
Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	1	of	16	

PETTESTE2K	–	Version	04.	Copyright	©	2020	David	E.	Roberts.	
	
This	 test	 program	 was	 developed	 as	 a	 ‘cheap	 and	 cheerful’	 test	 aid	 for	 the	
various	 versions	 of	 the	 Commodore	 PET	 computer	 (irrespective	 of	 whether	 it	
contains	a	CRT	(Cathode	Ray	Tube)	controller	device	or	not).	
	
On	start-up,	the	6502	CPU	(Central	Processing	Unit)	starts	executing	instructions	
from	 a	RESET	VECTOR	 found	 in	 high	memory.	 In	 a	 standard	 Commodore	 PET	
machine	this	 is	where	the	Kernal	ROM	(Read	Only	Memory)	resides	at	address	
$Fxxx.		
	
The	general	problem	with	the	PET	is	that	most	of	the	ROMs	were	soldered	into	
the	board	–	making	it	difficult	to	install	a	replacement	ROM	containing	diagnostic	
code.	 However,	 in	 order	 to	 customise	 the	 PET	 for	 different	 countries,	
Commodore	 decided	 to	 place	 all	 of	 the	 customisation	 and	 internationalisation	
code	into	what	they	refer	to	as	an	EDIT	ROM	residing	at	$Exxx.	This	is	a	2K	ROM	
device	and	is	generally	installed	in	an	IC	(Integrated	Circuit)	socket.	As	a	result,	
the	 EDIT	 ROM	 can	 be	 removed	 from	 the	 socket	 and	 a	 diagnostic	 replacement	
installed.	
	
On	start-up,	the	6502	resets	to	a	vector	contained	within	the	high	memory	of	the	
Kernal	ROM	and	starts	 to	 initialise	 the	hardware.	After	only	a	 few	instructions,	
the	Kernal	ROM	executes	initialisation	code	stored	in	the	EDIT	ROM.	This	is	our	
chance	to	‘get	in’	and	slip	our	diagnostic	code	into	the	PET	unnoticed!	
		
The	downside	of	this	technique	is	that	a	small	portion	of	the	Kernal	ROM	must	be	
working	 correctly	 in	 order	 for	 the	 6502	 instruction	 execution	 to	 reach	 our	
diagnostic	 ROM.	 This	 was	 considered	 a	 worthwhile	 trade-off	 –	 but	 should	 be	
considered	if	the	diagnostic	ROM	fails	to	even	start	execution.	
	
Of	 course,	 the	 diagnostic	 ROM	 outputs	 the	 results	 of	 the	 various	 tests	 to	 the	
screen;	 therefore	 a	 functioning	 video	 sub-system	 is	 required.	This,	 however,	 is	
one	of	the	first	tests	the	diagnostic	ROM	performs!	
	
On	entry	from	the	Kernel	ROM,	the	diagnostics	initialises	any	CRT	controller	(if	
present	 on	 the	 PET).	 The	 initialisation	 mode	 and	 parameters	 (e.g.	 40/80	
columns,	50/60	Hz	etc.)	can	be	configured	by	the	user	by	editing	the	source	code	
for	the	diagnostic	ROM	and	inserting	the	appropriate	table	of	register	values	at	
label	CRTC_INIT.	The	binary	image	can	also	be	hand-patched	after	loading	it	into	
an	EPROM	programmer	 if	 so	desired	 rather	 than	 editing	 the	 assembler	 source	
code	and	re-assembling	 it.	 If	a	CRT	controller	 is	not	present	on	your	particular	
PET,	don’t	worry,	the	initialisation	will	not	take	effect	and	no	damage	will	occur.	
The	electrons	just	spill	out	onto	the	floor	☺!	
	
You	 only	 need	 to	 patch	 the	 CRTC	 initialisation	 values	 if	 you	 are	 using	 a	 40	
column	 PET	 with	 a	 CRTC	 device	 (e.g.	 a	 PET	 4032	 ‘Fat	 40’).	 No	 CRTC	 –	 no	
problem!	
	
