jumpers.

SECONDARY ADDRESSES
The concept of secondary address may be new to those people who have never worked with the |EEE bus.
The use of a secondary address permits an intelligent peripheral to function in any one of a number of
modes. For example, in a CBM printer, there are six secondary addresses:

Secondary

Address Operation

Default- 0 Normal printing
Printing under format statement control
Transfer data from CBM to format statement
Set variable lines per page
Use expanded diagnostic messages
Byte data for programmable character

Qb WN =

In short, by changing the secondary address used to communicate with a given physical device, its
operating characteristics can be totally changed, if so desired. Many of the IEEE devices have their own
particular secondary address conventions which must be followed. Specific data on these conventions
can be obtained by consulting the manual for that particular device.

The CBM tape units have a special set of secondary address rules:
Secondary
Address Operation
Default- 0 Tape is being opened for “read”
1 Tape is being opened for “write”
2 Tape is being opened for “write’” with an “end of
tape” header being forced when the file is closed.

85

The secondary address can have values over the range 0 through 31.

FILE NAMES

In random storage devices where there is more than one file to be accessed, the use of names to identify
files is mandatory. In the case of tapes, a file name is desirable, even if there is only one file on the tape, since it
facilitates the identification of tapes.

For the two cassette tape units of the CBM, a file name may be any combination of up to 128 characters.
When a file name is searched for, it is matched on an ascending character basis.

Assume that an eight character file name COUNTING was specified when writing. If desired, this could
be searched for with an abbreviated name such as COU. The first file header that is found with these
three consecutive characters will then be opened and positioned on. In principle, this could include
unwanted file names such as COUNT or COUNTRY, as well as COUNTING.

It is, therefore, advisable to specify the complete file name in order to avoid errors.

For other devices which use named files, the individual description of the device should be consulted in
order to ascertain the specific requirements for file name usage.

TAPE CASSETTE OPERATION FOR FILES
The CBM devotes special attention to the two tape cassette units that can be attached to it. The tape units

are specially modified so that the CBM has control over the motor movement of the cassette.

it can also sense when the PLAY, REWIND, or FAST FORWARD buttons have been pushed; this is done
by means of a single switch mounted in the tape unit.

Note that the same switch is used to sense all three buttons: if any of the three is pushed, the CBM will
think that you pushed the PLAY button and will respond accordingly.

Because of the type of mechanism used in the tape unit, the user must rewind, fast forward, stop, load
and eject tapes. He must also put the unit into the write mode by pushing the record button either
simultaneously with, or before the PLAY button is pressed.

The CBM has total control over the movement of the tape once the appropriate buttons have been pushed
to engage the motor.

Messages displayed throughout the program will tell the user when it is necessary for him to initiate the
function of play or record. Logic dictates the times when the user should rewind and fast forward.

The two tape units of the CBM are handled independently, and the various control lines permit the reading
of data from cassette #1, the reading of data from cassette #2, motor control of cassette #1, motor
control for cassette #2 and a common write line.

FILE RECORDING TECHNIQUE

The data structure embodied in the tape files will ensure the maximum memory utilization and maximum
reliability of recording.

To accomplish this, the CBM records data at two audio frequencies in two consecutive blocks of data. All
of the data is totally repeated and by means of error checking techniques incorporated in the CBM
software, it is possible for most audio dropouts to be corrected by the operating system utilizing the
redundant data stored in the second data block.

In order to correct for (a), the fact that tape units record at different speeds, and (b), the normal drag
characteristics of tapes, a speed correlation technique is used during reading. To correct for the
individual start/stop characteristics on the tape and syncronize correctly between each block on tape, a

86

single tone is written between blocks. This signal is used to syncronize both position and speed of the
tape. Varying lengths of tone are used at the beginning and between the data blocks of the tape. By
writing about ten seconds of the tone on each opening of a file, the CBM automatically corrects for normal
leader. Individual tape blocks are separated by shorter tone durations.

FILE HEADERS

An important assumption underlying the tape system design was that the user would often want to
record more than one file of data on a tape. In order to facilitate this and to aliow for proper label
checking, the first physical data recorded on tape for any operation is a file header. This file header looks
exactly the same as the normal data block, except that the first character of every block on tape contains
an identification character which enables the operating system to differentiate between program blocks,
data blocks, file headers and end of tape headers.

The CBM allows for up to 128 characters of a file name to be stored in the file header. This is the name
which is searched for and matched on in the various OPEN/CLOSE options.

TAPE BUFFERS

Another basic premise in the design of the tape operating system was that the user would want to write
tape independently of what is occurring on tape at a given moment. This is accomplished in the operating
system by permanently assigning a block of memory as a data buffer for each cassette. A 192 character
buffer is located at decimal address 634 for cassette #1, followed by a 192 character buffer at decimal
address 826 for cassette #2. The tape file header is written into the buffer first and then written on tape.

Data files are accumulated in the tape buffer until 192 characters are exceeded, then the contents are
either written on tape for write, or if the program is reading tape, the next block of data is read into the
buffer. Tape file headers and all data blocks are, therefore, 192 characters long.

Tape buffers are not used in the case of program files, since these are written onto the tape directly from
the memory in which the program resides. In order to accomodate the variable memory location, the file
header for a program file contains the beginning and ending address for the program. The full program is
written onto tape in the usual form of two consecutive redundant blocks.

MULTIPLE FILES
In order to have multiple files on tape, the user needs the ability to add files to a tape and also know when

atape is at its end. It is, therefore, important that the operating system give an “end of file” and “end of
tape” indication.

In the case of data files, an “‘end of file” marker is appended after the last data character. This is available
to the user in a status word on reading; the “‘end of file” marker is automatically inserted when a write file
is closed.

In the case of program files, because all data is always contained in a single block, the end of the block
signifies the end of the program.

To signify that the end of the tape has been reached, a special separate file header is written. When this
is encountered during a search for files, the CBM automatically stops the tape and indicates “file not
found” to the user. A typical multiple file tape could contain first a data file, then a program file, followed
by an “end of tape” header as illustrated in the example of figure 7.14.

87

10 seconds of leader

192 character file header block

2 seconds of leader
192 character data block
Data file

2 seconds of leader

Last block of this file

10 seconds of leader

192 character file header block

l 2 seconds of leader
Program file —_

10 byte
32K byte
program block

2 seconds of leader

optional 192 characters
end of tape header

Figure 7.14. An example of multiple file structure.

LOGICAL FILE I/O OPERATIONS: GENERAL
These operations can be subdivided into three steps:

a) Open the file - tell the CBM everything it needs to know about the file.
b) Read data from, or write data to the logical files.
c) Close the file - allow the CBM to clear up the device and terminate the active file.

These steps are discussed in detail on the following pages.

OPENING FILES
In order to tell BASIC about the file you want to operate on, it is first necessary to open the file. This is
done by the following statement:

OPEN logical file, device, secondary address, file name

More specifically, the statement consists of the command OPEN followed by the logical file number,
then the device number to which the file is assigned, then the secondary address data (if any)
communicated during the interaction of BASIC with the file, and last, the name of the physical file (if any).

88

This statement, or expression, is interpreted by BASIC, and could, therefore, use computed logical file
numbers, device numbers or secondary address data. This capability is extremely useful when handling
multiple file devices such as discs.

The keyword OPEN and the logical file numbers are essential in order to open a file; that is address a
device in preparation for a “read” (INPUT #) or a “write”(PRINT #).

The device number is optional; if not entered, the default value “1” will be used.

A file name is optional, though preferred, for the tape units: however, a name would be essential for a disc
storage unit.

EXAMPLES OF OPEN STATEMENTS
The statement OPEN 1,2,1 is interpreted by the operating system as saying:

Parameter
(LF) Logical file #1 has been opened
(D) Logical file #1 has been assigned to tape unit#2
(SA) Tape unit #2 has been instructed to write on tape
(FN) A file name has not been assigned to the tape record
Similarly, OPEN 3 is interpreted as saying: (F)
Parameter
(LF) Logical file #3 has been opened
(D) Logical file#3 has been assigned to tape unit #1 (default “1”)
(SA) Tape unit #1 has been instructed to read from tape (default “0”)
(FN) No file name referred to

If a CBM printer is assigned “4” as a device number, then OPEN 12,4,1 is interpreted as:

Parameter
(LF) Logical file #12 has been opened
(D) Logical file #12 has been assigned to device #4
(SA) Printer has been instructed to print under format statement control
(FN) File name not applicable

LOAD
A special case of the OPEN command is the LOAD of a named file: a LOAD is done with the following statement:

LOAD name, device number

The operating system automatically generates an OPEN using the appropriate secondary addresses for
“load”. This OPEN causes the loading device to search for a program name. After the program is found, it is
automatically read from the device and loaded into memory starting at an address specified in the file
header. Most reading errors on the first pass through that program are automatically fixed on the second pass.

At the end of the load cycle, a checksum error, of the total program is made. If a checksum error, or if an

89

uncoverable read error occurred, the operating system automatically prints 7LOAD ERROR and stops
the load program.

If the program load was from direct mode, the clear function is performed at the end of the load, thereby
initializing all variables.

If the LOAD is called from a program, then the CBV treats this LOAD as an overlay. The new program is
loaded into the space used by the previous program, but the values of all of the variables are maintained
from the previous program. This allows for one program to call another and pass parameters to the called
programs.

The only restriction on this isthat all the called programs must fit in the same, or less space as the first programr

Because BASIC totally replaces the current program, it is not directly possible to have a single main
program and several subroutine overlays, however, by including the main program with each overlay, the
same effect is obtained with some loss of speed.

The combination of the use of named files and overlays allows the writing of very large structured
programs of appreciable complexity.

VERIFY
This very instruction is a special case of LOAD. It should be used after every program SAVE.

The command causes BASIC to go through all the steps of a program LOAD, with the exception that the
data does not get loaded into memory, but, instead, gets compared with memory. If either first or second
pass errors occur, the CBM will type out ?VERIFY ERROR which means that the program should be saved
again before it is lost. On VERIFY, the status word has the following meanings

Code Meaning
4 Short block
8 Long block
16 Unrecoverable read error
32 Checksum ERROR on tape

SAVE
SAVE also performs an automatic open and close. The SAVE is specified by the statement:

SAVE name, device number

If the physical device is one of the two tape units, the operating system automatically initiates a tape
header and opens a tape file with the appropriate name. The file header is written with the beginning and
ending address.

If the device is an IEEE-488 device, a special open message is sent indicating that the CBM is sending a
program file.

The program is then written directly from its memory locations to the tape or the IEEE-488 bus.

If the SAVE is on tape, a checksum is computed and also saved and then the whole program is written
again to give the redundant recording. At the end of the program, the tape is automatically stopped and
positioned for the next data.

|EEE-488 SPECIAL FEATURES A
In the tape, the program beginning and ending address are stored in and retrieved from the tape file header.

In order to more efficiently use the |IEEE-488 data, the starting address of the program is sent as the first
two bytes of data on a SAVE and retrieved from those positions on a LOAD.

90

IEEE-488 OPEN CONSIDERATIONS
If the OPEN command selects a device which has a value of 4 or more, the operating system assumes
that the device is an IEEE-488 device.

If the OPEN does not specify a file name, then nothing is communicated on the IEEE-488 bus. However, if
a file name is specified, the operating system sends a listen attention sequence to the device number
specified in the OPEN along with a secondary address which is the OR of hexadecimal “F0” and the
secondary address specified in the OPEN statement.

Commodore-supplied peripherals, such as the floppy disc storage system, will use this secondary
address and also the file name, which is then transmitted to the listening device in order to transfer data
later to the open file.

TAPE FILE OPERATION MODES
tape files can be opened for two distinct purposes:

a) In order to write from the CBMonto tape.
b) In order to read from tape to the CBM.

OPEN FOR WRITE ON TAPE FROM CBM
The flow diagram of Figure 7.15 outlines the CBM-user interaction and CBM function when opening a file

for write on tape. The initial block shows that there are two ways of opening the file:

a) OPEN for write-data tape.

b) SAVE-write a program tape.
Note that if the tape file is opened directly from the keyboard, then the message WRITING NAME is
displayed. If the file is opened under program control, and the PLAY and RECORD buttons are depressed
previously, then no message appears on the screen. In this manner, any display material placed there by
the current program is not disturbed.
OPEN FOR READ FROM CBM TO TAPE
The flow diagram of Figure 7.16 outlines the CBM-user interaction and CBM function when opening a file
for reading on tape. The initial block shows that there are two ways of opening the file:

a) OPEN for read data tape.

b) LOAD program into memory.
Note that if the file is opened directly, that is from the keyboard, then the messages PRESS PLAY,
SEARCHING FOR NAME and FOUND NAME are displayed. If LOAD was used, then the BASIC variables
of the loaded program are initialized.

If the file is opened under program control and provided that the PLAY button had been pressed
previously, no messages appear on the video screen in order to disturb material displayed by the current
program. Initialization of the BASIC variables does not occur.

91

OPEN for
Write or SAVE

Name -—» Header
in Tape Buffer

Message:
PRESS PLAY
AND RECORD

Wait for
Switch
Closure

rogram Direct
or Program

Operation

Direct

Message:
WRITING NAME

Header Goes
to Tape

Figure 7.15. OPEN for write from CBM: PRINT#,CMD or SAVE.
OP = operating system takes over.

92

Message:
PRESS PLAY

!

Wait for
Switch Closure

OPEN for
Read or LOAD

Character Block

File
Header Found
?

Yes

Direct
or Program
Oper7ation

Direct

Program

Message: Direct
SEARCHING or Program
FOR NAME QOperation
y
Read 192

Direct Direct
or Program

Oper7ation

Program Message:
LOADING

NAME

|

Read in
Full Program
to Memory

Program

Direct
or Program
0per7ation

Direct

Message:
FOUND NAME

Initialize
BASIC
Variables

? File Not
Found Error

Correct
Name?

Figure 7.16. OPEN for read tu CBM: INPUT# or LOAD
OP = Operating system takes over. B = BASIC takes over.

93

DATA INPUT: GENERAL
The use of the word “input” in this context implies input of data to the CBM from any device.

INPUT#-String and Variable Input
INPUT# is the command used to initiate data transfer from /O devices to the operating system. The

statement format is:
INPUT# logical number file, A,A$,B,B$,etc.

Where A,A$,B, and B$ are numerical and string variables to be inputted (read) from the selected logical
file to the operating system one character at a time.

Because the rules for the BASIC interpreter apply to these input statements, all carriage returns,
commas, terminate fields, nulls, preceeding blanks (except in strings), and other control characters
are automatically deleted.

It is not always possible to mix both numeric and alphabetic data on the 11O device. If a numeric field is
specified, only numeric data in the standard form expected by BASIC is accepted, otherwise a ?BAD
DATA ERROR message is displayed.

If there is any ambiguity about the data coming in, the user should input only to strings and then use the
various string manipulation commands to process the data into the appropriate variables.

Example of Input# Statement
If X represents a series of 50 numbers stored on a tape file named VECTOR and we assume that the PLAY
button has just been depressed on the tape unit#1. Then the following program will read the 50 numbers
one at a time and display them on the video screen.

10 OPEN 1,1,04VECTOR” Open logical file #1. Assign file to cassette 1. Open tape for
“read”. Look for physical file named VECTOR.

20 FOR K=1to 50 Read 50 numbers at one time from cassette 1.

30 INPUT#1,X

40 PRINT X Display numbers on video screen

50 NEXT K

60 CLOSE 1 When 50 numbers have been read, close logical file #1.

GET #CHARACTER TRANSFERS
Not all devices transfer data in a form which is accceptable directly to BASIC. There is a series of binary

data and combinations which BASIC ignores and although many {EEE devices do correctly respond
with data formats which are acceptable to basic, not all do.

In addition, in some cases, it is desirable for the programmer to have immediate access to characters as
they are transfered to the system. GET- fetches from the |IEEE-488, or tape device, a single character at a
time, putting a character in a field specified following the GET#. THE FORM IS:

GET# logical file, field
TAPE INPUT
When reading from the tape file, the data comes to the user I/O independent. Each time BASIC starts on
INPUT# or GET# from a logical device which was opened for read on tape 1 or 2, a special subroutine is
called, which initiates tape input.

As each character is requested from BASIC, it is fetched from the appropriate tape buffer. When the
buffer is empty, the tape input routine suspends the user program and reads the data block from tape
into the buffer and then transfers the next character to BASIC. If a read error occurs, it is noted in the

94

status word.

When the end of file mark is encountered in the buffer, the end of file position of the status word is set on
and carriage returns are forced automatically out until the command is finished.

At the end of a command, BASIC calls another routine which reinitializes the input to be the keyboard and
tells the end of file operation that a command is complete.

|EEE-488 DEVICE INPUT SEQUENCES

All INPUT# or GET# commands go through the same sequence. When the command is first encountered,
the IEEE-488 input initiation routine is called, which sends a talk attention sequence to the device and
secondary address which was specified for that logical file in the OPEN sequence. At the end of the
attention sequence, the CBM ‘establishes itself in a listener mode and attempts to wait for a DAV signal
indicating a single character has been received. If the DAV is received within 65 milliseconds, that
character is handed to BASIC and/or to the other program calling the IEEE-488 routine. Each time the
IEEE-488 routine is called, it will go through the same sequence of getting a single character while
waiting for a time out to occur. If the bus does not respond in 65 milliseconds, then the IEEE-488 routine
will automatically terminate the sequence; giving a read error in the status word to indicate that it has
terminated the sequence.

If during the course of reading the character, the IEEE-488 routine senses an EOl line, it will indicate the
end of information in the status word and will continue to return carriage returns, until the command it
has been currently operating under has been terminated. At the end of the command, BASIC calls a
termination subroutine which reinitializes the device to the keyboard and sends an untalk to the
IEEE-488 bus, thereby, freeing the bus for the next command.

