——

|

3

= _
: GeoBasic
Programming

E Manual

The Official BASIC Programming Language
for GEOS C-64/128 Users

Developed by Berkeley Softworks
Distributed by RUN Magazine

i,

ge0BASIC

The BASIC programming language for GEOS C-64/128 users.
0eoBASIC software (c) 1990 Berkeley Softworks.
Portions of the geoBASIC manual (c¢) 1990 Berkeley Softworks.

Changes and enhancements to the manual (c) 1990 RUN
Magazine.

geoBASIC and GEOS are trademarks of Berkeley Softworks.

IDG Communications/Peterborough, Inc. (Publishers ot RUN
Magazine), has licensed geoBASIC tfrom Berkeley Softworks.

Berkeley Softworks disclaims all responsibility for warranty,
guarantee, replacement and service of geoBASIC.

Customer service and technical support questions should be
referred to RUN Magazine, 80 Elm St., Peterborough, NH 034358.

Technical support 1s also provided on the RUN geoBASIC area on
QuantumLink.

RUN and Berkeley Softworks disclaim any liability for incidental
or consequential damages.

ge0BASIC runs in C-64 mode (40 columns) on C-64/128.

JUNE 1990

Dear geoBASIC owner,

Congratulations and thank you for purchasing geoBASIC.

You are the proud owner of a powerful version of BASIC that
gives GEOS users the tlexibility to develop their own programs in
BASIC. With this product (in C-64 40-column mode) you have
everything you need to begin developing your own BASIC appli-
cations in GEOS, taking advantage of the features that have made
GEOS so easy to use—pull-down menus, dialog boxes, icons and
mouse pointer for easy point-and-click operations. You’ll now be
able to create programs that use icons, menus, sprites and dialog
boxes.

We’re pleased to be able to present geoBASIC, and plan to
support this product both through the magazine and in the RUN
ge0BASIC area on QuantumLink. We encourage users to upload
the programs they have developed to the Q-Link area and also to
submit their work to RUN for possible publication. We also
encourage users to access the Q-Link area for information on the
latest geoBASIC developments, programming information,
forums, software to download, sample applications and answers to
your questions and comments.

We were encouraged by the GEOS community to bring this
product to market. We have worked diligently to provide a top-
quality and much-needed product to the marketplace. We feel that
we have succeeded, and welcome your comments regarding our
efforts.

In putting together this manual, we made several assumptions.
One is that you are familiar with GEOS and know how to load and
open GEOS files.

Also, 1t 1s not the intent of this manual to teach you how to

11

program. If you are interested in using geoBASIC, then you should
already be familiar with BASIC programming. If you’ve never
programmed before, then we strongly suggest that you develop
some BASIC programming skills either through a course or a book
before you use this program. The purpose of this manual is to
teach you how to use geoBASIC and its commands.

[would like to extend my appreciation to the following:

First, to the gang at Berkeley Softworks for developing this
program and licensing 1t to RUN. Through their cooperation, we
are able to bring this product to market.

Second, to project manager Lou Wallace, who was the driving
force for this product here at RUN. Without his persistence, long
hours under impossible deadlines, foresight and dedication to this
project, geoBASIC would not now be available to the GEOS
community.

Third, to the group of tireless testers and reviewers of this
product, particularly Joe Buckley and Bill Coleman. These
programming wizards were responsible for testing and developing
applications. Their keen insights and knowledge of GEOS
contributed to the success of this product.

This manual contains all the information you need to get under
way developing your own programs in GEOS. All you need

besides this manual is a little imagination. Good luck and happy
programming.

Dennis Brisson

Editor-In-Chief
RUN

111

TABLE OF CONTENTS B s a5 i 27
ArithmetiC EXPIreSSIONSceuuiirucrenneceenssrenssssessessssssnnes 27
Hierarchy of Arithmetic Operatorsoovvvveuennnnn.. 31
TE —
CHAPTER ONE—AN OVERVIEW OF geoBASIC....................... String EXPreSSI0NS.. .o, 32
Features of geOBASIC ... il il
The geoBASIC UHIHIEScoovuermerssisies e 2
Using e Mol e CHAPTER FIVE—THE geoBASIC COMMAND
& 1115 VIANUAL.ccvveereenrisannianisetstsssioneasnisanssanassasnaant -y DI s o ssisssipanesammnsinsaimmnbhen ik bt bso st aamse 33
' BEIIIEMER cusiuniiianon oo immsesibnmimmmmbnsiiint e s RO b e 33
C ATDTRESGTFKWII:-IG-HODUCTION TO geoBASIC geOBASIC Commandsoooevevvmmemeoeeeeeeee 34
Elements of a geoBASIC Program..........oooveeueveuoeeenni b
eppsarh gcreens B - ®0§ CHAPTER SIX—DISK AND FILE PROGRAMMING 102
RUNMNG GEOBASIC...oooeooooooooo o Disk and File COMMANGScccoooovvrrrvrirrssssrrnnn 102
The TeXt EAItOT.....v..eeeeeereeeeeseeeeeeeeeeseeeeseeeoesseeeeeoone. VLIR File DeSCrIption. ..veeccvee e 107
Loading 8 Prograf........cccccvececcassssnssessssssssssastosnrsibiiGiia
SAVINE & PIOGIANcicivmiinssonsssncnscasasssassscresssossessnsssliii CHAPTER SEVEN—THE geoBASIC UTILITY
LiStNE @ PLOZTAM «.eoeeeeeeoeeeeeoeeeoeeoeeoeeoeeeeeeeoo . PP MR icvonsssiisiunionsvsanussnsamimnmmmsssinsssssnese s RS 109
EBAiting KeyStrOKEScccoceeessescssnesssssossnssssonsrasssosossossern - The Menu Editorooooviiiiiiiiieee e 109
| & The Bitmap Utility.........ovvvveeeeeeeeeeeeeeeoee 112
CHAPTER THREE—A SIMPLE QEOBAS|C TUTORIAL Dlalog BOX Edltor ... 115
Gl Prognimming Peiasig, |- 5rs s sri) ISCOI:I L;E:s:1 .Utlllty ... 120
ThiSingifs Aenlioatlan ¥ - prite | I, rmimriidiitisii ik e v b R A 122
1 The Editor SCreen.......ccoueeeeeeeeeeeoee 127
CHAPTER FOUR—PROGRAMS, DATA AND VARIABLES
| CHAPTER EIGHT—THE geoBASIC DEBUGGER................. 131
U T b LB 7 1 RN o . ,
Editing Keys........... - Entering Expressions or Breakpoints.......................... 131
s e Somsns w08 Tiatinng Vo Briiion. o - e][E)ebug IVEONIEE i ioicrmasecnassmmnyrmsmmsmommss s s s Sasasss 134
The geoBASIC Menus oo TTOTS ...ttt reeereeteeneeteeaesennsansennssnnsennssennnn. 134
Elements of the geoBASIC Language
COMSEANLS ..o CHAPTER NINE—geoBASIC ERROR MESSAGES.............. 136
Variables ...
AATTAYS c.evtteeeeeeeeeeeeeeae e e e eeeeeeeeeeeeaeeeeeeeesesssaaaessssaesees
1V Vv

V1

Chapter One—An Overview of geoBASIC

BASIC is a language for programming your computer. It is the
most easily learned and most widely used of the computer
languages available. Thousands of ordinary people have learned
BASIC and successfully program their computers. You don’t need
to have an educational background with years of college and a
penchant for all-night sessions to be a programmer in BASIC. In
fact, probably more people create programs in BASIC for the C-64
than any other computer. And this process 1s made even easier
by GEOS.

GEOS 1s the Graphics Environment Operating System from
Berkeley Softworks. It includes intuitive tools such as pull-down
menus, information boxes that provide choices right on the screen,
on-screen pictures (called icons) and the mouse pointer for easy
point-and-click operations. An example of how these elements
combine to make operations easy should illustrate what we mean.
When you insert a disk in the drive, all you need to do to find out
what files are on the disk 1s move the mouse pointer up to the
menu at the top of the screen labeled “DISK” and click the left
button. The submenus will become visible, and you would then
click on “OPEN”. The various files on the disk become visible in a
“window” on the screen. Each file has a picture associated with it
which gives further information about the file. To print out a file,
click once on the icon of the text file you want to print. This will
cause 1t to become highlighted. Click it a second time and you will
have picked up an outline of the icon. As the mouse pointer
moves, an outline of the file will move with it. Move the icon to
the printer icon, and press the left button. When you release the
left button, the printer will start up and out will come the printed
copy. If the printer is not hooked up, then a box (called a dialog
box) will appear on the screen informing you of this. When you
move the mouse pointer to the button labeled “OK” and click the

lett button, the box will disappear, and you will be right back
where you started.

FEATURES OF GEOBASIC

geoBASIC is a full-featured BASIC for the C-64. It includes a
text editor for entering and editing programs, as well as menus for
special features. With geoBASIC, you can use icons, menus,
sprites and dialog boxes in your own programs, to make them look
protessional as well as easy to use. Color and sound, text windows
and drawing commands are available, as is full support for the
mouse. Structured loops, subroutines, mathematical functions and
access to machine language subroutines are all supported. You
even have special commands that provide access to disk files for
storing and recovering data.

THE GEOBASIC UTILITIES

Included with geoBASIC are five utilities that you can use to
build various items to use in your programs. Each of the utilities

works similarly. They are:

Menu Editor

The Menu Editor enables you to build menus for use in your
programs. The words which appear at the top of the screen are
submenus. Moving the mouse pointer up to a menu and clicking
the left button makes the items in that menu “drop down,”
appearing on the screen under the submenu. To select an item,
move the mouse pointer to that item and click the left button. If
you change your mind about using an item under a submenu,
simply move the mouse pointer away from the dropped-down
items without clicking the left button, and the submenu will close

up again.

The Menu Editor is an interactive utility. As you specify each
submenu, it appears at the top of the screen as part of the menu.
You can specify the number of submenus in the menu and the-
exact text of each submenu, and these can be changed at any time.
You can also specify where the program will branch when the user
selects (clicks on) a particular item.

Bitmap Editor

Bitmaps are small pictures that you can place on the screen
(see Icon Editor, below) or in a dialog box (see Dialog Box Editor,
below). The Bitmap Editor lets you draw and save bitmaps for
later use. You can specity the size of the final bitmap and use the
mouse pointer to turn points off and on in an enlarged drawing
area. As you proceed the editor also shows you what the final
bitmap looks like 1n actual size.

Icon Editor

The Icon Editor lets you use bitmaps defined with the Bitmap
Editor in your programs. Once a bitmap has been drawn and saved
using the Bitmap Editor, the Icon Editor lets you define the
coordinates on the screen where you want the bitmap to appear
when you use the geoBASIC command ICON.

Dialog Box Editor

Dialog boxes are boxes that appear on the screen in response to
the ge0oBASIC DIALOG command. Their purpose 1s to present
information to the user and get a choice or acknowledgement from
the user. After the user has made a selection from 2 dialog box, the

box is automatically removed from the screen and whatever was
hidden by the box is restored on the screen.

A dialog box can contain text, expressions (which can change
depending on the value of program variables), icons you have
designed using the Icon Editor, and system 1cons, such as the OK,
Cancel and Disk buttons. The Dialog Box Editor lets you specify
what objects you want to appear 1n the dialog box, what
coordinates (location) you want for each object, and the text or
expression to use for those objects that require a text message or
expression. When you select a type of object to use, you will be
prompted on the screen for all the information required to draw
that object in the dialog box. All of the specified quantities can be
edited at any time using the mouse pointer.

Sprite Editor

Sprites (also called Movable Object Blocks) are used for
animating sections of the screen. Often used for games, they can
also be used in many other types of applications. The Sprite Editor
is a major part of the geoBASIC utility set, offering unheard of
power in the generation and use of sprites. For details, see the

Utilities chapter later in this manual.

USING THIS MANUAL

The rest of the chapters in this manual are designed to get you
comfortable with geoBASIC as well as to provide a complete
reference to geoBASIC and the included utilities.

Several chapters act as an introduction and hands-on tutorial
for geoBASIC, while others contain a complete listing of all
2e0BASIC commands, often including samples using those
commands in a program segment. Also included 1s a description of
all the various special elements of the GEOS environment (such as

dialog boxes, sprites, bitmaps, etc.)

WHAT YOU SHOULD KNOW

Certain things are not within the scope of this manual to teach,
such as how to set up your equipment. If you are unsure how to do
this, refer to the manual that came with your Commodore. This
manual also will not teach you how to program, how to become a
programmer or how to use GEOS. It assumes that you have
already programmed with another language and are familiar with
the basic tenets and practices of programming a computer.

Some technical aspects of the Commodore 64/128 are covered
in the Commodore 64 Programmer’s Reference Guide. The details
of the SID (sound) chip, and how to manipulate sprites are covered
there, and are not repeated here. The goal of this manual 1s to
familiarize you with geoBASIC and explain how to use the
commands present 1n this language.