There	are	details	related	to	PETs	and	CRTCs	you	will	find	at:	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	2	of	16	

	
http://cbm-hackers.2304266.n4.nabble.com/PET-50Hz-editor-ROMS-
td4658493.html	
	
http://www.6502.org/users/andre/petindex/crtc.html	
	
Disclaimer:	There	also	appears	to	be	inconsistent	data	around	as	well	(as	is	the	
nature	with	disassembling	things).	If	you	have	any	problems,	please	contact	me	
at	 http://www.vcfed.org/forum/activity.php	 user	 daver2	 (on	 the	 Commodore	
Forum)	and	I	will	be	glad	to	help	out.	
	
VDU	TEST	
	
This	test	writes	an	incrementing	character	code	from	$00	to	$FF	into	all	8	pages	
(2K	 for	 an	 80-column	 PET)	 of	 the	 VDU	memory.	 If	 your	 machine	 is	 a	 1K	 40-
column	PET	this	should	still	be	OK	–	the	last	4	pages	of	data	writes	should	either	
be	discarded	or	overwrite	the	first	4	pages	again.	Either	way,	this	should	be	fine.	
	
The	 test	 continues	 by	 verifying	 that	 the	 first	 4	 pages	 (1K)	 of	 VDU	 memory	
contain	the	correct	values.	If	not,	the	test	program	loops	so	that	the	test	operator	
can	see	the	results.	
	
If	 the	 test	 fails	 –	 the	 diagnostic	 program	 loops,	 re-writes	 the	 test	 pattern	 and	
performs	a	 further	check.	This	process	continues	until	such	time	as	the	correct	
data	pattern	is	read	from	the	VDU	memory.	
	
Obviously,	a	completely	black	picture	could	indicate	that	a	number	of	problems	
exist:	
	

• The	monitor	may	be	faulty.	
• No	video	or	synchronisation	signals	may	be	getting	 from	the	mainboard	

to	the	monitor.	
• The	timing	chain	is	faulty.	
• If	a	CRT	Controller	is	fitted	–	it	may	be	faulty.	
• The	 CPU	 is	 not	 correctly	 executing	 instructions.	 This	 may	 be	 due	 to	 a	

number	of	reasons…	
	
If	 the	 test	 pattern	 is	 not	 correct	 –	 the	 test	 operator	 can	 observe	 the	 actual	
characters	 that	 are	 being	 displayed	 as	 a	 result	 of	 the	 read/write	 operations	
from/to	 the	 VDU	memory.	 This	 should	 give	 you	 some	 clue	 as	 to	 the	 potential	
fault	(or	at	least	where	to	start	probing).	Obvious	errors	could	be	a	stuck	data	bit	
(either	a	 ‘1’	where	a	 ‘0’	 should	be	or	a	 ‘0’	where	a	 ‘1’	 should	be).	Less	obvious	
errors	are	addressing	faults	where	the	correct	character	is	stored	at	an	incorrect	
address	 –	 thus	 either	 not	 being	 stored	 to	 the	 correct	 location,	 or	 overwriting	
another	 location.	Of	course,	this	may	occur	on	the	read	or	write	cycle	–	or	be	a	
function	of	the	memory	device	itself.	
	
Data	could	also	be	changing.	This	would	be	indicated	on	the	display	as	flickering	
characters	(say	alternating	between	‘A’	and	‘B’	in	the	same	character	cell).	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	3	of	16	

	
When	 the	 diagnostic	 reads	 the	 correct	 test	 pattern	 from	 the	VDU	memory	 –	 it	
performs	a	delay	(to	let	the	human	see	the	results…)	and	moves	on	automatically	
to	the	next	test.	
	

	
Figure	1	–	A	‘PASS’	display	for	the	VDU	test	(80-columns).	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	4	of	16	

	
Figure	2	-	A	‘PASS’	display	for	the	VDU	test	(40-columns).	

Page	0/1	test	with	data	byte	values	ranging	from	$00	to	$FF.	
	
Assuming	the	VDU	test	completed	without	errors,	the	diagnostic	ROM	moves	on	
to	perform	a	basic	test	on	pages	0	and	1	of	the	RAM	(Random	Access	Memory).	
Page	0	is	a	special	area	of	memory	that	is	used	by	a	particular	addressing	mode	
of	 the	6502	CPU.	Page	1	(or	part	of	page	1)	 is	generally	reserved	 for	 the	stack.	
Each	page	consists	of	256	bytes	of	RAM.	A	 failure	 in	either	page	0	or	page	1	of	
RAM	could	result	 in	a	catastrophic	 failure	of	 the	PET	BASIC	firmware	stored	 in	
ROM.	
	
