
MARS - a candidate cipher for AES

Carolynn Burwick Don Coppersmith Edward D’Avignon
Rosario Gennaro Shai Halevi Charanjit Jutla

Stephen M. Matyas Jr. Luke O’Connor Mohammad Peyravian
David Safford Nevenko Zunic

IBM Corporation

July, 17 1998

Abstract

We describe MARS, a shared-key (symmetric) block cipher supporting 128-bit blocks and
variable key size. MARS is designed to take advantage of the powerful operations supported in
today’s computers, resulting in a much improved security/performance tradeoff over existing
ciphers. As a result, MARS offers better security than triple DES while running significantly
faster than single DES. The current C implementation runs at rates of about 65 Mbit/sec. on
a 200 MHz Pentium-Pro, and 85 Mbit/sec. on a 200 MHz PowerPC. In hardware, MARS
can achieve a10� speedup factor. Still, both hardware and software implementations of
MARS are remarkably compact, and easily fit on a smartcard and in other limited-resource
environments. The combination of high security, high speed, and flexibility, makes MARS an
excellent choice for the encryption needs of the information world well into the next century.

MARS IBM submission to AES 1

Contents

1 Introduction 4

1.1 The MARS cipher . 4

1.2 Rationale and design choices . 4

1.2.1 Choice of operations . 6

1.2.2 Using a mixed structure . 8

1.3 Organization . 8

2 Algorithm Specifications (2.B.1) 8

2.1 High level structure . 9

2.2 Phase one: forward mixing . 10

2.3 Main keyed transformation . 10

2.4 Phase three: backwards mixing . 14

2.5 Pseudo-code . 16

2.6 Decryption . 18

2.7 S-box design . 18

2.8 Key expansion . 19

3 Computational Efficiency (2.B.2) 23

3.1 Software implementation . 23

3.1.1 C implementation . 23

3.1.2 Java implementation . 24

3.1.3 Memory requirements . 25

3.2 Implementation on 8-bit processors . 25

3.3 Hardware implementation . 26

3.4 Other implementations . 27

4 Analysis and Expected Strength (2.B.4–2.B.5) 28

4.1 Linear analysis . 29

4.1.1 Linear approximation of the basic operations 30

4.1.2 Linear approximations of the E-function 33

4.1.3 Linear approximations of the keyed transformation 36

4.2 Differential analysis . 39

4.2.1 Analysis of the data-key multiplication 39

MARS IBM submission to AES 2

4.2.2 Analysis of the E-function . 43

4.2.3 Analysis of the keyed transformation phase 45

4.2.4 Analysis of the mixing phases . 51

4.3 Other issues . 55

5 Extensions (2.B.6) 56

5.1 Increasing the block length . 56

5.2 Modes of operation . 57

A S-box 60

B Pseudo-code for decryption 62

MARS IBM submission to AES 3

List of Figures

1 High-level structure of the cipher . 9

2 Structure of the forward mixing phase . 11

3 The type-3 Feistel network of the main keyed transformation. 12

4 The E-function of the main keyed transformation 12

5 Structure of the backwards mixing phase . 15

6 The key expansion procedure . 20

7 Labeling of the lines in the E-function. 33

8 Labeling of the lines in the keyed transformation:� denotes exclusive-or and+
denotes addition. 37

9 Another labeling of the lines in the E-function . 43

10 First attempt to devise a characteristic of the keyed transformation. 46

11 Second attempt to devise a characteristic of the keyed transformation. 47

12 Third attempt to devise a characteristic of the keyed transformation. 48

13 An attack on the mixing phase without the feedback additions. 52

14 An attack on the mixing phase with a weak S-box. 54

List of Tables

1 Timing measurements for the C implementation of MARS (mbps stands for Mbit/sec). 23

2 Encryption speed of several ciphers using two different compilers. 24

3 Timing measurements for the Java implementation of MARS. 25

4 Estimated speed of MARS on an 8-bit processor 26

5 Local approximations of the operations in the E-function. 34

6 Global approximations of the E-function. 34

7 Bias of approximations for the E-function . 36

8 The differential behavior of the E-function . 45

MARS IBM submission to AES 4

1 Introduction

Shared-key (symmetric) encryption is perhaps the most fundamental cryptographic task. It is used
in a large variety of applications, including protection of the secrecy of login passwords, ATM
PINS, e-mail messages, video transmissions (such as pay-per-view movies), stored data files, and
Internet-distributed digital content. It is also used to protect the integrity of banking and point-of-
sale transactions, in key distribution protocols (such as Kerberos), and many other applications.

The current standard for shared-key encryption is the DES cipher, which was developed by IBM in
the early 70’s [4]. Although DES has provided a secure encryption algorithm for the past 25 years,
its block-length and key-length limitations – combined with the advances in computing technology
– necessitate the design of a new cipher for use in the next 25 years. In this document we describe
a design for a new cipher, MARS, which is well suited for this job.

1.1 The MARS cipher

MARS is a shared-key block cipher, with a block size of 128 bits and a variable key size, ranging
from 128 to 1248 bits.1 It was designed to meet and exceed the requirements for a standard for
shared-key encryption in the next few decades. The main theme behind the design of MARS is to
get the best security/performance tradeoff by utilizing the strongest tools and techniques available
today for designing block ciphers. As a result, MARS provides a very high level of security,
combined with much better performance than other existing ciphers.

We estimate that MARS offers better security than triple-DES. In particular, we estimate that all
the known cryptanalytical attacks (including linear and differential cryptanalysis) require more
data than is available (2128), and hence these attacks are impossible against MARS. Also, the
design principles of MARS make it likely that MARS would remain resilient even in the face of
new cryptanalytical techniques.

As for efficiency, we estimate that a fully optimized software implementation of MARS can be
made to run at rates exceeding 100 Mbit/sec. on the high-end computers available today. We
currently have a C implementation which runs at 65 Mbit/sec. on a 200 MHz Pentium-Pro and
85 Mbit/sec. on a 200 MHz PowerPC, and dedicated hardware can achieve an additional10�
speedup factor.

1.2 Rationale and design choices

Below, we explain the rationale behind the design of MARS and discuss various choices made in
this design. Throughout the design process we capitalized on the following principles:

Choice of operations.MARS is designed to be used in the computer environments of today and
tomorrow. We thus use the full menu of “strong operations” supported in modern computers
to achieve better security properties. This approach enables us to get a much better security-

1The main objective in allowing key-lengths beyond 256 bits is convenience (rather than security). For example, a
key which is derived from a Diffie-Hellman exchange is usually much longer than 256 bits.

MARS IBM submission to AES 5

per-instruction ratio for our software implementation of MARS than is possible for existing
ciphers.

In particular, the design of MARS takes full advantage of the ability of today’s computers to
perform fast multiplications and data-dependent rotations. We discuss these operations (and
their combination) in more detail in Subsection 1.2.1.

The cipher’s structure.Two decades of experience in cryptanalysis has taught us that different
parts in a cipher play very different roles in assuring the security of the cipher. In particular,
it appears that the top and bottom rounds in the cipher usually have a different role than the
middle rounds in protecting against cryptanalytical attacks.

We therefore designed MARS using a mixed structure, where the top and bottom rounds are
designed differently than the middle ones. More on that in Subsection 1.2.2.

Analysis. An important aspect of MARS is that its components are designed to permit extensive
analysis. In every step of the design, we refrained from using operations and structures which
seemed “too hard to analyze”. Instead, we insisted on providing an analysis for every aspect
of the cipher, and we used this analysis to guide us through many of the design choices.

Some choices that we made in the design of MARS include:

Working with 32 bit words.Since most computers today (and in the near future) use word-size of
32 bits, all the operations in MARS are applied to 32-bit words. At the current state of the
technology, this choice provides a good tradeoff between the ability to run the algorithm on
computers which are available today (as well as on legacy systems and even 8-bit proces-
sors), and the ability to take advantage of larger word-size in future architectures.

Type-3 Feistel network.Since MARS has a block length of 128 bits and word-size of 32 bits, it
follows that each block consists of four words. Among the various network-structures which
are capable of handling four words in a block, it seems that a type-3 Feistel network provides
the best tradeoff between speed, strength and suitability for analysis.

A type-3 Feistel network consists of many rounds, where in each round one data word (and a
few key words) are used to modify all the other data words. Compared with a type-1 Feistel
network (where in each round one data word is used to modify one other data word), this
construct provides much better diffusion properties with only a slightly added cost. Hence,
fewer rounds can be used to achieve the same strength.

Additionally, a type-3 Feistel network has advantages over structures in which several data
words are used “at once” to modify other data words, in that these structures are typically
much harder to analyze (and hence, much more prone to design errors). The reason is that
in such structures the analysis must take into account all the possible combinations of values
for the input data words, which quickly leads to unmanageable complexity.

Symmetry of encryption and decryption.We designed MARS to be as secure against chosen ci-
phertext attacks as against chosen plaintext attacks. This dictates making the cipher very
symmetric, so the last half of the rounds are almost a “mirror image” of the first half.

MARS IBM submission to AES 6

1.2.1 Choice of operations

As we explained above, the MARS cipher uses a variety of operations (on 32-bit words). Specif-
ically, it combines exclusive-ors (xors), additions, subtractions, table look-ups, multiplications,
and both fixed and data-dependent rotations. We discuss these operations and their use in MARS
below.

Additions, subtractions and xors.These are the simplest operations, which are used to “mix to-
gether” data values (and key values). These operations are very fast in either software or
hardware, and typically are not meant to provide much “cryptographic strength”. Through-
out the cipher we interleave xors with additions and subtractions to ensure that the operations
in the cipher do not commute with each other.

Table look-up.Table look-up operations provide the basis for the security of DES, as well as of
many other ciphers (e.g. [1]). MARS uses a single table of 512 32-bit words, calledthe
S-box. Sometimes the S-box is viewed as two tables, each of 256 entries.

In principle, a carefully chosen S-box can provide good resistance against linear and differ-
ential attacks, as well as good avalanche of data and key bits. A drawback of using S-box
lookups, however, is that it is relatively slow for software implementations. In a word-
oriented cipher like MARS, a typical S-box lookup operation takes three instructions (one to
copy the source word into an index register, one to mask out the high order bits of the index,
and one to access the table itself). Also, a large S-box may take up a considerable amount of
space in hardware implementations.

Another problem is that the index into the table consists of just a few bits (otherwise the
table would be too large). Hence, in order to use all the bits of a data word, one needs to do
several S-box lookups, which slows the cipher even further.

Therefore, S-box lookups are used in MARS only in places where fast avalanche of the key
bits is needed, or in places where it suffices to use only a few bits of the data word (since
other bits are “already taken care of” by other means).

Fixed rotations.Rotations by fixed amounts are mainly used in conjunction with the software
implementation to get the data bits to places where we can use them (e.g., in order to use the
high order bits of a data word as an index to the S-box).

Data-dependent rotations.Data-dependent rotations were first used for encryption in a cipher de-
veloped by Becker in IBM in the late 1970’s [2] (and later were used by Madryiga [8] in his
cipher). This operation gained recognition in recent years after it was used by Rivest as the
main building block for the RC5 cipher [12].

Data dependent rotations can be performed quickly in software and hardware. Combined
with arithmetic operations (such as addition), this operation is very effective against linear
cryptanalysis. Also, when carefully used in a cipher it can be made effective against differ-
ential cryptanalysis.

One problem with data-dependent rotations is that specifying a rotation amount for aw-bit
word only takeslogw bits. Hence, while the result of this operation depends on all the bits

MARS IBM submission to AES 7

in one operand, it only depends on very few bits in the other. This may lead to differential
weaknesses, as was recently demonstrated by Biryukov and Kushilevitz [5].

In MARS we make extensive use of data-dependent rotations, but we solve the problem
mentioned above by combining these operations with multiplications, as described next.

Multiplications. Multiplications were used for encryption in the IDEA cipher and its variants [7].
However, until recently multiplications were considered prohibitively expensive for fast en-
cryption. This was true since old machines took many cycles to perform a single multipli-
cation operation.2 Today, this is no longer the case, as essentially all modern architectures
(including PowerPC, Pentium-Pro, Alpha, Ultra-SPARC, and others) support a multiply in-
struction which takes about two cycles to complete.3

Another reason that multiplications were considered so expensive is that IDEA and its vari-
ants insisted on performing multiplications in the field of integers modulo216 + 1. Hence,
each multiplication operation had to be coded in software as a sequence of operations, in-
cluding a “native multiplication” modulo216 and a few additional operations.

In MARS, we use “native multiplications” modulo232, in conjunction with data-dependent
rotations, to obtain very high security. The main cryptographic strength of multiplication
modulo232 is in the high-order bits of the product, as each of these bits depends on almost
all the bits in the operands in a non-linear fashion. Also, these bits have excellent differential
properties. Therefore, in MARS we use the high order bits of the product to specify the
rotation amounts in the data-dependent rotation operations. This novel combination is what
gives MARS its good resistance to differential cryptanalysis.

It should be noted that multiplication is still a rather expensive operation: even on modern
processors it takes about twice the time of other operations, and in hardware it is even more
costly. Hence we use this operation in moderation: in the entire cipher we only perform 16
multiplications (compared to 32 multiplications in IDEA). As a result, we estimate that the
multiplications only take about30% of the time and less than20% of the area in a typical
hardware implementation of MARS, and they take less than10% of the time in our software
implementation.

A final point about the usage of multiplications in MARS has to do with our ability to analyze
them: Analyzing a multiplication of two data words turns out to be a very hard task. As a
result, in MARS we only multiply data words by key words. In addition, in the key expansion
process we check the key words used for multiplication to avoid some “obviously weak”
words (such as1;�1, or even integers). Restricting ourselves to data-key multiplications
enables us to provide a substantial analysis for this operation, which we use to analyze the
security of the cipher.

2Multiplication took at least 50 cycles in the original SPARC architecture, about 40 in the Intel 486, and about 10
in the Intel Pentium.

3On some architectures, the multiplication instruction takes longer by itself, but it can be pipelined with other
instructions, resulting in an effective time of two cycles per operation.

MARS IBM submission to AES 8

1.2.2 Using a mixed structure

Many cryptanalytical techniques (including linear and differential cryptanalysis) treat the top and
bottom rounds of the cipher differently than the middle rounds. Typically, these techniques begin
by guessing several key bits, hence “stripping out” some of the top/bottom rounds of the cipher,
and then mounting the cryptanalytical attack against the remaining rounds. This suggests that the
top and bottom rounds of the cipher play a different role than the middle rounds in protecting
against cryptanalytical attacks. Specifically, for these rounds we care more about fast avalanche
of the key bits (which is a combinatorial property) than about resistance to cryptanalysis. The-
oretical evidence for the different role played by the top and bottom rounds can be found in the
Naor-Reingold constructions [11], in which a “cryptographic core” is wrapped with some non-
cryptographic mixing.