4

Chapter 2—Introduction to geoBASIC Programming

ELEMENTS OF A GEOBASIC PROGRAM

A program 1s made up of lines of commands. All of the valid
commands and details of how to use each are detailed in the refer-
ence section of this manual. At the beginning of each line there
must be a line number. The line number not only identifies the
beginning of a line of commands, but also determines the order of
execution of the lines of commands. Consider the following:

10 ...COMMANDS...
20 ...COMMANDS...

This represents two lines of a program, numbered 10 and 20.
The ... COMMANDS...” represents valid geoBASIC commands
that would normally follow the line number. If you typed in a line
beginning with the number 15 followed by commands, you would

have the following if you listed the program using the command
LIST:

10 ...COMMANDS...
15 ...COMMANDS...
20 ..COMMANDS...

Notice how the line numbered 15 ended up between lines 10
and 20. It is a good idea, when first typing lines into your program,

to number them in increments of 10, so you have plenty of room to
Insert extra lines later.

Line numbers are also important because certain commands
make reference to a particular line, and one way to 1dentify the line
In question is by using its line number (see GOSUB and GOTO in
the reference section). Another way to 1dentify a line is by using a
label. A label must follow a line number on the line. The label
name must be preceded by an @ symbol, and can be up to six
characters long, provided the label name begins with a letter and
does not contain any valid geoBASIC commands in the label

h

name. The label name can also be followed by a colon (:) and
another command. Examples of a label are:

20 @LLBL: ...COMMANDS...
30 @LLBL

The screen on your C-64 1s 40 characters wide. Each line of
commands in a geoBASIC program can be up to 240 characters,
which would occupy up to six screen lines. So, one line of the
program may take up more than one line on the screen. It is impor-
tant to distinguish between these. A command can be on two lines
of the screen, but must be fully contained in one line of the
program.

Each line in the program must contain at least one command or
a space. If you type in a line number with no commands or spaces
after it, that line will not show up 1n your program. Each line may
have more than one command if you choose. Separate multiple
commands with colons (:)

10 @LBL: FOR N=1 TO 10:PRINT N:NEXT N

THE GEOBASIC SCREENS

geoBASIC maintains two screens for you to work on. The first
is the text screen, where you type in your program and edit it. The
other screen is the graphics screen, where your program actually
runs. Because the two screens are separate, your program listing
remains intact while the program runs, and any results produced
by the program remain on the graphic screen, even after you return
to the text screen to further edit your program. If you want, during
editing you can switch back and forth between the graphics screen
and the editor screen by pressing the F7 key.

RUNNING GEOBASIC

To begin using geoBASIC from the GEOS d.esktolz_zo screen,
insert the disk containing geoBASIC into your disk drive. Mqve
the mouse pointer to the disk submenu and click on the open item

6

to show the contents of the disk. Move the mouse pointer to the
icon marked “GEOBASIC™ and double click the left button.
geoBASIC will load and its initial screen will appear.

THE TEXT EDITOR

geoBASIC includes a powerful text editor for entering and

editing your programs. A complete listing of its capabilities is
included in the reference section.

LOADING A PROGRAM

To load a new program, you must use the dialog box that
appears when you begin using geoBASIC. Choose from the three

options: Create New Document, Open Existing Document, and
Quit To DeskTop.

If you are going to create a new document, click on the Create
button and another box will appear asking you to “Please enter a
new filename:”. Type in the filename you want to use and press
[RETURN]. If you want to access a different disk drive, click on
the Drive button. If you wish to go back to the original dialog box,
click on the button marked Cancel. The filename you type in must
not exist on the disk or you will receive a message that states “File

exists, choose another”. If you receive this message, click on the
OK button to return to the previous dialog box.

It you are going to open an existing document, click on the
Open button. This will bring up a dialog box that lists the names of
the first fifteen geoBASIC files on the disk. You may select a file
in the list and click on Open to begin working on it, change drives
using the Drive button, or return to the previous dialog box by
clicking on Cancel. If there are too many files on the disk for them
all to be visible in the dialog box, click on the up or down arrows

which will appear to scroll through the list of files.

Note: If you are editing a file with geoBASIC and want to

work with another file, you must close the current file using the

7

Close item in the File submenu. This will return you to the initial
geoBASIC dialog box so you can load another file.

SAVING A PROGRAM

When you have revised a program in memory, it is important
to save the changes to disk or they will be lost when you quit
geoBASIC. To save the changes to disk, select the Update item
from the File submenu. Saving also occurs automatically when
you use the Close item under the File submenu to stop working
with the current file.

LISTING A PROGRAM

To look at your program on the screen, you must list it. If you
want to see the whole program, you may type in the LIST
command (with no line number in front of it) or select the list item
under the Edit submenu. If the program is too long to fit on the

screen, the lines at the top of the screen will scroll off the screen as

new lines are listed at the bottom. To pause the scrolling, use [F3]
as a start/stop LIST toggle. Press it once to stop a listing, then

press it again to continue listing the program. You may also abort
the LIST command (or the menu item equivalent) by pressing the

[RUN/STOP] key. To list any line number of the program, type the

LIST command followed by the line number you wish to view.
You may also list a range of line numbers by using the LIST
command followed by the starting line number, a comma, and the
ending line number. For more information on the use of the LIST

command, see the reference section.

EDITING KEYSTROKES

To change anything in yo |
wish to modify on the screen (see above). The flashing box y(;:d
see is known as the cursor, and whatever you Lype will be pla

on the screen at the cursor’s position. You may type 1n aﬂyﬂt“hlég
you like from the keyboard. To get upper €asc letters, press
[Shift] key while pressing the letter key. The

N
A
8 "'.
3
1 .r'_

ur program, simply LIST the line you

(Shift] key also giVes

you access to the characters above the number keys. Once you
have finished typing in a line of BASIC text, press the [RETURN]
key to enter it. You may move the cursor by using the mouse
pointer or the arrow keys. To use the mouse pointer, move the
pointer to the spot where you want the cursor to appear and click
the left button. The arrow key with the up and down arrows on it
will move the cursor down the screen if you press just the key, and
the cursor will move up the screen if you hold down the [Shift]
key at the same time as you press the up/down arrow key. The
arrow key with the left and right arrows on it will move the cursor
to the right if you press just the key, and it will move the cursor to

the left if you hold down the [Shift] key at the same time as you
press the left/right arrow key.

Chapter 3—A Simple geoBASIC Tutorial

Included on your geoBASIC disk 1s a sample application
called “Sample Appl.” In this section of the manual, we will load
and look at this application. It illustrates many of the commands in
geoBASIC and uses most of the utilities as well. It also illustrates
some good programming practices. If you don’t have geoBASIC
running right now, insert the disk containing geoBASIC into your
disk drive. Move the mouse pointer to the disk submenu and click
on the open item to show the contents of the disk. Move the mouse
pointer to the icon marked “GEOBASIC"™ and double click the left
button. gecoBASIC will load and its 1nitial screen will appear. Click
on the Open button, select “Sample Appl™ and click on Open.
After a few moments, you should be looking at the “Ready™
prompt. Or, you can just click on the “Sample Appl™ icon directly,
which will cause geoBASIC to load first, followed by the applica-
tion. To verify that the program has actually been loaded, type
LIST and press [RETURN]. If you have a printer hooked up, you
may wish to print out a copy of this program, as it 1s rather
long. To do so, move the pointer up to the File submenu and press
the left button. The menu items should become visible. Move the
pointer to the print item and press the left button. The program
listing should print out on your printer.

GOOD PROGRAMMING PRACTICES

Before moving on to look at our Sample Application, we’ll
take a look at some good programming practices which are illus-
trated by the application. While it is not strictly necessary to
follow these practices, programming will be much easier, and it
will be easier to make changes to the program in the future if these
suggestions are followed.

1. Use indenting to make your code more readable.

FOR loops, IF clauses and subroutines are much easier to read
and understand if you indent them. This 1s especially true for

10

nested FOR loops and IF clauses that are on more than one screen
line. As an example, check out the Sample Application listing. The
indenting makes it much easier to read.

Example of Nested FOR loops:

10 FOR X=1TO 100
20) PRINT X

30 PRINT X+35

40 FORY=1TO10

S0 PRINT Y
60 PRINT Y+2
70 NEXT Y

80 NEXT X

Example of Multi-line IF statement:
10 IF RENAMED=0 THEN NEWFILE$=HELLO THERE”:RENAMED=1
Example of labelled subroutine:

10 GOSUB @STARTDRAWING
20 REM

30 END

40 @STARTDRAWING

S0 XCLICK=MOUSEX(0)

60 YCLICK=MOUSEY (0)

70 XOLD=XCLICK

30 YOLD=YCLICK

90 RETURN

2. Use labels as much as possible.

Labels make your code more easily understood. Also, subrou-
tines and lines accessed by the utilities (Dialog, Sprite, etc.) should
be labeled so that they can be accessed properly by the utilities.
You may use up to 127 labels within a single program. Keep in
mind that geoBASIC’s RENUMBER command does not renumber
GOTOs or GOSUBs, so you must use labels if you expect to
renumber your program. As an example, look at the Sample
Application. Liberal use of labels with long, descriptive names

11

makes 1t a lot easier to figure out what is going on. For example,
GOSUB @Handleclick 1s much clearer than GOSUB 2680! To

further increase the clarity of the listing, try to use just a label on a
line.

10 @HandleClick

NOTE: If you need to change the line number of a label, first

delete the old line, THEN type in the new line number with the
label.

3. Put blank lines between subroutines.

This helps separate parts of the program. To have a blank line
(nothing except a line number on it), select Insert Mode and type
the line number and a space, then press [RETURN].

4. Use mixed case for variable names.

Again, this makes your code easier to read. Some examples are
nmkFlags, cardFlag, Done, etc.

S. Avoid multiple statements on a line.

This cannot always be avoided, but your code will be easier to
read 1f you don’t try to crowd too many statements on a line. With
IF statements (which must be on the same logical line), you can
take advantage of the fact that a logical line can take up to six
screen lines. Thus, you can press [RETURN] after each statement
in the IF statement, moving each part of the IF statement onto a
different screen line. Indenting will also make the IF statement
easier to read.

10 IF RENAMED THEN
NEWFILES$ = RENAMES:
RENAMED = FALSE

Notice the colon separating each command. This is required
for proper syntax.

12

THE SAMPLE APPLICATION

The sample application listing is pretty self-explanatory and
should be easy to follow, not only because 1t follows the sugges-
tions above. but uses plenty of REM statements to explain what

each section does. This is also good programming practice, and
you should study the techniques used, especially the MAINLOOP
command. which is the heart of the application. The program stays
i1 this command, branching only when a menu or icon is selected,
then it branches to the appropriate subroutine. After the subroutine
is executed. execution returns to MAINLOOP, to await the next

selection.

Now we’ll add a short segment to the sample application to let
you see how it works. Type in the following:

6670 DBSTRN “ARE YOU SURE?”,ANS$
6672 IF ANS$<>“Y”” AND ANS$<>“Y”
THEN RETURN

Enter these lines, and press [RETURN] at the end of each one.
To enter line 6672, type in the first part (first line), then use the
space key to move the cursor to the second line and type it in.
Entering a program is just this simple!

To save the changed version of the program, move the mouse
pointer up to the File submenu and click on the Update item.

13

Chapter 4—Programs, Data and Variables

THE GEOBASIC EDITOR

Text and Entry Modes

The first screen you see when you start geoBASIC is the editor
text screen. To enter text into the body of your geoBASIC
program, you must type that text into the geoBASIC editor. The
flashing box is known as the cursor, and whatever you type will be
placed on the screen at the cursor’s position. You may type in
anything you like from the keyboard. To get upper case letters,
press the [Shift] key while pressing the letter key. The [Shift] key
also gives you access to the characters above the number keys.

Once you have finished typing in a line of BASIC text, press the
|IRETURN] key to enter it.

There are two modes of text entry: overstrike and insert. To
switch back and forth between overstrike and insert mode, hold
down the [Shift] key and press the INST/DEL key on the top right
corner of your keyboard. The normal mode of text entry is
overstrike. Whatever you type will replace what is on the screen at
the cursor position. In the insert mode, whatever you type will still
appear at the cursor, but anything located to the right of the cursor
on the same line will be pushed to the right to make room for the
new text. Any text which no longer fits on the line it is on will be
pushed onto the next line to make room. The maximum size of one
line of geoBASIC commands is 240 characters (6 lines). If you
extend a line longer than 6 screen lines, part of it will be lost, most
likely resulting in a syntax error. When you are in insert mode, the
cursor will become a solid block to indicate the change in mode.