INPUT BUFFER LIMITATIONS

Although data is transferred from the operating system one character at a time, in order to edit, BASIC
accumulates these characters into an 80 column input buffer. This buffer must be terminated by a
carriage return.

On the CBM, shouid more than 80 characters be read, the operating system will malfunction, as the
operating system variables are overwritten. The CBM can be made to function again by switching the line
supply off and on.

This constraint must be kept in mind when using tape and disc file systems.
This means that carriage returns must be written on tapes, discs, or other I/O devices in such a way that
not more than 80 characters per field are written without being separated by carriage returns.

If an 1/O device sends more than 80 characters, the GET command can be used to build your own string
without running into the buffer limitation.

DATA OUTPUT: GENERAL

The use of the words “print” and “write” refers to data output from the CBM to any device.

PRINT#

The command PRINT# must be followed by a logical file number, and then a comma to separate the data
that would follow PRINT:

PRINT# logical file number, data
Data is transferred a single character at a time to the physical device correlated with the logical file
specified in the relevant OPEN statement. Many of the file delimiters such as commas are automatically

95

deleted by BASIC; although this does not greatly effect the printing, it should be remembered that when
reading back from tape or another /O device that file delimiters must be forced. This forcing can be done
by inserting a CHR$(44) or “,” between fields or by only printing single fields in each PRINT# statement
which will force carriage returns between fields. Example:
instead of writing
PRINT#LF,A;B$;C$
which will be sent as
ABSC$
with no delimiters:
PRINT#LF,A;CHR$(44)B$;CHR$(44),C$
or:
PRINTH#LF,A,";BS$;",";C$
which will output: (Note: CR means carriage return)
A,B$,C$,CR
or:
PRINT#LF,A
PRINT#LF,B$
PRINT#LF,C$
which will output:
A CR B$ CR C$ CR

Because BASIC always formats outputs to any devices as though it were outputting to the screen,
PRINT#LF,A,B has several skip characters between the values of A and B, while A;B does not have any
extra skips.

An exception to this rule is the tape where the first skip on output is supressed.

Note: Although both the INPUT# AND PRINT# commands operate in virtuaily the same way as their
equivalent INPUT and PRINT statements do in BASIC, the abbreviated command ? which can be used in
place of PRINT, does not apply to PRINT#. ?# and PRINT# are recognized and reduced to two different
token characters when processed by BASIC. ?# will look like PRINT# when listed but gives 7SYNTAX
ERROR when an attempt is made to execute it.

Examples of the PRINT# Statement
This program will print the series of numbers 1,2,3...50, one at a time on a CBM printer.

100PEN 5,4,0 Open logical file #5. Assign logical file #5 to device #4 (CBM
printer) in normal print mode corresponding to secondary
address “0".

20 FOR K=11t0 50 Print the series of 50 numbers on printer.

30 PRINT#5,K

40 NEXT K

50 CLOSE 5 Close logical file #5.

To write the above series of numbers on a cassette in tape unit #2, only the OPEN line would have to be
modified, if the same logical file numbers were chosen:

100PEN 5,2,1 Open logical file #5. Assign logical #5 to device #2 (tape unit
#2) with a write without “end of tape” designation
corresponding to secondary address ‘1’.

96

20 FOR K=1to 50 Record the series of 50 numbers on tape.
30 PRINT#5,K

40 NEXT K

50 CLOSE 5 Close logical file #5.

In the above cassette example, the data would be accumulated in a 192 character buffer one character at
atime. When the capacity of the buffer is exceeded, then data entry is suspended, the tape started, and
the buffer contents written to tape. The buffer is initialized to accept up to 192 characters and then the
program is allowed to proceed.

IEEE-488 BUS OUTPUT
The PRINT# command causes BASIC to call an output subroutine which initializes an IEEE-488 device for

output. The first step in the command is that the CBMreassigns its normal output from the screen device
to the physical device that was chosen for the logical file in the open routine. A listen command is sent on
the IEEE bus to the physical device and a secondary address specified for that logical file in the OPEN.

BASIC then hands one character at a time to another subroutine which proceeds to transfer that
character over the bus with the CBM acting as a talker and all addressed devices responding listeners.

When BASIC has finished the PRINT#, another subroutine in the operating system is called and the CBV
sends an “unlisten”” command to the entire bus and restores the primary address to the screen. This frees
the whole bus for the next operation.

This unlisten sequence also sends an EOI signal on the bus, along with the last character sent from
BASIC. To accomplish this, each character is stored in a buffer prior to transmission by the IEEE routines
and the previous character is sent.

CMD COMMAND

Normally, each print command deals only with one logical device and at the end of the command entire
bus is unlistened. In some instances, it is advisable to have more than one device on the bus; in order to
facilitate this, the special command CMD is provided. CMD is virtually identical to PRINT#, except that at
the end of the data transfer, the unlisten routine is not called, thereby leaving the device on the bus as
a listener.

The operating system continues to treat the last device to be commanded by the CMD as the primary
output device for BASIC. PRINT or LIST commands are then directed to this-primary device, rather than to
the video screen. More specifically, the CMD of the printer device, followed by LIST, results in hard copy

97

printed listing, instead of a video screen listing. However, since neither the CMD nor LIST command
terminate bus operation for the device, a PRINT# is required to terminate a CMD command.

Examples of a CMD Command

To list:

OPEN 3,4 where 4 is the printer device number

CMD 3

LIST will list just the same as the screen, except on the printer.
to print and write a disc at the same time:

*CMD 3 where logical file 3 is open to the printer.

PRINT#15,A,B,C where 15 is the floppy disc logical file number

(previously opened).
will result in A,B, and C being stored on the floppy but also being displayed on the printer.

To monitor an input device:
**CMD 3 turn on printer
INPUT#15,A,B,C read from floppy

This will result in the data from the floppy being transferred to A, B and C but also being printed as they
are being transferred.
CLOSING FILES
Any logical files which have been opened during a program should preferably be closed when no longer
required, and in the case of tape or disc files, must be closed before the program ends. The following
should be kept in mind:

a) If the total number of logical files currently exceeds ten, then loss of

CBM operation will result.

b) If a logical file assigned to a tape unit is not closed, no “end of file”

mark will be recorded at the end of the physical tape file. If this tape is then

loaded into memory, the CBM will have no way of knowing the file has

ended, and if the unwanted and erroneous data is present from a

previous recording, it will aiso be read into memory.

EXAMPLE OF A CLOSE STATEMENT -
To close any file, the following simple statement is sufficient:

CLOSE logical file
If it is required to close logical file number 5, then this becomes:

CLOSE 5

TAPE FILE CLOSURE
If a file had been opened on the tape, there are two operations that occur: an “end of file”’ marker is
recorded in the next data character, then the tape buffer is forced out onto the cassette.

If during OPEN the “end of tape” option was chosen, an “end of tape file’’ header block is also
forced out on the cassette.

*Must be given each time because PRINT# unlistens the bus.
**Need not be given each time, more code can be included between instructions.

98

IEEE-488 NAMED DEVICE CLOSURE
For IEEE-4888 devices, which were opened with file names, a special listener command sequence,

with the special secondary address of thehexadecimal EO OR’ed with the secondary address from the
OPEN is sent. This allows devices such as disc files to be closed by the peripheral controller.

ERROR DETECTION: GENERAL
The basic concept of the CBMoperating system is that the user will be allowed to operate in a free-form

format; reading and writing on tapes, discs, and printers, in the manner that is most comfortable for him.
Because /O is totally free-form, it is most important that the operating system should have means of
informing the user when transmission errors or end of data conditions occur.

STATUS WORDS

In order to facilitate INPUT/OUTPUT operation error detection, the CBM uses the “status word” concept in
which a byte in memory is manipulated by each of the I/O operations for the CBM, and can be sampled by
the programmer at any time by calling the function ST. Each bit in the staus word has a general meaning
for all operations and a specific meaning for the individual I/O device.

Table 7.17 shows the errors as a function of the ST word value for the tape cassette units. IEEE read/write
operations, tape verify and load operations.

ST ST Tape
Bit Numeric C;s::(tite IEEE RW Verify
Position Value + Load
0 1 Time out
on write
1 2 Time out
on read
2 Short block Short block
Long block Long block
16 Unrecoverable Any
read error mismatch
5 32 Checksum Checksum
error error
64 End of file EOI! fine
-128 End of tape Device not End of
present tape

Table 7.17. Status Word (ST) values correlated with
tape cassette, unit and IEEE bus read/write errors.

IEEE DEVICE ERRORS
There are basically three errors that can occur during an IEEE-488 transfer. First, the entire bus does not

respond to an attention sequence. If this occurs, the IEEE-488 subroutine sets the DEVICE NOT PRESENT
bit (7 or -128). The CBM.also terminates the current program with ?DEVICE NOT PRESENT ERROR. If the
bus responds correctly to the attention, but when the CBM goes to write the first character to the bus and
the physical device is not present as indicated by having NRFD or NDAC low, the CBM, again, gives a
device not present indication.

The second error occurs during the process of transferring data to the device. The bus does not respond

99

in the appropriate times and/or if it ceases to respond by means of bringing NRFD and NDAC both high, a
write error indication is given in bit 0.

The third error occurs when during read on an IEEE-488, the |EEE device has not sent DAV in less than 65
milliseconds; bit 1 of the status word is then set. Whenever the EOl line is encountered, the subroutine
sets the bit 6 on in the status word and continues to force carriage returns.

TAPE UNIT ERRORS
The cassette only checks data on read. The errors deleted are:

1) SHORT BLOCK (4).When reading a block from tape, a spacer tone was
encountered before the expected number of bytes has been read from that
block. Possible cause: attempting to read a short load file as a data record.

2) LONG BLOCK (8).When reading a block from tape, a spacer tone was not
encountered after the expected number of bytes had been read from that
block. Possible cause: reading a long load file as data.

3) UNRECOVERABLE READ ERROR (16).Cause: more than 31 errors on the
first block of redundant biocks-or an error that could not be corrected
because it occured in the same place in both blocks.

4) CHECKSUM ERROR (32).After a LOAD or reading of data, a checksum is
computed over the bytes in RAM and compared to a byte received from the
input device. If they do not match, this bit is set.

5) END OF FILE (64).This bit is set when the end of data file mark is
encountered in a tape record.

6) END OF TAPE (-128).An EOT record was read.

EXAMPLES OF ST USE
As you can see, there is no status that the CBM detects for the writing of tapes, nor errors detected for

printing to and reading from the screen. There is an error on writing data out to the IEEE-488 and there is
also a series of errors detected on inputting from the IEEE-488 or from tape.

The normal programming technique is to follow INPUT# or a GET# by either a test or storage of the value
of status. As this is only a single byte of memory and the status changes on each new /O command, the
status is very transient.

100 INPUT#2,A

110 INPUT#5,B

120 IF ST =0 THEN 200

This code only checks the result of the transfer of data from logical file 5. The results of reading logical
file 2 is forever lost. Similarly:

100 INPUT#2,A

110 PRINT A

120 IF ST =0 THEN 200
In this case, the ST reflects the print status, rather than the results of reading #2.

A correct way to use ST is the folllowing:
100 INPUT#2,A,B,C
110 IF ST =0 THEN 200 process normally
120 IF ST =64 THEN 300 end of data processed with no errors

100

130 IF ST=2 THEN

400 time out with no errors

Each error can now be processed with the following:

140 IF ST AND mask THEN

POLLING TECHNIQUES

One technique to poll slow IEEE-488 devices such as sampling devices, which take many minutes to
respond, is to use the INPUT# from the device; then if the status indicates time out, process other
routines or loop on the INPUT # until no error occurs. If there are no errors, the correct data has been

Mask represents the bit being tested

finally read and one can process that data information.

By using this sampling technique, a whole series of slow devices can be serviced, along with running a
foreground program by use of the real time clock (TL,TI$) and the INPUT#/timeout error sequence, to

occassionally pol! devices.
DEFAULT PARAMETERS

Parameter Default Value Default Operation
Device # D=1 Cassette #1 selected
Secondary SA=0 On tape files open for read
address On IEEE-488 devices, no
secondary address is sent.
Table 7.18. Default values.
Equivalent
Statement {Default) Operation
Parameter Values
OPEN 1 OPEN 1,1,0 Open logical file #1 for cassette #1 read
no file name
OPEN 1,2 OPEN 1,2,0 Open logical file #1 for cassette #2 read
no file name
OPEN 1,21 OPEN 1,21 Open logical file #1 for cassette #2 write
no file name
OPEN 1,21, OPEN 1,2,1, Open logical file #1 for cassette #2 write
“DAT" : “DAT" file named “DAT"’

Table 7.19. Example of default parameters.

INTRODUCTION TO THE IEEE-488

This bus consists of 16 signal lines that are divided functionally into three groups, those are:

a) The data transmi
2) The control bus

BUS

ssion bus

3) The management bus

Furthermore, the IEEE bus can support three classes of device:

a) Talkers: at any given moment, only one device is permitted to transmit

data to the data bus.
b) Listeners: as many devices as required may receive data
simultaneously from the bus.
c) Controller: the CBM is the only controller allowed on the IEEE bus.

101

BUS/DEVICE CONTROL
The line-pin connections for the 12 position, 24 contact edge card connector, emanate from the CBMmain

assembly board (see Table 7-19). For further information, please refer to Figure 7.2
Certain physical limitations should be noted when connecting devices to the IEEE bus:
a) The maximum advisable bus extension from the CBM is 20 meters.
b) The maximum interdevice spacing is 5 meters.
¢) The maximum number of devices is 15.

£BM CBM
Contact Bus IEEE Contact Lapel_
Identifi- Label Identifi- Description
cation cation
1 DATA D01 1 Data INPUT/OUTPUT LINE #1
2 D102 2 Data INPUT/OUTPUT LINE #2
3 D103 3 Data INPUT/OUTPUT LINE #3
4 DI04 4 Data INPUT/OUTPUT LINE #4
5 MANAGER EOI 5 End or identify
6 TRANSFER | DAV 6 Data valid
7 NRFD 7 Not ready for data
8 NDAC 8 Data not accepted
9 MANAGER | IFC 9 tnterface clear
Same as CBMreset
10 SRQ 10 Service request
1 ATN 1 Attention
12 SHIELD 12 Chassis ground and [EEE
cable shield
A DATA D105 13 Data INPUT/OUTPUT LINE #5
B D106 14 Data INPUT/OUTPUT LINE #6
C Di07 15 Data INPUT/OUTPUT LINE #7
D D108 16 Data INPUT/OUTPUT LINE #8
E MANAGER | REN 17 Remote enable (REN) always
' ground in the CBM
F GROUNDS | GND6 18 DAV ground
H GND7 19 NFRD ground
J GND8 20 NDAC ground
K GND9 21 IFC ground
L GND10 22 SRQ ground
M GND11 23 ATN ground
N LOGIC GND 24 Data ground (D101-8)

Table 7.20. |IEEE bus group, label and contact identification number.

THE DATA BUS
This bus is comprised of 8 bi-directional lines that transmit the active low data signals D101-8. The

slowest device in use on the bus at a given time controls the rate of data transfer; the mode of transfer is
one byte at a time, bit parallel.

Peripheral addresses and control information are also transmitted on the data bus. They are
differentiated from data by ATN (true) during their transfer.

The most significant bit (MSB)is on line D 108.

For an explanation of signal abbreviations such as D108, see Figure 7.23.
Data Transmission Modes
All possible bit patterns are valid on the data bus when sending data to devices.

THE TRANSFER BUS
This three line bus controls the transfer of data over the data bus. The signals transmitted are used in

102

the handshake procedure outlined in 7-21.

These signals are:
a) NRFD Not ready for data
b) NDAC Data not accepted
c) DAV Data valid

Note that the talker originates the DAV signal and the listeners the NFRD and NDAC signals.
See Table 7-23 for detailed description of signals.

The Handshake Procedure

When a talker transmits a data byte to one or more listeners, this control procedure is used in order to
ensure that the operation is successful. ‘

The essential function of the handshake is to ensure;

a) All listeners are ready to accept data.
b) That there is valid data on the data bus.
c) That the data has been accepted by all listeners.

The transfer of data occurs at a rate determined by the slowest active device on the bus; this allows the
interconnection of devices which handie data at different speeds.

The sequence of events that occur during the transfer of a data byte from the talker to the listeners is
shown in the flow diagram of figure 7-21.

Not Greater than 64 msec.

_.r -—

Ready for Data

NRFD _I ' Not Ready for Data
(Listener) m ("1 i

)}

'
DAV ! : Data Not Valid
(Talker) ! Data Valid

‘ 3 | (6)

: I —— Data Accepted
NDAC ! Data Not (Being)
(Listener) ; 5y (7 Accepted

|

i

| Bit Value = @
Data Bus : High impedance
Signals 20N_!) Bit Value = 1

!

Data Signal
Settling Interval

Figure 7.21. Transfer bus handshake sequence.

103

COMMENTS TALKER LISTENER COMMENTS
Not Ready
Data on
Data Bus DAV -» High ng\g : Il:szv for Data
Not Valid 2ata N:(t’
ccept
NRFD and
NDAC High Error
No
New Data on
Lines DIO1-8 All
Listeners
Ready No
All
L~ — —] NRFD — High Listeners
are Ready
for Data
Data i . Is the
ata is T Data Valid
Valid - ¢
[
Yes
Data Byte
Accepted
NRFD = Low | foroea
S —rNDAC—> High J gzgpt o
Data Not . DAV
Valid DAV —» High | ———|—— High >
[
Yes
End NDAC — Low 22;: :'t:;

Figure 7.22. Sequence of events during a data byte transfer from the talker to the
listners. Broken lines indicate the testing of transfer bus signal logic levels.

104

Figure 7-22 shows the relative timing of transfer bus signals during a typical handshake; the bracketed
numbers in the following sequence refer to the changes in signal logic levels in the Figure:

1) NRFD goes high (false) indicating that all listeners are ready for the
next byte of data.