The	diagnostic	firmware	writes	the	data	values	from	$00	to	$FF	into	consecutive	
bytes	of	Page	0	and	Page	1.	The	value	$00	gets	written	into	addresses	$0000	and	
$0100.	 The	 value	 $01	 gets	 written	 into	 addresses	 $0001	 and	 $0101.	 …	 .	 The	
value	 $FE	gets	written	 into	 addresses	 $00FE	and	$01FE.	And	 finally,	 the	 value	
$FF	gets	written	into	addresses	$00FF	and	$01FF.	
	
The	diagnostic	 firmware	 then	 verifies	 that	 the	 correct	 values	 that	 should	 have	
been	written	can	be	correctly	read	back.	The	status	of	the	basic	memory	test	is	
stored	on	the	screen	in	a	coded	form	as	follows:	
	
The	 screen	 is	 divided	 into	 four	 (4)	 sections,	 each	 section	 containing	 256	
consecutive	character	locations	on	the	screen.	
	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	5	of	16	

The	first	256	characters	indicate	a	‘G’	or	‘B’	(or	a	‘g’	or	‘b’)	character	(depending	
upon	which	character	generator	ROM	is	fitted	and	whether	the	Page	0	memory	
location	corresponding	to	that	address	contains	the	correct	data	when	read).	A	
‘G’	 or	 ‘g’	 character	 indicates	 a	 ‘Good’	 memory	 location;	 whereas	 a	 ‘B’	 or	 ‘b’	
character	indicates	a	‘Bad’	memory	location.	
	
The	second	256	characters	indicate	either	a	‘.’	character	(if	the	memory	location	
in	 page	 0	was	 determined	 to	 be	 ‘Good’)	 or	 the	 character	 corresponding	 to	 the	
data	 that	 was	 found	 (if	 the	memory	 location	 in	 page	 0	 was	 determined	 to	 be	
‘Bad’).	
	
The	next	two	lots	of	256	characters	are	a	repeat	of	the	above	but	for	page	1	RAM.	
	
Note	that	on	an	80	column	PET	you	will	see	all	of	the	characters	corresponding	
to	the	full	contents	of	pages	0	and	1	under	test.	On	a	40	column	PET	you	will	be	
missing	a	few	characters	as	only	40	[columns]	*	25	[rows]	=	1,000	[characters]	
(out	of	the	1,024	characters	required	for	the	test)	is	displayable.	
	
If	 the	test	works	fine,	a	delay	will	be	performed	(to	permit	the	test	operator	to	
briefly	see	the	results)	and	the	firmware	will	move	on	automatically	to	the	next	
test.	
	

	
Figure	3	-	A	'PASS'	display	for	the	page	0/1	$00	to	$FF	test	(80-columns).	

	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	6	of	16	

	
Figure	4	-	A	'PASS'	display	for	the	page	0/1	$00	to	$FF	test	(40-columns).	

	
Page	0/1	test	with	data	bytes	of	$55	and	$AA.	
	
Assuming	the	VDU	test	completed	without	errors,	the	diagnostic	ROM	moves	on	
to	perform	a	basic	‘stuck	bit’	test	of	page	0	and	page	1	RAM		
	
This	 test	 first	 stores	 the	pattern	$55	 (binary	01010101)	 into	pages	0	 and	1	of	
RAM	 and	 checks	 for	 the	 correct	 value	 being	 stored.	 The	 test	 next	 stores	 the	
pattern	$AA	(binary	10101010)	into	pages	0	and	1	of	RAM	and	checks	once	again	
for	the	correct	value	being	stored.	The	status	of	the	testing	(for	each	byte	of	page	
0	and	1)	is	shown	on	the	VDU.	A	‘G’	or	‘g’	character	is	displayed	for	each	byte	that	
is	 GOOD/good	 whilst	 a	 ‘B’	 or	 ‘b’	 character	 is	 displayed	 for	 each	 byte	 that	 is	
BAD/bad	 respectively.	 Note	 that	 an	 upper	 or	 lower	 case	 character	 may	 be	
displayed	 –	 depending	 upon	 which	 variation	 of	 the	 character	 generator	 is	
actually	fitted	to	your	PET.	
	