MOVING AROUND THE KEYBOARD

To move the cursor around the text on the screen, you can use
the arrow keys in the lower right corner of the keyboard or your

14

mouse pointer. The arrow key with the up and down arrows on it
will move the cursor down the screen it you press just the key, and
the cursor will move up the screen if you hold down the [Shitt]
key at the same time as you press the up/down arrow key. The
arrow key with the left and right arrows on 1t will move the cursor
to the right if you press just the key, and i1t will move the cursor to
the left if you hold down the [Shift] key at the same time as you
press the left/right arrow key. You may also move the cursor
anywhere on the screen by moving the mouse pointer where you
want the cursor to appear and pressing the left mouse button.

To move the cursor to the top right corner of the screen, press
the [Home]| key.

EDITING KEYS

To edit your text, you can use the [DEL] key at the top right
corner of your keyboard or the <- key at the top left corner. Their
functions are similar, but not identical. The [DEL] key erases the
character immediately to the left of the cursor and moves the
character under the cursor and everything to the right of the cursor
one space to the left. The <- key erases the character directly under
the cursor and moves any characters to the right of the cursor one
space to the left. To erase the entire line that the cursor 1s on, hold
down the Commodore key and press [DEL]. NOTE: Never delete
an entire program line by backspacing, deleting or overstriking the
characters 1n the line and pressing [RETURN].

The editor includes a tab key function. To use it, press the
|[CONTROL] and [I] keys together. There are tab stops at line
positions 8, 12, 16, 20, 24, 28, 32, and 36. The tab key function
can be very handy for indenting portions of your program to make
it easier to read. If you activate the tab function by pressing
|[CONTROL] [I] while in overstrike mode, the cursor will move to
the new position. If you are in insert mode the cursor will move to
the new tab position and the number of spaces that the cursor
moved will be inserted in the line at the old cursor position. You
also have access to powerful editing functions from the menus —

15

see the menu section for a description of these.

CLEARING THE SCREEN AND LISTING
YOUR PROGRAM

You can clear the screen, removing everything from it, by
holding down the [Shift] key and pressing the [HOME/CLR] key.
lo get a listing of your program on the screen so you can edit it,
use the LIST command (see below) or the list item under the Edit
submenu. To change any line in the program, simply move the

cursor onto that line, type in your changes, and press [RETURN]
to enter the changes .

THE GEOBASIC MENUS

The geoBASIC submenus located at the top of the screen and
the items under each submenu control many of the editing and file
handling functions. To select an item, move the mouse pointer up
to the submenu which contains the item and click the left button.
The submenu will open up, showing the items associated with it.
Then move the mouse pointer to the item you want and click the
left button again. The submenu will close up and your choice will
be acted upon. The submenu items are listed below, in the order
they appear under their respective submenus.

GEOS

ge0BASIC Info

This item displays a Dialog box on the screen which shows the
version number of the geoBASIC, the author’s name, and the
copyright information.

FILE
CLOSE
This item saves your program to disk and closes the file,
16

returning you to the initial dialog box which appears when you
first run geoBASIC. At that point, you may load and use another

geoBASIC file.

UPDATE

This item saves a copy of your current file to disk. Although
this is done automatically when you leave geoBASIC (see Close
above), it is a good idea to save a copy of your changes periodi-
cally so that they won’t be lost in the event of a power failure or 1f
you accidently turn off the computer without using Close.

RENAME

This item renames your file on disk and in memory. The
current file will be saved to disk using the name specified here
whenever you subsequently use update or close. Selecting this
item brings up a dialog box for you to Please enter a new
filename:. Type in the new filename you want and press
[RETURN]. To change your mind, just press [RETURN] without
entering a filename or click on the Cancel button. If the filename
you selected already exists on the disk, you will end up with two
files with the same name. The contents of the file on the disk will
replace the current file, and the current file will be lost. Exercise
caution when using this function!

PRINT

This item prints a complete listing of your program to your
printer. Make sure your printer is hooked up and turned on before
choosing this item. '

QUIT

This 1item first saves the current file to disk, then returns to the
GEOS deskTop.

EDIT

LIST

This item lists the current program on the screen. If the

17

program 1s too long to appear on one screen, the lines of the
program will scroll off the top of the screen as new lines are listed
at the bottom. Use the F7 key to start and stop the listing process.
To break into the listing, press the [RUN/STOP] key.

SPRCOL

This menu 1item allows you to choose the two sprite colors
which remain the same for each sprite. The third sprite color
(which can be different for each sprite) is chosen using the Sprite
utility. Selecting this item brings up a dialog box for you to Click
on the boxes to choose the sprite multicolors. There are two lines,
labeled Multicolor 1 and Multicolor 2. Alongside each of these
lines 1s a small, colored box. Each time you click on one of the
colored boxes, it changes color, cycling through the sixteen avail-
able sprite colors. When you are satisfied with the color selection,
click on the OK button.

OPTIONS

RUN

This item runs your program. It has the same effect as typing
RUN 1n the text window.

RENUMBER

This item will renumber your program for you. This 1s useful if
you need to insert new line numbers between existing line
numbers, but no intermediate line numbers are available. Selecting
this item brings up a dialog box which requests you to Enter
amount to renumber. Type in the number and press [RETURN] to
proceed with the renumbering or click on Cancel to cancel the
renumbering. The number you enter sets both the first line number
and the increment between line numbers. For example, if you enter
100, the first line will be line 100, then lines 200, 300, 400 and so
on. Remember, RENUMBER ignores the line numbers following
GOTOs and GOSUBs, so use labels for subroutines.

18

i

A,

RESIZE

Resize changes the heap size for your program.

MAKE APPL

This turns a geoBASIC program into a standalone executable
file. Once created, this standalone file is not editable.

UTILITIES

MENU

This item activates the Menu Editor, which enables you to
construct your own menu for use in your programs. For a complete
description of the Menu Editor, see the chapter on Utilities.

DIALOG

This 1tem activates the Dialog Box Editor, which enables you
to construct your own dialog boxes for use in your programs. For a

complete description of the Dialog Box Editor, see the chapter on
Utilities.

ICON

This item activates the Icon List Editor, which enables you to
construct your own icon lists for use in your programs. For a

complete description of the Icon List Editor, see the chapter on
Utilities.

BITMAP

This item activates the Bitmap Editor, which enables you to
design bitmaps for use with the Icon List Editor or the Dialog Box

Editor. For a complete description of the Bitmap Editor, see the
chapter on Ultilities.

SPRITE

This item activates the Sprite Editor, which enables you to

design sprites for use in your program. For a complete description
of the Sprite Editor, see the chapter on Ultilities.

19

ELEMENTS OF THE GEOBASIC LANGUAGE

Line Numbers and Labels

Each line in a geoBASIC program must begin with a line
number. This line number not only identifies the line, but also sets
the order in which lines will normally be executed in the program.
For example:

10 PRINT “HELLO THERE”
20 FOR X=1TO 10
30 NEXT X

Each of these lines begins with a number. The lines are listed
(and executed) in the order of the line numbers. By numbering the
lines every 10, you can easily insert other lines in between the
lines you have already. For example, you could add the line: 25
PRINT X, in which case the listing above would look like:

10 PRINT “HELLO THERE”
20 FOR X=1TO 10

25 PRINT X

30 NEXT X

Notice how line 25 was inserted between lines 20 and 30. The
line numbers are also used as the target of GOSUB and GOTO
statements (see the explanation of these commands in the refer-
ence section). See also the RENUMBER menu item.

Labels provide a way to give a name to a line. While the line
number is still necessary on a line with a label, that line can then

be referenced by the label when using GOSUB or GOTO.

Labels must be the first command of the line, immediately _
after the line number itself. There may be spaces between the”hl}e
number and the label. The label must be preceded by the ‘@ sign
and only the first six letters of the label name are significant. The
label names are case-sensitive, that is, upper and lower €ase letters
are not the same, i.e. @START is a different label than
label and a variable (see below) may have the same nam

20

e but are

@StaIt.A‘:’

considered different by the program even if they do. Labels take
on the value of the line they are on, and can be used in mathemat-
ical formulas just like variables, except that you may not try to set
the value of a label. The value of the label is set when the label is
declared by placing it at the beginning of a line in the program.
When using a label in a formula, make sure to use the leading “@”
to distinguish it as a label.

Labels may not be declared (placed at the beginning of a line
to establish their value) more than once. If you place the same
label at the beginning of two different lines, a LABEL
REDEFINED error will occur. It 1s very important that you always
delete the first occurrence of a label before changing its location.
And keep in mind that the total number of labels in a single
program cannot exceed 127.

For example:

10 @START: PRINT “HELLO”
20 FOR X=1TO 10

30 PRINT SIN(X)

40 NEXT X

S50 GOTO @START

In line 10, the label START is declared. geoBASIC can tell
START 1s a label because of the “@” in front of the label name.
The label START actually takes on the value 10. Thus, in line 50,
the statement GOTO @START really is saying GOTO 10.

CONSTANTS

Constants are values which do not change during the execution
of your geoBASIC program. There are two types of numeric
constants, which are just numbers. Integer constants are whole
numbers (numbers with no decimal point) which can range in
value from -32768 to 32767. You may not use a comma to separate
the digits in an integer constant, and leading zeros are ignored.
Each integer constant uses two bytes of memory. Some examples

21

of integer constants are:

-10
1256
0

A Floating Point constant is a positive or negative number
which can contain decimal points and fractional portions. Once
again, commas are not allowed between the numbers. Floating
point constants can be represented two ways. The first way is as a
simple number with up to 9 digits. The number can range from
—999999999 to 999999999. If you specity more than nine digits,
the number will be rounded based on the tenth digit. If the tenth
digit 1s greater than or equal to 5, then the number will be rounded
upward. If the tenth digit is less than 5, the number will be
rounded down. Some examples of floating point constants repre-
sented as simple numbers are:

12.45
3.1415924
66666.66
01

If the number is less than .01 or greater than 999999999, then
the floating point constant will be printed 1n scientific notation. A
number printed in scientific notation looks something like:

1.23456E07.

The first part of the number is the digits to the left of the “E".
This part is called the “mantissa” and is a simple floating point
number, with the decimal point to the right of the first digit. The
letter “E” lets you know that you are viewing the number in
exponential form. The numbers following the “E” are called the
“exponent”, and they are the integer power of 10 that the mantissa
should be multiplied by to get the actual number. The decimal
point in the mantissa would be moved the number of decimal
places to the right indicated by the exponent if the exponent 1s
positive. If the exponent is negative, then the decimal point would
be moved the number of places to the left indicated by the
exponent. Thus, 3E3 would be 3000 because it 1s 3 multiplied by

22

ant .
names. A variable name can be any length but only the first three

10 to the 3rd power (1000). Both the mantissa and the exponent
can be negative. If the mantissa is negative, then the whole number
is less than zero. If the exponent is negative, then the number is
between 0 and 1 if the mantissa is positive and between 0 and -1 if
the mantissa 1s negative. Thus, 3E-3 is .003 because 10 to the -3
power is .001. Even 1n scientific notation there is a limit to the
range of numbers you can handle. The largest number is
1.70141183E+38. If your expression results in an answer which is
larger, you will get an 7OVERFLOW ERROR. The smallest
number (closest to zero) 1s 2.93873588E-39. If a smaller number is
the result of your expression, the answer will be given as zero with
no error message. Some examples of floating point scientific
notation numbers are:

1.3456 E07
3.4E-5
-7.7E-09

String constants are groups of alphanumeric text such as
letters, numbers, and symbols. When you enter a string constant
from the keyboard, it may be up to the length of one full line (240
characters less what is taken up by the line number and any other
statements on the line). A string constant can contain blanks,
letters, numbers, and punctuation in any combination. The string
constant must be enclosed in double quotes () and thus may not
contain any double quotes in the string. You may leave off the
double quotes at the end of the string if the string 1s the last item

on a line or is separated from the next item by a colon (:). Some
examples of string constants are:

“HELLO”

“BERKELEY SOFTWORKS , BERKELEY”
“$56,000”

VARIABLES

Variables are data used in your geoBASIC program which can

change as the program executes. Variables are identified by their

23

characters are considered significant: a variable 1s 1dentified by the

first three letters of its name, which must be unique. Variable
names are case-sensitive, so AbC is a different variable than aBc,
Any alphanumerical character or number can be used in a variable
name, but the first character must be a letter. Also, you may not
use a geoBASIC keyword (command) in a variable. If you
accidently include a keyword in a variable name, you will get a
?SYNTAX ERROR.

Values can be assigned to a variable by setting it equal to a
constant, another variable, or an expression. If you assign a value
to a variable which already has a value, the former value will be
lost and the variable takes on the new value. Variables have the
same types as the constants discussed above: integers, floating
~point numbers and strings. The last character in the name chosen
for the variable sets the type of variable. If the “$” is the last
character in the variable name, then it is a string variable. If the
“g;,” is the last character in the variable name, then it is an integer
variable. If neither of these characters is used as the last character
in the variable name, then the variable is a floating point variable.

