

Cover

GEOPROGRAMMER

ASSEMBLY LANGUAGE ENVIRONMENT FOR USE WITH GEOSTM

FOR THE COMMODORE 64, 64c AND 128 COMPUTERS.

in honor of

;**** ****

.include macroFile

.include constants

 .psect

ProgStart: LoadW r0, grap

 jsr Graphic

 LoadW r0, main

 jsr DoMenu

 rts

BrushIcon:

Softworks
B E R K E L E Y

TM

pbm

geoProgrammer

User's Manual

Berkeley Softworks

2150 Shattuck Avenue

Berkeley, California 94704

Update Policy

To participate in Berkeley Softworks' update service, fill out and return the

GEOS Registration Card found at the back of the manual. Registered users

will be sent notices outlining the procedure for obtaining updates and

revisions.

License and Limited Warranty

This manual and software are subject to all the terms of the accompanying

Software License Agreement. Except for the limited warranty on the

diskettes which is described in the Software License Agreement, THE

SOFTWARE AND ACCOMPANYING MATERIALS ARE PROVIDED

"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE.

SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED

WARRANTIES SO THE ABOVE EXCLUSION MAY NOT APPLY TO

YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS.

YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM

STATE TO STATE. IN NO EVENT WILL BERKELEY SOFTWORKS,

INC. BE LIABLE FOR ANY DAMAGES, INCLUDING LOSS OF

DATA, LOST PROFITS, COST OF COVER OR OTHER SPECIAL,

INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES

ARISING FROM THE USE OF THE SOFTWARE OR

ACCOMPANYING MATERIALS, HOWEVER CAUSED ON ANY

THEORY OF LIABILITY.

THIS LIMITATION WILL APPLY EVEN IF BERKELEY

SOFTWORKS, INC. OR AN AUTHORIZED DEALER HAS BEEN

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. YOU

ACKNOWLEDGE THAT THE LICENSE FEE REFLECTS THIS

ALLOCATION OF RISK. SOME

STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF

LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES,

SO THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

geoProgrammer, geoAssembler, geoLinker, geoDebugger, GEOS, GEOS

128, geoWrite, geoPaint, Icon Editor, DESKPACKl, Graphics Grabber,

Notepad, geoPrint Cable, and geoProgrammer User's Manual are

©copyright Berkeley Softworks, 1985, 1986, 1987.

Commodore 64 is a registered trademark of Commodore Electronics Ltd.

Commodore 128 is a trademark of Commodore Electronics Ltd. UNIX is a

trademark of AT&T Bell Laboratories.

Manual written by Matthew G. Loveless

geoAssembler and geoLinker designed by Ted H. Kim

geoDebugger designed by Eric E. Del Sesto

Project Manager: Eric E. Del Sesto

Printed 10/87

PDF Version 20210218

Converted into the digital form by Paul B Murdaugh and Bruce Thomas.

Document construction and PDF design by Paul B Murdaugh

Proof reading and design corrections Bruce Thomas and Paul B Murdaugh.

PDF Created 2/21

Table of Contents

Chapter 1

Introduction to geoProgrammer

1-1 geoAssembler

1-2 geoLinker

1-2 geoDebugger

1-3 Using geoProgrammer with Other GEOS Based Programs

1-3 How To Use This Manual

1-5 Conventions Used In This Manual

Chapter 2

Before You Begin

2-1 What You Need To Use geoProgrammer

2-3 The geoProgrammer Disk

2-4 Installing geoProgrammer

2-5 Making a Backup Copy of geoProgrammer

2-6 Making Work Disks

Chapter 3

Application Development

3-1 What Is Assembly Language

3-2 Developing With geoProgrammer

3-4 The Development Cycle

3-7 Application Types

3-8 GEOS File Headers

Chapter 4
geoAssembler & geoLinker Description and Usage

4-2 How To Learn Assembly Language

4-3 6502 Source Code

4-9 Creating geoAssembler Source Code

(Chapter 4, cont.)

4-14 Running geoAssembler

4-17 Running geoLinker

4-22 Creating a Sample Application

Chapter 5

geoAssembler Reference and Advanced Topics

5-1 The Assembly Process

5-2 Assembler Input

5-3 Symbols

5-6 6502 Opcodes and Operands

5-7 Comments

5-7 Expressions

5-18 Directives

5-20 Assembly Control Directives

5-29 Symbol Directives

5-32 Data Directives

5-35 Conditional Assembly

5-38 Macros

5-48 Header Definition

5-52 Internal Variables

Chapter 6

geoLinker Reference

6-1 The Link Process

6-2 Linker Overview

6-3 The Linker Command File

6-7 Cross-reference Resolution

6-8 Link Directive Reference

Chapter 7

geoDebugger Usage and Tutorial

7-1 What is a Debugger?

7-1 geoDebugger Features

7-3 Super-debugger and Mini-debugger

7-4 Running the Super-debugger

7-6 Running the Mini-debugger

7-8 Sample Super-debugger Session

7-16 Sample Mini-debugger Session

Chapter 8

Super-debugger Reference

8-1 Special Characters

8-2 Super-debugger Expressions

8-9 Basic Operation

8-10 Super-debugger Command Summary

8-13 Syntax Notation

8-16 General Commands

8-20 Display Commands

8-29 Open Modes

8-43 Execution Commands

8-57 Stack Related Commands

8-63 Breakpoint Commands

8-70 Symbol Commands

8-78 Macro Commands

8-95 Memory Commands

8-99 Special Commands
8-102 Disk Commands

Chapter 9

Mini-debugger Reference

9-1 Memory Usage
9-1 Case Sensitivity

9-2 Expressions and Numeric Constants

9-2 Basic Operation

9-5 Mini-debugger Command Summary

(Chapter 9, cont.)

9-6 Syntax Notation

9-7 General Commands

9-9 Display Commands

9-12 Open Modes

9-22 Execution Commands

9-29 Breakpoint Commands

9-33 Special Commands

9-34 Disk Commands

Appendices

A-1 Library Files and Sample Source

B-1 geoProgrammer File Formats

C-1 geoDebugger Technical Notes

D-1 Bibliography and Further Reference

E-1 Error Messages

Glossary

Index

 1-1 Intro

Chapter 1: Introduction to

geoProgrammer

geoProgrammer is a sophisticated set of assembly language development

tools, designed specifically for building GEOS applications.

geoProgrammer is a scaled-down version of the UNIX™ based

development environment Berkeley Softworks actually uses to develop

GEOS programs. In fact, nearly all the functionality of our microPORT

system has been preserved in the conversion to the Commodore

environment.

The geoProgrammer development system consists of three major

components:

geoAssembler
geoAssembler, the workhorse of the system, takes 6502 assembly language

source code and creates linkable object files.

• Reads source text from geoWrite documents; automatically converts

graphic and icon images into binary data.

• Recognizes standard MOS Technology 6502 assembly language

mnemonics and addressing modes.

• Allows over 1,000 symbol, label, and equate definitions, each up to

characters long.

• Full 16-bit expression evaluator allows any combination of

arithmetic and logical operations.

• Supports local labels as targets for branch instructions.

• Extensive macro facility with nested invocation and multiple

arguments.

• Conditional assembly, memory segmentation, and space allocation

directives.

• Generates relocatable object files with external definitions,

encouraging modular programming.

Intro 1-2

geoLinker
geoLinker takes object files created with geoAssembler and links them

together, resolving all cross-references and generating a runnable GEOS

application file.

• Accepts a link command file created with geoWrite.

• Creates all GEOS applications types (sequential, desk accessory, and

VLIR), allowing a customized header block and file icon.

• geoLinker will also create standard Commodore applications which

do not require GEOS to run.

• Resolves external definitions and cross-references; supports complex

expression evaluation at link-time.

• Allows over 1,700 unique, externally referenced symbols.

• Supports VLIR overlay modules.

geoDebugger
geoDebugger allows you to interactively track-down and eliminate bugs

and errors in your GEOS applications.

• Resides with your application and maintains two independent

displays: a graphics screen for your application and a text screen for

debugging.

• Automatically takes advantage of a RAM-expansion unit, allowing

you to debug applications which use all of available program space.

• Complete set of memory examination and modification commands,

including memory dump, fill, move, compare, and find.

• Symbolic assembly and disassembly.

• Supports up to eight conditional breakpoints.

• Single-step, subroutine step, loop, next, and execute commands.

• _RESTORE_ key stops program execution and enters the debugger at

any time.

• Contains a full-featured macro programming language to automate

multiple keystrokes and customize the debugger command set.

Your geoProgrammer disk also has two sample applications which you can

use as models for your own programs. In fact, we encourage you to copy

the files and build upon them, using them as the basis for your applications.

You can also use the library of GEOS equate and macro files on the disk,

making your source code easier to read and Understand, as well as

supporting (and extending) the standard in The Official GEOS

Programmer's Reference Guide.

 1-3 Intro

Using geoProgrammer with Other

GEOS Based Programs

Since geoProgrammer is GEOS compatible, you can use it with other

GEOS based programs.

geoWrite
Create geoAssembler source files and linker command files in your

geoWrite word processor; include graphic and icon images from geoPaint

and the Icon Editor directly into your source code; examine error files,

symbol lists. geoWrite is included with the GEOS operating system.

geoPaint
Develop graphic images and icons for your applications with your geoPaint

paint program. geoPaint is included with the GEOS operating system.

Icon Editor
Create and edit icon images for your applications with the GEOS Icon

Editor. The Icon Editor is included with DESKPACK1. The version 2.0

allows photo scrap cut and paste operations.

How to Use This Manual

geoProgrammer was designed with the serious programmer in mind. It is

therefore a sophisticated product. This does not mean it is hard to use, only

that it must be approached in the proper way, with the proper prerequisites.

This manual will not show you how to use the GEOS deskTop; for that

you'll have to refer to your GEOS User's Guide. Nor will it teach you 6502

assembly language; for that you'll have to refer to a good book on the

subject. Finally, it will not show you how to program under the GEOS

environment; that is the job of The Official GEOS Programmer's Reference

Guide. However, this manual will attempt to bridge the gap between these

other resources, thereby flattening an otherwise steep learning curve.

But the experienced programmer will not feel encumbered by this — many

of the introductory chapters can be skimmed quickly before moving

directly into the reference sections.

Intro 1-4

The manual is organized as follows:

Chapter 1 and Chapter 2 contain important information and procedures you

should read and follow before you begin working with geoProgrammer.

Chapter 1 gives you a general overview of the geoProgrammer system and

this manual. Chapter 2 contains information on the equipment you need and

the installation procedures you must follow in order to begin working.

Chapter 3 overviews the geoProgrammer development environment. It

explains how geoAssembler, geoLinker, and geoDebugger interact, in

addition to describing 6502 assembly language, the GEOS environment,

and the application development cycle.

Chapter 4 explains the general use of geoAssembler and geoLinker. It

describes how to create geoAssembler source code, assemble it, and finally

link it into a runnable application. This chapter does not exhaustively cover

the assembler and linker.

Chapter 5 is a reference chapter, covering all aspects of geoAssembler,

from labels to expressions to macros. The chapter is designed to be both

informative and convenient — providing quick and easy access to a

breakdown of the assembler's features.

Chapter 6 is a reference chapter for geoLinker, covering all aspects of the

link command file, and linker directives.

Chapter 7 overviews geoDebugger by introducing its major features and

taking the reader through a brief tutorial session.

Chapter 8 is a complete reference for geoDebugger commands available in

the Super-debugger. This debugger requires a ram-expansion unit

Chapter 9 is a complete reference for geoDebugger commands available in

the Mini-debugger.

Finally, the manual contains a number of appendices with useful

information, as well as a comprehensive index and glossary.

We hope this manual helps you get the most out of your geoProgrammer

development environment. We welcome comments and suggestions about

the manual. Please send them to:

 1-5 Intro

Berkeley Softworks

Attn: Documentation Department

2150 Shattuck Avenue

Berkeley, CA 94704

Conventions Used in This Manual

When important terms are first introduced, they are printed in italics to set

them apart from the regular text. Many of these terms are further defined in

the glossary at the end of this manual.

Paragraphs marked IMPORTANT, NOTE, and HINT appear throughout

the manual. IMPORTANT alerts you to potential problems and suggest

ways to avoid them. NOTE points out other information relevant to the

topic at hand. And, HINT offers useful hints and tips.

Letters or words enclosed in rectangular boxes represent keys on your

Commodore keyboard. Some functions require that you press and hold one

key (like _SHIFT_) and then press a second key. In these cases, the keys will

be listed serially with a plus (+) sign between them.

Syntax Notation
The following conventions are used in the syntax descriptions in this

manual:

addrexp address expression — a valid expression which

evaluates to an address in the Commodore's memory

space.

zp-address zero page address — a valid expression which evaluates

to a zero page address ($00-$ff).

exp

expression a valid expression.

filename a valid GEOS file name which does not contain any

spaces, whether leading, trailing, or embedded.

string a string of ASCII characters enclosed in double-quotes.

Intro 1-6

symbol a valid geoProgrammer symbol.

[] square brackets indicate an optional item which may

appear zero or one times

{} curly braces indicate an optional item which may appear

zero or more times.

| a vertical line indicates a choice and can be read as "or".

 2-1 Before you begin

Chapter 2: Before you begin

Before you can begin to use the geoProgrammer system, you must read and

follow the instructions in this chapter. This chapter will describe the

equipment you need and the proper system configuration, how to install

your geoProgrammer system, how to make a backup copy of your

geoProgrammer disk, and how to make work disks for use with

geoProgrammer.

What You Need to Use

geoProgrammer

geoProgrammer is a part of the GEOS family of products. GEOS (Graphic

Environment Operating System) is the official operating system for the

Commodore 64. As a part of the GEOS world, there are certain pieces of

equipment (hardware) and computer programs (software) which you need

in order to run geoProgrammer. Additional equipment such as a printer, a

second disk drive, a RAM-expansion unit (REU) are not required but will

improve the performance and utility of geoProgrammer. The REU is

especially recommended for use with the geoProgrammer application due

to its ability to bring increased speed and memory capacity to the

Commodore 64/128 computer system.

You must have the following hardware and software in order to run and

work with geoProgrammer:

• A Commodore 64, 64c, or 128 computer. Your 128 may use 40 or 80

column mode.

• One Commodore disk drive (1541 or 1571).

• GEOS (Graphic Environment Operating System) software version 1.3

or later, including geoWrite.

• An input device such as a joystick or a mouse.

• The geoProgrammer package, which includes the program diskette and

this manual.

Before you begin 2-2

• Several blank, formatted disks for backup and work disks.

The following optional equipment is recommended to take full advantage

of the power and versatility of geoProgrammer. This equipment is not

necessary to use geoProgrammer.

• A RAM-Expansion unit (REU), such as the Commodore 1764 or 1750.

With an REU, the operating speed of geoAssembler and geoLinker (and

other programs) is greatly increased. This speeds up the turnaround time

on the development cycle, thereby improving your programming

productivity. Also, geoDebugger is designed to take advantage of the

64K system space in an REU, allowing you to debug applications which

use the entire available program space.

• A GEOS supported printer that is properly connected to your computer.

This will allow you to print out your geoAssembler source code, your

geoLinker command files, and any error files. A list of GEOS supported

printers is included in your GEOS User's Guide.

• An interface card or geoPrint Cable if you are planning on using a non-

Commodore compatible printer to print out your GEOS files. geoPrint

Cable is a parallel printing cable that makes printing your GEOS files

fast and easy.

• A second disk drive (1541 or 1571). With two disk drives you will be

able to copy files and disks more easily. You will also be able to

dedicate all of the disk space on one disk to your source code, while the

disk in the other drive contains the geoProgrammer system.

• A proportional input device such as the Commodore 1351 mouse. A

proportional input device makes getting around in the GEOS world fast

and easy.

• Several blank, formatted DS/DD (Double-Sided/Double-Density)

diskettes for making work disks.

 2-3 Before you begin

The geoProgrammer Disk

Your geoProgrammer system is contained on two sides of a floppy disk.

Side A is the top, label side, and side B is the opposite side. To access the

files on side B, the disk must actually be removed, turned-over, and

reinserted into the drive. When you make a backup copy of your

geoProgrammer disk, you will need to use two disks, copying side A to one

disk and side B to another.

Following are the contents of your geoProgrammer disk:

Side A

GEOASSEMBLER The macro assembler.

GEOLINKER The overlay linker.

GEODEBUGGER The symbolic debugger.

geosSym complete GEOS symbols include file (no

comments).

geosMac GEOS macros include file (no comments).

SamSeq Sample sequential application, main source code.

SamSeqHdr Sample sequential application header source code.

SamSeq.lnk Sample sequential application link command file.

SamSeq.dbm Sample sequential application debugger macro

 file.

SideB

geosConstants GEOS constants include file (with comments).

geosMemoryMap GEOS memory map include file (with comments).

geosRoutines GEOS routines include file (with comments).

geosMacros GEOS macro file (with comments).

SamVlirRes Sample VLIR application resident code module.

SamVlirEdit Sample VLIR application Edit menu overlay

module.

SamVlirFile Sample VLIR application File menu overlay

module.

SamVlirEquates Sample VLIR application internal equates.

SamVlirZP Sample VLIR application zero page variables.

SamVlirHdr Sample VLIR application header source file.

SamVlir.lnk Sample VLIR application link command file.

SamDA Sample desk accessory main source module.

SamDAHdr Sample desk accessory header source file.

SamDA.lnk Sample desk accessory link command file.

DISK COPY Disk backup utility for one-drive systems.

Before you begin 2-4

Installing geoProgrammer

Your geoProgrammer disk must first be installed into your GEOS system

before you use it. You only perform the installation procedure once, the

first time you use geoProgrammer.

IMPORTANT: Be sure to install geoProgrammer using your own GEOS

boot disk or the GEOS boot disk that will always be used with this

geoProgrammer disk. Any copies of geoProgrammer must also be used

with this same GEOS boot disk.

To install your geoProgrammer system, follow these steps:

1: Boot your copy of GEOS as described in your GEOS User's Manual.

2: Close your GEOS boot disk by clicking on the close icon in the

upper-right corner of the window.

3: Put the geoProgrammer disk (label side, side A, up) into the disk

drive and open it by clicking on the disk icon.

4: Open the file named geoAssembler by double-clicking on its icon or

by selecting the geoAssembler icon (single-clicking on it) and

choosing open from the file menu. The program will load and the

following dialog box will appear:

 2-5 Before you begin

5: Click on the OK icon to return to the deskTop.

6: Follow this same procedure (steps 4 and 5) for the geoLinker and

geoDebugger files.

Your geoProgrammer disk is now completely installed. When you now run

geoAssembler, geoLinker, or geoDebugger from the deskTop, rather than

the installation procedure, you will be executing the actual program.

Making a Backup Copy of

geoProgrammer

Before you actually start using geoProgrammer (but after you have installed

it), you should make backup copies of your disk. In fact, once you have

made a backup, you should store your original geoProgrammer disk away

in a safe place. You should never use your original geoProgrammer disk for

anything other than making backup copies.

With One Disk Drive
To make a backup copy of your geoProgrammer disk with only one disk

drive, follow these steps:

1: Have two blank, formatted destination disks ready. Double-click on

the DISK COPY utility program icon (located on side B of your

geoProgrammer disk). The screen will turn blue. This is normal.

2: Follow the directions that appear on the screen to make a backup of

side A of your geoProgrammer disk. The source disk is the disk you

wish to copy from (your original geoProgrammer disk); the destination

disk is the disk you wish to copy to (your blank backup disk). If you

ran DISK COPY from side B of your geoProgrammer disk, you will

need to turn it over to side A.

3: When the copy is finished, you will be asked if you wish to make

another copy. Select yes and proceed with the copy, this time using

side B of your geoProgrammer disk and the second blank, formatted

destination disk.

Before you begin 2-6

With Two Disk Drives
GEOS must be set up to work with two disk drives as described in your

GEOS User's Manual.

Follow these steps to make a backup copy of your geoProgrammer disk

with two disk drives:

1: Place your original geoProgrammer disk in drive A, side A up, and a

blank, formatted destination disk in drive B.

2: Select copy from the disk menu of the GEOS deskTop.

3: Follow the directions that appear on the screen to make a backup of

side A of your geoProgrammer disk. The source disk is the disk you

wish to copy from (your original geoProgrammer disk); the

destination disk is the disk you wish to copy to (your blank backup

disk).

4: When the copy is finished, you will be returned to the GEOS

deskTop. Turn the geoProgrammer disk to side B and insert the

second blank, formatted disk into the other drive. Now again select

the copy from the disk menu to copy side B to the second disk.

These are the only safe ways to make copies of your geoProgrammer

system disk.

IMPORTANT: Do not use the BACKUP program supplied with your

GEOS disk. Only use the BACKUP program to make backup copies of

your GEOS boot disk.

Making Work Disks

Once you have made one or more backup copies of your geoProgrammer

disk, you will want to make work disks. A work disk is a disk you will use

in your everyday development with geoProgrammer; you can make as

many work disks as you like, and work disks can contain any combination

of geoAssembler, geoLinker, geoDebugger, desk accessories, and your

work files. In this way you can customize your work disks to suit your

exact needs. For example, you might want one work disk with just

geoAssembler, geoLinker, and your source files along with a second work

disk with geoDebugger, your runnable application along with its debugger

symbol file, and a file of debugger macros.

 2-7 Before you begin

There are two ways to make a geoProgrammer work disk:

1: Use the DISK COPY program to make a work copy of Side A of

your geoProgrammer disk onto a blank, formatted disk. With this

new work disk, you can add or delete files as your needs demand.

2: Copy selected files individually from your geoProgrammer backup

disk (and any other disk) to a blank, formatted work disk.

A work disk containing a selection of GEOS files might include the

following:

geoAssembler

geoLinker

geoDebugger

geoWrite

roma (font for geoWrite)

deskTop 1.3 (or later version)

printer driver (the correct one for your printer)

geosSym

geosMac

This is a simple work disk configuration for geoProgrammer development.

Depending on your needs, you can add additional files from other GEOS

products and applications, such as:

• geoPaint, Graphics Grabber, and the Icon Editor so that you can add

icons and images into your programs.

• desk accessories such as the Notepad, so that you can jot down

memos and notes to yourself while you are working with

geoProgrammer.

By having only the files that you need on your work disks, you allow for

plenty of disk space for your geoAssembler source code. Make several

customized work disks if you desire.

 3-1 Application

Chapter 3: Application

Development

Chapter 3 overviews the geoProgrammer environment, beginning with a

short introduction to assembly language, leading into the major elements of

developing a GEOS application. Seasoned developers may want to merely

skim this chapter, moving quickly to the reference portions of the manual.

After reading this chapter you should know:

• The difference between assembly language and machine language.

• The function of an assembler, linker, and debugger in the

development cycle.

• The basic theory and practice behind GEOS program development.

• The general differences between sequential, VLIR, and desk

accessory applications.

What is Assembly Language?

At the heart of every program you run — every paint program, word

processor, computer language — lies 6502 machine language. Whenever

your computer is on, the 6502† microprocessor inside is busy running

through long lists of binary instructions (binary is the base-two number

system most computers operate in; each digit is either 1 or 0, representing

on or off). These binary instructions are machine language, the native

language your 6502 understands. Machine language is the fastest, most

elemental way of instructing your computer, and everything reduces to it. If

you program in Commodore BASIC, for example, the BASIC interpreter

must translate every instruction into a machine language equivalent, which

may mean hundreds of binary instructions.

† The Commodore 64 actually uses a 6510 microprocessor, and the

Commodore 128 uses an 8502 microprocessor. From a

programming standpoint, these are identical to the original 6502,

upon which they are based. In this manual, we will refer to this

entire family of software-compatible microprocessors with the

general term 6502.

Application 3-2

But while machine language is well-suited for computers to

understand, most humans have trouble making sense out of a

11000101 or 00101100. Only the most self-punishing programmer

would program directly in machine language. But that is why

assemblers were developed. Assemblers allow programmers to design

machine language applications using English abbreviations called

mnemonics. "Mnemonic" comes from a greek word meaning memory

and that is essentially what one is: a memory aid. Rather than cryptic

strings of l's and 0's, we are able to program with sensical words like

JMP for jump and LDA for load accumulator. Assemblers will then

translate these mnemonics into machine language instructions. This

more-palatable way of programming is called assembly language.

Developing With geoProgrammer

Assembling, the process of converting assembly language source code

into machine language, is only one step of the development cycle and

only one third of your geoProgrammer development kit

(geoProgrammer also includes a linker and a debugger).

geoAssembler
geoAssembler is a subset of an extremely powerful cross-assembler

(microPORT), originally designed to run on larger, more sophisticated

computers than the Commodore 64/128. In the conversion to the

Commodore environment, most of the advanced functionality of

microPORT development system has been preserved.

geoAssembler supports macro programming, conditional assembly,

nested file inclusion, complex expression evaluation, and the standard

6502 mnemonic instruction set. In addition, your geoProgrammer disk

contains a variety of equate and macro files which define commonly

used variables, constants, and macros for the GEOS operating system.

These files may be included with your own assemblies.

 3-3 Application

geoAssembler generates relocatable object code. This means that its

output is not directly runnable, but must be first passed through

geoLinker and resolved to an absolute address.

geoLinker
The most advanced aspect of the geoProgrammer system, and

possibly the hardest to understand, is the linker. When you assemble a

source file, geoAssembler does not produce a runnable program file.

Instead, the assembler generates a .rel relocatable object file. This .rel

file, as it stands, is not 6502 machine language; rather, it is in an

intermediate form. This file must then be passed through the linker,

which will generate a GEOS compatible, runnable file with the proper

file header and icon information.

geoLinker can combine one or more .rel object files into an executable

program. This allows you to split a large program across a number of

source files, assembling these files independently and then linking all

the resulting .rel files into one runnable program. Not only does this

facilitate modular programming, it can also cut down on development

time: if you make a change to an independent source code file, you

need only reassemble that file and then re-link with the already

existing .rel files. Linking is appreciably faster than assembling.

The linker also allows you to create libraries of commonly used

routines. Any time you need, say, string manipulations, you could link

with a string.rel file you might have created during an earlier project.

Building powerful libraries is one of the tricks to effective

professional development — once you've programmed and debugged

a generalized routine, you need never look at (or reassemble) it again.

geoDebugger
geoDebugger is the third leg of the geoProgrammer development

system, and, at times, it may be the most indispensible. geoDebugger

is a small program which co-resides with your GEOS application and

facilitates the debugging process, allowing you to disassemble,

modify, and trace the execution of your program. It is also a symbolic

debugger, which means it will use labels, symbols, and equates from

within your source code when displaying and operating on memory

locations and program code.

Application 3-4

The Development Cycle

geoProgrammer is a sophisticated development environment for GEOS

applications — it encourages well-structured programs, while lending itself,

specifically, to efficient development under the GEOS environment. GEOS

programs tend to be larger and more modular than traditional 6502

applications and demand the advanced features found in this package.

The Design Stage
The first step in any large project is to design the program. This usually

means drawing up specs for the user-interface as well as puzzling out the

organization, algorithms, and program structure. Under GEOS, it is

especially important to design the user-interface early because the

icon/windowing environment is so central to the development effort.

Event-driven Programs
GEOS applications are event-driven, which means that most of the time is

spent waiting for events. An event can be the press of a key, the click of the

mouse, or a timer going off. After your program initializes itself, it passes

control to GEOS. When an event occurs, such as the user clicking on an

icon, GEOS vectors transfer control to the appropriate routine in your

program to handle the event. When the event has been serviced, control is

again returned to GEOS to await the next event.

Coding
After the basic design, the program is developed in modules. This means

that individual pieces, subroutines — almost small programs in themselves

— are developed. The first to be written is usually the main module, the

initialization, which is run when the application is first executed; the

initialization code sets up the event vectors, initializes variables to their

defaults, and draws the initial display.

geoAssembler source code is created with geoWrite. Although geoWrite is

a word processor, it is also a powerful and familiar editing tool, and it lends

itself well to this sort of application. As an added benefit: because geoWrite

is a graphic word processor, you may include icon images (from geoPaint)

directly into your source code; geoAssembler will convert the graphic

images into compressed image data during assembly.

NOTE: geoWrite and geoPaint are not included on your geoProgrammer

disk. They are included with the GEOS operating system.

 3-5 Application

Modules
Because geoProgrammer allows multiple .rel files to be linked into one

application, each event routine can be relegated to its own source file and

be assembled separately. Additionally, the geoProgrammer disk contains

macro and equate files which may be included with your assembly. These

files define macros, variables, and constants for the GEOS operating

system. Using these files will make your programs easier to read as well as

conform to the standards established in The Official GEOS Programmer's

Reference Guide.

Assembling
Once a routine or source file is written, it may be assembled. The assembly

process is simple: you merely invoke the assembler with the desired source

code file and it does the rest of the work. The assembler reads in the source

file and begins processing it. geoAssembler can create two types: a .rel

linkable object file and a .err error file. The .rel file is linkable object code,

and the error file is a geoWrite document which records any errors or

messages in the assembly.

If there are errors in the assembly, usually caused by typing mistakes or the

use of invalid instructions and addressing modes, they can be fixed at this

time and the file reassembled. When all your source code files assemble

without errors, you are ready to move on to the linking process.

Linking
Unlike the assembler, the linker uses a command file. The command file

contains important information which tells the linker, among other things,

the type of executable file to generate (sequential, VLIR, or Commodore),

the file header to use, the proper load address, and the .rel files to include in

the link. The linker reads in the .rel files, resolves all external references,

and, if there are no errors, generates a runnable object file.

Debugging
Once you have gotten successfully through the assembly and link phases,

you are ready to test the program. It is rare indeed when a program works

correctly the first time; sometimes the icons aren't centered correctly, the

menu items are misspelled, the screen erases itself, or perhaps the program

halts entirely, locked forever in some endless loop. The process of tracking

down and eliminating these "bugs" is called debugging, and debugging is

one of the most frustrating (and rewarding) aspects of program

development. Fortunately, the power of the geoDebugger makes the

debugging process as painless as possible.

Application 3-6

When you have discovered a bug, it's back to step one: you modify the

source code to fix the problem, then re-assemble, re-link, and re-run. This

whole circular process of program development is affectionately called the

assemble-link-crash-debug cycle.

 3-7 Application

Application Types

GEOS supports three basic application types, all of which can be created

with geoProgrammer:

• Sequential

• VLIR (Variable Length Indexed Record)

• Desk accessories

Sequential applications
 are the simplest and most straightforward type. Sequential files get their

name from the way GEOS stores and accesses them on the disk: they

appear as a contiguous block of data. When a sequential file application is

executed, the entire program loads into memory. For most small and

medium sized applications, those which can operate entirely in the free

program area, a sequential format is sufficient. Only when programs get

larger must you worry about other file formats.

VLIR applications
 are more sophisticated. Although the phrase "Variable Length Indexed

Record" is a bit obscure, it is easy to understand the general concept. A

VLIR application is never entirely in memory. Rather, only the necessary

portions of the program, the parts which are in use, are loaded at any one

time. When another part of the application is needed, it is simply loaded

into a shared area of memory, overlaying routines or data which are no

longer necessary. These portions of swappable code are called overlay

modules. Using overlay modules, an extremely complex program, one with

more machine code than could possibly fit in your Commodore computer,

can be executed by loading in routines as they are needed. Designing a

VLIR file application takes more forethought and effort than a sequential

file application, but since the linker automates much of the drudgery, the

process is certainly worth the effort for a more complex program.

Desk accessories
 are stored as sequential files and so are really not all that unique of an

application type. The only difference in the file format is a special flag in

the file's header and directory entry. You assemble and link desk

accessories in the same way you would a sequential file, only setting the

desk accessory flag in the header. Note, however, that desk accessories are

designed differently than normal applications — they have special coding

requirements and restrictions which are described in The Official GEOS

Programmer's Reference Guide. geoProgrammer can also generate standard

Commodore (non-GEOS) applications.

Application 3-8

GEOS File Headers

Every GEOS file — whether a geoWrite document, a geoPaint picture, or

an application you've created — has a corresponding 256-byte header

block which is also stored on the disk. This header contains the icon image

which appears on the deskTop, along with data describing the type of file,

the starting address, and the loading address, among other information.

When you design an application, you must also build a file header block.

The file header block is a geoAssembler source file which generates the

appropriate data; it is attached to your applications by geoLinker. For more

information on building GEOS file headers, see .header in Chapter 5.

4-1 geoAssembler/geoLinker

Chapter 4: geoAssembler &

geoLinker Description and Usage

Chapter 4 describes the basic usage of the geoAssembler and geoLinker

programs. It describes the syntax and format of geoAssembler source code,

outlines the major features of the assembler, and demonstrates how to

actually assemble a source code file. It also describes the general purpose of

the linker and explains how to link files to produce a runnable program.

This chapter does not cover aspects of the assembler and the linker in

exhaustive detail (refer to Chapter 5 and Chapter 6 for more complete

breakdowns). Rather, it serves to introduce you to the assembly-link

process. If you are trying to learn assembly language, you should read this

chapter along with the introductory chapters of a good 6502 assembly

language book — many concepts which are only briefly touched upon here

are covered in more detail by such books.

After reading this chapter you should know:

• The general format of geoAssembler source code, including line

syntax and case-dependency.

• The following terms: mnemonic, opcode, operand, expression,

directive, pseudo-op, label, equate, and macro.

• How to use geoWrite to create geoAssembler source files.

• The interaction of the assembler and the linker — how they

complement each other.

• How to run the assembler to generate relocatable object files. Also:

you should understand the various files (.rel, .err) that the assembler

generates.

• How geoLinker resolves cross-references and combines relocatable

object files into a runnable program file.

• The purpose and function of the linker command file.

• How to operate the linker to generate a runnable program file. The

various files generated by the linker (.err, .sym, .dbg, and the

program file) will also be discussed.

geoAssembler/geoLinker 4-2

How to Learn Assembly Language

We sometimes think of assembly language gurus as magical wizards who

huddle around dusty old books and practice their arcane art with

pentagrams and dragon's blood. But assembly language is not nearly as

difficult or complex as its reputation might lead you to believe; in fact, it

may be the very simplicity of assembly language which is hardest for most

people to comprehend. Simple? Yes. Computers, at their most basic level,

are very simple beasts — they are methodical, straightforward, and

painfully simpleminded. Every task must be laid out explicitly and

meticulously. This relentless demand for detail can stifle even the most

intrepid learner.

In assembly language, for example, if you want to multiply five by six, you

don't just say (as you might in BASIC) 5*6. The 6502 has no multiply

instruction. Instead, you must multiply five by six by adding five to itself

six times! In this same way, if you want to search a string, open a disk file,

or draw a line, you must use a routine which breaks the task down to a

similar level of detail.

But because assembly language is the most basic form of programming, it

is also the fastest, most flexible, and most compact. You can relish in the

fact that your applications will be the best they possibly can.

As with most new skills, there are really just three essentials to learning

(and eventually mastering) 6502 assembly language: patience, practice, and

persistence. In addition, you should read a good book on 6502 assembly

language (refer to Appendix D for reading recommendations).

4-3 geoAssembler/geoLinker

6502 Source Code

MOS Technology developed the 6502 microprocessor in the mid-1970's

and, along with it, a standard format for 6502 assembly language source

code, including the popular three-letter mnemonics and addressing mode

notation. All but the oldest books and magazine articles will assume this

standard. geoAssembler implements a superset of the MOS Technology

model; this means that geoAssembler will assemble most generic 6502

source code with very few changes.

The following is a small 6502 subroutine which will assemble with

geoAssembler:

;this line is a comment

DELAY = 20 ;equate

.psect ; assembler directive

.word $50, DELAY, Start ; data definition

Start: lda #init_val ; label defined

 asl a ; a-mode addressing

 sta 3*buffer+2 ; expression

 cmp #'c' ; ASCII character

 MoveW source,dest ; macro with parameters

 rts ; implied addressing

NOTE: The above code is designed to illustrate some of aspects of

geoAssembler. It is not intended to produce any useful results, nor to

illustrate good coding practices.

General Syntax and Format
Assembly language source code follows a fairly simple set of rules. Source

code is built up by lines and each source line (if it is not blank) is in the

following general format:

[label:] [6502 instruct.) or (directive)] [;comment]

label field code field comment field

geoAssembler/geoLinker 4-4

Each field is optional, although when more than one is used, they must

appear in the above order. In most cases, you will want to separate the

fields with tabs, thereby making your source code neater and easier to read.

The label field may contain a label, which is an alphanumeric symbol or

name of your choosing. It allows you to give meaningful names to your

routines and variables. Although a label definition will usually begin at the

left margin, you may insert as much whitespace (spaces or tabs) as you

desire before defining a label. Labels must always end with a colon (:).

The code field may contain a 6502 instruction (mnemonic opcode and

operand), an assembler directive (pseudo-op), or a macro invocation. The

code field is usually indented one or two tab stops, but it may be

surrounded by as much whitespace as desired. The code field is often

subdivided into two separate fields: the opcode field and the operand field.

The opcode field contains the instruction, macro, or directive and the

operand field contains any necessary parameters, options, or 6502

operands. There must be at least one space or tab between the opcode field

and the operand field.

The last field is the comment field. Comments are explanatory text or notes

for describing your source code, analogous to the BASIC REM statement.

A comment may appear anywhere on a line and must be preceded by a

semicolon (;). All text following the semicolon is ignored by the assembler.

Case Dependency
geoAssembler takes advantage of both upper- and lower-case characters; it

is a case-dependent or case-significant assembler. As a general rule,

mnemonics, directives, and hexadecimal numbers may be typed in upper-

or lower-case, or some mixture thereof, and geoAssembler will interpret

them correctly: lda #$Ab is the same as LDa #$aB. However, with labels,

equates, and macro names, the case is significant. That is: label is not the

same as LaBEL or Label. Each unique occurrence of an upper- and lower-

case combination is considered an entirely different symbol. For this reason

Loop: inx

lda temp,x

bne Loop ;correct

will assemble correctly. Whereas

bne loop ;incorrect!

(without the initial letter in the label capitalized), will generate an

undefined label error.

4-5 geoAssembler/geoLinker

Labels and Equates
Labels and equates allow you to use symbolic names within your assembly

language source code. They make your programs easier to read, understand,

and change, as well as automating much of the internal address

calculations.

Labels and equates are similar in design and usage. They are both

considered symbols and may be used in similar contexts. Symbols may be

any combination of alphanumeric characters (remember: case is

significant), but the first character must be a letter. You may also include

the underline character (_) within a symbol name. Symbols can be as large

as 20 characters, but the assembler will only consider the first eight; this

means that program_start and program_end will appear the same to the

assembler because the first eight characters (program_) are identical.

A label is a symbol which refers to a location within your actual program.

This location can be either program code, initialized data, or variable space.

A label is defined within the label field of a line and it is always followed

by a colon. However, the colon is not considered part of the label name; the

colon is the character which indicates to the assembler that it is a label

definition. The absolute value (the actual memory location) of a label is

resolved at link-time and this value is passed to the debugger in the symbol

table.

An equate refers to an explicit definition of a symbol. You use the = or ==

directives to assign a value to the symbol. Equates can be addresses or

constants.

Local Labels
Assemblers which do not implement local labels require the programmer to

dream up sometimes hundreds of unique label names for even the most

unimportant sections of code. The source code becomes cluttered with the

likes of loopl, loop2, loopxx4, lp, and lp002 which are not only confusing

but unsightly. geoAssembler, fortunately, supports local labels. Local labels

allow you to create labels which are local to a given routine or segment of

code.

The scope of a local label, the range within which the label can be

referenced, is limited to the area between any two regular (global) labels. A

local label is a one to four digit number followed by a dollar-sign ($). Local

labels do not need a trailing colon (:) — the dollar-sign is sufficient — but

you may include one if you like. The following code segment illustrates the

use of local labels.

geoAssembler/geoLinker 4-6

;***********************

;*** MOVE 256 BYTES ***

;***********************

Move_256: ;this is a global label

ldy #$00

1234$;this is a local label

lda (source),y

sta (dest),y

iny

bne 1234$

rts

 ;

;***************************

;*** SET 256 BYTES TO NULL ***

;***************************

Kill 256: ;this is another global label

ldy #$00

tya

1234$;this is a new local label

sta (source),y

iny

bne 1234$

rts

Notice that although there are two occurrences of the local label 1234$, the

scope of the first is limited to the area between Move_256 and Kill_256.

The scope of the second is limited to the area between Kill_256 and the

next (not shown) regular label. Note that the choice of 1234$ was arbitrary;

it could just as easily have been 03$ or 771$. Local labels can only be used

as the destination of a branch instruction. They cannot, for example, be

used in a mathematical expression or as the destination of a jmp instruction.

NOTE: At Berkeley Softworks, rather than use a jmp instruction, which

won't work with local labels, we sometimes generate an

unconditional branch — a branch which is always taken — with a

bra (branch always) macro. The macro expands to a clv followed

by a bvc. This way, local labels can still be used as the destination.

This macro is included in the sample macro file on your

geoProgrammer disk.

4-7 geoAssembler/geoLinker

Mnemonics, Opcodes, and Operands
6502 instructions consist of two distinct parts: the opcode and the operand.

lda (addr),y

opcode

operand

The opcode is the actual 6502 instruction. In this case it is an lda, which

stands for "load accumulator." This three-letter abbreviation for the opcode

is called a mnemonic. The difference between the mnemonic and the

opcode is subtle: the mnemonic refers to the abbreviation for the instruction

(e.g., lda), whereas the opcode is the actual instruction. The operand

follows the opcode and is the address or value with which the opcode will

"operate"; in the above example, the operand is the 6502's indirect indexed

addressing mode.

Directives and Pseudo-ops
Directives are similar to 6502 instructions because they appear within the

code field of a source line. However, directives (or pseudo-ops as they are

often called) are not 6502 instructions. Rather, they instruct geoAssembler

to perform some action. There are directives for assigning values to

symbols (= and ==), incorporating other files into your source code

(.include), macro definition (.macro, .endm), and conditional assembly

(.if, .else, .endif), among others. Directives usually begin with a period to

distinguish themselves from mnemonics and macros.

Comments
Comments add explanation to your source code. You should use them

creatively and liberally wherever your program's actions are not

immediately discernible. Comments begin with a semicolon (;) and extend

to the end of a line. You may place a comment on a line all by itself, or you

may place one at the end of any source code line.

geoAssembler/geoLinker 4-8

Macros
A macro is the facility of geoAssembler which allows you, in essence, to

create your own instructions and directives. You develop a group of source

lines called the macro definition and give them a name. Whenever this

macro name is subsequently used in your source code (within the code

field), the assembler will replace it with the pre-assigned source lines,

thereby expanding the macro. Macro expansion is not just trivial text

replacement: macros expand dynamically at assembly time — you can pass

up to six parameters to the macro at each invocation (use) and the macro

can utilize those parameters in expressions, in conditional assembly, and

even within additional macro calls.

Macros are extremely powerful and useful. For example, the 6502 has no

move instruction. That is, it does not have the ability to move a byte or a

word (two bytes) from one location to another with only one instruction.

With the 6502, it takes two instructions: bytes must first be loaded into a

register from the source address and then stored from the register to the

destination address. This is a good candidate for a macro because it is a

common operation. You might define a couple of macros: one called

MoveB for move byte and one called MoveW for move word:

;MOVE BYTE MACRO

.macro MoveB source, dest ;macro definition

lda source

sta dest

.endm

;MOVE WORD MACRO

.macro MoveW source, dest

 lda source

 sta dest

 lda source+1

 sta dest+1

.endm

4-9 geoAssembler/geoLinker

If you then wanted to move something from addressl to address2, you

would need only say:

MoveB addressl, address2 ;move a byte

or

MoveW addressl, address2 ;move a word

where address1 and address2 are parameters which are passed to the

macro.

Macros can be used for everything from creating high-level control

structures (like do...while, if...then, etc.) to abbreviating frequently used

instruction sequences. Your geoProgrammer disk contains macro files for

use with GEOS (refer to Appendix A for more information on the included

files).

Expressions
geoAssembler includes a comprehensive integer math package and

expression evaluator. This means you may include mathematical and

logical expressions in your source code which will be evaluated when the

program is assembled. This makes it simple to create complex data tables

and programs which dynamically adapt themselves based on a few initial

equates. For example, you could do the following:

lda #buf_size*10

sta mem_rsrv + (module*4) + (fifo_siz/2)

Creating geoAssembler Source Code

You create geoAssembler source code with the geoWrite word processor

included with your basic GEOS system. For instructions on operating

geoWrite, consult the manual which came with the program. Because

geoWrite was originally designed as a document processor and not a

program text editor, there are a few additional things to be aware of.

No Spaces in Filenames
The geoAssembler and geoLinker parser will not correctly interpret file

names which contain spaces. To avoid any complications, do not place

spaces (whether leading, trailing, or embedded) within the file names of

your geoAssembler source code.

geoAssembler/geoLinker 4-10

geoWrite Page Breaks
geoWrite is a page-oriented word processor. That is: it automatically

divides your text into pages. At first this may seem odd, to break assembly

source code into pages, but you will soon realize that it encourages good

programming practices. A commonly accepted rule-of-thumb in

programming is to have no routine that is longer than one page — the

reasoning is based on the idea that any routine larger than a single page is

needlessly complicated and should be broken into several smaller routines.

With geoWrite breaking your source file into pages, you can better follow

this rule. However, for the irreverent at heart, geoAssembler does not care

about page breaks. If a routine crosses a page boundary, the assembler will

treat it as a contiguous block of code.

Special Keystrokes
Many characters, such as the underscore and the tab, are common in

geoAssembler source files. They are created in geoWrite as follows:

Tab _CONTROL_ + _I_

Underline _ + _-_

V-bar | +

Circumflex ^

Tilde ~ + _*_

Tabs vs. Spaces
Get in the habit of using tabs (_CONTROL_ + _I_) to align your source code.

Assembly language text lends itself nicely to vertical alignment, with

opcodes, operands, and comments separated into columns. You can always

use space characters instead of tabs (geoAssembler doesn't care), but it isn't

recommended; space characters take up more space in memory and on disk,

and they don't always line-up properly when using proportional text fonts.

Text Effects
You may include special font and type effects, such as italics, directly into

your geoAssembler source code. geoAssembler will ignore the special

codes, converting all text into normal characters while assembling. This

allows you to empahsize and highlight sections of your source code.

4-11 geoAssembler/geoLinker

Including Icons (graphics) in Your Source File
One of the benefits of using a graphic word processor is that you are able to

include blocks of bit-mapped graphics for icons and other images directly

into your source code. geoAssembler will automatically convert these

pictures into compacted bitmap data at assembly time. (For more

information on GEOS compacted bitmap format, refer to The GEOS

Programmer's Reference Guide.)

To insert a graphic image into your source code, place the geoWrite text

cursor on a completely blank line in your source file and then paste the

image as you would if you were including graphics in a regular document.

IMPORTANT: You must paste the graphic image into your source file with

the text cursor on a completely blank line. If you do not, geoAssembler will

ignore the data without reporting an error, even though it will appear

correctly within the document.

geoAssembler/geoLinker 4-12

It is also a good idea to place an extra blank line at the end of each graphic

image. You can do this by pressing _RETURN_ immediately after pasting the

image.

HINT: When cutting graphic images from geoPaint for inclusion in your

source code, it is best to first turn color off, then move the image to

the upper-left corner of the paint screen. This will ensure that the

leftmost pixels are aligned on a card boundary (byte boundary).

Any unused pixels (bits) on the right edge, up to the next byte, will

be padded with zeros. You can also create icon images with version

2.0 of the Icon Editor.

picH and picW
For your convenience, geoAssembler maintains two internal variables

which hold the size of the most recently defined graphic image: picH and

picW. picH is the graphic image height in scanlines and picW is its width

in bytes. These variables are redefined after each graphic image, so if you

need the values, it is best to immediately assign them to a permanent

equate. Here is an example:

For more information on picH and picW, refer to "Internal Variables" in

Chapter 5.

4-13 geoAssembler/geoLinker

How the Assembler and Linker Relate

Most 6502 source code must be assembled to operate at a particular,

absolute memory adddress. That is, if you assemble your source code to run

at address $400, you cannot load it at $800 and expect it to run correctly.

Most assemblers require that you explicitly declare the assembly address at

the beginning of your source code in order to generate absolute code.

geoAssembler, however, always generates relocatable object code - all

labels and addresses are resolved at link-time relative to the other linked

files. This allows you to assemble multiple source files without worrying

about where each will begin and end; the address housekeeping is handled

automatically by the linker.

NOTE: There is some confusion over the precise meaning of the terms

relocatable and absolute. geoAssembler generates relocatable

object code. This is code which is assembled at no specific

address; at link time, the linker will determine the actual absolute

address relative to an address given to the linker. Depending on the

number and size of the .rel files, the absolute address will vary.

Don't confuse relocatable with position-independent, which is

something entirely different.

A typical, medium sized application might have five separate source files

which are eventually linked together to form the executable program file.

Each of these source files shares a common set of include files (files which

are inserted in the assembly with the .include directive), and all are

assembled into relocatable object files, designed to be asssigned an absolute

address at the link stage.

Assembling
These source files must each, in turn, be assembled into .rel relocatable

object files. One of the five source files is special. It is the header file,

which contains the file icon image and other identifying data. All programs

which run under GEOS must have a header. When you develop your own

applications, you must create this header manually unless the default header

serves your purposes well. The header is comprised primarily of .byte data

statements and must be assembled just like the other source files.

An asssembly will generate either one or two files, both with the basic

name of the source file but with a .rel or .err extender attached. The .rel file

is the relocatable object code and the .err is the error file.

geoAssembler/geoLinker 4-14

Linking
Once all the constituent .rel files have been created, they are ready for

linking. You run the linker with a linker command file. The linker

command file specifies the output file name, the header file name, the

absolute addresses for program code and uninitialized data segments, and

the necessary .rel files to link. The linker will then run through the .rel files,

resolving cross-references and relocatable addresses,and generate an

executable program file.

Running geoAssembler

geoAssembler must be run from the GEOS deskTop. Please refer to your

GEOS User's Manual if you have any questions relating to the operations of

the deskTop.

To assemble a source file, follow these steps:

1: With your geoProgrammer work disk in the drive, double-click on the

GEOASSEMBLER icon to run the assembler.

After the assembler loads and initializes, you should see the

following dialog box:

4-15 geoAssembler/geoLinker

The contents of the current drive (the drive from which you ran

geoAssembler) will appear in the directory window. If more items

exist than can fit in the window, click on the scroll arrows to move

through the directory.

IMPORTANT: Do not remove your geoAssembler work disk from

the current drive until you return to the deskTop.

If you decide you do not want to do an assembly at this time, click on

the Quit icon to abort and return to the deskTop.

Select the file you want to assemble by clicking on the file name.

Then click on the Open icon to initiate the assembly.

To assemble a file from a different drive (for example, a RAM

Expansion Unit or a second floppy drive), click on the Drive icon;

the directory of the other drive will be displayed in the directory

window and a new icon labeled Disk will appear:

The Disk icon allows you to view the contents of a different disk.

The Disk icon was absent from the original dialog box because you

are not allowed to remove the disk which contains geoAssembler. To

view the contents of a different disk, insert a new disk into the current

drive and click on the Disk icon. The directory will be updated to

show the contents of the new disk. The Disk icon will have no effect

with a Ram Expansion Unit.

 Change disk in drive.

geoAssembler/geoLinker 4-16

2: Once you have selected and opened a file you wish to assemble, you

will see the following dialog box:

This dialog allows you to select the destination drive, the drive to

which geoAssembler will write the output files (.rel and .err). It will

default to the same drive as the source file. To select a different

output drive, click on the box icon next to the disk's name. The icon

will highlight. Click on the OK icon to proceed with the assembly, or

click on the Cancel icon to return to the file-selection dialog box.

3: The screen will clear and geoAssembler will print a status message,

indicating the progress of the assembly:

Assembling 0

geoAssembler prints a period after every ten lines of source code.

The number (which is zero when you begin) is a running error count

and will increment after each error. This allows you to abort the

assembly when you see a large number of errors. If the error count

exceeds 99, geoAssembler will automatically abort the assembly.

The status message is printed at the bottom of the screen because

geoAssembler temporarily uses the remainder of the screen memory

area for the symbol and macro tables.

Aborting
You can abort an assembly by pressing the _RUN/STOP_ key on the

Commodore keyboard.

 Return to file-selection dialog box
Proceed with assembly

4-17 geoAssembler/geoLinker

4: When the assembly is done, a dialog box describing the result of the

assembly will appear: c

Running geoLinker
Once you have assembled one or more .rel files from your assembly source

code, you can use geoLinker to produce a runnable program file. geoLinker

requires a linker command file such as the following:

.output myprog

.header myhead.rel

.seq

init.rel ; initialization code

 main.rel ; main program code

This linker command file (created with geoWrite) will generate a runnable

sequential program file called myprog with a header from myhead.rel and

relocatable object code from init.rel and main.rel. The three .rel files were

assembled previously. This is a very simple linker command file. More

complex applications might require a full page of linker directives and

object file names.

The Linker Command File (brief overview)
Linker command files are normal geoWrite text files except they follow a

strict format and should have a .lnk file name extender. It consists mainly

of linker directives and link file names. Comments may be added as they

are in geoAssembler — on a line, anything following a semicolon (;) is

ignored.

(For a complete breakdown of linker command files, refer to Chapter 6.)

Exit to the deskTop

Assemble another file

View error file in geoWrite

geoAssembler/geoLinker 4-18

Linking With geoLinker
geoLinker, like geoAssembler, must be run from the GEOS deskTop.

Please refer to your GEOS User's manual if you have any questions relating

to the operation of the deskTop.

To create a runnable program file, you must first have created a linker

command file and the proper, previously assembled, .rel files.

To actually perform a link, follow these steps:

1: With your geoLinker work disk in the drive, double-click

on the GEOLINKER icon to run the linker.

GEOLINKER

After the linker loads and initializes, you should see the following

dialog box:

The contents of the current drive (the drive from which you ran

geoLinker) will appear in the directory window. If more items exist

than can fit in the window, click on the scroll arrows to move

through the directory.

IMPORTANT: Do not remove your geoLinker work disk from the

current drive until you return to the deskTop.

Scroll arrows

Directory window

 Disk name

 Link using the selected command file

 Change drive

 Abort and return to the deskTop

4-19 geoAssembler/geoLinker

If you decide you do not want to do a link at this time, click on the

Quit icon to abort and return to the deskTop.

Select the command file you want to link with by clicking on the file

name. Then click on the Open icon to initiate the assembly.

To use a command file on a different drive (for example, a RAM

Expansion Unit or a second floppy drive), click on the Drive icon;

the directory of the other drive will be displayed in the directory

window and a new icon labeled Disk will appear:

The Disk icon allows you to view the contents of a different disk.

The Disk icon was absent from the original dialog box because you

are not allowed to remove the disk which contains geoLinker. To

view the contents of a different disk, insert a new disk into the

current drive and click on the Disk icon. The directory will be

updated to show the contents of the new disk. The Disk icon will

have no effect with a Ram Expansion Unit.

2: Once you have selected and opened a linker command file, you will

see the following dialog box:

 Change disk in drive

Proceed with link

Return to file-selection dialog box

geoAssembler/geoLinker 4-20

This dialog allows you to select the destination drive, the drive to

which geoLinker will write the output files. It will default to the

same drive as the source file. To select a different output drive, click

on the box icon next to the disk's name. The icon will highlight.

At this point you can also select whether you want to generate a

viewable symbol table. A viewable symbol table is a geoWrite file

which contains a list of all the symbols which will be sent to the

debugger. The viewable symbol table has a .sym extender, whereas

the symbol table the debugger uses has a .dbg extender.

Click on the OK icon to proceed with the link, or click on the

Cancel icon to return to the file-selection dialog box.

3: The screen will clear and geoLinker will print a status message,

indicating the progress of the link:

Linking 0

The number (which is zero when you begin) is a running error count

and will increment after each error. The counter will stop after 99

errors, although any additional errors will still be written to the error

file. You can abort the link when you see a large number of errors.

geoLinker also prints the file names of the rel files as it processes

them. When sorting the symbol table, geoLinker prints "sorting."

4-21 geoAssembler/geoLinker

The status message is printed at the bottom of the screen because

geoLinker temporarily uses the remainder of the screen memory area

for the symbol tables.

4: When the linking is done, a dialog box describing the result of the

link will appear:

Zero errors means a successful link. Anything else means the link

was unsuccessful. At this point you can go directly to geoWrite and

view the error file by selecting the Open icon; you can rerun the

linker to link another file by selecting the Ok icon; or, you can

return to the deskTop by selecting the Quit icon.

Aborting
You can abort a link by pressing the _RUN/STOP_ key on the Commodore

keyboard.

Successful Link
If geoLinker terminates without any errors, you will have a runnable

program file on the selected destination drive. You may now test the

program by running it from the deskTop or from within geoDebugger.

Exit to the deskTop

Assemble another file

View error file in geoWrite

geoAssembler/geoLinker 4-22

Unsuccessful Link
In the event of errors in a link, geoLinker will still generate an application

file, and the associated .dbg debugger symbol file. At this point you will

probably want to examine the .err file with geoWrite, fix the link errors,

and relink, although you can choose to ignore the errors and attempt to run

the file anyway. (For more information on the contents of the .err file, refer

to Appendix E.)

Creating a Sample Application

Included on your geoProgrammer disk is a sample sequential application

illustrating GEOS menus and icons. Everything you need to assemble and

link the application is included on the disk.

To create the sample sequential application, follow these steps:

1: Copy the following files from your geoProgrammer backup disk to a

disk which contains the deskTop and geoWrite, but is otherwise

empty:

geoAssembler

geoLinker

geosSym

geosMac

SamSeq

SamSeqHdr

SamSeq.lnk

This will be your geoProgrammer work disk for the sample

application.

2: Put your geoProgrammer backup disk away and open the work disk

you just created. Run geoAssembler and assemble the following

files:

SamSeq

SamSeqHdr

Two .rel relocatable object files will be created on the disk:

SamSeq.rel

SamSeqHdr.rel

4-23 geoAssembler/geoLinker

3: Run geoLinker and select the SamSeq.lnk linker command file.

geoLinker will relocate the SamSeq.rel file to an absolute address

and attach the SamSeqHdr header to create the runnable application

SampleSeq and a debugger symbol file SampleSeq.dbg. You can

now run SampleSeq from the deskTop.

Later, in the geoDebugger chapter, we will use the SampleSeq application in a

tutorial session with the debugger.

 5-1 geoAssembler Ref.