2) The talker puts the next data byte on the data bus and allows the data
signals to settle. This could happen before, after or during (1).
3) The talker tests NFRD, when it is found to be too high, the talker makes
DAV low (true)to inform listeners that the bus data is now valid.
4) As soon as a single listener detects that DAV is low, that listener sets
NRFD low; data is now accepted by all the individual listeners at their own
rate, each of whom release NDAC as they accept the data.
5) NDAC goes high (false) when the siowest of the listeners have accepted
the data.

6) The talker sets DAV high (false) indicating that the bus signals are now
invalid.

7) The listeners note that DAV has gone high and sets NDAC
low (true) completing the handshake. When each listener has processed
the data, they release NFRD. This terminates the sequence for the first
data transfer. The sequence will repeat again, beginning at (a), until all
required data transfers have been completed.

PET/IEEE Bus Timing Constraints
The following limitations should be noted in order to-avoid a loss of data:

a) When CBM s a listener, it expects DAV to go low within 64 milliseconds
after it has set NFRD high.
b) When CBM is a talker, it expects NDAC to go high within 64 milliseconds
after it has set NRFD high.

If these limitations are exceeded, the CBM ceases to transfer and sets the appropriate status word (ST).
See Table 7-24.

THE MANAGEMENT BUS

This group of five signal lines controls the state of the data bus and defines its signals; these can be
concerned with data, addresses, or control information (device commands).

The five management signals are:
a) ATN Attention Assigns devices to act as listeners

or talkers.

b) EOl Endor Indicates that the last data byte is
identify being transferred.

c) IFC Interface Initializes the data bus. Talkers and

clear listeners set idle. Same signal as
reset in the CBM.
d) SRQ Service Device tells controller that service is

request required. Not implemented in BASIC
but available in CBM.

e) REN Remote Permanently tied to ground in the
enable CBM.

105

IEEE SIGNALS AND DEFINITIONS
The 16 transmission lines of the IEEE-488 bus are each assigned a specific signal. Table 7-23 gives the

bus group, name, abbreviation and functional description for each of these signals.

LOGIC LEVEL CONVENTION

The “true” or logical “1”is low with common collector type outputs. This allows any device to hold the
bus in the ‘“true” or logical “1” state.

Bus Signal N Functional
Group Abbrev. ame Description
Manager ATN Attention The CBM (controller) sets this

signal low while it is sending
commands on the data bus.
When ATN is low, only periph-
eral addresses and control
messages are on the data bus.
When ATN is high, only pre-
veiously assigned devices can
transfer data.

Transfer DAV Data Valid When DAV is low, this signi-
fies that data is valid on
data bus,

Manager EOI End or When the last byte of data is

ldentify being transferred, the talker

has the option of setting EOI
low. The CBM always sets EOI
low while the last data byte is
being transferred from the

CBM.
Manager IFC Interface The CBM sends its internal re-
Clear set signal as 1FC low (true) to

initialize all devices to the idle
state. When CBM is switched
on or reset, IFC goes low for
about 100 milliseconds.

Transfer NDAC Data Not This signal is held low (true)
Accepted by the listener while reading.
When the data byte has been
read, the listener sets NDAC
high. This signals the talker

that data has been accepted.

Transfer NRFD Not Ready When NRFD is low (true},
for Data one or more listeners are not
ready for the next byte of
data. When all devices are
ready, NRFD goes high.

Manager SRQ Service Not implemented in BASIC,
Request but available to the CBM user.

Manager REN Remote REN is held low by the bus
Enable controller. The CBM has this pin

grounded that keeps REN
permanently low.

Table 7.23. IEEE-488 bus signal.

Table continued on next page.

106

Table 7.23. IEEE-488 bus signal (continued).

Bus Signal Functional
Group Abbrev. Name Description
Data DI01-8 Data input/ | These signals represent the bits

output lines | of information on the data bus.
1 through 8 | When a D10 signal is low, it
represents 1 and when high @.

General GND Ground Ground connections: There
are six control and manage-
ment signal ground returns,
one data signal ground return
and one chassis shield ground
lead.

STATUS WORD (ST)
ST is a BASIC variable which can be used to check the outcome of INPUT/OUTPUT operations. ST can

have certain values over the range -128 to 127. Table 7-24 shows the status code that appertains to the
IEEE-488 bus.

ST Error Explanation
1 Time The IEEE device has not responded within the 65
out on milliseconds time out inverval.
listener
2 Time The |EEE device has not provided an active ““data
out on valid’’ signal (DAV low) within the 65 millisecond
talker time out interval,
64 End or EOI has gone low (true), on the last byte of data
identify being transferred on |IEEE bus. Note that all devices
(EOI) do not generate an EQI signal. Consult relevant
instrument manual.
-128 Device Device did not respond when addressed; this gen-
not erates an error message and the operating system
present returns the CBM to BASIC command level.

Table 7.24. ST status code for IEEE-488 bus.

IEEE-488 REGISTER ADDRESSES
Table 7-24 shows the IEEE-488 hardware addresses for the CBM. An attempt to control the bus by means

of the PEEK and POKE commands will fail, if the time out intervals for the 488 devices are exceeded.

Hex Decimal .

Address Address Bits IEEE Mode
E820 59424 0-7 DI01-8 Input
£822 59426 0-7 DIi01-8 Output
E821 59425 3 NDAC Output
£823 59427 3 DAV Output

7 SRQ Input
E810 59408 6 EOI Input
E840 59456 0 NDAC Input

1 NRFD Output

2 ATN Output

6 NRFD Input

7 DAV Input

Table 7.25. IEEE-488 hardware addresses and signal information.

107

(3NYL NLV HLIM Q3AI303H ANV 1N3S)
-uonelado jo ,apoW puewwWo),, 10} sjuswubisse apo) '9z'L 8iqel

‘SIAOW VYLVA B ANVININOD HLOS NI G3SN SBILOVHVHD 1TV (S HONOYHL Z NWN100) 13S8NS 3ISN3A
ANYWIWOD AHYANOD3S $341N03Y ©)

(908)
dNoYO £01Q=49° 1010 =9 @
ANYIINOD :
3DVSSIW IOVIHILNI = DSW ‘S3LON
AHVYANOD3S (D0d) dNOYD ONVIWWOD AHVWIYd C)
] 1
/ \/
(ovl) {(Dv1) (90n) {90V)
dnoYo dnouo dNOY9 dNOYD
ssawaav ss3vaav ANVWWOD ONVIANOD
NIVl N3LSIT IVSHIAINN Q3SSIHOQY
|]
r \ o \ I
13a o — 0 é / sn 1S Gl Vv
~ u -~ N < : sY 0s L o[v]1]t
| = { 2 | W [W = - $9 HO £l Lot]t
| T ' 4 | z Vlzl 1l el > = ’ S4 EE] zl 0ojojl il
R EEEN EINEEI RN R R 053 1A I Lo
| © z o ! > z 5 r > > * 8Ns 41 ot o [t]oft
| m Al m 21l Aa sl 1216 | 2 { Tags| waf 1os] 1n 6 Llolo [t
|z X > Y 21 X Z H Z 8 z) 1 34S| NVO| 13D S8 8 ojojo]l
S~ 13] OSlrm | @] o] ® t | @ , 913 138 L Vv o
- -t - - 3
o A 2 3 o A o] o 9 o B NAS MOV 9 ojtft]o
|- < o o o o
= n |3 s o0 m 3 M g m_| %] ndd]vn © 0dd | ON3 G tlolt]o
m) w p a L a a 3 3 3 $ |oa| voa| oas! 103 v ofloft]o
g s e TP T s Tlol Tl el T1e# €30 X13 € 1]t]o]o
m i m q Y] z B zoa X1S z oft]o]o
b e [v L i o] toa| 19| Hos L L{o]o]o
d 4 ® 0 dS ERle NN 0 ofofofo
R
L 9 g v £ ¢ t O | «nwn10o [Lajza|ea|va
L 0 L 0 1 [} 1 [} 69
osw| t |osw| L |osw| o [osw| o |osw| 1 |osw| L |osw| o | OSW | o
L L 1 1 0 0 ol @ 0

108

NOTES

109

Chapter8. USE OF THE CBMFOR MACHINE LANGUAGE PROGRAMMING

Machine language programs execute much faster than do BASIC programs which have to be interpreted
first then executed. On CBM, machine language can be used to communicate with the user port, play
music, or write the screen memory with blinding speed. If you have never programmed the 6502
microprocessor, it is probably advisable that you get hold of the two books mentioned in Chapter 1
before you proceed with this chapter.

InCBM there are two ways to create a machine language program in memory and execute it. The first is by
BASIC. As previously discussed, there are two BASIC commands, PEEK and POKE which give equivalent
machine language operation relative to controlling input/output instructions or influencing or sampling
individual memory locations. The second method to program is by a monitor.

A monitor essentially has only three functions: examine and deposit bytes in memory, and branch to
execute code. These functions are available as PEEK, POKE and SYS in BASIC. The chief limitation of
BASIC is that all bytes must be converted to decimal before use. A monitor available for CBM allows one
to work entirely in hexadecimal notation but the 6502 does not care what base you work in because all it
sees is binary. The CBM monitor does have some other useful features which we will discuss later.

MACHINE LANGUAGE PROGRAMMING FROM BASIC
It is possible to build into a string of memory locations by means of a POKE command, a set of

instructions which are a machine language subroutine which is usable by an individual program. To
implement these subroutines, there are four basic considerations: (1) what the subroutine is supposed to
do, (2) how to implement it, (3) where to put the program, and (4) how to communicate the subroutine from
BASIC. The decision on what the program is to do and how to implement it is left to the programmer and
the programming manual (6502).

To locate the code, you must decide whether you have a small program that is to be used only temporarily
or whether it is a program you want to have operational throughput the entire time the BASIC program is
operating in the machine.

To understand how best to keep the program in memory, we should review the memory map of the CBM.
All the zero page programs address are consumed by the operating system and are usually being
changed throughout the programs. Between the normal use of stack and tape I/O corrections, all of page
1 is used. Page 2 has a series of variables which are again used throughout the program. However,
memory locations 634 through 1023 are used for the first and second cassette buffers. If a program is not
using tape /O, then these areas will not be touched by BASIC.

If only the first cassette is used, the second cassette buffer is available. If both the cassettes are used
during the program, or if this area is not enough into which the user is to write some code, then the space
between the end of the BASIC program and where BASIC stores its variables is the space that is available
to the programmer. At any time during execution of the program, a PEEK into location 124 and 125
indicates the beginning location of the BASIC variables. Working back down these with a small safety
margin which is proportional to the amount of data space that is used in the program, is a memory area
which is not affected by BASIC during execution. These are memory locations which are counted by the
FRE statement. Once programs have been written and debugged, this space is as useful as are the
cassette locations.

The final problem is how to get the program into the memory location. Although by use of the machine
language monitor, machine language programs are loadable, this involves a two-step process for the
user. First, the machine language program must be loaded, followed by the loading of the BASIC

110

program. Obviously, this technique does not work at all, if the program is to be loaded into the cassette
buffers. Another technique is to assemble the program, into the BASIC program, by means of putting the
machine language program into data statements. The data statements can then be read at the beginning
of the execution of the BASIC program and POKEd into the appropriate memory locations.

SYS COMMAND
When it is necessary to transfer control to the machine language program, there are two ways to do it.

The preferred approach is the SYS command which transfers control totally from BASIC until control is
returned by means of a return from subroutine instruction. It can be used to transfer control to any other
program such as a machine language monitor or future languages when they become available. If the
following code is encountered
10 SYS (634)
at Line 10, BASIC will hand control of the computer to the program located at 634. The general format
for the SYS command is
SYS (start address)

The start address can be a computed value, in either case, it must result in a positive number not greater
than 65535. NOTE: Execution of machine language code, removes almost all protection that the ROMs
has built into it to allow the BASIC interpreter to continue functioning without regard to user error. As
soon as you transfer control from BASIC to your own program, any mistakes which occur in your program
may cause the machine to cease to function. In order to help solve this type of problem, you should use
the machine language monitor to develop anything other than the most trivial amount of code. In any

case, when control of system is lost, it can be regained by repowering the system on.

In order to return from the SYS command, the last instruction in the program, which is executed, should
be a RTS instruction. BASIC will then start interpreting the next statement after the SYS command. In

order to pass the variables of data back and forth between the user program and BASIC using the SYS
command, data has to be POKEd into temporarily undisturbed memory locations during the execution of
the BASIC routine. The results of the SYS operation would have to be PEEKed back into the program that
follows the call to SYS.

USR FUNCTION
There are some programs, particularly mathematical ones, in which it is easier to pass parameters

to/from BASIC using the USR function and to get the results directly processed in BASIC. USR is
specified with a parameter. BASIC evaluates the expression for its parameter and leaves the resuits of
the evaluation in a floating accumulator which BASIC uses for all of its functions. It is noted that if no
parameter is passed, the floating accumulator is not initializeable by the user or by any other techniques
as it is used by BASIC in a variety of ways prior to executing the USR function.

USR calls a routine, which executes a machine language program. A result in the floating accumulator to
be analyzed by the BASIC expression. Because USR is a function, it is possible to include the function
called user as part of a BASIC instruction as in: IF USR (A) =1, THEN etc. In this case the parameter A
will be passed to the USR function in the floating accumulator. The resulting floating accumulator, when
the user returns to BASIC, would be compared to 1 and the logical function would be executed.

The SYS command is more useful for transferring control for machine language processing in which
variables are not being acted on. USR is more usefui when one is trying to impiement a new BASIC
command. This is an important consideration in using USR. USR uses preassigned variable locations:
locations 1 and 2. These locations must be initialized with the hexadecimal value of the starting address
in which the machine language program is stored. This can be done anywhere throughout the program

111

with a POKE of the decimal equivalent of the lower address to location 2 and POKE of the high order ad-
dress in location 2. Example:

10POKE 1,122

20POKE 2,2

30 IF USR (A)=1 THEN etc.
USEFUL BASIC SUBROUTINES
There are a series of subroutines in BASIC which can allow the machine language program to evaluate
values in the floating accumulator. These functions are called jump to Subroutines instruction (JSR) to
the address.

The parameter specified in the USR functon is evaluated, converted to a binary floating point equivalent
with signs, exponent, and mantissa, and placed in a series of 6 bytes which we will call the floating

accumulator
$5E sign and exponent
$5F mantissa MSB
$60 mantissa
$61 mantissa
$62 mantissa
$63 mantissa LSB
$64 sign of mantissa

The exponent is computed such that the mantissa 0=1x 1. It is stored as a signed 8 bit binary + $80.
Negative exponents are not stored 2’'s complement. Maximum exponent is 10%. Minimum exponent is
10~ % which is stored as $00. A zero exponent is used to flag the number as zero.

Exponent Approximate Value
FF 10%
A2 10'°
7F 101
02 10—
00 10~ %

Since the exponent is really a power of 2, it should best be described as the number of left shifts
(EXP>$80) or right shifts (EXP< =$80) to be performed on the normalized mantissa to create the actual
binary representation of the value.

Since the mantissa is always normalized, the high order bit of the most significant byte is always set.
This guarantees always at least 40 bits precision which is roughly equivalent to 9 significant digits plus a
few bits for rounding. If a number has a value of zero, it may not always have zero bytes in the mantissa.
The only true flag for a zero number is the exponent. See Figure 8.1 for example exponents and
mantissa’s.

If the mantissa is positive, then the sign byte is zero -- $00. A negative mantissa causes this byte to be
-1--$FF.

112

EXAMPLE FLOATING POINT NUMBERS

1E38 FF 96 76 99 52 00
4E10 A4 95 02 F9 00 00
2E10 A3 95 02 F9 00 00
1E10 A2 95 02 F9 00 00
1 81 80 00 00 00 00
5 80 80 00 00 00 00
.25 7F 80 00 00 00 00
1E-4 73 D1 B7 59 59 00
1E-37 06 88 IC 14 14 00
1E-38 02 D9 Cc7 EE EE 00
1E-39 00 A0 00 00 00 00
0 00 00 00 00 00
-1 81 80 00 00 00 FF
-10 84 A0 00 00 00 FF
©
/2]
R
c
]
= © © © © £
) 7 % & % -
c - — - = o
2 1= 1= c c c
g © < ©] o
o S £ £ = h

Figure 8.1.Example floating point numbers.

Actual floating point BASIC variables are stored in 5 bytes, rather than 6 bytes as is the floating
accumulator. Upon examination, one will note that the most significant byte of the mantissa is always
set. If we always assure the number will be in this format, we can use that bit to indicate the sign of the
mantissa - thus freeing the byte used for sign. The sixth byte is used in the floating accumulator to
simplify operations when shifting the mantissa.

-
The contents of the floating accumulator may be converted to a double byte integer by calling a
subroutine FLPINT which is located at $DO9A. The most significant byte of the integer is returned in $B3
and the least significant byte in $B4.

eg
10 A =USR(2)
contents of FAC after USR call
82 80 00 00 00 00

JSR FLPINT
contents of FAC after conversion
82 00 00 00 02 00 00

integer value

It is not necessary to return a value in the FAC after a USR call. The value of USR can be left as just the

current contents of FAC. An integer can be converted back to floating by loading the most significant
byte into index register Y then calling INTFLP at $D26D.

113

eg LDAMSB
LDY LSB
JSR INTFLP

USEABLE I/C ROUTINES

Read a line, pass a character
$FFCF return char in 0
no other regs changed

Print a character on screen
$FFD2 Charin A
no regs changed

Test for stop key
$FFE1 returns =, <>
only A changed

Get a character from keyboard

$FFE4

char or if none then null (00)
SUMMARY
There are two ways to communicate from BASIC to machine language program. The simplest of these is
SYS in which the control of the computer is turned over to the machine language program located at the
address specified in the sys command. For implementing your own functions in BASIC, there is a function
called USR which when memory locations of 1 and 2 are properly initialized to point in a machine
language program, evaluate a parameter specified in the user function and pass the results back to the
program using the floating accumulator. A series of useful subroutines, available in BASIC, can allow
either the USR or SYS function to perform operations on the floating accumulator without the user
running any program other than the calling routines.