Therefore, in the design of MARS the middle rounds are viewed as the “cryptographic core” and
are designed differently than the top and bottom rounds, which are viewed as “wrapper layers”.
Specifically, the wrapper layers consist of first adding in key words, and then performing several
rounds of (unkeyed) S-box based mixing, providing rapid avalanche of key bits. The core layer
consists of several rounds of keyed transformation which involves a combination of S-box lookups,
multiplications and data-dependent rotations to get good resistance to cryptanalytical attacks.

Another advantage of this mixed structure is that it is likely to provide better resistance against
new (yet undiscovered) cryptanalytical techniques. Namely, a cipher consisting of two radically
different structures is more likely to be resilient to new attacks than a homogeneous cipher, since in
order to take advantage of a weakness in one structure one has to propagate this weakness through
the other structure. Viewed in this light, the mixed structure can be thought of as an “insurance
policy” to protect the cipher against future advances in cryptanalytical techniques.

1.3 Organization

The rest of the document is organized as follows: In Section 2, we describe the cipher using text,
figures and pseudo-code. This section covers the requirements in Section 2.B.1 in the checklist
(Items 21 through 25). Section 3 describes the computational efficiency of the cipher, and describe
speed measurements and speed estimates for various implementations. This section covers the
requirements in Section 2.B.2 in the checklist (Items 26 through 47). Section 4 contains a statement
of the expected strength and analysis of the algorithm, to meet the requirements in Sections 2.B.4
and 2.B.5 in the checklist (Items 174 through 188). Finally, in Section 5 we discuss some other
issues related to the cipher, such as its usage in standard modes and possible extensions. This
section covers the requirements in Items 191 and 193 in Section 2.B.6 of the checklist.

2 Algorithm Specifications (2.B.1)

MARS takes as input (and produces as output) four 32-bit data words. The cipher itself is word-
oriented, in that all the internal operations are performed on 32-bit words, and hence the internal
structure is endian-neutral (i.e., the same code works on both little-endian and big-endian ma-

MARS IBM submission to AES 9

 core"

+ + + +

- - - -

"cryptographic

D’[0]

key addition

key subtraction

unkeyed forward mixing

unkeyed backwards mixing

backwards transformation

forward transformation

forward mixing

backwards mixing

eight rounds of

eight rounds of keyed

eight rounds of keyed

eight rounds of

D[2]D[3] D[1] D[0]

D’[3]ciphertext:

plaintext:

D’[2] D’[1]

Figure 1: High-level structure of the cipher

chines). When the input (or output) of the cipher is a byte stream, we uselittle endianbyte ordering
to interpret each four bytes as one 32-bit word.

2.1 High level structure

The general structure of the cipher is depicted in Figure 1. The cipher consists of a “cryptographic
core” of keyed transformation, which is wrapped with two layers providing rapid key avalanche.

� The first phase provides rapid mixing and key avalanche, to frustrate chosen-plaintext at-
tacks, and to make it harder to “strip out” rounds of the cryptographic core in linear and
differential attacks. It consists of addition of key words to the data words, followed by eight
rounds of S-box based, unkeyed type-3 Feistel mixing (in “forward mode”).

� The second phase is the “cryptographic core” of the cipher, consisting of sixteen rounds of
keyed type-3 Feistel transformation. To ensure that encryption and decryption have the same
strength, we perform the first eight rounds in “forward mode” while the last eight rounds are
performed in “backwards mode”.

� The last phase again provides rapid mixing and key avalanche, this time to protect against
chosen-ciphertext attacks. This phase is essentially the inverse of the first phase, consisting
of eight rounds of the same type-3 Feistel mixing as in the first phase (except in “backwards
mode”), followed by subtraction of key words from the data words.

MARS IBM submission to AES 10

Below we describe the cipher in details. In this description we use the following notations:

D[] is an array of 4 32-bit data words. InitiallyD contains the plaintext words, and at the end of
the encryption process it contains the ciphertext words.

K[] is the expanded key array, consisting of 40 32-bit words.

S[] is an S-box, consisting of 512 32-bit words. Below we also denote the first 256 entries inS
by S0 and the last 256 entries byS1.

All the arrays below are 0-based (which means, for example, that the four words inD[] are indexed
D[0] throughD[3]).

2.2 Phase one: forward mixing

In this phase we first add a key word to each data word, and then perform eight rounds of unkeyed
type-3 Feistel mixing, combined with some additional mixing operations. In each round we use
one data word (called the source word) to modify the other three data words (called the target
words). We view the four bytes of the source word as indices into two S-boxes,S0 andS1, each
consisting of 256 32-bit words, and xor or add the corresponding S-box entries into the other three
data words.

If we denote the four bytes of the source words byb0; b1; b2; b3 (whereb0 is the lowest byte and
b3 is the highest byte), then we useb0; b2 as indices into the S-boxS0 andb1; b3 as indices into
the S-boxS1. We first xorS0[b0] into the first target word, and then addS1[b1] to the same word.
We also addS0[b2] to the second target word and xorS1[b3] to the third target word. Finally, we
rotate the source word by 24 positions to the right.

For the next round we rotate the four words, so that the current first target word becomes the next
source word, the current second target word becomes the next first target word, the current third
target word becomes the next second target word, and the current source word become the next
third target word.

In addition, after each of four specific rounds we add one of the target words back into the source
word. Specifically, after the first and fifth rounds we add the third target word back into the source
word, and after the second and sixth round we add the first target word back into the source word.
The reasons for these extra mixing operations are to eliminate some easy differential attacks against
the mixing phase (see Subsection 4.2.4), to break the symmetry in the mixing phase and to get
faster avalanche. The forward mixing phase is depicted in Figure 2.

2.3 Main keyed transformation

The “cryptographic core” of the MARS cipher is a type-3 Feistel network, consisting of sixteen
rounds. In each round we use a keyedE-function (E for expansion) which is based on a novel
combination of multiplication, data-dependent rotations, and an S-box lookup. This function takes

MARS IBM submission to AES 11

S0 S1 8 x 32 S-boxes

+

+

+

+
+

++++

D[1]D[3] D[2] D[0]

+

+

+

+
+

+

+

+

+
+

+

+
+

+

+

twice

right-rotation by 88>>>

8>>>

8>>>

8>>>

exclusive-or

addition

8>>>

8>>>

8>>>

8>>>

8>>>

8>>>

8>>>

8>>>

8>>>

S0
S1

S1
S0

S0
S1
S0

S1

S0
S1

S0
S1

S0
S1
S0
S1

K[0]K[1]K[2]K[3]

Figure 2: Structure of the forward mixing phase

MARS IBM submission to AES 12

E+

+

+

+

+

+

+

+

+

+

+

+

+

+

out1

D[0]

D[2]

D[1]

D[3]

D[0]

D[2]

D[1]

D[3]

Backwards mode

Forward mode

exclusive-or

addition left-rotation by 13

32 x 96 expansion function

13<<<

13<<< 13<<<

13<<<

E

E E

E

out1

out2

out3

13<<<

out3

out2

out1 out1

out2

out3

out3

out2

Figure 3: The type-3 Feistel network of the main keyed transformation.

+ exclusive-or

* multiplication

n<<< left-rotation by n

S 9 x 32 S-box

+ addition

L

k’ (odd)

5<<<

<<<S

13<<<

in <<<

k

data-dependent rotation<<<

5<<<

out1

out2

out3

M

R

+

*

+ +

Figure 4: The E-function of the main keyed transformation

MARS IBM submission to AES 13

as input one data word and returns three data words as output. The structure of the Feistel net-
work is depicted in Figure 3 (for a different picture see also Figure 8), and the E-function itself is
diagrammed in Figure 4. In each round we use one data word as the input to the E-function, and
the three output words from the E-function are added or xored to the other three data words. In
addition, the source word is rotated by 13 positions to the left.

To ensure that the cipher has the same resistance to chosen ciphertext attacks as it has for chosen
plaintext attacks, the three outputs from the E-function are used in a different order in the first
eight rounds than in the last eight rounds. Namely, in the first eight rounds we add the first and
second outputs of the E-function to the first and second target words, respectively, and xor the third
output into the third target word. In the last eight rounds, we add the first and second outputs of
the E-function to the third and second target words, respectively, and xor the third output into the
first target word.

The E-function. The E-function takes as input one data word and uses two more key words to
produce three output words. In this function we use three temporary variables, denoted below by
L;M andR (for left, middle and right). Below we also refer to these variables as the three “lines”
in the function.

Initially, we setR to hold the value of the source word rotated by 13 positions to the left, and we
setM to hold the sum of the source word and the first key word. We then view the lowest nine bits
of M as an index to a 512-entry S-boxS (which is obtained by concatenatingS0 andS1 from the
mixing phase), and setL to hold the value of the correspondingS-box entry.

We then multiply the second key word (constrained to contain an odd integer) intoR and then
rotateR by 5 positions to the left (so the 5 highest bits of the product becomes the 5 lowest bits of
R after the rotation). Then we xorR into L, and also view the five lowest bits ofR as a rotation
amount between 0 and 31, and rotateM to the left by this amount. Next, we rotateR by 5 more
positions to the left and xor it intoL. Finally, we again view the five lowest bits ofR as a rotation
amount and rotateL to the left by this amount. The first output word of the E-function isL, the
second isM and the third isR.

Design rationale. In the design of the E-function we tried to combine the different operations in
a way that would maximize the advantages from each. Some properties of this function which are
worth noting are the following:

� Recall that when we multiply two words, the lower bits of the input word have larger effect
on the product than the higher bits. Thus, we arrange it so that bits which arenot fed as input
to the S-boxwill be the lowest bits in the data word which is being multiplied. The amount of
rotation (13 bits) was set to maximize the resistance of the E-function to differential attacks.
See Subsection 4.2 for details.

Also, since the internal structure of the E-function is very sensitive to the location of the
input bits, it makes sense to apply a constant rotation to the data lines, so as to make it hard
for an attacker to maintain a consistent behavior across rounds. Since we use a rotation of
the source word by 13 inside the E-function, we can get a rotation by 13 of the corresponding
data line “for free”.

MARS IBM submission to AES 14

� Recall also that when we multiply two words, the most significant bits in the product are the
“stronger bits” since they are affected by almost all the input bits. In the combination of the
multiplication and the data-dependent rotation, we therefore arrange it so that these “strong
bits” are used to determine the amount of the data-dependent rotation.

� Since the E-function is supposed to approximate a pseudo-random function, we would like to
make the three lines of the function as “independent of each other” as possible. We thus use
very little interaction between the data in the three lines. This also helps to avoid unwanted
cancellations and makes it harder to obtain a linear approximation of one line in terms of
another.

Where we do mix the lines – in the xors of LineR into LineL – we xor the input word twice
and have a fixed rotation by five between these two operations (so, for example, the effects
of these xor operations on the parity of LineL cancel each other).

� Still trying to guarantee some measure of “independence” between the data lines, we make
sure that the value of one line never completely determines the value of another line. Indeed,
the relative entropy of any two lines is at least 9 bits (of linesL;R), and gets as high as 32
bits (of linesR;M).

� Since we view LineM as the weakest output of the E-function (as it only carries the sum of
the input and a key word, rotated by some amount), we put it as the middle output line. This
way, it never affects the next data line which is used as a source, but rather a data line which
is used further down in the encryption process.

2.4 Phase three: backwards mixing

The backwards mixing phase is the same as the decryption of the forward mixing phase, except
that the data words are processed in different order. Namely, if we fed the output from the forward
unkeyed mixing into the input of the backwards unkeyed mixing in reverse order (i.e., outputD[3]
goes to inputD[0], outputD[2] to inputD[1], etc.) then these two phases would cancel each other.

As in the forward mixing, here too we use in each round one source word to modify the other three
target words. Denote the four bytes of the source words byb0; b1; b2; b3 as before. We useb0; b2 as
indices into the S-boxS1 andb1; b3 as indices into the S-boxS0. We xorS1[b0] into the first target
word, subtractS0[b3] from the second data word, subtractS1[b2] from the third target word and
then xorS0[b1] also into the third target word. Finally, we rotate the source word by 24 positions
to the left.

For the next round we rotate the four words, so that the current first target word becomes the next
source word, the current second target word becomes the next first target word, the current third
target word becomes the next second target word, and the current source word become the next
third target word.

Also, before each of four specific rounds we subtract one of the target words from the source
word: before the fourth and eighth rounds we subtract the first target word from the source word,
and before the third and seventh round we subtract the third target word from the source word. The
backwards mixing phase is depicted in Figure 5.

MARS IBM submission to AES 15

+

+

+
+

+

+

+
+

+

twice

8 x 32 S-boxesS1S0subtraction (a-b)

exclusive-or 8<<< left-rotation by 8

x2

S1

S0

S1

S0

S1

S0

S0

S1

S1

S0

S1

S0

S1

S0

S1

S0

D[3] D[2] D[1] D[0]

8<<<

8<<<

8<<<

8<<<

8<<<

8<<<

8<<<

8<<<

8<<<

8<<<

8<<<

8<<<

K[36]K[37]K[38]K[39]

a

b

Figure 5: Structure of the backwards mixing phase

MARS IBM submission to AES 16

2.5 Pseudo-code

Below we describe the cipher using pseudo-code. In this description we use the following nota-
tions: The operations used in the cipher are applied to 32-bit words, which are viewed as unsigned
integers. We number the bits in each word from 0 to 31, where bit 0 is the least significant (or
lowest) bit, and bit 31 is the most significant (or highest) bit.

We denote bya� b a bitwise exclusive-or of the two wordsa andb, a_ b anda^ b denote bitwise
OR and bitwise AND, respectively. We denote bya+ b addition modulo232, by a� b subtraction
modulo232, and bya� b multiplication modulo232.

Also, a� b anda� b, respectively, denote cyclic rotations of the 32-bit worda by b positions to
the left and right. In a left rotation byb, the bit in locationi is moved to locationi + b mod 32
(for example, the lowest bit is moved from location 0 to locationb). Similarly, in a right rotation
by b the bit in locationi is moved to locationi� b mod 32.

Finally, if x1; : : : xn are 32-bit words, we use the notation(xn; : : : ; x2; x1) (x1; : : : ; x3; x2) for
n-wise swap operation. For example,(D[3];D[2];D[1];D[0]) (D[0];D[3];D[2];D[1]) denotes
a rotation of the 4-word arrayD[] by one word to the right.

Remark. Notice that the pseudo-code below follows a somewhat different style than Figures 2
and 5. Specifically, to make the pseudo-code shorter we implement the eight mixing rounds in a
loop.