As	 a	 1K	 (40-column)	 PET	 screen	 can	 display	 25*40	 =	 1,000	 characters;	 I	 can	
almost	 use	 that	 to	 indicate	 the	 state	 of	 each	 byte	 of	 the	 test	 (although	 I	 do,	
unfortunately,	loose	the	last	24	bytes).	There	is	no	problem	on	a	2K	(80-column)	
PET	screen	though.	
	
The	 first	 256	 bytes	 of	 the	 display	 indicate	 the	 state	 of	 storing	 and	 testing	 the	
memory	in	page	0	with	a	value	of	$55.	
	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	7	of	16	

The	second	256	bytes	of	the	display	indicate	storing	and	testing	the	memory	in	
page	1	with	a	value	of	$55.	
	
The	 third	 256	 bytes	 of	 the	 display	 indicate	 storing	 and	 testing	 the	memory	 in	
page	0	with	a	value	of	$AA.	
	
The	 fourth	256	bytes	of	 the	display	 indicate	storing	and	testing	 the	memory	 in	
page	1	with	a	value	of	$AA.	
	
As	 stated	 previously,	 the	 displayed	 character	 indicates	 if	 the	 test	 passed	
(character	=	‘G’	or	‘g’)	or	the	test	failed	(character	=	‘B’	or	‘b’).	The	location	of	the	
character	on	the	screen	(i.e.	the	index	into	the	256	byte	display	block)	indicates	
which	byte	of	the	memory	page	failed	the	test.	
	
Unfortunately,	using	this	means	of	testing	and	displaying	the	results	of	the	test,	it	
is	not	possible	to	display	what	the	actual	value	was	when	the	memory	was	read.	
This	 is	why	 I	 perform	 a	 simple	 test	 prior	 to	 this	 one	 first	 so	 that	most	 of	 the	
common	 errors	 would	 (hopefully)	 be	 trapped	 and	 the	 errant	 value	 displayed	
prior	to	this	test.	
	
If	the	test	fails,	the	diagnostics	keep	looping	on	this	test.	
	
Again,	 it	 may	 be	 possible	 to	 detect	 ‘random’	 memory	 faults	 by	 observing	 the	
displayed	status	character	alternating	from	good	to	bad	and	vice-versa.	
	
If	 the	test	works	fine,	a	delay	will	be	performed	(to	permit	the	test	operator	to	
briefly	see	the	results)	and	the	firmware	will	move	on	automatically	to	the	next	
test.	
	
	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	8	of	16	

	
Figure	5	-	A	'PASS'	display	for	the	page	0/1	$55	and	$AA	test	(80-columns).	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	9	of	16	

	
Figure	6	–	A	'PASS'	display	for	the	page	0/1	$55	and	$AA	test	(40-columns).	

	
ROM/KBD	TEST	
	
Assuming	all	of	the	previous	tests	have	passed	successfully,	the	screen	is	cleared	
and	the	ROM	checksums	and	keyboard	circuitry	is	tested	next.	
	
The	first	few	lines	of	the	screen	are	populated	with	all	of	the	possible	characters	
available	within	the	character	generator.	
	
The	 diagnostic	 firmware	 then	 performs	 a	 16-bit	 checksum	 of	 the	 code	 in	 the	
following	ROMS:	
	

• $Bxxx.	
• $Cxxx.	
• $Dxxx.	
• $Fxxx.	

	
Check	summing	the	$Exxx	ROM	does	not	make	sense,	as	the	Commodore	original	
EDIT	ROM	has	been	replaced	by	the	PETTEST	diagnostic	firmware!	
	
There	is	a	single	line	of	text	displayed	on	the	VDU	as	follows:	
	
	 rom b=xxxx c=xxxx d=xxxx f=xxxx
	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	10	of	16	

Where	 ‘xxxx’	 is	 replaced	 by	 the	 computed	 checksum.	 The	 4-character	
hexadecimal	16-bit	checksum	will	depend	upon	the	particular	version	of	BASIC	
(ROM	set)	installed	within	the	PET.	
	
Known	variants	are:	
	

BASIC	
version	

Computed	16-bit	checksum	
ROM	
$Bxxx	

ROM	
$Cxxx	

ROM	
$Dxxx	

ROM	
$Fxxx	

1	[note	1]	 7800 ccc9 5045 0cd4
2	 7800 3838 506a 7c98
4	 4168 5960 a425 cf19

Table	1	-	ROM	Checksums.	