In all cases, the use of the machine language program is only for the more sophisticated BASIC user.
The protection of the ROM fail safe coding is lost. Machine language programs should only be used when
BASIC is neither fast enough nor the function which is desired is implemented.

L 4

MACHINE LANGUAGE MONITOR
TIM is the Terminal Interface Monitor program for MOS Technology’s 65XX microprocessors. It has been

expanded and adapted to function on the Commodore CBM. CBM uses a cassette tape version of this
monitor. Execution is transfered from the CBM BASIC interpreter to TIM by the SYS command.

To ENTER the TIM from BASIC TYPE SYS 64785.

Commands typed on the CBM keyboard can direct TIM to start executing a program, display or modify
registers and memory locations, and load or save binary data. On modifying memory, TIM performs
automatic‘read after write verification t0 insure that addressed memory exists, is RIW type, and is
responding correctly.

TIM also provides several subroutines which may be called by user programs. These include reading and
writing characters on the video display, typing a byte in hexadecimal and typing a CRLF sequence.

114

TIM COMMANDS
M display memory

R display register
G begin execution
X exit to BASIC

L load

S save

EXAMPLES
M DISPLAY MEMORY
.M C000,C010
.. C000 1D C7 48 C6 35 CC EF C7
.. C008 C5 CA DF CA 70 CF 23 CB
.. C0109C C89C C7 74 C7 1F C8

In a Display Memory command, the start and ending addresses must be completely specified as 4 digit
hex numbers. To modify a memory location, move the cursor up in the display, type the correction and
press RETURN to enter the change. When you move the cursor to a line to do a screen edit, and press
RETURN, the colon tells the monitor that you are re-entering data.
R DISPLAY REGISTERS
PC IRQ SR AC XR YR SP
.3 C6ED E62E 00 20 00 F5 FE

Registers are saved and restored upon each entry or exit from TIM. They may be modified or preloaded as
in the display memory example above. The semicolon tells the monitor you are modifying registers.

G BEGIN EXECUTION

.G C38B

The GO command may have an optional address for the target. If none is specified, the PC from the R -

command is taken as the target. ,
X EXIT TO BASIC
X

READY
Causes a warm start of BASIC. In a warm start memory is not altered in any way and BASIC resumes

operation the way it was before a monitor was made.
L LOAD

.L "PROGRAM NAME",01

No defaults are allowed on a LOAD command. The device number and the file name must be completely
specified. Operating system prompts for operator intervention are the same as for BASIC. Memory
addresses are loaded as specified in the file header which is set up by the SAVE command. Machine
language subroutines may be loaded from BASIC but care must be taken not to use BASIC variables as
the variable pointer is set to the last byte loaded + 1.

S SAVE
.S “PROGRAM NAME”,01,0400,076D

115

WRITING MONITOR
Likewise, no defaults on the SAVE command. Any start and ending address may be specified.

To cancel a command either type RETURN or press STOP to cancel a Display Memory, LOAD or SAVE.

INTERRUPT AND BREAKPOINT ACTION
BRK is a software interrupt instruction which causes the CPU to interrupt execution, save PC and P

registers on the stack and then branch through a vector at locations $021B and $021C. TIM initializes this
vector to point at itself on entry by CALL. Unless the user modifies this vector, TiM will gain control when
a BRK instruction is executed, print B* indicating entry via breakpoint (instead of C* entry via call) and
the registers (as in the R command), and wait for user commands. Note that after a BRK which vectors to
TIM, the user’s PC points to the byte following the BRK: however, users who choose to handle BRK
instructions themselves should note that BRK acts as a two-byte instruction, leaving the PC (on return
via RTItwo bytes past the BRK instruction.

IRQ is vectored normally in CBM to an ISR which updates the clock and scans the keyboard every 60th of a
second. If the vector is altered and the machine language subroutine does not restore it, a power-on reset
must be performed.

NM! is not provided for in the CBM. The processor line corresponding to this interrupt is permanently
pulled UP.

REST vectors to a cold-start of BASIC. Memory is cleared. Reload and re-enter TIM via SYS command.

TIM MONITORS CALLS AND SPECIAL LOCATIONS

JSR WRT $FFD2 type a character

JSR RDT $FFCF input a character

JSR GET $FFE4 Get a character

JSR CRLF $FDDO type a CR

JSR SPACE $FDCD type a space

JSR WROB $E775 type a byte

JSR RDOB $E7B6 read a byte

JSR HEXIT $E7EO Ascii to hex in A
MEMORY USAGE

$0A-322 zero page

$400-$76A absolute RAM

$23-$5A are zero page locations in the BASIC input buffer which may be used when BASIC is not using
these locations. The second cassette buffer $33A-$3FF is a well protected location if that device is not
used. Other memory locations may be used with considerable risk, depending upon which piece of CBM
software wants to use it also.

MONITOR CHECKOUT PROCEDURE

1) Power up your CBM normally into BASIC command mode. Type SYS 1024. You should see a display
something like:
B* PC IRQ SR AC XR YR SP

., 0401 E62E 32 04 5E 00 F4
Exact values may vary, although the first and last values should be as shown.

2) The display of registers is the standard entry display message. It consists of C* to identify entry by
call, followed by the CPU register contents: program counter, processor status, accumulator, X index,
Y index, and stack pointer. Note that all TIM inputs and outputs are in base 16 which is referred to as

116

hexadecimal, or just hex. In hexadecimal, the digits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. After printing the
CPU registers, TIM is ready to receive commands from you. TIM indicates this “ready” status by typing
the prompting character ““.” on a new line.

3) The user’s CPU register may also be displayed with the R command. Type an R and press RETURN.
The monitor should respond as above, but without the asterisk. :

4) Displayed values may be monitored by screen edit and re-entry of the line via return. Remember to type
spaces to delimit fields and type 4 digit hex numbers for addresses and 2 digits for byte contents.

5) Memory may be displayed and modified using the M command. Type:
.M 0100 0107

You will see a display something like:
0] 1 3 4 5 6 7
0100 20 00 30 30 30 30 30
Now use the screen edit to modify in place on the screen, type RETURN and display again.

6) Use M and ; to enter the following test program called CHSET because it prints the ASCII 64 character
set on the terminal. The M command is used to display memory locations on the CBM screen and it is then
possible to use the screen edit on each line and type RETURN to alter memory.

*=8$33A

CRLF=$4F2 FDDO
WRT =$FFD2

33A 20 D@ FD; CHSET JSR CRLF

33D A2 20 LDX #$20

33F 8A LOOP TXA

340 20 D2 FF JSR WRT

343 ES8 INX

344 EO 60 CPX #$60

346 DO F7 BNE LOOP

348 00 BRK

349 4C 3A 03 JMP CHSET
.M 033A,034B

.. 033A 20 D@p FDA2 20 8A 20 D2
.. 0342 FF E8 EO 60 DO F700 4C
.. 034A 3A 03
7) CHSET was assembled to reside in the 2nd cassette buffer. Type:
.G 033A
to execute the program.

The listing should look like this:

'"#8$%°()*,-./10123456789:; =?2?@ABCDEFG
HIJKLMNOPQRSTUVWXYZ[/]Te
B*PC IRQ SR AC XR YR SP INV

0349 E62E 3B 5F 60 8D FE E68A
Note the address contained in the PC. It is possible to type G execute the program again without
specifying an address.

8) Next we will link CHSET with BASIC. First replace the BRK instruction in location $348 with an RTS
(return subroutine) (change $348 from 00 to 60).

9) Change the USR function vector in locations 1 and 2 to point at the subroutine $33A.

117

.- 0000 4C 3A 03

10) Exit from the monitor and re-enter BASIC.
X
READY
11) Prove that the linkage is established by using both SYS and USR.
A =USR(0)
SYS (3*256 + 3*16+ 10) (Enter these as direct commands.)

118

CBM RESIDENT MONITOR......PAGE 0801

LINE

2514
2515

2517
2518
2519
2528
2521
2522
2523
2524
2529
2526
2327
2528
2529
2538
2531
2532
2533
2534
2535
2536
2537
2538
2539
25489
2541
2542
2543
2544
23545
2546
2547
2548
2549
2558
2551

2553
2554
2955
2556
2557
2558
2559
235680
2561
2562
2563
2564

¢ LOC

FD11
FDit

FD11
FD11
FD13
FD1S
FD17
FD19
FD1B
FDIC
FD1D
FDIE
Fn21
FD22
FD25
FD26
FB23
FD24
FD2D
FD2E
FD30
FD33
FD34
FD36
FD39
FD38
FD3E
FD40
FD43
FD44
FD47
FD48
FD4B
FD4D
FD4F
FOS2
FDS54

FDS6
FD38
FDS3A
FDBSC
FDSE
Fbeo
FD62
FB63J
FDes
FD6A
FD6C
FD6E

a9
83
D8
R9
85
D8
4R
68
8D
68
8D
68
8D
68
8D
68
69
8D
68
69
8D
A5
8D
AS
8D
gA
8E
58
20
a6
a9
28
A9
De

A9
85
A9
8BS
A2
a9
2e
28
9
Fe
o
Fo

CODE

43
85
16
42
85

85
84
83
82

FF
81

FF
88
98
28
91
87

86

be
BS
2R
84
32
1A

82
77
8o
DE
8p
2E
84
€EB
2E
F9
20
FS

82

82

82

82

82

82

82

82

82

FD

E7

E?
E?

LINE

;COPYRIGHY 1978 BY

;iCOMMODORE INTERNATIONAL LIMITED

NCHBS =

CALLE LDA %'C
STA THPC
BHE 83

BRKE LDA #’B
STA THPC
cLDd
LSR 4
FLA
STA ¥R
PLA
STA ¥R
PLA
STA ACE
PLA
STa FLGS

B3 PLA
RDC ¥S$FF
STA PCL
PLA
ARDC #SFF
STA PCH
LDA CIHV
STA INVL
LDA CINV+i
STA INVH
ISX
STX SP
cLl

BS JSR CRLF
LDX THPC
LDA ¥’
JSR WRTUO
LDR ®°'R
BHE Se

STRTY LDA #2
STA TXTPIR
LDa #@
STA WRAP
LDX #CR
LDa #°.
JSR HRTWO

ST1 JSR RDOBC
CHP 3.
BEQ ST1
CHP #3280
BE@ STt

119

i CALL ENTRY

iBREAK ENTRY

;€ SET FOR PC CORRECTIONM
;i SAYE ¥

i SAVE X

; SAVE ACCUNULATOR

i SAYE FLAGS

;iPC-1 FOR BREARK

s SAYE CUURENT IRQ VECTOR

; SAYE CURRENT STACK PODINTER

;CLEAR INTERRUPT DISABLE
iPRINT ERTRY DATA
;TYPE OF ENTRY (B OR L)

;URITE ‘sC’ OR ‘' *B”
;DISPLAY REGISTERS COMMAND
;SKIP TO INTERPRET COMMAND

;USER COMMAHD INPUT
;COMING FROM TEXY BUFFER

;ADDR WRAP ARUDUND FLAG
i START PROMPT WITH CRLF
iR PROMPTING “.°

; INPUT COMMAND LINE
i IGNORE PROMPTING ‘. °

; SPAN BLANKS

CBM RESIDENY MONITOR.

LINE

2566
2567
2568
2569
2570
2571
2572
2573
2574
2573
2576
25?7
2578
2579

2581

2583
2584
2385
2586
2587

2589
2598
2591
2592
2593
23594
2595
2596
2597
2598
2599
26680
2681
2682
2683

26835
2686
2687
2688
2689
2618
261t
2612
2613
2614
2615
2616

$ LOC

FD?70
FD?2
FB?35
FD?7
FB?9
Fb?9
FD?9
FB?9
FpecC
FB7D
Fpae
FD81
Fpg2
FD83

FD8S5

Fpgs
FD8A
FD8D
FD8F
FB92

FB93
FD93
FD93
FB93
FD93
FDI95S
FDS7?
FD9A
FbscC
FDOF
FDA2
FDA4
FDae6
FDA?
FDR?

FDA?
FBAR
FBAC
FOAE
FbBe
FpB2
FDB4
FbBBS
FbB6
FDB9I
FDBC
FDBE

A2
DD
1]
8e

8D
48
8D
48
68
CA
18

6C

AS
8D
A5
8D
68

85
AB
28
B1i
28
20
)
be
68

28
98
Az
81
i
Fe
68
68
4C
20
Ce
68

CODE

87
toe
8B
B4

E8

Fo

ED

FA

FB
81
FC
80

B3
80
Ch
FB
79
D3
85
Fi

B®6
8D
80
FB
FB
85

F?7
BS
85

FD

FD

FD

83

82

82

FD

E?
FD

E?

E7
FD

.....PAGE @882
LINE
se LDX SNCMDS-1i ;LOQKUP COMMAND
S1 CuP CHDS. X
BHE S2
STX SAvX i INDEX OF COMMARD IN TABLE

;i INDIRECY JMP FROM TABLE BY
i PUSHING TARGETY ADDRESS-1
i THEN RIS
LDA ADRH. KX
PHA
LDAR ADRL., X
PHA
RIS
s2 DEX
BPL St ;i LOOGP FOR ALL COMMANDBS

JEP (USRCHD) ;ALLOB USER COMMANDS

PUTP LDA THPO
STA PCL
LDAR THPOB 1
STA PCH
RYS

;DISPLAY MEM SUBR. SET AR=NUMBER
iOF MEMORY BYTES DISPLAYED.
iTHP@=ADR OF MEM DISPLAYED

DM STA THKPC
LDY %0
i JSR SPACE ;R N BYTES
LDa (THPE), ¢ i CTAPB)Y=ADR
JSR WROB
JSR INCTHMP
DEC THPC
BHE DNM1
RYS
iREAD AND STORE BYTE.
iNO STORE IF SPACE OR TMPC = 8.

BYTE JSR RDOB

BCC BY3 i SPACE
LDX %@ i STARE BYTE
STA (inPe. X
CHP (THPO, X ;YERIFY WRITE
BEG BY3
PLA iERROR:CLEAR STACK
PLA
JHP ERROPR

BY3 JSR INCTHP ; INC THPB8 ADR
DEC THMPC
RTS

120

CBM RESIDENT MONITOR......PAGE 8863

LINE

2618
2619
2620
2621
2622
2623

2625
2626
2627
2628
2629

2631
2632
2633
2634
2635
2636
2637

2639

2641
2642
2643
2644
2645
2646
2647
2648
2649
26580
2651
2632
2653
2654
2635
2656
2657
2638
26359
2668
2661
2662
2663
2664

$ LoOC

FBBF
FDCt
FDC3
FBCS
FbC7
FDCS

FBCA
FBCD
FDCF
FDD@
FBD2

FDDS
FDDS
FDD?
FDDY
FDDB
FDDD
FDDF

FDE®

FDE®
FBE1
FBDE2
FDE3
FDE4
FBES
FDESG
FDE?
FDES
FDES
FDEA
FBEB
FDEC
FDED
FDEE
FDEF
FDF@
FDF1
FDF2
FDF3
FDF4
FDF5
FDF&
FBF7

a9
8BS
"9
85
a9
608

28
A9

-
(4

A9
4C

£E6
Do
Ee6
be
té
68

34
3B
52
4D
47
58
4C
53
FE
FE
FE
FE
FE
FF
FF
FF
B8
96
22
5?7
CE
86
18
18

COBE

a2
FB
82
FC
85

co
28

ap
D2

FB
86
FC
82
DE

FD

FF

LINE

SETR LDA
STA
LBA
STA
LDA
RTS

SPAC2 JSR

SPRACE Lbda
.BYT

CRLF LbA
Jue

i INCREMENT
IRCTHP 1HC
BRE
INC
BHE
INC
SETUR RTS

#CFLGS

THP@O

$>FLGS
THPB+1

5

SPACE
$s280
$2C
$50
$FFD2

;SET TO ACCESS REGS

(TAPO, THPB+1) BY 1

TMPO
SETWUR

THPO+1

SETBR
WRAP

;LOW BYTE

;HIGH BYTE

iCONMAND AND ADDRESS TABLE

cnis .BYT
.BYT
.B¥T
.BYT
.BYT
.BYT
.8YT
.BYT
ARDRH .8YT
.BY¥T
.8YT
.BYT
.BYT
.BYT
.BYT
.BYT
ARBRL .BYT
.BYT
.BYT
.BYT
.BYT
.BYT
.BYT
.BYT

l.l

LS 4
’

IRI

IHI

lcl

lxl

ILI

lsl

2221
»222
223
2224
225
226
2227
228
{221
222
<223
(224
{225
<226
<227
(228

121

iNODIFY MEMORY
;ALTER REGISTERS
;DISPLAY REGS
iDISPLAY MEMORY

i START EXECUTIOH
;BARM START BASIC
;iLOAD MEMORY
#SAVE MEMORY

CBM RESIDENT MONITOR......PAGE

LINE & LOC
2666 FDFs8
2666 FDF9
2667 FBFD
2669 FE1S
2678 FEl6
2671 FEL?
2672 FE1LA
2673 FE1B
2674 FE1D
2673 FEZ28
2677 FE23
2678 FE25S
2679 FE28
2688 FE2B
2681 FE2C
2682 FEZ2E
2683 FE30
2684 FE32
2685 FE3S
2686 FE38
2687 Ft3B
2688 FEJE
2689 FE41
2698 FE44
2691 FEA47
2692 FE4RA
2693 FE4D
2694 FESE
2695 FES3
2696 FESe
2698 FE3S
2699 FESB
2788 FESE
2781 Fteeo
2782 FtEeé63
2783 FE6s6
2784 FE69
2785 FES6B
2787 FEGE
2788 FE?1
2789 FE?3
2718 FE?S
2711 FE?77
2712 Fe?8
2713 FE?A
2714 FEZC
2?15 FE?E
2716 FES8@
2717 FEB2
2718 FEB4
2719 FES87?