E-function(input:in; key1; key2)
1. // we use three temporary variables,L;M;R
2. M = in+ key1 //add first key word
3. R = (in� 13) � key2 // multiply by 2nd key word,which must be odd
4. i = lowest 9 bits ofM
5. L = S[i] // S-box lookup
6. R = R� 5
7. r = lowest 5 bits ofR // these bits specify rotation amount
8. M = M � r // 1st data-dependent rotation
9. L = L�R
10.R = R� 5
11.L = L�R
12.r = lowest 5 bits ofR // these bits specify rotation amount
13.L = L� r // 2nd data-dependent rotation
14. output(L;M;R)

MARS-encrypt(input:D[];K[])

Phase (I): Forward mixing

MARS IBM submission to AES 17

1. // First add subkeys to data
2. for i = 0 to 3 do
3. D[i] = D[i] +K[i]
4. // Then do eight rounds of forward mixing
5. for i = 0 to 7 do // useD[0] to modifyD[1];D[2];D[3]
6. // four S-box look-ups
7. D[1] = D[1]� S0[low byte ofD[0]]
8. D[1] = D[1] + S1[2nd byte ofD[0]]
9. D[2] = D[2] + S0[3rd byte ofD[0]]
10. D[3] = D[3]� S1[high byte ofD[0]]
11. // and rotation of the source word to the right
12. D[0] = D[0]� 24
13. // followed by additional mixing operations
14. if i = 0 or 4 then
15. D[0] = D[0] +D[3] // addD[3] back to the source word
16. if i = 1 or 5 then
17. D[0] = D[0] +D[1] // addD[1] back to the source word
18. // rotateD[] by one word to the right for next round
19. (D[3];D[2];D[1];D[0]) (D[0];D[3];D[2];D[1])
20. end-for

Phase (II): Keyed transformation

21. // Do 16 rounds of keyed transformation
22. for i = 0 to 15 do
23. (out1; out2; out3) = E-function(D[0];K[2i+ 4];K[2i+ 5])
24. D[0] = D[0]� 13
25. D[2] = D[2] + out2
26. if i < 8 then // first 8 rounds in forward mode
27. D[1] = D[1] + out1
28. D[3] = D[3]� out3
29. else // last 8 rounds in backwards mode
30. D[3] = D[3] + out1
31. D[1] = D[1]� out3
32. end-if
33. // rotateD[] by one word to the right for next round
34. (D[3];D[2];D[1];D[0]) (D[0];D[3];D[2];D[1])
35. end-for

Phase (III): Backwards mixing

36. // Do eight rounds of backwards mixing
37. for i = 0 to 7 do
38. // additional mixing operations
39. if i = 2 or 6 then

MARS IBM submission to AES 18

40. D[0] = D[0]�D[3] // subtractD[3] from source word
41. if i = 3 or 7 then
42. D[0] = D[0]�D[1] // subtractD[1] from source word
43. // four S-box look-ups
44. D[1] = D[1]� S1[low byte ofD[0]]
45. D[2] = D[2]� S0[high byte ofD[0]]
46. D[3] = D[3]� S1[3rd byte ofD[0]]
47. D[3] = D[3]� S0[2nd byte ofD[0]]
48. // and rotation of the source word to the left
49. D[0] = D[0]� 24
50. // rotateD[] by one word to the right for next round
51. (D[3];D[2];D[1];D[0]) (D[0];D[3];D[2];D[1])
52. end-for
53. // Then subtract subkeys from data
54. for i = 0 to 3 do
55. D[i] = D[i]�K[36 + i]

2.6 Decryption

The decryption process is the inverse of the encryption process. The code for decryption is sim-
ilar (but not identical) to the code for encryption. We provide a pseudo-code for decryption in
Appendix B.

2.7 S-box design

In the design of the S-boxS, we generated the entries ofS in a “pseudorandom fashion” and tested
that the resulting S-box has good differential and linear properties. The “pseudorandom” S-boxes
were generated by setting fori = 0 : : : 102; j = 0 : : : 4, S[5i+j] = SHA-1(5i j c1 j c2 jc3)j (where
SHA-1(�)j is thej’th word in the output of SHA-1). Here we viewi as a 32-bit unsigned integer,
andc1; c2; c3 are some fixed constants. In our implementation we setc1 = 0xb7e15162; c2 =
0x243f6a88 (which are the binary expansions of the fractional parts ine; �, respectively) and
we variedc3 until we found an S-box with good properties. We view SHA-1 as an operation on
byte-streams, and use little-endian convention to translate between words and bytes.

The properties of the S-box which we tested are the following:

Differential properties. We require that the S-box has the following properties:

(1) The S-box does not contain the all-zero or the all-one word.

(2) Within each of the two S-boxesS0; S1, every two entries differ in at least three of the
four bytes. (We note that it is very unlikely that a random S-box will have this property,
and so we first “fix” the S-box by modifying one of the entries in each pair that violates this
condition).

MARS IBM submission to AES 19

(3) S does not contain two entriesS[i]; S[j](i 6= j) such thatS[i] = S[j]; S[i] = :S[j] or
S[i] = �S[j].

(4)S has
�
512
2

�
distinct xor-differences and2�

�
512
2

�
distinct subtraction-differences.

(5) Every two entries inS differ by at least four bits.

Linear properties. We try to minimize the following quantities:

(6) Parity bias:
���Prx[parity(S[x]) = 0]� 1

2

���. We require that the parity bias ofS be at most
1=32.

(7) Single-bit bias:8 j;
���Prx[S[x]j = 0]� 1

2

���. We require that the single-bit bias ofS be at
most1=30.

(8) Two consecutive bits bias:8 j;
���Prx[S[x]j � S[x]j+1 = 0]� 1

2

���. We require that the
two-bit bias ofS be at most1=30.

(9) Single-bit correlation:8 i; j;
���Prx[S[x]j = xi]�

1
2

���. We minimize this quantity over all
the S-boxes that satisfy the conditions 1-8.

The threshold values in Conditions 6-8 above were set experimentally. The reason for the different
treatment of the single-bit correlation is that its value is usually larger than the other quantities.

We generated the S-box as follows: We went over possible values ofc3 in increasing order, starting
from c3 = 0. For each value, we generated the S-box, and then “fixed it” by going over all the
pairs(i; j) of entries inS0; S1 in lexicographic order, and checking if the differenceS[i]�S[j]has
two or more zero bytes. Whenever we found a difference with two or more zero bytes, we replaced
S[i] with 3 �S[i] and moved on to the nexti. After the “fixing”, we tested the S-box again to verify
that it satisfies all the Conditions (1)-(8) above, and we calculated the single-bit correlation bias
(from Item (9) above). Our program ran for about a week, going over roughly226 possible values
for c3. The value ofc3 which minimized the single-bit correlation bias wasc3 = 0x02917d59 .
The resulting S-box is presented in Appendix A. This S-box has parity bias2�7, single-bit bias at
most 1/30, two consecutive bit bias at most 1/32, and single-bit correlation bias less than 1/22.

2.8 Key expansion

The high-level structure of the key expansion routine is depicted in Figure 6. This procedure
expands a given key arrayk[] (which consists ofn 32-bit words, wheren is any number between
4 and 39) into an arrayK[] of 40 words. We note that the original key is not required to have any
structure (in particular, the key does not include any parity bits). In addition, the key expansion
procedure also guarantees that the key words which are used for multiplication in the encryption
procedure have the following properties

� The two lowest bits in a key word which is used for multiplication are set to 1.

� None of these key words contains either ten consecutive 0’s or ten consecutive 1’s.

The procedure consists of four steps

MARS IBM submission to AES 20

+S

+S

+ S

+S

Fixing weak key-words

9<<<

9<<<

9<<<

Reordering

Initial expansion

Stirring
x 7 times

9<<<

T[0] T[1] T[2] T[39]

k[0] k[1]

K[0] K[1] K[2] K[39]

(4 <= n <= 40)k[n-1]

Figure 6: The key expansion procedure

1. Initially, the original key material is expanded using a simple linear transformation. Specif-
ically, given ann-word arrayk[], we first initialize a 47-word temporary arrayT [], which
we view as indexed fromT [�7] throughT [39]. The first 7 entries inT [] are initialized with
the first seven entries in the S-boxS, by setting

for i = �7 : : :� 1; T [i] = S[i+ 7]

Entries 0 through 38 inT [] are filled using the formula

for i = 0 : : : 38; T [i] = ((T [i� 7]� T [i� 2])� 3) � k[i mod n]� i

and the last entry is set to hold the length of the original key,T [39] = n. The reason for
this last setting is to eliminate the possibility that two keys of different lengths generate the
same 40-word expanded key (for example, this way we guarantee that the all-zero 4-word
key results in a different expanded key than the all-zero 6-word key).

2. Next we stir the temporary array using seven rounds of type-1 Feistel network. Specifically,
we repeat the operation

T [i] = (T [i] + S[low 9 bits ofT [i� 1]])� 9; i = 1; 2; : : : 39

T [0] = (T [0] + S[low 9 bits ofT [39]])� 9

for seven rounds.

MARS IBM submission to AES 21

3. Then we reorder the words into the expanded key array,K[], so that words which were
adjacent in the stirring phase will be far apart in the resulting array. This is done by setting

K[7i mod 40] = T [i]; i = 0; 1; : : : ; 39

4. Finally, we go over the sixteen words which are used in the cipher for multiplication (these
are wordsK[5];K[7]; : : : ;K[35]), and check that none of them is “weak”: We say that a
wordw is weak if(w _ 3) (i.e., the wordw with the two lowest bits set to 1) contains either
ten consecutive 0’s or ten consecutive 1’s. See Subsection 4.2 for the reasoning behind this
choice. We note that the probability that a randomly chosen word is weak is about1=41. We
process each of the wordsK[5];K[7]; : : : ;K[35] as follows:

(a) We record the two lowest bits ofK[i], by settingj = K[i] ^ 3, and then consider the
word with these two bits set to 1,w = K[i] _ 3.

(b) We construct a maskM of the bits inw which belong to a sequence of ten (or more)
consecutive 0’s or 1’s. Namely, we haveM` = 1 if and only ifw` belongs to a sequence
of ten consecutive 0’s or 1’s. Then we reset to 0 the 1’s inM which correspond to the
“end-points of runs of 0’s or 1’s inw”, and also the two low order bits. More precisely,
the i’th bit of M is reset to 0 ifi < 2, or if the i’th bit of w differs from either the
(i + 1)’th or the (i � 1)’th bits. For the top-most bit,i = 31, we assume that the
(i+ 1)’th bit of w is 0.
For example, assume that we havew = 031130121001 (where by0i; 1i we denotei
consecutive 0’s or 1’s, respectively). In this case we first setM = 0312504, and then we
reset the 1’s in bit positions 4, 15,16 and 28 to getM = 041110011005.

(c) Next we use a fixed four-word tableB to “fix w”, where the four entries inB are
chosen so that they (and their cyclic shifts) do not contain any seven consecutive
0’s or ten consecutive 1’s. Specifically, we use the tableB[] = f0xa4a8d57b,
0x5b5d193b, 0xc8a8309b, 0x73f9a978 g, (these are entries 265 through 268
in the S-box). The reason we chose these entries is that there are only 14 8-bit patterns
which appear twice in these entries (and their cyclic shifts), and no pattern appears
more than twice.
We use the two recorded bitsj (from Step (a)) to select an entry fromB, and use the
lowest five bits ofK[i+3] to rotate this entry,p = B[j]� (lowest 5 bits ofK[i+3]).

(d) Finally, we xor the patternp into w under the control of the maskM , and store the
result inK[i]

K[i] = w � (p ^M)

Since the lowest two bits ofM are 0’s, then the lowest two bits ofK[i] will be 1’s
(since those inw are). Also, the choice ofB guarantees thatK[i] will not be weak.

We note that this procedure not only guarantees that the wordsK[5];K[7] : : :K[35] are not weak,
but also keeps these words “random”, in the sense that no single word has probability much larger
than in the uniform distribution. In particular, an exhaustive search confirmed that no 20-bit pattern
occurs in these words with probability of more than1:23 � 2�20. Similarly, no 10-bit pattern
appears with probability larger than1:06 � 2�10. We use these facts in the analysis of the cipher.
A pseudo-code for the key expansion procedure is given below.

MARS IBM submission to AES 22

Key-Expansion(input:k[]; n; output:K[])
1. //n is the number of words in the key bufferk[]; (4 � n � 39)
2. //K[] is the expanded key array, consisting of 40 words
3. //T [] is a temporary array, consisting of 47 words,T [�7]; T [�6]; : : : ; T [39]
4. //B[] is a fixed table of four words

5. // InitializeB[]
6. B[] = f0xa4a8d57b; 0x5b5d193b; 0xc8a8309b; 0x73f9a978g

7. // InitializeT [] with seven constants, then key data
8. T [�7 : : :� 1] = S[0 : : : 6]
9. for i = 0 to 38 do
10. T [i] = ((T [i� 7]� T [i� 2])� 3)� k[i mod n]� i
11.T [39] = n

12. // Do seven rounds of stirring
13. repeat 7 times
14. for i = 1 to 39 do
15. T [i] = (T [i] + S[low 9 bits ofT [i� 1]])� 9
16. T [0] = (T [0] + S[low 9 bits ofT [39]])� 9 // wrap around end
17. end-repeat

18. for i = 0 to 39 do // reorder the key words intoK[]
19. K[7i mod 40] = T [i]

20. // Fix “weak” key-words (w is weak if(w _ 3) contains ten consecutive 0’s or 1’s)
21. for i = 5; 7; : : : 35 do
22. j =least two bits ofK[i]
23. w = K[i] with both of the least two bits set to 1

24. // Generate a bit-maskM (if K[i] is not weak thenM = 0)
25. M` = 1 iff w` belongs to a sequence of ten consecutive 0’s or 1’s inw
26. and alsò � 2 andw`�1 = w` = w`+1 (for ` = 31, assumew`+1 = 0)

27. // Select a pattern from the fixed table and rotate it
28. r =least five bits ofK[i+ 3] // rotation amount
29. p = B[j]� r

30. // ModifyK[i] with p under the control of the maskM
31. K[i] = w � (p ^M)
32. end-for

MARS IBM submission to AES 23

3 Computational Efficiency (2.B.2)

Due to the structure of the key expansion procedure, the performance of MARS is essentially inde-
pendent of the key-length used. Hence, below we only provide a single figure for the performance
of MARS on any given platform, and these figures do not change with the key size.

3.1 Software implementation

Since MARS was designed to take full advantage of the powerful operation available on today’s
computers, it can achieve a very high speed in software. We estimate that a fully optimized assem-
bly implementation of the cipher (on most of the platforms available today) requires about 450-650
machine instructions for encryption of a single 128-bit block. Most of these instructions can be
paired to take advantage of super-scalar architectures, leading to an estimate of about 250-400
cycles for encryption of a single block. On a machine with clock-rate of 200MHz, this estimate
yields encryption rates from 65 to 100 Mbit/sec.

3.1.1 C implementation

We currently have a C implementation of MARS running at rates of 65-85 Mbit/sec on machines
with clock rate of 200MHz. We measured the performance of this implementation of MARS on
the following platforms:

Pentium-Pro Pentium-Pro PowerPC 604e
Borland C++ 5.0 DJGPP (+ pgcc101) C Set ++ 3.1.1

encryption 920 cycles
block

(28 mbps) 390 cycles
block

(65 mbps) 300 cycles
block

(85 mbps)
decryption 920 cycles

block (28 mbps) 390 cycles
block (65 mbps) 300 cycles

block (85 mbps)
key-setup 9200 cycles

key
3950 cycles

key
2050 cycles

key

algorithm-setup 0 cycles 0 cycles 0 cycles
key-change 9200 cycles

key 3950 cycles
key 2050 cycles

key

Table 1: Timing measurements for the C implementation of MARS (mbps stands for Mbit/sec).