Chapter 5: geoAssembler

Reference and Advanced Topics

Chapter 5 acts as a complete reference for geoAssembler source code

format, including line syntax, assembly control, expressions, labels,

directives, and macros. Although this is primarily a reference chapter, it

would be a good idea to read it through completely at least once. For

information on using geoAssembler from the GEOS deskTop, refer to

"Running geoAssembler" in Chapter 4.

The Assembly Process

geoAssembler is a two-pass assembler. That means it processes the source

code file twice in order to correctly resolve both forward and backward

references. During both passes, geoAssembler maintains three independent

counters which determine the placement of your object code: a zsect

counter, a psect counter, and a ramsect counter. These counters refer to

three distinct sections within the eventual application: zero page, program

code, and uninitialized dataspace.

Zero Page (zsect)
The 6502 supports a special form of addressing called zero page

addressing. Zero-page (or page 0) refers to the first 256 bytes ($00-$ff) of

memory; Instructions which use zero page locations take up less space and

operate significantly faster than their counterparts which use the remainder

of the addressing space. Because geoAssembler takes special actions when

it encounters zero page variables on the first pass, zero page variables must

be defined before they are used, and they must be defined within a special

section of your source code using the .zsect directive.

Program Code (psect)
Program code and initialized data are stored in the psect section. Program

code refers to 6502 instructions and initialized data refers to icon images

and data created with the .byte and .word directives. The absolute location

of the psect section is determined at link time and is usually specified in the

linker command file. You begin a .psect section in your source code with

the .psect directive.

geoAssembler Ref. 5-2

Uninitialized Data areas (ramsect)
The ramsect section maintains uninitialized data areas of your program.

Uninitialized data definitions within your source code allow you to reserve

memory space for your program's use with the .block directive. Ramsect

areas take up no room in the program file generated by the linker; the space

is established when the program is executed. geoAssembler allows you to

specify an absolute starting address for the ramsect section at

assemblytime, but if you supply no parameter in the .ramsect directive, the

absolute address will be established at link-time.

Pass One and Pass Two
On the first pass through the source file, geoAssembler increments the three

section counters and determines the values of all the symbols which are

defined or equated in the source file. On the second pass local labels and

forward references are resolved and any .rel or .err output files are

generated.

Assembler Input

Lexical Analysis
geoAssembler evaluates the source file a line at a time. Each source line is

in the following general format:

LABEL: OPCODE: OPERAND: COMMENT:

Start: lda #$ff ;load immediate addressing

 sta table,y ;store indexed with y

 iny

reset2: lda (z_temp),y ;load indirect indexed

77$ rol a ;accumulator addressing

geoAssembler ignores blank lines and geoWrite text formatting codes.

However, it will convert image data within your source files into

compacted bitmap data at assembly-time.

For a more basic breakdown of geoAssembler source code format, refer to

"General Syntax and Format" in Chapter 4.

 5-3 geoAssembler Ref.

Symbols

A symbol is a global label or an equate. A symbol must begin with an alpha

character (A-Z or a-z), but the remaining characters can be numbers (0-9)

or underline symbols (_). Case is significant within a symbol name.

Symbols may contain as many as 20 characters, but geoAssembler only

stores the first eight.

geoAssembler reserves some symbols for its own internal use. These

include the upper- and lower-case a, x, and y, which are used for register

mode addressing, the special graphic symbols picH and picW, and the

Pass1 flag. Also, although it is possible, it is not a good idea to use

mnemonic names (such as lda or rol) as symbols.

HINT: Use descriptive names for variables, routines, and constants; avoid

symbol names which could easily be confused, such as pos1 and posl (the

numeric "1" and the lower-case "l"); distinguish two related labels by their

initial character rather than a trailing one — e.g., geoAssembler would

interpret position_X and position_Y as the same symbol (because the first

eight characters are identical), but not X_position and Y_position.

Equates
An equate is a symbol which is given an explicit value with either the = or

== assembler directive. The only difference between the = directive and the

== directive is that equates made with the double equal-sign are sent to the

debugger, whereas those made with a single equal-sign are not. This allows

you to avoid cluttering geoDebugger's symbol table with unneeded equates.

Both types of equates, however, are still passed to the linker unless they are

preceded by a .noeqin directive, which will limit their scope to the current

assembly file.

Examples:

 bitmask == %01001110 ;will be sent to debugger

 null = 0 ;will not go to debugger

 S_flag = (%0100 & bitmask) ;will not go, either

IMPORTANT: All equates must be resolvable on the first pass of the

assembly. This means you cannot use any forward, relocatable, or external

references in the definition of an equate; all symbols which are used in an

equate definition must already be defined with an absolute address.

geoAssembler Ref. 5-4

Labels
Labels are symbols which take the value of the current section counter. In a

psect section for example, a label will be assigned the current value of the

psect counter. Likewise, labels in the .zsect section will take the current

value of the zsect counter, and labels in the ramsect section will take the

current value of the ramsect counter. All .psect labels and most ramsect

labels are relocatable — they are not given an absolute address until

linktime.

Labels are defined by placing a symbol within the label field of a source

line and following it with a colon (:). Note, however, that the colon is not

actually part of the symbol's name — subsequent uses of the label must

omit the colon.

Examples:

.zsect $20 ;set initial .zsect counter value

temp1: .block 1 ;temp1 will equal $20

temp1: .block 1 ;temp2 will equal $21

pointer: .block 2 ;pointer will equal $22

Mem_free: .block 4 ;Mem_free will will equal $24

.psect ;linker will calc abs location

Start:

 ldy temp2

 lda Xtable, y

 sta temp1

 jsr set_mouse

drop: lda (pointer), y

 sta X_mouse

 iny

 lda (pointer), y

 sta Y_mouse

 rts

X_table: .byte mousel, mouse2, mouse3, mouse4

 .byte mouse5, mouse6, mouse7, mouses8

;let linker calc. abs location

.ramsect

X_mouse: .block 1

Y_mouse: .block 1

 5-5 geoAssembler Ref.

Note that these labels are global labels — they can be accessed from

anywhere within the current assembly file and cross-referenced from other

relocatable object files if they are passed to the linker. Labels which follow

a .noglbl directive are not passed to the linker. This means that such labels

are hidden from other modules at link-time; the scope of .noglbl labels is

limited to the current assembly. The default is to send all global labels to

the linker.

Local Labels
Local labels consist of one to four numeric digits followed by a dollar-sign

($) in the form nnnn$, where nnnn is a one to four digit number. Local

labels are only visible to code within the current local region. Local regions

are delimited by successive global labels. When defining a local label, the

colon (:) after the label is optional.

NOTE: Although local labels are made up of numeric characters, they

are not in fact numbers — the one to four digits are treated as a

text string. For this reason, 0071$, 071$, and 71$ are all

different local labels.

You can only use a local label as the destination of a branch instruction

from within the same local region. Local labels are not passed to the linker

and are not included in the symbol table. They are resolved on the second

pass of the assembly.

Example:

routine:

lda #$00 ;start of a local region

ldy #count

10$;local label defined

sta bitmap, y

lda Xmap, x

cmp #abort

beq 90$;branch to local lbl (forwards)

inx

dey

bne 10$;branch to local lbl (backwards)

90$;another local label defined

rts

routine2:

 lda #$ff ;next global; delimits local region

geoAssembler Ref. 5-6

IMPORTANT: Avoid using large-value local labels such as 9999$ and 9988$

because the macro processor generates local labels counting backwards from

9999$. You should have no problems with local labels less than 9000$. For more

information, refer to .macro later in this chapter.

6502 Opcodes and Operands

Opcodes
geoAssembler recognizes the full set of MOS Technology 6502

mnemonics. There are 56 in all, and they can be found in books describing

6502 assembly language.

Some 6502 assemblers support alternate mnemonics for various

instructions, such as bge (branch on greater than or equal) for the standard

bcs. It is a fairly simple procedure to define a set of macros to support such

options. For example:

; Alternate mnemonic macro

; bge: branch on greater than or equal to

; (unsigned comparisons)

;

.macro bge branch_dest

 bcs branch_dest

.endm

Operands
Many of these 6502 instructions support a variety of addressing modes, pushing

the total number of operations (combinations of instructions and operands) up to

115. The following addressing modes are recognized by geoAssembler:

MODE OPERAND FORMAT

implied (blank)

relative addrexp

accumulator a

absolute zp-address

absolute indexed X zp-address,x; addrexp,x

absolute indexed Y zp-address,y; addrexp,y

indexed indirect (zp-address,x)

indirect indexed (zp-address),y

For more information about 6502 instructions and operands, consult a book

describing 6502 assembly language. Refer to Appendix D for a list of such books.

 5-7 geoAssembler Ref.

Comments

You can place a comment almost anywhere in your source code. It can

share a line with other items such as labels and instructions, but it must

always follow those items. A comment begins with a semicolon and

extends to the end of a source line; geoAssembler ignores everything on the

line after the semicolon. The only time a semicolon does not introduce a

comment is when it appears within quotations, in which case it is

considered ASCII string data.

;this line is a comment

lda #55 ;this, too, is a comment

.byte "these; are; not; comments;" ;but this is!

Expressions

Numeric Constants
geoAssembler will work with decimal (base 10), hexadecimal (base 16),

octal (base 8), and binary (base 2) numbers in addition to character data. All

numbers are considered to be 16-bit (two bytes) values for expression

evaluation.

Decimal: A string of decimal digits (0-9).

 Example: 1234

Hexadecimal: A dollar sign ($) followed by a string of hexadecimal

digits (0-9, a-f).

 Example: $4f9c

Octal: A question mark (?) followed by a string of octal digits

(0-7).

 Example: ?07117

Binary: A percent sign (%) followed by a string of binary digits

(0,1).

 Example: %11001010

Character: A single ASCII character enclosed in single-quotes (').

The character is converted to a 8-bit ASCII value.

 Example: 'A'

geoAssembler Ref. 5-8

Notice that in an expression, the following would all be equivalent:

24930 (decimal)

$6162 (hex)

?60542 (octal)

%0110000101100010 (binary)

('a'*$100+'b') (character)

Expression Evaluation
geoAssembler sports a full logical and arithmetic expression evaluator used

to resolve operands and equates encountered in the source file. The

expression evaluator is a standard algebraic parser which allows a wide

variety of operators and nested parenthesization. It is much like the

expression evaluator built into a standard C compiler or a BASIC

interpreter.

An expression is any valid combination of symbols, numeric constants, and

operators which geoAssembler can evaluate. geoLinker also supports this

expression evaluator. This allows you to use complex expressions which

contain external symbols (and, hence, cannot be evaluated at assembly-

time) within your source code; geoLinker will evaluate them properly at

linktime.

Arithmetic Operations
The expression evaluator uses 16-bit values for all its calculations. As an

added benefit, it partially supports the two's-complement numbering

system. Two's complement math allows positive and negative numbers but

isn't true signed arithmetic; it's actually an artifact of binary math which

allows addition and subtraction operations to "automatically" handle signed

and unsigned numbers because they are stored in the same 16-bit format.

For example, a $fffe can represent 65534 or -2, depending on whether the

number is considered to be signed or unsigned. For the majority of the

cases, it won't matter whether you are dealing with signed values or

unsigned values — the result will be correct. For example, the following

two expressions will evaluate identically, even though one is signed

arithmetic and the other is unsigned:

(-1) - (2) -1 equals $ffff 65535 - 2 65535 equals $ffff

 2 equals $0002 2 equals $0002

 $ffff - $0002 = $fffd $ffff - $0002 = $fffd

 $fffd = -3 $fffd = 65533

 5-9 geoAssembler Ref.

However, there is a fly in the ointment. In cases of overflow (signed or

unsigned) the result is truncated to 16-bits and no error is flagged. In short,

if an unsigned value exceeds the range:

0 <= number <= 65535

the value will truncate to 16 bits without flagging an unsigned overflow. If

a signed value exceeds the range:

-32768 <= number <= 32767

the value will truncate to 16 bits without flagging a signed overflow.

The expected result of adding $ffff to $ffff might be $lfffe if the arithmetic

is considered unsigned, but this value cannot be contained in 16-bits, so the

result is truncated to $fffe, which just happens to be the correct signed

result of (-1) + (-1), or -2, but an incorrect (truncated) unsigned result.

Also, when you are expecting a signed result and working with very large

positive numbers or very small negative numbers, there is a possibility that

there will be a carry into the sign bit, resulting in what could be interpreted

as a numeric overflow (example: -32768 -5).

It is beyond the scope of this manual to document all the intricacies of

two's-complement arithmetic. However, most assembly language books

cover this topic in sufficient detail. Refer to Appendix D for reading

recommendations.

Logical Operations
In addition to arithmetic operations, the expression evaluator can also

handle logical, or Boolean, operations. A logical expression is very much

like an arithmetic expression, except that it has only two possible values:

true or false. The result of a logical expression is called the truth value of

the expression. Logical expressions are especially useful with conditional

assembly directives such as .if.

Although logical and arithmetic operations are conceptually very different,

the expression evaluator treats them similarly. The truth value of a logical

expression is actually a numeric value. If the expression is true, it evaluates

to an arithmetic one ($0001), and if the expression is false, it evaluates to

an arithmetic zero ($0000). Conversely, if an arithmetic expression

evaluates to non-zero, it is considered a logical true, and if it evaluates to

zero, it is considered a logical false. This allows you to intermix logical and

arithmetic operations within the same expression.

geoAssembler Ref. 5-10

Operators
The following table shows all the valid operators and their precedence:

OPERATOR PRECEDENCE

() 1 Grouping parentheses (sub-expression)

- 2 unary negation

! 2 logical not

~ 2 bitwise one's complement

[or< 2 low-byte

] or> 2 high-byte

** 3 exponentiation

* 4 multiplication

/ 4 division

// 4 modulus

+ 5 addition

- 5 subtraction

>> 6 logical shift right

<< 6 logical shift left

> 7 logical greater than

>= 7 logical greater than or equal to

< 7 logical less than

<= 7 logical less than or equal to

= = or = 8 logical equal

!= 8 logical not equal

& 9 bitwise and

^ 10 bitwise exclusive-or (xor)

| 11 bitwise inclusive-or (ora)

&& 12 logical and

^^ 13 logical exclusive-or

|| 14 logical inclusive-or

(For information on typing-in certain operator symbols, refer to "Special

Keystrokes" in Chapter 4.)

IMPORTANT: A common error is to use the BASIC logical not-equal

operator (<>) instead of the geoAssembler !=. For example, if you used

.if (version<>c64)

instead of

 5-11 geoAssembler Ref.

.if (version != c64)

the expression evaluator would not recognize <> as a valid operator and

would parse the expression as:

.if ((version) < (>c64))

or "if version is less than the high-byte of c64."

Evaluation
Expressions are evaluated based on operator precedence. Operators with

lower precedence numbers are evaluated first, and operators with equal

precedence are evaluated left to right. You can override operator

precedence by grouping subexpressions within parentheses.

geoAssembler will ignore any whitespace between arguments and

operators. Proper spacing can make complex expressions easier to read and

understand.

Example expressions:

loopl

screen + $400 + %00001001

ram_start + buf_size-l

(maskl | 1)<<4

((($8000<=offsetl)&&(mask1<<12)) || (]table&mask2)>40))

(('p'-'A') + 2)

Operator: ()
Parentheses are used for grouping subexpressions in order to clarify or

change the order of an expression's evaluation. For example, say we wanted

to find which memory page (256-byte boundary) the address bitmap +

$3fff evaluates to, we might try writing it as:

bitmap + $3fff / 256

This would first divide $3fff by 256 (the number of bytes in a page) and

add the result to bitmap because division (/) has a higher precedence than

addition (+) — perfectly legal, but not what we wanted. We need to divide

the entire expression by 256, not just the $3fff argument. We can use

parentheses to override the operator precedence.

(bitmap + $3fff)/256

geoAssembler Ref. 5-12

Now $3fff is first added to bitmap and the result is then divided by 256

which provides us with the correct page number.

IMPORTANT: The standard round parentheses do double-duty in

geoAssembler — they are used for both expression grouping and 6502

indirect addressing modes. This can pose a problem for the parser when it is

unclear from context whether the parentheses are supposed to indicate

grouping or indirection. For example, an ambiguous expression such as

lda (label*5),y

could be interpreted as

lda expression,y ;absolute indexed

or as

lda (expression),y ;indirect indexed

In such cases, geoAssembler gives precedence to the addressing mode,

which it establishes prior to sending the expression to the expression

evaluator. If you do not want indirection, leave off the outer parentheses.

In order to speed assembly, geoAssembler establishes the addressing mode

prior to parsing the expression. When looking for indirect addressing,

geoAssembler does not actually go through and pair up matching

parentheses (the job of the expression evaluator); rather, it merely looks for

two outermost opening and closing parentheses in the operand. In most

cases, these outermost parentheses do in fact indicate indirect addressing.

However, this method is not foolproof — in some special cases, such as

lda (addr+2)*(addr+3),y ;indirect indexed

the parser sees the left- and rightmost parentheses and assumes indirect

addressing, even though, in the expression, these do not pair up. If you

must include this type of expression in the operand, and you do not want

indirect addressing, simply attach a monadic plus sign to the leftmost

expression:

lda +(addr+2)*(addr+3),y ;absolute indexed

This way, the parser never encounters the leftmost parenthesis (it sees the +

instead) and will therefore use absolute addressing, while the plus-sign has

no effect on the eventual evaluation of the expression.

 5-13 geoAssembler Ref.

Operator: - (unary)
The unary minus sign simply negates the 16-bit sign of the number (two's

complement negation). The expression -10 is equivalent to 0-10; it's as if

the number were subtracted from zero.

Example:

-16 is equivalent to $fff0

Operator: ~ (unary)
This unary operator yields the bitwise one's complement of a number by

reversing all 16 bits. All 1 bits become 0 and all 0 bits become 1. It is

equivalent to exclusive-or'ing a value with $ffff (-1).

Example:

~%0000111101010011 ($0f53)

yields

%1111000010101100 ($f0ac)

Operators:], [, <, > (unary)
These operators extract the high- or low-byte from a two-byte number.]

and > extract the high-byte; [and < extract the low-byte.

Examples:

]$fe34 yields $fe

[$fe34 yields $34

>$783e yields $78

<$783e yields $3e

These operators are especially useful for dealing with two-byte addresses as

in:

;store address of ISR routine into a jump vector

sei ;stop all interrupts

lda #[isr ;get low byte

sta isr_vec ;set into vector in low/high order

lda #]isr ;get high byte

sta isr_vec+l ;re-enable interrupts

cli

geoAssembler Ref. 5-14

Operator: **
The exponentiation operator allows you to raise a number to an integer

power. The exponentiation, as with other operations, is restricted to the

range of a 16-bit signed integer.

Example:

2**8 is equivalent to raising two to the eighth power (28 = $100).

Operator: //
The modulus operator provides the remainder of integer division. For

example, 21 modulo 5 results in the remainder of 21 divided by 5; since 5

divides into 21 four times with a remainder of one, 21 modulo 5 is 1.

Example:

35//$0b is equivalent to the remainder of 35 divided by 11, or 2.

Operators: *, /, +, -
These standard arithmetic operators (multiplication, division, addition, and

subtraction) all operate on 16-bit numbers. Addition and subtraction will

take advantage of the two's complement numbering system, allowing

positive and negative numbers and will, therefore, not generate overflow

errors. Multiplication and division are unsigned. Multiplication overflow

will generate an error. The division operator is purely integral, thereby

discarding any remainder or fractional portion of the result.

Operators: >>,<<
These operators shift the argument on the left of the operator the number of

times determined by the argument on the right of the operator. « is a

leftshift and » is a right shift. The shifts are not arithmetic, so there is

nosign-extension. Bits shifted out of the 16-bit integer are lost. Zeros

areshifted in.

Examples:

%0001<<3 shifts %0001 left 3 times, resulting in %1000

$ffce>>4 shifts $ffce right 4 times, resulting in $0ffc

(high_byte<<8) & (low_byte)

 5-15 geoAssembler Ref.

Operators: &, |, ^
These bit operators perform and, or, and exclusive-or operations

(respectively) on the binary values of two arguments. They are analogous to

the 6502 and, ora, and eor instructions. & (and) yields a one-bit in the result

wherever there is a one-bit in both arguments; | (or) yields a one-bit in the

result wherever there is a one-bit in either argument; ^ (exclusive-or) yields

a one-bit in the result wherever there is a one-bit in either argument but not

in both.

Examples:

%1100 & %1010 yields %1000

%1100 | %1010 yields %1110

%1100 ^ %1010 yields %0110

(digit1 & $000f) | (digit2<<4 & $00f0)

Operator: !
Pronounced "not", this unary logical operator negates the truth-value of an

expression. If the expression is true (non-zero) it evaluates to false (zero); if

the expression is false (zero) it evaluates to true (one).

Examples:

False = 0 ;equate to false

True = !False ;set to opposite truth value

.if !debug_mode ;if not in debug mode...

geoAssembler Ref. 5-16

Operators: >, >=, <, <=, ==, =, !=
These standard comparison operators compare two 16-bit unsigned integer

expressions and evaluate to either logical true (one) or logical false (zero).

They are most often used in conditional assembly, but can appear in the

context of any expression. The single and double equal sign are

interchangeable as comparison operators.

Examples:

10 > 6 evaluates to true (10 greater than 6)

%110 >= $22 evaluates to false (greater than, equal to)

$fe < 100 evaluates to false (less than)

?60542 <= $6162 evaluates to true (less than, equal to)

$fc == 252 evaluates to true (equal to)

$ffff = -4 evaluates to false (equal to)

12 != 12 evaluates to false (not equal to)

.if (disk_buf > (10 * $400)) ;if greater than 10K...

NOTE: The > and < logical symbols operate with pairs of expressions;

they act quite differently in a unary context (high- and low-byte

operators).

Operators: &&, ||, ^^
These logical operators perform and, or, and exclusive-or operations

(respectively) on the truth-value of two expressions. && (and) evaluates

true if both expressions are true; || (or) evaluates true if either expression is

true; ^^ (exclusive-or) evaluates true if one expression is true and the other

is false.

Examples:

.if (buffer_size >= 100) && (buffer_size <1000)

If the buffer size is greater than or equal to 100 and it's also less

than one thousand, then...

.if (data > 1000) || (buf_flag) || (free_space < (20 * $400))

If the data size is greater than 100 or the buffer flag is set to true or

there is less than 20 Kilobytes of free space, then...

.if (debug ^^ test)

If the debug flag is set or the test flag is set (but not both), then...

 5-17 geoAssembler Ref.

Mixing Logical and Arithmetic Expressions
Logical and arithmetic expressions may be intermixed. Logical expressions

evaluate to either an arithmetic one (1) if the expression is true, or an

arithmetic zero (0) if the expression is false. Conversely, if an arithmetic

expression evaluates to non-zero, it is considered a logical true, and if it

evaluates to zero, it is considered a logical false. Arithmetic and logical

operators can even be used within the same expression. As an example,

consider the following:

buf_space = drives*(cache_siz+((disk>K_thresh)*big_buf))

Notice the logical subexpression (disk>K_thresh) buried within the

expression. If disk is greater than K_thresh, then the subexpression will

evaluate to true, and its arithmetic value of one will be used as a

multiplicand to include the value of big_buf. However, if disk is less than

or equal to K_thresh, then the subexpression will evaluate to false, yielding

an arithmetic value of zero, and preventing the value big_buf from being

added into the expression.

NOTE: relying on the arithmetic value of a logical expression (as in the

above example) is sometimes considered bad programming

practice. The same result can always be realized with multiple

expressions and conditional assembly.

geoAssembler Ref. 5-18

Directives

Directives, often called pseudo-ops, instruct geoAssembler to perform some

action, such as include another source file, begin a macro definition, or

define an equate. Other than .byte and .word, directives do not generate any

object code. Most directives are preceded by a period (.) to distinguish them

from macro names and 6502 mnemonics.

Summary of Directives
The following directives are recognized by geoAssembler.

Assembly Control

.include Include another source code file into the assembly.

.zsect Begin zero page section.

.ramsect Begin uninitialized data section.

.psect Begin program section (default).

.echo Echo text to the error file.

.end End assembly (optional at end of source file).

Symbols

= define equate; do not send symbol to debugger.

= = define equate; send symbol to debugger.

.eqin Begin sending equates to the linker (default).

.noeqin Stop sending equates to the linker.

.glbl Begin sending global labels to the linker (default).

.noglbl Stop sending global labels to the linker.

Data

.byte Include byte-sized data and strings into psect section.

.word Include word-sized data into psect section.

.block Reserve space.

Conditional Assembly

.if Start conditional; assemble if expression is true.

.else Assemble if expression was false.

.elif Start new conditional if expression was false.

.endif End conditional.

 5-19 geoAssembler Ref.

Macro Definition

.macro Begin macro definition.

.endm End macro definition.

Header Definition

.header Begin header definition.

.endh End header definition.

geoAssembler Ref. 5-20

Assembly Control Directives

.include
Directive: .include

Purpose: Includes source code from another file directly in-line with the

current assembly.

Usage: .include filename

Note: The filename must be a valid geoWrite source file. If you have

two drives (one can be a RAMdisk), geoAssembler will

automatically search both for the desired file, starting with the

same disk as the current assembly file.

When geoAssembler encounters a .include directive, it suspends assembly

of the current file and begins reading source lines from the specified

include file just as if they were part of the original assembly file. When

geoAssembler encounters the end of the include file or a .end directive, it

returns to the previous assembly level and continues with the line following

the .include.

Include files may themselves have .include directives. However this file

nesting may only extend to a depth of three. That is: you may only have

three levels of files (counting the main assembly file) which include other

files. Any including beyond this limit will generate an error.

Example:

.include macros

.include zpage

.include equates

.include maincode

.include subroutines

(Note: this is not an example of nesting)

 5-21 geoAssembler Ref.

.zsect

Directive: .zsect

Purpose: Begins zero-page definitions section.

Usage: .zsect [zp-address]

Note: zp-address is an optional zero-page absolute address ($00-$ff);

If the address is omitted, geoAssembler will use the current

value of the zsect location counter. At the start of an assembly,

the zsect location counter is initialized to $00.

A zsect section is essentially a zero-page version of ramsect section;

geoAssembler maintains a separate section for zero-page variables because

zero-page references must be resolved during the first pass of the

assembler. For this reason, the zsect section, unlike the ramsect section,

cannot be relocated and must be given an absolute address at

assembly-time; there is no .zsect linker command.

Because of the way zero-page references are handled, they must be defined

before they are actually used; they are evaluated during the first pass of the

assembler and cannot be left to the linker for resolution, nor can they be

forward-referenced. This poses a problem for multiple source files which

access the same zero-page variables because you cannot rely on linker

resolution as you can with non-zero-page addresses. The best way to handle

this is to .include a zero-page definition file into the assembly of each

source module, treating zero-page variables as if they were equates.

.zsect begins a zsect section and it extends until the next .ramsect or .psect

directive. Source code in a zsect section cannot generate any object code.

This means that 6502 opcodes, .byte, and .word will all generate errors

within a zsect section.

.zsect is used in combination with the .block directive, allowing the zsect

location counter to be incremented and variable space to be reserved.

NOTE: It is not necessary to include zero-page equates (as opposed to

labels) within a zsect section. geoAssembler is smart enough to

use zero-page addressing when an equated constant less than

$100 is used as an address.

geoAssembler Ref. 5-22

Example:

.zsect $70 ;begin zp variable space

; ZERO PAGE VARIABLES

counter: .block 2

pointer: .block 2

temp1: .block 1

temp2: .block 1

temp3: .block 1

X_coords: .block 4

Y_coords: .block 4

.psect ;end zsect section and begin psect

 5-23 geoAssembler Ref.

.ramsect

Directive: .ramsect

Purpose: Begins uninitialized data (non-zero-page) section.

Usage: .ramsect [addrexp]

Note: addrexp is an optional absolute address within the 6502's

addressing space ($0000-$ffff). If the address is an expression,

it must evaluate on the first pass of the assembler — the

expression may not contain any external symbols, nor any

relocatable, external, or unresolved labels. If an address is not

specified, it will be left to the linker to relocate the data area; If

an address is specified, the current and all subsequent ramsect

definitions will be assigned absolute addresses at assembly-

time — previous ramsects (without addresses) will be

unaffected and will still be relocated by the linker.

A .ramsect directive begins a ramsect section, which extends until the next

.psect or .zsect directive. Source code in a ramsect section cannot generate

any object code. This means that 6502 opcodes, .byte, and .word will all

generate errors within a ramsect section.

All labels within a ramsect section are assigned the current value of the

ramsect counter. In most cases, you will want the absolute value of these

data areas to be determined by the linker, which it will do automatically if

no absolute address is specified. However, sometimes it is desirable to

assign an absolute value to the .ramsect counter during assembly. In these

cases, simply follow the .ramsect with a valid absolute address — all

subsequent labels in .ramsect sections will be assigned values based on this

address. In either case, ramsect sections take up no space in the eventual

application file; they are merely placeholders during the assembly-link

process.

Like the zsect section, the .block directive is used to increment the object

code counter and reserve data space.

IMPORTANT: When your program is executed, the values in ramsect data

areas are unknown and should not be used without first initializing them.

An ideal way to initialize .ramsect variables is with the GEOS InitRam

routine.

geoAssembler Ref. 5-24

Example:

.ramsect ;begin variable/data space — let linker resolve

 ; VARIABLES

 timer: .block 3

 X_pos: .block 2

 Y_pos: .block 2

 Coldstart: .block 1

 ; DATA BUFFERS

 diskbuf: .block $100

 scrnbuf: .block $1000

 scratch: .block 16

.ramsect scrn_RAM ;start new ramsect (absolute)

 Foreground: .block $1000

 Background: .block $1000

 .psect ;end of data space, start of program area

 5-25 geoAssembler Ref.

.psect

Directive: .psect

Purpose: Begins program code and initialized data section.

Usage: .psect

Note: Unlike .zsect and .ramsect, .psect will not accept an absolute

address. Psect sections are always relocated to an absolute

address by the linker.

When geoAssembler starts processing a file, it defaults to the psect section.

The psect section contains all opcodes and initialized data — essentially

anything which will generate object code (6502 source code, .byte, .word,

etc.).

When geoAssembler begins, the psect location counter is set to zero. As it

passes through the source code, it increments this counter to accomodate

the object code generated. All labels within the psect section are assigned

the current value of the psect counter. At link-time, these relocatable values

are changed to absolute values in the relocation process.

NOTE: The .block directive can be used within a psect section; it will

generate a block of zeros ($00) in the object code.

geoAssembler Ref. 5-26

Example:

.psect ;start program section

Initbufr: ldx #$00

1$ lda initdata,x ;initialize the data buffer

 sta buffer,x

 inx

 cpx #idata_size ;only copy proper # of bytes

 bne 1$

 rts

;

initdata: .byte $34, $54, $10, $f5, $ff, $a0, $a3

 .byte $90, $0d, $f1

idata_end: ;placeholder for end of data

idata_size = idata_end – initdata

;

.ramsect ;start ramsect section for buffer space

buffer: .block idata_size

;

.psect ;end ramsect and return to psect

 5-27 geoAssembler Ref.

.echo

Directive: .echo

Purpose: Sends user-defined text to the error file.

Usage: .echo text

Note: text is up to a full line of ASCII text. No quotes are required.

The .echo directive sends a line of text to the .err file generated by

geoAssembler.

This allows you to generate your own messages, warnings, and errors

which will be written to the error file. This won't actually create assembly

errors, however — the error count doesn't actually change — only the text

is sent to the file.

Example:

.if debug

.include dbgcode

.else

.echo Warning: debugging code not installed

.endif

geoAssembler Ref. 5-28

.end

Directive: .end

Purpose: Ends the current level of assembly — if in an include file,

geoAssembler resumes processing of the parent file; if in a

main assembly file, geoAssembler ends the assembly.

Usage: .end

The .end directive is entirely optional because the normal end-of-file

marker in geoWrite files will alert geoAssembler to end the current level of

assembly. It is included here mainly for historical purposes.

 5-29 geoAssembler Ref.

Symbol Directives

Directive: =, ==

Purpose: To equate a value to a symbol.

Usage: symbol = exp

 symbol == exp

Note: symbol is a valid symbol name and exp is an expression which

evaluates to an absolute value at assembly time. An equate may

be either an address or a constant.

The = and == directives assign absolute, constant values to symbols which

may later be used within expressions. Equates make your source code

easier to read and understand, as well as maintain. They allow you to use

descriptive names for constant values (e.g., NULL for $00 or FF for an

ASCII form-feed) and addresses. Additionally, if you use the equate

consistently, you need only change the symbol definition to affect a change

throughout the entire program.

The == directive will cause the symbol to be included in the symbol table

used by the debugger; the = will cause the symbol to be excluded from the

symbol table used by the debugger.

IMPORTANT: Equates must be resolvable on the first pass of the

assembly. This means you cannot use any forward or external references in

an equate's definition; the expression cannot contain any symbols which

have not yet been defined, regardless of whether they are defined later in

the current file or during the link-stage.

NOTE: Whether or not equated symbols are sent to the linker can be

controlled with the .eqin and .noeqin directives. If the .noeqin

option is in effect, even symbols equated with the == directive

will not make it beyond the assembly-stage.

geoAssembler Ref. 5-30

Directive: .eqin, .noeqin

Purpose: To allow or suppress equate passing to the linker.

Usage: .eqin

 .noeqin

Note: No parameters.

geoAssembler, by default, passes all equates to the linker. At times it is

desirable to prevent this from happening to certain symbols, to limit the

scope of these equates to the current assembly file.

.noeqin instructs geoAssembler to stop sending equates to the linker. All

subsequent equates, up to a following .eqin directive, will not be sent to the

linker. They can only be accessed from within the current assembly file.

They will be invisible to any other .rel files which are later linked.

.eqin instructs geoAssembler to once again send equates to the linker.

NOTE: Because equates suppressed with the .noeqin directive will not

be sent to the linker, they will also never get sent to the

debugger regardless of whether the = or the == directive is

used.

Example:

;--- sent to linker and debugger ---

sector == $01

track == $5c

buf_addr == $3000

;--- sent to linker but not debugger ---

EOF: = -1

EOL: = $4c

;

;--- not sent to linker nor to debugger ---

.noeqin

startcnt = $ff

retries = $0a

home == track*2

.eqin

 5-31 geoAssembler Ref.

Directive: .glbl, .noglbl

Purpose: To allow or suppress global labels passing to the linker.

Usage: .glbl

 .noglbl

Note: No parameters.

By default, geoAssembler passes all labels to the linker. At times it is

desirable to prevent this from happening to certain symbols, to limit the

scope of these labels to the current assembly file.

.noglbl instructs geoAssembler to stop sending labels to the linker. All

subsequent labels, up to a following .glbl directive, will not be sent to the

linker.

.glbl instructs geoAssembler to once again send labels to the linker. They

can only be accessed from within the current assembly file. They will be

invisible to any other .rel files which are later linked.

NOTE: Because labels suppressed with the .noglbl directive will not be

sent to the linker, they will also never get passed to the debugger.

Example:

;--- send these labels to linker ---

.glbl

Start:

.include maincode

;

jump_tbl:

.word Draw_box, Move_icon, Call_extern

.word Copy_buf, Read_mouse, Pterm

 ;

;--- suppress sending these to linker ---

.noglbl

local_jumps:

.word box_remove, mouse_reset, abort

warmstart:

.include main2

.glbl

geoAssembler Ref. 5-32

Data Directives

Directive: .byte

Purpose: Deposits byte-sized data directly into the object code.

Usage: .byte exp|string{,exp|string}

Note: exp|string refers to either a valid expression or an ASCII string

enclosed in double-quotes.

The .byte directive inserts data bytes directly into the object code and

increments the psect counter appropriately, .byte can only be used within a

psect section. With expressions that exceed the capacity of one byte (>$ff)>

only the low-byte of the value will be used, and a warning will be

generated. To explicity extract the low-byte, use the < or [operator, to

extract the high-byte, use the] or > operator.

String data enclosed in double-quotes will generate the ASCII equivalent

for each character in the string, one byte per character.

Examples

stringl: .byte "This is a sample string", CR, LF,NULL

datal: .byte $ff, %0101111, "hello", $56, $34+'@'

Hijmp: .byte]addrl,]addr2,]addr3,]addr4

Lojmp: .byte [addrl, [addr2, [addr3, [addr4

 5-33 geoAssembler Ref.

Directive: .word

Purpose: Deposits byte-sized data (two bytes) directly into the object

code in 6502 low-byte, high-byte order.

Usage: .word exp{,exp}

Note: exp refers to a valid expression. Strings are not used.

The .word directive inserts data words directly into the object code and

increments the psect counter appropriately. A word is two consecutive

bytes, and, on the 6502, the low-byte is stored first, .word is usually used to

store address data for jump tables.

Note that

.word $12fe ;low followed by high

is equivalent to

.byte [$12fe,]$12fe ;low followed by high

Byte-sized data stored with the .word directive will have the high-byte set

to $00.

Examples:

.word jumpl, jump2, jump3, jump4, jump5, $00

.word addrl, addr2, addr3, ($5000+addr4)/2+l

geoAssembler Ref. 5-34

Directive: .block

Purpose: Reserves uninitialized data space in zsect and ramsect sections.

 Can also be used to generate blocks of $00 bytes in a psect

section.

Usage: .block exp

Note: exp refers to a valid expression which determines the number of

bytes to actually reserve. The expression must be resolvable

when it is encountered on the first pass and cannot contain

external or relocatable symbols.

.block is used within zsect and ramsect sections to reserve byte-sized space

without actually generating any object code data. It merely increments the

appropriate zsect or ramsect counter by the specified number of bytes.

NOTE: .block will generate a block of zeros ($00) when used within a

.psect section.

Example:

.zsect $30

critic: .block 1

onflag: .block 1

timer_3: .block 1 TIMER_size*2

date: .block 5

.ramsect

temp1: .block 2

temp2: .block 2

U_right: .block 2

L_left: .block 2

buffer: .block 3000+(disk_K*$100)

buf_flag: .block 1

screen: .block $8000

.psect

 5-35 geoAssembler Ref.

Conditional Assembly

Conditional assembly allows you to have specific sections of source code

automatically included in or removed from the assembly based on the

truth-value of an expression. This allows you to use the same source code

files to assemble different versions of the same application. For example,

during program development, you might build diagnostic code into the

application, code which will display the program's status and other

debugging information. This code is unnecessary in the final version,

though. One elegant way of handling this is to surround your debugging

code with conditionals. During development, you set an equate in the main

assembly file which causes these conditionals to evaluate to true, thereby

including the diagnostic routines. In the final version, you need merely

change the value of the equate so that the conditionals don't succeed and the

code is not assembled.

Directive: .if, .else, .elif, .endif

Purpose: Conditional assembly directives; Instruct geoAssember to

either include or ignore specific lines of assembly code based

on the truth-value of an expression.

Usage: .if exp

[.else|.elif exp]

.endif

Note: exp is a valid expression, usually a logical expression.

The .if directive begins a conditional section. If the expression evaluates to

false, assembly is suppressed until geoAssembler encounters an .else, .elif,

or .endif. At that time, assembly is resumed or not depending on the

directive encountered. If the expression is true, geoAssembler continues

assembling. You can think of a conditional like this: "If the expression is

true, then the following source lines will be assembled..."

geoAssembler determines the truth-value of the expression using the

standard logical expression evaluator. A zero value is considered to be

false; a non-zero value is considered to be true.

The simplest use of a conditional consists of an .if followed by some source

lines which end with an .endif. If the .if expression is false, the code

between the two directives will be left out of the assembly; if it is true, they

will be included.

geoAssembler Ref. 5-36

Example:

.if (buffer>=$3000) ;conditional

;*** this code is only assembled if buffer>=$3000

lda #M_on

sta semaphore

jsr Xtra_buf

jsr Malloc

.endif ;end of conditional

;*** assembly is now back to normal...

The .else directive allows you to set up two mutually-exclusive sections of

code, one (and only one) of which will be included in the assembly. Think

of the .else directive as: "If the expression is true, assemble this chunk of

code... else, it must be false, so assemble this..."

Example:

.if (diagnosis == ON) ;if the diagnosis code is desired...

.include WhatsUp ;then...

lda #ON ; assemble

sta fallout ; this

sta crash ; stuff...

jsr breakpts

.else ;otherwise, use this code instead...

lda #OFF ;-- this gets assembled only if

sta fallout ; (diagnosis != ON)

sta crash ;end of conditional

.endif

 5-37 geoAssembler Ref.

Nesting
The .elif directive is merely a combination of the .else and the .if

conditionals. It allows an .else to trigger another conditional. In this case,

the additional .if implicit in the .elif may, itself, use additional .elifs.

.if debug ;if using debugging code...

lda #ON ;then...

sta dbug_flag

.if (dbug_level == 1) ;then, if level 1...

.include dlevel1

.elif (dbug_level > 10) ;else if level >10...

.include breakcode

.else ;else tied to the if in elseif

lda # OFF

sta brkflag

.endif ;end inner if

.endif ;end outermost if

This tortuous example shows some of the complexity you can achieve by

nesting conditionals. Note, however, conditionals can only be nested to a

level of ten deep. Sometimes it helps document what you're doing if you

indent the levels of nesting (as above) to illustrate the hierarchy.

geoAssembler Ref. 5-38

Macros
Be forewarned: macro programming is an advanced topic, especially for

somebody new to 6502 assembly language. If macros seem confusing, don't

worry. Master assembly language first, then come back and study macros.

They can save time and make your source code more maintainable and

compact.

What is a Macro?
At their simplest level, macros are merely an advanced form of text

substitution, and they are purely a function of the assembler. If you have a

common or complex chunk of code, you can assign it a name or

abbreviation. This is called defining the macro or macro definition. Now,

each time you want to use this code, rather than type in the actual source

lines, you simply use this abbreviation. geoAssembler will recognize the

abbreviation as a macro use, or invocation, and will replace it with the

previously defined source code, thereby expanding the macro name to its

full definition. Once you have defined a set of useful, general purpose

macros (as we have in the sample macro file), you may include them as

library files in all your assemblies.

And What's This About Parameters?
One of the features that makes macros so powerful is that you can pass

parameters to them. That is, when you invoke the macro, you can pass it

label names, variables, constants, flags, addressing modes, and the like;

geoAssembler will take these parameters and insert them into the actual

macro-expanded code as determined in the macro definition. You might

call a macro like this:

SuBW subtrahend, minuend ;subtract word

At assembly-time geoAssembler will expand the macro (defined earlier in

the source code) to produce something like this:

lda minuend ;get byte value

sec

sbc subtrahend ;subtract low byte

sta minuend ;overwrite minuend with result

lda minuend+1 ;high-byte with carry

sbc subtrahend+1

sta minuend+1

All this is done automatically! You will not actually see this expansion.

However, this is how it will look to the assembler.

 5-39 geoAssembler Ref.

Directive: .macro, .endm

Purpose: For defining macros.

Usage: .macro name [parameter{,parameter}]

macro definition

.endm

Note: name is the macro name — you will use this for all invocations

of the macro — it can be any valid symbol; parameter is an

optional parameter declaration. If you expect parameters, you

must declare them.

Important: The following directives are invalid within a macro definition:

.macro, .endm, .include, or .end. They will generate errors.

The .macro directive tells geoAssembler that all code up to the next .endm

(end macro) directive is part of the macro definition. The .macro is

followed by the name of the macro (the abbreviation which you later use to

invoke it). After the macro name you may declare from zero to six

parameters, separated by commas.

The body of the macro consists of normal geoAssembler source code. You

may use mnemonics, most directives, even previously defined macros,

within the macro definition. You can use the parameter names anywhere in

the source code — wherever you would like the parameter name replaced

with the actual parameter passed to the macro upon invocation.

geoAssembler does absolutely no syntax checking prior to parameter

substitution, so there is little you are unable to pass it: strings, labels,

characters, equates, and expressions are all fair game.

Follow the body of the macro with an .endm directive to indicate the end of

the macro definition.

Once a macro has been defined, it may be invoked in your source code by

placing the macro name in the opcode field of the source line and any

parameters in the operand field, separated by commas. geoAssembler

recognizes the macro name as a macro invocation and expands it

appropriately.

geoAssembler Ref. 5-40

First, geoAssembler takes any parameters in the invocation and inserts

them in the appropriate places in the macro body. The macro body, with the

parameters in their proper places, is fed directly into the assembler's input

stream exactly as if the macro body was part of the source code.

geoAssembler will then attempt to assemble on a line-by-line basis,

flagging errors as normal. When the end of the macro body is reached,

geoAssembler again resumes assembling with the next line in the source

code. In this way, much like an .include, one macro line can be expanded

to almost any number of actual source lines. Keep this in mind when using

large macros — if you use them often enough, they may warrant an actual

subroutine to save memory space.

As an example, we will define and then invoke a macro from the sample

macro file. The following is the macro definition for the AddVW macro. It

adds a one or two byte constant value (immediate value) to a word (two

bytes) in memory. The word in memory is stored in 6502 low, high order.

The macro uses conditional assembly to handle one and two byte constants

differently, generating the most efficient code for each case.

 5-41 geoAssembler Ref.

;**

;

; Add Value to Word: AddVW value, dest

;

; Args: value: constant to add to dest

; dest: address of word to add to

;

; Action: dest = dest + value

;

;**

.macro AddVW value,dest

 clc ;must add with carry

 lda #[(value) ;add low byte first

 adc dest+0

 sta dest+0 ;and replace with low of result

;If the value to add is only one byte, then special-case the carry

.if (value >= 0) && (value <= 255)

 bcc noInc ;if low-byte generated a carry...

 inc dest+1 ; then, increment high-byte

nolnc:

.else ;value larger than one byte, so do full word add

 lda #](value) ;get high byte

 adc dest+1 ;add high byte in with carry

 sta dest+1 ;and replace with high of result

.endif

.endm

After we have defined this macro, we can then invoke it from within our

source code:

AddVW $20, Sum1 ;add $20 to Sum1

AddVW 3000, Sum2 ;add 3000 to Sum2

During assembly, when geoAssembler encounters these invocations, the

macro will be expanded and the parameters will be substituted.

geoAssembler would expand the first usage (AddVW $20, Sum1) like this:

clc

lda #[($20)

adc Sum1+0

sta Sum1+0

bcc 9999$

inc Sum1+1

9999$

geoAssembler Ref. 5-42

First, notice that the constant ($20) and the variable (Sum1) were

substituted into the macro definition for value and dest, respectively. Also

notice that because the constant ($20) was a one-byte expression, the

conditional in the macro evaluated to true and generated the code between

the .if and the .else. Finally, notice the macro label noInc was replaced with

the local label 9999$; this will be explained later.

The second invocation would be expanded like this:

clc

lda #[(3000)

adc Sum2+0

sta Sum2+0

lda #](3000)

adc Sum2+1

sta Sum2+1

In this case, because the constant (3000) was a two-byte value, the

conditional evaluated to false, and the code between the .else and the .endif

was included instead of the code between the .if and the .else.

Macro Names
Each macro name must be unique and it must conform to the geoAssembler

symbol notation. A macro name may be up to 20 characters long, of which

only the first eight are significant. It must begin with an alpha character, but

the remaining characters can consist of numbers and the underscore (_)

symbol. Case is significant. Although it is not a good idea, you can have a

label and a macro of the same name; geoAssembler can distinguish the two

from context.

Parameters and Parameter Names
A macro can accept from zero to six parameters which must be declared in

the macro definition. Parameter names can be up to ten characters long, all

of which are significant. As in symbols and macro names, case is also

significant. Parameter names may begin with the underscore symbol (_),

which allows you to prevent accidental conflicts with labels, equates, or

macros within the macro definition. If two names do coincide, macro

substitution will take precedence.

 5-43 geoAssembler Ref.

Parameter Substitution
When a macro is invoked, the parameters passed to the macro (unique for

each invocation) are substituted into the body of the macro according to the

parameter names (which are in the definition). In the macro invocation,

parameters follow the macro name and are separated by commas.

geoAssembler does a straight text substitution, so internal spaces and other

characters are maintained throughout the substitution. This lets you pass

entire expressions like:

(value * 35 + (%1010«2)) + $33

or even entire opcodes and operands like:

adc #$2e

The only complication occurs when you need to pass a parameter which

contains a comma, such as an indexed addressing operand:

addr,y

geoAssembler will interpret this as two separate parameters: addr as the

first parameter and y as the second. You can get around this problem by

enclosing the entire parameter in double-quotes:

"addr,y"

geoAssembler will strip the quotes and substitute the entire string. Notice

that this also allows you to send string data (for .byte statements) by

enclosing the string in two sets of quotes:

""this string will be substituted""

The outside set of quotes will be stripped in the macro invocation, but the

inside set will be substituted along with the rest of the string. This allows

you to do something like:

.byte parameter

in a macro and pass it either a string or a value in the invocation.

Parameter substitution will occur anywhere geoAssembler finds the

parameter name in the macro body, except when the name is within quotes,

in which case geoAssembler assumes it is part of a string, or in the opcode

field of a source line.

geoAssembler Ref. 5-44

Too Few or Too Many Parameters
When a macro is invoked, any extra parameters will be ignored in the

expansion. That is: if you pass more parameters than were declared in the

macro definition, the extra parameters will be discarded. If you pass less

parameters than were declared in the macro definition, the undefined

parameters will be set to a logical false (zero). This allows you to send a

variable number of parameters and generate the appropriate code with

conditional assembly.

Labels Within Macros
geoAssembler has a unique way of handling labels within a macro body.

When the macro is expanded, geoAssembler tries to convert any labels

within the macro to local labels. There is a macro local label counter which

begins at 9999$ and decrements for each label that is used within a macro

(at each invocation). That label, and all uses of that label within the macro,

are replaced with the value of this counter, thereby converting them to local

labels. These labels will be treated exactly like normal local labels when

you invoke the macro within your source code. Each label in each macro

expansion will have a unique local label value, so there won't be any

conflicts between macros. However, there is one potential source of

conflict: if you use large-value local labels in your normal source code (like

9984$), it might conflict with a nearby macro expansion, thereby producing

a duplicate local label error. To prevent this from happening, avoid using

large-value local labels — if you stay away from four-digit numbers

beginning with "9", there should not be any problems.

There is one special-case where a label in a macro is not automatically

transformed into a local label: when the label is actually a parameter slated

for substitution. If, for example, you have a macro like:

.macro Double_lp label_1, label_2, yvalue, xvalue

 ldy #yvalue

label_2:

 ldx #xvalue

label_l:

.endm

where the label label_l and label_2 are actually parameters, label_1 and

label_2 will not be converted to local labels. Instead, the macro will expect

valid symbols or local labels to be passed to it as the first two parameters.

 5-45 geoAssembler Ref.

For example:

 Double_lp inner_loop, outer_loop, $35, $ff

would expand as:

 ldy #$35

outer_loop:

 ldx #$ff

inner_loop:

and this would allow you to use the label name globally later in the

program as in:

Double_lp inner_loop, outer_loop, $4e, $54

sta table,x

dex

bne inner_loop

inc table* 1

dey

bne outer_loop

Note that you just as easily could have passed local labels instead of global

labels as in:

Double_lp: 10$, 11$, $54, $ff

where the first two parameters (10$ and 11$) are local labels. The macro

would expand to:

 ldy #$54

11$

 ldx #$ff

10$

geoAssembler Ref. 5-46

Immediate Mode and Constant Values
The expression evaluator will ignore any # signs within expressions. This

allows immediate mode addressing and constant parameters to be handled

flexibly within a macro expansion. For example, with the following macro

;**

;

; Add Value to Byte: AddVB value, dest

;

; Args: value: byte constant to add to dest

; dest: address of byte to add to

;

; Action: dest = dest + value

;

;**

.macro AddVB value, dest

 lda dest

 clc

 adc #value

 sta dest

.endm

We can invoke this macro with either of the following:

 AddVB #$ff, total

 AddVB $ff, total

In the first case, the parameter substitution will generate an extra # sign,

resulting in the line:

 adc ##$ff

The expression evaluator will drop the unneeded # sign. In the second case,

there will only be one # sign, so the interpretation is trivial. This way, if we

call AddVB with a constant value like:

 AddVB #constant, total

It will be clear that the constant will be used in an immediate-mode context.

 5-47 geoAssembler Ref.

Macro Nesting
Macros can invoke other macros. In fact, they can even (recursively) invoke

themselves. However, this macro nesting is limited to three levels. You

cannot define a macro inside another macro.

Macro Overflows
geoAssembler maintains a number of tables for macros, all of which are of

limited size, but large enough to handle the majority of cases. You will

probably never encounter a macro overflow error unless you are nesting

groups of macros with a large number of parameters and internal labels. For

more information on macro errors, refer to Appendix E.

geoAssembler Ref. 5-48

Header Definition
Directive: .header, .endh

Purpose: These special directives allow you to create a GEOS file header

data structure for your GEOS application.

Usage: .header

.word $00 ;last block -- always 0

.byte 3 ;icon width -- always 3

.byte 21 ;icon height -- always 21

;icon information follows

.byte C64type ;usually $83

.byte GEOtype ;GEOS file type

.byte GEOstruct ;GEOS structure type

.word FileStart ;load address

.word FileEnd ;end of app. address

.word InitProg ;init. address

.byte filename ;must be 20 bytes

[.byte ...] ;optional fields

.endh

The .header and .endh directives invoke an additional level of error-

checking for creating a GEOS file header. The header involves a very rigid

syntax and critical byte counts which are checked automatically by

geoAssembler.

The header directives don't actually create a header on the disk. Rather,

they build a 256-byte data structure into a normal .rel file. This structure

can then be used by geoLinker to create the header for your application file.

In this case, the header should be the only item in the source file. All other

data will be ignored by the linker.

 5-49 geoAssembler Ref.

HINT: when you are first building an application, use the default header by

omitting the .header directive from the link command file; in the final

stages of development, you can then build your customized header.

The header directives can also be used to create prototype headers for use

inside your applications. Simply include the header directives in a .psect

section where you would like data to be generated. A 256-byte block will

be created.

The area between the .header and .endh follows a strict syntax. 6502

mnemonics, .psect, .ramsect, .zsect, .include, .macro, .endm, .end, or

.header are invalid within the header definition. And any data-creation

directives (.word, .byte) must be in the order and format as described.

Header Syntax
The syntax checker for header definitions is primarily a byte counter. It has

a table of .byte and .word definitions which it checks against and will

generate an error if it doesn't find what it expects. You may, however,

include most types of directives, labels, and equate definitions, even macro

invocations, within the source code, as long as the actual data which is

generated matches the internal table.

We will cover the basics of header definition here. For more information on

GEOS headers, refer to The Official GEOS Programmer's Reference Guide.

Most headers you create will begin with the following:

 .word 0

 .byte 3

 .byte 21

These are standard values for the next block, icon width, and icon height,

respectively.

Following these lines is the icon image. This must be bitmapped image

data. The icon image is the picture which will appear in the deskTop

directory window. If the icon image is more than 64 bytes, the remainder

will be ignored; if the image is less than 64 bytes, it will be padded with

zeros.

geoAssembler Ref. 5-50

C64type is a Commodore file type. For GEOS applications, this will be

$83.

GEOtype is the GEOS file type. If you .include the constants file, you can

use the equated names, such as APPLICATION or DESK_ACC.

GEOstruct is the GEOS file structure type, meaning VLIR (0) or

SEQUENTIAL (1).

FileStart is the program absolute load address. When your application is

opened, GEOS will load it at this address. This should be the same value

used in the linker's .psect directive. If you use a zero in this field,

geoAssembler will use a default value of $400.

FileEnd is the program absolute end address. This value is only necessary

for desk accessories, so GEOS can determine how much memory to save

before overlaying the accessory code. This number should be $3ff for

applications. If you use a zero in this field, geoAssembler will use a default

value of $3ff.

InitProg is the address GEOS jumps to to begin execution of your

application. If you use a zero in this field, geoAssembler will use a default

value of $400.

filename is the ASCII name of the file (a string in double-quotes). If it is

less than 20 characters, it must be padded with zeros (outside of the string)

so that the total byte count is 20. The zero padding must occur within the

same .byte statement.

authorname is the ASCII name of the Author (a string in double-quotes). If

it is less than 20 characters (19 characters plus a NULL terminator), it must

be padded with zeros (outside of the string) so that the total byte count is

20. The zero padding must occur within the same .byte statement.

File header blocks are exactly 256 bytes in length, but geoAssembler only

requires that you give it the first 117 bytes, up through the author name.

However, you may manually code the remaining fields with additional data,

up to the full 256 bytes. geoAssembler will do no syntax checking beyond

the 117th byte, though. If you submit less than 117 bytes, geoAssembler

will generate an error; if you submit more than 117, but less than 256,

geoAssembler will pad the remainder (up to 256) with zeros; if you submit

more than 256 bytes, geoAssembler will generate an error.

 5-51 geoAssembler Ref.

The additional (optional) fields are described fully in The Official GEOS

Programmer's Reference Guide.

Example:

.header ;start of header section

.word 0 ;first two bytes are always zero

.byte 3 ;width in bytes

.byte 21 ;and height in scanlines of:

.byte $80 | USR ;Commodore file type, with bit 7 set.

.byte APPLICATION ;Geos file type

.byte SEQUENTIAL ;Geos file structure type

.word ProgStart ;start address of program (where to load to)

.word $3ff ;usually end address, but only needed for

 ;desk accessories.

.word ProgStart ;init address of program (where to JMP to)

.byte "SampleSeq V1.0",0,0,0,$00

 ;permanent filename: 12 characters,

 ;followed by 4 character version number,

 ;followed by 3 zeroes,

 ;followed by 40/80 column flag.

.byte "Eric E. Del Sesto ",0

 ;twenty character author name

 ;includes NULL terminator

;end of header section which is checked for accuracy

.block 160-117 ;skip 43 bytes...

.byte "This is the GeoProgrammer sample "

.byte "sequential GEOS application.",0

.endh

geoAssembler Ref. 5-52

Internal Variables

geoAssembler maintains three internal variables which you can use in your

assembly source code:

picH most recent icon's height

picW most recent icon's width

Passl assembly on pass one or pass two

picH & picW
When geoAssembler encounters a graphic image in your source code, it

converts it into compacted bitmap data and inserts it directly into the object

code, as if it was generated with .byte data directives. At this time, it also

sets two internal variables: picH and picW. picH is the graphic image

height in scanlines and picW is its width in bytes. Although the width and

height of the most recent image remain in effect until a subsequent image

definition, it is best to assign them to permanent equates immediately after

the image:

For more information on pasting images into your geoWrite source files,

refer to "Including Icons (Graphics) in Your Source File" in Chapter 4.

 5-53 geoAssembler Ref.

Pass1
geoAssembler is a two-pass assembler. On the first pass it establishes

values for labels and equates, increments section counters, and defines

macros; on the second pass it resolves forward and backward references.