ARRAYS

An array 1s a table of data items which are identified by a
single variable name. This name must follow the same rules as
other variable names. Within the array, the values (known as

§lem§nts) are 1dentified by an element number. The variable name
identifies which table of data is being referred to, while the

element number specifies exactly which item in the table is to be

Flsed. Take for example an array “A”. To refer to the third element
in A, you would use the statement:

A(3)

To set the value of the third element in array “A” you would
use a statement like:

A(3)=10.5

Array elements can be used anywhere that normal variables

can, and the element number can even be the result of an
expression:

A(3+5):11

or even another array element:

A(B(4))=5

A floating point number may be equated to an integer variable
(the fractional part will be ignored) and an integer number may be
equated to a floating point variable. However, you may not equate
a string variable to a number nor a numeric variable to a string.
Attempting to do so will cause an error.

. Array names can be string, integer or floating point variables.
heir types are identified the same way as regular variables — with

the endings $ (string), % (integer), or no ending (floating point

Examples: array). All elements of the array must match the array name type.
D$=“HELLO THERE” (string variable equal to a string constant) i
_ -+ ays may hav ' '
A$=“HELLO”+“ THERE” (string variable equal to a string expression) Zand the arrayy“ A” }};as O:I;IIE) Itlcé 3?ig;$en81§ ns. In th? ex?mple above,
T)G 6 2 : : . , on. You can visualize an arr
D=1.234 (floating point variable equal to a constant) rows and the second dimension i ension 1s the
D=4.5+(6*%7)/C (and equal to an expression) m nsion 1is the columns:
D % =6 (integer variable equal to a constant) e 2 3
D % =(6%7)+3 (and an expression) m 0 1.1 1.2 34 56
1 26 79 36 7.9
BWM=2 2 35 68 19 06

3 46 68 24 97

04 25

This table 1s a two dimensional array. If the array name is
ARR, then the first element 1s ARR(0,0), and it 1s equal to 1.1.
Arrays are very useful. In the example above, there are 16 different
values stored in the single array name “ARR”. If you couldn’t use
arrays, you would have to come up with 16 different variables. An
array such as DNP(10,10,10) has over 1000 elements. You
couldn’t possibly come up with that many variables, and accessing
each variable would be very difficult and require tremendous
amounts of BASIC code. However, to access any element of this
array, all you would need to do 1s use a statement such as:

X=5:Y=6:Z=3:DNP(X,Y,Z)=23

As you can see, the element number (also referred to as a
subscript) must be enclosed in parentheses following the array
name with the subscript for each dimension separated from the
others by commas. To use any array with more than 10 elements,
you must use the DIM statement (see the reference section) to
declare how many elements there will be in each dimension:

DIM DNP(10,10,10)

This DIMension statement actually declares 11 elements in
each dimension, O through 10. The total number of elements in this
array is thus 11*11*11, or 1331. If you try to use an element
number outside the range declared in the DIM statement, you will
get a 7BAD SUBSCRIPT error. Array elements are automatically
filled with zeroes (for floating point or integers) or nulls (for string
arrays) when created.

The memory usage for arrays is as follows:

5 bytes for the array name

2 bytes for each dimension of the array

2 bytes per element of the array for integers
5 bytes per element for floating points

3 bytes per element for strings

plus 1 byte per character for each element in a string array.

26

Examples:
A$(0)=“HELLO WORLD” (string array)
AA % (BB %)=5 (integer array)

AA(4*X+6,5,7)=A*B
QR %(AA % (B,G))=4

(3 dimensional floating point array)
(nested integer arrays)

EXPRESSIONS

Expressions are formulas and equations formed using
constants, variables, arrays, labels and operators. The operators
can be arithmetic, logical, or relational. This combination of items
is designed to produce a result which can be used in the program.
There are two types of expressions: arithmetic and string.
Arithmetic expressions will be covered first.

ARITHMETIC EXPRESSIONS

An arithmetic expression uses arithmetic operators, constants,
labels and variables to produce a result which 1s an integer or

floating point number. If a label 1s used, it takes on the numeric
value of the line which 1t was declared on:

10 @LBL:A=0

In this example, the label @ LBL takes on the value 10, and
can be used in an expression. An arithmetic expression is normally
broken into data items called operands, separated by operators.
One or more operators, combined with one or more operands,

normally form an expression. The arithmetic operators which may
be used 1n an expression are:

+ Addition

- Subtraction

* Multiplication
/ Division

A

Exponentiation (raising to a power)

Relational operators are normally used to compare the values

27

of two operands, but they can also produce a numeric result and so
can be used 1n arithmetic expressions. If the relation tested is true,
then the result 1s -1, and if the relation being tested is false,

then the result 1s 0. The relational operators are:

< Less than

= Equal to

> (Greater than

<= Less than or equal to
>= (@reater than or equal to
<> Not equal to

Examples:

2=3-1 result is true (-1)
20+4>5+9 result is false (0)

The logical operators (AND, OR, NOT) can be used to modify
the results of using relational operators or to produce an arithmetic
result. With the AND operator, each bit in the first expression 1s
ANDed against the corresponding bit in the second expression.
The bit in the result is equal to 1 if the bit in each expression is 1.

If the bit in either expression is 0, then the bit in the result is zero.
Thus, you get:

OANDO=0 1ANDO=0 OAND1=0 1AND1=1

Example:
X=32007 AND 28761 (result is 28673)

With the OR operator, each bit in the first expression is ORed
against the corresponding bit in the second expression. The bit in
the result 1s equal to 1 if the bit in either expression is 1. If the bit

in both expressions is 0, then the bit in the result is zero . Thus,
you get:

OOR0=0 10OR0O=1 OOR1=1 10R1=1
Example:

X=32007 OR 28761 (result is 32095)

28

The third logical operator is NOT. NOT turns a 1 into a 0 and a
0 intoa I:

NOT0=1 NOT1=0

For all the logical operators, the numbers operated on must
evaluate to between 32767 and —32768.

In addition to bitwise operations, the logical operators can be
combined to modify the results of comparisons. For the AND
operator, the result evaluates as true only if both of the expressions
are true, and if either expression is false, then the result 1s false.
The “truth table” for the AND statement looks like:

First Second Result
Expression Expression Expression

S — —— S S—— — m— — —

Example:

MA=:Y=10:2=15

20 IF X=7 AND Y=10 THEN PRINT “TRUE”

30 IF X=7 AND Y=10 AND Z=15 THEN PRINT “TRUE”
40 IF X=5 AND Y=10 THEN PRINT “TRUE”

50 IF X=7 AND Y=12 THEN PRINT “TRUE”

60 IF X=5 AND Y=12 THEN PRINT “TRUE”

The statements in lines 20 and 30 will print the word “TRUE”
when you run this short program. The statements in lines 40, 50
and 60 will not, because one or both of the expressions being
tested are false. Both statements in line 20 are true, so the result is
true and the statement to PRINT “TRUE” is executed. Note that in
line 30, the AND statement is testing the truth of three statements
(X=7, Y=10, and Z=15). This works by evaluating the statements

29

two at a time.

For the OR expression, the result evaluates as true if either of
the expressions are true, and if both expressions are false, then the
result 1s false. The “truth table” for the OR statement looks like:

First Second Result
Expression Expression Expression

—_——-———--—.—-—--_.____.__—_—...___-_-——___-_-___-__

-—-——_-__———-___-__———-—---&—_—--———_—__

Example:

10 A=7:1Y=10:7=15

20 IF X=7 OR Y=10 THEN PRINT “TRUE”

30 IF X=7 OR Y=10 OR Z=15 THEN PRINT “TRUE”
40 IF X=5 OR Y=10 THEN PRINT “TRUE”

S0 IF X=7 OR Y=12 THEN PRINT “TRUE”

60 IF X=5 OR Y=12 THEN PRINT “TRUE”

The statements 1n lines 20, 30,40 and 50 will print the word
“TRUE” when you run this short program because at least one of
the statements is true. The statement in line 60 will not, because
both expressions being tested are false. Note that in line 30, the
OR statement is testing the truth of three statements (X=7, Y=10,
and Z=15). This works by evaluating the statements two at a time.

Finally, if an expression evaluates to be true, then NOT
<expression> is false. If the expression evaluates to be false, then
NOT <expression> is true.

Example:

10 AB:IO:BA:ZO

30

20 IF NOT(AB=BA) THEN PRINT “NOT EQUAL!”

Since AB is not equal to BA, the expression (AB=BA) is false.
Thus, NOT(AB=BA) is true, and the program will print “NOT

EQUAL”.

HIERARCHY OF ARITHMETIC OPERATORS

Arithmetic expressions which include more than one operator
are evaluated in a strict order. Certain operations are performed
before other operations. This normal order can be modified by
enclosing a portion of the expression consisting of two or more
operands in parentheses. The portions of the expression enclosed
in parentheses are always evaluated first, before working on parts
of the expression outside the parentheses. Multiple levels of paren-
theses may be used. This 1s called nesting, and by using it just
about any order of operator evaluation you wish can be achieved.
Up to ten levels of nesting may be used.

Example:

X+(Y+2*%(4/5)-4)
(((673)+4)/4)

When parentheses are not used, or within a given level of
parentheses, the order of arithmetic operators is:

4y Exponentiation

- Negation

e | Multiplication and Division
+ - Addition and Subtraction

<=> Relational Operators
NOT Logical NOT

AND Logical AND

OR Logical OR

As you can see, geoBASIC normally performs arithmetic
operations first, then relational, then logical. If operators have the

31

same level or precedence (like * multiplication and / division) thep
the operators are evaluated from left to right. The normal order of
precedence 1s maintained within parentheses, although any parts of
the expression 1n the parentheses are evaluated before parts of the
expression outside the parentheses.

STRING EXPRESSIONS

A string expression uses string operators and strings to produce a
result which 1s another string. The first string operator is the
concatenation operator, “‘+”. This operator will combine the
contents of two strings into one:

A$=“HELLO” + “ WORLD” (A$=“HELLO WORLD")
H$=A$ + B$

Relational operators can also be used to compare strings. For
the purposes of comparison, the letters of the alphabet are arranged
in order such that A 1s greater than B which is greater than C, etc.
Strings are compared by evaluating the characters in the string
from left to right. If the first character in two strings are equal,
then the next two characters are checked, and the next two, until
either one string ends or a non-i1dentical character 1s found. If all
the characters in the strings are 1dentical but one string 1s shorter
than the other, the shorter string 1s considered to be “less than™ the
longer string. If the string comparison is true, then the result 1s -1
(or True, for the purposes of an IF statement), while 1f the compar-
ison is false, then the result is O (or false, for the purpose of an IF
statement).

Example:

“A” > “B” (true, result is -1)
“XY” = “YX” (false, result is 0)
A$<=B$

Note that this is the opposite of “normal” string evaluation in
CBM BASIC.

L ¥

lh

Wl

I: r.l o
H;-hll_rl-i-"'-_—ﬁaui.-‘_n SESE | T

w
il

‘f

W,

-y
u‘_l_u

1

I
I|
—
il |
-
..||
-ii
f .:'__
E B
L
L i
- =
" J
.l
-
-
-

|

y

et 40 3f 48 o

L

i,

Chapter 5—The geoBASIC Command Reference

ELEMENTS

The elements of the GEOS environment are very important in
making geoBASIC both powerful and easy to use. The following
is a brief description of these elements:

Menus

Menus refers to the line of words located at the top of the
geoBASIC screen. Each of these words is called a submenu, and
under each submenu 1s one or more items. Selecting one of these
items will generally produce some result, such as saving your
program, calling up the sprite editor, etc.

To select an item 1n a submenu, move the mouse pointer up to
the submenu you want and press the left button. The submenu will
“open up”’, showing the items under the submenu. To select an
item, move the mouse pointer to it and press the left button. The
submenu will then close up, removing the items from the screen,
and act on your command.

Menus are available at the top of the text editing screen in
geoBASIC to help you enter and work with your program.
However, you can also design your own menus for use in your
programs by using the menu editor, accessed by clicking on menu

under the Utilities submenu. For more information on menus, see
the chapter on Utilities.

Bitmaps

Bitmaps are pictures. They have a limited size, but are useful
for showing pictorial representations of various items. For
example, you could construct a bitmap showing a disk drive or
printer. Bitmaps are useful with Dialog boxes and Icon Lists (see
below). You may design your own bitmaps by selecting bitmap
under the Utilities submenu. For more information about bitmaps,

33

see the chapter on Utilities.

Dialog Boxes

Dialog boxes are boxes which appear on the screen to give
information to the user or to get information from the user. A
dialog box can contain text, formulas, buttons and bitmaps.
Generally, the user would click on a bitmap or button to select
what he or she wants to do, with the text providing some
Instructions.

geoBASIC uses dialog boxes of its own, but you can also
design your own dialog boxes for use in your programs by using
the dialog box editor, accessed by clicking dialog under the
Utilities submenu. For more information on dialog boxes, see the
chapter on Utilities.