8D
r4:)
26

98
48
28
68
R2
2e
4C

A2
BD
28
E8
Ee
Do
h8
28
AD
20
Ab
28
20
ad
2e
ab
28
28
28
Fe

28
29
98
29
28
2e
98
28

28
Fe
A6
i X2
38
A3
ES
as
ES
98
a8
2o
28

CODE

20
50

Do

2E
84
Ca

6o
F8
B2

iD
FS
3B
15
e
75
a1
75
Ch
a7
75
a8
7?5
BF
93
39

EB
A?
34
987
EB
A7
29
97

81
1E
BE
1A

FD
FB
FE
FC
8F
3A
135
6A

FD

E7
FD

FD
FF

FE
82
E7
82
E7
FD
82
E7
82
E7
FD
FD

E?
E7
E?
E7
E7
E?

F3

FE
E?

LINE

REGK

RLTRIT

DSPLYR
D2

DSPLYN

DSP1

86064

.BYT CR., ' ‘

.BYT * PC 1R@ SR AC XR YR SP’

TYA
PHA
JSR
PLA
LBX
JSR
Jne

LDX
LDA
JSR
INX
crPx
BNE
LDy
JSR
LBA
JSR
LDA
JSR
JSR
LbA
JSR
LDA
JSR
JSR
JSR
BEQ

JSR
JSR
BeC
JSR
JSR
JSR
BCC
JSR

JSR
BEQ
LDR
BHE
SEC
LDA
S8C
LDaA
S8C
BccC
LDY
JSR
JSR

CRLF

L
WRTUO
SPaC2

80
REGK., X
$FFD2

$29
b2

| R
ALTRIT
PCH
WROB
PCL
WROB
SPACE
INYH
UROSB
INVL
WROB
SETR
1]}
BERS 1

RBOC

RDOA ;READ START ADR

ERRS! ;ERR IF HO SA

T272 iSA ¥0 THP2

RDOC ;SKIP DELIMITER

RDDA sREAD END ADR

ERRS 1 JERR IF NO EA

72712 ;SR TD THPB. EA TO THP2

STOP1 ;TEST FOR STOP KEY
BERQS1
BRAP
BERS1
;i DOUBLE BYTE COMPARE
THP2
THPO
THP2+1
TRPB+1
BE@S1 ;iEA LESS THAN Sa
t
ALTRIT
§ROA
122

CBM RESIDENT MONITOR. .

LIKE & tLoOC
2728 FES8R
2721 FESC
2722 FESF
2724 FE91
2726 FE94
2728 FES?
2738 FES?
2731 FESHA
2732 FESD
2733 FEIF
2734 FER2
2735 FERS
2736 FEAS
2737 FERAR
2738 FEaC
2739 FEAF
2748 FeB1
2741 FEB4
2742 FEB7?
2744 FEB9
2746 FEBS
2747 FEBC
2748 FEBF
2749 FEC1
2738 FEC3
2751 FECS
2752 FECS
2753 FECB
27?54 FECD
2755 FECF
2?56 FED2
2737 FED4
2?58 FED6
2759 FEDS
2760 FEDA
2761 FEDD
2762 FEDF
2763 FEE2
2764 FEES
2?65 FEEe
2766 FEE?
2767 FEEA
2768 FEEC
2769 FEEF
2778 FEF1
2?71 FEF4
2?72 FEFS
2?73 FEFS
2774 FEF9

a9
26
Fe

4C

4C

28
28
98
2e
28
28
98
A3
8D
QS
8D
28
b8

2e
28
98
a9
835
28
28
be
Fa
28
s
Fo
s
D8
2e
g8
29
AE
9A
78
Ab
85
AD
85
a0
48
AD
48
AD

CODE

88
93
DD

56

F7

B6
A7
83
88
CF
A7
an
FB
as
FC
87
BF
8A

Be
A7
D3
88
835
EB
A7
F8
c2
CF
81
8cC
2e
BA
A7
83
88
86

87
91
88
90
89

Bi

a2

FD

FD

E7

E7
E7

FD
FF
E7
82

82
FD

E?7
E7

E7
FD

FF

EY
FD
82
a2

82

82

82

. PAGE

LINE

BEGS 1
ERRS1
iALTER

ALTR

AL2

AL3

iALTER

ALTH

R4
AS

RY9
GO

G1

88es

LDA a8

JSR DM ;DISPLAY 8, INCR TnPe
BEQ DSPi

JHP STRTY
JHP ERROPR
REGISTERS

JSR RDOB ;SKIP 2 SPACES
JSR RDOA iCY=8 IF sp
BCC AL2 ; SPACE

JSR PUTP JALTER PC

JSR $FFCF

JSR RDOA

BCC aALZ

LDA THPO

STR INVL

LDA THPB+t

‘STA INVH

JSR SETR ;SET TO ALTER R’S
BNE A4

MEWORY - READ ADR AND DATA

JSR RDOB ; SKIP 2 SPACES

JSR RDOA ;READ MEM ALTER ADR
BCC ERRS1 iCY=8, IF SPACE, ERR
LDA #8 ;SET CNT = 8

STA TMPC

JSR RDOC

JSR BYTE

BRE AS

BEQ@ BEGS1

JSR $FFCF

CHP ¥s$8D i IF CR, EXIT

BEQ G1

CHP ¥s20 : IF NOT SPACE, ERR
BHE ERRS1

JSR RDOA

BCC G1i

JSR PUYP

LDX SP

TXS ;ORIG OR NEW SP VALUE TO SP
SE1I

LDA INVH

STA CIHV+1

LA INYL

STRA CIHY

LBq PCH

PHA

Lba PCL

PHA

LBA FLEGS

123

CBM RESIDENT MONITOR

LINE

27793
2776
2?77
2?78
27?79

2781
2782
2783

2783
2787
2789

2791
2792
2793
2794
2795
2796
2797
«?798
2799
2886
2881
2882
2883
2884
28895
2886
2887
2888
2889
281e
2811
2812
2813
2814
28135
2816
2817¢
2818
2819
2828
2821
2822
2823
2824
2825
2826
2827
2828
2829

§ LOC

FEFC
FEFD
FFoo
FFO3
FFes6

FFaz
FFaAR
FFOeB

FFBE
FF11
FFi1

FFiil
FF13
FFiS
FFie
FF18
FFLR
FFicC
FFI1E
FF29
FF22
FF25
FF27
FF29
FF2B
FF2D
FF2F
FF31
FF34
FF36
FF38
FFaRA
FF3C
FF3E
FF4e0
FF41
FF43
FF45
FF47
FF49
FF4B
FF4d
FF38
FFS3
FESS
FF37
FF39
FFSC
FFSF
FFé61

48
AD
fhE
AC
40

AE
9A
4C

4C

ho
84
88
84
84
k9
85
R9
85
28
€9
Fe
€9
Fo
1
pe
20
9
F8
€9
Fo
91
E6
c8
ce
Fo
be
A3
c9
X
29
29
Ad
29
i)
4C
208
€9
Fe

CODE

83
84
85

86
89

F7

81
D4

bi
9D
82
bB
87
DA
CF
20
F9
8D
i4a
22
DD
CF
22
24
ep
8B
DR
Dt

10
€9
EA
B4
86
£E2
22
E6
96
10
F2
56
CF
8p
E4

82
82
82

82
c3

E?

FF

FF

F3
F8

FD
FF

e s e .

‘PACE 8886
LINE
PHA
LDa ACC
LDX XR
LDY YR
RTI
EXIT LDX SP
XS
JHP READY
ERRL JHP ERROPR
2221 =BUF+7

inACHINE LANGUAGE LUAD

LD

L1

L2
L3

L4

LS

Lé

L7

L8

LDY
STY
DEY
STY
STY
LDA
STa
LBA
STa
JSR
cnp
BEQ
cnp
BEQ
cup
BRE
JSR
cnp
BEQ
cup
BEQ
STA
INC
INY
cPyY
Bt@
BHE
LDA
cHp
BHE
JSR
JSR
LDaA
ARD
BHE
Jnup
JSR
cHp
BE@

L B
Fa

FHLEN
VERCK
¥>2221
FHABR+1
$¢2221
FNADR
$FFCF
'I

L1

$CR

LS

'IU
ERRL
$FFCF
'IH

L8

$CR

LS
(FRADR)Y
FNLEN

16
ERRL
L3
SAYX
#6
L2
LD1S
TWRIT
SATUS
#SPERR
Lé
STIRY
$FFCF
$CR
LS
124

JEXIT TO BASIC WARM START

ROUTIKRE

i DEFAULT DEVICE #1

;PLACE TO STORE NAHE

i SPAN BLANKS

;DEFAULT TO LOAD

;FILE NAME MUST BE HEXT

sEND OF HAME
; BEFAULT A LOAD

;FILE NAME TOO LONG

;HNOY A LOAD

iLOAD ERROR

s DEFUALT LOAD

CBM RESIDENT MONITOR

LINE

2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2848
2841
2842
2843
2844
284S
2846
2847
2848
2849
2850
28351
2852
28353
2854
2835
2856
2857
2858
2859
2868
2861
2862
2863

2865
2866
2867
2868
2869
28780
2871
2872

LOC

FFe3
FFes
FFe67
FF6A
FF6C
FF6E
FF?eo
FF?72
FF?4
FEZ27
FF29
FF?B
FF?D
FF?F
FF82
FF8S
FF88
FFaa
FF8C
FF8F
FF91
FFS3
FFS3
FFS7
FF9A
FF9D
FF9F
FFAt
FFaA3
FFAS
FFA?7
Ftas
FFAB
FFAE

FFB1
FFB1t
FFBI1
FFB1
FFB1
FFB1
FFB1
FFB1

€9
be
28
29
Fe
c9
Fe
85
28
9
Fe
Cc9
be
2e
28
28
cs
be
28
AS
85
as
83
20
20
9
Fe
£9
be
A3
€9
be
28
4C

CODE

2C
Fe
B6
8F
BS
83
FA
D4
CF
8b
cc
2C
E6
a?
9?7
CF
2¢C
Fi
A7
FB
c9
FC
Ca
97
CF
20
F9
8D
ES
84
87
F8
A4
56

E7

FF

E7
E7
FF

E7

E7
FF

Fé
FD

....PAGE 8887

LINE

cHP ¥/,
L9 BHE L7
JSR RDOB
AND BS$F
BEQ L4
cup 83
L1 BEQ Li8
STR FA
JSR $FFCF
CHP #CR
BEQ LS
cup 87,
BHE LS
JSR RDOA
JSR T2T2
JSR S$FFCF
cHp &/,
BHE L12
JSR RDOA
LDBA THPO
STA EnaL
LDA THPOB+1
STA EAH
JSR 1272
JSR S$FFCF
CHP #s28
BEQ L 289
cHpP #CR
Lisg BNE L13
LDA SAVX
CHp &7
BHE L14
JSR 8VS5
JHP STRT

L1O

L12

Li3

L2@

Z21=ALTM-1
222=ALTR-1
Z223=DSPLYR-1
ZZ24=DSPLYM-1
225=60-1
Z26=EXIT-1
227=LD-1
228=LB-1

125

;BAD SYNTARX

i DEVICE 8

s DEVICE 3

; DEFAGLY LOAD

iBRD SYNTAR

sMISSING END ADDR

iMISSING CR AT END

NOTES

126

Chapter 9. ERRORS AND DIAGNOSTICS

One of the advantages of the highly interactive way in which you are able to use your CBMis that errors
are easily correctable, due to the fact that the languages that are used within the machine have specific
rules under which the not so smart computer can operate. These rules are necessary to allow the
language to be able to understand what you are trying to tell it. Whenever BASIC cannot perform a
function, it will tell you about it in the form of an error message. A total list of the error messages and
some examples of what causes them follows.

The advantage of having this immediate response on the screen is that you can use the screen editor to
immediately fix the problem as it occurs. In most cases, the problem is going to be obvious to you. The
most common error is the syntax error problem, which means that you have typed the line to BASIC that it
doesn’t understand. The correction for this type of problem is to list the line that is being complained
about and compare the typed data to what you thought you were going to type. About 90 percent of the
time, you will discover the mistake by superficial inspection. If not, you may have to make reference to
the appendix which defines the form for all the BASIC statements and if that does not clarify it for you, go
to the individual write-up to understand what you are doing wrong.

The common problems are, having a comma in the wrong place, or you used a variable that cannot be
used in this particular kind of format. The basic premise to remember when correcting errors is that
although the language is forgiving of exact requirements for spaces verses no spaces etc., that the rules
are explicit. If you violate the rules, the computer is going to continue to complain about an error until
you give it a problem it understands. Sometimes, the error is not as easy to understand, although in
almost all cases while executing a problem, if an error is encountered, the line number will be indicated.

Sometimes a problem is the result of a programming mistake that you have made in a previous
computation. For instance, if you get a divide by zero in line 75 and you know you shouldn’t be dividing by
zero because, in your opinion, the value that is in the divisor should never be zero. The error is probably
not on line 75, but somewhere further up your program where you define the variable. In order to attack
this kind of problem, the use of temporary print statements is the common technique. In other words, if
the variable is zero on line 75 and you don’t think it should be, then you should list the portion that defines
the variable. More often than not, an inspection of this area will show the problem to you immediately. If
not, insert lines at appropriate places where the variable is computed to see when the variable acquires a
value that you don’t expect. This technique will usually allow you to figure out the problem in your
programming.

The error messages in CBM BASIC have been expanded over those of other BASICs to give you an
understandable format of the message. However, other than using the techniques which we have just
described, the computer cannot fix a problem for you, it is in this area that programmers are made or
broken. Just remember that nobody is looking over your shoulder and use the machine to help you
understand the problem. If necessary, write little test routines which do only a piece of your program,
until you understand what is causing your problem.

ERROR MESSAGES
On encountering an error in interpretation of a statement, whether in direct or program
execution, BASIC displays a diagnostic message then returns to direct mode.

?MESSAGE ERROR IN LINE NUMBER
READY.

127

Resumption of execution is not permitted with a CONT command. Variables within the statement or
program retain their values so they may be scrutinized to determine a cause of error, if

necessary. GOSUB and FOR entries on the stack at the time of error are cleared so resumption of
execution is not possible by RETURN or NEXT.

POSSIBLE BASIC MESSAGES AND MEANINGS

Bad subscript- An attempt was made to reference a matrix element which is outside the dimensions of
the matrix. This may happen by specifying the wrong number of dimensions or a subscript larger than
specified in the original dimension.

DIM A(2,2)

A(1,1,1)=2

?BAD SUBSCRIPT ERROR
READY.

A(10,10)=2

?BAD SUBSCRIPT ERROR
READY.

Can’t continue-Program execution cannot be resumed via a CONT command in four cases:

1) no program exists.

2) a new line was just typed in.

3) the program has not recently been run.
4) an error just ocurred.

10A$ =‘HELLO’

CONT

‘CAN’T CONTINUE ERROR’
READY.

Division by zero-Zero as a divisor would result in numeric overflow-thus it is not allowed. When this
message appears, it is most expedient to list the statement and look for division operators.

?DIVISION BY ZERO ERROR IN 10

LIST 10
10A=BIC
?C

0

Formula too complex--This message concerns only string expressions when BASIC runs out of string
temporary pointers to keep track of substrings in evaluating a string expression.

?FORMULA TOO COMPLEX ERROR
READY.

Break the string expression into two smalier parts to cure the problem.

lilegal direct--A single 80 column buffer area is used by BASIC to process incoming characters. This same
buffer is used to hold a statement that is being interpreted in direct mode. INPUT will not work because
incoming characters would overwrite the variable list following INPUT to be processed.

DEF cannot be used in direct mode for a different but similar reason. The name of a function is stored in
the BASIC variabie area with pointers to the string of caharacters which define the function. Since the
function exists only in the input buffer, it would be wiped out the first time a new command is typed-in.

128

INPUT A
?ILLEGAL DIRECT ERROR
READY.
llegal quantity--Occurs when a function is accessed with a parameter out of range. This error may be

caused by:
1. A matrix subscript out of range 0< X < 32767
X(=-1)=Y
ALLEGAL QUANTITY ERROR
2. LOG (negative or zero argument)
3. SQR (negative argument)

4. A 1 B where A=0 and B not integer.
?2(-5Y - is illegal because it would give a complex result.

5. Cali of USR before machine language subroutine has been patched in.

6. Use of string functions MID$, LEFTS$, RIGHTS$, with length parameters out of
range(1< X < 255).

7. Index onGOTO out of range.
8. addresses specified for PEEK, POKE, WAIT and SYS out of range.
(0 < X <65535).

9. Byte parameters of WAIT, POKE, TAB and SPC out of range
(0< X<255).

POKE 32768,1000
?ILLEGAL QUANTITY ERROR
READY.

Next without for--Either a NEXT is improperly nested or the variable in a NEXT statement corresponds to
no previously executed FOR statement.

FOR | =1 TO 10:NEXT:NEXT
?NEXT WITHOUT FOR ERROR
READY.

FOR I=1TO 10:NEXT J
2NEXT WITHOUT FOR ERROR
READY.

OUT OF DATA--A READ statement was executed but all of the data statements in the program have been
read. The program tried to read too much data, or insufficient data, was included in the program. Carriage
returning through a line READY on the CBM TV display, sometimes yields this error because the message
is interpreted as READ Y.

READY.

?0UT OF DATA ERROR
READY.