Because no new information is presented in equates and macro definitions

on the second pass, significant disk and file processing time can be saved

by eliminating this redundancy. For this purpose, geoAssembler maintains

an internal variable called Pass1. At the beginning of the first pass, Pass1 is

set to a logical true; at the beginning of the second pass, Pass1 is set to a

logical false. You can use the Pass1 variable in a conditional assembly

expression to exclude equates and macros from the assembly on the second

pass. This can usually realize a 10% to 20% improvement on assembly

time.

Example:

 .if Pass1 ;only include equ's and macros on 1st pass

 .include myEquates

 .include myMacros

 .include geosSym

 .endif

IMPORTANT: Only use the Pass1 variable to exclude equates and macro

definitions from your assemblies. Using Pass1 in any other context can

cause symbols to evaluate differently on each pass. geoAssembler has no

facility to detect these "phase" errors, and the results are unpredictable.

Also: it is best to only use the Pass1 facility when you are sure there are no

errors in your include files. If there are errors in your include file and the

files are not processed during the second pass, you will get a "hidden error"

error message. If you should get a hidden error, remove the Pass1

conditional and reassemble. The offending line(s) will then be flagged

correctly in the error file. Once you have corrected the error, you can again

use the Pass1 conditional.

 6-1 geoLinker Ref.

Chapter 6: geoLinker Reference

Chapter 6 acts as a complete reference for geoLinker, including the linker

command file. Although this is primarily a reference chapter, it would be a

good idea to read it through completely at least once. For information on

using geoLinker from the GEOS deskTop, refer to "Running geoLinker" in

Chapter 4.

The Link Process

geoAssembler generates .rel (relocatable object) files which consist of three

main elements:

relocatable 6502 machine code

unresolved expressions

global labels and equates

geoLinker takes one or more .rel files and converts them into a runnable

application.

When geoAssembler encounters an undefined symbol, a symbol which is

not defined in the current source file, it assumes that it is an external

symbol. Valid expressions which use external symbols get passed to

geoLinker for resolution.

When you link a number of .rel files together, geoLinker matches-up

external references from one file with the global symbols within other files,

thereby resolving any valid cross-references.

During the link process, geoLinker also establishes fixed absolute addresses

for the program code (.psect) sections and uninitialized data space

(.ramsect) sections. It then converts all the relocatable machine code into

absolute machine code which is runnable in the GEOS environment.

If geoLinker is able to resolve all external references, it produces a runnable

application file, complete with a proper GEOS header block, a .dbg symbol

table for use with geoDebugger, and an optional .sym viewable symbol

table.

geoLinker Ref. 6-2

Linker Overview

Command File
geoLinker needs a lot of information in order to integrate a group of .rel

files into a GEOS application. Besides specifying the linkable modules, you

can provide an output file name, a customized GEOS header, absolute psect

and ramsect addresses, even VLIR overlay modules. All this information is

specified in a linker command file. Like geoAssembler source files, linker

command files are created in geoWrite.

Sequential and VLIR Applications
geoLinker is capable of generating both sequential and VLIR type

application files. Sequential applications consist of one contiguous main

module, which is loaded entirely into memory when you run the

application. VLIR (Variable Length Indexed Record) applications consist

of one resident module, very similar to a sequential file, which is loaded in

when you run the application and any number of overlay modules, modules

which are loaded into memory as they are needed.

Standard Commodore Applications
geoLinker can also generate standard Commodore application files for

running outside of the GEOS environment with the .cbm linker directive. A

standard Commodore application is much like a sequential GEOS

application without a GEOS file header. For more information on standard

Commodore applications, refer to the Commodore 64 Programmer's

Reference Guide.

Header and Output File
geoLinker allows you to specify a GEOS file header and an output file in

the linker command file. However, if you do not specify either or both,

geoLinker will use a default. The default header uses a special test icon

with a load and execution address which points to the first byte of the psect

section. The default file name is test.

Psect and Ramsect Addresses
All psect and most ramsect sections are relocatable — they are given

absolute addresses within the Commodore's memory space at link time. If

you do not specify a particular psect address, geoLinker will default to

$400. If you do not specify a particular ramsect address, geoLinker will

append the ramsect section to the last byte of your psect section (or module

for a VLIR application).

 6-3 geoLinker Ref.

The Linker Command File

Any link operation must use a linker command file. Linker command files

are created in geoWrite and are similar to geoAssembler source files —

they consist of linker directives, file names, and comments.

Using geoWrite to Create Link Command Files
geoLinker command files must be in geoWrite format. You create them in

much the same way you create your geoAssembler source code. For more

information on using geoWrite, refer to "Creating geoAssembler Source

Code" in Chapter 4 and the geoWrite section of your GEOS User's Guide.

NOTE: A linker command file cannot exceed one geoWrite page.

Anything beyond the first page of text will be ignored.

Comments
Just as in geoAssembler, you may include comments in your linker

command file with a semicolon (;). geoLinker will ignore text from a

semicolon to the end of the line. Unless the semicolon is the first item on

the line, it must be preceded by at least one space.

Directives
geoLinker has a small set of directives which allow you to control and

specify different linker actions:

.output specify output file name

.header specify header .rel file name

.psect set psect absolute address

.ramsect set ramsect absolute address

.seq start sequential application link

.vlir start vlir application link

.mod begin vlir overlay module

.cbm start standard Commodore application link

Linker directives are not case-significant: you may type them in upper- or

lower-case, or any mixture thereof.

Filenames
If an item or a line is not a comment nor a directive, geoLinker assumes it

is a .rel relocatable object file. Files to link can only be specified on lines

after a .seq, .vlir, .mod, or .cbm directive. They require no special syntax,

except that there can only be one file name per line. File names are case-

significant.

geoLinker Ref. 6-4

If you have two disk drives (one can be a RAMdisk), geoLinker will

automatically search both for the desired file, starting with the same disk as

the linker command file.

If filename is not valid, geoLinker handles it as a critical disk error. This

causes a termination of the linking process which can result in unexpected

behavior. If this happens the.err file will not be properly closed. You should

delete the .err file and validate the disk to correct errors in the block

allocation map that resulted from the termination of the linking process.

Expressions
geoLinker uses the same expression evaluator as geoAssembler. This

allows you to include the same types of expressions within your linker

command file as you would in your assembly source code. You can even

use expressions which contain symbols equated in one of the assembly

files. For example, rather than

.ramsect $4100

you might want to do something like

.ramsect buffer_start+100

which is valid, assuming buffer_start is equated in one of the .rel files. For

more information on expression evaluation, refer to "Expressions" in

Chapter 5.

Sequential Application Link
A sequential application uses a linker command file which follows this

basic pattern:

[.output filename]

[.header filename.rel]

.seq

[.psect addrexp]

[.ramsect addrexp]

filename.rel

{filename.rel}

filename is a valid file name and addrexp is an expression which evaluates

to an absolute address within the Commodore's memory space. As

indicated by the bracketed sections, most of the contents are optional. The

simplest linker command file, one which uses all the defaults, would look

like this:

 6-5 geoLinker Ref.

.seq

filename.rel

This would link one .rel file into a sequential application. It would use the

default header, the default addresses, and the default application file name

of test. Here is an example of a more complex sequential link file:

.output myprogram

.header myheader.rel

.seq ;this is a sequential app.

.psect prog_addr+$42e ;program start

.ramsect $3000 ;uninitialized data start

;— link all these files together —

myinit.rel

mymain.rel

mydata.rel

mytable.rel

This linker command file will generate a sequential application called

myprogram, using a header myheader.rel, and the assembled files

myinit.rel, mymain.rel, mydata.rel, and mytable.rel. The .rel files will be

relocated and appended to each other, one after the other, in the order they

are listed in the linker command file. The program will be given an absolute

address at prog_addr+$42e (prog_addr must be equated in one of the .rel

files) and an absolute ramsect address of $3000.

VLIR Application Link
A VLIR application requires a more complex linker command file to

manage the overlay modules. The linker command file for a VLIR

application follows this basic pattern:

[.output filename]

[.header filename.rel]

.vlir

[.psect addrexp]

[.ramsect addrexp]

filename.rel

{filename.rel}

.mod exp

[.psect addrexp]

[.ramsect addrexp]

filename.rel

{filename.rel}

geoLinker Ref. 6-6

Although a VLIR linker command file resembles a sequential linker

command file, you will immediately notice the addition of the .mod

overlay module directive. It might help to think of a VLIR application as a

series of sequential applications merged into one program file. The main, or

resident, module follows the .vlir directive. It can have its own .psect and

.ramsect and is made up of one or more .rel files. Each overlay module also

has a unique number (indicated by exp above) and its own separate .psect

and .ramsect, in addition to its own constituent .rel files.

Example:

.output myvlir

.header vlirhead.rel

;--- resident module ---

.vlir

.psect $1000

.ramsect $4500

init.rel

dispatch.rel

menus.rel

;--- overlay ---

.mod 1 ;module #1

.psect swap_addr

cutpaste.rel

;--- overlay ---

.mod 2 ;module #2

.psect swap_addr

rubbox.rel

fill.rel

;--- overlay ---

.mod 3 ;module #3

.psect swap2_addr

io.rel

This linker command file would generate a vlir application called myvlir,

using a header vlirhead.rel. The resident module consists of three files:

init.rel, dispatch.rel, and menus.rel. There are also three overlay modules,

numbered one through three, each with its own absolute address.

 6-7 geoLinker Ref.

Cross-reference Resolution

geoLinker has some special features and limitations which affect the way it

resolves cross-references.

How geoLinker Resolves Cross-references
When you assemble a file, geoAssembler assumes that any undefined

symbol used in an expression is an external reference and sends the entire

expression, unevaluated, to the .rel file. geoLinker will attempt to resolve

this expression with global symbols from the other .rel files.

Global Label Conflicts
It is often the case that two or more .rel files will use identical symbols for

unrelated labels or equates. When these files are linked, geoLinker will

encounter these conflicting symbols. Ideally, the programmer would keep

these symbols from the link stage by using the .noglbl and .noeqin

directives. However, this is seldom practical. As a result, global labels

frequently have duplicates during the link stage. geoLinker, however, will

not flag these as duplicate label errors, assuming the conflict was

unintentional, unless another .rel file tries to externally reference one of the

symbols, in which case geoLinker has no way of deciding which one is

desired. An error is generated.

NOTE: If a symbol can be resolved during the assembly stage, it will be,

and no external reference will be generated. Therefore, a routine

which is internal to an object module will take precedence over a

routine with the same name which is external to the module.

VLIR Overlay Module References
A VLIR file typically has one resident module and many overlay modules.

geoLinker links each module (whether resident or overlay) as if they were entirely

independent sequential applications with one exception: an overlay module can

reference symbols in the resident module. However the resident module is unable

to access symbols in an overlay module and an overlay module cannot access

symbols in other overlay modules.

This would seem to defeat the whole purpose of having an overlay linker.

Fortunately, this limitation of symbol scope can be overcome by the use of jump

tables. A VLIR jump table can be built at the beginning of each overlay module,

and then a constants file can be used to index into this jump table. This is how

Berkeley Softworks manages overlay modules in their VLIR applications. (For an

example of an overlay jump table, refer to the sample VLIR application on your

geoProgrammer disk).

geoLinker Ref. 6-8

Link Directive Reference

Directive: .output

Purpose: Specifies an output file name for the application and a base file

name for its .sym, .dbg, and .err files.

Usage: .output filename

Note: filename is a valid file name.

The .output directive allows you to specify an output file name for use in

any files which geoLinker generates during the current link. If you do not

have a .output directive, geoLinker will use the name test. You should not

specify an extender in the file name; geoLinker will append a .sym, .dbg, or

a .err where appropriate.

The .output directive, if used, must be the first directive in the linker

command file.

Example:

 .output myapp

This would signal geoLinker to use the name myapp for the name of the

linked application and as the base file name for any associated files

(myapp.sym, myapp.dbg, myapp.err).

 6-9 geoLinker Ref.

Directive: .header

Purpose: Specifies a previously assembled .rel file to be used to generate

the GEOS file header.

Usage: .header filename.rel

Note: filename is a valid file name. You must manually append the

.rel extender.

The .header directive allows you to specify a .rel file which contains data

for the GEOS file header, most likely created with geoAssembler's

.header/.endh directives.

geoLinker expects the header file to contain exactly 256 bytes of object

code. If you create the header with the geoAssembler .header directive,

256 bytes will always be generated. Otherwise, you will need conform to

this count manually. If the header file contains more or less than 256 bytes

of object code, an error will be generated.

If you omit the .header directive, a default header will be generated with

the appropriate sequential or VLIR flags set. The default header uses a load

and execution address which points to the first byte of the psect section

(resident module) of your code. The default header cannot be used to

generate desk accessories.

The .header directive must appear after any .output directive but before

the .seq, or .vlir directive, .header is invalid with the .cbm directive.

Example:

 .header seqhead.rel

This would signal geoLinker to use the file seqhead.rel as data for the

application's GEOS file header.

For more information on the GEOS file header, refer to "Header

Directives" in Chapter 5 of this manual. Also refer to The Official GEOS

Programmer's Reference Guide.

geoLinker Ref. 6-10

Directive: .psect

Purpose: Establish an absolute address for program code and data (psect)

section.

Usage: .psect addrexp

Note: addrexp is an expression which evaluates to an absolute address.

geoAssembler does not resolve absolute addresses of psect sections until

link-time. For this reason, you can use the .psect link directive to specify an

absolute address for your program code and data. If you omit the .psect

directive, geoLinker will use a default value of $400.

The .psect directive is only valid after a .seq, .vlir, .mod, or .cbm, and it

must appear before the associated .rel file names. In a VLIR link, .psect

will only affect the most recent resident or overlay module.

Example:

.vlir

.psect $500 ; resident mod $500

app.rel

text.rel

.mod 1

.psect $1000 ;this overlay at $1000

over1.rel

.mod 5

.psect $1000 ;this one at $1000, too

over5.rel

.mod 3

 ;but use default ($400) here

over3.rel

 6-11 geoLinker Ref.

Directive: .ramsect

Purpose: Establish an absolute address for relative uninitialized data

(ramsect) sections.

Usage: .ramsect addrexp

Note: addrexp is an expression which evaluates to an absolute

address.

If you want, you can let geoLinker resolve the absolute addresses of your

ramsect sections by not supplying an absolute address with your

geoAssembler .ramsect directives. You can use the geoLinker .ramsect

directive to specify an absolute address for your ramsect sections. If you

omit the .ramsect directive, geoLinker will automatically place your

ramsect section immediately after the end of the psect section. If a VLIR

overlay module does not have a .ramsect, the ramsect section will be

placed after the overlay module's psect section, not the resident module's.

The .ramsect directive is valid after a .seq, .vlir, .mod, or .cbm directive.

All the relative ramsect sections within that module will be appended and

resolved based on that address.

Example:

.vlir

.psect $500 ;resident mod $500

app.rel ;placing ramsect after psect section

text.rel

.mod 1

.psect $1000 ;this overlay at $1000

.ramsect $2000 ;this module's ramsect at $2000

overl.rel

overla.rel

overlb.rel

.mod 5

.psect $1000 ;this one at $1000, too

;ramsect omitted: ramsect section will be placed right

;after psect section by linker.

typeset.rel

geoLinker Ref. 6-12

Directive: .seq

Purpose: Alerts geoLinker that this is a sequential application and that all

the file names following should be linked into one main,

entirely resident program.

Usage: .seq

Note: Takes no parameters.

In order to generate a sequential application, you must place this directive

before any .psect, .ramsect, or linkable file names. It signals geoLinker to

create a sequential application.

A linker command file must have at least one .seq, .vlir, or .cbm directive,

but not more. The only directives which can appear before the .seq are

.output and .header. The .mod directive cannot be used with .seq.

If the .header directive is omitted, geoLinker will generate a default

sequential header.

Example:

.seq ;generate a sequential GEOS application

init.rel

main.rel

subrtn.rel

data.rel

 6-13 geoLinker Ref.

Directive: .vlir

Purpose: Alerts geoLinker that this is a VLIR (Variable Length Indexed

Record) application and that the following (up to a .mod

directive) are part of the resident module.

Usage: .vlir

Note: Takes no parameters.

In order to generate a VLIR application, you must place this directive

before any .psect, .ramsect, .mod, or linkable file names. It signals

geoLinker to create a VLIR application.

A linker command file must have at least one .seq, .vlir, or .cbm directive,

but not more. The only directives which can appear before the .vlir are

.output and .header.

.psect and .ramsect directives for the resident module must come before

any .rel file names. .psect and .ramsect directives immediately following a

.vlir directive will only affect the resident module, they will not affect any

overlay modules created with the .mod directive.

Example:

.vlir ;generate a VLIR application

;*** resident module ***

init.rel

main.rel

subrtn.rel

data.rel

;*** overlay module ***

.mod 1

over.rel

data2.rel

The above will generate a VLIR application with one resident module and

one overlay module, using all the defaults.

For more information on VLIR applications, refer to "VLIR Application

Link" in this chapter. See also .mod in this chapter.

geoLinker Ref. 6-14

Directive: .mod

Purpose: Begin overlay module.

Usage: .mod exp

Note: exp is an expression which evaluates to a number between 1

and 126.

VLIR applications have one resident module and up to 20 overlay modules.

You tell geoLinker to begin a new overlay module with the .mod directive

followed by a module number (1 through 126). The module number

becomes the record number within the VLIR file. Keep in mind that all

loading and swapping of overlay modules is a function of your program;

the .mod directive merely allows you to resolve a group of .rel files

together into one VLIR record.

At the beginning of an overlay module, the psect and ramsect counters are

reset to their defaults. If you use a .psect directive, it must appear after the

.mod directive, but before any .rel files. If .psect is not specified, geoLinker

will default to $400; if no .ramsect is specified, the ramsect section will be

appended directly after the last psect byte in the overlay module.

NOTE: You may choose any module number you desire. You need not

begin with module one, and you need not use a contiguous

number system. The only restriction is that the total number of

modules must not exceed 20.

Example:

 .vlir ;generate a VLIR application

;*** resident module ***

init.rel

main.rel

subrtn.rel

data.rel

;*** overlay module #1 ***

.mod 1

over.rel

 data2.rel

;*** overlay module #113 ***

.mod 113

cram.rel

data3.rel

 6-15 geoLinker Ref.

The above will generate a VLIR application with one resident module and

two overlay modules, using all the defaults.

For more information on VLIR applications, refer to "VLIR Application

Link" in this chapter. See also .vlir in this chapter. For more information on

developing your own overlay management routines, refer to the sample

VLIR application on your geoProgrammer disk.

geoLinker Ref. 6-16

Directive: .cbm

Purpose: Alerts geoLinker that this is a standard Commodore

application and that all the file names following should be

linked into one main, entirely resident program.

Usage: .cbm

Note: takes no parameters.

In order to generate a standard Commodore application, you must place this

directive before any .psect, .ramsect, or linkable file names. It signals

geoLinker to create an application file comparable to the application files

generated by other assemblers. A standard Commodore application cannot

be run from the GEOS deskTop.

A linker command file must have at least one .seq, .vlir, or .cbm directive,

but not more. The only directives which can appear before .cbm are

.output and .header. The .mod directive cannot be used with .cbm.

geoLinker will not generate a GEOS file header for the application. If you

use the .header directive, an error will be generated. The file will appear on

the deskTop as a folder icon. If you want the application to be runnable

from the GEOS deskTop, you can convert it to GEOS format with the Icon

Editor (included with DESKPACKl). This will allow the file to be accessed

from the GEOS deskTop, although it will not be a true GEOS application.

Example:

.cbm ;generate a standard Commodore application

init.rel

main.rel

subrtn.rel

data.rel

 7-1 geoDebugger Usage

Chapter 7: geoDebugger Usage and

Tutorial

This chapter introduces the major features of geoDebugger as well as

overviewing how to run and use the debugger. It begins by describing the

concept of debugging and finishes with a short tutorial covering the basic

features of geoDebugger. This chapter does not cover aspects of the

debugger in exhaustive detail (refer to Chapters 8 and 9 for more complete

coverage).

What is a Debugger?

When a program doesn't work, it is said to have bugs. Although the original

meaning of the term is lost in antiquity, it still offers a rather vivid

metaphor: you can almost see the little creatures crawling between opcodes,

chewing on operands, and flipping bits in your data space. But the image is

also misleading because debugging a program is seldom as simple as

setting off a room fogger. It's more like tuning a car. It's an interactive

process where you monitor the internal states of your program, looking for

a bad value, a misused instruction, or a call to the wrong subroutine. As the

car mechanic has tools for monitoring firing times, engine speed, and valve

pressure, the programmer has tools for monitoring register states, stack

usage, and variable space. The programmer's tool is the debugger.

geoDebugger Features

geoDebugger is a software version of a professional hardware debugging

system used by Berkeley Softworks for in-house development. Outside of a

few features which require an in-circuit emulator (a hardware device which

replaces the 6502 microprocessor), the full functionality of this debugger

has been preserved. You will likely find features, commands, and

capabilities not found in any other software debugger.

geoDebugger offers a complete repertoire of commands to monitor your

program and memory, giving you full access to the Commodore memory

space and the 6502 registers. You can disassemble, modify, and run your

program interactively, setting breakpoints, displaying and changing register

geoDebugger Usage 7-2

values, even loading and saving disk blocks. There is also a dynamic macro

language which allows you to automate common operations and customize

the debugger to your liking.

Dual Displays
geoDebugger maintains a text screen which is entirely independent of the

current application's screen. This allows you to have a full display of

debugger information without disrupting the application's display. When

you single step through your application's code, it will actually update its

own display rather than corrupting the debugger screen. From within

geoDebugger you can view the application's display by pressing _F7_.

Hot Key
geoDebugger traps the NMI (Non-Maskable Interrupt) generated by the

RESTORE key. You can enter geoDebugger any time your application is

running by pressing _RESTORE_. Because of the way the _RESTORE_ key

connects to the NMI line, you may have to press it more than once before it

responds.

Symbolic Debugging
When you create an application, geoLinker generates a .dbg debugger

symbol file. geoDebugger will load this file and will use your symbols

(global labels, and equates made with the == directive) during disassembly

and memory display. You can also use these symbols within expressions

and as command arguments.

Breakpoints
geoDebugger implements a user-defined breakpoint facility which allows

you to mark up to eight places in your program as breakpoints. When these

instructions are encountered (but before they are executed), your

application is stopped and geoDebugger is given control. Breakpoints allow

you to stop your program at a specific point so you can examine registers

and variables or perform some other debugging operation.

Expressions
geoDebugger includes a complete expression evaluator, much like the one

in geoAssembler, with the addition of special symbols and operators

appropriate in the debugging environment. The geoDebugger expression

evaluator allows values from memory, processor registers, and special

debugger variables to be included in the expression.

 7-3 geoDebugger Usage

Open Modes
In addition to regular commands, geoDebugger offers special commands

which place you into an interactive "open" mode. Open modes allow you to

dynamically view and alter machine code, data, or the processor registers.

Debugger Macros
geoDebugger includes a full macro language which allows you to automate

multiple keystrokes and common debugger functions. Macros offer a means

to customize the debugger with your own commands. There is also a

special AUTOEXEC macro which will be executed when you run

geoDebugger. It can be used to automatically configure the debugger each

time you run it.

Super-debugger and Mini-debugger

geoDebugger automatically configures itself as either a super-debugger or a

mini-debugger.

The super-debugger is designed for professional development. In order to

take full advantage of its features, you must have a RAM-expansion unit.

The super-debugger is a large program and it "hides" within the 64K of

system space in the RAM-expansion (it won't disrupt any files), leaving the

memory inside the Commodore available for GEOS and your application.

Not only does this allow you to develop applications which use the entire

memory space, it also makes geoDebugger virtually transparent to the

application. If you are serious about programming, this functionality is

well-worth the price of a RAM-expansion unit.

Without a RAM-expansion unit, geoDebugger configures itself as a mini-

debugger.

The mini-debugger is a scaled down version of the super-debugger which

resides within the Commodore memory space along with your program. It

is missing many of the features of the full debugger, such as symbols and

macros, and consumes about 8K of space, but it is still functional and

valuable if you don't have access to a RAM-expansion unit. If you have a

RAM-expansion unit, you can force the mini-debugger configuration by

holding down the _RUN/STOP_ key while geoDebugger is loading.

geoDebugger Usage 7-4

Running the Super-debugger

Assuming you have a RAM-expansion unit, there are two ways to run

geoDebugger from the GEOS deskTop and have it configure itself as a

super-debugger: either by opening geoDebugger by itself or by opening a

.dbg debugger symbol file.

Running the Super-debugger by Itself:
To run the super-debugger by itself, follow these steps:

1: Double-click on or open the GEODEBUGGER file.

2: After the super-debugger loads and initializes, you should see the

following dialog box:

geoDebugger is asking for the name of an application to debug.

Debug with no application

 Disk name

 Open currently selected application

 Change drive

 Abort and return to the deskTop

Scroll arrows

Directory window

 7-5 geoDebugger Usage

The contents of the current drive (the drive from which you ran

geoDebugger) will appear in the directory window. If more items exist

than can fit in the window, click on the scroll arrows to move through

the directory.

The top entry NO FILE is not actually a file on your disk. If you open

this entry, no application will be loaded. The NO FILE selection is

useful if you want to test a feature of the debugger, quickly try a

programming idea, test a GEOS routine, or simply experiment with

your computer.

If you decide you do not want to use the debugger at this time, click

on the Quit icon to abort and return to the deskTop.

To debug an application from a different drive (for example, a RAM-

expansion unit or a second floppy drive), click on the Drive icon; the

directory of the other drive will be displayed in the directory window.

The Disk icon allows you to view the contents of a different disk. To

view the contents of a different disk, insert a new disk into the current

drive and click on the Disk icon. The directory will be updated to

show the contents of the new disk. The Disk icon will have no effect

with a RAM-expansion Unit.

3: Select the application file you want to debug (or NO FILE) by

clicking on the name. Then click on the Open icon to load the

application into memory. The super-debugger will attempt to load the

application as well as a .dbg debugger symbol file and .dbm debugger

macro file which have the same basic file name as the application. If

this .dbm file is not found, the super-debugger will look for a

default.dbm debugger macro file.

Running the Super-debugger by Opening a Symbol File
You can run the super-debugger and have it automatically load the

application to debug along with the appropriate symbols and macros by

opening the .dbg debugger symbol file created by geoLinker.

Double-click on or open a .dbg debugger symbol file associated with the

application you want to debug. geoDebugger will run and automatically

load the symbol table. geoDebugger will also try to load the application

geoDebugger Usage 7-6

which owns the symbol table as well as a .dbm macro file associated with

the application. For example: if the SamSeq.dbg symbol file is opened,

geoDebugger will load in those symbols as well as the SamSeq application

file and the SamSeq.dbm debugger macro file.

If geoDebugger cannot find a debugger macro file that is associated with

the application, it will look for a default.dbm file on the same disk. If this

macro file exists, it will be loaded.

Running the Mini-debugger

If you do not have a RAM-expansion unit, geoDebugger will automatically

configure itself as a mini-debugger. If you do have a RAM-expansion unit,

you can force this configuration by holding down the _RUN/STOP_ key while

geoDebugger is loading.

To run the mini-debugger, follow these steps:

1: Double-click on or open the GEODEBUGGER file.

 7-7 geoDebugger Usage

2: After the mini-debugger loads and initializes, you should see the

following dialog box:

geoDebugger is asking for the name of an application to debug.

The contents of the current drive (the drive from which you ran

geoDebugger) will appear in the directory window. If more items exist than

can fit in the window, click on the scroll arrows to move through the

directory.

The top entry NO FILE is not actually a file on your disk. If you open this

entry, no application will be loaded. The NO FILE selection is useful if

you want to test a feature of the debugger, quickly try a programming idea,

test a GEOS routine, or simply experiment with your computer.

If you decide you do not want to use the debugger at this time, click on the

Quit icon to abort and return to the deskTop.

To debug an application from a different drive (for example, a second

floppy drive), click on the Drive icon; the directory of the other drive will

be displayed in the directory window.

The Disk icon allows you to view the contents of a different disk. To view

the contents of a different disk, insert a new disk into the current drive and

click on the Disk icon. The directory will be updated to show the contents

of the new disk.

Debug with no application

 Disk name

 Open currently selected application

 Change drive

 Abort and return to the deskTop

Scroll arrows

Directory window

geoDebugger Usage 7-8

3: Select the application file you want to debug (or NO FILE) by clicking

on the name. Then click on the Open icon to load the application into

memory. The mini debugger will load the application but will not load

any associated symbol or macro files because it does not support

symbols or macros.

As with the super-debugger, the mini-debugger can be automatically loaded

by opening the .dbg symbol file associated with the application you want to

debug. However, because the mini-debugger does not support symbols or

macros, a .dbg debugger symbol file and the .dbm debugger macro file will

not be loaded.

Sample Super-debugger Session

This section is a hands-on tutorial. It is designed to familiarize you with the

super-debugger environment by using the super-debugger with the sample

application. If you do not have a RAM-expansion unit, you cannot run the

super-debugger; refer to "Sample Mini-debugger Session" in this chapter. If

you have not yet created the SampleSeq application, refer to "Creating a

Sample Application" in Chapter 4.

Before running the super-debugger, you will need a disk with the following

files on it:

GEODEBUGGER debugger

SampleSeq sample sequential application

SampleSeq.dbg symbols for the sequential application

SampleSeq.dbm sample debugger macro file

Running the Super-debugger with the Sample

Application
Since we want to debug the sample application, we can have geoDebugger

load the application, its symbols, and its macro file by opening or double

clicking on the symbol file. To do this, open SampleSeq.dbg, which is the

symbol file for the sequential application. geoDebugger will run and

automatically configure itself as the super-debugger and load everything.

The screen will enter text mode and you will see the following display:

 7-9 geoDebugger Usage

geoDebugger

 Copyright (C) 1987 Berkeley Softworks

Program file: SampleSeq loaded.

Loading macro definitions.

Loading symbol definitions.

0400 ProgStar > lda #$C0

>

 disassembly of code at current program counter.

cursor

program counter (PC) marker

command prompt

After loading the application, macros, and symbols, geoDebugger places

the program counter (the 6502 register which points to the next instruction

to be executed) at the application's start address and disassembles the

instruction at that address. Disassembly is the reverse process of assembly;

geoDebugger looks into memory and translates the binary codes into

assembly-language mnemonics:

0400 ProgStar > lda #$C0

label operand

memory address (in hexadecimal) 6502 opcode mnemonic

program counter symbol

After geoDebugger has disassembled this line, it will display the command

prompt. The geoDebugger command prompt is a greater-than (>) symbol in

the leftmost column of the screen. Whenever this prompt is displayed,

geoDebugger is idle, awaiting a command. To enter a command, you type

the command along with any parameters and press the _RETURN_ key. If you

make a mistake while typing, you can back up one character at a time by

pressing _DEL_ or you can clear the entire entry by pressing .

To get a full screen disassembly of the sample application, enter the dis

(disassemble) command (remember to press _RETURN_). The following will

be displayed:

geoDebugger Usage 7-10

0400 ProgStar > lda #$C0

0402 ProgStar+$02 sta dispBuff

0404 ProgStar+$04 lda #$04

0406 ProgStar+$06 sta r0H

0408 ProgStar+$08 lda #$28

040A ProgStar+$0A sta r0L

040C ProgStar+$OC jsr Graphics

040F ProgStar+$OF lda #$04

0411 ProgStar+$11 sta r0H

0413 ProgStar+$13 lda #$33

0415 ProgStar+$15 sta r0L

0417 ProgStar+$17 lda #$00

0419 ProgStar+$19 jsr DoMenu

041C ProgStar+$1C lda #$04

041E ProgStar+$1e sta r0H

0420 ProgStar+$20 lda #$85

0422 ProgStar+$22 sta r0L

0424 ProgStar+$24 jsr DoIcons

0427 ProgStar+$27 rts

0428 ClearScr ora r0L

This is a disassembly of the first 20 instructions in the SampleSeq

application. The program counter is shown at $0400 with the > symbol; the

lda #$C0 is the first instruction in the application.

At this point it would be useful to compare this disassembly to the actual

SamSeq source code file. You will immediately notice some differences:

any symbol which is longer than eight characters has been truncated to

eight, hence dispBufferOn becomes dispBuff; macros have been

expanded, hence all the LoadW's and LoadB's are shown as their

constituent lda's and sta's; and all expressions have been evaluated.

But you don't want to see your source code. That's what a program listing is

for. You want to look at the code which was actually generated.

Executing Some Code
The routine at ProgStar clears the screen, points GEOS to the menu and

icon structures, and then does an rts to the GEOS MainLoop. The jsr

Graphics (truncated from GraphicsString) clears the screen. The jsr

DoMenu places the menus up. The jsr DoIcons places the icon on the

screen.

 7-11 geoDebugger Usage

Enter the command runto 419. The screen will momentarily flash to the

application screen and then back to the debugger screen. The following will

be printed:

0419 ProgStar+$19 > jsr DoMenu

The runto command set a breakpoint at address $419 (we didn't need to

type the $ because geoDebugger's default radix is hexadecimal) and began

executing code beginning at the current location of the program counter,

which was $400. Notice that the program counter is now at $419. This

means that the instruction jsr DoMenu has not yet been executed, but is

next on the list. However, all the code from $400 (ProgStar) to $419

(ProgStar+$19) was executed.

Watching the Menus Go Up
To view the current state of the application's screen display, press _F7_. You

will see a blank screen with the sprite pointer in the upper left corner. Press

F7 again (or any other key) to return to the debugger screen.

Now enter the t (top-step) command. The top step will single-step through

the current instruction and return control to the command prompt at the

next instruction. In the case of jsr DoMenu, the top-step will execute the

subroutine DoMenu at full-speed and return when the next instruction (lda

#$04) is encountered. If we wanted to, we could have single-stepped

through the DoMenu subroutine using the s (single-step) command. When

the top-step returns, the next instruction, at the new location of the program

counter, will be printed:

041C ProgStar+$lC > lda #$04

Now if you press _F7_ to view the application's GEOS screen, you will see

the effects of the DoMenu subroutine: the menus have been drawn. Return

to the debugger screen by pressing any other key.

We can now top-step through the next two instructions by pressing _._

twice. If _._ is typed as the first character on a line, the previous command

(in this case t) will be executed again. Pressing it twice should yield the

following display:

041E ProgStar+$1e > sta r0H

0420 ProgStar+$20 > lda #$85

geoDebugger Usage 7-12

The first press executed the lda #$04 and displayed the next instruction to

be executed (sta r0H), and the second press executed the sta r0h and

displayed the next instruction to be executed (lda #$85).

Showing Registers
To view the current state of the processor's registers, enter the r (show

registers) command:

Acc X Y PC SP NV-BDIZC MemMap

$04 $00 $07 $0420 $FD 00100001 00110000

The two registers of interest here are the Acc (accumulator) and PC

(program counter). The accumulator contains a $04, which is still around

from the lda #$04 at $41c, and the program counter is at $420.

Using One of the Sample Macros
Macros are invoked, or executed, just like commands. One of the sample

macros which was automatically loaded when you ran the debugger is the

sr macro. The sr macro single-steps »and then shows the processor

registers. It is a combination of the s (single-step) command and the r

(show registers) command. Since the next instruction to execute is a lda

#$85, the sr ought to single-step through the instruction, thereby loading a

$85 into the accumulator, and then it should show the result of this

command. Invoke the sr macro now. You should see the following:

0422 ProgStar+$22 > sta r0L

Acc X Y PC SP NV-BDIZC MemMap

$85 $00 $07 $0422 $FD 00100001 00110000

--

The single-step executes the lda #$85, and then disassembles the next

instruction at $422. The register display shows that the accumulator (Acc)

register now contains a $85, the result of the lda.

 7-13 geoDebugger Usage

Running the Code Full-speed
Now that we've examined the application from within the debugger, let's

run it full-speed. Use the go command. The go command displays the

application's screen and begins execution at the current value of the

program counter.

You can now experiment with the sample application. Click on the icon or

select menu items. The application is running full-speed and has no idea

that the debugger is lurking in the background just waiting to be called up

in case of an error. Be careful, though, do not select Quit from the file

menu because the application will attempt to leave to the deskTop and will

be stopped by geoDebugger.

Hot Key Entry Into geoDebugger
When you are done playing with the application, press _RESTORE_. This is the

geoDebugger "hot key". Whenever you press it, geoDebugger will

immediately take control. The application's screen will be replaced with the

debugger screen and the following message will be printed:

*** Execution stopped ***

FDAB 10 F7 > bpl $FDA4

The current location of the program counter (the instruction which was

about to be executed when you pressed _RESTORE_) will be disassembled.

The actual address will most likely be different than above because it

depends on what instruction was being executed when you pressed

RESTORE.

Whenever you enter geoDebugger with the _RESTORE_ key, there is always a

chance that the program will be in the middle of interrupt code. This is not

problematic in itself, but can wreak havoc with disk I/O and some GEOS

applications. Unless you are sure of what you are doing, it is always a good

idea to execute a stopmain command. Do this now. stopmain sets a

breakpoint in a safe place in GEOS MainLoop and then returns to the

program. Since most properly written GEOS applications will eventually

return to MainLoop, the breakpoint will usually be encountered.

Modifying Program Data
One of the great benefits of a debugger is the ability to quickly modify an

application and test the results. In geoDebugger it is very easy to modify

instructions and program data. Say, for example, we don't like the way our

menus look and we would like to modify them. Looking at the source code,

we see that the text for the geos menu is store at GeosText.

geoDebugger Usage 7-14

Enter m GeosText. The m command means open memory for display and

modification as data. GeosText is the address of the first location to open.

You will see the following:

0461 GeosText .byte $67

Callouts: Cursor

Because the m command is an open mode, all further keystrokes, until the

open mode is exited, will be interpreted by the m command. This allows

the data display and entry to be interactive.

The $67 is the first character of the geos text string for the menu. We can

display this hex value as a character by pressing the ' (_SHIFT_ + _7_)

character radix symbol. The display will automatically update:

0461 GeosText .byte 'g

By pressing three times, we can move through memory to see the

remaining characters:

0461 GeosText .byte 'g

0462 GeosText+$01 .byte 'e

0463 GeosText+$02 .byte 'o

0464 GeosText+$03 .byte 's

Now that we've seen the data, we can modify it. Press _SHIFT_ +

three times to return back to address $461, where the g is:

0461 GeosText .byte 'g

Press _SPACE_. The 'g will disappear and the cursor will be moved into the

data field of the .byte. Type "GEOS" (including the surrounding double-

quotes) and press _RETURN_. Since the text string is four characters (four

bytes) long, it will be deposited across four bytes, overwriting the

lowercase geos:

*

*

*

*

 7-15 geoDebugger Usage

0461 GeosText .byte 'G

0462 GeosText+$01 .byte 'E

0463 GeosText+$02 .byte 'O

0464 GeosText+$03 .byte 'S

The data has now been modified in memory and control returned to the

command prompt.

Testing the New Menu

To run the program and see the new menu text, enter the go command:

But notice that the menu text hasn't actually changed. This is because,

although the text data in memory has been modified, the menu needs to be

redrawn by GEOS before this change will be reflected in the display. To

force a redraw of the menu, select an item from under the geos menu:

As soon as the menu is redrawn, the new uppercase GEOS menu will

appear.

geoDebugger Usage 7-16

And Now on to More Powerful Manipulations
Now that you have completed the sample session with the super-debugger,

you should be beginning to feel comfortable with the debugging

environment. You will find a complete discussion of the super-debugger

command set in chapter 8.

Sample Mini-debugger Session

This section is designed to familiarize you with the mini-debugger

environment by using the mini-debugger with the sample application.

Without a RAM-expansion unit, geoDebugger will automatically configure

itself as a mini-debugger. If you have a RAM-expansion unit, you can

configure geoDebugger as a mini-debugger by holding down the _RUN/STOP_

key while the program is loading. If you have not yet created the

SampleSeq application, refer to "Creating a Sample Application" in

Chapter 4.

Before running the mini-debugger, you will need a disk with the following

files on it:

GEODEBUGGER debugger

SampleSeq sample sequential application

Loading the Mini-debugger
Double-click on or open the GEODEBUGGER file from the deskTop. If

you have a RAM-expansion unit, press and hold the _RUN/STOP_ key while

the debugger is loading. The screen will clear and a file-selection dialog

will appear:

 7-17 geoDebugger Usage

Click on the SampleSeq file to select it, then click on Open. The

minidebugger will load in the sample application, the screen will enter text

mode and you will see the following display:

geoDebugger

 Copyright '1987 Berkeley Softworks

Program file: SampleSeq loaded.

0400 A9 C0 > lda #$C0

>

 disassembly of code at current program counter.

cursor

program counter (PC) marker

hex bytes of code at this location

command prompt

After loading the application, geoDebugger places the program counter (the

6502 register which points to the next instruction to be executed) at the

application's start address and disassembles the instruction at that address.

Disassembly is the reverse process of assembly; geoDebugger looks into

memory and translates the binary codes into assembly-language

mnemonics:

geoDebugger Usage 7-18

program counter symbol

0400 A9 C0 > lda #$C0 operand

6502 opcode mnemonic

hex bytes of code at this location

memory address (in hexadecimal)

After geoDebugger has disassembled this line, it will display the command

prompt. The geoDebugger command prompt is a greater-than (>) symbol in

the leftmost column of the screen. Whenever this prompt is displayed,

geoDebugger is idle, awaiting a command. To enter a command, you type

the command along with any parameters and press the _RETURN_ key. If you

make a mistake while typing, you can back up one character at a time by

pressing _DEL_ or you can clear the entire entry by pressing arrow.

To view the code in memory as assembly langauge, enter the a command

(remember to press _RETURN_). The following will be displayed:

0400 A9 C0 > lda #$C0

The a command tells the mini-debugger to open the current memory

location for display and modification as assembly code. The cursor is

placed over an asterisk symbol to indicate that we are now in an open mode

and that subsequent keystrokes will be interpreted accordingly. To get a full

screen disassembly of the sample application, press about 18 times

until the screen fills with code (when the bottom of the screen is reached,

the copyright information will scroll off the top):

0400 A9 CO > lda #$C0

0402 85 2F sta $2F

0404 A9 04 lda #$04

0406 85 03 sta $03

0408 A9 28 lda #$28

040A 85 02 sta $02

040C 20 36 Cl jsr $C136

040F A9 04 lda #$04

0411 85 03 sta $03

0413 A9 33 lda #$33

0415 85 02 sta $02

0417 A9 00 lda #$00

0419 20 51 Cl jsr $C151

041C A9 04 lda #$04

041E 85 03 sta $03

0420 A9 85 lda #$85

*

 7-19 geoDebugger Usage

0422 85 02 sta $02

0424 20 5A Cl jsr $C15A

0427 60 rts

Press _RETURN_ to leave the a open mode and return to the command prompt.

This text on the screen is a disassembly of the first 19 instructions in the

SampleSeq application. The program counter is shown at $0400 with the >

symbol; the lda #$C0 is the first instruction in the application.

At this point it would be useful to compare this disassembly to the actual

SamSeq source code file. You will immediately notice some differences:

any symbols are shown as their actual hexadecimal address, hence

dispBufferOn becomes $2F and DoIcons becomes $C15A; macros have

been expanded, hence all the LoadW's and LoadB's are shown as their

constituent lda's and sta's; and all expressions have been evaluated and

converted into hex values.

But you don't want to see your source code. That's what a program listing is

for. You want to look at the code which was actually generated.

Executing Some Code
The routine at $400 clears the screen, points GEOS to the menu and icon

structures, and then does an rts to the GEOS MainLoop. The jsr $C136

(jsr GraphicsString in the source code) clears the screen. The jsr $C151

jsr DoMenu in the source code) places the menus up. The jsr $C15A (jsr

DoIcons in the source code) places the icon on the screen.

Enter the command sb 419. The sb command (set breakpoint) will set a

user-defined breakpoint at address $419 (we didn't need to type the $

because the mini-debugger operates entirely in hexadecimal). The

following will be displayed:

0419 20 51 Cl b> jsr $C151

The lower-case b next to the instructions indicates that breakpoint is set at

this location.

geoDebugger Usage 7-20

Next, enter the go command, which will begin running the application at

full-speed. The screen will momentarily flash to the application screen and

then back to the debugger screen. The following will be printed:

*** Software Breakpoint ***

0419 20 51 Cl b> jsr $C151

The go command began executing code beginning at the current location of

the program counter, which was $400. Notice that the program counter is

now at $419. This means that the instruction jsr $C151 has not yet been

executed, but is next on the list. However, all the code from $400

(ProgStart in the source code) to $419 (jsr DoMenu in the source code)

was executed.

Watching the Menus Go Up
To view the current state of the application's screen display, press _F7_. You

will see a blank screen with the sprite pointer in the upper left corner. Press

F7 again (or any other key) to return to the debugger screen. Notice that

when you return to the debugger screen, all but the last line displayed is

gone. Anytime you switch screens in the mini-debugger, you will lose all

but the most recent line.

Now enter the t (top-step) command. The top step will single-step through

the current instruction and return control to the command prompt at the

next instruction. In the case of jsr $C151, the top-step will execute the

subroutine DoMenu at full-speed and return when the next instruction (lda

#$04) is encountered. If we wanted to, we could have single-stepped

through the DoMenu subroutine using the s (single-step) command.

When the top-step returns, the next instruction, at the new location of the

program counter, will be printed:

041C A9 04 > lda #$04

Now if you press _F7_ to view the application's GEOS screen, you will see

the effects of the DoMenu subroutine: the menus have been drawn. Return

to the debugger screen by pressing any other key.

 7-21 geoDebugger Usage

We can now top-step through the next two instructions by pressing _._

twice. If _._ is typed as the first character on a line, the previous command

(in this case t) will be executed again. Pressing it twice should yield the

following display:

041E 85 03 > sta $03

0420 A9 85 > lda #$85

The first press executed the lda #$04 and displayed the next instruction to

be executed (sta $03), and the second press executed the sta $03 and

displayed the next instruction to be executed (lda #$85).

Showing Registers
To view the current state of the processor's registers, enter the r (show

registers) command:

Ace X Y PC SP NV-BDIZC MemMap

$04 $00 $07 $0420 $FD 00100001 00110000

The two registers of interest here are the Acc (accumulator) and PC

(program counter). The accumulator contains a $04, which is still around

from the lda #$04 at $41c, and the program counter is at $420.

Watching Register Values Change
Since the next instruction to execute is a lda #$85, an s single-step

command ought to single-step through the instruction, thereby loading a

$85 into the accumulator. Enter the s (single-step) command. You should

see the following:

0422 85 02 > sta $02

The single-step executes the lda #$85, and then disassembles the next

instruction at $422. Now, enter the r (show-registers) command again:

Ace X Y PC SP NV-BDIZC MemMap

$85 $00 $07 $0422 $FD 00100001 00110000

The register display shows that the accumulator (Acc) register now

contains a $85, the result of the lda.

geoDebugger Usage 7-22

Running the Code Full-speed
Now that we'e examined the application from within the debugger, let's run

it full-speed. Use the go command. The go command displays the

application's screen and begins execution at the current value of the

program counter.

You can now experiment with the sample application. Click on the icon or

select menu items. The application is running full-speed and has no idea

that the debugger is lurking in the background just waiting to be called up

in case of an error. Be careful, though, do not select Quit from the file

menu because the application will attempt to leave to the deskTop and will

be stopped by geoDebugger.

Hot Key Entry Into geoDebugger
When you are done playing with the application, press _RESTORE_. This is the

geoDebugger "hot key". Whenever you press it, geoDebugger will

immediately take control. The application's screen will be replaced with the

debugger screen and the following message will be printed:

*** Execution stopped ***

FDAB 10 F7 > bpl $FDA4

The current location of the program counter (the instruction which was

about to be executed when you pressed _RESTORE_) will be disassembled.

The actual address will most likely be different than above because it

depends on what instruction was being executed when you pressed

RESTORE.

Whenever you enter geoDebugger with the _RESTORE_ key, there is always a

chance that the program will be in the middle of interrupt code. This is not

problematic in itself, but can wreak havoc with disk I/O and some GEOS

applications. Unless you are sure of what you are doing, it is always a good

idea to execute a sm (stopmain) command. Do this now. sm sets a

breakpoint in a safe place in GEOS MainLoop and then returns to the

program. Since most properly written GEOS applications will eventually

return to MainLoop, the breakpoint will usually be encountered.

 7-23 geoDebugger Usage

Modifying Program Data
One of the great benefits of a debugger is the ability to quickly modify an

application and test the results. In geoDebugger it is very easy to modify

instructions and program data. Say, for example, we don't like the way our

menus look and we would like to modify them. Looking at the source code,

we see that the text for the geos menu is stored at GeosText. But since the

mini-debugger does not give us access to symbols, we have to find this text

ourselves. Enter d 400. The d command means "dump memory" and shows

us 128 bytes of data (in this case, starting at $400) in both binary and

ASCII form:

 +0 +1 +2 +3 +4 +5 +6 +7 01234567

$0400 A9 CO 85 2F A9 04 85 03)@./)...

$0408 A9 28 85 02 20 36 Cl A9)(.. 6A)

$0410 04 85 03 A9 33 85 02 A9 ...)3..)

$0418 00 20 51 Cl A9 04 85 03 . QA)...

$0420 A9 85 85 02 20 5A Cl 60) ... ZA

$0428 05 02 01 00 00 00 03 3F?

$0430 01 C7 00 00 0E 00 00 50 .G.....P

$0438 00 02 61 04 80 44 04 66 ..a..D.f

$0440 04 80 50 04 OF IE 00 00 ..P.....

$0448 31 00 81 6B 04 00 10 05 l..k....

$0450 OF 2C ID 00 40 00 82 7A .,..@..z

$0458 04 00 14 05 80 04 00 18

$0460 05 67 65 6F 73 00 66 69 .geos.fi

$0468 6C 65 00 53 61 6D 70 6C le.Sampl

$0470 65 53 65 71 20 69 6E 66 eSeq inf

$0478 6F 00 63 66 6F 73 65 00 o.close.

Notice the geos text beginning at $461. This is the data for the menu entry.

We want to modify this data, so we will use the m (memory) open

command. The m command opens memory for display and modification as

data. Enter m 461 to begin modifying with the g in geos at $461. You will

see the following:

0461 67 .byte $67

*

geoDebugger Usage 7-24

Because the m command is an open mode, all further keystrokes, until the

open mode is exited, will be interpreted by the m command. This allows

the data display and entry to be interactive.

The $67 is the first character of the geos text string for the menu, the

remaining characters (e, o, and s) are in the next three memory locations.

Press _SPACE_. The $67 will disappear and the cursor will be moved into the

data field of the .byte. Type "GEOS" (including the surrounding double-

quotes) and press _RETURN_. Since the text string is four characters (four

bytes) long, it will be deposited across four bytes, overwriting the

lowercase geos:

0461 47 .byte $47

0462 45 .byte $45

0463 4F .byte $4F

0464 53 .byte $53

The data has now been modified in memory and control returned to the

command prompt. (The $47, $45, $4F, $53 are the hex equivalent of the

ASCII codes for GEOS.)

Testing the New Menu
To run the program and see the new menu text, enter the go command:

 7-25 geoDebugger Usage

But notice that the menu text hasn't actually changed. This is because,

although the text data in memory has been modified, the menu needs to be

redrawn by GEOS before this change will be reflected in the display. To

force a redraw of the menu, select an item from under the geos menu:

As soon as the menu is redrawn, the new uppercase GEOS menu will

appear.

And Now on to More Powerful Manipulations
Now that you have completed the sample session with the mini-debugger,

you should be beginning to feel comfortable with the debugging

environment. You will find a complete discussion of the mini-debugger

command set in Chapter 9. If you begin to exhaust the limits of the mini-

debugger by developing large applications, you should consider investing

in a RAM-expansion unit and moving up to the super-debugger

environment. Because the super-debugger is a superset of the mini-

debugger, you will have access to all the familiar mini-debugger commands

as well as the more powerful super-debugger commands.

 8-1 Super-debugger Ref.

Chapter 8: Super-debugger

Reference

If you have a RAM-expansion unit connected to your Commodore,

geoDebugger will automatically configure itself as a super-debugger. If you

do not have a RAM-expansion unit, refer to the mini-debugger reference in

Chapter 9.

This chapter contains a complete reference for the super-debugger

configuration of geoDebugger. It covers every aspect of using the super-

debugger, such as symbols, expressions, breakpoints, and macros, including

a detailed description of each command. Although this is primarily a

reference chapter, it would be a good idea to read it through completely at

least once. For a general overview and information on using the super-

debugger from the GEOS deskTop, refer to Chapter 7.

Special Characters

As in geoAssembler, some of the symbols and characters used by the super-

debugger require special keystrokes. Additionally, because the standard text

mode used by the super-debugger is unable to display the tilde (~) and the

circumflex (^), they have been replaced with the pound (£) and arrow ()

characters, respectively. To type any of these special characters in the

super-debugger, use the following keystrokes:

Underline _  + _-_

V-bar |  +

£-sign £  + _* or £_

(replaces ~)

up-arrow

(replaces ^)

Super-debugger Ref. 8-2

Super-debugger Expressions

The super-debugger expression evaluator has some special features,

symbols, and operators which are appropriate to the debugging

environment, but it is otherwise identical to the expression evaluator in

geoAssembler. For the most part, this chapter will only address the

differences between the two evaluators. For more information on the

geoAssembler expression evaluator, refer to "Expressions" in Chapter 5.

Numeric Constants
The super-debugger expression evaluator, like the geoAssembler

expression evaluator, will work with decimal, hexadecimal, octal, or binary

constants, as well as character constants. However, the super-debugger

supports the option of changing the default radix (number base). In

geoAssembler, the default radix is decimal, and it cannot be changed; to

specify any other radix, the number must be preceded by a special symbol,

such as $ for hexadecimal. The super-debugger, on the other hand, allows

the default radix to be either decimal or hexadecimal. Because most

debugging is done in hexadecimal, the super-debugger defaults to that

radix, and any number which is not preceded by a radix symbol will be

considered hexadecimal. Using the opt command, you can change the

default radix to decimal, like it is in geoAssembler. In any case, regardless

of the default radix, you can always precede a number by its appropriate

radix symbol.

Decimal: A period followed by a string of decimal digits (0-9). If

decimal is the default input radix, the period is optional.

 Example: .1234

Hexadecimal: A dollar sign ($) followed by a string of hexadecimal

digits (0-9, a-f). If hexadecimal is the default input radix,

the dollar sign is optional.

 Example: $4f9c

Octal: A question mark (?) followed by a string of octal digits

(0-7).

 Example: ?07117

Binary: A percent sign (%) followed by a string of binary digits

(0,1).

 Example: %11001010

 8-3 Super-debugger Ref.

Character: A single ASCII character enclosed in single-quotes (').

The character is converted to a 16-bit value with the high-

byte set to zero.

 Example: 'A'

NOTE: when the default radix is hexadecimal, there are a couple of

idiosyncrasies to be aware of. First, when assembling code a lone

A or a as in lsr a will be interpreted as accumulator addressing

mode as opposed to a $a; use the $ radix symbol to avoid this

confusion. Second, avoid defining symbols which look like hex

values (e.g., fed, aaa, abc); they will be interpreted as

hexadecimal values unless the default radix has been changed to

decimal.

Symbol Names
Any symbol in the super-debugger symbol table can be used within an

expression. When the expression is evaluated, the symbol is replaced with

its absolute value. Symbols can be entered into the symbol table by either

loading a .dbg symbol file (created by geoLinker) or by entering the symbol

manually (e.g., with the sym command).

Unlike geoAssembler, symbols in the super-debugger may be referenced

without case distinction. That is, mouseon (all lower-case) can be used to

refer to mouseOn or MOUSEon (mixtures of upper- and lower-case); the

case will not be significant. Experience has shown that most symbols are

unique without case distinction, and ignoring the case makes them easier to

enter and manipulate in the debugger. If you have symbols which depend

on case distinction, you can always enable case checking with opt

command.

Super-debugger Ref. 8-4

Processor Registers
The super-debugger expression evaluator also gives you access to the

current values of the six processor registers and the Commodore memory

map register. Registers are referenced with an r, a period (.), and a letter

code for the register:

r.a accumulator (one byte)

r.x X-index (one byte)

r.y Y-index (one byte)

r.st processor status (one byte)

r.pc program counter (two bytes)

r.sp stack pointer (two bytes)

 (Note: although the stack pointer is actually a one-byte index

into page one, the number returned with r.sp is a two-byte

address which actually points to the top of the stack.)

r.mm Commodore memory map (one byte)

Note: r.mm only gives a valid value with geoDebugger 1.0. 2.0 always

returns 0.

The only non-standard register is the Commodore memory map. This value

is not a true 6502 register, but it is of similar importance. It is picked up

from location $0001 of the Commodore memory space and indicates the

current state of the switchable memory banks. For information on

interpreting this value, refer to the Commodore 64 Programmer's Reference

Guide.

Status Register Flags
In addition to giving access to the full byte value of the processor status

register (with r.st), the expression evaluator lets you access the individual

flags (bits) within that register. Status register flags are referenced with an

f, a period (.), and a letter code for the flag:

f.n negative flag

f.v overflow flag

f.b break flag

f.d decimal mode flag

f.i interrupt disable flag

f.z zero flag

f.c carry flag

All flags are either one (true) or zero (false).

 8-5 Super-debugger Ref.

User and System Variables
There are ten user variables and four system variables which are accessible

in expressions. These variables are referenced with a u, a period (.), and a

code for the variable:

User Variables

u.0 user variable 0

u.1 user variable 1

u.2 user variable 2

u.3 user variable 3

u.4 user variable 4

u.5 user variable 5

u.6 user variable 6

u.7 user variable 7

u.8 user variable 8

u.9 user variable 9

Svstem Variables

u.lc location counter: returns the address of the most recently opened

memory location.

u.ws window size: the total number of printable screen lines.

u.wc window counter: the total number of lines printed since the last

user-input; this can be used in conjunction with u.ws to detect

when the screen is full.

u.fn current value of for macro loop counter.

IMPORTANT: Changing the value of u.ws (window size) can lead to

unpredictable results. Currently this value is a constant 24, but in future

implementations this may change.

Super-debugger Ref. 8-6

Operators
The operators in the super-debugger expression evaluator are identical to

those in geoAssembler, except for three new operators and new

representations for two other operators. (The representations of the

geoAssembler ~ and ^ operators have changed in the super-debugger

because the tilde and circumflex characters cannot be displayed in

Commodore text mode.) The following table shows all of the valid

operators and their precedence. Operators with a ╪ in the left margin only

exist in the super-debugger; operators with a † symbol in the left margin

exist in both the super-debugger and geoAssembler but have different

character representations.