[Note	 1]:	 It	 is	 just	 possible	 that	 the	 $Cxxx	 ROM	 checksum	 identified	 here	 is	
incorrect	for	BASIC	1.	I	believe	there	was	a	fault	within	the	code	associated	with	
the	 IEEE488	 interface	 of	 BASIC	 1	 and	 a	 ‘patch’	 was	 issued.	 I	 see	 that	 VICE	
automatically	 applies	 the	 patch	 if	 it	 finds	 a	 copy	 of	 BASIC	 1.	 If	 you	 have	 an	
unmodified	 version	 of	 BASIC	 1,	 you	 may	 find	 that	 the	 $Cxxx	 ROM	 checksum	
differs	from	the	one	identified	(ccc9).	It	may	end	in	$xx5d.	
	
The	next	integrated	test	to	run	concurrently	with	the	ROM	checksums	is	a	test	of	
the	keyboard	key	matrix	and	associated	circuitry.	The	key	matrix	is	scanned	and	
the	results	displayed	on	a	single	line	of	text	on	the	VDU	as	follows:	
	

kbd 00 00 00 00 00 00 00 00 00 00
	
Without	 any	 keys	 depressed,	 the	 results	 should	 be	 all	 zeros.	 Any	 other	 value	
signifies	a	‘stuck’	or	‘shorted’	key	or	a	fault	with	the	scanning	circuitry.	
	
As	each	key	on	the	keyboard	is	alternately	pressed	and	released,	you	should	see	
a	single	bit	flip	from	‘0’	to	 ‘1’.	The	results	are	indicated	in	hexadecimal,	so	each	
digit	could	indicate	‘0’,	‘1’,	‘2’,	‘4’	or	‘8’	depending	upon	which	bit	(if	any)	is	set…	
	
Each	key	on	the	keyboard	should	result	 in	one	bit	(and	one	bit	only)	becoming	
set.	When	the	key	is	released,	all	of	the	bits	should	be	cleared	once	again.	
	
Unfortunately,	Commodore	(in	their	infinite	wisdom)	decided	to	change	the	key	
matrix	layout,	not	only	based	on	the	‘type’	of	keyboard	(e.g.	chicklet,	business	or	
graphics)	but	also	depending	upon	which	country	the	PET	was	designed	for.	All	
of	the	‘magic’	for	the	key	matrix	arrangement	took	place	within	the	firmware	of	
the	 EDIT	 ROM	 (which	 was	 unique	 to	 the	 keyboard	 type	 and	 country).	 Hence,	
there	is	no	 ‘simple’	way	of	easily	mapping	a	generic	keyboard	to	the	associated	
key	matrix	displayed.	
	
You	 will	 find	 some	 of	 the	 PET	 keyboard	 matrices	 described	 on	 the	 website	
http://www.6502.org/users/andre/petindex/keyboards.html.	
	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	11	of	16	

If	you	look	at	this	website,	you	will	notice	that	for	each	different	keyboard	layout	
there	are	exactly	ten	‘rows’	(numbered	0	to	9)	and			eight	‘columns’	(numbered	7	
to	 0).	 On	 my	 diagnostic	 screen	 display	 there	 are	 ten	 2-digit	 hexadecimal	
numbers.	Each	of	 the	 ten	separate	bytes	on	 the	VDU	display	map	directly	onto	
the	‘rows’	of	the	keyboard	matrix	whilst	the	8	bits	of	the	displayed	hexadecimal	
byte	map	directly	onto	the	‘columns’	of	the	keyboard	matrix.	Given	this	detail,	it	
should	 be	 possible	 to	 deduce	 which	 row	 and	 column	 correspond	 to	 each	
keyboard	 key	 –	 and	 which	 of	 the	 10	 numbers	 and	 bit	 of	 my	 display	 should	
correspond.	However,	 it	 is	 simpler	 just	 to	press	each	key	on	 the	keyboard	and	
ensure	that	you	can	see	a	single	bit	change…	
	
The	 last	 line	of	the	display	consists	of	a	counter	counting	down	in	hexadecimal	
from	 $FF	 to	 $00.	 The	 diagnostic	 firmware	 continuously	 calculates	 the	 ROM	
checksums	 and	 displays	 the	 key	 matrix	 whilst	 the	 counter	 is	 counting	 down.	
Once	 the	 counter	 reaches	 $00	 the	 test	 finishes	 and	 the	 full	 memory	 test	
automatically	starts.	
	