� We measured the performance on the reference platform, which is an IBM-compatible PC,
with a 200MHz Pentium Pro processor and 64MB RAM, running Windows95. On this
machine we used two different compilers to compile the C code. One is the NIST reference
compiler, Borland C++ version 5.0. Unfortunately, the Borland compiler does a very poor
job in taking advantage of the speed potential of MARS. In particular,the Borland compiler
penalizes algorithms which use data rotations much more than other algorithms, since it
implements every rotation operation as three machine instructions (two shifts and an OR)
instead of using the rotate operation which is available in the Intel architecture.

We therefore also compiled the C implementation using the Pentium-optimizing version of
the Gnu-C compiler (pgcc) version 1.0. This compiler is freely available over the Internet

MARS IBM submission to AES 24

Borland C++ 5.0 DJGPP (+ pgcc101)

MARS 28 Mbit/sec 65 Mbit/sec
DES (RSAREF) 10.6 Mbit/sec 16.7 Mbit/sec
Triple-DES 4.4 Mbit/sec 7.3 Mbit/sec

Table 2: Encryption speed of several ciphers using two different compilers.

from http://www.gcc.ml.org , and can be used with most of the Unix variants run-
ning on Intel. In addition it was ported to DOS (under the DJGPP compiler) so it can also
be used under Windows. It is this port (DJGPP version 2.01) that we used for our timing
measurements. The speed of MARS using the two compilers is described in Table 1.

We remark that on the Intel platform there is some tradeoff between the speeds of key gener-
ation and encryption: We can store the S-box in the key schedule itself, thereby saving one
pointer during the encryption process (since the same pointer can be used to point to both
the key and the S-box). This results in a speedup of about5% in the encryption/decryption,
making it run at about 67 Mbit/sec, but at the same time it implies a50% slowdown in the
key setup.

� We also measured the speed of our C implementation on an RS/6000 43P workstation model
140, with a 200 MHz PowerPC 604e processor and 64MB RAM, running AIX. On this
platform we used the xlC compiler (included in C Set ++ for AIX, version 3.1.1). The
running time of MARS on this platform is also described in Table 1.

To demonstrate the fact that the Borland compiler penalizes algorithms which use data rotations
much more than it penalizes other algorithms, we compare in Table 2 the encryption speed of
MARS to that of DES and triple-DES under the two compilers. It can be seen in that table that the
speed of DES degrades by only about35% by switching from DJGPP to Borland, while the speed
of MARS is cut by more than a factor of two.

3.1.2 Java implementation

We tested the java implementation on the same platforms as the C implementation. On the Intel
platform we used the javac compiler and java interpreter from JDK1.1.6 and the symjit just-in-time
compiler that comes with JDK1.1.6 for Windows. On the PowerPC we used the javac compiler
and java interpreter from JDK1.1.4 and the jitc just-in-time compiler that comes with JDK1.1.4
for AIX. The running time of our implementation is given in Table 3.4 In can be seen that the
optimized Java code runs only about 4 times slower than the C code (and is roughly equivalent in
speed to the C implementation of DES).

4The results in Table 3 represent the speed of the low-level word-oriented routines for encryption, decryption
and key-setup. These results do not include the time for byte-to-word conversion, endianess conversion or memory
allocation.

MARS IBM submission to AES 25

Pentium-Pro PowerPC 604e

encryption 1760 cycles
block

(14.5 Mbit/sec) 1280 cycles
block

(19.9 Mbit/sec)
decryption 1480 cycles

block
(17.3 Mbit/sec) 1240 cycles

block
(20.6 Mbit/sec)

key-setup 7100 cycles
key 8480 cycles

key

algorithm-setup 0 cycles 0 cycles
key-change 7100 cycles

key
8480 cycles

key

Table 3: Timing measurements for the Java implementation of MARS.

3.1.3 Memory requirements

Implementations of MARS need 2Kbyte of memory to store the S-box, 160 bytes to store the
expanded key and a few more words to carry the operations of the cipher. This small amount of
memory fits easily in the first-level cache of any modern processor.

3.2 Implementation on 8-bit processors

We estimate that a software implementation of MARS on a simple 8-bit processor would take about
5000 cycles for encryption/decryption of a single block, and about 15000 cycles for key-setup.

The processor model that we use for these estimates has a few general purpose 8-bit registers (we
assume four registers in our estimates). We assume that most of the logic and arithmetic operations
(add, xor, shift, etc.) take a single cycle, either between two registers or between a register and
a memory location. We also estimate that the processor has a multiplication operation which
multiplies two 8-bit values and returns the 16-bit result in two registers, and that this operation
takes four cycles.

With these assumptions, we get the following estimates for the basic operations of MARS:

� A multiplication of two 32-bit words can be implemented using six8 � 8 ! 16 multiplica-
tions, four8 � 8 ! 8 multiplications and 33 other operations. If each multiplication takes
four cycles and the other operations take a single cycle, then we get 73 cycles for a single
32 � 32! 32 multiplication.

� A data-dependent-rotation operation on a 32-bit word can be implemented using 8 shifts, 4
or’s and 22 other operations. Hence, we can perform it in 34 cycles.

� A fixed rotation by 8, 16 or 24 bit positions does not take any time, since it only involves
renaming the variables. A rotation by other fixed amounts takes 12 cycles.

� An S-box lookup with 8-bit index takes 8 cycles, and an S-box lookup with 9-bit index takes
12 cycles.

� The other operations on 32-bit words (move, add, subtract, and, or, not, xor) each take 8
cycles to implement on an 8-bit processor.

MARS IBM submission to AES 26

Operation # of operations cycles/operation # of cycles

Multiplication 16 73 1168
Data-dependent rotation 32 34 1088
Fixed rotation 48 12 576
8-bitS[�] 64 8 512
9-bitS[�] 16 12 192
others 184 8 1472

Total encryption/decryption 5008

Operation # of operations cycles/operation # of cycles

Data-dependent rotation 16 34 544
Fixed rotation/shift 480 12 5760
9-bit S[�] 296 12 3552
others 740 8 5920

Total key setup 15776

Table 4: Estimated speed of MARS on an 8-bit processor

Our estimates for the speed MARS on an 8-bit processor are summarized in Table 4. We note that
on a smartcard with clock rate of 20MHz, these estimates imply an encryption rate of about 500
Kbit/sec. However, it is not clear what is the meaning of this last estimate, since smartcards that
are used for encryption are typically equipped with a dedicated crypto unit, and so can execute
MARS much faster. (We show below that a hardware implementation of MARS can easily fit
on a smartcard). Moreover, even without a dedicated crypto chip, modern smartcard controllers
have much more capabilities than our simple 8-bit processor model. For instance, the Intel 80251
controller can operate on 16-bit words (and even 32-bits words). It is likely that our estimated
speed can be improved by a factor of at leat four on such a processor.

3.3 Hardware implementation

The MARS algorithm lends itself very well to a hardware based implementation. The MARS
algorithm, even in a non-optimal implementation, provides significant performance gains over
software implementations. We estimate the performance advantage at10� versus the software
implementation.

Our analysis shows that the forward mixing phase (including the key addition and the unkeyed
mixing) can be completed within 9 cycles. The same analysis applies to the backwards mixing
phase, which can also be completed within 9 cycles. For the keyed transformation phase, we’ve
included only one multiplier in our initial estimates. We’ve designed one E-function and are using
it for each successive iteration. Therefore, our estimate is that it will take 2 cycles to complete each
E-function, and 32 cycles to complete the sixteen rounds. In total, we estimate that an encryption
of one block takes 50 cycles.

One of our goals in performing a hardware assessment was to get a reasonable combination of size

MARS IBM submission to AES 27

an speed. There is considerable reuse of S-boxes,adders, exclusive-or functions, and multipliers
in order to minimize the cell counts. With only one multiplier in our hardware based design, our
performance estimate for MARS is 80MByte/sec, or 640 Mbit/sec. The cell count for this imple-
mentation is approximately 70,000 cells. This count includes circuitry for encryption, decryption
and key generation (but does not include the registers for the sub-keys). The majority of the cell
usage is devoted to the S-boxes, adders, and the multiplier.5 As a basis for comparison, a typical
DES implementation is approximately 28,000 cells.

A count of approximately 70,000 cells is not extraordinary. This cell count will easily fit on all
chips, including smart cards. This small size provides the algorithm with great flexibility and the
ability to be utilized in many varied applications.

Modes of operation that allow pipelining (such as ECB mode, counter mode, or decryption in
CBC mode) can be implemented much faster. In particular, a hardware implementation consisting
of four copies of the mixing rounds and the E-function can produce a throughput of one block
every 8 cycles, resulting in an encryption/decryption rate of 4Gbit/sec. It is even possible to use
four copies of the mixing rounds and eight copies of the E-function to get a throughput of one
block every 4 cycles. The cell count of this last implementation is about 393,000 (which is still
reasonable), and it achieves overall performance of 8 Gbit/sec. It follows that for applications
that only need to decrypt (such as DVD players), we can build a hardware chip of MARS with a
decryption rate of 8 Gbit/sec.

3.4 Other implementations

The MARS algorithm is suitable for implementation in a variety of environments. We previously
demonstrated that the algorithm can be implemented efficiently in both software and hardware.
This flexibility is extremely important since it provides us with an implementation choice for dif-
fering environments which may be constrained either by physical silicon space or memory ap-
plication space. Environments such as smart cards possess both physical and application space
constraints. However, the MARS algorithm can be implemented in silicon which will easily fit
within the smart card specifications and still leave plenty of room for the processor and other logic
functions. If silicon space needs to be conserved, then the algorithm can be executed on the native
8-bit processor, or a combination of a minimal hardware implementation plus the native processor
can be used.

MARS’ characteristics (flexibility, high-speed, security, efficient implementations, etc.) and im-
plementation options are attractive and applicable to Asynchronous Transfer Mode products, High
Definition Television, B-ISDN, voice applications, satellite applications, and many other net-
worked applications. It will provide robust, high speed encryption and decryption capabilities
to every solution. MARS is highly suitable for all of these varied applications.

5Still, less than20% of this count is due to the multiplier.

MARS IBM submission to AES 28

4 Analysis and Expected Strength (2.B.4–2.B.5)

We use the following terminology when talking about the resistance of MARS to certain attacks:

data complexity.The data complexity of an attack is the number of (plaintext,ciphertext) pairs that
an attacker must see (or choose, in the case of chosen plaintext/ciphertext attacks) before it
can distinguish between the cipher and a random permutation.

work load. The work load of an attack is the number of operations it takes. This is always at least
as large as the data complexity, but can sometimes be larger. For example, exhaustive key
search has very low data complexity (typically two or three pairs are enough), but its work
load is exponential in the key length.

key probability.Some of the attacks described in the sequel can only proceed when some of the key
words have special properties. In this case, the key probability of an attack is the probability
that a random key has these special properties. In computing this probability, we assume
that each entry in the expanded key array is chosen independently at random (subject to the
constraints imposed by the key-setup process).

security level.The security level of a cipher relative to a certain attack (or class of attacks) is the
ratio between the work load and success probability of the attack. The success probability
is the probabilistic advantage that the attacker gains in distinguishing between the cipher
and a random permutation. The probability is taken over both the choice of the key and the
randomness used in the attack itself. (For example, if an attack has work load of220 and key
probability of2�30, then the security level of the cipher relative to this attack is250.)

The (conjectured) security level of a cipher is its security level relative to the (conjectured)
best possible attack. We remark that a cipher with key length ofn bits cannot have security
level of more than2n.

Expected strength of MARS. We expect the security level of MARS with ann-bit key to be2n

for key lengths up to 256 bits. We do not expect the security level to grow as rapidly beyond2256.
In particular, there may be attacks with work-load of about2300 even when all the key words are
chosen independently. Hence the main reason for using keys longer than 256 bits is convenience,
not security.

We estimate that any linear or differential attacks against MARS must have data complexity of
more than2128, which means that for block-length of 128 bits these attacks are impossible. Below
we justify this estimate by providing crude (though conservative) bounds on the complexity of
such attacks. For these bounds we consider only the “cryptographic core” of MARS (which is
equivalent to analyzing 16R-attacks in the sense of [3], since it entails ignoring the 16 rounds of
mixing in the cipher).

For linear attacks, we argue in Subsection 4.1 that no “constructible” linear approximation of
the keyed transformation has a bias of more than2�69, which implies data complexity of more
than 2128. By “constructible” approximation we mean an approximation which is obtained by
combining approximations for the internal operations of the cipher, computing the bias using the

MARS IBM submission to AES 29

Piling-up lemma [9]. Although in principle a cipher can also have linear properties which result
from some “global cancellations”, we do not know of any such properties for MARS6.

For differential attacks [3] we provide two arguments: We first present a heuristic argument ex-
plaining why it is unlikely that one would be able to construct a characteristic of the keyed trans-
formation with probability more than2�240, taken over both the key and the data. We then also
devise a more conservative (and very crude) bound of2�156 on the probability of any characteristic
of the keyed transformation, where the probability is again taken over both the key and the data.

4.1 Linear analysis

In linear analysis [9] one tries to find a subset of the bit positions in the plaintext, ciphertext and
expanded keys, so that for a uniformly chosen plaintext and expanded key, the probability that the
sum of the bits in these positions is equal to zero modulo 2, will be bounded away from1=2. Such
a subset is called alinear approximationof the cipher, and the difference between the obtained
probability and1=2 is called thebiasof the approximation. In general, the goal of linear analysis
is to find approximations with large bias, since an approximation with bias� typically corresponds
to an attack with work-load and data-complexity of about(1=�)2.

Notations. Below, a linear approximation of an operation involving the wordsw1 : : :wn is speci-
fied via a set ofmasksX1 : : :Xn, such that a certain bit-position inwi belongs to the approximation
if and only if the corresponding bit ofXi is ‘1’ (in this writeup all the words are of length 32-bits).
We describe this approximation by the formula

A(w1; : : : ; wn)
def
= (w1 �X1)� : : :� (wn �Xn) (1)

where� denotes exclusive-or (i.e. addition modulo 2) and� denotes the inner product operation
modulo 2. The bias of this approximation is then

����Pr [A(w1; : : : ; wn) = 0]�
1

2

���� (2)

where the probability is taken over the uniform choice of all the words which are consideredthe
inputsto this operation (hence to define the bias we must specify which words are the inputs of the
operation and which are the outputs).