OUT OF MEMORY--May appear while entering or editing a program as the text completely fills memory.
At run time, assignment and creation of variables may also fill all variable memory. Array available

declarations consume large areas of memory even though a program may be rather short. The maximum
number of FOR loops and simultaneous GOSUBs are dependent on each other. This context is stored on
the 6502 hardware stack whose capacity may be exceeded. To determine the type of memory error, print
FRE (0). If there are a large number of bytes available, it is most likely a FOR-NEXT or GOSUB problem.

129

10GOSUB10

RUN

?0UT OF MEMORY ERROR IN 10

READY.

?FRE(0)

7156
OVERFLOW--Numbers resulting from computations or input that are larger than 1.70141184 E + 38 cannot
be represented in BASIC's number format. Underflow is not a detectable error but less than 2.93873587.
E-39 are indistinguishable from zero.

?71E40
?0VERFLOW ERROR
READY.

REDIM’D ARRAY--After a matrix was dimensioned, another dimension statement for the same matrix was
encountered. For example, an array variable is defined by default when it is first used, and later a DIM
statement is encountered.

A(B)=6

DIM A(10,10)

?REDIM’'D ARRAY ERROR

READY.

-REDO FROM START-Is not actually a fatal error printed in the standard format but is a diagnostic printed
when data in response to INPUT is alpha when a numeric quantity is required.

10 INPUT A

RUN

?ABC

?REDO FROM START
?

INPUT continues to function until acceptable data has been received. The complement to this diagnostic
on files is BAD DATA ERROR which is fatal.When not enough data has been typed in response to INPUT,
a double ? is printed until enough data is received.

10 INPUT A,B,C
RUN

/A

??72

273

READY.

RETURN WITHOUT GOSUB--A RETURN statement was encountered without a previous GOSUB
statement being executed.

CLR
RETURN
?RETURN WITHOUT GOSUB ERROR

STRING TOO LONG--Attempt by use of the concatenation operator to create a string more than 255
characters long.

A$="A’

FORI=1T0 10:A$=A%+ AS:NEXT

?STRING TOO LONG ERROR
READY.

SYNTAX--BASIC cannot recognize the statement you have typed. Caused by such things as missing
parenthesis, illegal characters, incorrect punctuation, mispelled keyword.

130

RUIN
?SYNTAX ERROR
READY.

TYPE MISMATCH--The left-handed side of an assignment statement was a numeric variable and the
right-hand side was a string, or vice versa; or a function which expected a string argument was given a
numeric one, or vice versa. '

A$=5
?TYPE MISMATCH ERROR
READY.

UNDEF’D STATEMENT--An attempt was made to GOTO, GOSUB, or THEN to a statement which does not

exist.

GOTO A
?UNDEF’'D STATEMENT ERROR
READY.

UNDEF’'D FUNCTION--Reference was made to a user defined function which had never been defined.

X=FNA@Q)
PUNDEF’D FUNCTION ERROR
READY.

Operating System Messages and Meanings
BAD DATA--Numeric data was expected but alpha data was received when inputing from a special
device.

DEVICE NOT PRESENT-- No device on the IEEE was present to handshake an
attention sequence. Status will have a value of 2 which corresponds to atime out. May happen on OPEN,
CLOSE, CMD, INPUT#, GET#, PRINT#

OPEN 5,4,3, ‘FILE’
?DEVICE NOT PRESENT ERROR
READY.

FILE NOT FOUND--The named files specified in OPEN or LOAD was not found on the device specified. In
the case of tape 1/0O, an end of tape mark was encountered.

FILE NOT OPEN-The operating system must have device number and command information provided by
the OPEN statement. If an attempt is made to read or write a file without having done this previously, then
this message appears:

CLR
INPUT#10,A
?FILE NOT OPEN ERROR
READY.
FILE OPEN--An attempt to redefine file parameter information by repeating an OPEN command on the

same file twice.

OPEN 1,41
OPEN 1,4,1
?FILE OPEN ERROR
READY.
LOAD--Only occurs when loading a program from cassette tape. This means that there were more than 31

errors in the first tape block or that there were errors in exactly the same corresponding positions of both

131

blocks.

NOT INPUT FILE --Tape files, once opened for writing, cannot be read without first CLOSE rewinding tape
and OPEN for INPUT. This message appears when an attempt is made to read on output file:

10 OPEN 1,11

20 INPUT #1,A

7?NOT INPUT FILE ERROR
READY.

NOT OUTPUT FILE-Tape files cannot be read and updated in place. Device 0 is the keyboard and it

cannot be written to:

10 OPEN 1,0

20 PRINT #1

?NOT OUTPUT FILE ERROR
READY.

VERIFY--The contents of memory and a specified file do not compare.

NOTES

132

Appendix A. CBM Operating System.
Detailed CBM Memory Map

CBM Memory Allocation By 4K Blocks

START
BLOCK # TYPE ADDRESS FUNCTION
*0 RAM $0000 Working, text, variable storage.
1 RAM $1000 Test variable storage (8K only)
2 $2000 Expansion RAM
3 $3000 Expansion RAM
4 $4000 Expansion RAM
5 $5000 Expansion RAM
6 $6000 Expansion RAM
7 $7000 Expansion RAM
8 RAM $8000 Screen memory (1K)
9 $9000 Expansion ROM
10 $A000 Expansion ROM
11 $B000 Expansion ROM
12 ROM $C000 BASIC (principally statement interpreter).
13 ROM $D000 BASIC (principally math package).
*14 ROM $EQ00 Screen editor.
110 $ES800 All internal CBM 1/0.
15 ROM $F000 OS diagnostics
*see expanded description
Block 0 By 256 Byte Pages
START
PAGE TYPE ADDRESS FUNCTION
**0 RAM 0000 BASIC OS working storage
**q RAM 0100 Stack
**2 RAM 0200 O S working storage
**3 RAM 0300 Cassette buffers.
4-15 RAM 0400 BASIC text area
** see expanded description by page
Block 14 By 2K Segment
START
PAGE TYPE ADDRESS FUNCTION
0 ROM $E000 Screen editor
1 e} $E800 CBM I/O

A1

i/0 Device Base Addresses

START
PAGE TYPE ADDRESS FUNCTION
0 PIA $E810 Keyboard
1 PIA $E820 IEEE-488
2 VIA $E840 USR PORT cassette
CBM PAGE ZERO MEMORY MAP
FROM TO DESCRIPTION
000 - $4C constant (6502 JMP instruction).
001 002 USR function address lo, hi.
3 Starting delimiter
4 Ending delimiter
5 General counter for BASIC.
Evaluation of variables
6 Flag to remember dimensioned variables.
7 Flag for variable type; O#numeric; 1+ string.
8 Flag for integer tape.
9 Flag to crunch reserved words (protects ‘& remark).
10 Flag which allows subscripts in syntax.
11 Flags INPUT or READ.
12 Flag sign of TAN.
13 Flag to suppress OUTPUT (+ normal; — suppressed).
14 Active 1/0 channel #.
15 Terminal width (unused).
16 - Limit for scanning source columns (unused).
17 18 Line number storage
13 Flag to suppress OUTPUT (+ normal: — suppressed).
19 -- Index to next available descriptor.
20 21 Pointer to last string temporary lo; hi.
22 29 Table of double byte descriptors which point to vaiables.
30 31 Indirect index #1 lo; hi.
32 33 Indirect index #2 lo; hi.
34 39 Pseudo register for function operands.
Data storage maintenance
40 41 Pointer to start of BASIC text area lo; hi byte.
42 43 Pointer to start of variables lo; hi byte.
44 45 Pointer to array table lo; hi byte.
46 47 Pointer to end of variables lo; hi byte.
48 49 Pointer to start of strings lo; hi byte.
50 51 Pointer to top string space lo; hi byte.
52 53 Highest RAM adr lo; hi byte.
54 55 Current line being executed. A two in 54 means statement
executed in a direct command.
56 57 Line # for continue command lo; hi.
58 59 Pointer to next STMNT to execute lo; hi.
60 61 Data line # for errors lo; hi.
62 63 Data statement pointer lo; hi.

A-2

Expression evaluation

64 65 Source of INPUT lo; hi.

66 67 Current variable name.

68 69 Pointer to variable in memory lo; hi.

70 71 Pointer to variable referred to in current FOR-NEXT.

72 73 Pointer to current operator in table lo, hi.

74 - Special mask for current operator.

75 76 Pointer to function definition lo; hi.

77 78 Pointer to a string description lo; hi.

79 - Length of a string of above string.

80 - Constant used by garbage collect routine.

81 - $4C constant (6502 JMP inst).

82 83 Vector for function dispatch lo; hi.

84 89 Floating accumulator #3.

90 91 Block transfer pointer #1 lo; hi.

92 93 Block transfer pointer #2 lo; hi.

94 99 Floating accumulator #1. (USR function evaluated here).
100 -- Duplicate copy of sign of mantissa of FAC #1.
101 - Counter for # of bits of shift to normalize FAC # 1.
102 107 Floating accumulator #2.

108 - Overflow byte for floating argument.

109 - Duplicate copy of sign of mantissa.

110 111 Pointer to ASCII rep of FAC in conversion routine lo; hi.

RAM subroutines

112 - CHRGOT RAM code. Gets next character from BASIC text.

118 - CHRGOT RAM code regets current characters.

119 120 Pointer to source text lo; hi.

136 140 Next random number in storage.
Operating System page zero storage

141 143 ;24 Hr clock in 1/60 sec.

144 145 ;IRQ RAM vector

146 147 :BRK inst ram vector

148 149 ;NMI RAM vector

150 - ;I/O operation status byte

151 - ;last key index

152 -

153 154 correction factor for clock

157 - Verify flag

158 - Index to keyboard queue

159 -- Reverse field on

160 166 Multiply defined

167 - Cursor on flag

168 - Count of jiffies to blink cursor

169 - Multiply defined

170 - Character saved during blink

171 173 Multiply defined

174 - ;Pointer into logical file table

175 - ;Default input device #

176 - ;Default output device #

177 - ;Vertical parity for tape

178 185 Multiply defined

186 - SYNC on tape header count

187 188 Pointer to active cassette

189 - Muitiply defined

190 - Bit/byte tape error

191 - Reading shorts

A-3

192 Index to addresses for tape error correction

193 - Multiply defined

194 - Flag for cassette read..tolis”
195 - Count of second of shorts to write before data
196 197 Pointer to cursor position
197 198 Muitiply defined

199 200 Load start address

201 202 Load end address

203 -

204 -

205 -- Quote mode flag

206 208 Multiply defined

209 - ;Length current file name Str
210 - :Current file logical addr

21 - :Current file 2nd addr

212 - :Current file primary addr
213 217 Multiply defined

218 219 ;Addr current file name str
220 221 Multiply defined

222 - :Cassette read block count
223 -- Multiply defined

224 248 Table of LBB of start addr of video display lines
249 -

250 -

251 -

252 -

253 254

Page 1
62 byte on bottom are used for error correction in tape reads. Also, buffer for ASCIl when BASIC is

expanding the FAC into a printable number. The rest of page 1is used for storage of BASIC GOSUB and
FOR NEXT context and hardware stack for the machine.

CBM PAGE TWO MEMORY MAP

FROM TO DESCRIPTION
512 592 ;:Basic input buffer
512 513 program counter
514 - processor status
515 accumulator
516 X index
517 Y index
518 Stack pointer
519 520 :User modifiable 1RQ
593 602 ;Logical file numbers
603 612 ;Primary device numbers
613 622 :Secondary addresses
623 633 Keyboard Buffer
634 825 Tape buffer #1
826 1017 Tape buffer #2
1018 1019 Unused

VARIABLE ALLOCATION

Space is allocated for variables only as they are encountered. It is not possible to allocate an array on
the basis of 2single elements, hence the reason to execute DIM statement before array references.
Seven bytes are allocated for each simple variable whether it is a string, number, or user defined

function.

The first two bytes give the name of the variabie:

byte 1 byte2
INTEGER firstchr + Second chr + 128
128 or 128
FLOATING first chr second chr
or0
STRING first chr secondchr + 128
or 128

The last five bytes give the value of avariable, or adescriptor to the rest of the data:

INTEGER
actual value
256 * HI LO (0] 0 0
ATING .
FLO actual value in binary floating point
STRING pointer
chr
count LO Hi 0 0

The simple string variable points to alocation in high memory, where the actual characters are stored.

Examples of declaration and storage

15%=90

201 181 0 90 0 0 O
C$=“HELLO”

67 128 5 . . O

A-5

Locations 124 and 125 contain the first address of memory where a simple variable name will be
found.By incrementig the address by 7 each time the ext simple variable name in the table is
encountered.The end of the variables is defined-by the address in 126 and 127.

Locations 126 and 127 also define the start of array storage. The first two bytes of array descriptors
are the same as simple variables but the next five bytes are special as follows:

byte 3 byte 4 byte 5 byte 6 byte7
VECTOR 7 +(size + 1)*
ARRAYS (dim)*A 0 1 0 size +1

where A = 2forinteger, = 3for string,or = 5for floating.

By incrementing the search address by the current byte #3of the descriptor each time, the next array
variable is reached. Locations 128 and 129 contain the ending address of this table.

BASICTEXT
(42,43)
simple variable pointers involved in BASIC

storage variable storage.

(44,45)
array variable

storage w

(46,47)
high
memory

A-6

Because the variables are divided in storage between arrays and simple variables insertion of an
additional simple variable is a bit more complicated once an array has been defined. First, the entire array
storage area must be block moved upward by seven bytes and the pointers adjusted upward +7.
Finaily,the simple variable can be inserted at the end of simple variable storage. 7

If large arrays are defined and initialized first before simple variables are
assigned, much execution time can be lost moving the arrays each time a
simple variable is defined. The best strategy to follow in this case is to
assign a value to all known simple variables before assigning arrays.

This will optimize execution speed.

Functionsof NEW and CLRon data pointer:

CLR
String pointer equated to top of memory data pointer to
start of text — 1end of array table to start of variables end

of simple variables to start of variables.

NEW
String pointer equated to top of memory data pointer to

start oftext — 1 end of array table to start of text +3
end of simple variables to start of text + start of variables

to start of text + 3.

A-7

PRINCIPAL POINTERS INTO CBM RAM

256 * PEEK(41 63 43 45 47 49 51
+ PEEK(40 62 42 44 46 48 50
2] Q 3 144 @ 2 o
2 & 2 a 3 B ©
° o o =4 =4 o g
= 2 by 5 2 "
3 o §> g. o -‘_f; g
% 3 = o < S
o L o e a o
3 =4 o o <
g/m g
/ % v
at initialization V¥V 15(;3,59
000 31743

1024 1025 1028

typical program

BASIC
statements

1025

v v v v v
variables arrays strings
1092 1113 1175 15351

or
31735

A-8

HOW BASIC STATEMENTS ARE STORED

1024 1025 1027 1029
0 Link Line # compressed BASIC text 0 \
end of
statement
is flagged

/ by zero byte

Link Line # compressed BASIC text 0

AN

end of text is
stored as zero
link bytes

A-9

MEMORY BLOCK DIAGRAM

To get the display, four different types of memory are used: ROM, User Read/Write, 1/O

(Input/Output), and Screen Memory.

The relationship between these memories is shown in figure A.1.

6502
microprocessor
4/\\
U4
address and data-bus
/A\ /A\ // N /,\\
Ve N v N Y
ROM RAM TV RAM /0
14k 16/32K 1k 2K
keyboard user port
|EEE-488

Figure A.1. CBM memory bus

A-10

ROM (READ ONLY MEMORY)
ROM causes the CBM to perform most of its operations. In each CBM, 14K of ROM contains a series of

programs written by Commodore which scan the keyboard, print the display, control input/output, count
the real time clock, and execute commands that the user types in. Read Only memories are not only
the lowest cost memory for storing this data, but also give the user the most protection and the fastest
operation of his machine. This is because the operating system memory is indestructible from the
keyboard, or from the user’s program. Not only is the machine available to run BASIC from the momentitis
powered on, but also the user program cannot damage the BASIC operating system.

/O MEMORY
The second type of memory is that which is devoted to Input/output operations. This memory contains /0

devices called PIA* and VIA** which allow the CBM to individually control the bits that manipulate the
computer. Except when special I/O operations are desired, the user should not allow his program to
interfere in any way with these areas. The operating system automatically handles these locations in
order to perform legitimate Input/Output operations.

USER READ-WRITE MEMORY - R.A.M.)RANDOM ACCESS MEMORY)

The third type of memory is the User Program Memory Space. (We will call this area RAM
throughout this book.) In a CBM 16K/32K, it is located from location $0000 to hexidecimal
$3FFF/$7FFF. A detailed map of all the memory is included in figure 2.3, showing where the ROM,
RAM, 1/0, and Screen Memory are located from a programming standpoint. As you can see by the
map, the first 1024 bytes of memory are reserved for the operating system to use for its

various tasks, including the buffering of data from the cassettes and other 1/0 devices.

The message “1538BYTES FREE” OR “31743 BYTES FREE” is a result of an analysis of BASIC
which starts at location 1024 and cycles through the memory to determine which locations are
available, thereby, performing a check on whether or not the Read/Write Memory is working
correctly.

If the number was less than 15359/31743, you may have a hardware problem.

BASIC can automatically check up to 32K of RAM as long as the added memory is continuous to the
memory that comes furnished with the CBM. This memory is really the working memory in the machine; it
is where programs are loaded and BASIC holds all of the program variables.

Later on, we will discuss some techniques to expand this memory by using tape files and
program overlays.

SCREEN MEMORY

The screen memory is physically composed of the same kind of chips that are used to

make up the CBM’s standard memory. It is constantly being used by the CRT control electronics,
which takes the individual bytes of memory and uses them to address a special character generator
ROM, thus displaying characters on the screen.

As mentioned during the power-up discussion, this process is totally automatic, and the programmer has
no direct control over it.