OPERATOR PRECEDENCE

() 1 grouping parentheses (sub-expression)

- 2 unary negation

! 2 logical not
† £ (~) 2 bitwise one's complement

[or < 2 low-byte

] or > 2 high-byte
╪ @ 2 byte lookup at address
╪ @@ 2 low/high word lookup at address
╪ @# 2 length of 6502 instruction at address

 ** 3 exponentiation

 * 4 multiplication

 / 4 division

 // 4 modulus

 + 5 addition

 - 5 subtraction

 >> 6 logical shift right

 << 6 logical shift left

 > 7 logical greater than

 >= 7 logical greater than or equal to

 < 7 logical less than

 <= 7 logical less than or equal to

 == or = 8 logical equal

 != 8 logical not equal

 & 9 bitwise and
† ↑ 10 bitwise exclusive-or (xor)

 | 11 bitwise inclusive-or (ora)

 && 12 logical and
† ↑↑ (^^) 13 logical exclusive-or

 || 14 logical inclusive-or

 8-7 Super-debugger Ref.

Operator: @
Byte lookup at address. This unary operator looks into the application's

memory space and returns the byte at the address represented by its

argument.

Examples:

@$3000 returns the byte value stored at address $3000

@my_sym assuming my_sym is defined in the symbol table,

returns the byte value pointed to by my_sym.

@(r.sp+l) the top byte on the stack. (Remember: the SP points to

the next available byte, not the byte just pushed; we add

one to compensate.)

Operator: @@
Low/high word lookup. This unary operator looks into the application's

memory space and returns the low/high word at the address represented by

its argument.

Examples:

@@$3000 returns the word value stored at address $3000 and

$3001; the byte at $3000 is used as the low-byte and the

byte at $3001 is used as the high-byte.

@@my_sym assuming my_sym is defined in the symbol table,

returns the word value stored at address my_sym and

my_sym+1; the byte at my_sym is used as the low-byte

and the byte at my_sym+1 is used as the high-byte.

@(@@jump) assuming jump is defined in the symbol table, returns

the byte pointed at indirectly by the low, high address

stored at jump.

Super-debugger Ref. 8-8

Operator: @#
Instruction length calculation. This unary operator looks into the

application's memory space and returns the length (in bytes) of the 6502

instruction located at that address. If the address contains an invalid

opcode, a zero ($0000) will be returned.

Examples:

@#$3000 returns the length of the 6502 instruction which begins

at $3000.

@#my_prg assuming my_prg is defined in the symbol table,

returns the length of the 6502 instruction which begins

at address my_prg.

The remaining operators are identical to those found in geoAssembler.

Refer to "Operators" in Chapter 5 for more information.

 8-9 Super-debugger Ref.

Basic Operation

The Command Prompt
The basic geoProgrammer command prompt is a greater-than (>) symbol in

the leftmost column at the bottom of the screen. Whenever this prompt is

displayed, geoProgrammer is idle, awaiting a command. You can type

commands in at this point. The following keystrokes have an effect in this

mode:

RETURN Enters the current line; the super-debugger will

attempt to interpret and process the command.

DEL Deletes the character to the left of the cursor.

 Erases the current input line.

, Reprints the last command on the current input

line, which allows the command to be edited

and then re-entered with _RETURN_. The comma

must be typed as the first character on the input

line.

. Repeats the last command. This is similar to

pressing _,_ followed by _RETURN_ . The period

must be typed as the first character on the input

line.

Hot Key Entry and Cancel
When your program is running, the _RESTORE_ key acts as a "hot key"; it will

suspend execution and enter the debugger. When you are in the super-

debugger, _RESTORE_ will cancel a command or a macro and return to the

input prompt at any time. Because of a hardware limitation in the

Commodore keyboard, you may have to press _RESTORE_ a couple of times to

get it to respond.

The More Prompt
The screen print routine monitors the u.ws (window size) and u.wc

(window count) system variables. Each time it prints a line without

returning to the command prompt, the count variable is incremented. When

the count variable exceeds the window size, the screen is full of text; the

print routine will detect this and pause, displaying a "more" prompt and

awaiting input before it will continue. At the prompt you can press the

Super-debugger Ref. 8-10

space bar to get another full screen of text or you can press _RETURN_ to get

just one more line.

 SPACE full screen of text.

 RETURN one more line.

Viewing the GEOS Application Screen
You can switch between the super-debugger text screen and the GEOS

application's hi-res screen at any time by the pressing the _F7_ key. You can

return to the debugger screen by pressing any other key.

EnterDeskTop Vector Trap
geoDebugger sets a permanent breakpoint at the GEOS EnterDeskTop

vector. If an application attempts to exit by calling EnterDeskTop, the

following will be printed:

*** EnterDeskTop vector encountered ***

C22C EnterDes >brk

When geoDebugger is running, an application cannot be allowed to leave to

the deskTop directly. geoDebugger must first remove itself in order for the

deskTop to function properly. To return to the deskTop, use the super-

debugger quit command.

Super-debugger Command Summary

General Commands

quit Exits geoDebugger and returns to the deskTop.

opt Super-debugger configuration options.

General Display Commands

r Display processor registers.

dump Display a block of memory in hex and ASCII format.

n Disassemble code nearby (above and below) the program

counter.

w Disassemble a window of code from program counter down.

dis Disassemble a full screen of code.

print General value, symbol, and expression print.

 8-11 Super-debugger Ref.

Open Modes (register and memory examination and

modification)
a Open memory as assembly language code.

m Open memory as data.

reg Open processor registers.

flag Open processor status register as individual flags.

Execution Commands

go Start full speed execution of program.

runto Set breakpoint and go.

jsr Execute subroutine at address.

s Single-step through current level and subroutines.

t Single-step through current level and top-step through

subroutines.

p Proceed with execution at full-speed until breakpoint.

next Proceed until next instruction is reached (for exiting loops).

loop Proceed until a full loop is completed,

skip Skip over the current instruction without executing it.

stopmain Stopmain; stop execution in GEOS MainLoop.

Stack Related Commands

stack Display the top eight bytes on the stack.

history Display current step-through-jsr history.

inithist Initialize current step-through-jsr history.

finish Finish up most recent subroutine that was single-stepped into.

return Run until subroutine returns.

Breakpoint Commands

b Display breakpoints.

setb Set a breakpoint.

clrb Clear a breakpoint.

initb Initialize breakpoint table, clearing all breakpoints.

Super-debugger Ref. 8-12

Symbol Commands

sym Display symbols.

setsym Define a symbol.

clrsym Clear a symbol.

initsym Initialize (clear) symbols from currently active modules.

mod display symbol priority of overlay modules.

setmod Set symbol priority of overlay modules.

initmod Initialize overlay module priority tables.

Macro Commands

sysmac Display system macros.

mac Display user-defined macros.

setmac Define user macro.

clrmac Clear user-defined macro.

initmac Initialize (clear) all user-defined macros.

poff Printing off.

pon Printing on.

if Conditional.

for Loop.

stop Stop macro execution and return to command prompt.

Memory Commands

find Find a pattern in memory.

fill Fill memory with a pattern.

copy copy a block of memory.

diff compare two blocks of memory.

Special Commands

setu Set user variable.

pc View and set program counter.

rboot Reboot GEOS.

 8-13 Super-debugger Ref.

Disk Commands

drivea Make drive A the current drive.

driveb Make drive B the current drive.

disk Display name of disk in current drive.

dir Display directory of disk in current drive.

getb Get disk block from current drive.

putb Put disk block to current drive.

getn Get next logical block from current drive.

getchain Get logical chain of blocks from current drive.

dumpd Display disk buffer in hex and ASCII format.

Syntax Notation

The following conventions are used in the syntax descriptions of the super-

debugger commands. Much of this notation will be familiar from

geoAssembler and geoLinker.

exp a valid expression.

string a string of ASCII characters enclosed in double-quotes.

symbol a valid geoAssembler type symbol name.

macname a macro or system macro (command) name.

range describes a range of values in one of the following forms:

 exp a single value (a range of one).

exp:exp a start/finish range (ranges from the first

expression to the second, with lowest value

first).

 Example: $1000:$2000 ranges from $1000 to

$2000.

exp:#exp a start/count range (ranges from the first

expression for a count expressed in the second

expression).

Example: Buffer:#.200 ranges from the

address of Buffer to Buffer+200.

Super-debugger Ref. 8-14

searchspec describes a search specification for label and macro

names. A searchspec is made up of valid symbol

characters (letters, numbers, and the underscore symbol)

and the ? and * wildcards. A ? anywhere in the searchspec

will match a single character, and a * will match any

number of characters.

 Example: symb* would match with symbol1,

 symbol2, symb_3er, and symbat.

 Example: ??mbo* would match with symbol1, symbol2,

t3mbol_i, and rambo86.

 Example: ???? would match with all names with exactly

 four characters.

breakcond describes a conditional breakpoint specification in one of

the following forms:

exp a counter. Each time the breakpoint is

encountered, the counter is decremented; when

it goes to zero, the break succeeds.

 Example: 5 will pass through the breakpoint

four times; the break will succeed on the fifth

time through.

=exp a condition. Each time the breakpoint is

encountered, the expression is evaluated; the

break will only succeed when the expression

evaluates to true.

 Example: =(r.x > 30) will pass through the

breakpoint until the X-register exceeds thirty.

exp,=exp combination counter and condition. Each time

the breakpoint is encountered, the expression is

evaluated. If the condition is true, the counter

is decremented. When the counter goes to zero,

the break succeeds.

 8-15 Super-debugger Ref.

Example: 3,=(f.c && @cmd==4) will pass

through the breakpoint waiting for the carry

flag to be set and the variable cmd to be equal

to four; when this happens three times, the

break will succeed.

[] square brackets indicate an optional item which may

appear zero or one times.

{ } curly braces indicate an optional item which may appear

one or more times.

| a vertical line indicates a choice and can be read as "or"

In addition, all sample output from the super-debugger will be printed in a

bold courier font so that the spacing will closely match the standard

Commodore text mode.

Super-debugger Ref. 8-16

General Commands

Command: quit

Synonym: exit, q, e

Mini: see q in Chapter 9.

Purpose: leave the super-debugger and return to the GEOS deskTop.

Usage: quit

Note: takes no parameters.

quit leaves the super-debugger and returns to the GEOS deskTop by

disabling itself and performing a standard application exit (calls

EnterDeskTop). The program space will be cleared and all debugger

symbols and macros will be lost. If GEOS was corrupted during the

debugging session (trampling the memory from $c000 to $a000 is a great

way to do this), quit will very likely crash the system, leaving you no

alternative but to reboot by turning off the power. In instances where you

fear GEOS has been destroyed, the rboot command should be used for

leaving the super-debugger.

Before actually leaving, you will be asked to confirm your intention to quit:

Exit to deskTop (y/n) ?

Typing _Y_ will exit; typing _N_ or any other key will return to the command

prompt.

 8-17 Super-debugger Ref.

Command: opt

Mini: see g0 and g1 in Chapter 9.

Purpose: set super-debugger options.

Usage: opt [optnum] | [optnum,setting]

Note: optnum is an expression which evaluates to a valid option

number (0-6), and setting is an expression which evaluates to an

appropriate setting number for that option (0 or 1).

There are seven super-debugger configuration options:

Option Settings

0 input radix 0 hexadecimal (default)

 1 decimal

1 output radix 0 hexadecimal (default)

 1 decimal

2 labels 0 enabled (default)

 1 disabled

3 offset radix 0 hexadecimal (default)

 1 decimal

4 case distinction 0 disabled (default)

 1 enabled

5 GEOS screen 0 disabled (default)

 1 enabled

6 expand macros 0 disabled (default)

 1 enabled

Input radix (0)
The input radix is the default number base used within expressions. If this

is set to hexadecimal, the $ symbol is optional in front of hexadecimal

numbers; if this is set to decimal, the .(period) symbol is optional in front of

decimal numbers.

Output radix (1)
The output radix is the default number base used for output from the print

command, the m open command, and data appearing in disassembled

output, as with the a command. The appropriate radix symbol ($ or .) will

always be printed along with the number.

Super-debugger Ref. 8-18

Labels (2)
When labels are enabled, disassembly and data viewing commands, as with

the a and m commands, will display the label plus offset for the absolute

address of code and memory. When labels are disabled, the hex byte values

at the location will be displayed. See also: a and m.

Offset radix (3)
Numbers printed as offsets from symbols appear as symbol+xxx, where

symbol is the symbol name and xxx is a one byte offset. The offset can be

shown in either hexadecimal or decimal. If the offset radix is hexadecimal,

a $ radix symbol will precede the number; if the offset radix is decimal, no

radix symbol will be printed.

Case distinction (4)
If case distinction is disabled, symbols may be typed in expressions without

regard to the actual upper- and lower-case name as defined in

geoAssembler. If case distinction is enabled, the upper- and lower-case

must match the symbol exactly. For more information, refer to "Symbol

Names" in this chapter.

GEOS screen (5)
If GEOS screen is enabled, while processing a command which executes

code, such as s, t, or next, the super-debugger will display the application's

screen. If GEOS screen is disabled, the application's screen will only be

shown during a go, runto, or when _F7_ is pressed.

Expand macros (6)
If macro expansion is enabled, then the macro stream will be echoed to the

debugger screen. This gives you a visual audit trail of a macro's activities.

opt in Open Mode
The most straightforward way changing options is to enter opt without any

parameters, the super-debugger will open the last option opened and allow

you to change the value interactively. When opt is in open mode, the

display will appear as:

option

number option description current option selected
opt0 Input radix: * (0) hexadecimal

When an option is opened, the opt command is intercepting keystrokes and

responding at that level. There are four keystrokes which have an effect in

this mode:

 8-19 Super-debugger Ref.

SPACE toggle current option setting.

0 set option to setting 0.

1 set option to setting 1.

SHIFT + close current option and open previous option.

 close current option and open next option.

RETURN close current option and return to command prompt.

With the key you scroll through the options, changing them with

SPACE as you please.

To open a specific option, enter opt followed by an option number (0-6).

For example,

opt 4

would open option four (case distinction). All the same open mode keys are

active.

Using opt Without Open Mode
You can change an option without actually opening it by providing a setting

along with the option number when entering the command. For example,

opt 0,1

will set the output radix to decimal (setting 1).

Super-debugger Ref. 8-20

Display Commands

Command: r

Mini: See r in Chapter 9.

Purpose: display processor registers.

Usage: r

Note: takes no parameters.

The r command displays all the processor registers, including the MM

(memory map) pseudo-register. The output is in the following format:

Acc X Y PC SP NV-BDIZC MemMap

$00 $00 $00 $0400 $FF 10000011 00110000

The accumulator (Acc), x-register (X), y-register (Y), and stack pointer

(SP) are all printed as one-byte hexadecimal values. The program counter

(PC) is a two-byte hex value. The processor status register is a one-byte

binary value. The NV-BDIZC notation above the bits refers to the

individual flags in the status register; a one means the flag is set, a zero

means it is clear. The memory map register is printed as a one-byte binary

value.

For more information on the processor registers, refer to "Processor

Registers" in this chapter and a book on 6502 assembly language.

See also: reg and pc.

 8-21 Super-debugger Ref.

Command: dump

Synonyms: d

Mini: See d in Chapter 9.

Purpose: dumps 128 ($80) bytes to the screen in hexadecimal and

ASCII.

Usage: dump [exp]

Note: exp is the starting address for the dump. If no address is

specified, the value of the current location counter (u.lc) will

be used.

dump is used to view 128 bytes of memory at once. It fills almost the entire

screen with information and is especially useful for looking at tables and

buffers. The super-debugger will dump memory from the nearest eight-byte

boundary which includes the specified address. 128 bytes are dumped, eight

bytes per screen line. The address of the first byte in each line is printed at

the left margin, followed by the eight bytes of data (corresponding to the +0

to +7 offsets), followed by eight ASCII characters. Note: if a character

cannot be printed on the screen, it will be displayed as a period.

Example:

dump $3080 might produce the following display:

 +0 +1 +2 +3 +4 +5 +6 +7 01234567

$3080 73 Bl 88 03 13 20 71 A4 si... q$

$3088 54 48 4B 2C 20 4D 47 4C THK, MGL

$3090 2C 20 61 6E 64 20 45 44 , and ED

$3098 53 20 77 65 72 65 20 68 S were h

$30A0 65 72 65 2E DO 18 00 2C ere.P..,

$30A8 F0 F0 18 00 2C 18 00 8D .p......

$30B0 04 A9 AA OF 29 8A 70 85 .)*.).p.

$30B8 4A A5 78 08 60 18 00 8E J%x. ...

$30C0 02 A2 00 F0 Cl DO 18 00 .".pAP..

$30C8 41 53 43 49 49 2A EA 18 ASCII*J.

$30D0 54 45 58 54 BD 70 A6 18 TEXT=p&.

$30D8 00 A9 F9 8F 20 33 84 18 .)y. 3..

$30E0 00 8C 1C 00 8D F7 29 1Cw).

$30E8 00 AD 04 89 20 F0 F0 18 .-.. .p.

$30F0 00 2C 04 A9 04 57 20 48 .,.).W H

$30F8 49 FF B7 B7 FF B7 B7 BF I.77.77?

Super-debugger Ref. 8-22

Command: n

Purpose: disassemble code in the neighborhood of the current program

counter. Displays five lines of code: two before the program

counter, followed by three more, including the program

counter.

Usage: dump [exp]

Note: takes no parameters.

The n command disassembles the code surrounding the current program

counter. It is useful for seeing where a program is going as well as where it

came from. The output is in the standard disassembly format as described

under the a command.

Example:

With the program counter at $0404, an n might produce the following

output:

hex

address label plus offset disassembly

0400 ProgStar lda #$C0

0402 ProgStar+$02 sta dispBuff

0404 ProgStar+$04 > lda #$04

0406 ProgStar+$06 sta r0H

0408 ProgStar+$08 lda #$28

NOTE: Because the n command must backtrack to show instructions in

front of the program counter, it may not have enough information

from context to correctly synchronize with the instruction

boundaries, the super-debugger has a fairly sophisticated

algorithm for synchronizing and will almost always do so

successfully when there is legitimate code before and after the

program counter.

See also: w, dis, pc.

 8-23 Super-debugger Ref.

Command: w

Purpose: disassembles a window of code at the program counter.

Displays five lines of code, starting with the current program

counter location.

Usage: w

Note: takes no parameters.

The w command disassembles five lines of code beginning with the current

program counter. It useful for seeing the instructions about to be executed.

The output is in the standard disassembly format as described under the a

command.

Example:

With the program counter at $0404, a w might produce the following

output:

hex

address label plus offset disassembly

0404 ProgStar+$04 > lda #$04

0406 ProgStar+$06 sta r0H

0408 ProgStar+$08 lda #$28

040A ProgStar+$0A sta r0L

040C ProgStar+$0C jsr Graphics

See also: n, dis, pc.

Super-debugger Ref. 8-24

Command: dis

Purpose: disassembles a window of code at the program counter.

Displays five lines of code, starting with the current program

counter location.

Usage: dis [addrexp]

Note: addrexp is the starting address for the disassembly. If no

address is specified, the value of the current location counter

(u.lc) will be used.

The dis command disassembles a full screen of code. The output is in the

standard disassembly format as described under the a command.

Example:

Assuming ProgStar is a label defined in the symbol table as $400, a dis

ProgStar might produce the following output:

hex

address label plus offset disassembly

0400 ProgStar lda #$C0

0402 ProgStar+$02 sta dispBuff

0404 ProgStar+$04 > lda #$04

0406 ProgStar+$06 sta r0H

0408 ProgStar+$08 lda #$28

040A ProgStar+$0A sta r0L

040C ProgStar+$0C jsr Graphics

040F ProgStar+$0F lda #$04

0411 ProgStar+$11 sta r0H

0413 ProgStar+$13 lda #$33

0415 ProgStar+$15 sta r0L

0417 ProgStar+$17 lda #$00

0419 ProgStar+$19 jsr DoMenu

041C ProgStar+$1C lda #$04

041E ProgStar+$1E sta r0H

0420 ProgStar+$20 lda #$33

0422 ProgStar+$22 sta r0L

0424 ProgStar+$24 jsr DoIcons

0427 ProgStar+$27 rts

0428 ClearScr ora r0L

 8-25 Super-debugger Ref.

Note: The dis command sets the location counter (u.lc) to point at the

instruction following the last instruction disassembled. This way

a subsequent dis (without a parameter) will continue the

disassembly.

See also: n, w, pc.

Super-debugger Ref. 8-26

Command: print

Synonym: pr

Purpose: general purpose expression, string, and symbol printing.

Usage: print printitem{,printitem}

Note: printitem is a complex construction which is described below.

You may supply up to ten printitems.

The print command is a powerful and flexible output facility. At its

simplest, it is useful for evaluating symbols, expressions, and doing

number-base conversions. At its full sophistication, it can be used for

complex formatted output, such as with the dir command.

Brief Introduction to Using print
Because the print command is so sophisticated, a few of its most useful

features will be introduced.

To print a string to the screen (useful in a macro), simply enclose the text in

quotes:

 print "This string will be printed."

To print the result of an expression in the default radix, use the expression

as the only parameter:

 print ($1000+symbase) | $8000

 print .65536/.16

To print the result of an expression in any radix, follow the expression with

a colon and the radix symbol:

 print ($1000+symbase) |$8000:% print result in binary (%).

 print .65536/16:s print as symbol.

 8-27 Super-debugger Ref.

These are the rudiments of the print command. A full description of the

command follows.

print Syntax
The parameter format for the print command adheres to the following

syntax:

printitem string | printexp

printexp exp[:printoption]

printoption [namestring] [lookup] [radix]

 an optional formatting code.

namestring string

 a string which will be placed before the output, replacing

the standard echo of the expression.

lookup [decnum]datasize

For doing byte or word lookups at the address of the

expression.

decnum a decimal number without a radix sign; used in

conjunction with datasize to indicate the number of byte

or word lookups to perform at the address of the

expression. If decnum is omitted, one byte or one word

will be looked up.

datasize b|w

a specifier indicating the size of the data to be looked up:

either byte or word. The number of bytes or words as

determined by decnum will be looked up beginning at the

address of the expression and output to the screen.

Super-debugger Ref. 8-28

radix .|$|?|%|s|'

 Indicates how the output should be printed:

. decimal

$ hexadecimal

? octal

% binary

' character

s symbolic+offset (if possible)

Examples:

print $5f4a:. converts $5f4a to decimal and prints the result.

print .1000+?20:s prints out the result of .1000 plus ?20 in

symbolic form.

print " registers: ",r.a,r.x,r.y

prints a string followed by the contents of the

accumulator and the x- and y-registers.

print u.lc:16b$ prints out 16 bytes in hexadecimal starting at

the address currently in the location counter.

print ibuffer:30b'"Text input buffer: "

prints 30 characters starting at the address of

the symbol ibuffer and names the output Text

input buffer.

 8-29 Super-debugger Ref.

Open Modes

Command: a

Mini: See a in Chapter 9.

Purpose: open memory for assembly language code

Usage: a [addrexp]

Note: addrexp is the memory address to open. If no parameter is

specified, the current address pointed to by the location

counter (u.lc) will be opened.

The a command is the general disassemble, assemble, and modify open

command. When you open a memory location with a, you are placed in an

interactive mode where all keystrokes are intercepted and handled

specially. In a-mode you are able to disassemble code forward and

backward, define labels, and modify instructions at any point.

Output for the a command is in the following general format, although

certain fields may be displayed differently if you have changed the default

options with the opt command:

hex

address label plus offset flag disassembly

0400 ProgStar lda #$C0

0402 ProgStar+$02 sta dispBuff

0404 ProgStar+$04 > lda #$04

0406 ProgStar+$06 sta r0H

0408 ProgStar+$08 b lda #$28

040A ProgStar+$0A *sta r0L

hex address is the absolute address of the instruction. Instructions are either

one, two, or three bytes in length.

Super-debugger Ref. 8-30

label plus offset is either a label with a positive one byte ($00-$ff) offset or

the absolute address if there is no label within $ff bytes backward. If you

disable labels with the opt command (option 2) or you toggle the display

with the C open-mode keystroke, this field will contain the hexadecimal

bytes which comprise the instruction, as in the following example:

0408 A9 28 lda #$28

where A9 is the hexadecimal value for lda immediate, and 28 is the

hexadecimal value for #$28.

flag is a field with three positions, each of which has a unique possible

symbol:

b breakpoint set at this instruction.

> program counter points at this instruction.

* current opened instruction.

disassembly is a disassembly of the bytes at the address. If the location does

not contain a valid 6502 opcode, ??? will be displayed.

Open a-mode Keystrokes

When memory is opened with the a command, the super-debugger is

intercepting keystrokes and responding at that level. When an invalid

keystroke or a bad entry is detected, the cursor will briefly flash as a ?

symbol. When the cursor is on the asterisk in the flag field, the following

keystrokes will have an effect:

SPACE enter deposit mode at this location (see

deposit description below)

 or _J_ close current instruction and open next

instruction.

SHIFT + or _K_ close current instruction and open previous

instruction.

 reopen current instruction.

RETURN close current instruction and return to

command prompt.

 8-31 Super-debugger Ref.

M switch from a-mode to m-mode. See: m

command.

. display as decimal.

$ display as hexadecimal.

? display as octal.

% display as binary. Note: word values will be

displayed as hexadecimal because low/high

binary words are seldom useful.

' display as characters.

S display in symbolic form.

C change label enable/disable status (refer to

option 2 under opt).

B set breakpoint at this address.

> set program counter to this address.

L open at address of next label.

L _SHIFT_ + open at address of previous label.

L _-_ delete currently displayed label, even if it is

displayed with an offset. If the same label

exists in multiple modules, the label will

only be deleted from the module with the

highest priority.

Super-debugger Ref. 8-32

Deposit a-mode
When you press _SPACE_ at the asterisk prompt, the disassembly field clears

and the cursor is placed into it. At this point you can enter a new 6502

instruction. As on the command line, _DEL_ deletes the character to the left

of the cursor and clears the input line.

To enter a line and leave deposit mode, use one of the following keystrokes:

 enter current line and reopen current instruction.

(Useful for checking a complex operand

expression or entering symbol and then an

instruction.)

 enter current line and open next instruction.

SHIFT + enter current line and open previous instruction.

RETURN enter current line and return to command

prompt.

If an error is detected in the entry, the line will not be entered and the cursor

will briefly flash as a ?.

To leave deposit mode without entering a line, do one of the following:

1. Enter an empty line or a line which contains only spaces.

2. Use _DEL_ to backspace out of the disassembly/deposit field.

a-mode Deposit Syntax

The a-mode deposit entry must be a valid 6502 opcode/operand

construction as in geoAssembler. Because the mini-debugger does not

support expressions or any radix other than hexadecimal, any numbers in

the operand must conform to this limitation. Also: you cannot type beyond

the left edge of the screen. If you try this, the cursor will briefly flash as a

?.

Example deposit entries:

lda #$fe opcode and hexconst immediate value.

sei opcode alone.

jsr 33ef opcode and hexconst address.

 8-33 Super-debugger Ref.

Command: m

Mini: See m in Chapter 9.

Purpose: open memory for data.

Usage: m [addrexp]

Note: addrexp is the address to open. If no parameter is specified,

the current address pointed to by the location counter (u.lc)

will be opened.

m is the general view and modify data command. When you open a

memory location with m, you are placed in an interactive mode where all

keystrokes are intercepted and handled specially. In m-mode you are able

to view data forward and backward and modify it at any point.

Output for the m command is in the following general format:

hex

address label plus offset flag mode data

046B 53 .byte $53

046C 61 .byte $61

046D 6D .byte $6D

046E AboutTex+$03 .byte $70

046F AboutTex+$04 .byte $6C

0470 AboutTex+$05 *.byte $65

hex address is the absolute address of the data.

label plus offset is either a label with a positive one byte ($00-$ff) offset or

the absolute address if there is no label within $ff bytes backward. If you

disable labels with the opt command (option 2) or you toggle the display

with the C open-mode keystroke, this field will contain the hexadecimal

bytes which comprise the data, as in the following examples:

0470 65 .byte $65

046D 6D 70 .word $706D

Super-debugger Ref. 8-34

This feature is especially useful when you are displaying the data in a

different radix — you will still have immediate access to a hexadecimal

representation.

flag is a field with three positions, each of which has a unique possible

symbol:

b breakpoint set at this instruction.

> program counter points at this instruction.

* Current opened instruction.

mode is the data display mode, either .byte or .word. Data shown in

word format is displayed in low/high order as in the following example:

046D AboutTex+$02 .word $706D

data is the actual data at the current address. The data will not undergo

symbol substitution unless you request it specifically with the _S_ key (see

below).

Open m-mode Keystrokes

When data is opened with the m command, the super-debugger is

intercepting keystrokes and responding at that level. When an invalid

keystroke or a bad entry is detected, the cursor will briefly flash as a ?

symbol. When the cursor is on the asterisk in the flag field, the following

keystrokes will have an effect:

SPACE enter deposit mode at this location (see

deposit description below)

 or _J_ close current location and open next one.

SHIFT + or _K_ close current location and open previous

one.

 reopen current location (useful for rereading

a hardware location with changing values).

RETURN close current location and return to

command prompt.

 8-35 Super-debugger Ref.

D _B_ display data as byte.

D _W_ display data as word.

A switch from m-mode to a-mode. See: a

command.

. display data as decimal.

$ display data as hexadecimal.

? display data as octal.

% display data as binary. Note: word values

will be displayed in hexadecimal because

low/high binary words are seldom useful.

' display data as characters.

S display data in symbolic form.

C change label enable/disable status (refer to

option 2 under opt).

B set breakpoint at this address, (not extremely

useful when looking at data.)

> set program counter to this address, (not

extremely useful when looking at data.)

L open at address of next label.

L _SHIFT_ + open at address of previous label.

L _-_ delete currently displayed label, even if it is

displayed with an offset. If the same label

exists in multiple modules, the label will

only be deleted from the module with the

highest priority.

Super-debugger Ref. 8-36

Deposit m-mode
When you press space at the asterisk prompt, the data field clears and the

cursor is placed into it. At this point you can enter new data for this

address. As on the command line, _DEL_ deletes the character to the left of

the cursor and clears the input line.

To enter a line and leave deposit mode, use one of the following keystrokes:

 enter current line and reopen current instruction.

(Useful for checking a complex operand

expression.)

 enter current line and open next instruction.

SHIFT + enter current line and open previous instruction.

RETURN enter current line and return to command

prompt.

If an error is detected in the entry, the line will not be entered and the cursor

will briefly flash as a ?.

To leave deposit mode without entering a line, do one of the following:

1. Enter an empty line or a line which contains only spaces.

2. Use _DEL_ to backspace out of the disassembly/deposit field.

m-mode Deposit Syntax
m-mode deposits for .byte and .word deposits is slightly different:

.byte string | exp{,exp}

You cannot deposit more than 40 bytes (40 characters or 40 values) in a

single deposit. Expressions must evaluate to a byte value ($00-$ff). If in

doubt, use the [grab byte operator.

.word exp{,exp}

You cannot deposit more than 40 words in a single deposit.

The full deposit entry may be up to 100 characters in length. If you try to

type beyond the 100 character limit, the cursor will briefly flash as a ?.

 8-37 Super-debugger Ref.

Example deposit entries:

.byte "This is a string"

. byte $00,$ff,[prog_star-.37, 'c', 'T'

.word $6543,AboutTex*2/4

Super-debugger Ref. 8-38

Command: reg

Synonym: rg

Mini: see rg in Chapter 9.

Purpose: open register.

Usage: reg [[r.]regname]

Note: regname is the optional register name to open (note a r. may

be prepended to the beginning of the register name):

a | x | y | sp | pc | st | mm

If no register is specified, the last register opened will be

reopened.

reg allows the display and modification of all the 6502 registers and the

Commodore memory map register. When you open registers with reg, you

are placed in an interactive mode where all keystrokes are intercepted and

handled specially. In reg-mode you are able to view each register in turn

and modify any one at will.

Output for the reg command is in the following general format:

register name aster size data

Reg A .byte $00

Reg X .byte $FE

Reg Y .byte $C4

Reg SP .word $01FD

Reg PC .word ProgStar

Reg ST .byte $02

Reg MM *.byte $30

register name is the name of the register:

 A accumulator

 X x-index register

 Y y-index register

 SP stack pointer

 PC program counter

 ST status register

 MM memory map register (*removed from geoDebbugger 2.0)

 8-39 Super-debugger Ref.

aster is a field which contains an asterisk on the currently open register.

size is the size of the data register, either byte or word.

data is the actual data in the register. The data in the PC register will

automatically undergo symbol substitution, but the data in the other

registers will not unless you request it specifically with the _S_ key (see

below).

Open reg-mode Keystrokes
When data is opened with the reg command, the super-debugger is

intercepting keystrokes and responding at that level. When an invalid

keystroke or a bad entry is detected, the cursor will briefly flash as a ?

symbol. When the cursor is on the asterisk in the aster field, the following

keystrokes will have an effect:

SPACE enter deposit mode at this location (see

deposit description below)

 or _J_ close current register and open next one.

SHIFT + or _K_ close current register and open previous one.

RETURN close current register and return to command

prompt.

. display data as decimal.

$ display data as hexadecimal.

? display data as octal.

% display data as binary. Note: word values

will be displayed in hexadecimal because

low/high binary words are seldom useful.

' display data as characters.

S display data in symbolic form.

Super-debugger Ref. 8-40

Deposit reg-mode
When you press space at the asterisk prompt, the data field clears and the

cursor is placed into it. At this point you can enter new data for this

register. As on the command line, _DEL_ deletes the character to the left of

the cursor and clears the input line.

To enter a line and leave deposit mode, use one of the following keystrokes:

 enter current line and reopen current instruction.

(Useful for checking a complex operand

expression.)

 enter current line and open next register.

SHIFT + enter current line and open previous register.

RETURN enter current line and return to command

prompt.

If an error is detected in the entry, the line will not be entered and the cursor

will briefly flash as a ?.

To leave deposit mode without entering a line, do one of the following:

1. Enter an empty line or a line which contains only spaces.

2. Use _DEL_ to backspace out of the disassembly/deposit field.

reg-mode Deposit Syntax
reg-mode deposits have the following syntax:

exp

If the register size is byte, only the low-byte of the expression will be stored

in the register.

The full deposit entry may be up to 100 characters in length. If you try to

type beyond the 100 character limit, the cursor will briefly flash as a ?.

 8-41 Super-debugger Ref.

Command: flag

Synonym: fg

Mini: see fg in Chapter 9.

Purpose: open individual flags in the processor status register (ST)

Usage: flag [[f.]flagname]

Note: flagname is the optional name of the flag to open (note: a f.

may be appended to the beginning of the flag name):

 n | v | b | d | i | z | c

 If no flag is specified, the last flag opened will be reopened.

flag allows the display and modification of all bits in the processor status

register (ST, r.st). When you open a flag with flag, you are placed in an

interactive mode where all keystrokes are intercepted and handled

specially. In flag-mode you are able to view each flag (bit in the ST

register, including the undefined bit 5) in turn and set or clear any one at

will.

Output for the flag command is in the following general format:

flag symbol flag name aster data

Flag N Sign (neg.) %1

Flag V Overflow %0

Flag Undefined ` %0

Flag B BRK flag %0

Flag D Decimal mode %0

Flag I IRQ disable %0

Flag Z Zero flag %1

Flag C Carry flag %1

flag symbol is the common character abbreviation for the flag. The

undefined bit (bit 5) has no symbol.

flag name is a descriptive name of the flag.

aster is a field which contains an asterisk on the currently open flag.

Super-debugger Ref. 8-42

data is the actual state of the bit: either set (1) or clear (0).

Open flag-mode Keystrokes
When data is opened with the flag command, the super-debugger is

intercepting keystrokes and responding at that level. When an invalid

keystroke is detected, the cursor will briefly flash as a ? symbol. When the

cursor is on the asterisk in the aster field, the following keystrokes will

have an effect:

SPACE toggles the state of the flag.

0 clear flag to zero.

1 set flag to one.

 close current flag and open next one.

SHIFT + or _K_ close current flag and open previous one.

RETURN close current flag and return to command

prompt.

 8-43 Super-debugger Ref.

Execution Commands

Command: go

Mini: see go in Chapter 9.

Purpose: Begin full-speed execution of program.

Usage: go [addrexp]

Note: addrexp is the address to begin execution; if no address is

given, execution will begin at the current location of the

program counter (PC, r.pc).

The go command starts full speed execution of the program. The GEOS

screen is displayed and a jmp to the proper address is simulated. Control

will not return to the super-debugger unless a breakpoint or a brk

instruction is encountered or the _RESTORE_ key is pressed.

Example:

go ProgStart begins execution at ProgStart.

go begins execution at the program counter.

Super-debugger Ref. 8-44

Command: runto

Synonym: rt

Mini: see rt in Chapter 9.

Purpose: execute until a given address is reached.

Usage: runto [addrexp]

Note: addrexp is the address where execution will stop. If the

addrexp is omitted, the current value of the location counter

(u.lc) will be used.

The runto command automates the common debugging procedure of

setting a breakpoint, performing a go to current location of the program

counter, and clearing the breakpoint when control returns to the debugger.

If no stop address is specified, the current value of the location counter

(u.lc) will be used. This allows you to run to the address of the last memory

location disassembled.

Example:

runto ProgStart+$le sets a breakpoint at ProgStart+$1e and

executes a go to the current location of the

program counter.

 8-45 Super-debugger Ref.

Command: jsr

Synonym: js

Mini: see js in Chapter 9.

Purpose: Execute a subroutine.

Usage: jsr addrexp

Note: addrexp is the address of the subroutine to execute.

The jsr command allows you to execute a subroutine. The super-debugger

will simulate a top-step (see t command) through an actual jsr instruction.

The routine at addrexp is expected to return with an rts.

Example:

jsr SetScreen executes a jsr to the routine at SetScreen. Control

returns to the super-debugger when an rts is

encountered.

Super-debugger Ref. 8-46

Command: s

Mini: see s in Chapter 9.

Purpose: Single step through instructions and into subroutines.

Usage: s [breakcond]

Note: breakcond is an optional breakpoint condition.

The s command will single-step the processor, executing one instruction at

a time. The s command without any parameters will execute the current

instruction pointed at by the program counter (PC, r.pc) and return to the

super-debugger, printing the instruction at the new location of the program

counter. All processor registers, memory locations, etc. now reflect the

results of the instruction just executed. By successively single stepping

(pressing _._ to repeat the command is good for this), the effects of each

instruction may be determined.

The s command operates by inspecting the instruction to be executed and

determining where the following instruction is located; it then places a

temporary breakpoint at that location. For most instructions this is a trivial

process because the next instruction to be executed will be the next

instruction in memory. However, for instructions which transfer control by

reloading the program counter (e.g., jmp, jsr, rts, branches, etc.), the

address of the next instruction must be calculated accordingly.

IMPORTANT: You cannot step through ROM . If you try to step through

ROM code, you will get an error because breakpoints cannot be set in

ROM.

Single-stepping with a Condition
The s command will also accept a breakcond parameter. Because the s

command sets a temporary breakpoint for each instruction, the condition

will be tested and the counter decremented after every instruction. When

you supply a breakcond, the following message will be displayed while the

super-debugger is stepping:

Stepping until condition met...

Each time you step through a jsr subroutine call, the address of the routine

will be added to the step-through-jsr history list. This list gives you an audit

trail of the procedure calls stepped-through as well as allowing the finish

command. See also: t, history, and finish

 8-47 Super-debugger Ref.

If, while stepping with a breakcond, a previously set user-defined

breakpoint is encountered, the following message will appear:

Software breakpoint encountered...

continue (y/n)?

You can press _Y_ to ignore the breakpoint, or you can press any other key

to acknowledge the breakpoint and not step through the instruction.

The s command won't display the GEOS screen unless option 5 is enabled.

Examples:

s .10 single step through ten instructions.

s =£f.c single step until the carry flag is clear.

s .20,=(r.a == $50 ^^ @buf_flag)

 single-step until the value in the accumulator is

equal to $50 or the byte at variable buf_flag is

non-zero (true) 20 times.

Super-debugger Ref. 8-48

Command: t

Mini: see t in Chapter 9.

Purpose: single-step through instructions and top-step through

subroutines.

Usage: t [breakcond]

Note: breakcond is an optional breakpoint condition.

The t command will single-step the processor, executing one instruction at

a time, until it encounters a jsr instruction, in which case it will execute the

subroutine full speed. The t command without any parameters will execute

the current instruction or subroutine call pointed at by the program counter

(PC, r.pc) and return to the super-debugger, printing the instruction at the

new location of the program counter. All processor registers, memory

locations, etc. now reflect the results of the instruction or subroutine just

executed. Top-stepping is useful for avoiding having to single-step through

GEOS routines and already debugged subroutines. It is also useful for

executing calls to ROM-based subroutines, which cannot be stepped-

through.

The t command operates by inspecting the instruction to be executed and

determining where the following instruction is located; if the instruction is

anything except a jsr, it then places a temporary breakpoint at that location

as with the s command. However, if the instruction is a jsr, a breakpoint

will be set at the instruction following the subroutine call.

IMPORTANT: You cannot use the t command in ROM code; however,

you can top-step through a jsr into ROM. If you try to use the t command

while in ROM, you will get an error because breakpoints cannot be set in

ROM. Also, you should not top-step through GEOS inline subroutine calls

(GEOS routines which begin with i_); The top-step will set the first byte of

the inline data to $00 and the breakpoint will never be encountered. It is

best to handle these cases manually. Use runto to set a breakpoint at the

instruction following the inline data and execute the jsr.

 8-49 Super-debugger Ref.

Top-stepping with a Condition
The t command will also accept a breakcond parameter. Because the t

command sets a temporary breakpoint for each instruction, the condition

will be tested and the counter decremented after every instruction. A

subroutine, in this case, is treated as one instruction. When you supply a

breakcond, the following message will be displayed while the

superdebugger is stepping:

Stepping until condition met.

Encountering User-defined Breakpoints
If, while top-stepping with a breakcond or while t is executing a subroutine,

a previously set user-defined breakpoint is encountered, the following

message will appear:

Software breakpoint encountered. ..

continue (y/n)?

You can press _Y_ to ignore the breakpoint, or you can press any other key

to acknowledge the breakpoint and not step through the instruction.

The t does not display the GEOS screen unless option 5 is enabled.

Examples:

t .10 top-step through ten instructions/subroutine

calls.

t =f.c top-step until the carry flag is set.

t u.1,=(r.x >= $10) Use the value in user register 1 (u.1) and top-

step until the X-register is greater than or equal

to $10 that many times.

Super-debugger Ref. 8-50

Command: p

Purpose: Proceed until breakpoint encountered.

Usage: p [breakcond]

Note: breakcond is an optional breakpoint condition.

The p command will begin execution of code beginning at the current

program counter and execute code at full speed until a breakpoint is

encountered. When a breakpoint is hit, the super-debugger is given control;

if no breakcond was specified, the instruction at the current program

counter will be printed and you will be returned to the command prompt. If

a breakcond was specified, the expression is tested and the counter

decremented. If the counter reaches zero and the conditional evaluates to

true, the breakpoint succeeds. Otherwise the instruction at the breakpoint is

executed and the p command continues to the next breakpoint.

The p command does not display the GEOS screen unless option 5 is

enabled.

Using proceed with a conditional allows you to place a breakpoint at the

beginning of a subroutine and have the conditional evaluated. This way you

can break only if certain special entry conditions exist.

Examples:

p .10 proceed until the tenth breakpoint is

encountered.

p =f.d proceed until a breakpoint is reached and the

decimal mode flag is set.

p .8,=(@error_flg > disk_err)

proceed until a breakpoint is encountered. If the

variable error_flag is greater than disk_err

eight times, then break.

 8-51 Super-debugger Ref.

Command: next

Synonym: nx

Mini: see nx in Chapter 9.

Purpose: Set breakpoint at next instruction (physically in memory) and

proceed with current instruction.

Usage: next

Note: takes no parameters.

The next command sets a breakpoint at the next instruction in memory (as

opposed to the next instruction to be executed) and proceeds with the

current instruction. This command is especially useful for leaving a loop.

Most loops consist of a number of instructions followed by a backward

branch. Using the next command when the program counter is pointing at a

branch instruction will place a breakpoint at the instruction after the branch

and then begins executing with the branch instruction. As long as the

branch succeeds and continues looping backwards, execution will continue.

When the branch fails, the breakpoint is encountered and control is returned

to the command prompt.

IMPORTANT: You cannot use the next command in ROM code. If you

try to use the next command while in ROM, you will get an error because

breakpoints cannot be set in ROM.

The next command does not display the GEOS screen unless option 5 is

enabled.

Example:

Given the following loop:

3000 Start ldx #$FF

3002 OutrLoop ldy #$FF

3004 InnrLoop dey

3005 InnrLoop+$01 bne InnrLoop

3007 InnrLoop+$03 dex

3008 InnrLoop+$04 > bne OutrLoop

300A InnrLoop+$06 lda #$00

Super-debugger Ref. 8-52

with the program counter at the backward branch at $3008, using the next

command would place a breakpoint at $300a and execute the branch

instruction. When the X-register counts down to $00, the bne will fail and

the breakpoint will be encountered.

 8-53 Super-debugger Ref.

Command: loop

Synonym: l

Purpose: Set breakpoint at next instruction (physically in memory) and

proceed with current instruction.

Usage: loop [breakcond]

Note: breakcond is an optional breakpoint condition.

The loop command sets a breakpoint at the current instruction in memory

and then proceeds with the current instruction. The breakpoint will be hit

before the current instruction is again encountered. The idea behind this

command is to allow a pass through a loop by waiting for the processor to

return to the current instruction. If loop is used without a breakcond, the

loop will be executed once.

The loop command will also accept a breakcond parameter. At each pass

through the loop (each time the breakpoint is encountered), the conditional

is evaluated and the counter decremented. If the conditional evaluates to

true and causes the counter to reach zero, the breakpoint succeeds.

IMPORTANT: You cannot use the loop command in ROM code. If you

try to use the loop command while in ROM, you will get an error because

breakpoints cannot be set in ROM.

The loop command does not display the GEOS screen (unless option 5 is

enabled).

Example:

Given the following loop:

3000 Start ldx #$FF

3002 OutrLoop ldy #$FF

3004 InnrLoop > dey

3005 InnrLoop+$01 bne InnrLoop

3007 InnrLoop+$03 dex

3008 InnrLoop+$04 bne OutrLoop

300A InnrLoop+$06 lda #$00

Super-debugger Ref. 8-54

with the program counter at the dey at $3004 in the middle of the loop,

using the loop command would place a breakpoint at $3004 and proceed

with the dey instruction. Assuming the X and Y index register are not such

that the loop will be exited, the breakpoint will be encountered on the next

pass through.

NOTE: The loop command is based on proceed; you will get strange

results if the loop contains any user-defined breakpoints because

the breakcond will be evaluated at each breakpoint, and not just

current location.

 8-55 Super-debugger Ref.

Command: skip

Purpose: Skip over the current instruction without executing it.

Usage: skip

Note: takes no parameters.

The skip command increments the program counter to point to the next

instruction in memory, causing the current instruction to be skipped over

without being executed. The skip command is useful through branch

instructions which would otherwise succeed or brk instructions in your

code.

Super-debugger Ref. 8-56

Command: stopmain

Synonym: sm

Mini: see sm in Chapter 9.

Purpose: Continue program execution until a safe point in the GEOS

MainLoop, then return to the super-debugger.

Usage: stopmain

Note: takes no parameters.

If you use the _RESTORE_ key to enter the super-debugger, it is sometimes a

good idea to use the stopmain command, especially if the processor was in

the middle of interrupt code, stopmain places a breakpoint in a safe place

within the GEOS MainLoop and executes a go. Assuming the application

at hand will return control to mainloop, the breakpoint will be encountered

and control will return to the debugger.

For more information on the GEOS MainLoop, refer to The Official GEOS

Programmer's Reference Guide, or to Hitchhiker's Guide' to GEOS.

IMPORTANT: If you break into the debugger with the _RESTORE_ key

while interrupt code is being executed and you do not do a stopmain, a

subsequent getb or putb could destroy a disk.

 8-57 Super-debugger Ref.

Stack Related Commands

Command: stack

Purpose: displays the top eight bytes on the stack.

Usage: stack

Note: takes no parameters.

The stack command looks at the current processor stack (located on page

one) and displays the top eight bytes in the following format:

Current Stack:

addr byte word return address

$01EA $FF $04FF $0500

$01EB $04 $3004 SetLoop

$01EC $30 $0630 $0631

$01ED $06 $6506 $6507

$01EE $65 $7A65 Do_quit

$01EF $7A $EE7A ClrMenu

$0lF0 $EE $43EE $43EF

$01Fl $43 $0743 $0744

stack starts at the current stack pointer (sp, r.sp) and progressively reads

eight bytes off of the stack. The addr field shows the hex location in the

stack area on page one. The byte field shows the byte value at this location;

this is the byte which would be loaded into the accumulator if a pla

instruction is executed. The word field shows the word value at this

location (low/high order). The return address field shows the address

where execution would resume if an rts instruction was encountered or a

return command was executed; it is the word value plus one, and the

super-debugger attempts to display it as a symbol.

See also: return.

Super-debugger Ref. 8-58

Command: history

Purpose: displays the step-through-jsr stack.

Usage: history

Note: takes no parameters.

Each time the s single-step command is used to step through a subroutine

call (jsr), the address of the routine stepped out of is pushed onto the super-

debugger step-through-jsr stack. The history command displays this stack.

This gives you an audit trail of how the current point in the program was

reached.

The step-through-jsr stack is used in conjunction with the finish command.

See: finish for more information.

Example:

After stepping through a jsr Graphics at $40c and a jsr $ca69 at $c94c, a

history would yield the following display:

step through jsr history:

040C ProgStar+$OC jsr Graphics

C94C $C94C jsr $CA69

See also: finish, s, and inithist.

 8-59 Super-debugger Ref.

Command: inithist

Synonym: inith

Purpose: displays the step-through-jsr stack.

Usage: inithist

Note: takes no parameters.

The inithist command completely clears the step-through-jsr history. The

history stack is automatically cleared anytime a go, p, runto, loop, or

return command (or any macro based on one of these commands) is

issued. The history stack is also cleared when a brk instruction is

encountered.

Super-debugger Ref. 8-60

Command: finish

Synonym: fin

Purpose: finish up (at full-speed) the most recent subroutine that was

single-stepped into. Uses the step-through-jsr stack.

Usage: finish

Note: takes no parameters.

Each time the s single-step command is used to step through a subroutine

call (jsr), the address of the routine stepped out of is pushed onto the super-

debugger step-through-jsr stack. The finish command finishes the most

recent subroutine that was single-stepped into, effectively "popping" the

newest item on the step-through-jsr stack.

The finish command works by checking the step-through-jsr stack and sets

a breakpoint at the instruction following the last jsr instruction. finish is

useful when you accidentally single-step through a jsr when you meant to

top-step, or if, when checking a subroutine, you are convinced it is not the

culprit and want to return to the previous level.

IMPORTANT: You cannot use the finish command if it results in trying

to set a breakpoint in ROM; you will get an error because breakpoints

cannot be set in ROM. Also, the finish command should not be used to

finish a GEOS inline subroutine call (GEOS routines which begin with i_);

The finish will set the first byte of the inline data to $00 and the breakpoint

will never be encountered.

NOTE: If a software breakpoint is encountered during a top-step and you

choose not to continue execution, the top-step's point of entry

will be pushed onto the history stack. A subsequent finish will

continue the top-step, returning to the instruction after the top-

stepped jsr.

The finish command does not display the GEOS screen (unless option 5 is

enabled).

 8-61 Super-debugger Ref.

Example:

Given the following step-through-jsr history (displayed with the history

command):

step through jsr history:

040C ProgStar+$OC jsr Graphics

C94C $C94C jsr $CA69

with the program counter somewhere within the subroutine at $ca69, a

finish will end up at the instruction following the jsr $ca69 instruction. A

second finish will end up at the instruction following the jsr Graphics

instruction.

See also: history, inithist, s, and return

Super-debugger Ref. 8-62

Command: return

Purpose: run until subroutine returns.

Usage: return

Note: takes no parameters.

The return command is similar to the finish command in that it is designed

to run full-speed until the current subroutine is finished. But whereas the

finish command determines the return address by using the step-through-jsr

history, the return command determines the return address by using the

values on the stack.

return sets a breakpoint at the instruction which will be executed if an rts

is encountered. It assumes that the top word (two bytes) on the stack are a

valid return address. If the subroutine has pushed values onto the stack,

return will not work correctly.

IMPORTANT: You cannot use the return command if it results in trying

to set a breakpoint in ROM; you will get an error because breakpoints

cannot be set in ROM. Also, the return command should not be used to

finish a GEOS inline subroutine calls (GEOS routines which begin with i_);

The return will set the first byte of the inline data to $00 and the

breakpoint will never be encountered.

See also: finish and stack.

 8-63 Super-debugger Ref.

Breakpoint Commands

When debugging a program, it is often desirable to stop program execution

at a specific point so that you can check variables, flags, or registers,

making sure they contain correct and expected values. The super-debugger

implements this mechanism with breakpoints. A user-defined breakpoint,

or "breakpoint" for short, can be set at a specific point in the program.

When the breakpoint is encountered, control is transferred to the super-

debugger, a message is printed and the instruction at the breakpoint is

disassembled:

*** Software Breakpoint ***

0402 ProgStar+$02b> sta dispBuff

The breakpoint is triggered before the instruction at the breakpoint is

executed. In the above example, the program counter is pointing at the sta

dispBuff instruction, which is the next instruction to be executed.

When a breakpoint is encountered, you can immediately continue execution

with the go command.

NOTE: You can set up to eight user-defined breakpoints.

How Breakpoints Work: the Nitty Gritty
The 6502 implements a special instruction called brk (for break), which

generates an interrupt. The super-debugger intercepts this interrupt and

treats it as a software breakpoint. When you set a user-defined breakpoint,

the super-debugger replaces the data byte at the address with a brk

instruction ($00). By going through the super-debugger, the breakpoints are

automatically controlled and managed. Because the super-debugger saves

the byte that was replaced, whenever you view, disassemble, or otherwise

examine the area from within the super-debugger, the original data will be

shown, even though in actuality, the brk instruction is in place.

However, there is nothing stopping you from manually placing brk

instructions in your code by assembling them into your program, either

from within the super-debugger or in your source code. These brk

instructions will actually appear as brk's and will not be managed by the

super-debugger. When one of these brk instructions is encountered, the

super-debugger returns with:

BRK instruction encountered...

Super-debugger Ref. 8-64

The super-debugger will not execute or step through such a brk instruction.

NOTE: Because breakpoints are implemented by modifying data in

memory, they cannot be set in ROM. Any attempt to set a

breakpoint in ROM will cause a zero to be written to the RAM

mapped behind it.

IMPORTANT: be careful setting breakpoints in an overlay module that

might get swapped — if you set an automatic breakpoint in an overlay

module and then another module is placed over it without first removing

the breakpoint, the super-debugger will have no way of knowing the correct

module is no longer in memory and could potentially change the wrong

code when trying to remove or manage the breakpoint.

 8-65 Super-debugger Ref.

Command: b

Mini: see b in Chapter 9.

Purpose: display currently active breakpoints.

Usage: b

Note: takes no parameters.

To view the currently active breakpoints, use the b command without a

parameter. The locations of the currently set breakpoints will be

disassembled. For example:

0402 ProgStar+$02b sta dispBuff first breakpoint

3FCA GRAPH_s3 b jsr DrawBlk second breakpoint

5602 Swap +$42b sta semaphor third breakpoint

If no breakpoints are set, no lines will be printed.

Super-debugger Ref. 8-66

Command: setb

Synonym: sb

Mini: see sb in Chapter 9.

Purpose: set a breakpoint

Usage: setb [addrexp]

Note: addrexp is the address where the breakpoint should be set. If

an address is not specified, a breakpoint will be set at the

address of the current location counter (u.lc).

The setb command allows you to set a breakpoint in memory. To set a

breakpoint at a specific memory location, merely supply an addrexp as a

parameter. setb will evaluate the addrexp and set a breakpoint at that

location

Example:

setb $4fe sets a breakpoint at $4fe

setb Do_graph sets a breakpoint at Do_graph

setb @@(r.sp+l)+l sets a breakpoint at the address which will

be encountered if an rts is performed (uses

the return address on the stack).

If you use setb without a parameter, a breakpoint will be set at the current

address of the location counter (u.lc). The location counter is a value

maintained by geoDebugger. It holds the address of the most recently

opened or displayed memory location. For example, after an a command,

the location counter points to the address of the last instruction opened.

Following an a with a setb without a parameter would set a breakpoint at

this last instruction.

Example:

If the last memory location opened was $3245,

setb

would set a breakpoint at this location.

NOTE: It is often easier to set breakpoints with the a and m open mode

commands.

 8-67 Super-debugger Ref.

Command: clrb

Synonym: cb

Mini: see cb in Chapter 9.

Purpose: clear a single breakpoint

Usage: clrb [addrexp]

Note: addrexp is the address of the breakpoint to clear. If an address

is not specified, it will try to clear a breakpoint at the current

location counter (u.lc).

The clrb command allows you to clear a breakpoint in memory. To clear a

breakpoint at a specific memory location, merely supply an addrexp as a

parameter, clrb will evaluate the addrexp and clear the breakpoint at that

location. If there is no breakpoint at that location, the clrb command will

produce an error.

Example:

clrb $4001 clears a breakpoint at $4001

clrb Do_graph clears a breakpoint at Do_graph

If you use clrb without a parameter, the breakpoint at the current address of

the location counter (u.lc) will be cleared. The location counter is a value

maintained by geoDebugger. It holds the address of the most recently

opened or displayed memory location. For example, after a b command, the

location counter points to the address of the last breakpoint disassembled.

Following a b with a clrb without a parameter clear the last breakpoint

listed.

Example:

With the following breakpoint list:

0402 ProgStar+$02b sta dispBuff first breakpoint

3FCA GRAPH_s3 b jsr DrawBlk second breakpoint

5602 Swap +$42b sta semaphor third breakpoint

a clrb without a parameter would clear the breakpoint at Swap+$42.

Super-debugger Ref. 8-68

NOTE: It is often easier to clear breakpoints with the a and m open mode

commands.

 8-69 Super-debugger Ref.

Command: initb

Synonym: ib

Mini: see ib in Chapter 9.

Purpose: initialize (clear) all breakpoints.