ROMs	that	occasionally	misread	can	result	in	the	checksum	display	changing	as	
the	test	proceeds.	Look	for	signs	of	the	checksums	changing.	
	
Technically,	this	test	has	no	PASS/FAIL	criteria.	It	is	up	to	the	user	to	interpret	
the	results	appropriately.		

	
Figure	7	–	The	display	for	the	ROM/KBD	test	(80-columns).	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	12	of	16	

	

	
Figure	8	–	The	display	for	the	ROM/KBD	test	(40-columns).	

	
MEMORY	TEST	
	
Assuming	 all	 the	 above	 tests	 worked	 OK,	 the	 firmware	 then	 attempts	 a	
comprehensive	 test	 of	 the	 Dynamic	 RAM	 (DRAM)	 within	 the	 machine.	 The	
firmware	has	already	tested	out	pages	0	and	1	of	the	DRAM	(addresses	$0000	to	
$01FF	 inclusively)	 –	 albeit	 in	 a	 relatively	 simple	 manner	 –	 but	 will	 now	 test	
memory	from	$0200	upwards	fairly	exhaustively.	
	
Note	 that	 in	 order	 to	 address	 memory	 using	 16-bit	 pointers,	 some	 memory	
locations	within	page	0	($0000	to	$00FF)	have	to	be	used	as	an	indirect	pointer.	
In	 addition,	 to	 make	 the	 memory	 test	 code	 easier	 to	 write,	 subroutines	 are	
utilised.	 The	 stack	 is	 stored	 in	 page	 1	 ($0100	 to	 $01FF).	 As	 a	 result	 of	 the	
previous	 simple	 memory	 tests	 on	 pages	 0	 and	 1,	 it	 is	 just	 possible	 that	 the	
memory	test	will	 ‘crash’	during	operation.	This	would	be	a	 ‘revealed	failure’,	as	
the	memory	 test	program	outputs	status	 information	 to	 the	screen	as	 the	 tests	
proceed	 –	 and	 everything	will	 appear	 to	 ‘freeze’	 if	 the	 CPU	 crashes.	 On	 a	 32K	
8032,	each	individual	test	or	sub-test	should	take	no	longer	than	30	seconds;	so	
no	 activity	 for	 a	 period	 of	 1	 minute	 would	 indicate	 that	 the	 CPU	 has	 crashed	
(most	likely	due	to	a	memory	fault	in	either	pages	0	or	1	(i.e.	the	lower	bank	of	
memory	fitted	to	the	PET).		
	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	13	of	16	

The	first	thing	the	memory	test	program	does	is	to	test	how	much	memory	is	in	
the	machine.	It	does	this	in	a	very,	very	simple	way	by	testing	one	memory	byte	
at	 the	 4K	 ($0FFF),	 8K	 ($1FFF),	 16K	 ($3FFF)	 and	 32K	 ($7FFF)	 memory	
boundaries	and	displays	 the	 result	at	 the	 top	of	 the	memory	 test	 screen	at	 the	
conclusion:	
	

	
Figure	9	-	Starting	the	DRAM	Memory	test.	

	
The	firmware	uses	the	test	values	of	$55	and	$AA	to	ascertain	if	RAM	memory	is	
present	or	not.	
	
Commodore	 use	 1	 bank	 of	 4K	DRAM	 chips	 in	 a	 4K	 PET;	 2	 banks	 of	 4K	DRAM	
chips	in	an	8K	PET;	1	bank	of	16K	DRAM	chips	in	a	16K	PET	and	2	banks	of	16K	
DRAM	chips	in	a	32K	PET.	Look	at	what	DRAM	devices	are	fitted	to	the	PET	and	
how	 many	 banks	 are	 physically	 fitted	 to	 understand	 what	 the	 maximum	
complement	of	memory	should	be.	
	
If	the	indicated	amount	of	memory	is	not	correct,	take	this	as	a	test	failure!	
	
The	 next	 thing	 the	 firmware	 does	 is	 to	 perform	 the	memory	 tests	 themselves.	
The	tests	range	from	relatively	simple	to	fairly	complex	–	with	a	corresponding	
increase	 in	 the	 time	 taken	 to	 execute	 each	 test.	 Obviously,	 the	 larger	 the	 PET	
memory	is	to	test,	and	the	more	complex	each	test	is	to	perform,	this	can	lead	to	
a	significant	time	taken	to	execute	the	tests	themselves.	
	