Sprites

Sprites are special graphic shapes which can move over the
screen without disturbing the background picture, if any. Sprites
can only be of a limited size, but can have up to three colors, can
move across the screen, can be animated, and can have a velocity,
initial position, and path set for them. You may design up to six
sprites of your own, and can link multiple sprites so that the
actions of several sprites are controlled by the motion of a single
sprite.

To design your own sprites using the sprite editor, select sprite
under the Utilities submenu. For more information on sprites, see
the chapter on Utilities.

GEOBASIC COMMANDS

geoBASIC contains a wealth of commands, called keywords.
Keywords are reserved, and appear in the section below in capital
letters, listed in alphabetical order. You may not use keywords as
variable names or imbed them in variable names. Study the expla-
nations and example code carefully, and use this section as a refer-
ence 1n the future.

34

e PR ——

" |

-
=1
=
i

|

Wy

M

Terminology:

ARGUMENTS, also called parameters, can be associated with
many keywords. The arguments appear in lower case with each
keyword. Arguments can include filenames, variables, line
numbers, expressions and math operators.

SQUARE BRACKETS [] show arguments which are optional.
You may select any (or none) of the arguments shown.

ANGLE BRACKETS <> indicate that you MUST choose one
of the arguments shown.

A VERTICAL BAR | separates items in a list of arguments. If
the list appears 1n square brackets, then the choices are limited to
those items listed, but the user still has the option of choosing any
or none of the arguments. If the list appears in angle brackets, you
MUST choose one of the items in the list.

ELLIPSIS ... A sequence of three dots means that an argument
can be repeated more than once.

QUOTATION MARKS ““’ surround character strings,

filenames and other types of expressions and arguments. When an

argument 1s enclosed in quotation marks, the quotation marks must
be included in the command.

PARENTHESES () When arguments are enclosed in paren-
theses, the parentheses must be included in the command.

VARIABLE refers to any valid BASIC variable name (Y, Z$,
Q%, etc.)

EXPR refers to any valid numeric BASIC expressions, such as
R*(4/T), etc.

STRING refers to a string constant, variable or expression.

335

COMMAND REFERENCE

ABS

FORMAT: ABS(<expr>)

This function returns the absolute value of the expression
enclosed 1n the parentheses. The absolute value of an expression is
equal to the expression itself if the expression evaluates to a
number which 1s greater than zero. If the expression evaluates to a
number which 1s less than zero, then the absolute value of the
expression 1s the number without the negative sign, i.e., the
absolute value of an expression 1s always positive.

Example:

10 X=-2:Y=3
20 PRINT X:PRINT ABS(X):PRINT Y:PRINT ABS(Y)

This sample program would print the values -2, 2, 3, 3. As you
can see, the absolute value of the negative number X is positive.

AND

FORMAT: <expr> AND <expr>

The AND operator can be used for two purposes. As a
mathematical (boolean) operator, it is used to combine two
numbers together to produce a result. Each bit in the first expres-
sion is ANDed against the corresponding bit in the second expres-
sion. The bit in the result is equal to 1 if the bit in each expression
is 1. If the bit in either expression is 0, then the bit in the result 1s

zero. Thus, you get:
0ANDO=0 1ANDO=0 OANDI1=0 1ANDI=1

Each of the expressions must evaluate to a number between

_32768 and +32767. If either of the expressions evaluate to a
number outside this range, it will cause an ?ZILLEGAL

36

QUANTITY error.

Example:

10 X=32007 AND 28761: PRINT X

This would produce the result 28673. To see why, convert each
of the numbers to binary:

32007 is 0111110100000111 and 28761 is 0111000001011001.
ANDing each bit of the two numbers:

0111110100000111 AND
0111000001011001

0111000000000001 (binary) or
28673 (decimal).

The other way to use the AND operator is to test the truth of
two expressions. Each expression is generally an IF statement (see
IF). The result evaluates as true only if both of the expressions are
true, and 1t either expression is false, then the result is false. The
“truth table” for the AND statement looks like:

First Second Result
Expression Expression Expression

— —— ——— O — e —
— o
i s P —

Example:

10 X=7:Y=10:Z=15
20 IF X=7 AND Y=10 THEN PRINT “TRUE”

30 IF X=7 AND Y=10 AND Z=15 THEN PRINT “TRUE”
40 IF X=5 AND Y=10 THEN PRINT “TRUE”

37

50 IF X=7 AND Y=12 THEN PRINT “TRUE”
60 IF X=5 AND Y=12 THEN PRINT “TRUE”

The statements in lines 20 and 30 will print the word “TRUE”
when you run this short program. The statements in lines 40, 50
and 60 will not, because one or both of the expressions being
tested are false. Both statements in line 20 are true, so the result is
true and the statement to PRINT “TRUE” 1s executed. Note that in
line 30, the AND statement is testing the truth of three statements
(X=7, Y=10, and Z=15). This works by evaluating the statements
two at a time. First, the truth of X=7 AND Y=10 1s tested. In this
example, the result is true. Then, the result of this test (TRUE) is
tested with the third statement, Z=15. Since Z 1s 15, this evaluates
to: TRUE AND TRUE, which is TRUE. Larger groups of state-
ments can be tested for truth 1n this way, and statements can be
grouped together using parentheses:

10 IF (X=5 AND Y=10) AND (Z=20 AND 7Z*Y=200) THEN....
In this example, the truth of X=5 AND Y=10 1s evaluated and

stored. Then the truth of Z=20 AND Z*Y =200 1s tested and stored.

Finally, the two stored results are tested against each other for the
final result.

When a statement evaluates as FALSE, the value O 1s assigned
to the result, while if the statement evaluates as true, the value of
—1 1s assigned to the result. Your program can determine the
numerical value that the expression evaluates to by equating the
expression to a variable:

Example:

10 X=10:Y=20
20 RES1=(X=20)
30 RES2=(X=10) AND (Y=20)

The variable RES1 will be zero, since the statement (X=20) 1s

false. The variable RES2 will be —1, since both statements (X=10)
and (Y=20) are true. As above, you can combine more than two
expressions and evaluate the numerical result.

38

APPEND

FORMAT: APPEND <recordnum>

This command adds a new record to a VLIR file. Recordnum
is either a number or a numeric variable that points to the record
that will be appended to. For example:

before: 012345...

after an APPEND 2: 0123456...

A

—- new record

All records after the appended record are moved up one record.
If the last record would exceed 127 then an OUT OF RECORDS
error will occur. There 1s a bug in this command that prevents
APPEND: ng to record 126. APPEND will do an implicit PTREC
to the new record (see also INSERT).

ASC

FORMAT: ASC(<string>)

The ASC function will return the ASCII code of the first
character of the string. The expression <string> may be a string

constant or string variable. If there are no characters in the string,
then an 2ILLEGAL QUANTITY error will result. If the expression

in the parentheses is not a string (a number or letter) then a ?TYPE

MISMATCH ERROR results. The number returned for the ASCII
value will be between 0 and 255.

Example:

10 PRINT ASC(“A”)

20 PRINT ASC(“HELLO”)
30 J$=“HELLO”

40 PRINT ASC(J$)

This short program will print 65 for line 10 (ASCII value of
39

“A”), 72 for line 20 (ASCII value of “H”, the first letter n
“HELLQO”) and also a 72 for the result of line 40.

ATN

FORMAT: ATN(<expr>)

This function returns the arctangent of the expression, which
must evaluate to a number between -PI/2 and Pl/2. The arctangent

1s measured 1n radians.

Example:
10 PRINT ATN(2)
returns 1.10714872

BITMAP

FORMAT: BITMAP(<string>),(<expr>),(<expr>)

This command puts a bitmap on the screen. The bitmap must
have been created using the bitmap editor from the Utility
submenu or pasted in from a photoscrap beforehand. The <string>
is the filename that the bitmap was stored with. The first <expr>
specifies the X coordinate of the upper left corner of the bitmap
and must evaluate to a number between 0 and 39. The second
<expr> is the Y coordinate of the upper left corner of the bitmap
and must evaluate to a number between 0 and 199. If you place a
bitmap so that the right edge of the bitmap extends past the right
edge of the screen, the extra portion will be clipped (not be
visible). If you place a bit map so that the bottom extends past the
bottom of the screen, that portion of the bitmap won’t be visible on
the screen.

Example:

10 BITMAP “pict”,10,20

40

BUTTON

FORMAT: BUTTON <expr>

This command executes the subroutine which is given by the
expression every time the user clicks the left mouse button even if
the button 1s over a menu or icon. The expression defines the line
number to GOSUB to. The subroutine must end with a RETURN.

Example:

10 BUTTON 1000 .. 1000 PRINT “HI”’:RETURN

CALL

FORMAT: CALL <expr> [,<expr>, <expr>, <expr>, <expr>]

This command calls a machine language subroutine. The first
expression 1s the only one which is required. It gives the address of
the machine language routine. The rest of the expressions are
optional, and must evaluate to integers between 0 and 255. They
are used for (in order) passing values to the accumulator, X
register, Y register and the status flags. Using CALL makes it
possible to call GEOS routines which are not directly supported.
The memory addresses and details of GEOS routines are listed in
the GEOS Programmer’s Reference Guide. As an example, the
GetScanLine routine (pg. 102 of the Programmer’s Reference

Guide) can be called, where the variable “X”’ contains the scan line
number:

Example:

10 CALL 49468,0,X

41

This function converts an ASCII code (such as one returned by
the ASC function, above) to its character equivalent. The expres-
sion must evaluate to an integer between 0 and 255. If 1t does not,
an 2ILLEGAL QUANTITY error will result. When used with the
PRINT command (see below), CHRS allows you to PRINT using
different styles. These styles are:

CHR$(14) Turns on underlining

CHR$(15) Turns off underlining

CHR$(18) Turns on reverse video characters

CHRS$(19) Turns off reverse video characters

CHR$(24) Turns on bold printing

CHR$(25) Turns on italics printing

CHR$(26) Turns off all effects (returns to normal printing)
Example:

10 PRINT CHRS$(65)

returns the character “A”.

NOTE: Do not print the values 1 thru 7 or 29 thru 31 with the
CHRS$ function. Doing so will cause a SYSTEM ERROR.

CLOSE

FORMAT: CLOSE

This statement closes the data file which was opened using the
OPEN command (see below). Only a single file can be OPEN at

once, so you must use CLOSE to close any open file before
OPENIing another file.

Example:

10 CLOSE

42

A
2

L

CLS

FORMAT: CLS

This command clears the current window on the graphic
screen, where all output takes place during a program. If no
current window has been specified, then the entire graphic screen
will be cleared. It is useful to begin any program with CLS to give
yourself a clear screen to work on.

Example:

10 CLS

COLRECT

FORMAT: COLRECT <expr>,<expr>,<expr>,<expr>

This command draws a colored rectangle on the screen. The
actual color is set by the command SETCOL (see below). The four
expressions are the X and Y coordinates of the upper left corner of
the rectangle and the X and Y coordinates of the lower right corner
of the rectangle. The X coordinate expressions must evaluate to a
number between 0 and 39, while the Y coordinate expressions
must evaluate to a number between 0 and 24. Menus and Dialog
boxes will appear in the colors set with SETCOL. geoBASIC does

not automatically change the colors beneath menus and dialog
boxes.

Example:

10 COLRECT 10,10,20,20

COS

FORMAT: COS(<expr>)

This function calculates the cosine of the expression, which

43

must evaluate to a number. The number is the angle in radians.

Example:

10 PRINT COS(20)
20 Y=COS(Z*P1/180): REM CONVERT DEGREES TO RADIANS

CREATE

FORMAT: CREATE <filename$>[,<drivenum>]

This command creates a VLIR file on the disk. A VLIR file is
composed of a collection of records, each of which may have a
maximum si1ze of 32K bytes. There may be up to 128 of these
records in the file (numbered O to 127). The filename parameter

may be a string variable or quoted string of any length but only the
first 16 characters are significant. Drivenum is an optional param-
eter and specifies the device number to create the file on. This

number can range from 8 to 11. If this parameter is omitted the
current drive will be used.

Unless changed with the HEADER command, CREATE will
create only files of type ‘BASIC DATA’, with an empty permanent
name string. DO NOT USE CREATE IF THE THIRD PARAM-
ETER OF THE HEADER COMMAND IS ZERO! CREATE will
not create sequential files properly!

Note that CREATE will leave the file in an open state so there
1s no need to issue an OPEN command prior to accessing the file.

Example:

10 CREATE “TEST” : REM CREATES ‘TEST’ ON THE CURRENT
DRIVE

10 CREATE AS$,9 : REM CREATES FILE NAMED IN A$ ON DEVICE #9

44

T
1l

DATA

FORMAT: DATA <list of constants>

DATA statements are followed by a list of data items separated
by commas whose values are read into variables by the REA_D
statement (see READ, below). The data items can be numeric or
strings and strings do not have to be enclosed in quotes unle{ss the
string contains a space, comma, colon, shifted letters, graphics or
cursor control characters. Two commas with nothing between them
will be entered as a zero if received by a numeric variable or as an

empty string if received by a string variable.