*PlA - Peripheral Interface Adaptor
**VIA - Versatile Interface Adaptor

For information about these and related chips, seé 6502 Hardware Manual.

A-11

0 RAM Operating system and
BASIC working storage
1024
RAM _ _ _User BASIC program |
User Variables
8192
16384 |RAM 16K CBM
32767 |RAM 32K CBM
Expansion RAM area-24K
32768 RAM TV
33792 2 [T T T T T T T T T T
34816 Images of TV RAM
35840 /O Expansion
36864 P
Expansion ROM area-12K
49152
ROM BASIC
59392
1[o]
61440
ROM operating system
65536

Figure A.2. CBM memory map.

On every cycle of the TV screen (i/60 of a second), the hardware starts with the least address

($8000) in the screen memory and processes the screen data starting at the upper left-hand

corner of the screen. Each character in the memory is addressed into the character generator eight times,
giving us an 8 row high character on the screen. The character ROM that is used generates

8 dots each time it is addressed. These dots are serially fed to the screen, working from left to right and
top to bottom. This gives an 8 bit wide 8 bit tall character with no spaces between characters. The CRT
controller automatically changes the addressing of the character generating ROM, depending

on whether or not it is scanning the top line of a character, the second line of of a

character, etc.

There are two character sets stored in the ROM. You can change the character set on the
screen by POKEing memory address 59468 with a 14(a 12 turns it back) which turns it to

the second character set. After you have played with the screen a little bit, you may want

to try this feature to see if your CBM performs this way. The second character set substitutes
lower case letters for the graphic set that is available in the first set.

To understand this, let us review how characters are represented in the CBMand in the memory.

A-12

CHARACTER REPRESENTATION IN CBM MEMORY
The standard ASCII code is used to represent characters in the main memory. (RAM)

In the CBM, the 8th bit (bit 7) is used to signify BASIC command words or graphics characters for the CBM
screen.

B i Y <} 5]] 1 1 i i
ool] U i i b 3 1 1
I <] 1 3] i (i 5] i
J£1iy i
yydy | HUL L o i 4 s =1 L
vgyl | SUH Dol ! 1 3] G = “4
bgig | SiA VLIPS ’ ra B £ o i
ygii | S ves = i w C =
gligd | (RN Lis ¥ 4 L i d 1
bvivi | L HEIE] MAR s e E u] t
viiy | HLR o & =] F W T Y
Uiil | Pl Lib ¥ X 1] o w
lugy | bo LAl { o ¥ b h ®
iyl | Hi i 2 = i ¥ 1 b
ldig | L ol ¥ : P N rd
Wil i Vi Lo + ; K L K
livy | ki b ; % L ™ i]
1iyi i LR G - = gl 4 £
111y i =1 Mo . 7 &t ¥]
1111 i ol Vo s E B & o

Figure A.3. ASCII character set [7 bit code].
Example in the CBM:
A is represented 0100 0001
Shifted A (a spade) is 1100 0001

The screen memory is organized with a different representation from the main CBM memory.
There are only 64 characters from the standard ASCII set that are normaily printable.

B i & (& =3 15
i v Y b 1 i
I 41 (X i kX i
J&18 |
Hgdd | @ r =
dgwl | i Q2 ! i
bbig | b K ' &
Bdii i " o B o
biwg | b i ¥ 4
Bivgi | t] A o
wiliy | t v & <)
¥iii | [i Y
vy i H 7 i o
igyyr | i) 3)
idig | N Pl ¥ :
ibili | i L + i
livy | L . s <
11wy i §] J - =
iiig | 4 ¥ . 7
1311 | i

Figure A.4. ASCIHl 64 character set {6 bit code].

A-13

These are the same characters that are directly available on the CBM keyboard.

The representation in screen memory is derived from the standard ASCIl set by dropping bit
6; giving us a six bit code for the keyboard characters.

The graphic, or shifted characters, set is represented by a 1 in bit six of the screen memory, giving an
additional 64 displayable characters.

This gives the following table for CBM displayable characters. It should be noted that all of the graphics
characters are organized so that they are just a shift from the normal keyboard character.

b e ki 51 5] 15! 1 i i i
1 w 5] (51 i 1 51 g i 1
(I] i ki i u i u i
Seiy i
dogg | 4 4 3] - | r
bBugi | i i ! 1 & "] § -t
byl i B I " < i — - T
Uil i v =Y # S % |
Wik | b i ¥ 4] — i
Bidi i b U Yo w ¢ } i
Hiig | b & G — 5 W i
Blii i i3 il : e |] }
by | H 7 i, o H L Wt
logil | i Y } b’ | F -
161y J e ¥ . - ¥ § -
lgil | s L + .Q - -+ b]
1l | - % 1IN % . >
1191 i ¥ A - = | . -~
1119 i i4) e w - *
1aii | J - ; i Al “a

Figure A.5. CBM graphic character set [7 bit code].

Example: This gives us the following conversions:

Character In main memory In screen memory
A 0100 0001 00000001
L o 1100 0001 00000001
1 0011 0001 00110001
— 1011 0001 01110001

Note the reduction from seven bit ASCII to six bit gives the effect of changing the order

of A and 1. In screen memory, the 8th bit is used to store reverse field. The reverse

field consists of taking the dot pattern from the character generator and reversing it, replacing
a white dot with black and a black dot with a white.

If the operating system is used, it automatically translates the values from ASCII into the screen
memory representation. Both PRINT and direct input from the keyboard result in automatic
translation between the screen memory and the main memory.

A-14

USE OF THE SCREEN MEMORY
There are three ways to get data into the screen memory. The first of these is to POKE into

the appropriate memory address the desired translated character. This is programmed only when
normal updating of the screen is too siow.

As long as the CBM directly controls the screen, there is no apparent effect from the fact that the screen
and the CBM are contending for access to the memory. The routines in the CBM change the screen
memory only during times when the screen memory is not being used for display. This slows

the use of the screen memory down to about 40 percent of the speed obtainable with a POKE. The POKE,
however, gives a visual effect of flashing dots, because the screen is displaying the character

that is being passed from the CBMto the screen memory, rather than the character that

should be displiayed at that particular position. When a program pokes to the screen, the faster

it runs the more flashing there will be.

The second way to get data onto the screen is the keyboard. During a time when keyboard input is
enabled, the character being struck on the keyboard is automatically displayed on the screen.
The third approach is by use of the PRINT command in BASIC. When

PRINT “ABC”
is typed to BASIG, it results in the next line being printed as:
ABC

This is a print of a literal field in which all characters between the quotes are printed.

The next position at which a character will be displayed if typed on the keyboard is indicated
by a flashing signal called a cursor. The cursor is a visual indication to the user of the next
print position in screen memory.

What is physically happening in the machine is that everytime the screen is recycled, about

1/goth of a second, an interrupt to the CBM is generated. This generates a real-time clock on the
computer (the CBM) and steps a blinker counter. When this counter reads 37, the character referenced by
the screen memory pointer is reversed in the 8th bit. This causes the reference character to

be shown in alternating normal and reverse field, giving as visual effect of blinking.

By moving the pointer, we can print output any place on the screen. This is done by using a combination
of the keyboard and some software called the screen editor, which manipulates screen memory under
control of the keyboard.

A-15

Appendix B.

BASIC STATEMENTS

DEF FN

DiM

END
FOR-TO-STEP-NEXT
GET
GOSUB-RETURN
GOTO

IF-THEN

INPUT

LET
ON-(GOSUB-GOTO)
POKE-PEEK

PRINT
READ-DATA-RESTORE
REM

STOP-CONT

WAIT

In the following description of statements, an argument of V or W denotes a numeric variable. X denotes
a numeric expression, X$ denotes a string expression and an | or J denotes an expression that is
truncated to an integer before the statement is executed. Truncation means that any fractional part of
the number is lost, e.g. 3.9 becomes 3, 4.01 becomes 4.

DEF 100 DEF FNA (V)=V/IB+C The user can define functions like the
built-in functions (SQR, SGN, ABS, etc)
through the use of the DEF statement. The
name of the function is ‘FN’ followed by
any legal variable name, for example: FNX,
FNJ7, FNKO, FNR2. User-furnished
functions are restructed to one line.

A function may be defined to be any
expression, but may only have one
argument. In the example, B & C are
variables that are used in the program.
Executing the DEF statement defines the
function. User-defined functions can be
redefined by executing another DEF
statement for the same function.
User-defined string functions are not
allowed. ‘V’ is called the dummy variable.

B-1

DIM

END

FOR

110 Z=FNA(@)

200 DEF FNA(V) =FNB(V)

113 DIM A(3),B(10)

114 DIM R3(5,5), D$(2,2,2)

115 DIM Q1(N),Z(2*1)

117 A@8)=4

999 END

300 FORV=1TO 9.3 STEP .6

310 FORV=1T0O 9.3

B-2

Execution of this statement following the
above would cause Z to be set to 3/B+C,
but the value of V would be unchanged.

A function definition may be recursive.

A DEF statement may be written in terms
of other functions, however.

Allocates space for matrices. All matrix
examples are set to zero by the DIM
statement.

Matrices can have more than one
dimension. Up to 255 elements

Matrices can be dimensioned dynamically
during program execution. If a matrix is
not explicitly dimensioned with a DIM
statement, it is assumed to have as many
subscripts as implied in its first use and
whose subscripts may range from 0to 10
{(eleven elements).

If this statement was encountered before
a DIM statement for A was found in the
program, it would be as if a DIM A(10) had
been executed previous to the execution of
line 117. All subscripts start at zero (0),
which means that DIM x (100) really
allocates 101 matrix elements.

Terminates program execution without
printing a BREAK message. (See STOP)
CONT after an END statement causes
execution to resume at the statement

after the END statement. END can be used
anywhere in the program, and is optional.
V is set equal to the value of the
expression following the equal sign, in this
case 1. This value is called the initial value.
Then the statements between FOR and
NEXT are executed. The final value is the
value of the expression following the TO.
The step is the value for the expression
following STEP. When the NEXT
statement is encountered, the step is
added to the variabile.

if no STEP was specified, it is assumed to
be one. if the step is positive and the new
value of the variable is < =to the final
value (9.3 in this example), or the step value

GET

GOSuB

315 FOR V=10*N TO 3.4/Q STEP
SQR(R)

340 NEXT V
345 NEXT

350 NEXT V,W

GET A
GET A$

10 GET A$: 1FA$ =" "THEN 10

10 GOSUB 910

B-3

is negative and the new value of the
variable is =>the final value, then the first
statement following the FOR statement is
executed. Otherwise, the statement
following the NEXT statement is executed.
All FOR loops execute the statements
between the FOR and the NEXT at least
once, even in the case like FORV=1TO 0.

Note that expressions (formulas) may be
used for the initial, final and step values in
the FOR loop. The variables of the
expressions are computed only once,
before the body of the FOR...NEXT loop to
terminate. The statement between the FOR
and its corresponding NEXT in both
example above (310) would be

executed 9 times.

Marks the end of a FOR loop.

If no variable is given, matches the most
recent FOR loop. _

A single NEXT may be used to match
multiple FOR statements. Equivalent to
NEXT V: NEXT W. Specification the former
way saves 1 byte of BASIC text storage.
Works like INPUT or INPUT# on a single
character basis. Unlike INPUT though, this
function scans the keyboard and does not
wait for carriage return to be pressed. if no
key has been pressed, A$ = "’(null string)
and A =0 after executing this statement.
This example stays in a loop until a key
has been

pressed.

Branches to the specified statement (910)
until a RETURN is encountered; when a
branch is then made to the statement after
the GOSUB. GOSUB nesting is limited to
23 levels.

Subroutines line numbers are searched for
from the beginning of text. To increase
execution speed, define subroutines first
with low line numbers. Fewer digits in line
numbers will also save storage space.

50 RETURN Causes a subroutine to return to the
statement after the most recently executed
GOSUB.

GOTO 50 GOTO 100 ‘ Branches to the statement specified.
Keeping line numbers low will save space
on GOTO statements.

IF...GOTO 32 IF x< =Y +23x4 GOTO 92 Equivalent to IF..THEN, except that IF...
GOTO must be followed by a line number,
while IF..THEN can be followed by either a
line number or another statement.

|F..THEN 15 IF x<<OTHEN 6 Branches to specified statement if the
relation is True.
25 IF X=5THEN 50:Z=A WARNING. The “Z=A" will never be

executed because if the relation is true,
BASIC will branch to line 50. If the relation
is a false, BASIC will proceed to the line
after line 25.

26 |IF X<0 THEN PRINT “ERROR X NEGATIVE”: GOTO 350
In this example, if X is less than 0, the
PRINT statement will be executed and then
the GOTO statement will branch to line
350. If the X was O or positive, BASIC will
proceed to execute the lines after line 26.
Binary floating point representations of
decimal fractions may not always be exact.
sometimes a comparison will fail because
of this. In this case, compare the number to
a * range.

INPUT Request information character by character
until carriage return from the keyboard,
turning the characters into numbers or
strings of a maximum length of 79
characters.

3 INPUT V,W,W2 Requests data from the terminal (to be
typed in). Each value must be separated
from the preceeding value by a comma ().
The last value typed should be followed by
a carriage return. A “?” is typed as a
prompt character. However, only constants
may be typed in as a response to an
INPUT statement, such as 4.5E-3 or “CAT"".
If more data was requested in an INPUT
statement than was typed in, a “??” is
printed (if INPUT is from terminal) and the
rest of the data should be typed in. If more

B-4

LET

ON..GOTO

ON...GOSUB

POKE

5 INPUT “VALUE”;V

300 LET W=X
310 V=5.1

100 ON | GOTO 10,20,30,40

105 ON SGN (X) +2 GOTO
40,50,60

110 ON 1 GOSUB 50,60

357 POKE |,J

B-5

data was typed in than requested, the extra
data will be ignored and a warning “EXTRA
IGNORED” will be printed when this
happens. String must be input in the same
format as they are specified in DATA
statements.

Optionally types a prompt string (“VALUE”)
before requesting data from the terminal.
Typing CONT after an INPUT command
has been interrupted will cause execution
to resume at the INPUT statement.

An INPUT command is interrupted if a
carriage return is the only character
entered.

Assigns a value to a variable.

“LET” is optional. The type of variable

(numeric or string) must be the same as the

evaluated expression.

Branches to the line indicated by the I'th

number after the GOTO.

That is :

If =1, THEN GOTO LINE 10

If 1=2, THEN GOTO LINE 20

If 1=3, THEN GOTO LINE 30

If 1=4, THEN GOTO LINE 40.

If I=0or | attempts to select a nonexistent

line (> =)in this case, the statement after

the ON statement is executed. However,

if 1is <255 or >0, an “ILLEGAL QUANTITY”

error message will result. As many line

numbers as will fit on a 79-byte line can

follow an ON...GOTO.

This statement will branch to line 40 if the

expression X is less than zero, to line 50 if

it equals zero, and to line 60 if it is equal
to one.

Identical to “ON...GOTQ”, except that a

subroutine called (GOSUB), is executed

instead of a GOTO. RETURN from the

GOSUB branches to the statement after the

ON...GOSUB.

The POKE statement stores the byte

specified by its second argument (J) into

the location given by its first argument (i).

PEEK 10A = PEEK()

PRINT

360 PRINT X,Y,Z

370 PRINT

380 PRINT XY

390 PRINT “VALUE” 1S;A
400 PRINT A2,B,

410 PRINT MID$(A$,2);

READ 490 READ VW

B-6

The byte to be stored must be =>0 and

< =255, or an “ILLEGAL QUANTITY” error
will occur. The address (l) must be =>0
and < =65535, or an “ILLEGAL QUANTITY”
error will result. POKE works only on RAM
and 1/0 POKEing. Certain locations will
disturb normal CBM operation unless reset.
It is not possible to POKE the PEEK of a
location into a location in CBMROM.

PEEK is a function of an address and
returns a byte value contained in that
location.

Sends the data to CBM TV display. BASIC
software calls a subroutine in the system
software and loads the character in the
accumulator.

Prints the value of expressions on the

~terminal. If the list of values to be printed

out does not end with a comma (,) or a
semicolon (;), then a carriage return/line
feed is executed after all the values have
been printed. Strings enclosed in quotes
(’y may also be printed. If a semicolon
separates two expressions in the list,
their values are printed next to each other.
if a comma appears after an expression in
the list, then spaces are printed until the
carriage is at the beginning of the next N
column field (until the carriage is at column
N,2N,3N,4N...). If there is no list of
expressions to be printed, then a carriage
return is executed.

String expressions may be printed. A
semicolon is not needed between string
expressions such as PRINT AB “HELLO”
that are to be concatenated.

Reads data into specified variable from a
DATA statement. The first piece of data
read will be the first piece of data listed in
the first data statement of the program.
The second piece of data read will be the
second piece listed in the first DATA
statement, and so on. When all of the data

DATA

RESTORE

REM

STOP

CONT

WAIT

10DATA1,3, — 1E3,.04

20 DATA “CBM,INC”
30 DATA PET

510 RESTORE

500 REM NOW SET V=0

S505REM SET V=0: V=0

506 V=0: REM SET V=0
9000 STOP

WAIT |, J,K

B-7

have been read from the first DATA
statement, the next piece of data to be
read will be-the first piece listed in the
second DATA statement of the program.
Attempting to read more data then there is
in all the DATA statements in a program
will cause an “OUT OF DATA” error. The
line number given in the “SYNTAX ERROR”
will refer to the line number where the error
actually is located.

Specifies data, read from left to right.
Information appears in data statements in
the same order as it will be read in the
program.

Strings may be read from DATA
statements. If you want the string to
contain a colon () or commas (,), or leading
blanks, you must enclose the string in
double quotes. It is impossible to have a
double quote within string data or a string
literal. (* “ANYTHING” ") is illegal.

Allows the rereading of DATA statements.
After a RESTORE, the next piece of data
read will be the first piece listed in the
first DATA statement, and so on as in a
normal READ operation.