Local and Global approximations. The standard way to devise linear approximations for a
complex operation (such as a cipher) is to combine approximations for some of the internal “basic
operations”. Combining several approximationsA1 : : : Al is done by simply “adding them modulo
2”. Namely, the resulting approximation isA = A1 � : : : � Al, and it consists of all the bit
positions that appearan odd number of timesin all the approximationsA1 : : : Al . Below, when
we combine several linear approximations to obtain a new one, we informally say that thelocal

6For example, the data-dependent rotation operations in two consecutive rounds never canceleach other, and so
we have to approximate each of them separately.

MARS IBM submission to AES 30

approximationsA1 : : :Al are combined to obtain aglobal approximationA. Clearly, to be of any
use, a global approximation of a cipher must only include bit-positions in the plaintext, ciphertext
and key. Namely, the occurrences of bit-positions in internal variables of the cipher (which appear
in the local approximations) must all cancel out in the global approximation.

We use the Piling-up lemma [9] to compute the bias of the global approximation from the bias of
the local approximations. If the bias of the approximationsA1 : : :Al is denoted byb1 : : : bl, then
the biasb of the combined approximationA is computed as

b =
1

2
�

lY
i=1

(2bi) (3)

We note that this formula assumes that the inputs to the different operations are chosen indepen-
dently (which is usually not the case), and so the formula represents only a heuristic evaluation of
the bias ofA.

Treatment of key bits in linear approximations. In principle, one can treat the key bits in a
linear approximation differently than the data bits. For example, we can use an approximation
involving only the data bits, and take theexpected value, over the random choice of the key, of the
absolute value of the bias of this approximation. We are leaving this for future research.

Organization. Below we only discuss linear approximations of the keyed transformation of
MARS. The rest of this section is organized as follows: We start by discussing the linear ap-
proximations of the operations used in the E-function, and then analyze linear approximations of
the E-function itself. Then, we use this analysis to provide a conservative bound on the bias of
every linear approximation of the keyed transformation.

4.1.1 Linear approximation of the basic operations

The basic operations used in the E-function are addition modulo232 (+); 9-to-32-bit table look-
up (S[�]); exclusive-or(�); multiplication modulo232 (�); and also data rotation by fixed and
varying amounts(�). Below we briefly discuss some properties of the linear approximations of
these operations.

Exclusive-or. The exclusive-or operation,w3 = w1 � w2 (with inputsw1; w2 and outputw3),
is approximated by(X1 � w1) � (X2 � w2) � (X3 � w3). This approximation has bias1=2 if
Xa = Xb = Xc, and it has zero bias otherwise.

Addition. The addition operation,w3 = w1 + w2 (inputsw1; w2, outputw3), can be viewed
asw3 = w2 � w1 � c wherec is the carry-bit pattern. The following probabilities are useful in
computing the bias of any particular approximation for this operation (belowci denotes the carry

MARS IBM submission to AES 31

into bit positioni):

Pr[ci = 1] =
1

2
�

1

2i+1
; for i = 0 : : : 31

Pr[ci = 1jci�j = 1] =
1

2
+

1

2j+1
; for i = 0 : : : 31; j = 1 : : : i

Givenci�j , ci is independent ofci�j�1 : : : c0

The following facts are also useful:

Assertion 1

� The LSB-approximation (X1 = X2 = X3 = 0311) is the only approximation for+ with bias
1=2.

� The parity-approximation (X1 = X2 = X3 = 132) has bias2�17.

� A necessary (but not sufficient) condition for the approximation(X1 � w1) � (X2 � w2) �
(X3 � w3) to have nonzero bias, is that the most significant bit inX1;X2;X3 is in the same
position.

� If the Hamming-weight of eitherX1;X2 or X3 is h, then the bias of the approximation
(X1 � w1)� (X2 � w2)� (X3 � w3) is at most2�1�bh=2c.

Multiplication. The multiplication operation,w3 = w1 � w2 (inputsw1; w2, outputw3) is ap-
proximated by(X1 � w1) � (X2 � w2) � (X3 � w3). In MARS, we force the lowest two bits of
w2 (which is the key word) to be ‘1’, and so they need not be present in an any approximation.
With this restriction, the multiplication operation has exactly three approximations with bias1=2,
all involving only the two lowest bits in the inputs and output (and hence usingX2 = 0). These
approximations are

(1) The LSB-approximation,X1 = X3 = 0311,
(2) The second-bit approximation,X1 = 03011; X3 = 03010, and
(3) The sum of the two lowest bits,X1 = 03010;X3 = 03011.

Although we do not have a rigorous analysis of the linear properties of�, it seems that linear
approximations for the high-order bits in the inputs and output of this operation have only very
small bias.

S-box lookup. This unary operation,w2 = S[lowest 9 bits ofw1] (inputw1, outputw2) is ap-
proximated by(X1 � w1) � (X2 � w2), whereX1 is zero everywhere except in the lowest 9 bits.
We picked the S-box so that approximations involving very few bits will have only a small bias.
Specifically,S was chosen so that any approximation consisting only of one output bit (i.e.X1 = 0
andX2 has a single ‘1’) has bias of at most1=30, each approximation consisting of exactly one
input bit and one output bit has bias of less than1=22, and the parity approximation has bias2�7.
We conjecture that there are no approximations of the S-box with bias of more than2�3.

MARS IBM submission to AES 32

Data-dependent rotation. The data-dependent rotation operationw3 = w1� w2 (inputsw1; w2,
outputw3), is approximated via(X1 �w1)� (X2 �w2)� (X3 �w3), whereX2 is zero everywhere
except in the lowest 5 bits (as only the lowest 5 bits ofw2 affect this operation). This operation can
be approximated as either a binary or unary operation, depending on whether the rotation amount
is included or excluded from the approximation. Approximations of data-dependent rotation were
investigated by Moriai, Aoki and Ohta in [10], where the following is proven:

Theorem 2 ([10]) For two masksX1;X3, denote by�(X1;X3) the number of different rotation
amountsn < 32 such thatX3 = X1 � n.7 Then, the approximation(X1 �w1)� (X2 �w2)� (X3 �
w3) has bias of�(X1;X2)=64 provided thatX2 < 32=�(X1;X3), and it has zero bias otherwise.8

A useful corollary of this assertion provides a connection between the Hamming weight ofX1;X3

and the bias of the approximation.

Corollary 3 Let (X1 � w1)� (X2 � w2) � (X3 � w3) be an approximation of the operationw3 =
w1 � w2. If the Hamming weight ofX1 or X3 is in the range[2i; 2i+1 � 1] (for somei � 5), then
�(X1;X3) is at most2i and thus the bias of the approximation is at most2i�6.

Combining rotations with additions. In two of the three output lines of the E-function the
output of the data-dependent rotation is used as input to an addition operation. It is therefore
useful to analyze the linear properties of this combined operation.

Assertion 4 Consider the ternary operationw4 = (w1 � w2)+w3 (inputsw1; w2; w3, outputw4),

and letA def
= (X1 � w1) � (X2 � w2) � (X3 � w3) � (X4 � w4) be a linear approximation of this

operation. ThenA has bias of at most2�6.

Reasoning:An approximation as above is obtained by adding the local approximations for the�
and+ operations. Namely, we haveA = A� � A+ whereA�; A+ are approximations for�;+,
respectively

A�
def
= (X1 � w1)� (X2 � w2)� (X� � w�)

A+
def
= (X� � w�)� (X3 � w3)� (X4 � w4)

wherew� is the internal variable describing the output of the data-dependent-rotation (which is
also an input to the addition). Notice that the same maskX� appears in bothA� andA+, since
it must cancel in the global approximationA. Denote the Hamming weight of the maskX� by h.
Then,

(a) By Corollary 3, if2i � h < 2i+1 (for somei � 5), then the approximationA� has bias of at
most2i=64.

7It follows that for 32-bit words,�(X1; X3) must be either zero or a power of two.
8The “mysterious” expressionX2 < 32=�(X1; X3), in whichX2 is viewed as the binary representation of an

integer, simply means that the only bit-positions ofw2 in the approximations are the ones which are relevant for the
operation. For the special case that�(X1; X3) = 1, this condition means thatX2 is zero everywhere except in the
lowest 5 bits.

MARS IBM submission to AES 33

*

S ++

5<<<

<<<

k1

k2 (odd)

w2 w3

I

w4 <<<

R

M

L

w1

5<<<

X7 X8 X12 X15 X17
X16X13 X19

X18 X20

X9 X11
X10

X3

X2

X6

X5

X14

X4

X1

wi - internal variables Ai - local approximations Xi - masks

13<<<

A2

A1

A4

A5 A6 A7

A3

Figure 7: Labeling of the lines in the E-function.

(b) By Assertion 1, the approximationA+ has bias of at most1
2
� 2�h=2.

Combining these two facts, and using the Pilinp-up lemma, we conclude that the combined bias of
the approximationsA is at most2�6. 2

4.1.2 Linear approximations of the E-function

We now consider approximating theE-function, which is one of the main sources of nonlinearity
in MARS. Figure 7 contains labeling of the internal lines of the E-function which we use below.
Thewi’s represent variables which are internal to theE-function, and are thus created and used
only within theE-function. TheE-function has seven internal operations (other than the fixed rota-
tions): one+, two�’s, one�, one S-box lookup and two data-dependent rotations. Table 5 shows
the labeling of the inputs and outputs in each of these operations, and the linear approximation to
the operation.

A global approximation of the E-function is of the form

A
def
= (XI � I)� (XL � L)� (XM �M)� (XR �R) � (Xk1 � k1)� (Xk2 � k2) (4)

where at least one of the output masksXL;XM ;XR is nonzero.

A global approximation to theE-function is devised by selecting a subset of the local approxima-
tionsA1 : : : A7 and assigning values to the masks in these approximations. We note that the masks
used in different approximations must be related in order to get a useful global approximation of
the E-function. In particular, an approximation is only useful if it does not include the intermediate
valueswi. However since local approximations to the operations of theE-function necessarily
involve wi values, the occurrences of these values must cancel each other modulo 2. Also, an
approximation is only useful if it has non-zero bias, hence, for example, all the masks which are
adjacent to an� operation must be the same.

MARS IBM submission to AES 34

Operation Input(s) Output Approximation

+ in; k1 w1 A1
def
= (X1 � I)� (X2 � k1)� (X3 � w1)

� in� 13; k2 R � 10 A2
def
= (X4 � I)� (X5 � k2)� (X6 �R)

� w1; R� 5 M A3
def
= (X12 � w1)� (X13 �R) � (X14 �M)

S[�] w1 w2 A4
def
= (X7 �w1)� (X8 � w2)

� w2; R� 5 w3 A5
def
= (X9 �w2)� (X10 �R)� (X11 � w3)

� w3; R w4 A6
def
= (X15 � w3)� (X16 �R) � (X17 � w4)

� w4; R L A7
def
= (X18 � w4)� (X19 �R) � (X20 � L)

Table 5: Local approximations of the operations in the E-function.

Local approximations Operations
1 fA1; A2; A3; A4; A5; A6; A7g f+;�;�; S[�];�;�;�g
2 fA1; A2; A4; A5; A6; A7g f+;�; S[�];�;�;�g
3 fA1; A2; A3g f+;�;�g
4 fA1; A3; A4; A5; A6; A7g f+;�; S[�];�;�;�g
5 fA1; A4; A5; A6; A7g f+; S[�];�;�;�g
6 fA1; A3g f+;�g
7 fA2g f�g

8 fA2; A4; A5; A6; A7g f�; S[�];�;�;�g
9 fA2; A3; A4; A5; A6; A7g f�;�; S[�];�;�;�g

10 fA2; A3g f�;�g

11 fA3; A4; A5; A6; A7g f�; S[�];�;�;�g
12 fA4; A5; A6; A7g fS[�];�;�;�g

Table 6: Global approximations of the E-function.

Below we say that local approximationAi is included in a global approximation if at least one of
the masks of this approximation is non-zero. Table 6 lists all the useful global approximations of
the E-function, according to which local approximations are included in them. We remark that a
certain subset of the local approximations can give rise to many different global approximations,
depending on the setting of the relevant masks.

Example 1. Consider an approximation of the E-function which only uses local approximations
A1; A2 andA3 (Line 3 in Table 6). A conceivable way to devise such approximation is to assign
non-zero values only to the masksX1;X2;X3;X4;X6;X9;X10 andX11 (and possibly also toX5),
in such a way thatX4 = X1 � 13, X3 = X9 andX10 = X6 � 5. Then, the intermediate values
on input lineI and output lineR (as well as the intermediate valuew1) cancels modulo 2, and the

MARS IBM submission to AES 35

resulting approximation is of the form

(X2 � k1)� (X5 � k2)� (X11 �M) (5)

which is a valid global approximation of the E-function. Clearly, such an approximation is only
useful if there is a way to assign values to these masks so that the resulting local approximations
have non-zero bias. In particular,X10 must be zero in all but the lowest five bits, which implies
thatX6 is zero in all but the highest five bits. Hence, one must use a linear approximation for the
highest bits of the multiplication output, and such approximations seem to have only a very small
bias. We conjecture that no approximation of the form (5) has bias of more than2�15. Also,
since the value ofM is then added into the data line, to use such an approximation one must also
approximate this last addition operation. Hence, we conjecture that (including the approximation
of the addition) the bias cannot be more than2�20.

Example 2. Consider an approximation of the E-function which uses local approximationsA1; A2; A4; A5; A6; A7

(Line 2 in Table 6). Again, it is conceivable that such an approximation can set values for the in-
volved masks so thatX4 = X1 � 13, X6 � (X13 � 5) � (X16 � 10) � (X19 � 10) = 0, and
X3 = X7, in which case the resulting global approximation is of the form

(X2 � k1)� (X5 � k2)� (X20 � L) (6)

A similar global approximation can be obtained from Line 12 in Table 6, except that in that case we
also getX2 = X5 = 0. As in the previous example, the problem here too is to assign values to the
masks so as to get an approximation with non-zero bias. This implies thatX19 is zero everywhere
except in the lower five bits, and thatX8 = X12 = X13 = X14 = X15 = X16 = X17 = X18. One
such approximation is obtained from Line 12 by using the parity approximation for the S-box (i.e.,
X7 = 032;X8 = 132). This approximation has bias of2�5, but it interacts very badly with the final
addition of LineL into the data line (as the bias of the parity approximation for addition is only
2�17). In general, in every approximation of the form (6) we must have either of two cases:

1. The masksX13 � 5 andX16 cancel each other everywhere except in the lowest five bits.
Since we must haveX13 = X16 then it meansX16 includes a 5-periodic non-zero 30-bit
sub-word. HenceX20 must also include such a 30-bit sub-word. This, in turn, means that
the bias of the approximation of the final addition cannot be more than2�7. Also, it means
thatX20 is either132, or else it is non-periodic. In the first case, the addition approximation
has bias of2�17, and in the second case the rotation approximation has bias of2�6. In any
case, approximating the two operation has bias of at most2�12. Finally, we conjecture that
the approximation of the S-box has bias of at most2�4, so the total bias of the E-function
approximation is at most2�15.