All the data statements in a program are treated as one contin-
uous list, regardless of positioning in the program. The data in the
statements are read in sequence from left to right, starting with the
lowest numbered line and proceeding to the highest. This order of
reading can be modified using the RESTORE statement (see
below). The data in the DATA statements must match the type of
the variable it is being read in to. Numeric data is read into
numeric variables, and strings are read into string variables. If the
READ statement encounters data which doesn’t match the type of
the variable, an error will result. Strings do not have to be enclosed
in quotes unless they contain special characters. To include spaces,
commas, colons and semicolons in string data, it must be enclosed
In quotes.

Example:

10 DATA 100,200,ABCDEFG
20 DATA 224.5,DAVID,“HELLO WORLD”,*“YES, SIR”

DBFILE

FORMAT: DBFILE <string>

This command places a special dialog box on the screen for the
user to choose the name of a file on disk for use. The dialog box

45

has a scrolling list of files on the left side, just like the dialog box
which appears when you first start geoBASIC. If there are more
files than can be shown in the file box, a pair of arrows will appear
near the bottom of the box. To scroll through the list of available
files, move the mouse pointer to the up or down arrows and click
the left button. The user can click on a filename to select it. This
removes the dialog box from the screen, restoring whatever was

hidden by it. The name of the file chosen by the user is returned in
the <string>.

Unless changed by the HEADER command, only files with
type BASIC DATA and with permanent file name of “”’ (null
string) will be shown in the file box.

Once the DBFILE command has been successfully executed,

the file 1s opened, and so can be read from (see DREAD) or
written to (see WRITE).

Example:

10 DBFILE A$:REM RETURNS THE NAME OF THE OPENED FILE
IN A$

DBSTRN

FORMAT: DBSTRN <string>,<string>

This function places a special one-line dialog box on the screen
to get input from the user. The first <string> is a prompt which is
printed in the dialog box. The second <string> must be a variable
— the user’s typed input is returned in this variable when the user
presses [RETURN] after typing in the requested information. The
dialog box is then automatically removed from the screen and
whatever was obscured behind it is restored.

Example:

10 DBSTRN “Your name”,A$

46

DEF FN

FORMAT: DEF FN<name> (<variable>) = <expr>

This statement sets up a user-defined function that can be used
later in the program. The function can consist of any mathematical
statement or expression, and must be limited to one line. The
<name> of the function must follow FN and can be any alphanu-
meric variable name beginning with a letter. This name is used
later when the function 1s referenced. The <variable> must be
included for proper syntax, but does not need to be used in the
function definition. When the function is called (see FN, below)
with a variable or constant in parentheses, the value of the variable
or constant it 1s called with replaces the variable in the function
definition everywhere it appears. The DEF FN statement must be
executed during the course of running the program before it
becomes active.

Example:

10 Q=5:R=4
20 DEF FN ABC(X)=X*3

30 DEF FN QQQ(Y)=Q+R/4

40 BB=FNABC(10):PRINT BB

50 CC=FNQQQ(R*R):PRINT CC

There are several things to notice in this example. First, the
DEF FN statements must be executed before the FN statements
which call them. Also, the function (as called using the FN state-
ment) 1s treated just like any other math function such as COS (see
above). When the function is called, its value is automatically
calculated. The statement on line 40 will print 30 for the value of
BB, since 10 i1s substituted for the variable X in the function
definition on line 20. If a different variable or constant was used
on line 40, then you would get a different result. The statement on
line 50 will print 5 for the value of CC. This result will be the
same no matter what variable 1s included in the function call, since
the formula in line 30 doesn’t use the variable.

47

DELETE

FORMAT: DELETE <expr>

This command deletes the record number given by the
expression from a file created using the CREATE command (see
above) or opened using DBFILE or OPEN. All records in the
file with higher numbers than the deleted record will be moved
down one.

Example:

10 DELETE 3

DELPROC

FORMAT: DELPROC <expr>

The PROCESS command (see below) can set up a process
subroutine which will execute periodically. The DELPROC
command stops a process which was started by the PROCESS

command from running. The expression 1s the line number of the

process subroutine which you no longer want to run. Since a
maximum of eight processes can be running at any time, this
command allows you to turn off processes so that others can be
started, 1f you wish.

Example:

10 PROCESS @FLASH, 10

100 DELPROC @FLASH

DIALOG

FORMAT: DIALOG <string>, [<variable>]

48

-

Places a dialog box designed using the Dialog Box Editor on
the screen. The <string> can be a string constant or string variable,
and specifies the name of the dialog box to place on the screen.
This is the name used when you constructed the dialog box using
the Dialog Box Editor. If the second parameter is used, it must be a
numeric variable. The number corresponding to the icon or bitmap
that the user clicked on to exit the dialog box is returned in the
variable. These numbers and their corresponding icons are
explained in the Dialog Box Editor section, above. When the user
clicks on an icon to remove the dialog box from the screen,
whatever was obscured by the dialog box i1s restored to the screen.

Example:

10 DIALOG “TEST”,A
20 DIALOG AS,B

DIM

FORMAT: DIM <variable>(<subscripts>)[,<variable>
(<subscripts>)...]

Betore arrays of variables can be used, the dimensions of the
array must be established using the DIM statement. The
<variable> name can be any legal variable name. The name must
follow the rules for variable names: the array is automatically an
array of floating point numbers unless the “$” character is used at
the end of the array name to indicate a string array or the “%”

symbol is used at the end of the variable name to indicate an array
of integers.

T'he <subscripts> argument establishes the limits of the array
and how many dimensions it will have. One subscript is used for
each dimension, and the subscripts specifying the limits in each
dimension must be separated by commas. Up to 255 dimensions
may be used, subject only to the requirement that there be enough
memory to hold the array. An array with more than one subscript is
known as a matrix. Each subscript establishes the number of

49

elements in the array for that dimension. The lowest element
number is 0, and the highest allowed 1s 32767. Arrays are
numbered from O to N, where N i1s the maximum value specified
by the subscript in the DIM statement. Since the lowest numbered
subscript is 0, there 1s actually one more element 1n the array than
the value of the subscript. Further, each element of a string array
(variable name ends in “$”) can hold a string.

The DIM statement for an array must be executed once and
only once during the course of program execution. Any attempt to
reexecute a DIM statement will result in a REDIMed ARRAY
ERROR. If an array 1s used in the program which was never
dimensioned, i1t automatically 1s dimensioned to 11 elements 1n
each dimension used in the first reference.

Example:

10 DIM A(100):REM 101 elements (0-100)
20 DIM B(4,5),Q(3,4,5)
30 DIM B$(100)

You need to be careful not to run out of memory while
DIMensioning arrays. Arrays have the following memory
requirements:

S bytes for the array name

2 bytes for each dimension

2 bytes/element for integer variables

5 bytes/element for normal numeric variables

3 bytes/element for string variables

|1 byte for each character in each string element.

DPEEK

FORMAT: DPEEK <expr>

This function returns the word (two-byte) value at the location

given by <expr>. <Expr> must evaluate to an integer between 0 and

65535. The contents will always be a number between 0 and 65535.
50

Example:

10 A=DPEEK(5055)

DPOKE

FORMAT: DPOKE <location>,<expr>

Places the word (two-byte) number given by <expr> into the
memory location given by <location>. The low byte of <expr> is
placed in <location>, while the high byte is placed at <location>
+—1. Both <location> and <expr> must be between 0 and 65535.

The DPOKE command writes the <expr> directly into a

memory location. Extreme care should be exercised when using
this command, since putting the wrong value into a memory
location could cause your computer to lock-up.

Example:

10 A=2040:B=54320:DPOKE A,B

DREAD

FORMAT: DREAD <variable$>[,<variable$>....]

This command is used to fill variables with information from a
disk file. The file being read from must have been previously
opened with the OPEN, CREATE, or DBFILE commands. While
numeric variables are permitted they are not recommended
because if the information coming in from the disk is not numeric
an error will result. Use string variables and cast them to numbers
with the VAL() command instead. Each string 1n the file must be
terminated with a carriage return or a comma. An error will occur

if the string is longer than 255 characters or if you try to read from
an empty record (see also RDBYTE).

S1

END

FORMAT: END

This statement stops program execution, returns to the text
editor and waits for a keypress. Once a key has been pressed, 1t
displays the READY message on the screen. It 1s not necessary to
use any END statements, although it is good programming practice
to conclude the program with one. There can be any number of

END statements throughout a program to halt execution.

Example:

10 PRINT “DO YOU WANT TO QUIT?”

20 INPUT ANSS$
30 IF ANS$=“YES” THEN END

40 REM REST OF PROGRAM

EOF(0)

This function is used to signal the end of a disk record. The
argument may be any variable or a number. If the last DREAD or
RDBYTE returned the last character of the record, or if PTREC 1s
used on an empty record then a TRUE (-1) is returned. Otherwise

EOF(0O) returns zero.

Remember that there is a difference between an empty record
and an unused record. An empty record is one that was created
with INSERT or APPEND but nothing was written to it. An

unused record has never been accessed at all. PTREC will generate

an error if you try to point to an unused record, preventing the use
of EOF()!

32

W
vl

Example:

10 OPEN “MYFILE”
20 PTREC 0

30 WHILE NOT EOF(0)

40 RDBYTE A$

50 A = ASC(A$)+CHR$(0)

60 IF A > 31 OR A = 13 THEN PRINT AS$:
70 LOOP

80 CLOSE

90 END

EXP

FORMAT EXP(<expr>)

This function calculates the base of the natural logarithms (e,
equal to approximately 2.71828) raised to the power given by the
argument <expr>. A value for <number> greater than 88.0296919
will cause an 7OVERFLOW ERROR.

Example:

10 X=Y*EXP(10*X+.5)

FN

FORMAT: FN<name>(<expr>)

This function returns the value of the formula previously
defined using DEF FN (see above).The FN function must be
executed after the DEF FN call which defines it. The <expr> can
!)e a variable, constant or expression whose value is substituted
into the place of the variable in the DEF FN formula when the
forrpula is calculated. The FN function works just like any
F)rdmary function and its value is calculated automatically when it
1s called, using the value of the <expr> specified.

33

Example:

10 Q=5:R=4

20 DEF FN ABC(X)=X*3

30 DEF FN QQQ(Y)=Q+R/4

40 BB=FNABC(10):PRINT BB

50 CC=FNQQQ(R*R):PRINT CC

The statement on line 40 will print 30 for the value of BB,
since 10 is substituted for the variable X in the function definition
“on line 20. If a different variable or constant was used on line 40,
then you would get a different result. The statement on line 50 will
print 5 for the value of CC. This result will be the same no matter
what variable is included in the function call, since the formula 1n
line 30 doesn’t use the variable.

FONT

FORMAT: FONT<string>,<expr>

This command specifies what font to use. If the font 1s not in
memory, then the disk will be searched for the font, and 1t will be
automatically loaded if it is found. If it is not found, then the
default system font will be used instead. The <string> specities the
name of the font to use, while the <expr> specifies the size of the
font. The size is in points, with 72 points to the inch. Fonts

included with GEOS are:
Font Si1zes

BSW 9
University 6,10.12,14,18,24
California 10,12,13,14,18

Roma 0.12,18,24
Dwinelle 18
Cory FRE

20 additional fonts are available on the GEOS Font Pack 1. If a
font is too large, there may not be enough memory to contain it.

54

I
AR

You would then get an 70UT OF MEMORY error.

When printing fonts on the screen, the carriage returns (used to
get to the next line) are the same size as the font. Carriage returns
are produced with a PRINT statement which is NOT followed by a
semi-colon. A large-sized font will produce a large carriage return
(large distance between the current line and the next line).
Changing font sizes just after doing a carriage return can produce
some strange results. Switching from a small font to a large one
will cause the large font to overprint the line on which the small

font 1s located. Switching from large font to a small one can cause
wide gaps between lines of text.

Example:

10 FONT “University”’,10

FOR...TO...[STEP]..NEXT

FORMAT: FOR <variable>=<start> TO <end> [STEP
<increment>|}

NEXT [<variable>, <variable>...]

This series of commands establishes a loop that repeats the
statements contained in the loop for a set number of times. All
statements between the FOR and the NEXT statements are
repeated. The <variable> is used as a counter for the loop. It must
be a floating point variable (may not be an Integer or string
variable). It starts out with the value specified by <start>. All the
statements up to the NEXT statement are then executed. When the
:<NEXT> statement 1s encountered, the value of the loop variable
1s changed by the amount specified by <increment> in the STEP
:statement. .If the STEP statement is not used, then the <increment>
Is automatically set to 1. The value of the variable is compared to
<end>._. If the loop variable has exceeded the value of <end> then
execution of the program continues with the next statement past

35

the NEXT statement. If the loop variable has not exceeded the
value of <end>, then the program loops back and resumes execu-
tion with the statement following the FOR statement. If the <incre-
ment> value in the STEP statement is negative, then execut'lon
continues within the loop only as long as the loop variable 1s
greater than the value of <end>.