As	can	be	seen	in	the	image	above,	the	tests	to	be	undertaken	in	one	pass	of	the	
memory	are	 indicated	by	a	number	and	a	series	of	dots.	The	number	 indicates	
the	test	that	is	currently	being	performed,	whilst	the	dots	indicate	the	tests	yet	to	
be	performed.	The	last	test	has	sub-tests.	I	will	explain	this	indication	later.	
	
Note	that	the	memory	is	treated	as	a	series	of	bits	not	bytes.	Obviously,	the	bits	
are	packed	as	8	bits	to	the	byte.	There	is	nothing	‘magic’	about	this;	it	is	just	how	
the	memory	tests	work.	
	
Test	0	(0..........)	
	
This	 test	 first	 fills	 all	 of	 the	 memory	 bits	 with	 a	 ‘0’	 and	 then	 tests	 all	 of	 the	
memory	bits	for	the	presence	of	a	‘0’.	This	test	will	detect	any	memory	bit	stuck	
at	‘1’.	
	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	14	of	16	

Test	1	(01.........)	
	
This	 test	 first	 fills	 all	 of	 the	 memory	 bits	 with	 a	 ‘1’	 and	 then	 tests	 all	 of	 the	
memory	bits	for	the	presence	of	a	‘1’.	This	test	will	detect	any	memory	bit	stuck	
at	‘0’.	
	
Test	2	(012........)	
	
This	test	first	fills	all	of	the	memory	bits	with	an	alternating	pattern	of	‘0’	and	‘1’	
bits	 and	 then	 tests	 all	 of	 the	 memory	 bits	 for	 the	 presence	 of	 the	 alternating	
pattern	of	‘0’	and	‘1’	bits.		
	
Test	3	(0123.......)	
	
This	test	implements	a	memory	test	known	as	MARCH-C.	It	consists	of	seven	(7)	
sub-tests	 numbered	 0	 through	 6.	 These	 sub-tests	 are	 indicated	 by	 turning	 the	
dots	from	0	through	6	in	sequence.	
	
I	am	not	going	to	bore	you	with	the	details	of	the	MARCH-C	algorithm,	but	this	
can	be	looked	up	on-line	if	you	wish.	Note	that	there	are	a	number	of	‘flavours’	of	
the	MARCH-C	algorithm.	
	
For	further	reference	see	the	papers	at:	
	
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.461.3754&rep=rep1
&type=pdf	
	
http://www.ee.ncu.edu.tw/~jfli/test1/lecture/ch07	
	
The	question	you	are	thinking	is	“what	does	a	memory	test	PASS	and	FAIL	look	
like”	isn’t	it!	
	
Let’s	look	at	the	display	for	a	memory	test	PASS:	
	

	
Figure	10	–	The	first	good	memory	pass.	

	
A	count	of	the	total	number	of	successful	passes	is	displayed.	Note	that	this	is	a	
24-bit	(3	byte)	count	–	but	in	hexadecimal	not	decimal	(sorry,	I	was	feeling	lazy).	
The	memory	tests	will	keep	cycling	round	and	round	forever…	My	suggestion	is	
to	leave	the	test	running	for	a	significant	period	of	time	(otherwise	intermittent	
faults	may	be	missed).	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	15	of	16	

	
What	about	a	test	FAIL:	
	

	
Figure	11	-	A	DRAM	Failure	report.	

	
This	 is	 not	 a	 real	 failure	 (I	 bodged	 it	 for	 documentation	 purposes)	 but	 the	
principle	of	the	error	message	diagnosis	is	the	same!	
	
After	detecting	a	single	memory	failure,	the	memory	testing	stops.	The	message	
consists	of	the	following	parts:	
	

• 3	–	This	is	the	test	number	that	failed.	You	can	safely	ignore	this.	
• 1	–	This	is	the	sub-test	number	that	failed.	You	can	safely	ignore	this.	
• 1234	–	This	is	the	hexadecimal	address	of	the	memory	byte	that	failed	the	

test.	
• 02	–	This	 is	 the	hexadecimal	value	of	 a	bitmask.	One	 (and	only	one)	bit	

should	be	 set	 in	 this	bitmask	 indicating	 the	bit	within	 the	memory	byte	
that	failed.	