2. The masksX13 � 5 andX16 do not cancel each other in the higher bits. In this case the
approximation (6) must use local approximationsA1; A2 (for the+;� operations). Here
we must haveX3 = X7 6= 0, and soX3 must be zero everywhere except in the lowest 9
bits. This implies thatX1 must be zero everywhere except in the lowest 9 bits, and since
X4 = X1 � 13 thenX4 is zero everywhere except in bit positions13::21. Hence we
must approximate the “middle bits” of the multiplication input, and such approximations

MARS IBM submission to AES 36

I/O values Largest bias Comments
L 2�15 Example 2 above
M 2�20 Example 1 above

L;M 2�20 2�15 as in Example 2
and2�6 for the� + on LineM

L;R
I;L
I; L;R

2�8 2�6 for the� + on LineL
and2�3 for the S-box

M;R 2�7 2�6 for the� + on LineM
and2�2 for the initial+

L;M;R
I; L;M
I;L;M;R

2�13 2�6 for each of the� + on linesL;M
and2�3 for the S-box

I;M
I;M;R

2�6 2�6 for the� + on LineM

I;R 1=2 lower-bits of the multiplication

Table 7: Bias of approximations for the E-function

again seem to have only a very small bias. Here too we conjecture that the total bias of the
E-function approximation is at most2�15.

We note that approximations of the form (5) and (6) are the only approximations of the E-function
(with non zero bias) that include only a single value fromfI; L;M;Rg. The other approximations
of the E-function can be analyzed similarly to these two examples. In Table 7 we list the approxi-
mations of the E-function by the subset of the valuesfI; L;M;Rg which they include. With each
subset, we list our estimate for the highest possible bias which can be obtained with this subset.

Approximating combinations of the basic operations. One way to refine the analysis above
is to approximate several basic operations together,taking into account the fact that the inputs
to these operations are not independent.For instance, one may try to combine approximations
A5; A6; A7, using the fact that a “self rotate” (i.e.,w2 = w1 � w1) operation has some small
bias. We note however, that in the E-function one has to also take into account the value from
approximationA5. The best approximation of this kind requires the maskX20 to be periodic with
Hamming weight at least 6, and this approximation has bias at most2�5.

4.1.3 Linear approximations of the keyed transformation

Below we provide a conservative bound (not a proof), showing that the data complexity of linear
attacks against the keyed transformation phase of MARS exceeds2128. For this estimate we ignore
most of the fine structure of the cipher, and only consider its graph structure. It is likely that
taking into consideration more of the fine structure will improve these bounds considerably. In

MARS IBM submission to AES 37

13
<

<
<

(prev. A4)

(prev. B4)

(prev. C4)

(prev. D4)

A5

B5

D5

E

E
E

E

L M R

RML

RML

RML

A6

A7

B7

D7

D8

D6

B6 C5

C8

C6

C7B8

A8

13
<

<
<

A1

B1

C1

D1 D2

C2

B2

A2

C3

B3

A3

D3 D4

C4

B4

A4

13
<

<
<

13
<

<
<

Figure 8: Labeling of the lines in the keyed transformation:� denotes exclusive-or and+ denotes
addition.

the analysis it will be convenient to consider four consecutive rounds at a time. We refer to four
consecutive rounds as a “super-round” of the keyed transformation. Namely, in this terminology
the keyed transformation consists of four super-rounds, each consisting of four rounds.

The graph structure of the keyed transformation. The graph structure of one super-round is
depicted in Figure 8. In the analysis we use a labeling of the lines of the keyed transformation,
and this labeling is also given in Figure 8. Within each super-round, each data line consists of four
segments (where a segment represents the value of this data line between two operations). The
four segments of the first line are denoted byA1 : : : A4, those of the second line byB1 : : :B4, etc.

The graph structure of the keyed transformation consists of four copies of this super-round graph.
In the last two copies, outputsL andR of every E-function are swapped (so, for example, LineA6
is added to LineD1 and LineA8 is xored into LineB1). In the description below, we refer to lines
in the different super-rounds using subscripts. For example, the input to the second E-function
in the first super-round will be denotedB51, and the value of the fourth data line at the end of
the last super-round will be denotedD44. With this notation, the four input words to the keyed
transformation are denotedA40 : : :D40 and the four output words areA44 : : :D44.

A little more formally, we have a graph9 whose vertices are the various operations in the keyed
transformation (inputs, outputs, copy operations, additions, xors and E-functions), and with edges

9For the analysis below it is convenient to ignore the edge directions and think of the graph as undirected.

MARS IBM submission to AES 38

that are labeled by

fA40; B40; C40;D40g [fAij; Bij; Cij;Dij : 1 � i � 8; 1 � j � 4g

In the analysis we consider global approximations for the keyed transformation phase which con-
sist of local approximations for the various operations. Such approximations correspond in a natu-
ral way to subsets of the edges in the graph above: A global approximation corresponds to the set
of all edges whose values are used in its local approximations (where we say that the value of an
edge is used in an approximation if the mask of this line in non zero).10

Clearly, not every subset of edges correspond to an approximation with non-zero bias. For exam-
ple, any approximation which contains the edgeA1j must also contain the edgesB8j; A2j (since
approximations which only consider one or two of the three values incident to an exclusive-or al-
ways have zero bias). Also, we are only interested in approximations which contain at least one
input value and at least one output value. Hence we have the following definition:

Definition 5 We say that a subsetS of the edges isvalid, if it satisfies the following:

1. S contains at least one input edge (eitherA40; B40; C40 or D40) and at least one output
edge (eitherA44; B44; C44 or D44).

2. If S contains an edge which is incident to an xor or an addition operation, then it also
contains the other two edges incident to this operation.

3. If S contains an edge which is incident to a copy operation, then it contains at least one of
the other two edges incident to this operation.

(Notice that it may contain both. For example, an approximation which uses two bits from
B1 can approximate one of them using a bit inB2 and the other using a bit inB5.)

4. If S contains either input edgeI or output edgeR of an E-function, then it contains at least
one other edge incident to this E-function.

To devise a bound, we identify with each approximation a valid set of edges, and then consider the
edges incident to the E-functions in this set and use Table 7 to bound the bias of this approxima-
tion. In particular, we consider the edgesL andM of the E-functions in the graph (these edges
correspond to approximations of the combination of rotation followed by addition). We call these
edges therotation edges. We argue the following:

Assertion 6 For any approximationA of the keyed transformation phase, the bias ofA, as com-
puted from the Piling-up lemma, is at most2�69.

Reasoning:LetS be the valid subset of edges corresponding to the approximationA. We consider
two cases:

10Of course, there are many different approximations which correspond to the same subset of the edges, depending
on the actual values of the masks.

MARS IBM submission to AES 39

1. For each E-function in the graph structure of MARS,S contains either zero or at least two
edges incident to this E-function. A search of the graph structure of the keyed transformation
verifies that in this caseS must contain at least three rotation edges in every super-round,
and that at least one of these rotation edges must be anL edge. From Table 7 we see that
every occurrence of anM edge has bias at most2�6 and every occurrence of anL edge has
bias at most2�8. Using the Piling-up lemma, the bias of approximating one super-round is
at most2�18 and the bias of approximating the keyed transformation is at most2�69.

2. There are E-function for whichS contains a single edge. From Table 7 it follows that the
corresponding local approximations must be of the form (6) or (5), which have bias of only
2�15 or 2�20, respectively. Moreover, a search of the graph structure of the keyed transfor-
mation verifies each E-function like this only “saves” at most one occurrence of a rotation
edge, hence the resulting bias is even smaller than2�69.

2

4.2 Differential analysis

One of the main considerations in the design of the E-function was to combine the data-key mul-
tiplication, S-box lookup and data-dependent rotations so as to maximize the resistance to differ-
ential attacks. Below we start by analyzing the differential behavior of the data-key multiplication
operation, then use this to analyze the differential behavior of the E-function, and then provide
analysis for the entire keyed transformation phase of MARS. Finally, we also provide some analy-
sis of the differential properties of the mixing phase.

4.2.1 Analysis of the data-key multiplication

Conventions. In the description below we view 32-bit words as integers between 0 and232 � 1.
All the arithmetic operations are considered modulo232. We identify positive integers with their
binary representation. Ifw is a word, then we denote bywj::i the sub-word consisting of the bits in
positionsi throughj in w.

Assertion 7 (data-key multiplication) Let d 6= d0 be two fixed 32-bit data words such that the
lowest bit in whichd; d0 differ is in positioni. Assume without loss of generality thatd0 > d and
denoted0 � d = st10i, wheret is a single bit ands is a (30 � i)-bit word.

Letk be a 32-bit key word, which is chosen at random subject to the constraint that its two lowest
bits are set to one. Then the difference in the product is of the form

�p = (d0 � k)� (d � k) = u�t10i

where�t is the complement of the bitt, andu ranges uniformly over all possible(30� i)-bit words.

MARS IBM submission to AES 40

Proof: We can writed0 � d = 2i + t2i+1 + s2i+2 and alsok = 3 + 4x, wherex is a uniformly
distributed 30-bit integer. Then we have

(d0 � k)� (d � k) = (2i + t2i+1 + s2i+2) � (1 + 2 + 4x)
= 2i + 2i+1(1 + t) + 2i+2(t+ 3s + (1 + 2t+ 4s)x)

and the proof follows sinces; t are fixed andx is random.

Corollary 8 Letd 6= d0 be two fixed 32-bit data words such that the lowest bit in whichd; d0 differ
is in positioni, and letk be a 32-bit key word, which is chosen at random subject to the constraint
that its two lowest bits are set to one. Also, letl;m be two indices such thati+ 2 � l � m � 31,
and denoten = m� l+ 1. Then for everyn-bit word s, we get

Pr
k
[(d0 � k)m::l � (d � k)m::l = s (mod 2n)] � 2�n+1

Proof: This follows immediately from Assertion 7, since the expression(d0 � k)m::l � (d � k)m::l

always equal either[(d0 � k)� (d � k)]m::l or [(d0 � k)� (d � k) + 1]m::l (depending on the carry into
thel’th bit position).

Corollary 9 Let d 6= d0 be any two fixed 32-bit data words, and denote byi the least significant
bit in whichd; d0 differ. Then

Pr
k
[(k � d)31::22 = (k � d0)31::22] �

8><
>:

2�9 if i 2 f0 : : : 20g
2�8 if i = 21
0 if i 2 f22 : : : 31g

where the probability is taken over the choice ofk as a 32-bit word with the two least significant
bits set to 1.

Corollary 9 explains the usage of the top ten bits of the product as the source-bits for the data-
dependent rotation: If we feed two different data words into the data-key multiplication, then with
probability of at least(1� 2�8) (taken over the choice of the key) the top ten bits will not agree, in
which case we get rotations by different amounts in the E-function.

Xor-differences. The behavior of the data-key multiplication with respect to xor-differences is
more involved than its behavior with respect to subtraction. Still, we can prove the following
bound:

Assertion 10 Letd 6= d0 be two fixed 32-bit data words such that the lowest bit in whichd; d0 differ
is in positioni, and letk be a 32-bit key word, which is chosen at random subject to the constraint
that its two lowest bits are set to one. Also, letl;m be two indices such thati+ 2 � l � m � 31,
and denoten = m� l+ 1. Then for everyn-bit word s, we get

Pr
k
[(d0 � k)m::l � (d � k)m::l = s] � 2w(s)�n+1

wherew(s) is the Hamming weight ofs, not including the most significant bit(e.g.,w(10110) =
w(00110) = 2).

MARS IBM submission to AES 41

Proof: The proof follows from Corollary 8 since there are only2w(s) wordss0 such that(d0 �k)m::l�
(d � k)m::l = s0 (mod 2n) is consistent with(d0 � k)m::l � (d � k)m::l = s. The reason that we do
not count the most significant bit is that2n�1 and�2n�1 are equal modulo2n.

Assertion 10 gives a good bound on the probability of output xor-differences which has very few
1’s, but it only gives an upper bound of a1 on differences which are all 1’s. To some extent, this is
the best bound possible, since ford = 1; d0 = �1 we get�p = �d with probability1. Although
we still do not have a comprehensive analysis for the differential behavior of the multiplication
with respect to xor-differences, below we provide partial analysis for some special cases.

Case 1.The data wordsd; d0 differ in the least significant bit. Here we show that as the keyk
varies, the 30 higher bits in the output difference assume every 30-bit value exactly once.
For this, we prove that once the bitski�1 : : : k0 are fixed, varying the bitki varies biti in the
output difference without affecting any of the lower bits in the difference: Fix bitski�1 : : : k0
to any value, and denotêk = ki�1 : : : k0 andp = k̂d; p0 = k̂d0. Consider now what happens
when we vary the value ofki. If we setki = 0 thenp; p0 will not change, and therefore biti
in the output difference will remainpi � p0i. On the other hand, if we setki = 1 then we add
d; d0 (shifted byi) to p; p0 respectively, as shown below.

p30+i : : : pi pi�1 : : : p0 p030+i : : : p0i p0i�1 : : : p00
+ d31 d30 : : : d0 0 : : : 0 + d031 d030 : : : d00 0 : : : 0

Since we only add zeros to positionsi� 1 : : :0, then nothing changes in these positions.
In positioni, however, we addd0; d00, respectively, and sinced0 6= d00, then output biti is
necessarily flipped.

Case 2.d is even and� = ? ? ? : : : 10. In this cased0 is also even, so we can apply the analysis
above to the 31-bit integersd=2; d0=2 (which differ in the l.s.b.). Hence we get the same
result as above for the high 29 bits of the input difference. Similar analysis can be used
whend is a multiple of2i and� is of the form� = ? ? ? : : : 10i

Case 3.d is odd and� = 1310. In this case,d0 = d � � = �d and sokd0 = �kd = kd � �.
Similarly, whend is odd and� = 01300, we getd0 = 231�d and sokd0 = 231�kd = kd��.

We extended the above analysis using experimental results. In our experiments we worked with
word sizes up to 14 bits. In each experiment we fixed the input xor difference, and then went over
all possible keys and all possible data pairs with this xor difference, measuring the probabilities of
the various output differences. These experiments suggest the following behavior:

� When the input difference is of the form�d = x01i0 with jxj = n (i.e. the l.s.b. is 0, then
some 1’s, then a 0, and thenn don’t-cares), the most likely output differences are all the
differences of the form�p = u01i0, whereu ranges over all possiblen-bit values. Each of
these output difference has probability of2�n�1 (so their total probability is1=2).

Notice that for 32-bit words andi = 30, this matches exactly the analysis in Case 3 above,
since whend is odd (which happens with probability1=2), we get�p = �d with probability
1.

MARS IBM submission to AES 42

� As we add more zeros in the low-order bits of the input difference�d, we get similar patterns
with probabilities that are close (but not equal) to a factor of1=2 for each additional zero.
Namely, when the input difference is of the form�d = x01i0j with jxj = n, the most likely
output differences are all the differences of the form�p = u01i0j , and each one occurs with
probability close to (but slightly larger than)2�n�j .