The NEXT statement indicates the end of the loop. If the
optional <variable> is used with the NEXT statement, it.must be
the same variable name as the loop variable established 1n the FOR
statement. One FOR...NEXT loop may be contained within |
another. This is known as nesting. You may nest loops up to nine
deep. A single NEXT statement can terminate several nested
loops. If the <variable> is not used with the nested NEXT state-
ment, then the NEXT statement will terminate the last started loop.
If the <variable> is used with the nested NEXT statement, you
must either use separate NEX'T statements to tenninz}te each
nested loop or else use multiple <variable>s with a single NEX'T
statement, being careful that the variables are in the proper order:
the last loop to start (the inside loop) must be the first loop to end.
Loops may not cross one another. See the examples for
illustrations.

Example:

10 FOR X=1 TO 10:REM NO STEP STATEMENT
20 PRINT X:NEXT

10 FOR X=1TO 20 STEP .5

20 FOR Y=10TO 0 STEP -1

30 PRINT X*Y+3

40 NEXT Y:REM FINISH THE INSIDE LOOP
50 NEXT X:REM FINISH THE OUTSIDE LOOP

10 FOR X=1TO 20 STEP .5

20 FORY=10TOOSTEP -1

30 PRINT X*Y+5

40 NEXT Y,X:REM ONE NEXT WITH TWO VARIABLES

56

10 FOR X=1TO 20 STEP .5
20 FORY=10TO 0 STEP -1
30 PRINT X*Y+5

40 NEXT:REM NO VARIABLE—TERMINATES INSIDE LOOP
S0 NEXT:REM NO VARIABLE—TERMINATES OUTSIDE LOOP

FRE

FORMAT: FRE(<expr>)

T'his tunction tells you how much memory is left in the

computer for you to use for your program and variables. If the

program tries to use more memory than is available, an OUT OF
MEMORY error will result. The <expr> can be anything since it is
not used except for syntax purposes.

Example:

10 PRINT FRE(0):REM FREE MEMORY

FRECT

FORMAT: FRECT <expr>,<expr>,<expr>,<expr>

This command draws a framed rectangle on the screen. A
framed rectangle is a rectangle which is not filled in, that is, it
consists only of the four lines which form the frame. The four
expressions are the X and Y coordinates of the upper left corner of
the rectangle and the X and Y coordinates of the lower right corner
of the rectangle. The X coordinate expressions must evaluate to a

number between 0 and 319, while the Y coordinate expressions
must evaluate to a number between 0 and 199.

The value of SETCOL sets the line pattern of the four lines

which make up the frame of the rectangle. The 8 bits which make
up the number passed to SETCOL can be either On or Off. If the
bit 1s On, then it shows up in the line, and if the bit is Offt, then it 1s

57

off in the line. For example, the number 255 (binary 11111111) has
all bits on, so the line drawn with FRECT will be solid. 85 (binary
10101010) will produce a dashed line, with every other pixel of
the line being On. Using a value of zero will cause a white line to
be drawn on any present dark background.

Example:

10 SETCOL 255
20 FRECT 10,10,20,20

GET

FORMAT: GET<variable list>

This statement reads any key you press. The variables in the
<variable list> will receive the values of the keys pressed. String
or numeric variables may be specified in the <variable list>, but 1f
a numeric variable is specified and you press a letter key, then an
error will result. It is better to use only string variables and convert
strings to numbers (see VAL, below) where necessary. If no key 1s
pressed, then the variable will be empty and the program continues
without waiting. The GET statement may be put into a loop so that
you can check for an empty result.

Example:

10 GET AS$:IF A$= THEN GOTO 10:REM WAIT FOR NONEMPTY A$%

20 PRINT A$

GOSUB/RETURN

FORMAT: GOSUB <expr>

The GOSUB statement transfers control of the program to the
line specified by <expr>. The <expr> parameter may be a numeric
constant, variable, expression or label. The block of statements
beginning at <expr> is then executed. When the RETURN state-

538

ment is encountered, program control returns to the statement
following the GOSUB. The computer remembers where the new
program segment was called from and returns there when the
block of statements located between the chosen line and the
RETURN statement, known as a subroutine, is finished.
Subroutines are of primary use for blocks of the program which
are repeated many times. Instead of putting the code in the
program many times, the program can simply GOSUB to the line
where the subroutine begins each time that block of code needs to

be executed.

The contents of the subroutine block can use any valid
geoBASIC statements, including calls to other subroutines.
However, since the address that the subroutine must RETURN to
is stored in a limited section of memory, there is a definite limit to
how deep you can nest subroutine calls. If you try to nest too many
GOSUBs, you will get an OUT OF MEMORY error — even
though there may be plenty of memory left for the rest of your
program.

Example:

10 FOR N=1TO 10

20 GOSUB @DOIT:REM THE SUBROUTINE CALL
30 NEXT N

40 END

100 @DOIT:PRINT EXECUTION # “;N:REM THE SUBROUTINE
110 RETURN:REM END OF THE SUBROUTINE

Line 40 is very important. If it weren’t there, then after the
subroutine was executed by the GOSUB in line 20 and the loop
finished in line 30, the program would continue to run at line 100.
However, when the RETURN in line 110 was encountered, the
error message RETURN WITHOUT GOSUB ERROR 1n 110
would result. That is because the computer would not know where

to RETURN to since there had been no corresponding GOSUB
call.

39

GOTO

FORMAT: GOTO <expr>

This statement allows the program to jump to the line number
specified by <expr> and continue execution there. The <expr>

parameter may be a numeric constant, variable, expression or
label.

Example:

10 PRINT “GOTO STATEMENT DEMONSTRATION”

20 GOTO @DOIT:REM COULD ALSO BE GOTO 100 OR GOTO 10*10
30 GOTO 30:REM PRESS RUN/STOP TO STOP PROGRAM

40 REM PROGRAM WILL NEVER GET HERE

100 @DOIT: PRINT “THIS IS LINE 100”

110 END

HEADER

FORMAT: HEADER <expr>,<string>[,<expr>]

The HEADER command allows you to specify the type of file
and permanent file name of the files which will appear when using
DBFILE or that will be created using CREATE. If the HEADER
command 1s not used, then only files matching type BASIC DATA
and with a permanent file name of *“” (null string) will appear
when using DBFILE or be created when using CREATE. The first
<expr> must evaluate to a valid file type. Valid file types are:

BASIC (1), ASSEMBLY (2), DATA (3), SYSTEM (4),
DESK_ACC (5), APPLICATION (6), APPL_DATA (7), FONT
(8), PRINTER (9), INPUT_DEVICE (10), DISK_DEVICE (11),

SYSTEM_BOOT (12), TEMPORARY (13) and AUTO_EXEC
(14).

Most of these file types would never need to be used or
accessed by a user. For more information on the different file

60

types, see page 398 of the GEOS Programmers Reference Guide.

The <string> is the permanent file name to match. It used, then
only files which match this permanent file name will appear in the
dialog box. The permanent file name is used by GEOS to help
identify what application a file belongs to. For example, it is by the
permanent file name that GEOS can tell the difference between
GeoPaint and GeoWrite files. The permanent file name of any file
can be seen from the desktop. Click on the file you are interested
in to highlight it, then drop down the File submenu and click on
Info. The name which appears in the Info box next to Class 1s the

permanent file name.

The optional last <expr> is the file structure. It must evaluate
to either O (sequential) or 1 (VLIR).

Example:

10 HEADER 3,7,1

ICON

FORMAT: ICON <string>

Places a group of icons on the screen. The group of icons must
have been designed previously using the Icon List Editor. The
<string> can be a string constant or string variable, and specities
the name of the Icon List to place on the screen. This 1s the name
used when you constructed the Icon List using the Icon List Editor.
See MAINLOOP for an example of how your program should
respond when the user clicks on one of the icons you have placed
on the screen. If multiple calls are made to the ICON command,
only the last set of icons loaded can be clicked on, even if earlier-
loaded 1cons are still visible on the screen.

Example:

10 ICON “MYCON”

61

IF...THEN...

FORMAT: IF <expr> THEN <statements>

This statement gives geoBASIC the ability to make decisions
based on the outcome of the expression. <Expr> can be any
mathematical formula including variables, strings, numbers,
comparisons and logical operators. If the expression is true, then
the statements following THEN are executed. If the expression is

Example:

10 REM DEMO NUMBER CHOOSING GAME

20 PRINT “I WILL PICK A NUMBER BETWEEN 1 AND 10”:CNT=0

30 A=INT(RND(10))+1

40 PRINT “WHAT IS YOUR GUESS?”:INPUT Q:CNT=CNT+1

SO IF Q<1 OR Q>10 THEN PRINT “NO. OUT OF RANGE”:GOTO 40

60 IF Q=A THEN GOTO 90

70 IF Q<A THEN PRINT “GUESS IS TOO LOW”:GOTO 40

80 PRINT “GUESS IS TOO HIGH”:GOTO 40

90 PRINT “YOU GOT IT IN 7;CNT; “ TRIES”

100 PRINT “WANT TO PLAY AGAIN (Y/N):INPUT AS$ 110 IF A$=Y”
THEN GOTO 20

120 PRINT “GOODBYE...”:END

Line 20 prints out a message and zeroes out the counter. Line
30 uses the RND function to choose a number between 1 and 10
(see RND, below). Line 40 gets your guess. Line 50 uses a
compound expression to make sure that your guess is in the proper
range, and prints a message and GOTOs line 40 if it is not. Line 60
jumps to line 90 if you got the right answer. Line 70 tests to see if
your guess 18 less than the number, prints the message and jumps
to the right line number if it is. Notice how line 80 works. If lines
60 and 70 didn’t cause a jump to another line, then your guess
MUST be higher than the right number, so line 80 prints this
message and jumps back to line 40 to get your next guess. Line 90
prints out the winning message, and line 100 checks to see if you
want to play again. If you type in “Y”, then line 110 will cause a
branch back up to line 20 to start over. If you don’t type a “Y”,

62

then the program falls through to line 120, which prints a message
and ENDs the program.

INPUT

FORMAT: INPUT [“<prompt>";]<variable list>

This statement receives input from you, and places what you
type into the variables in the variable list. When the INPUT
statement is encountered in the program, the program stops and a
question mark is placed on the screen. Type in your data and press
[RETURN]. The INPUT command may be followed by any text
enclosed in quotes. This text will be printed on the screen,
followed by the question mark. The text is helpful in reminding
you what sort of information the program needs from you. The
semicolon following the prompt text MUST be used 1n the
statement if the prompt text 1s used.

The <variable list> may contain one or more variable. If only a
single variable is used, then you can just type in the value and
press [RETURN]. If more than one variable 1s used, then type in
the appropriate number of values, separated by commas. If you
type in too few values, a “??” will appear on the next screen line to
prompt you to type in additional values. If you type in too many
values, the 7ZEXTRA IGNORED message will appear, meaning
that the extra items you typed were not placed into any variables.
Note that, since the values you type in are separated by commas,
the values themselves may not contain any commas. Also, 1f the
current variable in the variable list 1s a numeric variable and you
type 1n a string, you will get the 7REDO FROM START message.
You must then type in a number for that variable. If you just press
[RETURN] at the INPUT prompt, the old value of the variable 1s
maintained (the variable value doesn’t change).

Example:

10 INPUT VLUE,START, FINISH
20 INPUT SVL$:REM GET A STRING
30 INPUT “WHAT NUMBER”: NMBR

63

INSERT

FORMAT: INSERT <recordnum>

This command adds a new record to a VLIR file. Recordnum
is either a number or a numeric variable that points to where the
record will be inserted. For example:

before: 012345...

after an INSERT 2: 0123456...

A

- - - new record

All records after the inserted record are moved up one record.
If the last record would exceed 127 then an OUT OF RECORDS
error will occur. There 1s a bug 1n this command that prevents

INSERTing to record 126. INSERT will do an implicit PTREC to
the new record (see also APPEND).

INT

FORMAT: INT(<expr>)

This function returns the integer value of the expression, which
must evaluate to a number. If the expression i1s a positive number,
the fractional portion of the number is left off. If the expression 1s

less than zero, any fractional part causes the next lower integer to
be returned.

Example:
100 PRINT INT(10.5), INT(-10.5)

These statements return the values 10 and —11, respectively.

INVRECT

FORMAT: INVRECT <expr>,<expr>,<expr>,<expr:>

64

0
1‘!

The command inverts screen pixels in the rectangle defined by
the four expressions. All pixels which are On are tumed.Off, and
all pixels which are Off are turned On. The four expressions are
the X and Y coordinates of the upper left corner of the rectangle to
‘avert and the X and Y coordinates of the lower right corner of the
rectangle. The X coordinate expressions must evaluate to a number
between 0 and 319, while the Y coordinate expressions must
evaluate to a number between 0 and 199.