Usage: initb

Note: takes no parameters

The initb command will clear all currently active breakpoints.

Super-debugger Ref. 8-70

Symbol Commands

Command: sym

Purpose: Display symbols in currently active modules.

Usage: sym [searchspec]

Note: Operates on the currently active modules as set with the set

command, sym with no parameter will show all symbols;

with a valid searchspec, all symbols which match the search-

specification will be shown.

To view symbols in the currently active modules, either use the sym

command without a parameter to view all the symbols or supply a

searchspec to view all the matching symbols. The symbols will be

displayed in the following format, starting with the module which has the

highest priority and proceeding in the order established with the setmod

command:

symbol value symbol value

ProgStar =$0400 DoQuit =$0518

PrintBuf =$7906 isGEOS =$848B

dblClick =$8515 year =$8516

month =$8517 day =$8518

Examples:

sym r* displays all symbols which begin with r.

sym ???_x displays all five-character symbols which end in _x.

sym *_* displays all symbols which contain an underline

character.

sym displays all symbols.

 8-71 Super-debugger Ref.

Command: setsym

Purpose: Display symbols in currently active modules.

Usage: setsym symbol,exp

Note: Operates on the module with the highest priority as set with

the setmod command, symbol is a valid symbol name and exp

is the value to equate with the symbol.

To define a new symbol or redefine an existing symbol in the module with

the highest priority, use the setsym command followed by a valid symbol, a

comma, and an expression for the value of the symbol. The symbol will be

defined in the module with the highest priority.

Examples:

setsym eric,$4000 defines a symbol eric with the value $4000.

setsym l_data,dBuff+$400 defines a symbol l_data with the value

dBuff+$400.

Super-debugger Ref. 8-72

Command: clrsym

Purpose: clears (removes) symbols in the currently active modules

Usage: clrsym searchspec

Note: Operates on the currently active modules as set with the

setmod command, clrsym with a valid searchspec, will delete

all symbols in the currently active modules which match the

search-specification.

To remove a symbol from the currently active modules, use the clrsym

command followed by a valid searchspec. All matching symbols will be

deleted from the currently active modules (as set with the setmod

command).

NOTE: the clrsym command will delete all matching symbols from the

currently active modules, not just from the module with the highest priority.

To delete a symbol from the module with the highest priority, either use the

a or m open commands or deactivate modules with the setmod command.

Examples:

clrsym ProgStar deletes the symbol ProgStar from currently

active modules

clrsym i_*,- deletes all symbols which begin with i_ from

the currently active modules

 8-73 Super-debugger Ref.

Command: initsym

Purpose: initialize (clear) all symbols in the currently active modules

Usage: initsym

Note: Operates on the currently active modules as set with the

setmod command. Takes no parameters.

The initsym command deletes all symbols from all currently active

modules.

HINT: To clear all symbols in all modules (not just the active ones) do an

initmod followed by an initsym. The initmod enables all the module's

symbols and the initsym command deletes them.

Super-debugger Ref. 8-74

Command: mod

Purpose: display module priority settings.

Usage: mod

Note: takes no parameters.

The mod command displays the current module priority settings as

established with the setmod command.

 8-75 Super-debugger Ref.

Command: setmod

Purpose: set module symbol table prioritites.

Usage: setmod [modlist]

Note: modlist is a list of module numbers separated by commas; if

the last module in the list is an asterisk (*), the remaining

modules will be added to the list in numerical order. If no

modlist is specified, the current module priority will be

printed.

When debugging a VLIR application with multiple overlay modules, the

super-debugger keeps the symbols for each module in a separate table.

Normally, when the super-debugger is searching for a symbol, whether to

display it or use it in an expression, it will first search the resident module

symbols (module zero) and then the remaining modules in numerical order.

It is often desirable, however, to change this search order. You can use the

setmod command to establish a symbol table priority. This can be used to

prevent, say, module five's symbols from showing up while module four is

being debugged in memory.

The modlist is an ordered list of module numbers. When the symbol table is

searched, the super-debugger will search the first table listed, then the

second, and so on, until the list is exhausted. If the last module in the list is

an asterisk (*), the remaining modules will be added to the list in numerical

order, setmod * will initialize the search priority to all modules in

numerical order beginning with zero (resident). This is equivalent to the

initmod command.

You can deactivate a module's symbols by leaving it out of the list and not

using the * symbol. Symbols in a deactivated module cannot be deleted or

displayed without first reactivating them.

NOTE: If you use a nonexistent module number in the modlist, the super-

debugger will report a command error.

Examples:

setmod 0,3,* search resident first then module three followed by

the remaining tables.

Super-debugger Ref. 8-76

setmod 0 only search resident. Deactivate all other modules.

setmod 5,2,3,0 search module five, then two, then three, and

finally resident (zero). Deactivate all other

modules.

setmod * equivalent to initmod.

 8-77 Super-debugger Ref.

Command: initmod

Purpose: reset module symbol table priorities to the default.

Usage: initmod

Note: Takes no parameters.

The initmod command will initialize the search priority to all modules in

numerical order beginning with zero (resident).

Example:

With a five module VLIR file — resident (0), 1, 3,10, and 11 — an

initmod will set the module priority to:

0, 1, 3, 10, 11

Super-debugger Ref. 8-78

Macro Commands

The super-debugger is based on a complex macro language. In fact, the

commands described in this chapter are special macros called system

macros. The macro language allows you to access features of the debugger

by simulating the actual keystroke input to the debugger. Virtually

everything you can accomplish by typing on the keyboard can be

automated in a macro.

Levels of the Macro Language
There are three levels to the macro language: command primitives, system

macros, and user-defined macros.

Command Primitives
The lowest and most obscure level of the macro language. A command

primitive is an at-sign @ followed by a single character (e.g., @s or @>).

All commands decompose into one or more command primitives. For a list

of command primitives, refer to Appendix C.

System Macros
All the super-debugger commands described in this chapter (such as pc and

loop) are actually system macros. System macros are usually composed of

one or two command primitives, but many are more complex.

User-defined Macros
Using the setmac command or geoWrite, you can create your own macros

to either replace or enhance the set of system macros.

How the Super-debugger Parses input
Super-debugger commands are composed of the actual command followed

by up to 10 parameters, separated by commas. When you enter a line at the

command prompt, the Super-debugger parser takes the first word (or set of

characters) as the command and the remaining text as the parameters. It

then searches the list of user-defined macros, looking for a macro which

matches the command. If not found, the super-debugger will, in turn, search

the list of system macros and finally the list of command primitives. If the

command is not found, the super-debugger prints:

*** Command Error ***

When the command is found, the super-debugger attempts to execute it.

 8-79 Super-debugger Ref.

Arguments
The super-debugger parser assigns each of the possible ten parameters to

individual names:

arg0, argl, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9

In addition, the following names refer to groups of parameters:

all0 first through tenth parameters

all1 second through tenth parameters

all2 third through tenth parameters

all3 fourth through tenth parameters

all4 fifth through tenth parameters

all5 sixth through tenth parameters

all6 seventh through tenth parameters

all7 eighth through tenth parameters

all8 ninth through tenth parameters

all9 tenth parameter

Anywhere either the arg0-arg9 or all0-all9 parameter words are used, the

super-debugger will make a straight text substitution into the macro. When

using the all0-all9 parameter words, the parameters will be substituted with

separating commas.

Creating Macros in geoWrite
You can create macros in geoWrite and have them automatically load into

the super-debugger.

The super-debugger looks for two different geoWrite files on the disk:

1: appname.dbm — where appname is the file name of the application

being debugged (the .dbm is an extender). The super-debugger will

look for this file first and load it. (For example, if the application is

called SampleSeq, the associated debugger macro file will be

SampleSeq.dbm.)

2: default.dbm — this is the defualt debugger macro file. It will be

loaded if the super-debugger loaded and NO FILE is selected in the

file-selection dialog box or if the appname.dbm file was not found.

Super-debugger Ref. 8-80

When creating a macro in geoWrite, there are a few things to be aware of:

1: A comment can be entered into the macro file in the same way they

are entered into geoAssembler: everything on a line following a

semicolon (;) will be ignored.

2: Leading and trailing whitespace is ignored, and a comment at the end

of a line is treated as whitespace. The only way to enter a _SPACE_

keystroke into a macro at the beginning or end of a line is to use the

special character combination [sp]. Spaces within a line will be

interpreted correctly, although you can always use the [sp] notation.

3: geoWrite carriage returns (at the end of lines) will not be interpreted

as presses of the _RETURN_ key. In order to enter a _RETURN_ keystroke,

use the special character combination [cr].

4: There are four other keystrokes which must be entered using special

character combinations.

keystroke notation

 [dn]

SHIFT + [up]

 [rt]

RUN/STOP [st]

For samples of geoWrite macro definitions, refer to the SampleSeq.dbm

file on your geoProgrammer disk. For information on creating macros

within the super-debugger, refer to the setmac command.

Autoexec Macro

When the super-debugger first loads, it looks for a macro named autoexec.

If the macro exists, it is executed. This can be used to set special starting

conditions or debugger options automatically at load-time.

 8-81 Super-debugger Ref.

Macro Size Limit
The macro table is 1000 bytes in size. This amounts to approximately nine-

hundred keystrokes. However, because the input buffer is 100 bytes, the

largest macro which can be defined with the setmac command is limited by

this smaller size. A macro created in geoWrite is not limited by the size of

the input buffer and can be as large as 250 keystrokes. If a macro is too

large, an error will be shown.

Super-debugger Ref. 8-82

Command: sysmac

Synonym: sys

Purpose: display system macros.

Usage: sysmac [searchspec]

Note: sysmac with no parameter will show all system macros; with

a valid searchspec, all system macros which match the

search-specification will be shown.

All geoProgrammer commands are actually system macros — permanent

macros programmed in the same macro language as user macros. Most

system macros are built-up from command primitives. A command

primitive is an at-sign (@) followed by one character. They are the lowest

level of control available to macros. By studying how the command

primitives are used in the system macros, you can begin using them in your

own user-defined macros. Command primitives tend to run faster than their

system macro counterparts. (For a list of valid command primitives, refer to

Appendix C.) Additionally, there are a few system macros which are used

internally by other system macros (e.g., bkptdo)

Viewing System Macros
To view system macros, either use the sysmac command without a

parameter to view all system macros or supply a searchspec to view all

system macros whose names match the search specification. The macros

will be displayed in the same format as the mac command.

Examples:

sysmac skip displays the system macro skip.

sysmac ?? displays all system macros whose names have only two

characters.

As an example, we will decipher the skip system macro (command) to

understand how it works. If you were to do a sysmac skip, you would see

the following:

 8-83 Super-debugger Ref.

Macro Definition

skip...... @0[cr]

 @/r.pc[cr]

 j>[cr]

 @h[cr]

 @>[cr]

@0[cr]

The @0 command primitive controls screen output. It is used by the poff

command to disable screen printing. The @0 here is equivalent to a poff.

The carriage return enters the command.

@/r.pc[cr]

The @/ is used to enter the a command's open mode (open a memory

location as assembly language). With the parameter r.pc, we are opening

the current location of the program counter, or the instruction we wish to

skip. The carriage return enters the command.

j>[cr]

Since the previous command placed us into an open mode, these macro

keystrokes will be interpreted as open-mode keystrokes. The j is equivalent

to pressing , which opens the next instruction, and the > places the

program counter at this new location. This has the effect of skipping over

one instruction without executing it. The carriage return leaves the open

mode.

@h[cr]

The @h command primitive does the opposite of the @0 primitive. It

reenables printing. This is equivalent to the pon command. The carriage

return enters the command.

@>[cr]

The @> is used by the pc command. Here we are giving it no parameter, so

the current location of the program counter will be disassembled to the

screen. This is equivalent to using pc without a parameter. The carriage

return enters the command.

Super-debugger Ref. 8-84

Command: mac

Purpose: display or remove user-defined macro

Usage: mac [searchspec]

Note: mac with no parameter will show all user-defined macros;

with a valid searchspec, all user-defined macros which match

the search-specification will be shown.

To view user-defined macros, either use the mac command without a

parameter to view all user-defined macros or supply a searchspec to view

all user-defined macros whose names match the search specification.

Examples:

mac mymac displays the user-defined macro mymac.

mac ?? displays all user-defined macros whose names have

only two characters.

The macros will be displayed in the following format:

Macro Definition

sr........ s all0[cr]

 pr[cr]

 r[cr]

 pr "------------"[cr]

The name of the macro is printed flush against the left edge of the display

under the Macro heading. The name is followed by a string of ellipses, and

the definition is displayed tabbed out under the Definition heading. Some

keystrokes undergo translation:

Key Displayed as Description

 RETURN [cr] carriage return

 [dn] down

 SHIFT + [up] up

 [rt] right

 8-85 Super-debugger Ref.

RUN/STOP [st] stop

SPACE [sp] space†

†Only leading space characters are translated to [sp].

Super-debugger Ref. 8-86

Command: setmac

Purpose: display or remove user-defined macro

Usage: setmac name

Note: name is a valid macro name. A macro name can be any

combination of letters, numbers, and the underscore symbol.

The setmac command creates user-defined macros and requires the macro

name as a parameter. The macro name can be any length and may contain

any combination of letters, numbers, and the underscore symbol. The

following are valid macro names:

123_print

_test

show

R_E_S_E_T

If you create a user-defined macro with the same name as a system macro,

the user-defined macro will take precedence. This allows you to redefine

any of the system commands to suit your preferences.

IMPORTANT: Be careful — if you redefine the mac command, you

will be unable to view or delete any macros. If you accidentally do this,

type

@;mac

which will use the clrmac command primitive to delete the erroneous mac

definition.

If you create a user-defined macro with the same name as another user-

defined macro, the old defintion will be replaced by the new one.

Creating the Macro
When you use the setmac command, the following appears:

Enter commands. Press <STOP> to end.

 8-87 Super-debugger Ref.

Most keystrokes you enter at this point will become part of the macro

definition. Some keystrokes are used by the setmac command and so

cannot be entered into the macro:

INST/DEL Deletes the character to the left of the

cursor and backspaces.

 Deletes all text up to the last carriage

return.

RUN/STOP Ends the macro definition and returns to

the command prompt.

In addition, some keystrokes will be translated into special character

combinations to improve the readability of the macro:

 [dn]

SHIFT + [up]

 [rt]

NOTE: When defining macros within the super-debugger, you cannot use

the special keystroke translations (e.g., [cr]), as you can when

creating macros in geoWrite, and expect them to be converted into

the proper keystroke. The super-debugger would interpret [cr]

as a series of four keystrokes.

Super-debugger Ref. 8-88

Command: clrmac

Purpose: remove user-defined macros.

Usage: clrmac searchspec

Note: searchspec is a valid search-specification for the macro's

name. All user-defined macros which match the search-

specification will be deleted.

The clrmac command is used to delete specific macros. All user-defined

macros whose names match the search-specification will be deleted.

clrmac sample deletes the user-defined macro sample.

clrmac sam* deletes all user-defined macros whose names

begin with sam.

 8-89 Super-debugger Ref.

Command: initmac

Purpose: initialize (delete) all user-defined macros.

Usage: initmac

Note: takes no parameters.

The initmac command deletes all user-defined macros.

Super-debugger Ref. 8-90

Command: poff

Purpose: Turn off screen printing

Usage: poff

Note: Takes no parameters

The poff command disables screen printing. A macro can use poff to hide

much of its operation, thereby avoiding screen clutter and providing an

overall cleaner display, poff is used in combination with the pon command.

Where poff disables screen printing, pon will re-enable it. Printing is

automatically enabled whenever a macro returns to the command prompt.

 8-91 Super-debugger Ref.

Command: pon

Purpose: Turn on screen printing

Usage: pon

Note: Takes no parameters

The pon command is used in combination with the poff command. Where

poff disables screen printing, pon will re-enable it. Printing is automatically

enabled whenever a macro returns to the command prompt. pon is only

useful in the context of a macro.

Super-debugger Ref. 8-92

Command: if

Purpose: macro conditional.

Usage: if exp,macname

Note: exp is a valid expression (usually a logical expression) and

macname is the macro or command to execute if the

expression evaluates to true (non-zero).

Although the if command can be used outside of a macro, it is especially

useful within macros because it allows the macro to dynamically base its

action upon the evaluation of some expression.

When the if command is encountered, the expression is evaluated. If the

expression is true (non-zero), the current macro is suspended and the macro

specified in the if is executed; when the conditional macro is done and ends

normally (without the stop command), execution of suspended macro

continues. If the expression is false, the current macro continues without

executing the conditional macro.

Example:

if (u.lc>=Strt && u.lc<=End),pr "in data structure"

If the location counter is somewhere in data area,

print a message.

 8-93 Super-debugger Ref.

Command: for

Purpose: macro conditional.

Usage: for range,macname

Note: range is a valid range and macname is the macro or command

to execute for each value in the range (the range is inclusive).

The for command is analogous to the BASIC for-next loop: it allows a

command or macro to be executed any number of times, using a counter

(u.fn) to hold the current value of the range. The for command can be used

from the command line, but it is especially useful within macros.

As an example:

for .l:.10,dis

would display 10 screens of disassembled code using the dis command.

The for command uses the u.fn user register to maintain the current value

of the counter. This allows you to use the value of the counter in an

expression. Note, however, that because there is only one u.fn register, you

cannot nest for loops. That is: a for loop which calls a macro which

contains another for loop will not operate correctly.

Super-debugger Ref. 8-94

Command: stop

Purpose: stop macro execution and return to the command prompt.

Usage: stop

Note: takes no parameters.

The stop command provides a general-purpose way to abort a macro.

Anytime a stop is encountered, control is immediately returned to the

command prompt.

 8-95 Super-debugger Ref.

Memory Commands

Command: find

Purpose: Find a pattern in memory.

Usage: find findrange,exp[,exp]

Note: findrange is either a standard range which establishes the

range of memory which will be searched, or an asterisk (*)

which establishes all of memory as the search range

($0000:$ffff). The expression list following the range is a

pattern of bytes to search for; any value larger than one byte

(>$ff) will be truncated to a byte.

The find command searches through memory looking for a specific pattern

of byte values. Each time the pattern is found, the location of the first byte

of each instance found will be displayed in the same format as the m

command.

Examples:

find DataBuf:#2000,%11001001,'a'&$80

Searches 2000 bytes beginning at DataBuf, looking for

a binary %11001001 followed by an ASCII "a" with the

high bit set.

find in_string+1:#@(in_string),NULL

Searches a string input buffer looking for the end of

the string as marked by a NULL ($00); the first byte of

the input buffer holds the maximum length of the

string.

To search for word values, use the low-byte and high-byte operators. For

example, the following will find instances of the address ProgStar in the

range $3000-$4000 (remember, words are stored in low/high order):

find $3000:$4000,[ProgStar,]ProgStar

To search for strings, use a list of characters. For example, the following

will find instances of the word "disk" in all of memory:

find *,'d','i','s','k'

Super-debugger Ref. 8-96

Command: fill

Purpose: Fill memory with a pattern

Usage: fill range,exp[,exp]

Note: range establishes the range of memory which will be filled.

The expression list following the range is a pattern of bytes to

fill with; any value larger than one byte (>$ff) will be

truncated to a byte.

The fill command deposits a specific pattern of byte values into a range of

memory.

Examples:

fill buffer:buff_end,0 clears a buffer to all zeros.

To fill with word values, use the low-byte and high-byte operators. For

example, the following will deposit the word value FillWord in the range

$3000-$4000 (remember, words are stored in low/high order):

fill $3000:$4000,[FillWord,]FillWord

To fill with a string, use a list of characters. For example, the following

will fill the range $3000-$4000 with the word "GEOS"

fill $3000:$4000,'G','E','O','S'

NOTE: When filling with a pattern of more than one byte, the fill

command will never exceed the given range, even if the pattern is

incomplete when it stops.

 8-97 Super-debugger Ref.

Command: copy

Purpose: copies a block of memory from one location to another

Usage: copy range,addrexp

Note: range is the range of memory to copy from and addrexp is

the starting address of the copy destination.

The copy command copies a block of memory from one area to another.

The source is unaffected unless the areas overlap, in which case the source

will partially overwrite itself. The copy command is intelligent enough to

avoid overwriting bytes in the source before they are copied.

Examples:

copy testdata:#datalen,datstruct

copies some test data (of length datalen) into a data

structure.

copy $00:$ff,$3000

copies all of zero page to $3000

copy $600:100,$608

copies 100 bytes at $600 to $608, overwriting the source

(essentially, moving the first 100 bytes up 8 bytes).

Super-debugger Ref. 8-98

Command: diff

Purpose: compares two blocks of memory, byte-by-byte.

Usage: diff range,addrexp

Note: range is the range of memory to compare from (source) and

addrexp is the starting address of the range of memory the

first range will be compared against (destination).

The diff commmand does a byte-by-byte compare between two blocks of

memory. Any differences are displayed in the following format:

Source Destination

0200 .byte $60 <-> 040A .byte $FF

0210 .byte $00 <-> 041A .byte $A1

The mismatching byte at the source is displayed first, followed by the

mismatching byte at the destination.

Examples:

diff $1000:$lfff,$2000 compares the range of memory from $1000

to $lfff with the range at $2000 to $2fff.

diff r0L,r1L compares the byte at r0L with the byte at

r1L.

HINT: If you keep all your variables together, you can find which are

modified by a given routine by first using the copy command to copy them

to a free area in memory, calling the routine, and then using the diff

command to find out which ones have changed. For example:

First make a copy of the variable space:

copy VarStart:VarEnd,FreeRAM

Then execute the routine. When it returns compare the two blocks:

diff VarStart:VarEnd,FreeRAM

 8-99 Super-debugger Ref.

Special Commands

Command: setu

Purpose: set user variable.

Usage: setu [u.]ureg,exp

Note: ureg is the user register to set (note that the u. is optional):

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | lc | ws | wc

exp is the word value to store in the register.

The setu command is the only way to set a user register. Be careful when

changing the u.lc, u.ws, and u.wc counters as the super-debugger uses them

extensively.

Examples:

setu u.0,r.sp sets user register 0 to the word value of the stack

pointer.

setu 7,@(u.1) sets user register 7 to the byte value pointed to by

the address in user register 1.

IMPORTANT: Changing the value of u.ws (window size) can lead to

unpredictable results. Currently this value is a constant 24, but in future

implementations this may change.

HINT: In a macro, setting the u.wc register to the value of the u.ws register

(setu u.wc,u.ws) will cause the "MORE" prompt to be displayed after the

next line which is printed. This won't work outside of a macro because the

u.wc register is reset when control returns to the command prompt.

Super-debugger Ref. 8-100

Command: pc

Mini: see pc in Chapter 9.

Purpose: view or set program counter (PC, r.pc).

Usage: pc [addrexp]

Note: addrexp is the address to set the program counter at; the new

address of the program counter will be disassembled to the

screen. If an address is not specified, the current value of the

program counter will be disassembled to the screen.

The pc command is a quick and easy way to set the program counter. As a

side benefit, the pc command (with or without a parameter) will also set the

location counter (u.lc) to the address of the program counter, thereby

causing a subsequent command which uses that value, such as dis or a, to

begin at the program counter.

 8-101 Super-debugger Ref.

Command: rboot

Purpose: reboot GEOS.

Usage: rboot

Note: takes no parameters.

If GEOS becomes corrupted during debugging, a standard quit would

likely crash the system, leaving no alternative but a power-down. The

rboot command attempts to reboot GEOS and return to the deskTop,

thereby salvaging the current contents of the RAM-expansion unit and

saving the time necessary to reboot GEOS from BASIC. Before actually

leaving, you will be to asked to confirm your intention to reboot:

Reboot GEOS (y/n)?

Typing _Y_ will exit; typing _N_ or any other key will return to the command

prompt.

rboot is a last-ditch effort to save the system and should not be used as an

everyday alternative to the quit command.

Super-debugger Ref. 8-102

Disk Commands

Command: drivea, driveb, disk

Synonym: da for drivea, db for driveb, and di for disk.

Mini: see da, db, and di in Chapter 9.

Purpose: set or determine current drive.

Usage: drivea

 driveb

 disk

Note: takes no parameters.

The drivea and driveb commands open the disk in drive A or drive B,

respectively, and make that drive the current drive. Subsequent disk

commands will access the current drive, disk merely shows the current

drive and the name of the disk in the current drive. These commands call

the GEOS SetDevice and OpenDisk routines.

 8-103 Super-debugger Ref.

Command: dir

Purpose: Display directory of the disk in the current drive.

Usage: dir

Note: takes no parameters.

The dir command shows the directory of the disk in the current drive. The

current drive is set with the drivea or driveb command. The directory

display is in the following format:

Filename Track Sector

SamSeq.......... $01 $10

SamSeqHdr....... $04 $06

SamSeq.Ink...... $10 $0B

MyData.......... $0A $07

dir uses a number of system macros, one of which, fileinfo, deserves

special mention, fileinfo is executed each time a directory entry needs to be

printed. When called, user-register nine (u.9) is an address pointing to a

valid directory entry. The directory entry is a 32-byte entity which is

described in detail in The Official GEOS Programmer's Reference Guide.

By defining your own version of fileinfo as a user macro, you can

customize the way the directory entries are displayed. Whenever dir calls

fileinfo, your version will take precedence.

Super-debugger Ref. 8-104

Command: getb

Synonym: gb

Mini: see gb in Chapter 9.

Purpose: get block from the disk in the current drive.

Usage: getb

Note: track is a valid track number exp and sector is a valid sector

number exp for the current drive. If the track and sector are

not provided, the values in the GEOS r1L and r1H registers

will be used.

The getb command reads one sector from the current drive into

diskBlkBuf at $8000 and then executes a dumpd command to display the

sector. The values of the track and sector number read will be left in r1L

and r1H; a subsequent putb could then be used to write out the sector just

read, getb calls the GEOS GetBlock routine.

getb $12,$0 get the first block of the directory.

 8-105 Super-debugger Ref.

Command: putb

Synonym: pb

Mini: see pb in Chapter 9.

Purpose: get block from the disk in the current drive.

Usage: putb

Note: track is a valid track number exp and sector is a valid sector

number exp for the current drive. If the track and sector are

not provided, the values in the GEOS r1L and r1H registers

will be used.

The putb command writes one sector from diskBlkBuf at $8000 to the disk

in the current drive. The values of the track and sector number written will

be left in r1L and r1H. putb calls the GEOS PutBlock routine.

IMPORTANT: Be careful using putb, especially with no parameters; it is

very easy to destroy a disk by writing to the wrong track and sector,

especially if r1L or r1H contain bad values.

Example:

putb .15,.5 put a block at track 15, sector 5.

HINT: getb and putb can be used together. You can read in a specific

sector with getb, modify it in diskBlkBuf (without affecting r1L and r1H)

and then write it back out again by using putb with no parameters.

Super-debugger Ref. 8-106

Command: getn

Purpose: get next logical block from disk in current drive.

Usage: getn

Note: takes no parameters.

The getn command uses the link (track, sector) information of the block

currently in diskBlkBuf ($8000, $8001) to do a getb for the next logical

sector in the chain. This command assumes there is a valid sector in

diskBlkBuf.

 8-107 Super-debugger Ref.

Command: getchain

Purpose: get and display a chain of sectors from the current drive

Usage: getchain [track,sector]

Note: track is a valid track number exp and sector is a valid sector

number exp for the current drive. If the track and sector are

not provided, the values in the GEOS r1L and r1H registers

will be used.

The getchain command combines the getb and getn commands. It

successively reads in and displays blocks which are logically linked. If the

track and sector are not supplied, the values in rlL and rlH will be used.

rlL and rlH are set to valid track and sector numbers by getb and putb.

The values of the track and sector numbers of the last block read will be left

in rlL and rlH.

Example:

getchain .15,.1 gets a chain of blocks beginning at track 15, sector 1.

Super-debugger Ref. 8-108

Command: dumpd

Synonym: dd

Mini: see dd in Chapter 9.

Purpose: dump disk block buffer (diskBlkBuf)

Usage: dumpd

Note: takes no parameters.

The dumpd command dumps all 256 bytes of the disk block buffer

(diskBlkBuf) at address $8000 in the standard dump format.

 9-1 Mini-debugger Reference

Chapter 9: Mini-debugger

Reference

If you do not have a RAM-expansion unit connected to your Commodore,

or you hold down the _RUN/STOP_ key while geoDebugger is loading,

geoDebugger will automatically configure itself as a mini-debugger. The

mini-debugger is a subset of the super-debugger and supports many of the

more useful commands. The biggest difference between the mini-debugger

and the super-debugger is the absence of expressions, macros, and symbols.

With these limitations in mind, you will quickly understand how the

minidebugger commands correspond to their usually more powerful super-

debugger counterparts. (For more information on the super-debugger, refer

to Chapter 8.)

This is a reference chapter for the mini-debugger configuration of

geoDebugger. Because many of the elements of the mini-debugger are

similar or identical to elements in the super-debugger, many descriptions

refer the reader to the appropriate sections in Chapter 8.

Although this is primarily a reference chapter, it would be a good idea to

read it through completely at least once. For a general overview and

information on using the mini-debugger from the GEOS deskTop, refer to

Chapter 7.

Memory Usage

The mini-debugger resides entirely in RAM just below the background

screen buffer. Because of this you cannot use any memory in the range

$3e00 to $5fff. Be sure that your psect and ramsect data areas do not extend

into this region.

Case Sensitivity

The mini-debugger is case-insensitive. You may type commands and

hexadecimal letters in upper- or lower-case, or any mixture thereof, and the

debugger will interpret them correctly. There is one exception: when

depositing ASCII strings with the m open-mode command, the letter case is

maintained; a lower-case "a" will be deposited as a lower-case ASCII

value.

Mini-debugger Reference 9-2

Expressions and Numeric Constants

The mini-debugger does not have a complex expression evaluator like the

super-debugger, and the only numerical expressions it understands are

hexadecimal numbers. You cannot add, subtract, multiply, or perform

logical operations.

The hexadecimal numbers consist of an optional dollar sign ($) followed by

a string of hexadecimal digits (0-9, a-f). The number cannot exceed 16-bits

which limits it to a maximum of four hexadecimal digits.

Examples: $4f9c

 fff

 3ca4

 $c

NOTE: When assembling code, a lone A or a as in lsr a will be

interpreted as accumulator addressing mode as opposed to a $a;

use the $ radix symbol to avoid this confusion.

Basic Operation

The Command Prompt
The basic geoDebugger command prompt is a greater-than (>) symbol in

the leftmost column at the bottom of the screen. Whenever this prompt is

displayed, geoDebugger is idle, awaiting a command. You can type

commands in at this point. The following keystrokes have an effect in this

mode:

RETURN Enters the current line; the mini-debugger will

attempt to interpret and process the command.

DEL Deletes the character to the left of the cursor.

 Erases the current input line.

 9-3 Mini-debugger Reference

, Reprints the last command on the current input

line, which allows the command to be edited

and then re-entered with _RETURN_. The comma

must be typed as the first character on the input

line.

. Repeats the last command. This is similar to

pressing _,_ followed by _RETURN_. The period

must be typed as the first character on the input

line.

These keystrokes are identical to those found in the super-debugger.

Hot Key Entry and Cancel
When your program is running, the _RESTORE_ key acts as a "hot key"; it will

suspend execution and enter the debugger. When you are in the mini-

debugger, _RESTORE_ will cancel a command and return to the input prompt

at any time. Because of a hardware limitation in the Commodore keyboard,

you may have to press _RESTORE_ a couple of times to get it to respond.

The More Prompt
When a command fills the screen with text, the print routine will pause and

display a "more" prompt. At the prompt you can press the space bar to get

another full screen of text or you can press _RETURN_ to get just one more

line.

SPACE full screen of text.

RETURN one more line.

Viewing the GEOS Application Screen
You can switch between the mini-debugger text screen and the GEOS

application's hi-res screen any time the > command prompt is displayed and

the cursor is in the first column by the pressing the _F7_ key. This is

different from the super-debugger which lets you view the application's

screen at any time, not just at the command prompt. You can return to the

debugger screen by pressing any other key.

NOTE: In order to save memory, whenever you view the application

screen the mini-debugger will clear all but the most recently printed line

from the debugger screen.

Mini-debugger Reference 9-4

EnterDeskTop Vector Trap
The mini-debugger sets a permanent breakpoint at the GEOS

EnterDeskTop vector. If an application attempts to exit by calling

EnterDeskTop, the following will be printed:

*** EnterDeskTop vector encountered ***

C22C 00 >brk

When the mini-debugger is running, an application cannot be allowed to

exit to the deskTop directly. geoDebugger must first remove itself in order

for the deskTop to function properly. To return to the deskTop, use the

mini-debugger q (quit) command.

 9-5 Mini-debugger Reference

Mini-debugger Command Summary

General Commands

q Exits geoDebugger and returns to the deskTop.

g0 Disable GEOS screen during stepping,

g1 Enable GEOS screen during stepping.

General Display Commands

r Display processor registers.

d Display a block of memory in hex and ASCII format.

w Disassemble a window of code from program counter down.

Open Modes (register and memory examination and modification)

a Open memory as assembly language code.

m Open memory as data.

rg Open processor registers.

fg Open processor status register as individual flags.

Execution Commands
go Start full speed execution of program,

rt Set breakpoint and go.

js Execute subroutine at address (perform a jsr).

s Single-step through current level and subroutines.

t Single-step through current level and top-step through

subroutines.

nx Proceed until next instruction is reached (for exiting loops).

sm Stopmain; stop execution in GEOS MainLoop.

Breakpoint Commands
b Display breakpoints.

sb Set a breakpoint.

cb Clear a breakpoint.

ib Initialize breakpoint table, clearing all breakpoints.

Special Commands
pc View and set program counter.

Disk Commands
da Make drive A the current drive.

db Make drive B the current drive.

di Display name of disk in current drive.

gb Get disk block from current drive.

pb Put disk block to current drive.

dd Display disk buffer in hex and ASCII format.

Mini-debugger Reference 9-6

Syntax Notation

The following conventions are used in the syntax descriptions of the mini-

debugger commands. Much of this notation will be familiar from

geoAssembler and geoLinker.

hexconst a hexadecimal constant: a one or two byte number

composed of hexadecimal digits optionally preceded by a

$.

string a string of ASCII characters enclosed in double-quotes.

[] square brackets indicate an optional item which may

appear zero or one times.

{ } curly braces indicate an optional item which may appear

one or more times.

| a vertical line indicates a choice and can be read as "or"

In addition, all sample output from the mini-debugger will be printed in a

bold courier font so that the spacing will closely match the standard

Commodore text mode.

 9-7 Mini-debugger Reference

General Commands

Command: q

Synonym: q, e

Super: see quit in Chapter 8.

Purpose: leave the mini-debugger and return to the GEOS deskTop.

Usage: q

Note: takes no parameters.

q leaves the mini-debugger and returns to the GEOS deskTop by disabling

itself and performing a standard application exit (calls EnterDeskTop).

The program space will be cleared. If GEOS was corrupted during the

debugging session (trampling the memory from $c000 to $a000 is a great

way to do this), q will very likely crash the system, leaving you no

alternative but to reboot by turning off the power. Unlike the super-

debugger, the mini-debugger does not support the rboot command.

Before actually leaving, you will be asked to confirm your intention to quit:

Exit to deskTop (y/n)?

Typing _Y_ will exit; typing _N_ or any other key will return to the command

prompt.

Mini-debugger Reference 9-8

Command: g0, g1

Super: see opt in Chapter 8.

Purpose: enable/disable GEOS screen during stepping.

Usage: g0

 g1

Note: takes no parameters.

Normally, when stepping with the mini-debugger s, t, or nx commands, the

application's GEOS screen is not displayed. The g1 command will enable

the GEOS screen, causing it to be displayed while stepping. To again

disable the GEOS screen, use the g0 command.

g0 is equivalent to the super-debugger opt 5,0.

g1 is equivalent to the super-debugger opt 5,1.

 9-9 Mini-debugger Reference

Display Commands

Command: r

Super: see r in Chapter 8.

Purpose: display processor registers.

Usage: r

Note: takes no parameters.

The r command displays all the processor registers, including the MM

(memory map) pseudo-register. The output is identical to the super-

debugger r command (refer to r in Chapter 8).

See also: rg and pc.

Mini-debugger Reference 9-10

Command: d

Super: see dump in Chapter 8.

Purpose: dumps 128 ($80) bytes to the screen in hexadecimal and

ASCII.

Usage: d [hexconst]

Note: hexconst is the starting address for the dump. If no address is

specified, the value of the current location counter will be

used.

d is used to view 128 bytes of memory at once. The ouptut is identical to

the super-debugger dump command (refer to dump in Chapter 8).

 9-11 Mini-debugger Reference

Command: w

Super: see w in Chapter 8.

Purpose: disassembles a window of code at the program counter.

Displays five lines of code, starting with the current program

counter location.

Usage: w

Note: takes no parameters.

The w command disassembles five lines of code beginning with the current

program counter. It is useful for seeing the instructions about to be

executed. The output is in the standard disassembly format as described

under the mini-debugger a command.

Example:

With the program counter at $0404, a w might produce the following

output:

hex

address hex codes disassembly

0404 A9 04 > lda #$04

0406 85 03 sta $03

0408 A9 28 lda #$28

040A 85 02 sta $02

040C 20 36 Cl jsr $C136

See also: pc.

Mini-debugger Reference 9-12

Open Modes

Command: a

Super: see a in Chapter 8.

Purpose: open memory for assembly language code.

Usage: a [hexconst]

Note: hexconst is the address to open. If no parameter is specified,

the current address pointed to by the location counter will be

opened.

The a command is the general disassemble, assemble, and modify open

command. The mini-debugger version of a operates much like the super-

debugger version.

When you open a memory location with a, you are placed in an interactive

mode where all keystrokes are intercepted and handled specially. In a-mode

you are able to disassemble code forward and backward and modify

instructions at any point.

Output for the mini-debugger a command is in the following general

format:

hex

address hex codes flag disassembly

0404 A9 C0 > lda #$C0

0406 85 2F sta $2F

0408 A9 04 lda #$04

040A 85 03 sta $03

040C A9 28 lda #$28

hex address is the absolute address of the instruction. Instructions are either

one, two, or three bytes in length.

hex codes displays the hexadecimal bytes which comprise the instruction,

as in the following example:

0408 A9 28 lda #$28

 9-13 Mini-debugger Reference

where A9 is the hexadecimal value for lda immediate, and 28 is the

hexadecimal value for #$28.

flag is a field with three positions, each of which has a unique possible

symbol:

b breakpoint set at this instruction.

> program counter points at this instruction.

* Current opened instruction.

disassembly is a disassembly of the bytes at the address. If the location does

not contain a valid 6502 opcode, ??? will be displayed.

Mini-debugger Open a-mode Keystrokes

When memory is opened with the a command, the mini-debugger is

intercepting keystrokes and responding at that level. When an invalid

keystroke or a bad entry is detected, the cursor will briefly flash as a ?

symbol. When the cursor is on the asterisk in the flag field, the following

keystrokes will have an effect:

SPACE enter deposit mode at this location (see

deposit description below)

or _J_ close current instruction and open next

instruction.

SHIFT + or _K_ close current instruction and open previous

instruction.

 reopen current instruction.

RETURN close current instruction and return to

command prompt.

M switch from a-mode to m-mode. See: m

command.

B set breakpoint at this address.

 > set program counter to this address.

Mini-debugger Reference 9-14

Deposit a-mode
When you press _SPACE_ at the asterisk prompt, the disassembly field clears

and the cursor is placed into it. At this point you can enter a new 6502

instruction. As on the command line, _DEL_ deletes the character to the left

of the cursor and clears the input line.

To enter a line and leave deposit mode, use one of the following keystrokes:

 enter current line and reopen current

instruction.

 enter current line and open next instruction.

SHIFT + enter current line and open previous

instruction.

RETURN enter current line and return to command

prompt.

If an error is detected in the entry, the line will not be entered and the cursor

will briefly flash as a ?.

To leave deposit mode without entering a line, do one of the following:

1. Enter an empty line or a line which contains only spaces.

2. Use _DEL_ to backspace out of the disassembly/deposit field.

a-mode Deposit Syntax
The a-mode deposit entry must be a valid 6502 opcode/operand

construction as in geoAssembler. Because the mini-debugger does not

support expressions or any radix other than hexadecimal, any numbers in

the operand must conform to this limitation. Also: you cannot type 40

characters. If you exceed this limit, the cursor will briefly flash as a ?.

Example deposit entries:

lda #$fe opcode and hexconst immediate value.

sei opcode alone.

jsr 33ef opcode and hexconst address.

 9-15 Mini-debugger Reference

Command: m

Super: see m in Chapter 8.

Purpose: open memory for assembly language code.

Usage: m [hexconst]

Note: hexconst is the address to open. If no parameter is specified,

the current address pointed to by the location counter will be

opened.

m is the general view and modify data command. The mini-debugger

version of m operates much like the super-debugger version.

When you open a memory location with m, you are placed in an interactive

mode where all keystrokes are intercepted and handled specially. In

m-mode you are able to view data forward and backward and modify it at

any point.

Output for the m command is in the following general format:

hex

address hex codes aster mode data

046B 53 .byte $53

046C 61 .byte $61

046D 6D .byte $6D

046E 70 .byte $70

046F 6C .byte $6C

0470 65 * .byte $65

hex address is the absolute address of the data.

hex code is the hexadecimal bytes which comprise the data, as in the

following examples:

0470 65 .byte $65

046D 6D 70 .word $706D

Mini-debugger Reference 9-16

flag is a field with three positions, each of which has a unique possible

symbol:

b breakpoint set at this instruction.

> program counter points at this instruction.

* Current opened instruction.

mode is the data display mode, either .byte or .word. Data shown in

word format is displayed in low/high order as in the following example:

046D AboutTex+$02 .word $706D

data is the actual data at the current address. The data will not undergo

symbol substitution unless you request it specifically with the _S_ key (see

below).

Mini-debugger Open m-mode Keystrokes
When data is opened with the m command, the mini-debugger is

intercepting keystrokes and responding at that level. When an invalid

keystroke or a bad entry is detected, the cursor will briefly flash as a ?

symbol. When the cursor is on the asterisk in the flag field, the following

keystrokes will have an effect:

SPACE enter deposit mode at this location (see

deposit description below)

or _J_ close current instruction and open next

instruction.

SHIFT + or _K_ close current instruction and open previous

instruction.

 reopen current instruction. (useful for re-

reading a hardware location with changing

values).

RETURN close current instruction and return to

command prompt.

D _B_ display data as byte.

D _W_ display data as word.

A switch from m-mode to a-mode. See: a

command.

 9-17 Mini-debugger Reference

B set breakpoint at this address, (not extremely

useful when looking at data.)

> set program counter to this address, (not

extremely useful when looking at data.)

Deposit m-mode
When you press _SPACE_ at the asterisk prompt, the data field clears and the

cursor is placed into it. At this point you can enter new data for this

address. As on the command line, _DEL_ deletes the character to the left of

the cursor and clears the input line.

To enter a line and leave deposit mode, use one of the following keystrokes:

 enter current line and reopen current

instruction.

 enter current line and open next instruction.

SHIFT + enter current line and open previous

instruction.

RETURN enter current line and return to command

prompt.

If an error is detected in the entry, the line will not be entered and the cursor

will briefly flash as a ?.

To leave deposit mode without entering a line, do one of the following:

1. Enter an empty line or a line which contains only spaces.

2. Use _DEL_ to backspace out of the disassembly/deposit field.

m-mode Deposit Syntax
m-mode deposits for .byte and .word deposits is slightly different:

.byte string | hexconst {,hexconst}

You cannot deposit more than 10 bytes (10 characters or 10 values) in a

single deposit. Each hexconst must be a one-byte value ($00-$ff).

.word hexconst{,hexconst}

You cannot deposit more than 10 words in a single deposit.

Mini-debugger Reference 9-18

The full deposit entry may be up to 40 characters in length. If you try to

type beyond the 40 character limit, the cursor will briefly flash as a ?.

Example deposit entries:

.byte "This is a string"

.byte $00,$FF,37

.word 6543,FF,00C0,1A,C

 9-19 Mini-debugger Reference

Command: rg

Super: see reg in Chapter 8.

Purpose: open registers for viewing and modification.

Usage: rg

Note: takes no parameters.

rg allows the display and modification of all the 6502 registers and the

Commodore memory map register. When you open registers with the rg

command, you are placed in an interactive mode where all keystrokes are

intercepted and handled specially. In rg-mode you are able to view each

register in turn and modify any one at will.

Output for the rg command is identical to the super-debugger reg

command, except that the value in the PC register is not shown in symbolic

form.

Mini-debugger Open rg-mode Keystrokes
When data is opened with the rg command, the mini-debugger is

intercepting keystrokes and responding at that level. When an invalid

keystroke or a bad entry is detected, the cursor will briefly flash as a ?

symbol. The following keystrokes have an effect.

SPACE enter deposit mode at this location (see

deposit description below)

or _J_ close current instruction and open next

instruction.

SHIFT + or _K_ close current instruction and open previous

instruction.

RETURN close current instruction and return to

command prompt.

Deposit rg-mode
When you press _SPACE_ at the asterisk prompt, the data field clears and the

cursor is placed into it. At this point you can enter new data for this

register. As on the command line, _DEL_ deletes the character to the left of

the cursor and clears the input line.

To enter a line and leave deposit mode, use one of the following keystrokes:

Mini-debugger Reference 9-20

 enter current line and reopen current

instruction.

 enter current line and open next instruction.

SHIFT + enter current line and open previous

instruction.

RETURN enter current line and return to command

prompt.

If an error is detected in the entry, the line will not be entered and the cursor

will briefly flash as a ?.

To leave deposit mode without entering a line, do one of the following:

1. Enter an empty line or a line which contains only spaces.

2. Use _DEL_ to backspace out of the disassembly/deposit field.

rg-mode Deposit Syntax
rg-mode deposits have the following syntax:

hexconst

If the register size is byte, only the low-byte of the expression will be stored

in the register.

 9-21 Mini-debugger Reference

Command: fg

Super: see flag in Chapter 8.

Purpose: open individual flags in the processor status register (ST).

Usage: fg

Note: takes no parameters.

The fg command is identical to the super-debugger flag command in all

respects except that it does not take a parameter (refer to flag in Chapter 8).

Mini-debugger Reference 9-22

Execution Commands

Command: go

Super: see go in Chapter 8.

Purpose: Begin full-speed execution of program.

Usage: go [hexconst]

Note: hexconst is the address to begin execution; if no address is

given, execution will begin at the current location of the

program counter (PC).

The go command starts full speed execution of the program. The GEOS

screen is displayed and a jmp to the proper address is simulated. Control

will not return to the mini-debugger unless a breakpoint or a brk instruction

is encountered or the _RESTORE_ key is pressed.

Examples:

go 450 begins execution at $450.

go begins execution at the program counter.

 9-23 Mini-debugger Reference

Command: rt

Super: see runto in Chapter 8.

Purpose: execute until a given address is reached.

Usage: rt hexconst

Note: hexconst is the address where execution will stop. If the

hexconst is omitted, the current value of the location counter

will be used.

The rt command automates the common debugging procedure of setting a

breakpoint, performing a go to current location of the program counter, and

clearing the breakpoint when control returns to the debugger. If no stop

address is specified, the current value of the location counter will be used.

This allows you to run to the address of the last memory location

disassembled.

Example:

rt 251e sets a breakpoint at $251e and executes a go to

the current location of the program counter.

Mini-debugger Reference 9-24

Command: js

Super: see jsr in Chapter 8.

Purpose: Execute a subroutine (jsr).

Usage: js hexconst

Note: hexconst is the address of the subroutine to execute.

The js command allows you to execute a subroutine. The mini-debugger

will simulate a top-step (see t command) through an actual jsr instruction.

The routine at hexconst is expected to return with an rts.

Example:

js $680 executes a jsr to the routine at $680. Control

returns to the mini-debugger when an rts is

encountered.

 9-25 Mini-debugger Reference

Command: s

Super: see s in Chapter 8.

Purpose: single step through instructions and into subroutines.

Usage: s

Note: takes no parameters.

The mini-debugger s command is identical to the super-debugger s

command in all respects except that it will not accept a conditional

breakpoint expression (refer to s in Chapter 8).

Mini-debugger Reference 9-26

Command: t

Super: see t in Chapter 8.

Purpose: single-step through instructions and top-step through

subroutines.

Usage: t

Note: takes no parameters.

The mini-debugger t command is identical to the super-debugger t

command in all respects except that it will not accept a conditional

breakpoint expression (refer to t in Chapter 8).

 9-27 Mini-debugger Reference

Command: nx

Super: see next in Chapter 8.

Purpose: single-step through instructions and top-step through

subroutines.

Usage: nx

Note: takes no parameters.

The mini-debugger nx command is functionally identical to the super-

debugger next command (refer to next in Chapter 8).

Mini-debugger Reference 9-28

Command: sm

Super: see stopmain in Chapter 8.

Purpose: Continue program execution until a safe point in the GEOS

MainLoop, then return to the mini-debugger.

Usage: sm

Note: takes no parameters.

The mini-debugger sm command is functionally identical to the super-

debugger stopmain command (refer to stopmain in Chapter 8).

IMPORTANT: If you break into the debugger with the _RESTORE_ key

while interrupt code is being executed and you do not do an sm, a

subsequent gb or pb could destroy a disk.

 9-29 Mini-debugger Reference

Breakpoint Commands

The mini-debugger and the super-debugger use the same basic algorithms

for managing breakpoints. Refer to "Breakpoint Commands" in Chapter 8

for a complete discussion of breakpoints.

Command: b

Super: see b in Chapter 8.

Purpose: display currently active breakpoints.

Usage: b

Note: takes no parameters.

To view the currently active breakpoints, use the b command without a

parameter. The locations of the currently set breakpoints will be

disassembled. For example:

0402 8D 34 40 b> sta $4034 first breakpoint

3FCA 20 00 20 b jsr $2000 second breakpoint

5602 85 F8 b sta $F8 third breakpoint

If no breakpoints are set, no lines will be printed.

Mini-debugger Reference 9-30

Command: sb

Super: see setb in Chapter 8.

Purpose: set a breakpoint

Usage: sb [hexconst]

Note: hexconst is the address where the breakpoint should be set. If

an address is not specified, a breakpoint will be set at the

address of the current location counter.

The sb command allows you to set a breakpoint in memory. To set a

breakpoint at a specific memory location, merely supply a hexconst as a

parameter, sb will set a breakpoint at that location.

Example:

sb $4fe sets a breakpoint at $4fe

If you use sb without a parameter, a breakpoint will be set at the current

address of the location counter . The location counter is a value maintained

by geoDebugger. It holds the address of the most recently opened or

displayed memory location. For example, after a w command, the location

counter points to the address of the last instruction disassembled. Following

a w with a sb without a parameter would set a breakpoint at this last

instruction.

Example:

If the last memory location opened was $3245,

sb

would set a breakpoint at this location.

NOTE: It is often easier to set breakpoints with the a and m open mode

commands.

 9-31 Mini-debugger Reference

Command: cb

Super: see clrb in Chapter 8.

Purpose: set a breakpoint

Usage: cb [hexconst]

Note: hexconst is the address of the breakpoint to clear. If an

address is not specified, the breakpoint at the current location

counter will be cleared.

The cb command allows you to clear a breakpoint in memory. To clear a

breakpoint at a specific memory location, merely supply a hexconst as a

parameter, cb will clear the breakpoint at that location. If there is no

breakpoint at that location, the cb command will produce an error.

Example:

cb $4001 clears a breakpoint at $4001

If you use cb without a parameter, the breakpoint at the current address of

the location counter will be cleared. The location counter is a value

maintained by geoDebugger. It holds the address of the most recently

opened or displayed memory location. For example, after a b command, the

location counter points to the address of the last breakpoint disassembled.

Following a b with a cb without a parameter clears the last breakpoint

listed.

NOTE: It is often easier to clear breakpoints with the a and m open mode

commands.

Mini-debugger Reference 9-32

Command: ib

Super: see initb in Chapter 8.

Purpose: initialize (clear) all breakpoints.

Usage: ib

Note: takes no parameters

The ib command will clear all currently active breakpoints.

 9-33 Mini-debugger Reference

Special Commands

Command: pc

Super: see pc in Chapter 8.

Purpose: view or set program counter.

Usage: pc [hexconst]

Note: hexconst is the address to set the program counter at; the new

address of the program counter will be disassembled to the

screen. If an address is not specified, the current value of the

program counter will be disassembled to the screen.

The pc command is a quick and easy way to set the program counter. As a

side benefit, the pc command (with or without a parameter) will also set the

location counter to the address of the program counter, thereby causing a

subsequent command which uses that value, such as m or a, to begin at the

program counter.

Mini-debugger Reference 9-34

Disk Commands

Command: da, db, di

Super: see drivea, driveb, and disk in Chapter 8.

Purpose: set current drive or display name of disk in current drive.

Usage: da

db

di

Note: takes no parameters.

The da and db commands open the disk in drive A or drive B, respectively,

and make that drive the current drive. Subsequent disk commands will

access the current drive, di displays the name of the disk in the current

drive. These commands call the GEOS SetDevice and OpenDisk routines.

 9-35 Mini-debugger Reference

Command: gb

Super: see getb in Chapter 8.

Purpose: get block from the disk in the current drive.

Usage: gb [track,sector]

Note: track is a valid track number hexconst and sector is a valid

sector number hexconst for the current drive. If the track and

sector are not provided, the values in the GEOS r1L and r1H

registers will be used.

The gb command reads one sector from the current drive into diskBlkBuf

at $8000 and then executes a dd command to display the sector. The values

of the track and sector number read will be left in r1L and r1H; a

subsequent pb could then be used to write out the sector just read, gb calls

the GEOS GetBlock routine.

gb 12,0 get the first block of the directory.

Mini-debugger Reference 9-36

Command: pb

Super: see putb in Chapter 8.

Purpose: put a block to the disk in the current drive.

Usage: pb [track,sector]

Note: track is a valid track number hexconst and sector is a valid

sector number hexconst for the current drive. If the track and

sector are not provided, the values in the GEOS r1L and r1H

registers will be used.

The pb command writes one sector from diskBlkBuf at $8000 to the disk

in the current drive. The values of the track and sector number written will

be left in r1L and r1H. pb calls the GEOS PutBlock routine.

IMPORTANT: Be careful using pb, especially with no parameters; it is

very easy to destroy a disk by writing to the wrong track and sector,

especially if r1L or r1H contain bad values.

Example:

pb 5,2 put a block at track $5, sector $2.

HINT: gb and pb can be used together. You can read in a specific sector

with gb, modify it in diskBlkBuf (without affecting r1L and r1H) and

then write it back out again by using pb with no parameters.

 9-37 Mini-debugger Reference

Command: dd

Super: see dumpd in Chapter 8.

Purpose: dump disk block buffer (diskBlkBuf)

Usage: dd

Note: takes no parameters.

The dd command dumps all 256 bytes of the disk block buffer

(diskBlkBuf) at address $8000 in the standard d command.

 A-1 Library Files and Sample Source

Appendix A: Library Files and

Sample Source
Your geoProgrammer disk contains a number of geoAssembler source code

files (equates, macros, and sample applications) for you to use as the basis

of your own projects.

GEOS Equates and Constants Files
Any GEOS application will a spend a great deal of its time calling routines

within the GEOS Kernal. Each GEOS routine has a name, and when you

call GEOS routines using these names, you make your source code more

readable as well as consistent with other GEOS source code and the

Berkeley Softworks design methodology. In addition to routine addresses,

GEOS also uses a large number of constants (for selecting colors and object

attributes) and global variables, all of which also have names. The names

for these routines, constants, and variables were first published in The

Official GEOS Programmer's Reference Guide, where they are described in

detail. On your geoProgrammer disk are four files which you can include in

your assemblies (using the .include directive):

With comments:

geosConstants

geosMemoryMap

geosRoutines

Combined and without comments:

geosSym

These files contain the same equates and constants which are described in

The Official GEOS Programmer's Reference Guide, except that some

names have been changed so that they differ from all other GEOS names in

the first eight characters. Equate and constant names which have been

changed have an asterisk at the last tab stop in the comment field (only in

the commented versions, though). Some unnecessary equates and constants

have also been removed, while others have been equated with the (=)

directive (as opposed to ==) to avoid sending them to the debugger. For a

more complete discussion of equates involved, refer to the listings in The

Official GEOS Programmer's Reference Guide.

Library Files and Sample Source A-2

NOTE: The uncommented and combined version of the include files

(geosSym) has been compacted by removing spaces and

comments, reducing its size by two thirds; the commented and

uncommented versions are otherwise identical. The commented

versions of the files are for reference, while the uncommented

version, which take up less disk space and assembles more

quickly, is for including in your programs.

Macro Files
Also included on your geoProgrammer disk is a file of useful macros:

geosMacros (with comments)

geosMac (without comments)

The macros in these files were chosen based on their utility and their ability

to demonstrate the flexibility of the macro processor. They are not intended

to be a comprehensive set: there are many variations on these basic macros

which you can build as you develop the need. The primary limitation is the

size of the macro buffer.

Summary of geosMacros File
There are 29 macros defined in the geosMacros (geosMac without

comments) file, and each one has a specific use. Below is a brief discussion

of each. (Register notation: A = Accumulator, ST = Status register, SP =

Stack Pointer; all macros are assumed to affect the Program Counter.)

Load and Move

Load Byte LoadB dest, value

Loads a memory address (dest) with an immediate byte (value).

Affects the A and ST registers.

Load Word LoadW dest, value

Loads a memory address (dest) with an immediate word (value). A

word is two bytes in length and is placed at dest and dest+l in low-

byte, high-byte order. Affects the A and ST registers.

 A-3 Library Files and Sample Source

Move Byte MoveB source, dest

Moves a byte from one address (source) to another address (dest).

The byte at the source address is not destroyed. Affects the A and ST

registers.

Move Word MoveW source, dest

Moves a word (two bytes) from one address (source) to another

address (dest). The word at the source address is not destroyed.

Affects the A and ST registers.

Addition
Add Byte add addend

addend is either an address or an immediate byte value. If it is an

address, the byte at the address is added to the value in the

A-register. If it is an immediate value (preceded by a # sign), the

actual value is added to the A-register. The result is returned in the

A-register. The sole purpose of the add macro is to combine the adc

with its mandatory clc instruction. Affects the A and ST registers.

Add Bytes AddB source, dest

Adds the byte at one address (source) to the byte at another address

(dest) and stores the result in dest. Affects the A and ST registers.

Add Words AddW source, dest

Adds the low, high word at source and source+l to the word at dest

and dest+l and stores the result in dest. Affects the A and ST

registers.