This pattern is only maintained as long asi, the number of 1’s, is “large enough”. Asi
decreases, the deviations from this pattern increase. In our experiments with 14-bit words,
asi decreased below 7 or 8, the pattern itself disappeared and we could not recognize any
pattern in the output differences.

A comment about the key words. In the analysis above we assumed that the key word is chosen
uniformly at random with the lowest two bits set to one. In fact, in the key generation process we
also impose the condition that the key word does not contain ten consecutive 0’s or 1’s. The effects
of this condition on our analysis are as follows.

� This condition ensures that a single-bit difference in the input to multiplicationalways causes
some difference in the top ten bitsof the output. Hence, we are guaranteed that if we have a
single-bit difference in the input to the E-function, we get a different rotation amount on at
least one of the output lines.

� Recall that in the key expansion process, the probability of any 20-bit pattern grows by at
most a factor of 1.23, and for 10-bit patterns the factor is about 1.06. Since our analysis
depends only on short patterns in the product, the probabilities which were calculated above
cannot grow more than by a factor of 1.06 (or 1.23). In the rest of the analysis we ignore
these small factors.

Key probability vs. data-probability. The analysis above assumes that the data words are fixed
and the key is chosen at random (subject to the given constraints). In a differential attack, however,
it is the key that is fixed and the data words are chosen at random (with a fixed difference pattern).
We therefore would like to say something about the probability of a certain pair of input and output
differences, when the key is fixed and the probability is taken over the data.

For the subtraction difference,� = d � d0, once the keyk and the input difference�in are fixed,
this completely determines the output difference,�out = k�in with probability 1. For the xor
difference� = d � d0 this is not the case. Assuming that the lowest ‘1’ in�in is not in the top
ten bits (which is the interesting case for MARS), there are only two pairs of input and output
xor-differences with probability1=2 for a fixed key (specifically�out = �in = 1310 and�out =
�in = 01300). All the other pairs have probability of1=4 or less. It also seems that the probability
of a pair further decreases when either�out or�in contains more 0’s, although we still do not have
a rigorous analysis of this behavior.

MARS IBM submission to AES 43

+

+

k

+S

in

out1

out2

out3p

k’ (odd)

*

13<<<

5<<<

<<<

5<<<

<<<

in

∆

∆ ∆

∆ ∆

∆

∆

sbox L

M

R

add

∆13

Figure 9: Another labeling of the lines in the E-function

4.2.2 Analysis of the E-function

We analyze the behavior of the E-function with respect to xor differences. The structure of the E-
function is depicted again in Figure 9. In this figure we also label the lines, so that in the analysis
below we can refer to the differences on specific lines. There are three cases to consider, depending
on the position of the lowest ‘1’ in the input difference of the multiplication:

1. If lowest ‘1’ in the input difference to the data-key multiplication (�13) is in positions31::22,
then we are guaranteed to get a different rotation amount on at least one of the rotation lines
(L or M). Even in this case, we may get a characteristic with non-trivial probability if we
assume that the actual values in the E-function after the key addition are periodic.

Specifically, assume that the input difference to the E-function is�in = 1 � 18. Hence,
after rotating it by 13 the input difference to the multiplication is�13 = 1� 31, and so the
output difference is also�p = 1 � 31. Therefore there is a difference of 16 in the rotation
amount on LineM between the two invocations of the E-function.

With probability 1=2, the difference after the key addition is still�add = 1 � 18. With
additional probability2�15, one of the two actual values is 16-periodic (and the other is
16-periodic except for the bit in position 18). It is easy to verify that if this happens, then
the output differences of the E-function will be�R = 1 � 9, �M = 1 � r2 and�L =
100001 � r1 for random rotation amountsr1; r2. This characteristic is shown in the first
column of Table 8.

We remark that although in principle one can also consider values with smaller periods, the
probability of those is so small that the characteristics obtained this way are irrelevant (for
example, the probability of obtaining an 8-periodic value is2�24).

2. If lowest ‘1’ in �13 is in positions21::13, then there is a difference in the low 9 bits of the
input difference�in, so there must be a difference in the input to the S-box. Also, recall that
if �in has just a single ‘1’ that we are guaranteed to get different rotation amounts. Hence,

MARS IBM submission to AES 44

we assume that it contains at least two ‘1’s, which means that any specific pattern can go
through the key addition with probability at most1=4. Below we denote the difference after
the key addition by�add and the S-box difference by�sbox.

If we denote the input difference to the multiplication by�13 = t013 wheret = t010i, then
the product difference will be�p = $::$1013+i where the(18�i)-bit string$::$ is distributed
by the differential behavior of the multiplication operation. In particular, with probability of
at least1 � 2�8 the top ten bits will not be all zero, and then we will have different rotation
amounts on at least one of the linesL;M .

With probability� 2�9, the top ten bits will be all zero, namely�p = 010s1013+i (wheres is
of length8�i and it is distributed by the differential behavior of the multiplication operation).
If this happens, then the output differences will be�R = s1013+i, �M = �add � r2
and�L = (�sbox � �R � (�R � 5)) � r1 for random rotation amountsr1; r2. This
characteristic is shown in the second column of Table 8.

3. If the lowest ‘1’ in�13 is in positions12::0, then we denote�in = vwu;�13 = wuv with
jvj = 13; jwj = 10; juj = 9. The case whereu 6= 0 is similar to the previous case (except
that the probabilities are lower). In the case whereu = 0, the product difference will be
�p = $::$10i wherei is the position of the lowest ‘1’ inv and the(31 � i)-bit string$::$ is
distributed by the differential behavior of the multiplication operation. With probability of at
least1� 2�9 the top ten bits are not all zero, and then we have different rotation amounts on
at least one of the linesL;M . With probability� 2�9, the top ten bits are all zero, namely
�p = 010s10i =, wheres is of length21 � i � 9 and it is distributed by the differential
behavior of the multiplication operation.

Since the lowest 9 bits of�in are zero, then there is no difference in the input to the S-box.
Since we assume that�in contains at least two ‘1’s, then any specific pattern can go through
the key addition with probability at most1=4. The differences in the output of the E-function
is therefore�R = s1010+i, �M = �add � r2 and�L = (�R � (�R � 5)) � r1 for
random rotation amountsr1; r2. This characteristic is shown in the third column of Table 8.

Key probability vs. data-probability. The probabilities quoted in Table 8 are taken over the
random choice of both the key and the data. It is also useful to know how this probability can be
broken to key vs. data probability, since in general it is the data-probability that corresponds to the
data-complexity of an attack.

In the table we list our estimate for the largest possible data-probability, and the corresponding key-
probability. For example, in the third column we list key probability of2�7, and data probability
of 2�2. This means that there may be a property of keys that holds with probability2�7, such
that if the key has this property then one out of four data pairs satisfies the characteristic in this
column. However, there is no property of keys (with any probability) that causes a larger fraction
of the data pairs to satisfy this characteristic. We also note that the random rotation amounts are
completely data-dependent. Namely, for any fixed key and fixed input difference, when you vary
the data pairs, the rotation amounts vary uniformly between 0 and 31.

MARS IBM submission to AES 45

Type-1 Type-2 Type-3

�in = 1� 18
013wu

(jwj = 10; juj = 9)
vw09

(jvj = 13; jwj = 10)
where �in has at least two ‘1’s �in has at least two ‘1’s

u = u010i v = v010i

Probability
2�16

(key : 1, data :2�16)
2�8

(key : 2�6, data :2�2)
2�9

(key : 2�7, data :2�2)

�add = �in similar to�in similar to�in

�sbox = 0 S[�addj8::0] 0
�13 = 1� 31 uw013 w09v
�p = 1� 31 010s1013+i 010s10i

�R = 1� 9 s1023+i s1010+i

�M = �add� r1 �add� r1 �add� r1

�L = 100001 � r2

�sbox ��R

�(�R� 5)

!
� r2 (�R � (�R� 5))� r2

Comments input is periodic difference in the S-box most probable pattern

r1; r2 – random and independent rotation amounts,s – a random word

Table 8: The differential behavior of the E-function

4.2.3 Analysis of the keyed transformation phase

Using the results in Table 8 we now proceed to analyze the differential behavior of the keyed
transformation phase. We first describe a few attempts to devise high-probability characteristics of
the keyed transformation. Then we use the intuition gained in these attempts to make a heuristic
argument suggesting that there are no high-probability characteristics, and finally we devise a
crude bound on the probability of any characteristic. As with linear analysis, here too we consider
“super-rounds” consisting of four consecutive rounds of the keyed transformation.

Active and passive rounds. Since the characteristics of the E-function have rather low proba-
bilities (at most2�9, with two random rotation amounts and a few random carry bits), we would
like to have as few rounds with non-zero input difference as possible. Below we say that a round
is activeif it has non-zero input difference, and ispassiveotherwise. Since every active round pro-
duces three non-zero output differences, it is not possible to maintain a characteristic with only one
active round per super-round. In the attempts below we therefore try to maintain characteristics
with two active rounds per super-round.

First attempt: two adjacent active rounds. In the first attempt we try to maintain the invariant
that only the first two rounds in each super-round are active. We try this using a Type-3 character-
istic of the E-function (third column in Table 8). This attempt is depicted in Figure 10. Assume

MARS IBM submission to AES 46

E

Probability r:
x and y’ cancel

R
E

13<<<

13<<<

a’ = w0..0v

b a = vw0..0

x=s0..0
y~(a << r2)

low 9 bits cancel
Probability p:

b’=v’w’0..0

x’=s’0..0
y’~(b’ << r4)

z’=(x’ (x’<<5))<<r3

z=(x (x<<5))<<r1

Lower 0’s in x’ cannot
cancel low 9 bits in v

c=0d=0

D C B A
Type-3 characteristic
Probability 2 for a

Probability q:
y and z’ cancel

-9

Type-3 characteristic
Probability 2 for a

-9

L

L

R
M

M

Figure 10: First attempt to devise a characteristic of the keyed transformation.

that the input difference to the keyed transformation phase is(a; b; 0; 0), wherea = vw09 with
jvj = 13; jwj = 10, andb is an arbitrary input difference. The characteristic proceeds as follows:

1. The input difference to the first E-function isa, which matches the Type-3 characteristic
in the third column of Table 8 (wherei, which is the bit-position of the lowest ‘1’ inv, is
probably no more than one or two). With probability at most2�9 we get characteristic of
Type-3. Namely, the output difference on LineR is x = s010, the difference on LineM is
y � a � r2 for a random rotation amountr2 (but probablyy 6= a � r2 because of the
carry bits in the key addition), and the difference on LineL is z = x� (x� 5))� r1 for a
random rotation amountr1.

Also, the difference on LineA after the first round isa� 13 = w09v.

2. With some probability (denotedp) the lowest 9 bits of the differencex on LineL cancel the
low 9 bits of the differenceb on LineB. Hence, the input difference into the next round
becomesb0 = v0w009 with jv0j = 13; jw0j = 10.

3. With another2�9 probability we again have a Type-3 characteristic: the output difference on
LineR isx0 = s0010, the difference on LineM is y0 � b0 � r4 for a random rotation amount
r4, and the difference on LineL is z0 = x0 � (x0 � 5))� r3 for a random rotation amount
r3.

4. With some small probability, the differencesy andz0 cancel each other, and the differences
x and� y0 also cancel each other.

However, even if this happens, the output differencex0 on LineR of the second E-function
has ten or more ‘0’s in the lowest bits, and so it cannot cancel the low bits of the difference
w09v on LineA. Hence, some of the low nine bits inA remain non-zero, and so this charac-
teristic cannot be maintained. (Of course, we could make the assumption that the low 9 bits
in v are also ‘0’, but then we could not maintain these bits as ‘0’s).

MARS IBM submission to AES 47

-16

Type-1 characteristic
Probability 2 for aProbability 2 :

b and z cancel

-5Probability 2 :-5

r2 = 18

0
13<<<E

a’ and y’ cannot
yield 1 << 18

R
E

13<<<x=1 << 9
y=1 << r2

z=100001 << r1

b=100001c=0

E

a= 1<<18

a’= 1<<31

c’= 1<<18

d=0

x and z’ cannot cancel

z’=100001 << r1

x’=1 << 9

y’=1 << r2

D C B A

R
M
L

M
L

R

L
M

Figure 11: Second attempt to devise a characteristic of the keyed transformation.

One problem with the above attempt is that the difference on theR output line will always have
the lowest ten bits set to zero (or else there will be a different rotation amount on one of the other
lines), and hence it cannot be used to counter the effect of the fixed rotation by 13 on the source
line. Hence, in the attempts below we try to maintain characteristics in which the active rounds are
not adjacent (e.g., linesA andC).

Second attempt: Using a Type-1 characteristic of the E-function. In the next attempt we try
and keep active only the first and third rounds in each super-round, this time using a Type-1 charac-
teristic of the E-function (i.e., relying on periodic inputs). Assume that the input difference to the
keyed transformation phase is(a; b; 0; 0), wherea = 1 � 18 andb = 100001. The characteristic
is depicted in Figure 11 and it proceeds as follows:

1. With probability2�16 we get a Type-1 characteristic, which means that the output difference
on LineR is 1� 9, the output difference on LineM is 1� r2 and the output difference on
Line L is 100001 � r1, wherer1; r2 are random rotation amounts.

The difference on LineA after the first round is1� 31.

2. With probability2�5 we haver1 = 0, so the differences on linesL andB cancel each other
(assuming the carry bits behave correctly), and the second round becomes passive.

3. With probability2�5 we haver2 = 18, and then the input difference to the third round again
matches the Type-1 characteristic of the E-function.

4. With probability2�16 we again get a Type-1 characteristic, so the output difference on Line
R is 1� 9, the output difference on LineM is 1� r4 and the output difference on LineL
is 100001 � r3, wherer3; r4 are random rotation amounts.

MARS IBM submission to AES 48

E

Probability p:
z and b cancellow 9 bits cancel

Probability q:

R
E

13<<<

0

y~(a << r2)
z=(x (x<<5))<<r1

b=t010
a = vw0..0c=w’0..0v’

0

c’=v’’w’’0..0 a’ = w0..0v0d=t’0

x=s0 10

10

D C B AType-3 characteristic
Probability 2 for a

-9

L
M
R

L
M

Figure 12: Third attempt to devise a characteristic of the keyed transformation.

However, the differences on linesR of the first round (1 � 9) and LineL of the third
round (100001 � r3) cannot cancel each other, so the fourth round must also be active.
Similarly, the differences on linesA (1 � 31) and LineM of the third round (1 � r4)
cannot be combined to yield1� 18, which is what needed for a Type-1 characteristic of the
E-function.

This attempt demonstrates the difficulty of working with the Type-1 characteristic of the E-function:
not only does this characteristic have low probability (2�16), it is also very fragile in that it requires
that the input difference contains a single ‘1’ in a fixed location. This does not fare well with the
fixed rotation on the data lines.