Example:

10 INVRECT 10,10,20,20

LEFTS

FORMAT: LEFTS$(<string>,<expr>)

This function returns the left-most <expr> characters of the
string <string>. The <expr> parameter can be an expression which
evaluates to an integer between 0 and 255. If the integer 1s greater
than the length of the string, the entire string is returned. It the
integer is 0, then a null (empty) string is returned.

Example:

10 A$=“BERKELEY SOFTWORKS”
20 B$=LEFT$(A$,8):PRINT B$
30 C$=LEFT$(“HELLO WORLD?”,5):PRINTC$

This example program would print “BERKELEY™ and
“HELLO”.

LEN

FORMAT: LEN(<string>)

Returns the length of <string>. Blanks and unprintable
characters are included in this count.

635

Example:

10 A$=“BERKELEY SOFTWORKS”
20 B=LEN(A$):C=LEN(“HELLO WORLD”)
30 PRINT B:PRINT C

This example would print the values 17 and 11.

LINE

FORMAT: LINE <expr>,<expr> TO <expr>,<expr>

This command draws a line on the screen. The first two
expressions (preceding TO) are the X and Y coordinates of the
beginning of the line, and the last two expressions (after TO) are
the X and Y coordinates of the end of the line. The X coordinate
expressions must evaluate to a number between O and 319, and the

Y coordinate expressions must evaluate to a number between 0
and 199. The color of the line 1s set by SETCOL(below).

Example:

10 LINE STX,STY,EX,EY
20 LINE 10,10,20,20

LIST

FORMAT: LIST|[<first line>],[<last line>]]

The LIST command allows you look at the geoBASIC
program currently in memory. The screen editor can be used to

edit portions of the program once these portions have been placed
on the screen.

If the program is too long to fit on the screen, the lines at the
top of the screen will scroll off the top as new lines are added at
the bottom. To suspend this scrolling, hold down the F5 key.
Releasing the F5 key will allow the LIST to resume again. To
break in to a LIST statement, press [RUN/STOP].

66

-

1N

i

T
J

7 |

Ll

iy

If the LIST command is used without any parameters, the
entire program in memory is listed. The <first line> and <last line>
parameters may be constants or labels. If the first line number 1s
given followed by a comma (,), then all lines from the specified
line to the end of the program will be listed. If only the last line 1s
given, preceded by a comma, then all lines from the beginning of
the program to the specified line will be listed. If both the starting
and ending line numbers are given, separated by a comma, then all
lines between and including the specified lines will be listed. If
just a single line number is specified after the LIST statement, then

just that line will be LIS Ted.

Example:
LIST (LISTS WHOLE PROGRAM IN MEMORY)
LIST 100 (LISTS LINE 100 ONLY)
LIST 100, (LISTS LINE 100 TO END OF PROGRAM)
LIST ,100 (LISTS FROM BEGINNING OF PROGRAM

THROUGH LINE 100)

LIST 100,500 (LISTS LINES 100 THROUGH 500)
LIST @START,@END (LISTS FROM LINES @START TO @END)
LOAD

FORMAT: LOAD <filename>,<expr>,[<expr>|

This statement reads the contents of a file from disk into
memory. The filename identifies the name of the file you want to
load. The filename may be contained in a string variable. 1f the

filename specified is not found, the ?FILE NOT FOUND error
message will result.

The first expression is the memory address to load the file into.
It must evaluate to a number between 0 and 65535. The second
expression specifies the device number that the file is to be loaded
from. It must evaluate to a number between 8 (first disk drive) and
11. If the expression is left out, the current drive will be used.

67

Example:

LOAD “PIC”,40960
LOAD B$,32768,8

(load “PIC” from current drive to screen memory)
(loads the filename given by B$ from disk. The file
will be loaded to memory location 32768.)

LOG

FORMAT: LOG(<expr>)

Returns the natural logarithm (log to the base of e) of the

expression, which must evaluate to a number greater than zero. An
NMLLEGAL QUANTITY error will occur if the number is less than
or equal to zero.

Example:

10 PRINT LOG(10/7)

MAINLOOP

FORMAT: MAINLOOP

This simple command 1s the heart or “main loop” of
geoBASIC programs. With it, you can detect when the user clicks
on an icon or selects a menu item, and branch to the appropriate
subroutine to execute the user’s choice. When the subroutine
RETURNs, MAINLOOP takes over again and waits for the next
selection. Before executing MAINLOOP, set up menus (see
MENU) and icons (see ICON). Everything after MAINLOOP in a

geoBASIC program should be subroutines which execute when a
menu 1tem 1s selected or an icon 1s clicked on.

68

.
Wiy

Example:

10 ICON “NEW?”
20 MENU “START”
30 MAINLOOP

40 END
100 PRINT “YOU PRESSED ICON 1”:RETURN

200 PRINT “YOU PRESSED ICON 2”:RETURN

This short program segment sets up the MENU and ICON,
then goes into MAINLOOP and waits for the user to do
something. Suppose that when you designed the icon list, you
specified that the program should branch to line 100 1f icon #1 was
clicked on and to line 200 if icon #2 was clicked on. Clicking on
icon #1 or #2 executes lines 100 or 200, printing the messages on
the screen. The program then goes back to MAINLOOP to wait for
the next time the user clicks on an 1con.

MENU

FORMAT: MENU <string>

Places a menu at the top of the screen. The menu must have
been designed previously using the Menu Editor. The <string> can
be a string constant or string variable, and specifies the name of
the Menu to place on the screen. This is the name used when you
constructed the Menu using the Menu Editor. See MAINLOOP for
an example of how your program should respond when the user
selects one of the Menu items you have placed on the screen. Only

the menu subitems present in the most recent MENU call are
active.

Example:

10 MENU “MYMEN?”

69

MID$

FORMAT: MID$(<string>,<expr 1>,[<expr 2>])

This function returns a sub-string taken from within a larger
string given by <string>. <Expr 1> determines the starting position
of the sub-string within the larger string. If <expr 1> 1s larger than
the length of the <string>, then the null string 1s returned. < Expr
2> is optional and specifies how many characters are to be
included in the sub-string, starting from the position determined by
<expr 1>. If <expr 2> is left out, then the entire balance of the
string is included in the sub-string. If <expr 2> is zero, then the
null string is returned. If <expr 2> 1s larger than the length of the
<string> from the starting position to the end of the string, then the

rest of the string is returned. Both <expr 1> and <expr 2> can have
values from O to 255.

Example:

10 AS=“HELLO”
20 B$=“THERE EVERYONE YOU”
30 PRINT A$+MID$(B$,7,8)

This sample program will print “HELLO EVERYONE".

MOUSE

FORMAT: MOUSE <expr>

This command turns the mouse on or oft. The <expr>
determines whether the mouse will be turned on or off. If it 1s
equal to 0, then the mouse pointer is turned off. If the <expr> 1s
any number other than 0, then the mouse pointer is turned on,
making the mouse pointer visible on the screen.

Example:

10 MOUSE 1

70

MOUSEIN

FORMAT: MOUSEIN (<expr>,<expr>,<expr>,<expr>)

This function checks to see if the mouse is within the
boundaries of the rectangle defined by the four numeric expres-
sions. The first two expressions define the X and Y coordinates of
the top left corner of the rectangle and the last two eXpressions

define the bottom right corner of the rectangle. If the mouse 1s
within the rectangle, then MOUSEIN returns TRUE (-1), and 1t the

mouse is outside the rectangle, then MOUSEIN returns FALSE
(0). The X coordinate expressions must evaluate to numbers
between 0 and 319, while the Y coordinate expressions must
evaluate to numbers between O and 199.

Example:

10 MW=MOUSEIN (10,20,50,100)

MOUSEX

FORMAT: MOUSEX (<expr>)

This function returns the current X coordinate of the mouse
pointer. The <expr> can be any valid numeric expression, since it
1S not used. The value returned will be between 0 and 319.

Example:

10 X=MOUSEX(1)

MOUSEY

FORMAT: MOUSEY (<expr>)

This function returns the current Y coordinate of the mouse

pointer. The <expr> can be any valid numeric expression, since it
IS not used. The value returned will be between 0 and 199.

71

Example:

10 Y=MOUSEY (1)

NEWPAGE

FORMAT: NEWPAGE
Advances the printer to the top of the next page.

Example:

10 NEWPAGE

NOT

FORMAT: NOT <expr>

The NOT operator can be used in two ways, just as the AND
(see above) and the OR (see below) operators. First of all, NOT
“complements” the value of each bit in the expression, which must
evaluate to a number. The complement result of using NOT

produces the expression increased by one and with a negative sign.
Thus, NOT (45) results in —46. The second use of NOT is with

expressions which are evaluated to be true or false. If an expres-
sion evaluates to be true, then NOT <expr> is false. If the expres-
sion evaluates to be false, then NOT <expr> is true.

Example:

10 AB=10:BA=20
20 IF NOT(AB=BA) THEN PRINT “NOT EQUAL!”

Since AB 1s not equal to BA, the expression (AB=BA) is false.

Thus, NOT(AB=BA) is true, and the program will print “NOT
EQUAL”.

72

ON

FORMAT: ON <expr> GOTO/GOSUB <expr>[,<expr>]...

This statement allows your program to GOTO or GOSUB to
one of the line numbers specified by the list of <expr> after GOTO
or GOSUB, depending on the value of the first expression. The list
of <expr> may be constants or labels. It the value of the first
expression is 1, then the ON statement will GOTO or GOSUB to
the first line number in the list. If the value of the expression 1s 2,
then the ON statement will GOTO or GOSUB to the second line
number in the list, and so on. If the value of the expression 1s not
an integer, the fractional portion of 1t 1s ignored. If the value of the
expression is zero or a number larger than the number of line
numbers in the list, then the ON statement 1s 1gnored and execu-
tion continues with the next statement in the program. If the value
of the expiression 1s less than zero, an 7ZILLEGAL QUANTITY
error occurs. The ON statement can replace a whole series of IF
statements for more efficient programs.

Example:

10 X=5
20 ON X-4 GOSUB 100,200,300,400:REM WILL GOSUB TO 100

10 ON EQ/10 GOTO 200,250,300,350,400,400,400
20 ON X-4 GOSUB @NM1,@NM2,@NM3

If there are values which the expression will never equal, you
must still include a dummy line number in the list of line numbers
if the variable COULD equal a value which is higher. You may
also make the ON statement branch to the same line number for
several different values of the expression.

ONERR

FORMAT: ONERR <expr>

Redirects errors to a line number. The geoBASIC stack is

73

cleared so you can’t tell where you came from. Routine must end
with a GOTO or MAINLOOP.

OPEN

FORMAT: OPEN <filename$>,[<expr>]

This command opens a channel for input or output to a file on
the disk drive. The <filename> is a string constant or string
variable specifying the filename for the disk file. The expression,
if used, specifies which disk drive to load the file from. Valid disk
drive numbers range from 8 to 11. If the expression 1s not used,
then OPEN will try to open the file on the current disk drive.

Example:

10 OPEN “TEST”

OR

FORMAT: <expr> OR <expr>

The OR operator can be used for two purposes. As a
mathematical (boolean) operator, it 1s used to combine two
numbers together to produce a result. Each bit in the first expres-
sion is ORed against the corresponding bit in the second expres-
sion. The bit in the result is equal to 1 if the bit in either expression

is 1. If the bit in both expressions is 0, then the bit in the result 1s

zero. Thus, you get:
OOR0O=0 1ORO=1 OOR1=1 1OR1=1
Each of the expressions must evaluate to a number between
—32768 and +32767. If either of the expressions evaluate to a
number outside this range, it will cause an 7ZILLEGAL

QUANTITY error.

74

ful

i

Example:
10 X=32007 OR 28761: PRINT X

This would produce the result 32095. To see why, convert each
of the numbers to binary: 32007 1s O1111 10100000111 and 28761
is 0111000001011001. ORing each bit of the two numbers:

0111110100000111 OR
0111000001011001

0111110101011111 (binary)
or 32095 (decimal).

The other way to use the OR operator is to test the truth of two
expressions. Each expression is generally an 1k statement (see IF,
above). The result evaluates as true if either of the expressions are
true, and if both expressions are false, then the result i1s false. The
“truth table” for the OR statement looks like:

First Second Result

Expression Expression Expression

: § T T

F T T

T F T

F F F
Example:

W Asl:x=10:2=15

20 IF X=7 OR Y=10 THEN PRINT “TRUE”

30 IF X=7 OR Y=10 OR Z=15 THEN PRINT “TRUE”
40 IF X=5 OR Y=10 THEN PRINT “TRUE”

S0 IF X=7 OR Y=12 THEN PRINT “TRUE”

60 IF X=5 OR Y=12 THEN PRINT “TRUE”

The statements in lines 20, 30,40 and 50 will print the word
“TRUE” when you run this short program because at least one of
the statements is true. The statement in line 60 wil<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>