Add Value to Byte AddVB value, dest

Adds an immediate byte value to the byte at dest and stores the result

in dest. Affects the A and ST registers.

Add Value to Word AddVW value, dest

Adds an immediate byte or word value to the low, high word at dest

and dest+l and stores the result in dest. Affects the A and ST

registers.

Library Files and Sample Source A-4

Subtraction
Subtract Byte sub subtrahend

subtrahend is either an address or an immediate byte value. If it is an

address, the byte at the address is subtracted from the value in the

register. If it is an immediate value (preceded by a # sign), the actual

value is subtracted from the A register. The result is returned in the

A-register. The sole purpose of the sub macro is to combine the sbc

with its mandatory sec instruction. Affects the A and ST registers.

Subtract Bytes SubB source, dest

Subtracts the byte at one address (source) from the byte at another

address (dest) and stores the result in dest. Affects the A and ST

registers.

Subtract Words SubW source, dest

Subtracts the low, high word at source and source+l from the word

at dest and dest+l and stores the result in dest. Affects the A and ST

registers.

Subtract Value from Byte SubVB value, dest

Subtracts an immediate byte value from the byte at dest and stores

the result in dest. Affects the A and ST registers.

Subtract Value from Word SubVW value, dest

Subtracts an immediate byte or word value from the low, high word

at dest and dest+l and stores the result in dest. Affects the A and ST

registers.

Comparison
Compare Bytes CmpB source, dest

Compares the byte at source to the byte at dest. Affects the A and ST

registers.

Compare Byte to Value CmpBI source, value

Compares the byte at source with the immediate byte value. Affects

the A and ST registers.

 A-5 Library Files and Sample Source

Compare Words CmpW source, dest

Compares the low, high word at source and source+l with the low,

high word at dest and dest+1. Note: the high-bytes are compared

first, so the condition codes (and therefore subsequent branches) are

the same as for one-byte comparisons. Affects the A and ST

registers.

Compare Word to Value CmpWI source, value

Compares the word value at source and source+l to the immediate

word value. As with CmpW, the condition codes (and therefore

subsequent branches) are the same as for one-byte comparisons.

Affects the A and ST registers.

Stack Operations

Push Byte PushB source

Pushes the byte at source onto the stack, source can be an immediate

value preceded by a # sign if desired. Affects the A, ST, and SP

registers.

Push Word PushW source

Pushes the word (two-bytes) at source onto the stack. The high-byte

at source+l is pushed first, followed by the low-byte at source.

Affects the A, ST, and SP registers.

Pop Byte PopB dest

The opposite of PushB; pops a byte from the stack and stores it at

dest. Affects the A, ST, and SP registers.

Pop Word PopW dest

The opposite of PushW; pops a word (two-bytes) from the stack and

stores it at dest and dest+1. The first byte popped is the low-byte and

is stored at dest; the second byte is the high-byte and is stored at

dest+1. Affects the A, ST, and SP registers.

Unconditional Branch

Branch Relative Always bra addr

Generates an unconditional relative branch. Allows relative

branching forward and backward with the same limitations as

normal 6502 branch instructions (+127 or -128 bytes), addr is a

valid address or label; it can be a local label. Affects the ST register.

Library Files and Sample Source A-6

Bit Operations

Set Bit smb bitNumber, dest

Sets a bit in the byte at dest, bitNumber is a value from zero to

seven, with zero being the LSB and seven being the MSB of the

byte. Affects the ST register.

Set Bit Fast smbf bitNumber, dest

Identical to smb, except that it is faster and it affects the A and ST

registers.

Reset Bit rmb bitNumber, dest

Resets (clears) a bit in the byte at dest. bitNumber is a value from

zero to seven, with zero being the LSB and seven being the MSB of

the byte. Affects the ST register.

Reset Bit Fast rmbf bitNumber, dest

Identical to rmb, except that it is faster and it affects the A and ST

registers.

Bit Test and Branch Operations

Branch on Bit Set bbs bitNumber, source, addr

Tests a bit in the byte at source. bitNumber is the bit to test; it is a

value which ranges from zero to seven, with zero being the LSB and

seven being the MSB of the byte. If the bit is set, a relative branch to

addr is taken. Otherwise, it falls through to the next instruction.

Does not affect any registers.

Branch on Bit Set Fast bbsf bitNumber, source, addr

Identical to bbs, except it is faster and affects the A and ST registers.

Branch on Bit Reset bbr bitNumber, source, addr

Tests a bit in the byte at source. bitNumber is the bit to test; it is a

value which ranges from zero to seven, with zero being the LSB and

seven being the MSB of the byte. If the bit is reset (cleared), a

relative branch to addr is taken. Otherwise, it falls through to the

next instruction. Does not affect any registers.

Branch on Bit Reset Fast bbrf bitNumber, source, addr

Identical to bbs, except it is faster and affects the A and ST registers.

(For more information on these macros, refer to the commented source file

geosMacros.)

 A-7 Library Files and Sample Source

Sample Applications
Your geoProgrammer disk contains three sample applications in

geoAssembler source code format. There is one sequential application, one

VLIR application (with overlay modules), and one desk accessory. Each

has its own source code modules, header definitions, and link command

files. Everything you need to assemble, link, and execute these applictions

is included on your geoProgrammer disk. (For more information on

assembling and linking the sample sequential application, refer to "Creating

a Sample Application" in Chapter 4.)

The sample applications serve to demonstrate the usage of geoAssembler

and geoLinker. They also show successful coding conventions, such as

modular design and commenting, as well as offering functional GEOS

source code, supplementing The Official GEOS Programmer's Reference

Guide. But perhaps their most useful purpose will be as a base for your own

applications. Although the code is copyrighted by Berkeley Softworks, free

license is granted for all registered owners of geoProgrammer to use the

source code in their own applications, modifying and adding to it as they

see fit. In fact, Berkeley Softworks encourages you to use the sample files

as a shell for your applications, as they do in their cross-development

environment.

Sample Sequential Application
The sample sequential application consists of one main module. This

module contains all the initialization code, event handling code, as well as

the object structures for a menu and an icon. There is no desk accessory

support. Refer to the sample VLIR application for desk accessory

management code.

Sample sequential files:

 SamSeq main module

 SamSeqHdr file header

 SamSeq.lnk link command file

In addition, there is also a debugger macro file (SamSeq.dbm) for use with

the sample application.

Library Files and Sample Source A-8

Sample Desk Accessory
The sample desk accessory is very similar to the sample sequential

application. It, too, consists of one main module which contains all the

initialization code, event handling code, and object structures. The sample

desk accessory, however, conforms to the GEOS desk accessory protocol,

which allows it to operate without corrupting the parent application. Also of

interest is the desk accessory header file, which differs from other file

headers in a few significant areas.

Sample desk accessory files:

 SamDA main module

 SamDAHdr file header

 SamDA.lnk link command file

Sample VLIR application
The sample VLIR application is the most sophisticated of the sample

applications — not only does it use menus and icons, but it has an overlay

manager which handles swapping overlay modules in and out of memory as

they are needed, as well as using the jump tables to access routines within

the modules. Also of interest is the desk accessory support code.

Sample VLIR files:

 SamVlirRes resident module: initialization code, overlay

manager, and object structures

 SamVlirEdit overlay module for Edit sub-menu

 SamVlirFile overlay module for File sub-menu; includes

desk accessory management code

 SamVlirEquates internal equate include file

 SamVlirZP internal zero page zsect definitions

 SamVlirHdr VLIR file header

 SamVlir.lnk link command file

 A-9 Library Files and Sample Source

Sample VLIR Application Roadmap
Because of the complexity of the sample VLIR application, the following

outline, or "roadmap", will help you decipher its inner-workings.

Initialization

When SamVlir is opened from the deskTop, the resident module is loaded

into memory and executed. At this point, none of the overlay modules have

been loaded. The first routine executed, ResStart, does the following:

1. Clears the screen.

2. Initializes a swapping table to facilitate overlay management.

3. Initializes the menu structure, placing the appropriate desk accessory

entries under the Geos menu.

4. Initializes the icon structure.

5. Jumps to the GEOS Mainloop. GEOS Mainloop now runs continuously,

waiting for events. When an event occurs, such as when a menu item is

selected or an icon is clicked on, Mainloop jumps through the

appropriate event vectors to our code.

Below are the events which the sample VLIR application recognizes and

handles:

Geos menu

When SampleVlir info is selected, Mainloop calls our event routine

R_DoAbout. R_DoAbout is an empty routine which simply returns

with an rts.

When a desk accessory is selected, Mainloop calls our event routine,

R_RunDA, which does the following:

1. Calls SwapMod, which will load the SampleVlirFile overlay

module if it is not already in memory.

2. Calls RunDA through the jump table equate J_RunDA.

3. RunDA does the following:

 A. Saves some miscellaneous system status items to restore later.

 B. Uses GetFile to load the desk accessory and save out the area of

memory which the desk accessory overlays.

 C. Passes control to the desk accessory and awaits its return.

 D. The desk accessory returns, and the system status (including the

overlayed memory) is restored.

 E. Returns through resident R_RunDA routine.

Library Files and Sample Source A-10

R_RunDA now returns back to the GEOS mainloop, waiting for another

event.

File menu

close When this menu item is selected, GEOS calls the resident

routine R_DoClose, which does the following:

1. Calls SwapMod to load the SampleVlirFile module.

2. Calls DoClose through the jump table equate J_DoClose. DoClose is an

empty routine and merely returns to the resident R_DoClose.

2. Returns to the GEOS Mainloop.

Edit menu

cut When this menu item is selected, GEOS calls the resident routine

R_DoCut, which does the following:

1. Calls SwapMod to load the SampleVlirEdit overlay module.

2. Calls DoCut through the jump table equate J_DoCut. DoCut is an

empty routine and merely returns to the resident R_DoCut.

3. Returns to the GEOS Mainloop.

copy Similar to cut.

paste Similar to cut.

Icon press

When the icon is clicked on, GEOS Mainloop calls R_DoIcon1, which

does the following:

1. Calls SwapMod to load the SampleVlirEdit overlay module.

2. Calls Dolcon1 through the jump table equate J_DoIcon1. DoIcon1 is

an empty routine and merely returns to the resident R_DoIconl.

3. Returns to the GEOS Mainloop.

 A-11 Library Files and Sample Source

Sample Includes

geosConstants

;**

;

; geosConstants

;

;This file contains equates for use in GEOS applications.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

;**

; Miscellaneous Equates

;**

TRUE = -1

FALSE = 0

;**

; Hardware Related Equates

;**

;The following equates define the numbers written to the CPU_DATA register

;(location $0001 in C-64). These numbers control the hardware memory map

;of the C-64.

IO_IN = $35 ;60K RAM, 4K I/O space in

RAM_64K = $30 ;64K RAM

KRNL_BAS_IO_IN = $37 ;both Kernal and basic ROM's mapped into memory

KRNL_IO_IN = $36 ;Kernal ROM and I/O space mapped in

;**

; Menu Equates

;**

;Menu types

HORIZONTAL = %00000000

VERTICAL = %10000000

CONSTRAINED = %01000000

UN_CONSTRAINED = %00000000

;Offsets to variables in the menu structure

OFF_MY_TOP = 0 ;offset to y pos of top of menu *

OFF_MY_BOT = 1 ;offset to y pos of bottom of menu *

OFF_MX_LEFT = 2 ;offset to x pos of left side of menu *

OFF_MX_RIGHT = 4 ;offset to x pos of right side of menu *

OFF_NUM_M_ITEMS = 6 ;offset to Alignment|Movement|Number of items

OFF_1ST_M_ITEM = 7 ;offset to record for 1st menu item in structure

Library Files and Sample Source A-12

;Types of menu actions

SUB_MENU = $80 ;for setting byte in menu table that indicates

DYN_SUB_MENU = $40 ;whether the menu item causes action *

MENU_ACTION = $00 ;or sub menu

;**

; Process Related Equates

;**

;Possible values for processFlags

SET_RUNABLE = %10000000 ;runnable flag

SET_BLOCKED = %01000000 ;process blocked flag

SET_FROZEN = %00100000 ;process frozen flag

SET_NOTIMER = %00010000 ;not a timed process flag

RUNABLE_BIT = 7 ;runable flag

BLOCKED_BIT = 6 ;process blocked flag

FROZEN_BIT = 5 ;process frozen flag

NOTIMER_BIT = 4 ;not a timed process flag

;**

; Text Equates

;**

;Bit flags in mode

SET_UNDERLINE = %10000000

SET_BOLD = %01000000

SET_REVERSE = %00100000

SET_ITALIC = %00010000

SET_OUTLINE = %00001000

SET_SUPERSCRIPT = %00000100

SET_SUBSCRIPT = %00000010

SET_PLAINTEXT = 0

UNDERLINE_BIT = 7

BOLD_BIT = 6

REVERSE_BIT = 5

ITALIC_BIT = 4

OUTLINE_BIT = 3

SUPERSCRIPT_BIT = 2

SUBSCRIPT_BIT = 1

 A-13 Library Files and Sample Source

;PutChar constants

EOF = 0 ;end of text object

NULL = 0 ;end of string

BACKSPACE = 8 ;move left a card

TAB = 9

FORWARDSPACE = 9 ;move right one card

LF = 10 ;move down a card row

HOME = 11 ;move to left top corner of screen

UPLINE = 12 ;move up a card line

PAGE_BREAK = 12 ;page break

CR = 13 ;move to beginning of next card row

ULINEON = 14 ;turn on underlining *

ULINEOFF = 15 ;turn off underlining *

ESC_GRAPHICS = 16 ;escape code for graphics string

ESC_RULER = 17 ;ruler escape

REV_ON = 18 ;turn on reverse video

REV_OFF = 19 ;turn off reverse video

GOTOX = 20 ;use next byte as 1+x cursor

GOTOY = 21 ;use next byte as 1+y cursor

GOTOXY = 22 ;use next bytes as 1+x and 1+y cursor

NEWCARDSET = 23 ;use next two bytes as new font id

BOLDON = 24 ;turn on BOLD characters

ITALICON = 25 ;turn on ITALIC characters

OUTLINEON = 26 ;turn on OUTLINE characters

PLAINTEXT = 27 ;plain text mode

USELAST = 127 ;erase character

SHORTCUT = 128 ;shortcut character

;**

; Keyboard Equates

;**

;Values for keys

KEY_INVALID = 31

KEY_F1 = 1

KEY_F2 = 2

KEY_F3 = 3

KEY_F4 = 4

KEY_F5 = 5

KEY_F6 = 6

KEY_F7 = 14

KEY_F8 = 15

KEY_UP = 16

KEY_DOWN = 17

KEY_HOME = 18

KEY_CLEAR = 19

KEY_LARROW = 20 ; *

KEY_UPARROW = 21

KEY_STOP = 22

Library Files and Sample Source A-14

KEY_RUN = 23

KEY_BPS = 24

KEY_LEFT = BACKSPACE

KEY_RIGHT = 30

KEY_DELETE = 29

KEY_INSERT = 28

;**

; Mouse Equates

;**

;Bit flags for mouseOn variable

SET_MSE_ON = %10000000 ; *

SET_MENUON = %01000000

SET_ICONSON = %00100000

MOUSEON_BIT = 7

MENUON_BIT = 6

ICONSON_BIT = 5

;**

; Graphics/Screen Equates

;**

;Constants for screen size

SC_BYTE_WIDTH = 40 ;width of screen in bytes *

SC_PIX_WIDTH = 320 ;width of screen in pixels *

SC_PIX_HEIGHT = 200 ;height of screen in scanlines *

SC_SIZE = 8000 ;size of screen memory in bytes *

;Bits used to set displayBufferOn flag (controls which screens get written to)

ST_WR_FORE = $80 ;write to foreground

ST_WR_BACK = $40 ;write to background

ST_WRGS_FORE = $20 ;graphics strings only write to foreground.

;Values for graphics strings

MOVEPENTO = 1 ;move pen to x,y

LINETO = 2 ;draw line to x,y

RECTANGLETO = 3 ;draw a rectangle to x,y

NEWPATTERN = 5 ;set a new pattern

ESC_PUTSTRING = 6 ;start putstring interpretation

FRAME_RECTO = 7 ;draw frame of rectangle

PEN_X_DELTA = 8 ;move pen by signed word delta in x

PEN_Y_DELTA = 9 ;move pen by signed word delta in y

PEN_XY_DELTA = 10 ;move pen signed word delta in x & y

 A-15 Library Files and Sample Source

;Screen colors

BLACK = 0

WHITE = 1

RED = 2

CYAN = 3

PURPLE = 4

GREEN = 5

BLUE = 6

YELLOW = 7

ORANGE = 8

BROWN = 9

LTRED = 10

DKGREY = 11

GREY = 12

MEDGREY = 12

LTGREEN = 13

LTBLUE = 14

LTGREY = 15

;Values for PutDecimal calls

SET_LEFTJUST = %10000000 ;left justified *

SET_RIGHTJUST = %00000000 ;right justified *

SET_SUPRESS = %01000000 ;no leading 0's

SET_NOSUPRESS = %00000000 ;leading 0's

;**

; Menu Equates

;**

;These equates are bit values for iconSelFlag that determine how an icon

;selection is indicated to the user. If ST_FLASH is set, ST_INVERT is

;ineffective.

ST_FLASH = $80 ;bit to indicate icon should flash

ST_INVERT = $40 ;bit to indicate icon should be inverted

;offsets into the icon structure

OFF_NM_ICNS = 0 ;number of icons in structure *

OFF_IC_XMOUSE = 1 ;mouse x start position *

OFF_IC_YMOUSE = 3 ;mouse y start position *

;Offsets into an icon record in icon structure.

OFF_PIC_ICON = 0 ;picture pointer for icon

OFF_X_ICON_POS = 2 ;x position of icon

OFF_Y_ICON_POS = 3 ;y position of icon

OFF_WDTH_ICON = 4 ;width of icon

OFF_HEIGHT_ICON = 5 ;height of icon

OFF_SRV_RT_ICON = 6 ;pointer to service routine for icon

OFF_NX_ICON = 8 ;next icon in icon structure *

Library Files and Sample Source A-16

;**

; Flag Equates

;**

;Values for pressFlag variable

KEYPRESS_BIT = 7 ;other keypress

INPUT_BIT = 6 ;input device change

MOUSE_BIT = 5 ;mouse press

SET_KEYPRESS = %10000000 ;other keypress

SET_INPUTCHG = %01000000 ;input device change *

SET_MOUSE = %00100000 ;mouse press

;Values for faultFlag variable

OFFTOP_BIT = 7 ;mouse fault up

OFFBOTTOM_BIT = 6 ;mouse fault down

OFFLEFT_BIT = 5 ;mouse fault left

OFFRIGHT_BIT = 4 ;mouse fault right

OFFMENU_BIT = 3 ;menu fault

SET_OFFTOP = %10000000 ;mouse fault up

SET_OFFBOTTOM = %01000000 ;mouse fault down

SET_OFFLEFT = %00100000 ;mouse fault left

SET_OFFRIGHT = %00010000 ;mouse fault right

SET_OFFMENU = %00001000 ;menu fault

ANY_FAULT = %11111000

;**

; GEOS File Type Equates

;**

;This is the value in the "GEOS file type" byte of a directory

;entry that is pre-GEOS:

NOT_GEOS = 0 ;Old C-64 file, without GEOS header

 ; (PRG, SEQ, USR, REL)

;The following are GEOS file types reserved for compatibility

;with old C64 files, that have simply had a GEOS header placed

;on them. Users should be able to double click on files of

;type BASIC and ASSEMBLY, whereupon they will be fast-loaded

;and executed from under BASIC.

BASIC = 1 ;C-64 BASIC program, with a GEOS header

 ;attached. (Commodore file type PRG.)

 ;To be used on programs that

 ;were executed before GEOS with:

 ; LOAD "FILE",8

 ; RUN

 A-17 Library Files and Sample Source

ASSEMBLY = 2 ;C-64 ASSEMBLY program, with a GEOS header

 ;attached. (Commodore file type PRG.)

 ;To be used on programs that were executed

 ;before GEOS with:

 ; LOAD "FILE",8,1

 ; SYS(Start Address)

DATA = 3 ;Non-executable DATA file (PRG, SEQ, or USR)

 ;with a GEOS header attached for icon & notes

 ;ability.

;The following are file types for GEOS applications & system use:

;ALL files having one of these GEOS file types should be of

;Commodore file type USR.

SYSTEM = 4 ;GEOS system file

DESK_ACC = 5 ;GEOS desk accessory file

APPLICATION = 6 ;GEOS application file

APPL_DATA = 7 ;data file for a GEOS application

FONT = 8 ;GEOS font file

PRINTER = 9 ;GEOS printer driver

INPUT_DEVICE = 10 ;INPUT device (mouse, etc.)

DISK_DEVICE = 11 ;DISK device driver

SYSTEM_BOOT = 12 ;GEOS system boot file (for GEOS, GEOS BOOT,

 ; GEOS KERNAL)

TEMPORARY = 13 ;Temporary file type, for swap files.

 ;The deskTop will automatically delete all

 ;files of this type upon opening a disk.

AUTO_EXEC = 14 ;Application to automatically be loaded & run

 ;just after booting, but before deskTop runs.

INPUT_128 = 15 ;128 Input driver

NUM_FILE_TYPES = 15 ;# of file types, including NON_GEOS (=0)

;GEOS file structure types. Each "structure type" specifies the organization

;of data blocks on the disk, and has nothing to do with the data in the blocks.

SEQUENTIAL = 0 ;standard T,S structure (like commodore SEQ

 ; and PRG files)

VLIR = 1 ;Variable-length-indexed-record file (used for

 ;Fonts, Documents & some programs)

 ;This is a GEOS only format.

Library Files and Sample Source A-18

;Standard Commodore file types (supported by the old 1541 DOS)

DEL = 0 ;deleted file

SEQ = 1 ;sequential file

PRG = 2 ;program file

USR = 3 ;user file

REL = 4 ;relative file

CBM = 5 ;CBM BAM protection file, currently only on

 ;1581 disk drivers. Used to protect specific

 ;blocks/tracks from collection at validation

 ;time.

TOTAL_BLOCKS = 664 ;number of blocks on disk, not including

 ; directory track.

;**

; Directory Header Equates

;**

;Offsets into a directory header structure

OFF_TO_BAM = 4 ;first BAM entry

OFF_DISK_NAME = 144 ;disk name string

OFF_OP_TR_SC = 171 ;track and sector for off page directory

 ;entries. 8 files may be moved off page.

OFF_GS_ID = 173 ;where GEOS ID string is located *

OFF_GS_DTYPE = 189 ;GEOS disk type. Currently, is 0 for *

 ;normal disk, 'B' for BOOT disk. Zeroed

 ;on destination disk during disk copy.

;**

; Directory Entry Equates

;**

ST_WR_PR = $40 ;write protect bit: bit 6 of byte 0 in the

 ;directory entry

;Offsets within a specific file's Directory Entry.

OFF_CFILE_TYPE = 0 ;standard commodore file type indicator

OFF_INDEX_PTR = 1 ;Index table pointer (VLIR file)

OFF_DE_TR_SC = 1 ;track for file's 1st data block

OFF_FNAME = 3 ;file name *

OFF_GHDR_PTR = 19 ;track/sector info on where header block is

OFF_GSTRUC_TYPE = 21 ;GEOS file structure type *

OFF_GFILE_TYPE = 22 ;geos file type indicator

OFF_YEAR = 23 ;year (1st byte of date stamp) *

OFF_SIZE = 28 ;size of the file in blocks *

OFF_NXT_FILE = 32 ;next file entry in directory structure

;Offsets into a directory block

FRST_FILE_ENTRY = 2 ;first dir entry is at byte #2

 A-19 Library Files and Sample Source

;**

; File Header Equates

;**

;offsets into a GEOS file header block

O_GHIC_WIDTH = 2 ;byte: width in bytes of file icon *

O_GHIC_HEIGHT = 3 ;byte: indicates height of file icon *

O_GHIC_PIC = 4 ;64 bytes: picture data for file icon *

O_GHCMDR_TYPE = 68 ;byte: Comm. file type *

O_GHGEOS_TYPE = 69 ;byte: GEOS file type *

O_GHSTR_TYPE = 70 ;byte: GEOS file structure type *

O_GHST_ADDR = 71 ;2 bytes: start address of file in mem *

O_GHEND_ADDR = 73 ;2 bytes: end address of file in memory *

O_GHST_VEC = 75 ;2 bytes: init vector if file is appl. *

O_GHFNAME = 77 ;20 bytes,permanent filename.

O_128_FLAGS = 96 ;1 byte, flags to indicate if this program

 ;will run under the C128 OS in 40 column and

 ;in 80 column. These flags are valid for

 ;applications, desk accessories, and auto-exec

 ;files. Bit 7: zero if runs in 40 column.

 ;Bit 6: one if runs in 80 column.

O_GH_AUTHOR = 97 ;20 bytes: author's name (only if is applic.)

O_GHINFO_TXT = $A0 ;offset to notes that are stored with the file

 ;and edited in the deskTop "get info" box.

;if file is an application data file:

O_GHP_DISK = 97 ;20 bytes: disk name of parent application's

 ;disk.

O_GHP_FNAME = 117 ;20 bytes: permanent filename of parent

 ;application.

;**

; GetFile Equates

;**

;The following equates define file loading options for several of the

;GEOS file handling routines like GetFile. These bit definitions are used to

;set the RAM variable loadOpt.

ST_LD_AT_ADDR = $01 ;"Load At Address": Load file at caller

 ;specified address instead of address file was

 ;saved from.

Library Files and Sample Source A-20

ST_LD_DATA = $80 ;"Load Datafile": Used when application

 ;datafile is opened from deskTop. Used to

 ;indicate to application that r2 and r3

 ;contain information about where to

 ;find the selected datafile.

ST_PR_DATA = $40 ;"Print Datafile": Used when application

 ;datafile is selected for printing from deskTop.

 ;Used to indicate to application that r2 and r3

 ;contain information about where to find the

 ;selected datafile.

;**

; Disk Equates

;**

DK_NM_ID_LEN = 18 ; # of characters in disk name

;Equates for variable "driveType". High two bits of driveType have special

;meaning (only 1 may be set):

; Bit 7: if 1, then RAM DISK

; Bit 6: if 1, then Shadowed disk

DRV_NULL = 0 ;No drive present at this device address

DRV_1541 = 1 ;Drive type Commodore 1541

DRV_1571 = 2 ;Drive type Commodore 1571

DRV_1581 = 3 ;Drive type Commodore 1581

DRV_NETWORK = 15 ;Drive type for GEOS geoNet "drive"

;Constants used by low-level GEOS disk handling routines

N_TRACKS = 35 ;# of tracks available on the 1541 disk

DIR_TRACK = 18 ;track # reserved on disk for directory

DIR_1581_TRACK = 40 ;track # reserved on disk for directory

 ;on a 1581

;Disk access commands

MAX_CMND_STR = 32 ;maximum length a command string would have

DIR_ACC_CHAN = 13 ;default direct access channel

REL_FILE_NUM = 9 ;logical file number & channel used for

 ;relative files.

CMND_FILE_NUM = 15 ;logical file number & channel used for

 ;command files

;Indexes to a command buffer for setting the track and sector number for a

;direct access command.

TRACK = 9 ;offset to low byte decimal ASCII track number

SECTOR = 12 ;offset to low byte decimal ASCII sector number

 A-21 Library Files and Sample Source

;**

; Disk Error Equates

;**

;The following equates are ERROR values returned from direct access routines

NO_BLOCKS = 1 ;"not enough blocks" *

INV_TRACK = 2 ;"invalid track" *

INSUFF_SPACE = 3 ;"not enough blocks on disk" *

FULL_DIRECTORY = 4 ;"directory full"

FILE_NOT_FOUND = 5 ;"file not found"

BAD_BAM = 6 ;"bad Block Availability Map"

UNOPENED_VLIR = 7 ;"unopened VLIR file" *

INV_RECORD = 8 ;"invalid record" *

OUT_OF_RECORDS = 9 ;"cannot insert/append more records"

STRUCT_MISMAT = 10 ;"file structure mismatch" *

BFR_OVERFLOW = 11 ;"buffer overflow during load" *

CANCEL_ERR = 12 ;"deliberate cancel error"

DEV_NOT_FOUND = 13 ;"device not found" *

INCOMPATIBLE = 14 ;This error is returned when an attempt is made

 ;to load a program that can't be run on the

 ;current graphics modes under the C-128 GEOS.

HDR_NOT_THERE = $20 ;"cannot find file header block" *

NO_SYNC = $21 ;"can't find sync mark on disk"

DBLK_NOT_THERE = $22 ;"data block not present" *

DAT_CHKSUM_ERR = $23 ;"data block checksum error" *

WR_VER_ERR = $25 ;"write verify error"

WR_PR_ON = $26 ;"disk is write protected"

HDR_CHKSUM_ERR = $27 ;"checksum error in header block"

DSK_ID_MISMAT = $29 ;"disk ID mismatch" *

BYTE_DEC_ERR = $2E ;"can't decode flux transitions *

 ;off of disk"

DOS_MISMATCH = $73 ;"wrong DOS indicator on the disk"

;**

; Dialog Box Equates

;***

DEF_DB_POS = $80 ;command for default dialogue box position

SET_DB_POS = 0 ;command for user-set DB position

;Dialogue box descriptor table commands

OK = 1 ;Put up system icon for "OK", command is

 ;followed by 2 byte position indicator, x pos.

 ;in bytes, y pos. in pixels. NOTE: positions

 ;are offsets from the top left corner of the

 ;dialogue box.

CANCEL = 2 ;Like OK, system DB icon, position follows

YES = 3 ;Like OK, system DB icon, position follows

NO = 4 ;Like OK, system DB icon, position follows

OPEN = 5 ;Like OK, system DB icon, position follows

Library Files and Sample Source A-22

DISK = 6 ;Like OK, system DB icon, position follows

FUTURE1 = 7 ;reserved for future system icons

FUTURE2 = 8 ;reserved for future system icons

FUTURE3 = 9 ;reserved for future system icons

FUTURE4 = 10 ;reserved for future system icons

;More dialogue box descriptor table commands

DBTXTSTR = 11 ;Command to display a text string.

DBVARSTR = 12 ;Used to put out variant strings.

DBGETSTRING = 13 ;Get an ASCII string from the user.

DBSYSOPV = 14 ;Any press not over an icon return to applic.

DBGRPHSTR = 15 ;Execute graphics string.

DBGETFILES = 16 ;Get filename from user.

DBOPVEC = 17 ;User defined other press vector.

DBUSRICON = 18 ;User defined icon.

DB_USR_ROUT = 19 ;User defined routine.

;The following equates are used to specify offsets into a dialogue box

;descriptor table.

OFF_DB_FORM = 0 ;box form description, i.e. shadow or not

OFF_DB_TOP = 1 ;position for top of dialogue box

OFF_DB_BOT = 2 ;position for bottom of dialogue box

OFF_DB_LEFT = 3 ;position for left of dialogue box

OFF_DB_RIGHT = 5 ;position for right of dialogue box

OFF_DB_1STCMD = 7 ;1st command in dialogue box *

 ;descriptor table

;The following equates specify the dimensions of the system defined dialogue

;box icons.

SYSDBI_WIDTH = 6 ;width in bytes *

SYSDBI_HEIGHT = 16 ;height in pixels *

;These equates define a standard, default, dialogue box position and

;size as well as some standard positions within the box for outputting

;text and icons.

DEF_DB_TOP = 32 ;top y coordinate of default box

DEF_DB_BOT = 127 ;bottom y coordinate of default box

DEF_DB_LEFT = 64 ;left edge of default box

DEF_DB_RIGHT = 255 ;right edge of default box

TXT_LN_X = 16 ;standard text x start

TXT_LN_1_Y = 16 ;standard text line y offsets

TXT_LN_2_Y = 32

TXT_LN_3_Y = 48

TXT_LN_4_Y = 64

TXT_LN_5_Y = 80

 A-23 Library Files and Sample Source

;byte offsets to...

DBI_X_0 = 1 ;left side standard icon x position *

DBI_X_1 = 9 ;center standard icon x position *

DBI_X_2 = 17 ;right side standard icon x position *

DBI_Y_0 = 8 ;left side standard icon y position *

DBI_Y_1 = 40 ;center standard icon y position *

DBI_Y_2 = 72 ;right side standard icon y position *

;**

; VIC Chip Equates

;**

GRBANK0 = %11 ;bits indicate VIC ram is $0000 - $3fff, 1st 16K

GRBANK1 = %10 ;bits indicate VIC ram is $4000 - $7fff, 2nd 16K

GRBANK2 = %01 ;bits indicate VIC ram is $8000 - $bfff, 3rd 16K

GRBANK3 = %00 ;bits indicate VIC ram is $c000 - $ffff, 4th 16K

MOUSE_SPRNUM = 0 ;sprite number used for mouse *

 ;(used to set VIC)

VIC_YPOS_OFF = 50 ;Position offset from 0 to position a *

 ;hardware sprite at the top of the screen.

 ;Used to map from GEOS coordinates to hardware

 ;position coordinates.

VIC_XPOS_OFF = 24 ;As above, offset from hardware 0 *

 ;position to left of screen, used to map GEOS

 ;coordinates to VIC.

ALARMMASK = %00000100 ;mask for the alarm bit in the cia chip

 ;interrupt control register.

;Desk Accessory save foreground bit.

FG_SAVE = %10000000 ;save and restore foreground graphics data.

CLR_SAVE = %01000000 ;save and restore color information.

Library Files and Sample Source A-24

geosMemoryMap

;**

;

; geosMemoryMap

;

;This file contains equates for use in GEOS applications.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

;**

; Principal Memory Map Equates

;**

APP_RAM == $0400 ;start of application space *

BACK_SCR_BASE == $6000 ;base of background screen *

PRINTBASE == $7900 ;load address for print drivers *

APP_VAR == $7F40 ;application variable space *

OS_VARS == $8000 ;OS variable base

SPRITE_PICS == $8A00 ;base of sprite pictures

COLOR_MATRIX == $8C00 ;video color matrix

DISK_BASE == $9000 ;disk driver base address

SCREEN_BASE == $A000 ;base of foreground screen

OS_ROM == $C000 ;start of OS code space

OS_JUMPTAB == $C100 ;start of GEOS jump table

vicbase == $D000 ;video interface chip base address.

sidbase == $D400 ;sound interface device base address.

ctab == $D800

cia1base == $DC00 ;1st communications interface adaptor (CIA).

cia2base == $DD00 ;second CIA chip

EXP_BASE == $DF00 ;Base address of RAM expansion unit

MOUSE_JMP == $FE80 ;start of mouse jump table

MOUSE_BASE == $FE80 ;start of input driver

END_MOUSE == $FFFA ;end of input driver

 A-25 Library Files and Sample Source

;**

; Zero Page Equates and Space Definitions

;**

CPU_DDR == $0000 ;address of 6510 data direction register

CPU_DATA == $0001 ;address of 6510 data register

STATUS == $0090 ;c64 status register

curDevice == $00BA ;current serial device #

;zero page variable definitions:

zpage = $0000 ;6510 registers: CPU_DDR and CPU_DATA

r0 == $0002

r1 == $0004

r2 == $0006

r3 == $0008

r4 == $000a

r5 == $000c

r6 == $000e

r7 == $0010

r8 == $0012

r9 == $0014

r10 == $0016

r11 == $0018

r12 == $001a

r13 == $001c

r14 == $001e

r15 == $0020

Library Files and Sample Source A-26

;The following variables are saved by GEOS during dialog boxes and desk

;accessories.

curPattern == $0022 ;pointer to the current pattern *

string == $0024

baselineOffset == $0026 ;Offset from top line to baseline in

 ;character set

curSetWidth == $0027 ;Card width in pixels *

curHeight == $0029 ;Card height in pixels *

curIndexTable == $002a ;Size of each card in bytes *

cardDataPntr == $002c ;Pointer to the actual card *

 ;graphics data

currentMode == $002e ;Current underline, italic and reverse flags

dispBufferOn == $002f ;bit 7 controls writes to FG screen *

 ;bit 6 controls writes to background screen

mouseOn == $0030 ;flag indicating that the mouse mode is on

msePicPtr == $0031 ;pointer to mouse graphics data *

windowTop == $0033 ;top line of window for text clipping

windowBottom == $0034 ;bottom line of window for text clipping

leftMargin == $0035 ;leftmost point for writing characters.

 ;CR will return to this point

rightMargin == $0037 ;rightmost point for writing characters. When

 ;crossed, call mode through StringFaultVector

;End of variables saved during DB's and DA's.

pressFlag == $0039 ;Flag indicating that a new key has been pressed

mouseXPos == $003a ;x position of mouse *

mouseYPos == $003c ;y position of mouse *

returnAddress == $003d ;address to return from in-line call

;equates to access low and high bytes of general purpose registers:

r0L == $02

r0H == $03

r1L == $04

r1H == $05

r2L == $06

r2H == $07

r3L == $08

r3H == $09

r4L == $0a

r4H == $0b

r5L == $0c

r5H == $0d

r6L == $0e

r6H == $0f

r7L == $10

r7H == $11

r8L == $12

r8H == $13

r9L == $14

r9H == $15

 A-27 Library Files and Sample Source

r10L == $16

r10H == $17

r11L == $18

r11H == $19

r12L == $1a

r12H == $1b

r13L == $1c

r13H == $1d

r14L == $1e

r14H == $1f

r15L == $20

r15H == $21

;Zero Page variables for use by applications ONLY! Not to be used by

;GEOS or desk accessories.

a0 == $fb

a0L == $fb

a0H == $fc

a1 == $fd

a1L == $fd

a1H == $fe

a2 == $70 ;Notice jump here to lower memory

a2L == $70

a2H == $71

a3 == $72

a3L == $72

a3H == $73

a4 == $74

a4L == $74

a4H == $75

a5 == $76

a5L == $76

a5H == $77

a6 == $78

a6L == $78

a6H == $79

a7 == $7a

a7L == $7a

a7H == $7b

a8 == $7c

a8L == $7c

a8H == $7d

a9 == $7e

a9L == $7e

a9H == $7f

Library Files and Sample Source A-28

;**

; $0300 Area Equates and Space Definitions

;**

irqvec == $0314 ;irq vector (two bytes)

bkvec == $0316 ;break ins vector (two bytes)

nmivec == $0318 ;nmi vector (two bytes)

kernalVectors == $031A ;location of kernal vectors

;**

; $8000 Area Equates and Space Definitions

;**

;Start of GEOS system RAM

diskBlkBuf == $8000 ;general disk block buffer

fileHeader == $8100 ;block used to hold the header block for a

 ;GEOS file.

curDirHead == $8200 ;block contains directory header information for

 ;disk in currently selected drive.

fileTrScTab == $8300 ;buffer used to hold track and sector chain for

 ;a file of maximum size 32,258 bytes.

dirEntryBuf == $8400 ;buffer used to build a files directory entry

;Disk variables

DrACurDkNm == $841e ;Disk name of disk in drive A

 ;18 char disk name (padded with $A0)

DrBCurDkNm == $8430 ;Disk name of disk in drive B

 ;18 char disk name (padded with $A0)

dataFileName == $8442 ;Name of data file (passed to application)

dataDiskName == $8453 ;Disk that data file is on.

PrntFilename == $8465 ;Name of current printer driver

 ;16 byte filename, 1 byte terminator

PrntDiskName == $8476 ;Disk that current printer driver resides on

 ;disk name plus terminator byte

curDrive == $8489 ;currently active disk drive (8,9,10 or 11)

diskOpenFlg == $848a ;indicates if a disk is currently open

isGEOS == $848b ;flag indicates if current disk is a GEOS disk

interleave == $848c ;BlkAlloc uses the value here as the desired

 ;interleave when selecting free blocks.

numDrives == $848d ; # of drives running on system.

driveType == $848e ;Disk Drive types: 1 byte drive type for each

 ;of drives 8,9,10,11.

turboFlags == $8492 ;Turbo state flags for drives 8, 9, 10, and 11.

 A-29 Library Files and Sample Source

;Variables kept current for a specific opened file of structure type VLIR

curRecord == $8496 ;current record #

usedRecords == $8497 ;number of records in open file

fileWritten == $8498 ;flag indicating if file has been written to

 ;since last update of index Tab & BAM

fileSize == $8499 ;current size (in blocks) of file. This is

 ;pulled in from & written to directory entry.

;The following variables are saved by GEOS during dialog boxes and desk

;accessories.

;Vectors

appMain == $849b ;Application's main loop code. Allows *

 ;apps to include their own main loop at the

 ;end of OS main loop

intTopVector == $849d ;Called at the top of OS interrupt code *

 ;to allow application programs to have interrupt

 ;level routines.

intBotVector == $849f ;Called at the bottom of OS interrupt *

 ;code to allow application programs to have

 ;interrupt level routines

mouseVector == $84a1 ;routine to call on mouse key press

keyVector == $84a3 ;routine to call on keypress

inputVector == $84a5 ;routine to call on input device change

mouseFaultVec == $84a7 ;routine to call when mouse goes *

 ;outside region or off a menu

otherPressVec == $84a9 ;routine to call on mouse press that *

 ;is not a menu or an icon

StringFaultVec == $84ab ;vector for when character written *

 ;over rightMargin

alarmTmtVector == $84ad ;address of a service routine for the alarm

 ;clock time-out (ringing, graphic etc.) that

 ;the App. can use if necessary. Normally 0.

BRKVector == $84af ;routine called when BRK encountered

RecoverVector == $84b1 ;routine called to recover background behind

 ;menus and dialogue boxes

selectionFlash == $84b3 ;speed at which menu items and icons are flashed

alphaFlag == $84b4 ;flag for alphanumeric input

iconSelFlag == $84b5 ;indicates how to flash icons when selected

faultData == $84b6 ;Bit flags for mouse faults

menuNumber == $84b7 ;number of currently working menu

mouseTop == $84b8 ;top most position for mouse

mouseBottom == $84b9 ;bottom most position for mouse

mouseLeft == $84ba ;left most position for mouse

mouseRight == $84bc ;right most position for mouse

Library Files and Sample Source A-30

;Global variables for string input and prompt manipulation

stringX == $84be ;X position for string input

stringY == $84c0 ;Y position for string input

;End of variables saved during DB's and DA's.

mousePicData == $84c1 ;ram array for mouse picture data.

maxMouseSpeed == $8501 ;maximum speed for mouse *

minMouseSpeed == $8502 ;minimum speed for mouse *

mouseAccel == $8503 ;acceleration of mouse *

keyData == $8504 ;This is where key service routines should look

mouseData == $8505 ;This is where mouse service routines

 ;should look

inputData == $8506 ;This is where input drivers pass device

 ;specific info to applications that want it

random == $850a ;random number, incremented each interrupt

saveFontTab == $850c ;when going into menus, save user active font

 ;table here

dblClickCount == $8515 ;used to determine double clicks on icons.

year == $8516

month == $8517

day == $8518

hour == $8519

minutes == $851a

seconds == $851b

alarmSetFlag == $851c ;TRUE if the alarm is set for geos to monitor.

;dialog box variables

sysDBData == $851d ;used internally to indicate which command

 ;caused a return to the application

 ;(in dialogue boxes). Actual data is

 ;returned in r0L.

screencolors == $851e ;default screen colors

dlgBoxRamBuf == $851f ;buffer to hold variables while DB or DA

 ;is running

;Second global memory area:

savedmoby2 == $88bb ;Saved value of moby2 for context saving done

 ;in dlg boxes & desk accessories. Left out

 ;of original GEOS save code, put here so we

 ;don't screw up desk accessories, etc. that

 ;know the size of TOT_SRAM_SAVED above.

scr80polar == $88bc ;Copy of reg 24 in VDC for C128 *

scr80colors == $88bd ;Screen colors for 80 column *

 ;mode on C128. Copy of reg 26 in VDC.

vdcClrMode == $88be ;Holds current color mode for C128 color rtns.

driveData == $88bf ;1 byte each reserved for disk drivers

 ;about each device (each driver may use

 ;differently).

 A-31 Library Files and Sample Source

ramExpSize == $88c3

sysRAMFlg == $88c4 ;If RAM expansion in, Bank 0 is

 ;reserved for the kernal's use. This

 ;byte contains flags designating its

 ;usage:

 ;Bit 7: if 1, $0000-$78FF used by

 ;MoveData routine

 ;Bit 6: if 1, $8300-$B8FF holds disk drivers

 ;for drives A through C

 ;Bit 5: if 1, $7900-$7DFF is loaded with GEOS

 ;ram area $8400-$88FF by ToBasic routine when

 ;going to BASIC.

 ;Bit 4: if 1, $7E00-$82FF is loaded with reboot

 ;code by a setup AUTO-EXEC file, which is loaded

 ;by the restart code in GEOS at $C000 if this

 ;flag is set, at $6000, instead of loading

 ;GEOS_BOOT. Also, in the area $B900-$FC3F is

 ;saved the kernal for fast re-boot without

 ;system disk (depending on setup file). This

 ;area should be updated when input devices are

 ;changed (implemented in V1.3 deskTop).

firstBoot == $88c5 ;This flag is changed from 0 to $FF after

 ;deskTop comes up for the first time

 ;after booting.

curType == $88c6 ;Current disk type (copied from diskType)

ramBase == $88c7 ;RAM bank for each disk drive to use

 ;if drive type is RAM DISK or Shadowed Drive.

inputDevName == $88cb ;Holds name of current input device.

DrCCurDkNm == $88dc ;Disk name of disk in drive C

 ;18 char disk name (padded with $A0)

DrDCurDkNm == $88ee ;Disk name of disk in drive D

 ;18 char disk name (padded with $A0)

dir2Head == $8900 ;2nd directory header block, for larger disk

 ;capacity drives (such as 1571)

;Addresses of specific sprite picture data

spr0pic == $8a00

spr1pic == $8a40

spr2pic == $8a80

spr3pic == $8ac0

spr4pic == $8b00

spr5pic == $8b40

spr6pic == $8b80

spr7pic == $8bc0

Library Files and Sample Source A-32

;Addresses of pointers to sprite object graphics

obj0Pointer == $8ff8

obj1Pointer == $8ff9

obj2Pointer == $8ffa

obj3Pointer == $8ffb

obj4Pointer == $8ffc

obj5Pointer == $8ffd

obj6Pointer == $8ffe

obj7Pointer == $8fff

;**

; $c000 Area Equates and Space Definitions

;**

bootName == $C006 ;start of "GEOS BOOT" string

version == $C00F ;GEOS version byte

nationality == $C010 ;nationality byte

sysFlgCopy == $C012 ;copy of sysRAMFlg saved here when

 ;going to BASIC

dateCopy == $C018 ;copy of year, month, day

;***

; $d000 area: VIC II graphics chip definitions and equates

;**

mob0xpos == $d000

mob0ypos == $d001

mob1xpos == $d002

mob1ypos == $d003

mob2xpos == $d004

mob2ypos == $d005

mob3xpos == $d006

mob3ypos == $d007

mob4xpos == $d008

mob4ypos == $d009

mob5xpos == $d00a

mob5ypos == $d00b

mob6xpos == $d00c

mob6ypos == $d00d

mob7xpos == $d00e

mob7ypos == $d00f

msbxpos == $d010

grcntrl1 == $d011 ;graphics control register #1

rasreg == $d012 ;raster register

lpxpos == $d013 ;light pen x position

lpypos == $d014 ;light pen y position

mobenble == $d015 ;moving object enable bits.

grcntrl2 == $d016 ;graphics control register #2

moby2 == $d017 ;double object size in y

 A-33 Library Files and Sample Source

grmemptr == $d018 ;graphics memory pointer VM13-VM10|CB13-CB11

grirq == $d019 ;graphics chip interupt register.

grirqen == $d01a ;graphics chip interupt enable register.

mobprior == $d01b ;moving object to background priority

mobmcm == $d01c ;moving object multi-color mode select.

mobx2 == $d01d ;double object size in x

mobmobcol == $d01e ;object to object collision register.

mobbakcol == $d01f ;object to background collision register.

extclr == $d020 ;exterior(border) color.

bakclr0 == $d021 ;background #0 color

bakclr1 == $d022 ;background #1 color

bakclr2 == $d023 ;background #2 color

bakclr3 == $d024 ;background #3 color

mcmclr0 == $d025 ;object multi-color mode color 0

mcmclr1 == $d026 ;object multi-color mode color 1

mob0clr == $d027 ;object color

mob1clr == $d028 ;object color

mob2clr == $d029 ;object color

mob3clr == $d02a ;object color

mob4clr == $d02b ;object color

mob5clr == $d02c ;object color

mob6clr == $d02d ;object color

mob7clr == $d02e ;object color

;**

; $f000 Area Equates

;**

NMI_VECTOR == $fffa ;nmi vector location

RESET_VECTOR == $fffc ;reset vector location

IRQ_VECTOR == $fffe ;interrupt vector location

Library Files and Sample Source A-34

geosRoutines

;**

;

; geosRoutines

;

;This file contains equates which can be used by GEOS applications.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

;Jump addresses within printer drivers

InitForPrint == $7900 ;address of InitForPrint entry (PRINTBASE)

StartPrint == $7903 ;address of StartPrint entry

PrintBuffer == $7906 ;address of PrintBuffer entry

StopPrint == $7909 ;address of StopPrint entry

GetDimensions == $790c ;address of GetDimensions entry

PrintASCII == $790f ;address of PrintASCII entry

StartASCII == $7912 ;address of StartASCII entry

SetNLQ == $7915 ;address of SetNLQ entry

;Jump addresses within disk drivers: these are only valid for non-1541 disk

;drive types, and for the 128 version of the 1541 driver.

Get1stDirEntry == $9030 ;returns first dir entry

GetNxtDirEntry == $9033 ;returns next dir entry

AllocateBlock == $9048 ;allocates specific block

ReadLink == $904B ;like ReadBlock, but returns only first two

 ;bytes of block.

;MISC

BootGEOS == $c000

ResetHandle == $c003

InterruptMain == $c100

;PROCESSES

InitProcesses == $c103

RestartProcess == $c106

EnableProcess == $c109

BlockProcess == $c10c

UnblockProcess == $c10f

FreezeProcess == $c112

UnfreezeProcess == $c115

 A-35 Library Files and Sample Source

;GRAPHICS

HorizontalLine == $c118

InvertLine == $c11b

RecoverLine == $c11e

VerticalLine == $c121

Rectangle == $c124

FrameRectangle == $c127

InvertRectangle == $c12a

RecoverRectangle == $c12d

DrawLine == $c130

DrawPoint == $c133

GraphicsString == $c136

SetPattern == $c139

GetScanLine == $c13c

TestPoint == $c13f

;BACKGROUND GENERATION

BitmapUp == $c142

;CHARACTER MANIPULATION

PutChar == $c145

PutString == $c148

UseSystemFont == $c14b

;MOUSE, MENUS, & ICONS

StartMouseMode == $c14e

DoMenu == $c151

RecoverMenu == $c154

RecoverAllMenus == $c157

DoIcons == $c15a

;UTILITIES

DShiftLeft == $c15d

BBMult == $c160

BMult == $c163

DMult == $c166

Ddiv == $c169

DSdiv == $c16c

Dabs == $c16f

Dnegate == $c172

Ddec == $c175

ClearRam == $c178

FillRam == $c17b

MoveData == $c17e

InitRam == $c181

PutDecimal == $c184

GetRandom == $c187

Library Files and Sample Source A-36

;MISC

MouseUp == $c18a

MouseOff == $c18d

DoPreviousMenu == $c190

ReDoMenu == $c193

GetSerialNumber == $c196

Sleep == $c199

ClearMouseMode == $c19c

i_Rectangle == $c19f

i_FrameRectangle == $c1a2

i_RecoverRectangle == $c1a5

i_GraphicsString == $c1a8

;BACKGROUND GENERATION

i_BitmapUp == $c1ab

;CHARACTER MANIPULATION

i_PutString == $c1ae

GetRealSize == $c1b1

;UTILITIES

i_FillRam == $c1b4

i_MoveData == $c1b7

;Routines added later

GetString == $c1ba

GotoFirstMenu == $c1bd

InitTextPrompt == $c1c0

MainLoop == $c1c3

DrawSprite == $c1c6

GetCharWidth == $c1c9

LoadCharSet == $c1cc

PosSprite == $c1cf

EnablSprite == $c1d2

DisablSprite == $c1d5

CallRoutine == $c1d8

CalcBlksFree == $c1db

ChkDkGEOS == $c1de

NewDisk == $c1e1

GetBlock == $c1e4

PutBlock == $c1e7

SetGEOSDisk == $c1ea

SaveFile == $c1ed

SetGDirEntry == $c1f0

BldGDirEntry == $c1f3

GetFreeDirBlk == $c1f6

 A-37 Library Files and Sample Source

WriteFile == $c1f9

BlkAlloc == $c1fc

ReadFile == $c1ff

SmallPutChar == $c202

FollowChain == $c205

GetFile == $c208

FindFile == $c20b

CRC == $c20e

LdFile == $c211

EnterTurbo == $c214

LdDeskAcc == $c217

ReadBlock == $c21a

LdApplic == $c21d

WriteBlock == $c220

VerWriteBlock == $c223

FreeFile == $c226

GetFHdrInfo == $c229

EnterDeskTop == $c22c

StartAppl == $c22f

ExitTurbo == $c232

PurgeTurbo == $c235

DeleteFile == $c238

FindFTypes == $c23b

RstrAppl == $c23e

ToBasic == $c241

FastDelFile == $c244

GetDirHead == $c247

PutDirHead == $c24a

NxtBlkAlloc == $c24d

ImprintRectangle == $c250

i_ImprintRectangle == $c253

DoDlgBox == $c256

RenameFile == $c259

InitForIO == $c25c

DoneWithIO == $c25f

DShiftRight == $c262

CopyString == $c265

CopyFString == $c268

CmpString == $c26b

CmpFString == $c26e

FirstInit == $c271

OpenRecordFile == $c274

CloseRecordFile == $c277

NextRecord == $c27a

PreviousRecord == $c27d

PointRecord == $c280

DeleteRecord == $c283

InsertRecord == $c286

AppendRecord == $c289

ReadRecord == $c28c

WriteRecord == $c28f

Library Files and Sample Source A-38

SetNextFree == $c292

UpdateRecordFile == $c295

GetPtrCurDkNm == $c298

PromptOn == $c29b

PromptOff == $c29e

OpenDisk == $c2a1

DoInlineReturn == $c2a4

GetNextChar == $c2a7

BitmapClip == $c2aa

FindBAMBit == $c2ad

SetDevice == $c2b0

IsMseInRegion == $c2b3

ReadByte == $c2b6

FreeBlock == $c2b9

ChangeDiskDevice == $c2bc

RstrFrmDialogue == $c2bf

Panic == $c2c2

BitOtherClip == $c2c5

StashRAM == $c2c8

FetchRAM == $c2cb

SwapRAM == $c2ce

VerifyRAM == $c2d1

DoRAMOp == $c2d4

;Jump addresses within input drivers

InitMouse == $fe80 ;address of InitMouse entry (MOUSE_JMP)

SlowMouse == $fe83 ;address of SlowMouse entry

UpdateMouse == $fe86 ;address of UpdateMouse entry

SetMouse == $fe89 ;address of SetMouse entry (128 only!)

 A-39 Library Files and Sample Source

geosMacros

;***

;

; geosMacros

;

; This file contains some macro definitions which can be used by

; GEOS applications.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;***

;***

;

; Load Byte: LoadB dest,value

;

; Args: dest - address of byte to load with value

; value - byte to load

;

; Action: Load a byte with a value

;

;***

.macro LoadB dest,value

 lda #value ;load value

 sta dest ;store it

.endm

;***

;

; Load Word: LoadW dest,value

;

; Args: dest - address of word to load with value

; value - word to load

;

; Action: Load a word with a value

;

;***

.macro LoadW dest,value

 lda #](value) ;get higher byte of value to load

 sta dest+1 ;store it

 lda #[(value) ;get lower byte of value to load

 sta dest+0 ;store it

.endm

Library Files and Sample Source A-40

;***

;

; Move Byte: MoveB source,dest

;

; Args: source - source address

; dest - destination address

;

; Action: Moves byte contents of source to destination.

;

;***

.macro MoveB source,dest

 lda source ;load data from source

 sta dest ;store it in destination

.endm

;***

;

; Move Word: MoveW source,dest

;

; Args: source - source address

; dest - destination address

;

; Action: Moves a word from source address to dest address.