Allows the programmer to put comments
in his program. REM statements are not
executed, but can be branched to. A REM
statement is terminated by end of line, but
not by a “:".

In this case, the V =0 will never be
executed by BASIC.

In this case V =0 will be executed.

. Causes a program to stop execution and to

enter command mode. Prints BREAK IN
LINE 9000 (as per this example). CONT
after a STOP branches to the statement
following the STOP.

A command that can be executed only in
direct mode. Resumes program execution
after STOP, END, or use of STOP key.

A program cannot be resumed after error
condition, editing, CLR, or NEW.

This statement reads the status of memory

B-8

location |, exclusive OR’s K with status,
then AND’s the result with J until a non-
zero result is obtained. Execution of the
program continues at the statement
following the WAIT.

If the WAIT statement only has two
arguments, K is assumed to be zero. if you
are waiting for a bit to become zero, there
should be a one in the corresponding
position of K. 0< = 1< =65536 J,K must be
< =0and > =255.

The STOP key cannot interrupt a WAIT.

Appendix C

BASIC COMMANDS

CLR
LIST
LOAD
NEW
RUN
SAVE

VERIFY
A command is usually given after BASIC has typed READY. This is called the “Command Level”.

Commands may be used as program statements. Certain commands, such as LIST and NEW will
terminate program execution when they finish.

CLR Deletes all stored references to variables,
arrays, functions, GOSUB and FOR-NEXT
context.

LIST LIST X Lists line “X" if there is one.

LiST or LIST- Lists the entire program.
LIST X- Lists all lines in a program with a line
number equal to, or greater than, “X".
LIST -X Lists all of the lines in a program
with a line number less than, or
equal to, “X”.
LIST Y-X Lists all of the lines within a program with

line numbers equal to, or greater than, “Y”,
and less than or equal to “X”.

If LIST is used as a program statement, the
program will terminate after it is executed.

LOAD LOAD Load first program found on cassette #1
into memory.
LOAD “HURKLE” Search for named file on cassette #1 and
then load it into memory.
LOAD “HURKLE”, 2 Same as previous, except from device #2.
10 LOAD “HURKLE” When LOAD is specified as a program

statement, execution of the current
program in memory stops at this point.

A normal load of program proceeds. The
new program begins execution from its
lowest line number. Variables and their
values are passed from the load to the new
program. Strings and function definitions
cannot be relied upon because BASIC
maintains pointers into the old text

C-1

NEW
RUN RUN
RUN 200
SAVE SAVE
SAVE “HURKLE”
SAVE “HURKLE”, 2
SAVE “HURKLE”, 2,1
VERIFY VERIFY “HURKLE”

C-2

where they used to be. Strings can be
forced to exist in permanent string
variable storage by performing an operation
on them prior to LOAD, e.g. A$=A$ + .
WARNING: On an overlay LOAD, the
overlaying program must have a text
storage requirement less than or equal to
the previous program. If this is not true,
then the variables will be overwritten
because they are stored immediately after
text in memory.

Deletes current program and all variables.
Starts execution of the program currently
in memory at the lowest numbered
statementment. RUN deletes all variables
(like CLR) and restores DATA. If you have
stopped your program and wish to continue
execution at some point in the program,
use a direct GOTO statement to start
execution of your program at the desired
line.

Optionally starts RUN at the specified line
number.

Save BASIC text on cassette #1.

Save and name the file on cassette #1.
Save on 2nd cassette unit.

Save and write end of tape block.

Same parameters as LOAD. Compares
contents of memory with file and reports
success/failure of compare.

String Functions

FUNCTION EXAMPLE PURPOSE

ASC 10 A=ASC(“XYZ") Returns integer value corresponding to
ASCII code of first character in string.

CHRS$ 10 A$=CHRS$(N) Returns character corresponding to
ASCII code number

LEFT$ 10 ?LEFT$(X$,A) Returns leftmost A characters from
string.

LEN 10 ?LEN(X$) Returns length of string.

MiD$ 10 ?MID$(X$,A,B) Returns B characters from string,
starting with the Ath character.

RIGHT$ 10 ?RIGHT$(X$,A) Returns rightmost A characters from
string.

STR$ 10 A$=STR$(A) Returns string representation of
number.

VAL 10 A=VAL(AS$) Returns numeric representation of
string.

20 A=VAL(“A") If string not numeric, returns “0”.

ASC, LEN and VAL functions return numerical results. They may be used as part of an expression.
Assignment statements are used here for examples only; other statement types may be used.

Arithmetic Functions

FUNCTION EXAMPLE PURPOSE

ABS 10 C=ABS(A) Returns magnitude of argument without
regard to sign.

ATN 10 C=ATN(A) Returns arctangent of argument. C will
be expressed in radians.

COs 10 C=COS(A) Returns cosine of argument. A must be
expressed in radians.

DEF FN 10 DEF FNA(B)=C*D Allows user to define a function.

Function label A must be a single letter;
argument B is a dummy.

Arithmetic Functio'ns

SYMBOL EXAMPLE PURPOSE

EXP 10 C=EXP(A) Returns constant ‘e’ raised to power of
the argument. In this example, eA.

INT 10 C=INT(A) Returns largest integer less than or
equal to argument.

LOG 10 C=LOG(A) Returns natural logarithm of argument.
Argument must be greater than or equal
to zero.

RND 10 C=RND(A) Generates a random number between

zero and one. If A is less than 0, the
same random number is produced in
each call to RND. If A=0, the same
sequence of random numbers is
generated each time RND is called. If A
is greater than 0, a new sequence is
produced for each call to RND.

SGN 10 C=SGN(A) Returns -1 if argument is negative,
returns 0 if argument is zero, and
returns +1 if argument is positive.

SIN 10 C=SIN(A) Returns sine or argument. A must be
expressed in radians.

SQR 10 C=SQR(A) Returns square root of argument.

TAN 10 C=TAN(A) Returns tangent of argument. A must be

expressed in radians.

Appendix D

EXPRESSIONS AND OPERATORS

RELATIONAL OPERATORS

equal

less than
greater than
L.E.

G.E.

> not equal

/‘\\//\V/\"
1l

BOOLEAN OPERATORS

AND
OR
NOT

ARITHMETIC OPERATORS

+ add

- subtract

* multiply

/ divide

0 exponentiation
- (negation)

STRING OPERATOR

+ (concatenation)

D-1

ARITHMETIC OPERATORS

SYMBOL SAMPLE STATEMENT PURPOSE/USE
= A=100 Assigns a value to a variable,
LETZ=25 the LET is optional.
- B=-A Negation. Note that 0 — A js subtraction,
while — A is negation.
i 130 PRINT X13 Exponentation {equal to X*X*X

in the sample statement). 000 =1. 0to any
other power = 0.AtB, with A negative and
B not an integer gives an FC error.

* 140 X=R*(B*D) Multiplication.
/ 150 PRINT x/1.3 Division.

+ 160.Z=R+T+Q Addition.

- 170 =100 -1 Subtraction.

RELATIONAL OPERATORS

Relational operators can be used as part of any expression.

Relational operator expressions will always have a value of True (— 1) or a value of Faise (0).
Therefore, (5=4)=0,(6=5)= -1, etc.

The THEN clause of an IF statement is executed whenever the formula after the IF is not equal to 0. That
is to say, IF X THEN...is equivalent to IF X<> O THEN....

SYMBOL SAMPLE STATEMENT PURPOSE/USE

= 10 IF A=15 THEN 40 Expression Equals Expression.

<> 70IFA<>O0THENS Expression Does Not Equal Expression.

> 30 IF B >100 THEN 8 Expression Greater Than Expression.

< 160 IF B<2 THEN 10 Expression Less Than Expression.

<=, =< 180 IF 100< =B+ C THEN 10 Expression Less Than Or Equal To
Expression.

>=,=> 190 IF Q> =R THEN 50 Expression Greater Than Or Equal To
Expression.

BOOLEAN OPERATORS

AND 2IF A<K5 ANDB<2THEN 7 If expression 1 (A <5) AND expression 2
(B <2) are both true, then branch to line 7.
OR IFA<1ORB<2THEN 2 If either expression 1 (A <1) OR expression
2 (B<2) is true, then branch to line 2.
NOT IF NOT Q3 THEN 4 If expression “NOT Q3” is true (because

Q3 is false), then branch to line 4.
NOT —1=0(NOT true =false).
AND, OR and NOT can be used for bit manipulation, and for performing boolean operations.
These three operators convert their arguments to sixteen bit, signed two’s, complement integers in the

D-2

range —32768to + 32767. They then perform the specified logical operation on them and return a result
within the same range. If the arguments are not in this range, an ?2ILLEGAL QUANTITY ERROR results.
The operations are performed in bitwise fashion, this means that each bit of the result is obtained by

examining the bit in the same position for each argument.
The following truth tabie shows the logical relationship between bits:

OPERATOR ARG. 1 ARG. 2 RESULT
AND 1 1 1
0 1 0
1 0 0
0 0 0
OR 1 1 1
1 0 1
0 1 1
0 0 0
NOT 1 0
0 - 1
EXAMPLES OF BOOLEAN EXPRESSIONS
63 AND 16 =16 Since 63 equals binary 111111 and 16 equals binary 10000, the result of the AND
is binary 10000 or 16.
15 AND 14=14 15 equals binary 1111 and 14 equals binary 1110, so 15 and 14 equals binary 1110
or 14.
—1AND 8=8 -1 equals binary 1111111111111111 and 8 equals binary 1000, so the result is
binary 1000 or 8 decimal.
4 AND 2=0 4 equals binary 100 and 2 equals binary 10, so the resuit is binary 0 because none
of the bits in either argument match to give a 1 bit in the result.
100R 10=10 Binary 1010 OR’d with binary 1010, or 10 decimal.
—10R -2=-1 Binary 1111111111111111 (- 1) OR’d with binary 1111111111111110 (- 2) equals
binary 1111111111111111, or - 1.
NOT 0= -1 The bit complement of binary 0 to 16 places is sixteen ones (1111111111111111)
or —1. Also NOT -1=0.
NOT X NOT X is equal to —(X + 1). This is because to form the sixteen bit two’s
complement of the binary, you take the bit (one’s) complement and add one.
NOT1=-2 The sixteen bit complement of 1is 1111111111111110, which is equal to — (1 + 1)

or —2.

D-3

RULES FOR EVALUATING EXPRESSIONS

Rules for Evaluating Expressions:

1. Operations of higher precedence are performed before operations of lower precedence. This means the
multiplications and divisions are performed before additions and subtracions. As an example,

2 + 10/5 equals 4, not 2.4. When operations of equal precedence are found in a formula, the left-hand one
is executed first: 6 -3 +5=8, not —2.

2. The order in which operations are performed can always be specified explicitly through the use of
parentheses. For instance, to add 5to 3 and then divide that by 4, we would use (5 + 3)/4, which eqals 2.
If, instead, we had used 5+ 3/4, we would get 5.75 as a result (5 plus 3/4).

The precedence of operators used in evaluating expressions is as follows, in order beginning with the
highest precedence: (Note: Operators listed on the same line have the same precedence).

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED FIRST

2)t EXPONENTATION

3) NEGATION - X WHERE X MAY BE A FORMULA
4) MULTIPLICATION AND DiVISION

5 + - ADDITION AND SUBTRACTION

6) RELATIONAL OPERATORS: = EQUAL
<> NOT EQUAL
(equal precedence < LESS THAN
for all six). > GREATER THAN
< = LESS THAN OR EQUAL
>= GREATER THAN OR EQUAL

7)NOT LOGICAL AND BITWISE “NOT” LIKE NEGATION, NOT TAKES ONLY THE FORMULA TO
ITS RIGHT AS AN ARGUMENT

8) AND LOGICAL AND BITWISE “AND”

9) OR LOGICAL AND BITWISE “OR”

D-4

Appendix E

SPACE HINTS

In order to make your program smaller and save space, the following hints may be useful.

1) Use multiple statements per line. There is a small amount of overhead. (5 bytes) associated with each
line in the program. Two of these five bytes contain the line number of the line in binary. This means that
no matter how many digits you have in your line number (minimum line number is 0, maximum is 63999), it
takes the same number of bytes. Putting as many statements as possible in a line will cut down on the
number of bytes used by your program.

2) Delete all unnecessary spaces from your program. For instance:
10 PRINT X, Y, Z
uses three more bytes than

10 PRINTX,Y,Z
Note: All spaces between the line number and the first non-blank character are ignored.

3) Delete all REM statements. Each REM statement uses at least one byte plus the number of bytes in the
text. For instance, the statement 130 REM THIS IS A COMMENT uses up 24 bytes of memory.

In the statement 140 X =X + Y:REM UPDATE SUM, the REM uses 14 bytes of memory including the colon
before the REM.

4) Use variables instead of constants. Suppose you use the constant 1.02369 ten times in your program.
If you insert a statement

10Q =1.02369

in the program, and use Q instead of 1.02369 each time it is needed, you will save 40 bytes. This will also
result in a speed improvement.

5) A program need not end with an END; so, an END statement at the end of a program may be deleted.

6) Re-use the same variables. If you have a variable T which is used to hold a temporary result in one part
of the program and you need a temporary variable later in your program, use it again. Or, if you are asking
the terminal user to give a YES or NO answer to two different questions at two different times during the
execution of the program, use the same temporary variable A$ to store the reply.

7) Use GOSUB’s to execute sections of program statemnts that perform identical actions.

8) Use the zero elements of matrices; for instance, A(O), B(O,X)

SPEED HINTS
The hints below shouid improve the execution time of your BASIC program. Note that some of these hints
are the same as those used to decrease the space used by your programs. This means that in many cases
you can increase the efficiency of both the speed and size of your programs at the same time.

1) Delete all unnecessary spaces and REM’s from the program. This may cause a small decrease in
execution time because BASIC would otherwise have to ignore or skip over spaces and REM statements.

2) THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR OF 10. Use variables instead
of constants. It takes more time to convert a constant to its floating point representation than it does to
fetch the value of a simple or matrix variable. This is especially important within FOR...NEXT loops or
other code that is executed repeatedly.

E-1

3) Order your definitions of variables carefully. Variables which are encountered first during the execution
of a BASIC program are allocated at the start of the variable table. This means that a statement such as
5A=0:B=A:C=A, will place A first, B second, and C third in the symbol table (assuming line 5 is the
first statement executed in the program). Later in the program, when BASIC finds a reference to the
variable A, it will search only one entry in the symbol table to find A, two entries to find B and three entries
to find G, etc.

4) Use NEXT statements without the index variable. NEXT is somewhat faster than NEXT | because no
check is made to see if the variable specified in the NEXT is the same variable in the most recent FOR
statement.

E-2

Appendix F

SUGGESTED READING (usa produced)

Hands-On Basic with a Pet. H.D. Peckham. McGraw Hill, 1979

Entering BASIC. J.Sack and J. Meadows. Science Research Associates,1973
BASIC:A Computer Programming Language. C. Pegels, Holden-Day,Inc. 1973

BASIC Programming. J. Kemeny and T. Kurtz, Peoples Computer Co., 1010 Doyle(P.O.Box 3100),
Menlo Park, Ca 94025, 1967

BASIC FOR HOME COMPUTERS. Albrecht, Finkle and Brown. Peoples Computer Co., 1010 Doyle(P.O. Box
3100), Menlo Park, Ca 94025, 1973 '

A Guided Tour of Computer Programming in BASIC. T. Dwyer, Houghton Mifflin Co., 1973

Programming Time Shared Computer in BASIC. Eugene H. Barnett. Wiley-Interscience L/IC 72-175789
($12.00)

Programming Language #2. Digital Equipment Corp., Maynard, MA 01754

101 BASIC Computer Games. Software Distribution Center. Digital Equipment Corp., Maynard,
MAO01754 ($7.50)

What to Do After You Hit Return. Peoples Computer Co., 1010 Doyle(P.0.Box 310),
Menlo Park, Ca 94025 ($6.95)

Basic BASIC. James S. Coan, Hyden Book Co., Rochelle Park, NJ

WORKBOOKS 1-5. T. I. S., P.O.Box 921, Los Almos, NM 87544
Programming the 6502. R. Zaks Sybex, 1978

24 Tested, Ready-to-Run Game Programs in Basic. K. Tracton, Tab Books, 1978
Some Basic Programs. M. Borchers and R. Poole, Osborne & Assoc. Inc., 1978
Basic Programming for Business. |.H. Forkner, Prentice-Hall, 1977

The Channel Data Book. B. Lewis, 5960 Mandarin Ave., Goleta, CA 93017, 1978

F-1

CBM USER MANUAL
REQUEST FOR READER’S COMMENTS

The micro-computer system division attempts to provide documents that meet the needs of all
Commodore product users. This form lets you participate in the documentation process.

Piease restrict your comments to the usability, accuracy, organization, and completeness of this
document.

1. Please specify by page any error you found in this manual.

2. Does the manual cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right manual for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this manual on a scale of 1to 10 with 10 being the best
rating.

Check here if you desire a written reply. D

Name
Address

Mail to the Commodore Address nearest to you (rear cover).

Commodore Business Machines, Inc.
3330 Scolt Bvg,
Santa Clara, CA 95050

Commodore Business Machines Limited
3370 Pharmacy Avenua

Agincourt, Ontario, Canada M1W2K4
Commodore Business Machines (UK) Limited
360 Euslon Road

London MW 3BL, England

Commadare Buromaschinen GmbH
Franklurter Strasse 171175

6078 Meu Isenburg

West Germany

Commaodore Japan Limited
Taiser-Denshi Building
814 lkue 1-ChomeAsahi-Ku, Osaka 535. Japan

Commaodare Elecironics (Hong Kong) Lid.
Walsons Eslales

Block C. 11th flogr

Hong Kong. Hong Kong

P/N 320856-3