• eb	–	This	is	the	memory	byte	value	(in	hexadecimal)	that	was	read	from	
the	memory	address	that	failed.	

	
How	do	we	use	these	codes	to	identify	the	potentially	faulty	memory	device?	
	
My	 example	 will	 be	 for	 a	 ‘bog-standard’	 32K	 8032	 PET.	 See	 the	 example	
schematic	at:	
	
http://www.zimmers.net/anonftp/pub/cbm/schematics/computers/pet/8032/
8032029-05.gif	
	
From	 the	 schematics	 for	 the	 8032	 PET;	 DRAM	 devices	 UA5,	 UA7,	 UA9,	 UA11,	
UA13,	UA15,	UA17	and	UA19	form	the	first	16K	memory	bank	(addresses	$0000	
to	 $3FFF)	whilst	DRAM	devices	UA4,	UA6,	UA8,	UA10,	UA12,	UA14,	UA16	 and	
UA18	form	the	second	16K	memory	bank	(addresses	$4000	to	$7FFF).		
	
You	 can	 differentiate	 the	 two	 banks	 from	 each	 other	 by	 the	 fact	 that	 the	 first	
(lower)	bank	has	a	signal	/CAS0	wired	to	the	DRAM	devices,	whilst	 the	second	
(higher)	bank	has	a	signal	/CAS1	wired	to	the	DRAM	devices.	
	

Copyright	©	2020	David	E.	Roberts.	 	 Revision	0	-	Monday	13th	April	2020	

	 Page	16	of	16	

You	 should	 also	 notice	 which	 of	 the	 DRAM	 devices	 are	 wired	 to	 the	 data	 bus	
lines.	One	DRAM	device	from	each	bank	is	wired	to	each	CPU	data	line:	
	
In	tabular	form:	
	
	 D7	 D6	 D5	 D4	 D3	 D2	 D1	 D0	
UPPER	 UA4	 UA6	 UA8	 UA10	 UA12	 UA14	 UA16	 UA18	
LOWER	 UA5	 UA7	 UA9	 UA11	 UA13	 UA15	 UA17	 UA19	
Table	2	-	DRAM	Allocation	for	a	‘standard’	8032	PET.	

So,	from	our	example	above:	
	

• The	faulting	address	is	$1234.	
• The	faulting	bitmask	is	$02.	
• The	faulting	data	byte	is	$eb.	

	
The	faulting	address	of	$1234	tells	us	that	the	fault	is	in	the	first	(lower)	bank	of	
16K	memory	(as	this	covers	the	address	range	from	$0000	to	$3FFF).	
	
The	 faulting	bitmask	 is	$02	which	 (in	binary)	 is	0000_0010	 indicating	 that	 the	
faulting	bit	is	D1	(the	leftmost	bit	being	D7	and	the	rightmost	bit	being	D0).	
	
The	potentially	 faulty	DRAM	 IC	 is	 therefore	UA17	 (from	 the	above	 table	at	 the	
intersection	between	‘LOWER’	and	‘D1’).	Simples	☺!	
	
You	can	create	the	table	above	for	any	PET	from	the	appropriate	schematic.	
	
However,	 I	wouldn’t	 immediately	 change	 this	 device…	 I	would	RESET	 the	PET	
and	 perform	 a	 number	 of	 memory	 tests	 to	 further	 confirm	 whether	 it	 is	 one	
specific	 DRAM	 device	 or	 potentially	 spread	 across	 more	 devices	 –	 either	
indicating	multiple	DRAM	device	failures	OR	the	data	bus	buffers	etc.	
	
We	haven’t	used	 the	 faulting	data	byte	 ($eb)	yet	 though?	Technically,	we	don’t	
need	to!	You	would,	however,	use	it	as	follows:	
	
The	faulting	data	byte	is	$eb	which	(in	binary)	is	1110_1011.	
	
The	faulting	bitmask	(in	binary)	was	0000_0010.	
	
Extracting	the	indicated	bit	from	the	byte	value	(1110_1011)	gives	us	a	value	of	
‘1’.	We	know	this	is	wrong	(as	the	test	failed)	so	the	bit	value	should	have	been	
a	‘0’	for	the	test	to	pass	(the	opposite	of	what	was	actually	found).	
	
I	hope	you	find	this	test	utility	useful.	Enjoy	☺!	
	
END	
	
	