;

;***

.macro MoveW source,dest

 lda source+1 ;get high byte

 sta dest+1 ;store it

 lda source+0 ;get low byte

 sta dest+0 ;store it

.endm

;***

;

; Add Byte: add source

;

; Args: source - address of byte to add, or immediate value

;

; Action: a = a + source

;

;***

.macro add source

 clc

 adc source

.endm

 A-41 Library Files and Sample Source

;***

;

; Add Bytes: AddB source,dest

;

; Args: source - address of byte to add

; dest - address of byte to add to

;

; Action: dest = dest + source

;

;***

.macro AddB source,dest

 clc ;must add with carry

 lda source ;get source byte

 adc dest ;add to destination byte

 sta dest ;store result

.endm

;***

;

; Add Words: AddW source,dest

;

; Args: source - address of word to add

; dest - address of word to add to

;

; Action: dest = dest + source

;

;***

.macro AddW source,dest

 lda source ;get source low byte

 clc

 adc dest+0 ;add to destination low byte

 sta dest+0 ;store result, sec carry with overflow

 lda source+1 ;get source high byte

 adc dest+1 ;add with carry to high byte dest

 sta dest+1 ;store result

.endm

;**

;

; Add Value To Byte: AddVB value,dest

;

; Args: value - constant to add to dest

; dest - address of byte to add to

;

; Action: dest = dest + value

;

;**

.macro AddVB value,dest

 lda dest

 clc

 adc #value

 sta dest

.endm

Library Files and Sample Source A-42

;**

;

; Add Value to Word: AddVW value,dest

;

; Args: value - constant to add to dest

; dest - address of word to add to

;

; Action: dest = dest + value

;

;**

.macro AddVW value,dest

 clc ;must add with carry

 lda #[(value) ;get low byte of value

 adc dest+0 ;add to low byte of word

 sta dest+0 ;store updated value

.if (value >= 0) && (value <= 255)

 bcc noInc ;carry was set if adc above overflowed.

 inc dest+1 ;increment high byte of word

noInc:

.else

 lda #](value) ;carry was set if adc above overflowed.

 adc dest+1 ;add carry + 0 to high byte of address

 sta dest+1 ;store result

.endif

.endm

;**

;

; Subtract Byte: sub source

;

; Args: source - address of byte to subtract, or immediate value

;

; Action: a = a - source

;

;***

.macro sub source

 sec

 sbc source

.endm

 A-43 Library Files and Sample Source

;***

;

; Sub Bytes: SubB source,dest

;

; Args: source - address of byte to subtract

; dest - address of byte to subtract from

;

; Action: dest = dest - source

;

;***

.macro SubB source,dest

 sec ;must add with carry

 lda dest ;get destination byte

 sbc source ;subtract source byte

 sta dest ;store result

.endm

;***

;

; Sub Words: SubW source,dest

;

; Args: source - address of byte to subtract

; dest - address of byte to subtract from

;

; Action: dest = dest - source

;

;***

.macro SubW source,dest

 lda dest+0 ;get source low byte

 sec

 sbc source+0 ;subtract from destination low byte

 sta dest+0 ;store result, clc carry with overflow

 lda dest+1 ;get source high byte

 sbc source+1 ;sub with carry from destination high byte

 sta dest+1 ;store result

.endm

;***

;

; Compare Bytes: CmpB source,dest

;

; Args: source - address of first byte

; dest - address of second byte

;

; Action: compare contents of source byte to contents of dest. byte

;

;***

.macro CmpB source,dest

 lda source ;get source byte

 cmp dest ;compare source to dest

.endm

Library Files and Sample Source A-44

;***

;

; Compare Byte To Value: CmpBI source,immed

;

; Args: source - address of first byte

; immed - value to compare to

;

; Action: compares contents of source to value

;

;***

.macro CmpBI source,immed

 lda source ;get source byte

 cmp #immed ;compare source to immediate value

.endm

;***;

; Compare Words: CmpW source,dest

;

; Args: source - address of first word

; dest - address of second word

;

; Action: compare contents of source word to contents of dest. word

;

;***

.macro CmpW source,dest

 lda source+1 ;get high source byte

 cmp dest+1 ;compare source to dest

 bne done ;need to do low byte?

 lda source+0 ;do low byte

 cmp dest+0 ;compare low byte

done:

.endm

;***;

; Compare Word To Value: CmpWI source,immed

;

; Args: source - address of first word

; immed - value to compare to

;

; Action: compares contents of source to value

;

;***

.macro CmpWI source,immed

 lda source+1 ;get high byte

 cmp #](immed) ;test high byte of immediate value

 bne done ;don't need to do low byte

 lda source+0 ;test low byte

 cmp #[(immed)

done:

.endm

 A-45 Library Files and Sample Source

;***

;

; Push Byte: PushB source

;

; Args: source - address of the byte to push

;

; Action: Pushes the byte at source onto the stack

;

;***

.macro PushB source

 lda source ;get byte

 pha ;and push it

.endm

;***

;

; Push Word: PushW source

;

; Args: source - address of the word to push

;

; Action: Pushes the word at source onto the stack

;

;**

.macro PushW source

 lda source+1 ;get high byte of word

 pha ;and push it

 lda source+0 ;get low byte of word

 pha ;and push it

.endm

;***

;

; Pop Byte: PopB dest

;

; Args: dest - where to store byte value

;

; Action: Pops a byte from the stack

;

;**

.macro PopB dest

 pla ;get byte

 sta dest ;and save it

.endm

Library Files and Sample Source A-46

;***

;

; Pop Word: PopW dest

;

; Args: dest - where to store word value

;

; Action: Pops a word from the stack

;

;***

.macro PopW dest

 pla ;get low byte of word

 sta dest+0 ;and save it

 pla ;get high byte of word

 sta dest+1 ;and save it

.endm

;***

;

; Branch Relative Always: bra addr

;

; Args: addr - where to branch to

;

; Action: unconditional relative branch

;

;***

.macro bra addr

 clv

 bvc addr

.endm

;***

;

; Set Bit: smb bitNumber,dest

;

; Args: bitNumber - bit number in byte to set (7 for MSD, 0 for LSD)

; dest - address of byte which contains bit to set

;

; Action: sets bit in destination byte

; fast version (smbf) trashes the accumulator

;

;***

.macro smb bitNumber,dest

 pha

 lda #(1 << bitNumber)

 ora dest

 sta dest

 pla

.endm

.macro smbf bitNumber,dest

 lda #(1 << bitNumber)

 ora dest

 sta dest

.endm

 A-47 Library Files and Sample Source

;***

;

; Reset Bit: rmb bitNumber,dest

;

; Args: bitNumber - bit number in byte to reset

; (7 for MSD, 0 for LSD)

; dest - address of byte which contains bit to reset

;

; Action: resets bit in destination byte

; fast version (rmbf) trashes the accumulator

;

;**

.macro rmb bitNumber,dest

 pha

 lda #[~(1 << bitNumber)

 and dest

 sta dest

 pla

.endm

.macro rmbf bitNumber,dest

 lda #[~(1 << bitNumber)

 and dest

 sta dest

.endm

;***

;

; Branch on Bit Set: bbs bitNumber,source,addr

;

; Args: bitNumber - bit number in byte to test (7 for MSD, 0 for LSD)

; source - address of byte which contains bit to test

; addr - where to branch to if bit is set

;

; Action: tests bit in source byte, branches if is set

; fast version (bbsf) trashes the accumulator

;

;***

.macro bbs bitNumber,source,addr

 php

 pha

 lda source

 and #(1 << bitNumber)

 beq nobranch

 pla

 plp

 bra addr

nobranch:

 pla

 plp

.endm

Library Files and Sample Source A-48

.macro bbsf bitNumber,source,addr

.if (bitNumber = 7)

 bit source

 bmi addr

.elif (bitNumber = 6)

 bit source

 bvs addr

.else

 lda source

 and #(1 << bitNumber)

 bne addr

.endif

.endm

;***

;

; Branch on Bit Reset: bbr bitNumber,source,addr

;

; Args: bitNumber - bit number in byte to test (7 for MSD, 0 for LSD)

; source - address of byte which contains bit to test

; addr - where to branch to if bit is reset

;

; Action: tests bit in source byte, branches if is reset

; fast version (bbsf) trashes the accumulator

;

;***

.macro bbr bitNumber,source,addr

 php

 pha

 lda source

 and #(1 << bitNumber)

 bne nobranch

 pla

 plp

 bra addr

nobranch:

 pla

 plp

.endm

.macro bbrf bitNumber,source,addr

.if (bitNumber = 7)

 bit source

 bpl addr

.elif (bitNumber = 6)

 bit source

 bvc addr

.else

 lda source

 and #(1 << bitNumber)

 beq addr

.endif

.endm

 A-49 Library Files and Sample Source

Sample Sequent ial Source

SamSe q

;***;

; SamSeq

;

; This is the main file for the GeoProgrammer package sample

; application. It contains all of the code and data required

; for assembly.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;***

.if Pass1 ;Only need to include these files

 ;during assembler's first pass.

.include geosSym ;get GEOS definitions

.include geosMac ;get GEOS macro definitions

.endif

;Our program starts here. The first thing we do is clear the screen and

;initialize our menus and icons. Then we RTS to GEOS mainloop.

;When an event happens, such as the user selects a menu item or one of our

;icons, GEOS will call one of our handler routines.

 .psect ;program code section starts here

 ;(GeoLinker will give this an address of $0400)

ProgStart:

 LoadB dispBufferOn,# (ST_WR_FORE | ST_WR_BACK)

 ;allow writes to foreground and background

 LoadW r0,#ClearScreen ;point to graphics string to clear screen

 jsr GraphicsString

 LoadW r0,#MenuTable ;point to menu definition table

 lda #0 ;place cursor on first menu item when done

 jsr DoMenu ;have GEOS draw the menus on the screen

 LoadW r0,#IconTable ;point to icon definition table

 jsr DoIcons ;have GEOS draw the icons on the screen

 rts

Library Files and Sample Source A-50

;Here are some data tables for the init code shown above:

ClearScreen: ;graphics string table to clear screen

 .byte NEWPATTERN,2 ;set new pattern value

 .byte MOVEPENTO ;move pen to:

 .word 0 ;top left corner of screen

 .byte 0

 .byte RECTANGLETO ;draw filled rectangle to bottom right corner

 .word 319

 .byte 199

 .byte NULL ;end of GraphicsString

MenuTable: ;menu definition table for main horizontal menu

 .byte 0,14 ;top and bottom y coordinates

 .word 0,49 ;left and right x coordinates

 .byte 2 | HORIZONTAL ;number of menu items, type of menu

 .word GeosText ;pointer to text for menu item

 .byte VERTICAL ;type of menu

 .word GeosSubMenu ;pointer to menu structure

 .word FileText ;pointer to text for menu item

 .byte VERTICAL ;type of menu

 .word FileSubMenu ;pointer to menu structure

GeosSubMenu: ;menu definition table for GEOS vertical menu

 .byte 15,30 ;top and bottom y coordinates

 .word 0,79 ;left and right x coordinates

 .byte 1 | VERTICAL ;number of menu items, type of menu

 .word AboutText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word DoAbout ;pointer to handler routine

FileSubMenu: ;menu definition table for FILE vertical menu

 .byte 15,44 ;top and bottom y coordinates

 .word 29,64 ;left and right x coordinates

 .byte 2 | VERTICAL ;number of menu items, type of menu

 .word CloseText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word DoClose ;pointer to handler routine

 .word QuitText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word DoQuit ;pointer to handler routine

 A-51 Library Files and Sample Source

;text strings for above menus

GeosText:

 .byte "geos",0

FileText:

 .byte "file",0

AboutText:

 .byte "SampleSeq info",0

CloseText:

 .byte "close",0

QuitText:

 .byte "quit",0

;icon definition table

IconTable:

 .byte 1 ;number of icons

 .word 0 ;x position to place mouse at when done

 .byte 0 ;y position to place mouse at when done

 .word Icon1Picture ;pointer to compacted bitmap for icon

 .byte 3 ;x position in bytes

 .byte 60 ;y position in scanlines

 .byte ICON_1_WIDTH ;width of icon in bytes

 .byte ICON_1_HEIGHT ;height of icon in scanlines

 .word DoIcon1 ;pointer to handler routine

Icon1Picture: ;assembler will place compacted bitmap data

 ;here for this picture:

ICON_1_WIDTH = picW ;store bitmap size values for use in above

ICON_1_HEIGHT = picH ;table on pass 2. (picW and picH are set by

 ;the assembler.)

Library Files and Sample Source A-52

;Event handler routines: are called by GEOS when an event happens,

;such as user selecting a menu item or clicking on an icon.

DoAbout:

 jsr GotoFirstMenu ;roll menu back up

 ;code to handle this event goes here

 rts ;all done

DoClose:

 jsr GotoFirstMenu ;roll menu back up

 ;code to handle this event goes here

 rts ;all done

DoQuit:

 jsr GotoFirstMenu ;roll menu back up

 jmp EnterDeskTop ;return to deskTop!

DoIcon1:

 ;code to handle this event goes here

 rts

 A-53 Library Files and Sample Source

SamSe qHdr

;**

;

; SamSeqHdr

;

; This file contains the header block definition for the GeoProgrammer

; package sample sequential application.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

.if Pass1 ;Only need to include this file

 ;during assembler's first pass.

.include geosSym ;get GEOS definitions

.endif

;Here is our header. The SamSeq.lnk file will instruct the linker

;to attach it to our sample application.

 .header ;start of header section

 .word 0 ;first two bytes are always zero

 .byte 3 ;width in bytes

 .byte 21 ;and height in scanlines of:

 .byte $80 | USR ;Commodore file type, with bit 7 set.

 .byte APPLICATION ;Geos file type

 .byte SEQUENTIAL ;Geos file structure type

 .word ProgStart ;start address of program (where to load to)

 .word $3ff ;usually end address, but only needed for

 ;desk accessories.

 .word ProgStart ;init address of program (where to JMP to)

 .byte "SampleSeq V1.0",0,0,0,$00

 ;permanent filename: 12 characters,

 ;followed by 4 character version number,

 ;followed by 3 zeroes,

 ;followed by 40/80 column flag.

 .byte "Eric E. Del Sesto ",0

 ;twenty character author name

 ;end of header section which is checked for accuracy

 .block 160-117 ;skip 43 bytes...

 .byte "This is the GeoProgrammer sample "

 .byte "sequential GEOS application.",0

 .endh

Library Files and Sample Source A-54

SamSe q.lnk

;***;

; SamSeq.lnk

;

; This is the GeoLinker command file for the GeoProgrammer package

; sample application.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;***

.output SampleSeq ;name for output file

.header SamSeqHdr.rel ;name of file containing header block to use

.seq ;this is a sequential application

.psect $0400 ;program code starts at $0400

.ramsect $5000 ;program data area starts at $5000

SamSeq.rel ;name of file which contains relocatable

 ;code and data from GeoAssembler

 A-55 Library Files and Sample Source

SamSe q.dbm

;**

;

; SampleSeq.dbm

;

; This file contains GeoDebugger macro definitions for use when

; debugging the SampleSeq application.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

;This "autoexec" macro will run when the GeoDebugger starts up.

;It sets one of the debugger option flags.

.macro autoexec ;name of macro

poff[cr] ;turn printing off

opt 4,0[cr] ;disable option 4 (case distinction)

.endm ;end of macro

;The following macro causes the debugger to step once and display the results.

.macro sr ;name of macro

s[cr] ;step one instruction

pr[cr] ;print blank line

r[cr] ;print registers

pr "--------------------------------------"[cr]

.endm ;end of macro

;This macro changes the characters in the "GEOS" menu to upper-case.

.macro geos

m GeosText[cr] ;open location as memory

[sp]"GEOS"[cr] ;deposit new string

.endm

Library Files and Sample Source A-56

geosSeq
Sample VLIR Source

SamVlirR ES

;**

;

; SamVlirRes

;

; This is the main file for the GeoProgrammer package sample

; VLIR application. It contains all of the code and data required

; for assembling the resident portion of the program.

; See the GeoProgrammer User's Guide for a roadmap to this program.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

.if Pass1 ;Only need to include these files

 ;during assembler's first pass.

.include geosSym ;get GEOS definitions

.include geosMac ;get GEOS macro definitions

.endif

;Now include our program's equates and zero page variables:

;(We could let the linker handle the equates, but we MUST include the

;zero page variables here so that addressing modes can be resolved.)

.if Pass1 ;Only need to include these files

 ;during assembler's first pass.

.include SamVlirEquates ;get sample VLIR equates

.include SamVlirZPVars ;get sample VLIR zero page variables

.endif

;The resident portion of our program starts here. The first thing we do is

;clear the screen and initialize our menus and icons. Then we RTS to GEOS

;mainloop. When an event happens, such as the user selects a menu item or

;one of our icons, GEOS will call one of our handler routines.

 .psect ;program code section starts here

 ;(GeoLinker will give this an address of $0400)

ResStart:

 LoadB dispBufferOn,# (ST_WR_FORE | ST_WR_BACK)

 ;allow writes to foreground and background

 LoadW r0,#ClearScreen ;point to graphics string to clear screen

 jsr GraphicsString

 jsr InitSwap ;set up table to facilitate module swapping

 ;later on

 jsr InitDA ;set up GEOS menu to facilitate running of

 ;desk accessories later on

 A-57 Library Files and Sample Source

 LoadW r0,#MenuTable ;point to menu definition table

 lda #0 ;position mouse on first menu item

 jsr DoMenu ;have GEOS draw the menus on the screen

 LoadW r0,#IconTable ;point to icon definition table

 jsr DoIcons ;have GEOS draw the icons on the screen

 rts

;Here are some data tables for the init code shown above:

ClearScreen: ;graphics string table to clear screen

 .byte NEWPATTERN,2 ;set new pattern value

 .byte MOVEPENTO ;move pen to:

 .word 0 ;top left corner of screen

 .byte 0

 .byte RECTANGLETO ;draw filled rectangle to bottom right corner

 .word 319

 .byte 199

 .byte NULL ;end of GraphicsString

MenuTable:

 .byte MM_TOP ;top of menu

 .byte MM_BOTTOM ;bottom of menu

 .word MM_LEFT ;left side

 .word MM_RIGHT ;right side

 .byte MM_COUNT | HORIZONTAL

 ;number of menu items, type of menu

 .word GeosText ;pointer to text for menu item

 .byte VERTICAL ;type of menu

 .word GeosSubMenu ;pointer to menu structure

 .word FileText ;pointer to text for menu item

 .byte VERTICAL ;type of menu

 .word FileSubMenu ;pointer to menu structure

 .word EditText ;pointer to text for menu item

 .byte VERTICAL ;type of menu

 .word EditSubMenu ;pointer to menu structure

Library Files and Sample Source A-58

;Note: the GEOS sub-menu as it appears below is constructed assuming

;only 1 item- the "SampleVlir info" item. When the application is started,

;a routine called "InitDA" will update this structure according to the

;number of desk accessories found on the application disk.

GeosSubMenu: ;menu definition table for GEOS vertical menu

 .byte SM_TOP ;top scanline #

 .byte SM_TOP+1+(1*14) ;bottom scanline #

 .word GM_LEFT ;left x position

 .word GM_LEFT + GM_WIDTH

 ;right x position

 .byte VERTICAL | GM_COUNT

 ;number of menu items, type of menu

 .word AboutText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word R_DoAbout ;pointer to handler routine

 ;(R_ means routine is resident)

 .word DA0Text ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word R_RunDA ;pointer to handler routine

 .word DA1Text

 .byte MENU_ACTION

 .word R_RunDA

 .word DA2Text

 .byte MENU_ACTION

 .word R_RunDA

 .word DA3Text

 .byte MENU_ACTION

 .word R_RunDA

 .word DA4Text

 .byte MENU_ACTION

 .word R_RunDA

 .word DA5Text

 .byte MENU_ACTION

 .word R_RunDA

 .word DA6Text

 .byte MENU_ACTION

 .word R_RunDA

 .word DA7Text

 .byte MENU_ACTION

 .word R_RunDA

 A-59 Library Files and Sample Source

FileSubMenu: ;menu definition table for FILE vertical menu

 .byte SM_TOP ;top scanline #

 .byte SM_TOP+1+(FM_COUNT*14)

 ;bottom scanline #

 .word FM_LEFT ;left x position

 .word FM_LEFT + FM_WIDTH

 ;right x position

 .byte VERTICAL | FM_COUNT

 ;number of menu items, type of menu

 .word CloseText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word R_DoClose ;pointer to handler routine

 ;(R_ means routine is resident)

 .word QuitText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word R_DoQuit ;pointer to handler routine

EditSubMenu: ;menu definition table for FILE vertical menu

 .byte SM_TOP ;top scanline #

 .byte SM_TOP+1+(EM_COUNT*14)

 ;bottom scanline #

 .word EM_LEFT ;left x position

 .word EM_LEFT + EM_WIDTH

 ;right x position

 .byte VERTICAL | EM_COUNT

 ;number of menu items, type of menu

 .word CutText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word R_DoCut ;pointer to handler routine

 ;(R_ means routine is resident)

 .word CopyText

 .byte MENU_ACTION

 .word R_DoCopy

 .word PasteText

 .byte MENU_ACTION

 .word R_DoPaste

;Text strings for above menu definitions

GeosText:

 .byte "geos",0

FileText:

 .byte "file",0

EditText:

 .byte "edit",0

AboutText:

 .byte "SampleVlir info",0

Library Files and Sample Source A-60

;The following text strings are updated by the InitDA routine.

;They will contain filenames of all the desk accessories found on the

;application disk.

DA0Text: .byte "desk accessory 0",0

DA1Text: .byte "desk accessory 1",0

DA2Text: .byte "desk accessory 2",0

DA3Text: .byte "desk accessory 3",0

DA4Text: .byte "desk accessory 4",0

DA5Text: .byte "desk accessory 5",0

DA6Text: .byte "desk accessory 6",0

DA7Text: .byte "desk accessory 7",0

CloseText:

 .byte "close",0

QuitText:

 .byte "quit",0

CutText:

 .byte "cut",0

CopyText:

 .byte "copy",0

PasteText:

 .byte "paste",0

IconTable: ;icon definition table

 .byte 1 ;number of icons

 .word 0 ;x position to place mouse at when done

 .byte 0 ;y position to place mouse at when done

 .word Icon1Picture ;pointer to compacted bitmap for icon

 .byte 3 ;x position in bytes

 .byte 60 ;y position in scanlines

 .byte ICON_1_WIDTH ;width of icon in bytes

 .byte ICON_1_HEIGHT ;height of icon in scanlines

 .word R_DoIcon1 ;pointer to handler routine

 ;(R_ means routine is resident)

Icon1Picture: ;assembler will place compacted bitmap data

 ;here for this picture:

ICON_1_WIDTH = picW ;store bitmap size values for use in above

ICON_1_HEIGHT = picH ;table on pass 2. (picW and picH are set by

 ;the assembler.)

 A-61 Library Files and Sample Source

;***

; R_DoAbout, R_RunDA, R_DoClose, R_DoQuit,

; R_DoCut, R_DoCopy, R_DoPaste, R_DoIcon1

;

; These routines are all Resident Handler Routines. They are called

; by GEOS when an event happens, such as the user selecting a menu

; item or clicking on an icon. All of these routines (except C_DoQuit)

; load in a swap module before calling their handler routine in that

; module. Since R_DoQuit is a small routine, it does not have to swap

; in a module; all the necessary code to quit the application is

; resident.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: GEOS menu or icon dispatch handlers

; Pass: if from menu: a = sub-menu item number

; Returns: nothing

; Alters: a, x, y, r0-r15 (probably)

;

;**

R_DoAbout:

 jsr GotoFirstMenu ;roll menu back up

 ;code to handle this event goes here

 rts ;all done

R_RunDA:

 pha ;save sub-menu number

 jsr GotoFirstMenu ;roll menu back up

 jsr FileIn ;swap File module into swap area

 pla ;recall sub-menu number

 jsr J_RunDA ;call DA handling routine in File module

 ;(J_RunDA is in jump table in the

 ;SamVlirEquates file).

 rts ;return to GEOS mainloop

R_DoClose:

 jsr GotoFirstMenu ;roll menu back up

 jsr FileIn ;swap File module into swap area

 jsr J_DoClose ;call handling routine in File module

 rts ;return to GEOS mainloop

R_DoQuit:

 jsr GotoFirstMenu ;roll menu back up

 jmp EnterDeskTop ;return to deskTop!

R_DoCut:

 jsr GotoFirstMenu ;roll menu back up

 jsr EditIn ;swap Edit module into swap area

 jsr J_DoCut ;call handling routine in Edit module

 rts ;return to GEOS mainloop

Library Files and Sample Source A-62

R_DoCopy:

 jsr GotoFirstMenu

 jsr EditIn

 jsr J_DoCopy

 rts

R_DoPaste:

 jsr GotoFirstMenu

 jsr EditIn

 jsr J_DoPaste

 rts

R_DoIcon1:

 jsr EditIn ;swap Edit module into swap area

 jsr J_DoIcon1 ;call handling routine in Edit module

 rts ;return to GEOS mainloop

;This routine swaps the file module in.

FileIn:

 lda #MOD_FILE ;get number of file module

 jsr SwapMod ;call swap routine to bring module in

 rts

;This routine swaps the edit module in.

EditIn:

 lda #MOD_EDIT ;get number of edit module

 jsr SwapMod ;call swap routine to bring module in

 rts

 A-63 Library Files and Sample Source

;***

; InitSwap

;

; This routine sets up a table which contains the track and sector

; numbers for each of the program modules which can be loaded.

; This table will be used by the SwapMod routine later on.

;

; Author: Tony / Eric, August 1987

; Caller: ResStart

; Pass: application disk opened

; Returns: appName = filename of application file

; swapTable = table of (T,S) pairs, one for

; each module. See NUM_MODS equate.

; curModule = $ff (no module currently loaded)

; Alters: a, x, y, r0-r2, r4-r7, r10

;

;**

InitSwap:

 ;This first step is in case someone has changed the application's

 ;filename: we search the disk using the application permanent name,

 ;and find out what the filename is.

 LoadW r6,#appName ;point to buffer to store filename in

 LoadB r7L,#APPLICATION ;look for files of type application

 LoadB r7H,#1 ;only want 1 file, the application

 LoadW r10,#NameString ;point to application's permanent name

 jsr FindFTypes ;GEOS system call to do directory search

 ;for above. Assume no errors...

 ;appName has filename now. Open the application file as a VLIR file.

 LoadW r0,#appName ;set up ptr to filename as is on disk

 jsr OpenRecordFile ;initialize for reading records as VLIR.

 ;fileHeader now contains index table for application file.

 ;Copy track/sector pointers into table that will be used by SwapMod

 ;routine to load modules. (i_MoveData not used to simplify stepping.)

 LoadW r0,#fileHeader+4 ;source in fileHeader

 LoadW r1,#swapTable ;destination, to hold index table data

 LoadW r2,#NUM_MODS*2 ;number of bytes to copy

 jsr MoveData ;use GEOS MoveData routine

 jsr CloseRecordFile ;and close application file

 ;(assume no errors)

 ;curModule is a variable which contains the number of the currently loaded

 ;module. Initialize it to a value which won't match any number.

 LoadB curModule,#$ff

 rts ;all done

NameString: ;permanent name string for our application

 .byte "SampleVlir V1.0",0

Library Files and Sample Source A-64

;***

; InitDA

;

; This routine builds out the GEOS menu item table so that it contains

; the names of the desk accessories on the disk. Also see the RunDA

; routine.

;

; Author: Tony / Eric, August 1987

; Caller: ResStart

; Pass: application disk opened

; Returns: GEOS menu structure updated

; Alters: a, x, y, r0-r2, r4, r6, r7, r10

;

;**

InitDA:

 ;first have GEOS search disk for files which have a GEOS type

 ;of DESK_ACC. Copy their names into the menu structure.

 LoadW r6,#DA0Text ;put filenames in array for menu text

 LoadB r7L,#DESK_ACC ;look for files of type desk accessory

 LoadB r7H,#NUM_DA ;maximum of 7 desk accessories may be listed

 LoadW r10,#0 ;don't care about permanent names

 jsr FindFTypes ;call GEOS routine

 ;now calculate the number of desk accessories found and update

 ;some more crucial bytes in the menu structure.

 lda #NUM_DA ;r7H returned with (7 - num files found)

 sub r7H ;subtract from 7 to get number of files

 beq 90$;exit if there are no files...

 clc

 adc #1 ;add one for "SampleVlir info" menu item

 pha ;save the number of menu items

 ora #VERTICAL ;and "or" with VERTICAL flag

 sta GeosSubMenu+6 ;to set new number of sub-menu items.

 pla ;recover number of menu items

 ;now calculate height of menu in scanlines: is 14 per menu item.

 sta r0L ;save in temp register

 asl a ;multiply by 16

 asl a

 asl a

 asl a

 sub r0L ;and subtract itself twice to get

 sub r0L ;final result of numItems * 14

 clc

 adc #SM_TOP+1 ;add to top scanline number of sub-menu

 sta GeosSubMenu+1 ;set new bottom for sub-menu

90$: rts ;all done

 A-65 Library Files and Sample Source

;***

; SwapMod

;

; This routine swaps a module in. Note how it uses "ReadFile" instead

; of "ReadRecord" so that it does not affect any opened VLIR file.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: top-level resident routines

; Pass: a = number of module to swap in

; curModule = number of module which is currently in

; Returns: curModule = number of module which is swapped in

; Alters: a, x, y, r1-r13

;

;**

SwapMod:

 cmp curModule ;see if module is already swapped in

 beq 90$;skip to end if so...

 sta curModule ;save new module number

 ;now use module number to get track and sector information on

 ;record which contains module.

 sec

 sbc #1 ;subtract 1 and multiply by 2

 asl a ;to get index to (T,S) word.

 tay ;because of word length entries in swapTable

 lda swapTable+0,y ;get track number

 sta r1L

 lda swapTable+1,y ;get sector number

 sta r1H

 ;load module into swap area

 LoadW r7,#SWAP_BASE ;base address for load

 LoadW r2,#SWAP_SIZE ;maximum size of module

 jsr ReadFile ;read the record in

 ;(You may want to check for errors here.)

90$: ;all done

 rts

Library Files and Sample Source A-66

;***

; Global Variables

;

; These variables are resident and thus always accessible by any module

; of our application.

;

;**

 .ramsect

 ;variable section starts here

 ;(GeoLinker will give this an address of $5000)

swapTable:

 .block NUM_MODS*2 ;holds (T,S) pairs, one for each module

 ;of our application

appName:

 .block 17 ;holds application filename. Really only

 ;necessary during initialization.

 A-67 Library Files and Sample Source

SamVlirFile

;**

;

; SamVlirFile

;

; This file contains the File Module code for the GeoProgrammer

; package sample VLIR application. It contains all of the code

; and data required for assembling the File Module portion of the program.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

;Now include GEOS definitions and our definitions:

;(We could let the linker handle this, but doing it here speeds up the

;link process. We MUST include the zero page variables here so that

;addressing modes can be resolved.)

.if Pass1 ;Only need to include these files

.noeqin ;during assembler's first pass.

.noglbl

.include geosSym ;get GEOS definitions

.include geosMac ;get GEOS macro definitions

.include SamVlirEquates ;get sample VLIR equates

.include SamVlirZPVars ;get sample VLIR zero page variables

.eqin

.glbl

.endif

;The File module starts here with a jump table so the resident portion

;of our code can JSR to routines in this module without knowing their

;exact address. See the jump table equates in the SamVlirEquates file.

 .psect ;module code section starts here

 ;(GeoLinker will give this an address

 ;of SWAP_BASE, which is $1000.)

FileMod:

 jmp RunDA ;first jump table entry

 jmp DoClose ;2nd

Library Files and Sample Source A-68

;***

; RunDeskAccessory

;

; This routine loads and runs a desk accessory. Note that the call

; to GetFile to load the desk accessory causes the memory under the

; desk accessory to be swapped out and control transferred to the desk

; accessory. When the desk accessory is "turned off" by executing a

; call to RstrAppl, control returns to the application (in this case

; the deskTop) immediately following the call to GetFile.

;

; Author: Tony Requist / Eric E. Del Sesto, August 1987

; Caller: GEOS mainloop when DA name in GEOS menu is selected.

; Pass: a = sub-menu item number

; Returns: nothing

; Alters: a, x, y, r0-r15

;

;**

RunDA:

 ;first use the sub-menu item number to point to the filename

 ;for the desk accessory

 sta r6L ;Store a copy of the selected menu item's #

 asl a ;The menu item number times 17, added to the

 asl a ;base of the strings for geos submenu items

 asl a ;(each 17 bytes apart) gives the address of

 asl a ;the filename for this DA.

 add r6L ;now have menu item number times 17

 clc

 adc #[(DA0Text-17) ;add low byte of base address of table

 sta r6L ;save low byte into r6

 lda #0 ;high byte of offset is 0

 adc #](DA0Text-17) ;add to high byte of base address of table

 ;(considering carry from low byte)

 sta r6H ;save high byte

 PushW r6 ;save pointer to desk accessory filename

 ;place code that will run before a desk accessory here

 ;close any open VLIR files

 ;copy sprite picture data (for 7 sprites) to a buffer

 LoadW r0,#spr1pic ;from sprite picture data area: $8a40

 LoadW r1,#spriteBuf ;to a (7*64) byte buffer.

 LoadW r2,#(7*64)

 jsr MoveData ;move data

 A-69 Library Files and Sample Source

 ;for applications which read other drives, should use OpenDisk

 ;to open application disk here.

 PopW r6 ;recall pointer to desk accessory filename

 ;save sprite's double-Y flag in case is changed by desk accessory

 ldx CPU_DATA ;save memory map status for now

 LoadB CPU_DATA,#IO_IN ;swap I/O space in

 PushB moby2 ;save VIC's sprite double-y byte

 LoadB moby2,#0 ;and set for "no doubling"

 stx CPU_DATA ;restore previous memory map

 LoadB r0L,#0 ;use standard loading option (always 0 for DAs)

 ;pass flag to GetFile routine

 lda #%00000000 ;B7 = 1 to make DA save foreground screen to

 ;buffer or disk and recover when done.

 ;B6 = 1 to make DA save color information

 ;to buffer or disk and recover when done.

 sta r10L ;pass flag to GetFile routine

 jsr GetFile ;load and run desk accessory.

;at this point, GEOS saves:

; pointers to menu and icon structures

; all sprite x, y, color, and doubleX info

;

;desk accessory code must:

; set its own sprite pictures, (x,y) positions, colors,

; and doubleX information.

; set the desired screen colors (40-column mode only)

; not use $0200-$03ff for variables, because some

; new applications (geoFile, geoDebug) do

;

;when desk accessory has finished, GEOS restores:

; pointers to menu and icon structures

; all sprite x, y, color, and doubleX info

 stx r6L ;save error status for now

 ;restore sprite's double-y flag in case was changed by desk accessory

 ldx CPU_DATA ;save memory map status for now

 LoadB CPU_DATA,#IO_IN ;swap I/O space in

 PopB moby2 ;restore VIC's sprite double-y byte

 stx CPU_DATA ;restore previous memory map

Library Files and Sample Source A-70

 ;restore sprite picture data

 LoadW r0,#spriteBuf ;source

 LoadW r1,#spr1pic ;destination

 LoadW r2,#(7*64)

 jsr MoveData

 ;since we did not have DA restore our colors,

 ;must now fill color table with default screen color

 MoveB screencolors,r2L

 LoadW r1,#COLOR_MATRIX

 LoadW r0,#(25*40)

 jsr FillRam

 ;since we did not have DA save our foreground screen,

 ;must recover from background here.

 LoadB r2L,#MM_BOTTOM+1

 ;top y coordinate (do not restore menu area-

 ;DAs cannot affect it.)

 LoadB r2H,#199 ;bottom y coordinates

 LoadW r3,#0 ;left x coordinate

 LoadW r4,#319 ;right x coordinates

 jsr RecoverRectangle

;On error handling: any error that happened must be related to loading

;the desk accessory. Might want to distinguish between INSUFF_SPACE

;and other disk errors.

 ldx r6L ;get error number

 beq 20$;skip if no error...

 ;handle errors here

20$: ;code to run after desk accessory completion goes here

 ;re-open VLIR files here

 rts ;return to resident R_RunDA routine, which

 ;will return to GEOS mainloop, letting

 ;application continue...

 A-71 Library Files and Sample Source

;***

; DoClose

;

; This is a dummy event routine. You can fill in your own code here.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: GEOS mainloop when the "close" menu item is selected

; Pass: nothing

; Returns: nothing

; Alters: a, x, y, r0-r15

;

;**

DoClose:

 jsr GotoFirstMenu

 rts

;***

; File Module local variables

;

; This area contains definitions for variables which are local to

; the File Module. No other module (including resident) can access

; these variables. These variables are trashed whenever the File

; Module swaps in or out, and so cannot be used for anything more

; than temporary storage for routines in this module.

;

;**

 .ramsect

 ;variable section starts here

 ;(GeoLinker will give this an address

 ;of SWAP_VARS, which is $1f00.)

spriteBuf:

 .block 7 * 64 ;holds 7 sprite images (#1-#8) while

 ;desk accessory is running.

Library Files and Sample Source A-72

SamVlir Edit

;**

;

; SamVlirEdit

;

; This file contains the File Module code for the GeoProgrammer

; package sample VLIR application. It contains all of the code

; and data required for assembling the File Module portion of the program.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

;Now include GEOS definitions and our definitions:

;(We could let the linker handle this, but doing it here speeds up the

;link process. We MUST include the zero page variables here so that

;addressing modes can be resolved.)

.if Pass1 ;Only need to include these files

.noeqin ;during assembler's first pass.

.noglbl

.include geosSym ;get GEOS definitions

.include geosMac ;get GEOS macro definitions

.include SamVlirEquates ;get sample VLIR equates

.include SamVlirZPVars ;get sample VLIR zero page variables

.eqin

.glbl

.endif

;The Edit Module starts here with a jump table so the resident portion

;of our code can JSR to routines in this module without knowing their

;exact address. See the jump table equates in the SamVlirEquates file.

 .psect ;module code section starts here

 ;(GeoLinker will give this an address

 ;of SWAP_BASE, which is $1000.)

EditMod:

 jmp DoCut ;first jump table entry

 jmp DoCopy ;2nd

 jmp DoPaste ;3rd

 jmp DoIcon1 ;4th

 A-73 Library Files and Sample Source

;***

; DoCut

;

; This is a dummy event handler routine. Customize this for your

; own application.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: R_DoCut when the "cut" menu item is selected

; Pass: nothing

; Returns: nothing

; Alters:

;

;**

DoCut:

 ;add your own code here

 rts

;***

; DoCopy

;

; This is a dummy event handler routine. Customize this for your

; own application.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: R_DoCopy when the "copy" menu item is selected

; Pass: nothing

; Returns: nothing

; Alters:

;

;**

DoCopy:

 ;add your own code here

 rts

;***

; DoPaste

;

; This is a dummy event handler routine. Customize this for your

; own application.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: R_DoPaste when the "paste" menu item is selected

; Pass: nothing

; Returns: nothing

; Alters:

;

;**

DoPaste:

 ;add your own code here

 rts

Library Files and Sample Source A-74

;***

; DoIcon1

;

; This is a dummy event handler routine. Customize this for your

; own application.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: R_DoIcon1 when the "ICON" is pressed.

; Pass: nothing

; Returns: nothing

; Alters:

;

;**

DoIcon1:

 ;add your own code here

 rts

;***

; Edit Module local variables

;

; This area contains definitions for variables which are local to

; the Edit Module. No other module (including resident) can access

; these variables. These variables are trashed whenever the Edit

; Module swaps in or out, and so cannot be used for anything more

; than temporary storage for routines in this module.

;

;**

 .ramsect

 ;variable section starts here

 ;(GeoLinker will give this an address

 ;of SWAP_VARS, which is $1f00.)

editVars:

 .block 1 ;unused variable: for example only

 A-75 Library Files and Sample Source

SamVlir Hdr

;**

;

; SamVlirHdr

;

; This file contains the header block definition for the GeoProgrammer

; package sample VLIR application.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

.if Pass1 ;Only need to include this file

.noeqin ;during assembler's first pass.

.include geosSym ;get GEOS definitions

.eqin

.endif

;Here is our header. The SamVlir.lnk file will instruct the linker

;to attach it to our sample application.

 .header ;start of header section

 .word 0 ;first two bytes are always zero

 .byte 3 ;width in bytes

 .byte 21 ;and height in scanlines of:

 .byte $80 | USR ;Commodore file type, with bit 7 set.

 .byte APPLICATION ;Geos file type

 .byte VLIR ;Geos file structure type

 .word ResStart ;start address of program (where to load to)

 .word $3ff ;usually end address, but only needed for

 ;desk accessories.

 .word ResStart ;init address of program (where to JMP to)

 .byte "SampleVlir V1.0",0,0,0,$00

 ;permanent filename: 12 characters,

 ;followed by 4 character version number,

 ;followed by 3 zeroes,

 ;followed by 40/80 column flag.

 .byte "Eric E. Del Sesto ",0

 ;twenty character author name

 ;end of header section which is checked for accuracy

 .block 160-117 ;skip 43 bytes...

 .byte "This is the GeoProgrammer sample "

 .byte "VLIR GEOS application.",0

 .endh

Library Files and Sample Source A-76

SamVlirZPVars
;**

;

; SamVlirZPVars

;

; This file contains zero-page ($0000-$00ff) global variable definitions

; for the GeoProgrammer package sample VLIR application. It is

; included into each module (including resident) so that when each

; module assembles, it knows the absolute zero-page address of these

; variables.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;***

 .zsect a2 ;we are using the a2-a9 area ($0070-$007f)

 ;(see geosMemoryMap)

curModule: ;holds module number of currently loaded

 .block 1 ;module. See InitSwap and SwapMod.

;WARNING: do not place more than 16 bytes worth of variables here!

;We are restricted to the a2 - a9 area...

 A-77 Library Files and Sample Source

SamVlir Equates
;**

;

; SamVlirEquates

;

;This file contains global equate definitions for the GeoProgrammer

;package sample VLIR application.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

;Miscellaneous equates:

NUM_MODS = 2 ;this application has 2 swap modules:

MOD_FILE = 1 ;record number for file module

MOD_EDIT = 2 ;record number for edit module

SWAP_BASE = $1000 ;module code loads from $1000

SWAP_SIZE = $0f00 ;to $1eff

SWAP_VARS = $1f00 ;modules use $1f00-$1fff as local var. area

NUM_DA = 7 ;Geos menu can list names of 7 desk accessories

;Equates for jump tables in modules:

;File module:

J_RunDA = SWAP_BASE + (0*3) ;first entry in module's jump table

J_DoClose = SWAP_BASE + (1*3) ;2nd

;Edit module:

J_DoCut = SWAP_BASE + (0*3)

J_DoCopy = SWAP_BASE + (1*3)

J_DoPaste = SWAP_BASE + (2*3)

J_DoIcon1 = SWAP_BASE + (3*3)

Library Files and Sample Source A-78

;Equates for main menu:

MM_COUNT = 3 ;number of main menu items

MM_TOP = 0 ;top scanline of menu

MM_BOTTOM = 14 ;bottom scanline of menu

MM_LEFT = 0 ;left pixel position of menu

MM_RIGHT = 72 ;right pixel position of menu

SM_TOP = MM_BOTTOM+1 ;top of all sub-menus

;Equates for GEOS menu:

GM_COUNT = 1 ;number of items (assuming no desk accessories-

 ;InitDA routine will adjust table.)

GM_LEFT = 0 ;left x position

GM_WIDTH = 79 ;width in pixels

;Equates for FILE menu:

FM_COUNT = 2 ;number of items

FM_LEFT = 29 ;left x position

FM_WIDTH = 40 ;width in pixels

;Equates for EDIT menu:

EM_COUNT = 3 ;number of items

EM_LEFT = 49 ;left x position

EM_WIDTH = 40 ;width in pixels

 A-79 Library Files and Sample Source

SamVlir.lnk

;***;

; SamVlir.lnk

;

; This is the GeoLinker command file for the GeoProgrammer package

; sample VLIR application.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;***

.output SampleVlir ;name for output file

.header SamVlirHdr.rel ;name of file containing header block to use

.vlir ;this is a VLIR application, resident module:

.psect $0400 ;program code starts at $0400

.ramsect $5000 ;global variable area starts at $5000

SamVlirRes.rel ;name of file which contains relocatable

 ;code and data from GeoAssembler

.mod MOD_FILE ;module 1: file module

.psect SWAP_BASE ;module swap code loads to $1000

.ramsect SWAP_VARS ;module local variable area

SamVlirFile.rel

.mod MOD_EDIT ;module 2: edit module

.psect SWAP_BASE ;module swap code loads to $1000

.ramsect SWAP_VARS ;module local variable area

SamVlirEdit.rel

Library Files and Sample Source A-80

Sample DA Source

SamDA

;**

;

; SamDA

;

; This is the main file for the GeoProgrammer package sample

; desk accessory. It contains all of the code and data required

; for assembly.

;

;Note: A desk accessory:

; -- should not alter the background screen area.

; -- must honor the flag values passed from the application in r10L:

; If B7=1, the DA must save the application's foreground screen

; to a ram or disk buffer and restore it when returning to the app.

; If B6=1, the DA must save and restore the application's color values

; similarly.

; -- must only use a specific, contiguous area of application memory

; space (somewhere in $0400 to $5fff). The area used is specified

; in the header block for the accessory. (See SamDAHdr.)

; -- must fill its screen section with the appropriate screen color.

; It is a good idea to grab the color value from the card in the

; top-right corner of the screen, so that your accessory's colors

; will honor the Preference Manager settings.

; -- must not use the top 16 scanlines of the screen.

; -- must set its own sprite picture data, colors, positions,

; and X/Y doubling information.

;

;Since our accessory has menus, we always save and later restore the

;application's background screen space, so that we can use both the FG

;and BG screens, as a normal application would. Instead of saving the

;BG screen (FG screen and colors also if R10L dictates) to a temporary

;disk file, we save them in a big buffer which lies after the code in this

;file.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

.if Pass1 ;Only need to include these files

 ;during assembler's first pass.

.include geosSym ;get GEOS definitions

.include geosMac ;get GEOS macro definitions

.endif

 A-81 Library Files and Sample Source

;Here are some equates to define our desk accessories' screen position.

;Everything is on card boundaries to simplify saving screen data and color

;information.

DA_TOP = 8 ;# of cards down from top of screen

 ;(MUST BE AT LEAST 2 FOR ALL DAs)

DA_LEFT = 10 ;# of cards in from left side of screen

DA_HEIGHT = 8 ;# of cards high

DA_WIDTH = 20 ;# of cards wide

 ;(MAX IS 32 or must rewrite SaveScreen and

 ;RestoreScreen routines.)

NUM_CARDS = DA_HEIGHT*DA_WIDTH

 ;number of cards on screen covered by DA

FG_BUF_SIZE = NUM_CARDS*8 ;size of buffer to save application's screen

 ;to. Equal to number of cards * 8 bytes/card.

;Our program starts here. The first thing we do is save the application's

;screen data and color information if necessary. Then we draw a box in the

;middle of the screen, initialize our menus and icons, and RTS to GEOS mainloop.

;When an event happens, such as the user selects a menu item or one of our

;icons, GEOS will call one of our handler routines.

 .psect ;program code section starts here

 ;(GeoLinker will give this an address of $1000)

DAStart:

 ;this label is needed when the linker

 ;resolves the SamDAHdr.rel file, so that the

 ;header block can have information about

 ;where to load the desk accessory.

 MoveB r10L,recoverFlag ;save flag passed from application

 jsr SaveScreen ;save application BG (and FG if necessary)

 jsr SaveColors ;save application colors if necessary

 ;and wipe with our color value

 LoadB dispBufferOn,#(ST_WR_FORE | ST_WR_BACK)

 ;allow writes to FG and BG

 LoadW r0,#DrawBox ;point to graphics string to draw box

 jsr GraphicsString

 LoadW r0,#MenuTable ;point to menu definition table

 lda #0 ;place cursor on first menu item when done

 jsr DoMenu ;have GEOS draw the menus on the screen

 LoadW r0,#IconTable ;point to icon definition table

 jsr DoIcons ;have GEOS draw the icons on the screen

 rts

Library Files and Sample Source A-82

;Here are some data tables for the init code shown above:

DrawBox: ;graphics string table to clear screen

 .byte NEWPATTERN,0 ;set new pattern value (white)

 .byte MOVEPENTO ;move pen to:

 .word DA_LEFT*8 ;top left corner of DB (in pixels)

 .byte DA_TOP*8

 .byte RECTANGLETO ;draw filled rectangle to bottom right corner

 .word (DA_LEFT+DA_WIDTH)*8 - 1

 .byte (DA_TOP+DA_HEIGHT)*8 - 1

 ;bottom right corner of DB (in pixels)

 .byte NEWPATTERN,1 ;set new pattern value (black)

 .byte FRAME_RECTO ;draw frame to...

 .word DA_LEFT*8 ;top left corner of DB (in pixels)

 .byte DA_TOP*8

 .byte NULL

MenuTable: ;menu definition table for main horizontal menu

 .byte DA_TOP*8 ;top y coordinate

 .byte (DA_TOP*8)+14 ;bottom y coordinate

 .word DA_LEFT*8 ;left x coordinate

 .word (DA_LEFT*8)+44 ;right x coordinates

 .byte 2 | HORIZONTAL ;number of menu items, type of menu

 .word FileText ;pointer to text for menu item

 .byte VERTICAL ;type of menu

 .word FileSubMenu ;pointer to menu structure

 .word EditText ;pointer to text for menu item

 .byte VERTICAL ;type of menu

 .word EditSubMenu ;pointer to menu structure

FileSubMenu: ;menu definition table for File vertical menu

 .byte (DA_TOP*8)+15 ;top y coordinate

 .byte (DA_TOP*8)+43 ;bottom y coordinate

 .word DA_LEFT*8 ;left x coordinate

 .word (DA_LEFT*8)+39 ;right x coordinates

 .byte 2 | VERTICAL ;number of menu items, type of menu

 .word CloseText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word DoClose ;pointer to handler routine

 .word QuitText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word DoQuit ;pointer to handler routine

 A-83 Library Files and Sample Source

EditSubMenu: ;menu definition table for FILE vertical menu

 .byte (DA_TOP*8)+15 ;top y coordinate

 .byte (DA_TOP*8)+57 ;bottom y coordinate

 .word (DA_LEFT*8)+20 ;left x coordinate

 .word (DA_LEFT*8)+56 ;right x coordinates

 .byte 3 | VERTICAL ;number of menu items, type of menu

 .word CutText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word DoCut ;pointer to handler routine

 .word CopyText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word DoCopy ;pointer to handler routine

 .word PasteText ;pointer to text for menu item

 .byte MENU_ACTION ;type of action

 .word DoPaste ;pointer to handler routine

;text strings for above menus

FileText:

 .byte "file",0

CloseText:

 .byte "close",0

QuitText:

 .byte "quit",0

EditText:

 .byte "edit",0

CutText:

 .byte "cut",0

CopyText:

 .byte "copy",0

PasteText:

 .byte "paste",0

Library Files and Sample Source A-84

;icon definition table

IconTable:

 .byte 1 ;number of icons

 .word DA_LEFT*8 ;x position to place mouse at when done

 .byte DA_TOP*8 ;y position to place mouse at when done

 .word Icon1Picture ;pointer to compacted bitmap for icon

 .byte DA_LEFT+3 ;x position in bytes

 .byte (DA_TOP*8)+24 ;y position in scanlines

 .byte ICON_1_WIDTH ;width of icon in bytes

 .byte ICON_1_HEIGHT ;height of icon in scanlines

 .word DoIcon1 ;pointer to handler routine

Icon1Picture: ;assembler will place compacted bitmap data

 ;here for this picture:

ICON_1_WIDTH = picW ;store bitmap size values for use in above

ICON_1_HEIGHT = picH ;table on pass 2. (picW and picH are set by

 ;the assembler.)

;Event handler routines: are called by GEOS when an event happens,

;such as user selecting a menu item or clicking on an icon.

DoClose:

DoCut:

DoCopy:

DoPaste:

 jsr GotoFirstMenu ;roll menu back up

 ;code to handle this event goes here

 rts ;all done

DoQuit:

 jsr GotoFirstMenu ;roll menu back up

 jsr RestoreColors ;restore application's color values

 jsr RestoreScreen ;restore application's BG (and FG maybe) data

 jmp RstrAppl ;return to application!

DoIcon1:

 ;code to handle this event goes here

 rts

 A-85 Library Files and Sample Source

;***

; SaveScreen

;

; This routine saves a portion of the application's FG and BG screens.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: DAStart

; Pass: recoverFlag = r10L value passed from application

; Returns: screenBuf = application's FG and BG screen data

; Alters: a, x, y, r0, r1, r5, r6

;

;**

SaveScreen:

 LoadW r0,#screenBuf ;use r0 as pointer to buffer

 ldx #DA_TOP*8 ;use x as scanline #, start at top

10$: ;for each card-row covered by DA. (Could make this a subroutine

 ;to save code space.)

 jsr GetScanLine ;get two pointers to screen data (r5 and r6)

 ;push two pointers to first byte in left-most card covered by DA

 AddVW #(DA_LEFT*8),r5

 AddVW #(DA_LEFT*8),r6

 ;start at right side of DA and read bytes to the left

 ldy #(DA_WIDTH*8)-1 ;point to last byte in right-most card on line

20$: ;for each byte in cards on this card-row

 lda (r6),y ;get byte from BG screen area

 jsr SaveByte ;and save it to buffer

 bit recoverFlag ;do we need to save FG also?

 bpl 30$;skip if not...

 lda (r5),y ;get byte from FG screen area

 jsr SaveByte ;and save it to buffer

30$: ;on to next byte to the left

 dey

 cpy #$ff ;off left edge of DA space yet?

 bne 20$;loop for next byte if not...

 ;on to next card row

 txa ;add 8 (# lines per card) to scanline index

 clc

 adc #8

 tax

 cpx #(DA_TOP+DA_HEIGHT)*8

 ;off bottom edge yet?

 bcc 10$;loop for next line if not...

 rts

Library Files and Sample Source A-86

;***

; RestoreScreen

;

; This routine recovers a portion of the application's FG and BG screens.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: DAStart

; Pass: recoverFlag = r10L value passed from application

; screenBuf = application's FG and BG screen data

; Returns: FG and BG screens restored

; Alters: a, x, y, r0, r1, r5, r6

;

;**

RestoreScreen:

 LoadW r0,#screenBuf ;use r0 as pointer to buffer

 ldx #DA_TOP*8 ;use x as scanline #, start at top

10$: ;for each card-row covered by DA

 jsr GetScanLine ;get two pointers to screen data (r5 and r6)

 ;push two pointers to first byte in left-most card covered by DA

 AddVW #(DA_LEFT*8),r5

 AddVW #(DA_LEFT*8),r6

 ;start at right side of DA and write bytes to the left

 ldy #(DA_WIDTH*8)-1 ;point to last byte in right-most card on line

20$: ;for each byte in cards on this card-row

 jsr GetByte ;get byte from buffer

 sta (r6),y ;and save to BG screen

 bit recoverFlag ;do we need to recover FG also?

 bpl 30$;skip if not...

 jsr GetByte ;get byte from buffer

 sta (r5),y ;and save to FG screen

30$: ;on to next byte to the left

 dey

 cpy #$ff ;off left edge of DA space yet?

 bne 20$;loop for next byte if not...

 ;on to next card row

 txa ;add 8 (# lines per card) to scanline index

 clc

 adc #8

 tax

 cpx #(DA_TOP+DA_HEIGHT)*8

 ;off bottom edge yet?

 bcc 10$;loop for next line if not...

 rts

 A-87 Library Files and Sample Source

;***

; SaveColors

;

; This routine saves a portion of the application's color table.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: DAStart

; Pass: recoverFlag = r10L value passed from application

; Returns: colorBuf = application's color table data

; Alters: a, x, y, r0, r1, r2

;

;**

SaveColors:

 LoadW r0,#colorBuf ;use r0 as pointer to buffer

 LoadW r2,#COLOR_MATRIX + (DA_TOP * 40) + DA_LEFT

 ;use r2 as pointer into color matrix

 ;storage area (start at top left of

 ;where DA lies).

 ldx #DA_HEIGHT ;use x as card-line counter

10$: ;for each card-line covered by DA

 ;start at right side of DA and read bytes to the left

 ldy #DA_WIDTH-1 ;point to right-most card on line

20$: ;for each card on line: first save card color if necessary

 bit recoverFlag ;do we need to save application's colors?

 bvc 30$;skip if not...

 lda (r2),y ;get byte from COLOR_MATRIX area

 jsr SaveByte ;and save it to buffer

30$: ;and now stuff card with value we want

 lda COLOR_MATRIX+40-1

 ;get card color value from top-right corner

 ;of application's screen

 sta (r2),y ;and use as color for this card

 ;on to next byte to the left

 dey ;off left edge of DA space yet?

 bpl 20$;loop for next byte if not...

 ;on to next line

 AddVW #40,r2 ;push pointer to next line in COLOR_MATRIX

 dex ;one less line to go

 bne 10$;loop if more lines to go...

 rts

Library Files and Sample Source A-88

;***

; RestoreColors

;

; This routine recovers a portion of the application's color table.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: DAStart

; Pass: recoverFlag = r10L value passed from application

; colorBuf = application's color table data

; Returns: COLOR_MATRIX updated

; Alters: a, x, y, r0, r1, r2

;

;**

RestoreColors:

 bit recoverFlag ;do we need to recover application's colors?

 bvc 90$;skip if not...

 LoadW r0,#colorBuf ;use r0 as pointer to buffer

 LoadW r2,#COLOR_MATRIX + (DA_TOP * 40) + DA_LEFT

 ;use r2 as pointer into color matrix

 ;storage area (start at top left of

 ;where DA lies).

 ldx #DA_HEIGHT ;use x as card-line counter

10$: ;for each card-line covered by DA

 ;start at right side of DA and stuff bytes to the left

 ldy #DA_WIDTH-1 ;point to right-most card on line

20$: ;for each card on line: restore card color value

 jsr GetByte ;get byte from buffer

 sta (r2),y ;save byte to COLOR_MATRIX area

 ;on to next byte to the left

 dey ;off left edge of DA space yet?

 bpl 20$;loop for next byte if not...

 ;on to next line

 AddVW #40,r2 ;push pointer to next line in COLOR_MATRIX

 dex ;one less line to go

 bne 10$;loop if more lines to go...

90$: ;all done

 rts

 A-89 Library Files and Sample Source

;***

; SaveByte, GetByte

;

; These two routines are used to save/recall a byte to/from the

; screen and color buffers.

;

; Author: Eric E. Del Sesto, August 1987

; Caller: SaveScreen, RestoreScreen, SaveColors, RestoreColors

; Pass: r0 = pointer into screenBuf or colorBuf

; a = value to save (SaveByte)

; Returns: r0 = pointer to next byte in buffer

; a = value from buffer (GetByte)

; x,y = same as before

; Alters: a, r1L

;

;**

SaveByte:

 sty r1L ;save y register temporarily

 ldy #0

 sta (r0),y ;save byte into buffer

 bra Finish ;skip ahead to finish up...

GetByte:

 sty r1L ;save y register temporarily

 ldy #0

 lda (r0),y ;get byte from buffer

Finish:

 inc r0L ;increment pointer (these three lines

 bne 90$;constitute the IncW macro.)

 inc r0H

90$: ldy r1L ;restore y register

 rts

Library Files and Sample Source A-90

;***

; Global Variables

;

;These variables are placed IMMEDIATELY following our DA code so that

;our entire DA (code+variables) is one contiguous block of memory.

;**

 .ramsect

 ;data storage area starts here

recoverFlag:

 .block 1 ;holds flags passed from application in r10L

screenBuf:

 .block FG_BUF_SIZE*2 ;holds application's FG and BG screen data

 ;while DA is running

colorBuf:

 .block NUM_CARDS ;holds application's card color info

 ;while DA is running

DAEnd:

 ;DA ends here. Linker needs this value

 ;for SamDAHdr file.

 A-91 Library Files and Sample Source

SamDAHdr

;**

;

; SamDAHdr

;

; This file contains the header block definition for the GeoProgrammer

; package sample desk accessory.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

.if Pass1 ;Only need to include this file

.noeqin ;during assembler's first pass.

.include geosSym ;get GEOS definitions

.eqin

.endif

;Here is our header. The SamDA.lnk file will instruct the linker

;to attach it to our sample desk accessory.

 .header ;start of header section

 .word 0 ;first two bytes are always zero

 .byte 3 ;width in bytes

 .byte 21 ;and height in scanlines of:

 .byte $80 | USR ;Commodore file type, with bit 7 set.

 .byte DESK_ACC ;Geos file type

 .byte SEQUENTIAL ;Geos file structure type

 .word DAStart ;start address of program (where to load to)

 .word DAEnd ;end address (VERY IMPORTANT)

 .word DAStart ;init address of program (where to JMP to)

 .byte "SampleDA V1.0",0,0,0,$00

 ;permanent filename: 12 characters,

 ;followed by 4 character version number,

 ;followed by 3 zeroes,

 ;followed by 40/80 column flag.

 .byte "Eric E. Del Sesto ",0

 ;twenty character author name

 ;end of header section which is checked for accuracy

 .block 160-117 ;skip 43 bytes...

 .byte "This is the GeoProgrammer sample "

 .byte "GEOS desk accessory.",0

 .endh

Library Files and Sample Source A-92

SamDA.lnk
;**

;

; SamDA.lnk

;

; This is the GeoLinker command file for the GeoProgrammer package

; sample desk accessory.

;

;Copyright (c) 1987 Berkeley Softworks. For the sole use of registered

;GeoProgrammer owners.

;**

.output SampleDA ;name for output file

.header SamDAHdr.rel ;name of file containing header block to use

.seq ;this is a sequential application

.psect $1000 ;program code starts at $1000 (label called

 ;(DAStart will get this value.)

 ;start ram section immediately following program code.

SamDA.rel ;name of file which contains relocatable

 ;code and data from GeoAssembler

 B-1 geoProgrammer File Formats

Appendix B: geoProgrammer File

Formats

.rel File Format
The relocatable object file output from geoAssembler, and used by

geoLinker, is a VLIR file with four records:

record 0:
relocatable 6502 machine language — the actual assembled 6502 code with

zeros as placeholders for unresolved expressions. All relocatable references

(references which were resolved during the assembly) are relative offsets

from the first byte of the module. To relocate these relative expressions the

linker uses the information in record 2.

record 1:
For each unresolvable expression, the following exist:

— expression text string terminated with a null byte ($00).

— two byte (low/high) pointer into the relocatable object code.

— one byte length count. The length count is the length of the whole

instruction, which is always one more than the actual number of bytes to

store. 2=1 byte and 3 = 2 bytes.

record 2:
relocation table — a table of two-byte (low/high) pointers into record 0.

Each entry points to a relocatable address. The linker walks this list and

adds the appropriate base address to the word values pointed to in the

relocatable object code of record 0. This is the relocation process.

record 3:
psect size, ramsect size, and symbol table:

bytes 0,1: size of psect section (low/high)

bytes 2,3: size of ramsect section (low/high)

remainder of file: symbols, 10 bytes for each — only the first eight

characters of a symbol name are used during assembly and linking. If a

symbol is less than eight characters, the rest will be padded with spaces.

bytes 0-7 eight character symbol text, padded with zeros if less

bytes 8-9 symbol value in low/high order

— bit 7 (MSB) of the first four characters in the symbol name are used as

flags:

a. The MSB of the first character is set if it is a psect label and its address

should be relocated during linking.

geoProgrammer File Formats B-2

b. The MSB of the second character is set if it is a ramsect label and its

address should be relocated during linking.

c. The MSB of the third character is set if it is a zsect label (this flag is not

used by the linker).

d. The MSB of the fourth character is set if the symbol is an equate

defined with the = (single equal sign) assembler directive. This symbol

will not be written to the .dbg debugger symbol table.

.dbg File Format
The debugger symbol table file output from geoLinker, and used by

geoDebugger, is a VLIR file with a variable number of records. Each

record number corresponds to the appropriate module number in the file.

For sequential applications, only record zero is used. For VLIR

applications, record zero contains the symbols for the resident module and

the other records contain symbols for the application's overlay modules.

Symbols in each module are sorted numerically.

Each symbol uses ten bytes:

bytes 0-7 eight character symbol text, padded with spaces if less than eight.

bytes 8-9 symbol value in high/low order (note: this is different from the

low/high order of the .rel file).

 C-1 geoDebugger Technical Notes

Appendix C: geoDebugger

Technical Notes

Super-debugger Primitives

All super-debugger commands are built from one or more command

primitives. These command primitives are comprised of an @ symbol

followed by another character. Command primitives generally execute

faster than their system macro equivalents and can be used in user-defined

macros. Refer to "Macro Commands" in Chapter 8 for more information.

primitive function

@' w

@(getb

@) putb

@* drivea

@+ driveb

@, dumpd

@- disk

@. quit

@/ a

@0 poff

@1 setu

@2 set u.fn (used by for command)

@3 do for loop (used by for command)

@4 stop

@5 mod

@6 setmod

@7 initmod

@8 m

@9 sysmac

@: initmac

@; clrmac

@< setmac

@= mac

@> pc

@? if

@@ opt

geoDebugger Technical Notes C-2

primitive function

@a rboot

@b b

@c setb

@d clrb

@e initb

@f find

@g go

@h pon

@i dump

@j initsym

@k clrsym

@1 sym

@m copy

@n setsym

@o stopmain

@P P

@q jsr

@r r

@s s

@t t

@u Finish

@v diff

@w inithist

@x print

@y hist

@z fill

@[reg

@] flag

@^ runto

@_ next

Startup Conditions
When geoDebugger loads an application for debugging, it prepares the

environment by doing the following:

1: The entire program memory space is cleared:

$400-$5fff (super-debugger)

$400-$3dff (mini-debugger)

 C-3 geoDebugger Technical Notes

Note: if your application runs fine from the debugger but not from the

deskTop it could be that you are forgetting to initialize some variables,

assuming they will be zero. Because the deskTop does not clear the

program space, the ramsect regions may contain random values.

2: All GEOS registers (r0 through r15) except r10L are cleared to zero.

r10L is loaded with $c0, which signals a "worst-case" situation for a

desk accessory (FG_SAVE and CLR_SAVE bits both set). If your

desk accessory operates correctly under these conditions, it should work

fine under others.

Debugger Isolation

geoDebugger isolates itself almost completely from the application and

GEOS. However, the disk-related commands require it to use SetDevice,

OpenDisk, GetBlock, and PutBlock. The debugger is otherwise entirely

self-contained.

Off Limits Memory

At no time should the application modify the following memory areas:

1: $350-3ff (debugger kernal)

2: $314-$319 (BASIC interrupt vectors)

3: $fffa-$ffff (interrupt vectors)

Protected Memory

While in the debugger, the following memory locations cannot be altered.

If they are viewed, they will always be displayed as $ee regardless of their

actual values.

$0100 to stack ptr. memory below stack pointer is used by debugger.

$0314 to $0319 BASIC interrupt vectors.

$0350 to $03ff debugger kernal area.

geoDebugger Technical Notes C-4

$fffa to $ffff interrupt vectors.

In the mini-debugger, the following area is also off limits:

$3e00 to $5fff mini-debugger.

Miscellaneous

geoDebugger sets a brk instruction over the EnterDeskTop vector in case

the application calls EnterDeskTop. The only safe way to disable the

debugger and return to the deskTop is with the quit (q) command.

With the ROM bank enabled with the MM register, any attempt to modify

the ROM memory area will actually modify the RAM which it is swapped

over. This is why attempting to set a breakpoint in ROM will store a $00 (a

brk instruction) in the RAM it maps over.

The application can modify the memory map register (location $0001)

directly. geoDebugger will sense the state and adjust appropriately.

The geoDebugger quit command assumes that GEOS and the reserved

areas of zero-page are intact. If they are not, the system may crash,

requiring a complete power-down to reset. With the super-debugger, the

rboot command can be used if you suspect that parts of GEOS or zero-page

have been destroyed.

 D-1 Bibliography and Further Reference

Appendix D: Bibliography and

Further Reference

6502 Assembly Language

Programming the 6502, Rodnay Zaks, SYBEX Computer books,

2344 Sixth Street, Berkeley, CA 94710 (1983). One of the most

lucid and well-liked introductory, books on 6502 assembly language.

6502 Software Design, Leo J. Scanlon, Howard W. Sams & Co.,

Inc., 4300 West 62nd Street, Indianapolis, IN 46268 (1980).

Another good introductory 6502 assembly language text; places

special emphasis on the more advanced aspects of 6502

programming and includes working subroutines for base-conversion,

lookup tables, and math operations.

MCS6500 Microcomputer Family Programming Manual, MOS

Technology, Faulk Baker Associates. The official guide to the

6502 (and descendents); useful but not essential because all the

aspects in this book are covered by other 6502 books.

Commodore 64

Commodore 64 Programmer's Reference Guide, Commodore

Business Machines, Inc., Computer Systems Division, 487 Devon

Park Drive, Wayne, PA 19807 (1982). Contains useful information

describing the Commodore 64 environment, such as the memory

map register, the display controller, and the sound controller.

GEOS

The Official GEOS Programmer's Reference Guide, Berkeley

Softworks, Bantam Books, Inc., 666 Fifth Avenue, New York, NY

10103 (1987). The essential book for programming under the GEOS

environment. Covers all GEOS file formats, structures, routines, and

calling conventions in detail.

 E-1 Error Messages

Appendix E: Error Messages

This appendix is divided into three sections: disk related errors,

geoAssembler errors, and geoLinker errors. Disk related errors are identical

in both geoAssembler and geoLinker and are displayed in a dialog box;

other errors are specific to either geoAssembler or geoLinker and are

written into the .err file. A fatal error is an error which aborts the assembly

or link.

Disk Related Errors

If geoAssembler or geoLinker encounters a disk error, the error will be

displayed in a dialog box. Disk errors are always fatal.

Disk full
There was insufficient room on the disk to complete the attempted write

operation. Delete unused files from the disk or spread your files across two

disk drives to free-up space.

File Not Found
The program was unable to find a file. A common error is a typo in the file

name or trying to use a file with a space character somewhere in its name.

Drive Not Responding

The disk drive is not responding to the read or write request.

Bad disk/no disk
The disk is completely unreadable or there is no disk in the drive.

Disk write error
Either the write verify failed or an invalid track error occurred. In either

case, this usually means a bad disk.

Disk write protected
The disk drive is unable to write to the disk because the write-protect notch

is covered.

Disk name mismatch
The expected disk was not in the drive; usually means the user swapped

disks when he should not have.

Error Messages E- 2

Bad allocation map
This disk block allocation map (BAM) contains bad values; usually

indicates a destroyed disk.

General disk error
All other disk errors — shows the actual GEOS disk error number.

geoAssembler Errors

Hidden error found
An error was detected on the first pass of the assembler but not on the

second pass. Remove the Passl conditional and reassemble. The errors will

be flagged with complete error messages. When you have corrected the

errors, you can replace the Passl conditional.

Parse buffer overflow
The line is too complicated to fit into the parse buffer. Simplify the line or

break it into several parts. Possibly fatal.

Missing parameter
This directive requires a parameter.

Branch to an external address
The destination of a branch instruction cannot make an external reference.

A common cause of this error is a mistyped label name, which

geoAssembler interprets as an external reference.

Invalid local label
A bad character was found in a local label definition; too many characters

in a local label.

Multiple definition of a local label
You tried to use the same local label twice in the same local region (the

area between two successive global labels). This error can also be caused

by a macro-generated local label: when macros expand their internal labels

are converted to local labels which count backward from 9999$. A high-

number local label might conflict with one of these.

 E-3 Error Messages

Too many local labels

You cannot define more than 20 local labels in the same local region (the

area between two successive global labels). This error can also be caused if

macro-generated local labels push the total over 20.

Illegal character in symbol

Symbols must begin with a letter or an underscore and may only contain

letters, numbers, and underscore characters.

Label too long

You tried to define a label longer than 20 characters.

Multiple definition of a global label

The same global label was defined more than once.

Symbol table full

Too many symbols were defined. Fatal error.

Illegal addressing mode

The operand supplied is not a valid addressing mode for this 6502

instruction. This can also be caused by using a local label in the wrong

context (anywhere except as the destination of a branch instruction).

Unknown opcode

A non-existent 6502 mnemonic, macro, or directive was found in the

opcode field.

No .ENDH found for .HEADER

Every .header must have a matching .endh. Fatal error.

Macro label table overflow

Too many macro labels were defined. If macros are being nested, this is a

cumulative error generated by labels defined in the macros nested in this

invocation. Note: this table is only used for macro labels which are

converted to local labels (labels which are not passed as parameters); labels

which are passed as parameters don't have this limitation.

Macro parameter overflow

Too many macro parameters were used. This is a cumulative error

generated by the combined length of all the parameters defined in the

macros nested in this invocation.

Error Messages E- 4

Zsect overflow
The zsect counter exceeded page zero ($ff) as the result of a .block, or the

parameter to a .zsect directive was greater than $ff. Fatal error.

Expression must evaluate fully when encountered
This expression cannot contain external or forward references because it

must evaluate to an absolute number during the first pass of the assembly.

Possibly fatal.

Missing file name
An expected file name was not found (.include).

Byte expression greater than $ff
A word value was found where a byte expression was expected; the low

byte was used. Use the [low-byte operator to avoid this warning.

.IF nesting error

.if constructs cannot be nested deeper than ten levels. Fatal error.

.ENDIF found without .IF
A .endif was found without a matching .if.

No .ENDIF for .IF
A .if was found without a matching .endif. Fatal error.

More than one .ELSE statement
Each .if can only have one corresponding .else directive.

.ELIF statement after .ELSE
An .elif cannot follow an .else, only a .if or another .elif.

Branch out of range
Branch instructions have range of -127 to +128 bytes. The attempted

branch exceeded this range.

Malformed expression
The expression evaluator was unable to parse and interpret the expression.

Common causes of this error are mismatched parentheses or invalid

operators.

Missing macro name
A .macro was found without a macro name.

 E-5 Error Messages

Macro already defined, definition ignored
A warning that a macro was defined more than once. Only the first macro

definition is acknowledged.

Invalid macro parameter
A parameter declaration in the macro definition has an invalid character in

it.

.INCLUDE nesting overflow
Include files may only be nested to a level of three. Fatal error.

Macros nested too deep
Macros can only be nested to a level of three.

Bad character string
A character string is missing a closing quote or has bad characters after the

closing quote.

No .ENDM found for .MACRO
A .macro directive must have a matching .endm. Fatal error.

.ELSE found without .IF
An .else should have a matching .if.

.ELIF found without .IF
An .elif should have a matching .if.

Undefined local label
A undefined local label was referenced.

Macro name too long
A macro name may not exceed twenty characters.

Macro parameter name too long
A macro parameter name cannot exceed ten chracters.

Illegal character in macro name
Macro names must begin with a letter or an underscore and may only

contain letters, numbers, and underscore characters.

Bitmap data not allowed in a macro definition
You cannot have a bitmap image inside a macro.

Error Messages E- 6

Too many macro definitions
There is no more room left in the macro table for this macro. Fatal error.

Macro text buffer overflow
The total text size of all defined macros is too large. Either shorten or

remove macros. Fatal error.

No parameter is allowed for .psect
Psect sections are always relocated during the link stage and so cannot be

given an address during assembly.

Cannot use relocatable label as a parameter
A relocatable label was used as a parameter to a directive.

Inappropriate context for directive
This directive cannot be used in this context. For example: .macro within a

header definition.

In file header
The automatic checking in the header definition found a mismatch. Make

sure you are using the proper directive (.byte/.word) with the proper

number of bytes.

Line too long
A geoAssembler source line cannot exceed 140 characters.

Expression too complex
The expression has too many operators or the parentheses are nested too

deeply. Simplify it or break it up into subexpressions.

Object code too large
geoAssembler cannot generate a .rel module with more than about 6K of

object code.

Too many errors
geoAssembler found more than 99 errors during this assembly. Fatal error.

 E-7 Error Messages

geoLinker Errors

Parse buffer overflow
The line is too complicated to fit into the parse buffer. Simplify the line or

break it into several parts.

Illegal module number
A module number specified in a .mod directive must be in the range

l<=n<=126.

Module already exists
This module number has already been used in a previous .mod directive.

Resident symbol table overflow
Too many symbols in the resident module. Use the geoAssembler .noglbl

and .noeqin directives to reduce the number of symbols sent to the linker.

Overlay module symbol table overflow
Too many symbols in an overlay module. Use the geoAssembler .noglbl

and .noeqin directives to reduce the number of symbols sent to the linker.

Overlay module not allowed for SEQ or CBM applications
A .mod directive was found after a .seq or a .cbm directive.

Missing or unresolvable argument
The argument in this directive cannot be resolved or is missing.

End of file encountered prematurely
geoLinker expected more information in the linker command file.

Expression cannot be resolved
An external reference was not resolved.

File name expected
geoLinker was expecting to find a file name here.

More than one page in .lnk file
The linker command file cannot exceed one geoWrite page.

Unknown directive or inappropriate context for directive
This directive does not exist or cannot be used here.

Error Messages E- 8

Line too long
This geoWrite text line in the linker command file is too long for the

geoLinker line buffer.

Page buffer overflow
The linker command file file cannot exceed one geoWrite page and this

page is of a limited size. Try removing some of the comments from the

linker command file.

 G-1 Glossary

Glossary

6502 A microprocessor developed in the mid-1970s by

MOS Technology; the Commodore 64 and 128 use

the 6510 and 8502 microprocessor, respectively, both

of which are software-compatible with the 6502.

geoAssembler accepts 6502 assembly language

source code.

A Accumulator. The 6502's general purpose register.

absolute address A specific memory address ($0000-$ffff) in the

Commodore's memory space. Program and memory

spaces get assigned to absolute addresses by

geoLinker. Compare with relocatable address.

address A memory location. Possible addresses in the

Commodore 64 range from $0000 to $ffff. 6502

addresses are stored in low/high order.

addressing mode The 6502 has eight different addressing modes;

specified in the operand of the instruction, they

determine how values and memory locations are

referenced by the instruction.

alphanumeric Referring to ASCII letters and numbers.

application A runnable program. A GEOS Application is a

program designed to run in, and take advantage of, the

GEOS environment.

arithmetic

expression An expression which uses arithmetic operators and

evaluates to a 16-bit value. Compare with logical

expression.

argument A parameter used in a directive or a macro invocation

assembler The program which converts assembly language

source code into machine language or relocatable

object code.

Glossary G-2

assembly language The combination of 6502 mnemonics, operands,

labels, comments, and directives used as the source

input to the assembler. An assembly language

program must first be assembled (and linked) before it

can be run. Compare with machine language.

B Break flag. Bit four in the 6502 status register. If set,

indicates a brk instruction was encountered.

backward reference In assembly language, a reference to a symbol in the

current assembly which is previously defined.

binary The base-two numbering system which consists of 0's

and l's. The binary radix symbol in geoProgrammer is

%.

bit An individual binary digit in a byte. Can be either 1

(set) or 0 (clear).

bitmap A graphic image. Bitmaps can be pasted into your

geoAssembler source code. See also compacted

bitmap.

branch A type of 6502 instruction which jumps to a new

memory location, relative to the current location,

based on the bits in the status register.

breakpoint In geoDebugger, the location of an instruction in your

program which can be set so that the debugger will be

entered when the instruction is encountered but before

it is executed. See also conditional breakpoint.

bug A problem, mistake, or malfunction in a program.

byte The basic unit of memory used by the 6502. Each

memory location holds a unique byte. A byte consists

of eight bits (numbered 0-7, right to left) and can

range from 0-255 ($00-$ff) for unsigned numbers or

+127 to -128 for signed, two's complement numbers.

 G-3 Glossary

C Carry flag. Bit zero in the 6502 status register. If set,

indicates a carry from an arithmetic instruction.

call To execute a routine, usually with a jsr instruction.

case dependency Whether or not letter-case (upper/lower) is significant.

As a general rule, mnemonics, directives, and

hexadecimal numbers may be typed in upper- or

lower-case, or some mixture thereof, and they will be

interpreted identically, whereas each different

upper/lower-case combination in a label, equate, or

macro name will be considered unique.

code field On a geoAssembler source code line, the field which

contains the 6502 instruction, macro invocation, or

directive. The code field is broken down into the

opcode field and operand field.

comment An explanatory note or text within your source code,

linker command file, or debugger macro file. It is

analagous to the BASIC REM statement. Comments

are preceded by a ; (semicolon) character.

comment field On a geoAssembler source line, the field which

contains the comment.

Commodore

application A non-GEOS program.

compacted bitmap A bitmap stored in a special compressed format.

GEOS contains routines for decoding compacted

bitmaps. Bitmaps pasted into geoAssembler source

code are converted to compacted bitmap data during

assembly.

conditional

assembly Use of the .if family of assembler directives to include

or disinclude source lines based on the result of a

logical expression.

Glossary G-4

Conditional

breakpoint A geoDebugger breakpoint which will only succeed if

a specified logical expression evaluates to true.

constants file A geoAssembler include file which consists entirely

of equated constants

cross-reference A situation where two independently assembled

source code modules make external references to each

other.

cross-assembler An assembler which runs on one machine, but

generates programs for another machine with a

(usually) very different architecture. geoAssembler is

based on Berkeley Softworks' in-house cross-

assembler.

D Decimal mode flag. Bit three in the 6502 status

register. If set, indicates that arithmetic instructions

will be performed in decimal mode. Be sure the

decimal flag is in a known state before performing

arithmetic instructions, especially in interrupt code.

.dbg File name extender for a debugger symbol file.

.dbm File name extender for a debugger macro file.

debugger A tool for tracking down and eliminating

programming bugs.

debugger isolation The degree to which a debugger isolates itself from

the application being debugged. The higher the degree

of isolation, the more transparent and impervious the

debugger. geoDebugger is extremely isolated.

debugger screen One of two screen displays in geoDebugger. The

debugger screen is a text display which chronicles

your interaction with the debugger. Compare with

GEOS screen.

decimal The base-ten numbering system which uses the

symbols 0-9. Decimal is the default radix in

 G-5 Glossary

 geoAssembler and, therefore, has no radix character

there. In geoDebugger, however, a . (period) indicates

a decimal number.

desk accessory A sequential application designed to be accessible

from the geos menu.

directive A geoAssembler command which appears in the code

field and is usually preceded by a period character.

Also called pseudo-op.

disassemble In geoDebugger, the process of converting machine

language bytes into standard 6502 mnemonic plus

addressing mode form.

equate An explicit definition of a symbol in geoAssembler

using the = or == directive. Equates can be absolute

addresses or constants.

.err geoAssembler and geoLinker error file extender.

event Some sort of occurrence, such as a keypress, a mouse

click, a menu selection, or a timer countdown, which

GEOS recognizes and calls an application's event

routine as a result.

event-driven

program An application which is centered around waiting for

events. GEOS applications are event-driven.

executable file An application which can be run. Also called runnable

file.

expression Any valid combinations of symbols, numeric

constants, and operators which the expression

evaluator recognizes.

expression evaluator A routine which parses, interprets, and evaluates

expressions.

Glossary G-6

external reference In geoAssembler, a reference to a symbol which

exists in an independently assembled file. The

reference will be resolved by geoLinker.

false A logical truth-value: if an expresion is false, it

evaluates to an arithmetic zero ($0000); an arithmetic

zero ($0000) is considered false. Compare with true.

firewalling A debugging technique where routines are isolated

from each other and interact only by affecting a group

of variables. This limits the possibility of one routine

corrupting another.

forward reference In assembly language, a reference to a symbol defined

later in the source file.

GEOS equate An official equate for use with GEOS as defined in

the geosConstants, geosRoutines, and

geosMemoryMap sample include files.

geoWrite document A text file compatible with geoWrite. geoProgrammer

source code, .err, .lnk, .sym, and .dbm files are all

geoWrite documents.

global label A normal label which can be referenced anywhere in

the current assembly and, unless suppressed with the

.noglbl directive, can also be referenced externally.

header A GEOS file header; contains information about the

program, including the deskTop icon image.

hexadecimal The base-sixteen numbering system which consists of

the characters 0-9 and a-f. The hexadecimal radix

symbol in geoProgrammer is $. Hexadecimal is

sometimes referred to as simply "hex."

high-byte In a two-byte number, the most-significant byte. See

also word, low/high order, low-byte.

hot key In geoDebugger, pressing _RESTORE_ while your

application is running will interrupt the processor and

pass control to geoDebugger.

 G-7 Glossary

I Interrupt disable flag. Bit two in the 6502 status

register. If set, IRQ interrupts will be disabled.

include file A geoAssembler source file designed to be used with

the .include directive.

index register Either the 6502 X or Y register.

initialized data In geoAssembler, data defined in a psect section with

.byte or .word (or .block), the data is said to be

initialized because actual values are generated in the

object code. Compare with unitialized data.

label field On a geoAssembler source code line, the field which

contains the label.

linker command file The .lnk file which tells geoLinker how to create the

runnable application.

.lnk file name extender for the linker command file.

local label In geoAssembler, a label which is local to the area

between two successive global labels. Local labels are

a one to four digit number followed by a dollar sign

(nnnn$). Local labels can only be used as the

destination of a branch instruction.

location counter In geoAssembler, a counter which keeps track of the

current object code position; geoAssembler has three

location counters — one for each of zsect, psect, and

ramsect.

logical expression An expression which uses logical operators and

evaluates to either true or false. Compare with

arithmetic expression.

low-byte In a two-byte number, the least-significant byte. See

also word, low/high order, high-byte.

low/high order A 6502 convention where two-byte numbers (such as

addresses) are stored with the high-byte following the

low-byte.

Glossary G-8

LSB Least Significant Bit — bit zero; Least Significant

Byte — low-byte.

machine language The raw, numeric representation of a program which

is run by the 6502. The assemble and link process

converts assembly language into machine language.

macro In geoAssembler, a set of source lines assigned to a

name so that they may be inserted anywhere in the

code by referring to the name; In geoDebugger, a set

of keystrokes and commands assigned to a name so

that they may be executed by referring to the name.

macro assembler An assembler, like geoAssembler, which implements

a macro facility.

macro definition The source lines which describe a macro and its

parameters. Compare with macro invocation.

macro expansion When invoking a macro, the parameters are

substituted into the source lines and the macro is

placed directly into the input stream. The invocation

is said to "expand" into the full-size of the macro.

macro invocation Using a macro. Compare with macro definition.

microPORT The Berkeley Softworks development system

(crossassembler, cross-linker, and in-circuit emulator)

upon which geoProgrammer is based.

MM Memory Map register. A register which contains the

Commodore 64 memory map (switchable memory

bank) status.

modular

programming A programming technique where the application is

broken down into multiple source files called

modules.

module In an application, a small source file (among many)

which contains routines of similar nature. The

breakdown of the source code into modules is

 G-9 Glossary

 conceptually useful, but not necessary. Sometimes

used to refer to overlay module.

MSB Most Significant Bit — The high-order bit (bit 7 in a

byte); Most Significant Byte — the high-byte in a

word.

N Negative flag. Bit seven in the 6502 status register. If

set, the arithmetic result was negative.

nesting The process of using a construct inside of itself. For

example: calling a macro from within a macro, using

a conditional inside of a conditions, or including a file

from within an include file.

object code As in "relocatable object code," the .rel output from

geoAssembler.

octal The base-eight numbering system which consists of

the characters 0-7. The octal radix symbol in

geoProgrammer is ?.

one's complement The bit-by-bit binary negation of a number, where all

one's become zeros and all zeros become ones. In the

one's complement numbering system, a negative

number is the one's complement of its positive

counterpart. Compare with two's complement.

opcode A 6502 instruction.

opcode field In geoAssembler, a subfield of the code field which

holds the 6502 mnemonic.

operand A 6502 addressing mode or value; the opcode

"operates" with the operand.

operand field In geoAssembler, a subfield of the code field which

holds the 6502 operand.

operator Characters, such as + or / which cause the expression

evaluator to perform some action on one or two

subexpressions. A unary operator works with

Glossary G-10

 one subexpression; a binary operator works with two.

operator precedence The priority table which the expression evaluator uses

to determine which operations to perform first in a

complex expression.

overlay linker A linker, like geoLinker, which supports overlay

modules.

overlay module A record in a VLIR file which contains machine code

designed to be loaded into memory as needed,

overlaying code which is no longer needed.

page In 6502 memory space, a group of 256 bytes

beginning on a 256-byte boundary. Page 0 is the first

256 bytes of memory ($0000-$00ff), page 1 is the

second 256 bytes ($0100-$01ff), and so on.

parameter An argument or value used with a macro or a

directive.

parser A routine which interprets a string of commands or

expressions, breaking it down into its syntactic

elements. The routine is said to "parse" the string.

pass In geoAssembler, reading through and interpreting an

entire source file once. geoAssembler makes two

passes on the source file in order to generate the

relocatable object file.

Passl In geoAssembler, an internal variable which evaluates

to logical true on the first pass and logical false on the

second; useful for avoiding a redundant pass on

equate and macro include files.

patching In geoDebugger, to use the a (assembly) mode to

modify and test your program.

PC Program Counter register. The two-byte 6502 register

which points to the next instruction in memory to

execute.

 G-11 Glossary

phase error An assembler condition which geoAssembler cannot

recognize; occurs when variables and equates

evaluate to different values on each pass. Only occurs

when the Passl variable is used incorrectly.

PicH In geoAssembler, an internal variable which

represents the height (in pixels) of the most recently

defined bitmap.

PicW In geoAssembler, an internal variable which

represents the width (in bytes) of the most recently

defined bitmap.

position

independent code Machine code which is designed to be loaded and

executed anywhere in the 6502 memory space. It

contains no absolute references (such as a jmp

instruction) within the code area. Compare with

relocatable object code.

program counter See PC.

psect Program section in geoAssembler; manages program

code and initialized data.

pseudo-op See directive.

ramsect RAM section in geoAssembler; manages unitialized

data space.

.rel file name extender for relocatable object code output

by geoAssembler and relocated by geoLinker.

relative address An address which is specified in relation to another

address; geoAssembler relocatable object code is

stored in a relative format — references are relative to

the psect base address; 6502 branch instructions use

relative addressing — references are relative to the

current instruction.

Glossary G-12

relocatable

object code The files output by geoAssembler are not assembled

to run at a specific address — all the relative,

relocatable addresses must be adjusted in the linker.

resident module In a VLIR application, record zero which is loaded

and run when the application is opened from the

deskTop.

resolve To evaluate an expression; to match up an external

reference with a global label in another file.

scope (of labels) The region within source code where a label may be

referenced. The scope of a local label is the area

between two successive global labels. The scope of a

global label is always the entire current assembly file;

its scope will be extended to files linked within the

same module unless suppressed with the .noglbl

assembler directive.

sequential

application A type of GEOS application where the program loads

entirely into memory and does not support overlay

modules. Compare with VLIR application.

source code A geoWrite file for geoAssembler which contains

6502 assembly language.

swap module See overlay module.

.sym File name extender for a viewable symbol file

(geoWrite compatible).

symbol A label or an equate.

symbol table A table which contains all the symbols for an

application.

symbolic debugger A debugger, like geoDebugger, which uses your

applications symbols to display memory and

disassembled machine code.

 G-13 Glossary

syntax The format of a command or line of source code.

true A logical truth-value: if an expression is true, it

evaluates to an arithmetic one ($0001) and an

arithmetic non-zero value ($0001-$ffff) is considered

true. Compare with false.

truth value The result of a logical expression — true or false.

two-pass assembler An assembler, like geoAssembler, which makes two

passes through the source code, accumulating labels,

equates, and macros on the first pass and resolving

references and generating object code on the second

pass.

two's complement The one's complement of a number plus one, where

all one's become zeros and all zeros become ones and

one is added to the result. In the two's complement

numbering system, a negative number is the two's

complement of its positive counterpart; taking the

two's complement of a number is identical to

subtracting it from zero. Compare with one's

complement.

unitialized data Data areas reserved in zsect and ramsect sections with

the .block directive. No object code is generated, so

the data space, although reserved, is not initialized

with any values.

V Overflow flag. Bit six in the 6502 status register. If

set, the arithmetic operation generated an overflow.

VLIR application A type of GEOS application where the resident

module loads entirely into memory and the remainder

of the code is swapped in and out as overlay modules.

wolf-fence method A debugging technique where a bug is located by

successively fencing it into smaller and smaller areas

of code.

word Two bytes combined to form one 16-bit value. Words

are usually stored in low/high order.

Glossary G-14

X One of the two 6502 index registers.

Y One of the two 6502 index registers.

Z Zero flag. Bit one in the 6502 status register. If set,

the operation generated a zero.

zero page Page zero in the 6502 memory space ($00-$ff);

special because memory loads and stores to these

locations are quicker than in the remainder of

addressable memory.

zsect a section in geoAssembler which manages zero page

unitialized data space.

 I-1 Index

Index

Operators .block 5-34
operator tables 5-10, 8-6

() (grouping) 5-11

[(low-byte) 5-13

] (high-byte) 5-13

~ (one's comp. negate) 5-13

£ (one's comp. negate) (8-6) 5-13

- (two's comp. negate) 5-13

- (subtraction) 5-14

+ (addition) 5-14

/ (division) 5.14

// (modulus) 5-14

* (multiplication) 5-14

** (exponentiation) 5-14

< (less than) 5-16

< (low byte) 5-13

<<(left shift) 5-14

<= (less than or equal) 5-16

= (equal to) 5-16

== (equal to) 5-16

> (greater than) 5-16

> (high byte) 5-13

>= (greater than or equal) 5-16

>>(right shift) 5-14

! (logical NOT 5-15

!= (logical not equal to) 5-16

& (bitwise AND) 5-15

&& (logical AND) 5-16

| (bitwise OR) 5-15

|| (logical OR) 5-16

^ (bitwise XOR) 5-15

^^ (logical XOR) 5-16

↑ (bitwise XOR) (8-6) 5-15

↑↑ (logical XOR) (8-6) 5-16

@ (byte lookup) 8-7

@@ (word lookup) 8-7

@# (instruction length) 8-8

geoAssembler Directives
= 5-29

== 5-29

.block 5-34

.byte 5-32

.echo 5-27

.elif 5-35

.else 5-35

.end 5-28

.endh 5-48

.endif 5-35

.endm 5-39

.eqin 5-30

.glbl 5-31

.header 5-48

.if 5-35

.include 5-20

.macro 5-39

.noeqin 5-30

.noglbl 5-31

.psect 5-25

.ramsect 5-23

.word 5-33

.zsect 5-21

geoLinker Directives
.cbm 6-16

.header 6-9

.mod 6-14

.output 6-8

.psect 6-10

.ramsect 6-11

.seq 6-12

.vlir 6-13

Super-debugger Commands
a 8-29

b 8-65

cb 8-67

clrb 8-67

clrmac 8-88

clrsym 8-72

copy 8-97

d 8-21

Index I-2

da 8-102

db 8-102

dd 8-108

di 8-102

diff 8-98

dir 8-103

dis 8-24

disk 8-102

drivea 8-102

driveb 8-102

dump 8-21

dumpd 8-108

e 8-16

exit 8-16

fg 8-41

fill 8-96

fin 8-60

find 8-95

finish 8-60

flag 8-41

for 8-93

gb 8-104

getb 8-104

getchain 8-107

getn 8-104

go 8-43

h 8-58

history 8-58

ib 8-69

if 8-92

initb 8-69

inith 8-59

inithist 8-59

initmac 8-89

initmod 8-77

initsym 8-73

js 8-45

jsr 8-45

l 8-53

loop 8-53

m 8-33

mac 8-84

mod 8-74

n 8-22

next 8-51

nx 8-51

opt 8-17

p 8-50

pb 8-105

pc 8-100

poff 8-90

pon 8-91

pr 8-26

print 8-26

putb 8-105

q 8-16

quit 8-16

r 8-20

rboot 8-101

reg 8-38

return 8-62

rg 8-38

rt 8-44

runto 8-44

s 8-46

sb 8-66

setb 8-66

setmac 8-86

setmod 8-75

setsym 8-71

setu 8-99

skip 8-55

sm 8-56

stack 8-57

stop 8-94

stopmain 8-56

sym 8-70

sys 8-82

sysmac 8-82

t 8-48

w 8-23

Mini-debugger Commands
a 9-12

b 9-29

cb 9-31

 I-3 Index

d 9-10

da 9-34

db 9-34

dd 9-37

di 9-34

e 9-7

fg 9-21

g0 9-8

g1 9-8

gb 9-35

go 9-22

ib 9-32

js 9-24

m 9-15

nx 9-27

pb 9-36

pc 9-33

q 9-7

r 9-9

rg 9-19

rt 9-23

s 9-25

sb 9-30

sm 9-28

t 9-26

w 9-11

Non-alphabetic

$ (local label) 4-5, 5-5

(label) 4-5, 5-4

; (comment) 4-3, 4-7,

 5-7, 6-3,

 8-79

6502...

alternate mnemonics 5-6

microprocessor 3-1

opcodes 5-6

addressing modes 5-6

6510 3-1

8502 3-1

A
abort...

 geoAssembler 4-16

 geoLinker 4-21

absolute 4-13

addressing modes, 6502 5-6

application types 3-7, 6-2

assembler 3-2, 4-13

assembling 3-5

assembly language... 3-1

learning 4-2

B
backup, how to 2-5

binary 3-1

binary constant...

 geoAssembler 5-7

 geoDebugger 8-2

bitmap...

 compacted 4-11, 5-52

 dimension of 4-12

 pasting 4-11

 PicH & PicW 4-12, 5-52

boolean operations 5-9

bra 4-6, A-5

branch, uncondtional 4-5, A-5

breakpoints... 8-49, 8-63,

 9-29

 clearing 8-67, 9-31

 initializing 8-69, 9-32

 setting 8-66, 9-30

 viewing 8-65, 9-29

bugs 3-5, 7-1

C
case...

 geoAssembler 4-4

 geoLinker 6-3

 mini-debugger 9-1

 super-debugger 8-3, 8-17

CBM application 6-16

Index I-4

character constant...

geoAssembler 5-7

super-debugger 8-2

circumflex, keystroke 4-10

code field 4-3

command file, linker 3-5, 6-1,

 6-3, 6-7

command primitives 8-78, 8-82,

 C-1

comment field 4-3

comments

geoAssembler 4-7, 5-7

geoLinker 6-3

debugger macros 8-79

Commodore application 6-2, 6-16

compacted bitmap 4-11, 5-52

conditional assembly... 5-35

nesting 5-37

conditional (debugger) 8-92

conflicting global labels 6-7

cross-reference 3-5, 4-14,

 6-1, 6-7

D
data...

initialized 5-1

unitialized 5-2

debugger, symbolic 3-3

debugging 3-5, 7-1

decimal constant...

geoAssembler 5-7

super-debugger 8-2

default...

application name 6-2

debugger mode 7-3

debugger macro file 7-5, 7-6

header 4-13, 6-2,

 6-9

psect address 6-2, 6-10

ramsect address 6-2, 6-11

super-debugger opts 8-17

default radix...

mini-debugger 9-2

super-debugger 8-2, 8-17

desk accessory 3-7, A-8

development cycle 3-4

directives...

 geoAssembler 4-7, 5-18

 geoLinker 6-3

disk, contents of 2-3

disk commands 8-102, 9-34

E
EnterDesktop 8-10, 8-16

 9-4, 9-7

 equates...

 defining 5-29

 suppression of 5-3, 5-30

 5-31, 6-7

 zero page 5-21

events 3-4

expressions...

 arithmetic 5-8

 evaluation 5-8

 geoAssembler 4-9, 5-8

 geoLinker 5-8, 6-4

 logical 5-9

 mini-debugger 9-2

 passing to linker 5-8

 super-debugger 8-2

external reference 3-5, 4-14

 6-1, 6-7

F
false, logical 5-9

file formats 3-7, B-1

file header 3-8, 5-48

 6-9

filename restrictions 4-9

first pass 5-2

flags 8-41, 9-21

G
geoAssembler...

abort 4-16

 I-5 Index

running 4-14

geoDebugger...

configurations 7-3

mini-debugger 7-3, 9-1

super-debugger 7-3, 8-1

geoLinker...

abort 4-21

running 4-17

geoPaint... 3-4, 2-6

 1-3

cutting from 4-12

GEOS screen 7-2, 8-10

 9-3

geoWrite... 3-4

debugger macros 8-79

graphics 4-11

keystrokes 4-10

naming source files 4-9

page-breaks 4-10

text-effects 4-10

with geoAssembler 4-9

with geoLinker 6-3

global labels... 4-5, 5-4

conflicting 6-7

graphics, pasting 4-11

Graphics Grabber 2-6

H
header, GEOS file... 3-8, 5-48

 6-9

default 4-13, 6-2

 6-9

defining 5-48

geoLinker 6-9

hexadecimal constant...

geoAssembler 5-7

mini-debugger 9-2

super-debugger 8-2

I
Icon Editor 1-3, 2-6

in-circuit emulator 7-1

include files...

.include 5-20

samples A-1

initialized data 5-25

InitRam 5-23

input radix 8-17

installation 2-4

J
jump, to local label 4-5

jump table...

.word 5-33

VLIR overlays 6-7

in sample VLIR A-8

K
keystrokes...

notation in manual 1-5

special geoDebugger 8-1

special geoWrite 4-10

L
label field 4-3

labels...

conflicting global 6-7

global 4-5, 5-4

local 4-5, 5-5

jump to local 4-5

scope of 5-5

suppression of 5-5, 5-30

 6-7

linker command file... 3-5, 6-2

 6-3

sequential application 6-4

VLIR application 6-5

linking 3-5, 4-14

 6-1

local labels 4-5, 5-5

local region 5-5

M
machine language 3-1

Index I-6

macros, geoAssembler... 5-39

#-sign stripping 5-46

defining 5-39

expansion 5-38

internal labels 5-44

invocation 5-38

names 5-42

nesting 5-47

overflow 5-47

parameter names 5-42

parameter substitution 5-43

parameters 5-38, 5-42

string passing 5-43

macros, super-debugger... 8-78

 clearing 8-88

 command primitives 8-78,

 8-82,

 C-1

defining 8-86, 8-79

expansion of 8-17

initializing 8-89

levels of 8-78

system 8-78, 8-82

user-defined 8-78, 8-84,

 8-86, 8-88,

 8-89

viewing 8-82

creating in geoWrite 8-79

MainLoop 8-56, 9-28

microPORT 1-1, 3-2

mini-debugger... 9-1

cancel 9-3

commands 9-5

expressions 9-2

GEOS screen 9-3

hot key 9-3

memory usage 9-1, A-3

options 9-8

running 7-6

syntax notation 9-6

mixing, logical and arith-

 metic expressions 5-9, 5-17

mnemonics... 3-2, 4-7

 alternate 5-6

modules 3-5, 6-5

 6-14

more prompt 8-9, 9-3

N
nesting...

conditional assembly 5-37

include files 5-20

macros 5-47

Notepad 2-6

number bases...

geoAssembler 5-7

geoDebugger 8-2, 9-2

numeric constants...

geoAssembler 5-7

geoDebugger 8-2, 9-2

0
octal constant...

geoAssembler 5-7

super-debugger 8-2

offset radix 8-18

opcode 4-7, 5-6

opcode field 4-3

open modes 8-29, 9-12

operand 4-7, 5-6

operand field 4-3

operators...

geoAssembler 5-10

super-debugger 8-6

options, geoDebugger 8-17, 9-8

output radix 8-17

overlay module... 3-7, 6-5

 6-7, 6-14

 jump table 6-7

P
page 5-1

page zero 5-1

page-breaks, source code 4-10

pass, geoAssembler 5-2

Passl 5-53

picH & picW 4-12, 5-52

 I-7 Index

position-independent 4-13

program code... 5-1

 .psect 5-25

program development 3-2

program sections...

psect 5-1, 5-25

 6-10

ramsect 5-2, 5-23

 6-11

zsect 5-1, 5-21

psect 5-1, 5-25

 6-10

pseudo-op 4-7

Q
quit, geoDebugger 8-16, 9-7

R
radix symbols...

geoAssembler 5-7

super-debugger 8-2

ramsect 5-2, 5-23

 6-11

reboot 8-101

relocatable 4-13

relocatable labels, psect 5-25

resident module 6-5, 6-7

 6-14

runnable object file 3-5

running...

geoAssembler 4-14

geoLinker 4-17

mini-debugger 7-6

super-debugger 7-4

s
sample applications...

creation of 4-22

desk accessory A-8

sequential A-7

VLIR A-8

scope, label 4-5

semicolon 4-7

sequential application 3-7, 6-2,

 6-4, 6-12

source code... 4-2

general syntax 4-3

lexical analysis 5-2

with geoWrite 4-9

step

string data...

in geoDebugger 8-36, 9-17

with .byte 5-32

super-debugger... 8-1

cancel 8-9

commands 8-10

expressions 8-2

hot key 8-9

macros 8-78

memory usage A-3

more prompt 8-9

operators 8-6

options 8-17

overlay modules 8-74

processor registers 8-4

running 7-4

special characters 8-1

status register flags 8-4

symbols 8-3, 8-70

syntax notation 8-13

variables 8-5

symbols...

in super-debugger 8-3, 8-70

reserved 5-3

valid characters 5-3

symbols, super-debugger.

clearing 8-72

initializing 8-73

setting 8-71

viewing 8-70

syntax...

 notation in manual 1-5, 8-13

 9-6

 of source code 4-3, 5-2

system macros 8-78, 8-82

Index I-8

T
tab, keystroke 4-10

tabs, usage of 4-10

text effects 4-10,

keystroke 4-10, 8-1

top-step 8-48, 9-26

true, logical 5-9

truth value... 5-35

 arithmetic value of 5-9

two's complement 5-8

two-pass 5-1

U
unconditional branch 4-5

underline, keystroke 4-10

unitialized data... 5-23

 space reservation 5-34

V
viewable symbol table 4-18

V-bar, keystroke 4-10

VLIR application 3-7, 6-2,

 6-5, 6-13,

 6-14, A-8

W
whitespace 4-3

work disk...

making 2-6

multiple 2-6

sample 2-6

Z
zero page... 5-21

variables 5-21

equates 5-21

zsect 5-1, 5-21

	Cover
	Table of Contents
	Chapter 1: Introduction to geoProgrammer
	geoAssembler
	geoLinker
	geoDebugger
	Using geoProgrammer with Other GEOS Based Programs
	geoWrite
	geoPaint
	Icon Editor

	How to Use This Manual
	Conventions Used in This Manual
	Syntax Notation

	Chapter 2: Before you begin
	What You Need to Use geoProgrammer
	The geoProgrammer Disk
	Installing geoProgrammer
	Making a Backup Copy of geoProgrammer
	With One Disk Drive
	With Two Disk Drives

	Making Work Disks

	Chapter 3: Application Development
	What is Assembly Language?
	Developing With geoProgrammer
	geoAssembler
	geoLinker
	geoDebugger

	The Development Cycle
	The Design Stage
	Event-driven Programs
	Coding
	Modules
	Assembling
	Linking
	Debugging

	Application Types
	Sequential applications
	VLIR applications
	Desk accessories

	GEOS File Headers

	Chapter 4: geoAssembler & geoLinker Description and Usage
	How to Learn Assembly Language
	6502 Source Code
	General Syntax and Format
	Case Dependency
	Labels and Equates
	Local Labels
	Mnemonics, Opcodes, and Operands
	Directives and Pseudo-ops
	Comments
	Macros
	Expressions

	Creating geoAssembler Source Code
	No Spaces in Filenames
	geoWrite Page Breaks
	Special Keystrokes
	Tabs vs. Spaces
	Text Effects
	Including Icons (graphics) in Your Source File
	picH and picW

	How the Assembler and Linker Relate
	Assembling
	Linking

	Running geoAssembler
	Aborting

	Running geoLinker
	The Linker Command File (brief overview)
	Linking With geoLinker
	Aborting

	Successful Link
	Unsuccessful Link

	Creating a Sample Application

	Chapter 5: geoAssembler Reference and Advanced Topics
	The Assembly Process
	Zero Page (zsect)
	Program Code (psect)
	Uninitialized Data areas (ramsect)
	Pass One and Pass Two

	Assembler Input
	Lexical Analysis

	Symbols
	Equates
	Labels
	Local Labels

	6502 Opcodes and Operands
	Opcodes
	Operands

	Comments
	Expressions
	Numeric Constants
	Expression Evaluation

	Arithmetic Operations
	Logical Operations
	Operators
	Evaluation
	Operator: ()
	Operator: - (unary)
	Operator: ~ (unary)
	Operators:], [, <, > (unary)
	Operator: **
	Operator: //
	Operators: *, /, +, -
	Operators: >>,<<
	Operators: &, |, ^
	Operator: !
	Operators: >, >=, <, <=, ==, =, !=
	Operators: &&, ||, ^^

	Mixing Logical and Arithmetic Expressions

	Directives
	Summary of Directives
	Assembly Control
	Symbols
	Data
	Conditional Assembly
	Macro Definition
	Header Definition

	Assembly Control Directives
	.include
	.zsect
	.ramsect
	.psect
	.echo
	.end

	Symbol Directives
	Directive: =, ==
	Directive: .eqin, .noeqin
	Directive: .glbl, .noglbl

	Data Directives
	Directive: .byte
	Directive: .word
	Directive: .block

	Conditional Assembly
	Directive: .if, .else, .elif, .endif
	Nesting

	Macros
	What is a Macro?
	And What's This About Parameters?
	Directive: .macro, .endm
	Macro Names
	Parameters and Parameter Names
	Parameter Substitution
	Too Few or Too Many Parameters
	Labels Within Macros
	Immediate Mode and Constant Values
	Macro Nesting
	Macro Overflows

	Header Definition
	Directive: .header, .endh
	Header Syntax

	Internal Variables
	picH & picW
	Pass1

	Chapter 6: geoLinker Reference
	The Link Process
	Linker Overview
	Command File
	Sequential and VLIR Applications
	Standard Commodore Applications
	Header and Output File
	Psect and Ramsect Addresses

	The Linker Command File
	Using geoWrite to Create Link Command Files
	Comments
	Directives
	Filenames
	Expressions
	Sequential Application Link
	VLIR Application Link

	Cross-reference Resolution
	How geoLinker Resolves Cross-references
	Global Label Conflicts
	VLIR Overlay Module References

	Link Directive Reference
	Directive: .output
	Directive: .header
	Directive: .psect
	Directive: .ramsect
	Directive: .seq
	Directive: .vlir
	Directive: .mod
	Directive: .cbm

	Chapter 7: geoDebugger Usage and Tutorial
	What is a Debugger?
	geoDebugger Features
	Dual Displays
	Hot Key
	Symbolic Debugging
	Breakpoints
	Expressions
	Open Modes
	Debugger Macros

	Super-debugger and Mini-debugger
	Running the Super-debugger
	Running the Super-debugger by Itself:
	Running the Super-debugger by Opening a Symbol File

	Running the Mini-debugger
	Sample Super-debugger Session
	Running the Super-debugger with the Sample Application
	Executing Some Code
	Watching the Menus Go Up
	Showing Registers
	Using One of the Sample Macros
	Running the Code Full-speed
	Hot Key Entry Into geoDebugger
	Modifying Program Data
	Testing the New Menu
	And Now on to More Powerful Manipulations

	Sample Mini-debugger Session
	Loading the Mini-debugger
	Executing Some Code
	Watching the Menus Go Up
	Showing Registers
	Watching Register Values Change
	Running the Code Full-speed
	Hot Key Entry Into geoDebugger
	Modifying Program Data
	Testing the New Menu
	And Now on to More Powerful Manipulations

	Chapter 8: Super-debugger Reference
	Special Characters
	Super-debugger Expressions
	Numeric Constants
	Symbol Names
	Processor Registers
	Status Register Flags
	User and System Variables

	Operators
	Operator: @
	Operator: @@
	Operator: @#

	Basic Operation
	The Command Prompt
	Hot Key Entry and Cancel
	The More Prompt
	Viewing the GEOS Application Screen
	EnterDeskTop Vector Trap

	Super-debugger Command Summary
	General Commands
	General Display Commands
	Open Modes (register and memory examination and modification)
	Execution Commands
	Stack Related Commands
	Breakpoint Commands
	Symbol Commands
	Macro Commands
	Memory Commands
	Special Commands
	Disk Commands

	Syntax Notation
	General Commands
	Command: quit
	Command: opt
	Input radix (0)
	Output radix (1)
	Labels (2)
	Offset radix (3)
	Case distinction (4)
	GEOS screen (5)
	Expand macros (6)
	opt in Open Mode
	Using opt Without Open Mode

	Display Commands
	Command: r
	Command: dump
	Command: n
	Command: w
	Command: dis
	Command: print
	Brief Introduction to Using print
	print Syntax

	Open Modes
	Command: a
	Open a-mode Keystrokes
	Deposit a-mode
	a-mode Deposit Syntax

	Command: m
	Open m-mode Keystrokes
	Deposit m-mode
	m-mode Deposit Syntax

	Command: reg
	Open reg-mode Keystrokes
	Deposit reg-mode
	reg-mode Deposit Syntax

	Command: flag
	Open flag-mode Keystrokes

	Execution Commands
	Command: go
	Command: runto
	Command: jsr
	Command: s
	Single-stepping with a Condition

	Command: t
	Top-stepping with a Condition
	Encountering User-defined Breakpoints

	Command: p
	Command: next
	Command: loop
	Command: skip
	Command: stopmain

	Stack Related Commands
	Command: stack
	Command: history
	Command: inithist
	Command: finish
	Command: return

	Breakpoint Commands
	How Breakpoints Work: the Nitty Gritty
	Command: b
	Command: setb
	Command: clrb
	Command: initb

	Symbol Commands
	Command: sym
	Command: setsym
	Command: clrsym
	Command: initsym
	Command: mod
	Command: setmod
	Command: initmod

	Macro Commands
	Levels of the Macro Language
	Command Primitives
	System Macros
	User-defined Macros

	How the Super-debugger Parses input
	Arguments

	Creating Macros in geoWrite
	Macro Size Limit

	Command: sysmac
	Viewing System Macros

	Command: mac
	Command: setmac
	Creating the Macro

	Command: clrmac
	Command: initmac
	Command: poff
	Command: pon
	Command: if
	Command: for
	Command: stop

	Memory Commands
	Command: find
	Command: fill
	Command: copy
	Command: diff

	Special Commands
	Command: setu
	Command: pc
	Command: rboot

	Disk Commands
	Command: drivea, driveb, disk
	Command: dir
	Command: getb
	Command: putb
	Command: getn
	Command: getchain
	Command: dumpd

	Chapter 9: Mini-debugger Reference
	Memory Usage
	Case Sensitivity
	Expressions and Numeric Constants
	Basic Operation
	The Command Prompt
	Hot Key Entry and Cancel
	The More Prompt
	Viewing the GEOS Application Screen
	EnterDeskTop Vector Trap

	Mini-debugger Command Summary
	Execution Commands
	Breakpoint Commands
	Special Commands
	Disk Commands

	Syntax Notation
	General Commands
	Command: q
	Command: g0, g1

	Display Commands
	Command: r
	Command: d
	Command: w

	Open Modes
	Command: a
	Mini-debugger Open a-mode Keystrokes
	Deposit a-mode
	a-mode Deposit Syntax

	Command: m
	Mini-debugger Open m-mode Keystrokes
	Deposit m-mode
	m-mode Deposit Syntax

	Command: rg
	Mini-debugger Open rg-mode Keystrokes
	Deposit rg-mode
	rg-mode Deposit Syntax

	Command: fg

	Execution Commands
	Command: go
	Command: rt
	Command: js
	Command: s
	Command: t
	Command: nx
	Command: sm

	Breakpoint Commands
	Command: b
	Command: sb
	Command: cb
	Command: ib

	Special Commands
	Command: pc

	Disk Commands
	Command: da, db, di
	Command: gb
	Command: pb
	Command: dd

	Appendix A: Library Files and Sample Source
	GEOS Equates and Constants Files
	Macro Files
	Summary of geosMacros File
	Load and Move
	Addition
	Subtraction
	Comparison
	Stack Operations
	Unconditional Branch
	Bit Operations
	Bit Test and Branch Operations

	Sample Applications
	Sample Sequential Application
	Sample Desk Accessory
	Sample VLIR application
	Sample VLIR Application Roadmap
	Initialization
	Geos menu
	File menu
	Edit menu
	Icon press

	Sample Includes
	geosConstants
	geosMemoryMap
	geosRoutines
	geosMacros

	Sample Sequential Source
	SamSeq
	SamSeqHdr
	SamSeq.lnk
	SamSeq.dbm

	Sample VLIR Source
	SamVlirRES
	SamVlirFile
	SamVlirEdit
	SamVlirHdr
	SamVlirZPVars
	SamVlirEquates
	SamVlir.lnk

	Sample DA Source
	SamDA
	SamDAHdr
	SamDA.lnk

	Appendix B: geoProgrammer File Formats
	.rel File Format
	record 0:
	record 1:
	record 2:
	record 3:

	.dbg File Format

	Appendix C: geoDebugger Technical Notes
	Super-debugger Primitives
	Startup Conditions
	Debugger Isolation
	Off Limits Memory
	Protected Memory
	Miscellaneous

	Appendix D: Bibliography and Further Reference
	6502 Assembly Language
	Commodore 64
	GEOS

	Appendix E: Error Messages
	Disk Related Errors
	Disk full
	File Not Found
	Bad disk/no disk
	Disk write error
	Disk write protected
	Disk name mismatch
	Bad allocation map
	General disk error

	geoAssembler Errors
	Hidden error found
	Parse buffer overflow
	Missing parameter
	Branch to an external address
	Invalid local label
	Multiple definition of a local label
	Zsect overflow
	Expression must evaluate fully when encountered
	Missing file name
	Byte expression greater than $ff
	.IF nesting error
	.ENDIF found without .IF
	No .ENDIF for .IF
	.ELIF statement after .ELSE
	Branch out of range
	Malformed expression
	Missing macro name
	Macro already defined, definition ignored
	Invalid macro parameter
	.INCLUDE nesting overflow
	Macros nested too deep
	Bad character string
	No .ENDM found for .MACRO
	.ELSE found without .IF
	.ELIF found without .IF
	Undefined local label
	Macro name too long
	Macro parameter name too long
	Illegal character in macro name
	Bitmap data not allowed in a macro definition
	Too many macro definitions
	Macro text buffer overflow
	No parameter is allowed for .psect
	Cannot use relocatable label as a parameter
	Inappropriate context for directive
	In file header
	Line too long
	Expression too complex
	Object code too large
	Too many errors

	geoLinker Errors
	Parse buffer overflow
	Illegal module number
	Module already exists
	Resident symbol table overflow
	Overlay module symbol table overflow
	Overlay module not allowed for SEQ or CBM applications
	Missing or unresolvable argument
	End of file encountered prematurely
	Expression cannot be resolved
	File name expected
	More than one page in .lnk file
	Unknown directive or inappropriate context for directive
	Line too long
	Page buffer overflow

	Glossary
	Index
	Operators .block 5-34
	geoAssembler Directives
	geoLinker Directives
	Super-debugger Commands
	Mini-debugger Commands

	A
	B
	C
	D
	E
	F
	G