Third attempt: Type-3 characteristics in non-adjacent rounds. Below we try to keep only
the first and third rounds active, but with the Type-3 characteristic of the E-function. Assume
that the input difference to the keyed transformation phase is(a; b; c; 0), wherea = vw09 with
jvj = 13; jwj = 10, b = t010 (with jtj = 22), andc = w009v0 with jv0j = 13; jw0j = 10 (c is
essentially a rotated version ofa). The characteristic, depicted in Figure 12, proceeds as follows:

1. The input difference on LineA matches the Type-3 characteristic in the third column of
Table 8 (wherei, which is the bit-position of the lowest ‘1’ inv, is probably no more than
one or two).

With probability at most2�9 we get a Type-3 characteristic of the E-function: the output
difference on LineR is x = s010, the difference on LineM is y � a � r2 for a random
rotation amountr2, and the difference on LineL is z = x � (x � 5)) � r1 for a random
rotation amountr1.

Also, the difference on LineA after the first round isa� 13 = w09v.

MARS IBM submission to AES 49

2. With some small probability (denotedp) the differencesy andb cancel each other. We note
thaty contains at least 5 consecutive zeros andb contains at least ten consecutive zeros, so
we can hope to getp > 2�32. We return to this point later.

If this happens, then the second round becomes passive.

3. With some other probability (denotedq) the low nine bits inc andy cancel each other. Here
we note that although bothc andy are known to have at least nine consecutive ‘0’s, the ‘0’s
in c are notin the lowest bit positions, so this does not help the cancellation.

If we get a cancellation in the low 9 bits, the input difference to the third round becomes
c0 = v00w0009 (with jv00j = 13; jw00j = 10). Notice that now the difference on LineA isw09v,
the difference on LineB is 0 and the difference on LineD is d = t0010.

Hence, we are in exactly the same situation as in the beginning of the characteristic and we
can iterate it. We note that the same characteristic (with the same probabilities) works also
for the backwards part of the keyed transformation, so in total we need eight iterations of
this characteristic.

The above is therefore a plausible characteristic for the keyed transformation phase, with probabil-
ity (2�9 �p � q)8. However, we note that the same characteristic can be usedeven if the E-function is
replaced by an ideal32! 96 expansion function, with probability(2�40)8. (For an ideal function
we have probability2�31 that the value on LineB cancels and probability2�9 that the lowest nine
bits on LineC cancel). Hence, this characteristic is useful to the cryptanalyst only if we can get
2�9 � p � q� 2�40.

To get a large valueq (the probability of cancelling the low 9 bits inc = w009v0) we can start with
the differencesa andc havinglow Hamming weight. In this case alsoy � a � r2 will have low
Hamming weight, and if the rotation amountr2 is correct then we have a pretty good chance of
cancellation. We therefore use the valueq = 2�5 in the calculations below.

As for the value ofp, this is the probability that the differencesz and b cancel each other. In
general, in this characteristic the differenceb is the output difference on theR line of E-function in
some active round andz is the output difference on theL line of E-function in some other active
round. Hence in general:

� The differenceb is of the formt010, wheret is determined by the output distribution of the
data-key multiplication.

� The differencez is of the form(x � (x � 5)) � r, with x being theR output from this
‘other active round’ andr is a random rotation amount.

So far we still do not have a rigorous analysis of the xor differential behavior of the data-key
multiplication output, and so we cannot devise a rigorous bound forp. Instead, below we give a
very informal argument that it is unlikely to getp > 2�16. First, since the low ten bits ofb are
zeros, there is likely to be at most a single rotation amountr that causesb andy to cancel. Then,
sinceb; x each contains about 22 non-zero bits, we estimate by at most2�11 the probability that
these bits are chosen in such a way so thatb and(x � (x � 5)) � r actually cancel. Hence, we
conjecture thatp � 2�16.

MARS IBM submission to AES 50

With these values forp; q, we have2�9 � p � q = 2�30 which is only slightly better than the2�40

we get for an ideal function. The probability of the characteristic on the full keyed transformation
phase is therefore about2�30�8 = 2�240.

Can we do better? Below we give very informal arguments to the effect that the above charac-
teristic is the best possible for MARS. We note the following

� To get a high-probability characteristic, one must use as few active rounds as possible. It is
very unlikely that there exists a characteristic of the keyed transformation phase with less
than two active rounds per super-round.

� Characteristics of the E-function with different rotation amounts on either lineL or LineM
have very low probability (except, perhaps, the Type-1 characteristic from Table 8). Hence it
is unlikely that one can devise a high-probability characteristic of the keyed transformation
using such characteristics of the E-function.

Regarding the Type-1 characteristic in Table 8, it requires exactly one ‘1’ in a particular
position in the input difference. As was demonstrated by the second attempt from above, this
cannot be maintained in the face of the fixed rotation amounts on the data lines in MARS.

� It is also unlikely that one can devise a high-probability characteristic including a difference
in the S-box input and output (such as the Type-2 characteristic in Table 8), since the S-box
output differences in general do not match any of the input differences in Table 8.

� Hence it seems that one must use the Type-3 characteristic of the E-function as the main
building block for a characteristic of the keyed transformation.

� To maintain only two active rounds per super-round, one must arrange the outputs of the E-
function in different rounds in pairs, so that in half of these pairs the two outputs completely
cancel each other (with high probability) and in the other half the low 9 bits are cancelled.

As was demonstrated in the first attempt above, it is not possible to have two adjacent rounds
as the only active rounds in a super-round. This is because theR output line of the E-function
cannot be used to cancel the low nine bits of another line (as its lowest ten bits are ‘0’).

Hence, one must have theR andL lines cancel each other, and theM line cancel the low
nine bits in the input line (after the rotation by 13). As was demonstrated in the last attempt
from above, this leads to a characteristic with probability� 2�240.

Although the arguments above are quite speculative, we expect that the conclusion is still correct.
Hence we estimate the security level of the keyed transformation phase against differential analysis
to be at least2240. We comment that the data complexity which is associated with the above “best
characteristic” is at least2120, and its key probability is at most2�120.

Devising a bound. Below we also provide a crude and much more conservative bound for the
keyed transformation phase. For this bound we make only very weak assumptions on the way that
characteristics of the E-function can be combined to construct a characteristic of the entire phase.
Specifically, we assume that

MARS IBM submission to AES 51

1. Every characteristic of the keyed transformation uses at least two active rounds per super-
round.

2. Every active E-function contributes a factor� 2�12 to the differential probability (taken over
both data and keys). This is because the highest-probability characteristic of the E-function
has probability2�9, and each round contains three addition operations, each contributing (at
least) one more factor of1=2.

3. Among the four random rotation amounts in each super-round, two must be fixed to specific
amounts and the other two must be aligned. This contributes another factor of2�15 for each
super-round.

With these assumptions, we get a bound of2�12�8 � 2�15�4 = 2�156 on the probability of every
characteristic of the keyed transformation. This bound implies data complexity of at least280 and
key probability of at most2�76.

4.2.4 Analysis of the mixing phases

The purpose of the mixing phases in MARS is twofold:

� They provide better avalanche of the key bits than the keyed transformation, in the sense
that stripping off mixing rounds requires guessing more effective key bits than stripping off
rounds from the core.

� They are likely to break “input structures” that may be used in conjunction with the dif-
ferential characteristics of the keyed transformation. For example, the differential analysis
above suggests that input differences of small Hamming weight are useful in constructing
characteristics of the keyed transformation. Therefore a potential attack may proceed by
encrypting many plaintext blocks which lie in a Hamming sphere of small radius. Such a
sphere ofn words produces

�
n
2

�
input pairs of small Hamming weight. This fact may be

used to considerably reduce the data complexity of a differential attack.

However, the mixing phases, being built out of S-boxes, make it harder to propagate such
structures to the keyed transformation.

To gain some intuition into the structure of the mixing phase (and to explain some of the choices
made in the design), we illustrate below two “sample attacks”, on weakened versions of the mixing
phase. To make the description of these attacks simpler, we consider a version of the mixing
phase in which all the additions are replaced by xors (although similar attacks with slightly lower
probabilities can also be devised against versions which include additions).

The role of the feedback additions. Recall that in the mixing phases we add one of the target
words back into the source word after some of the mixing round. To demonstrate the importance
of these “feedback additions” we describe below a simple attack against a version of the mixing
phase which does not have these additions.

MARS IBM submission to AES 52

A

>>>24

0 0

>>>24

>>>24

>>>24

>>>24

>>>24

>>>24

c=

c’=

b=0 a=0d=

d’=0 >>>24

(δ,0,0,0)

(0,δ,0,0)

(0,0,δ,0)∆1

∆1

∆0

∆0

D BC

Figure 13: An attack on the mixing phase without the feedback additions.

MARS IBM submission to AES 53

Let�0 = S0[i]�S0[j] be a difference of the S-boxS0 which matches the Type-3 characteristic of
the E-function (third column in Table 8) and has minimum Hamming weight, and denote� = i� j
and�1 = S1[i]� S1[j]. The attack, described in Figure 13, proceeds as follows:

1. We feed differences of 0 in LinesA andB, difference�1 in LineD, and on LineC we feed
differences of 0 in Bytes 0,2,3, and difference� in Byte 1.

2. The difference� is fed to the S-boxS1 in the third round. With probability2�8 the output
difference is�1, and this cancels with the difference on LineD, leaving a difference of 0.
Also, since the source word is rotated by 24 positions to the right, the difference on LineC
is now in Byte 2.

3. The difference� is now fed to the S-boxS0 in the seventh round. With another probability
2�8 the output difference is�0. LineC is rotated again, so the difference is now in Byte 3.

4. Therefore, with probability of2�16, the output difference on LineA is �0, the difference on
LinesB andD is 0 and the difference on LineC is 0 in Bytes 0,1,2, and� in Byte 3.

The property which enables the above attack is the following: Consider the 32 S-box lookups
during this phase, and call an S-box lookup “free” if the value which is affected by this lookup was
not used anywhere else thus far. Then, the structure above has free S-box lookups almost until the
end of the first super-round (specifically, the 10’th lookup is still free). Hence, one reason for the
feedback additions is to eliminate free lookups as early as possible. Indeed, in the actual structure
of the mixing phase, the 6’th S-box lookup is the last free lookup.

Avoiding weaknesses in the S-box. Even with the feedback additions, one must be careful to
ensure that the mixing phase is not suseptible to attacks due to weaknesses in the S-box. Below we
describe one such potential attack. The following attack also explains why we insist that S-boxes
S0 andS1 do not include any differences with more than a single zero byte.

The attack is described in Figure 14. Assume that the S-boxS1 contains two entriesi; j such that
�1 = S1[i]�S1[j] is zero in the two highest bytes, and denote� = i� j and�0 = S0[i]�S0[j].
The attack proceeds as follows:

1. Set the input differences on LinesB;D to 0, the difference on LineC to �0 and the differ-
ence on LineA to 0 in Bytes 0,1,3 and� in Byte 2.

2. With probability2�8, the output difference from the S-boxS0 in the first round will be�0,
and this will cancel the difference on LineC, leaving a difference of 0.

Also, the rotation of LineA leaves the difference in Byte 3.

3. With probability2�8, the output difference from the S-boxS1 in the fifth round will be�1.
This will cause the difference in LineD to be�1, which after the feedback addition will also
modify LineA.

4. In the last round, the difference on LineD will affect the first two S-box lookups, so the
difference on LineA will change again. Also, the rotation of LineD will leave the first and
last bytes with difference 0.

MARS IBM submission to AES 54

>>>24

>>>24

>>>24

>>>24∆1

>>>24

>>>24

∗

>>>24

*
*

>>>24

c= b=0

D BC A

a= (0,δ,0,0)∆0

a’= (δ,0,0,0)

∆0

d=0

c’=0

d’= ∆1=(0,0,∗,∗)

0(0,∗,∗,0) 0

Figure 14: An attack on the mixing phase with a weak S-box.

MARS IBM submission to AES 55

5. Therefore, with probability2�16 the output differences on LinesB andC are 0, the out-
put difference on LineA is “random” and the output difference on LineD is of the form
(0; ?; ?; 0). (Notice that in particular, with additional probability2�10, the differences on
both LinesA andD have the lowest nine bits set to zero.)

The reason that this attack works is that when we have a difference of just two bytes in the S-box,
it is possible that these two bytes are used for S-box lookups that affect the same data line. Hence,
although the output difference from the S-box is fed back as input difference to the S-boxes, it still
only affects a single data line.

Therefore, in the S-box generation process we made sure that any two entries inS0; S1 differ in
at least three of the four bytes. This way, if the output difference from an S-box is used again as
input to the S-boxes, we are guaranteed that at least two data lines are affected.

Expected strength. With the current structure of the mixing phase and the values in the S-box,
we are not aware of any characteristic of the mixing phase which holds with probability of more
than 2�32. To devise a bound, we note that due to the feedback additions there could be no
characteristic which uses less than two S-box lookups. Adding to that the additional effects of
the carry bits, we claim a bound of2�20 on the probability of any characteristic of the mixing
round. Together with our estimate/bound for the keyed transformation, this gives us an estimate of
2240 � 220 � 220 = 2280 and a bound of2156 � 220 � 220 = 2196 for the security-level of MARS with
respect to differential attacks.

4.3 Other issues

Weak/equivalent keys. As far as we know, MARS does not have any weak keys: the key expan-
sion procedure guarantees that the key words which are used for multiplication do not have any
obvious weaknesses (e.g., they are not even), and we are aware of no other source of weak keys.
Because of this, we put no restrictions on the key selection.

Also, in all likelihood MARS does not have any equivalent keys: it is highly unlikely that any
two different 40-word keys have the same behavior, and the key expansion process is “random
enough” so that it is highly unlikely that any two different keys yield the same expanded key array.
To see the last point, notice that in the key expansion routine is completely reversible up to (and
including) the reordering of the key words. The only operation which may result in collisions is
the “key fixing”, where we ignore the lowest two bits in some of the key words. Recall now that
the expanded key has about21248 effective bits, and so the expected number of pairs of original
n-bit keys that are mapped to the same expanded array is about

2n

2

!
=21248 � 22n�1249

Therefore, as long as the original key is less than about 600 bits, it is highly unlikely that any pair
of keys result in the same expanded array. Similar arguments show that it is just as unlikely that
any MARS-key is its own inverse, that two MARS keys are inverses of each other, or that two keys
have complementation properties.

MARS IBM submission to AES 56

No trapdoors. MARS was designed to be free of trapdoors. To help ensure this, we made the
design of the S-box according to open principles, and once these principles are set, the choice of
S-box was completely deterministic. As far as we know MARS does not have any trapdoors.

Resistance to Visual Cryptanalysis. Recently, Adi Shamir demonstrated that simple photogra-
phy equipment can be used to considerably speed-up an exhaustive key search of some ciphers
[13]. However, he noted that this technique is not efficient against ciphers which rely on data-
dependent rotations (or other operations with boolean complexity). Since MARS relies heavily on
such operations, it is expected that Visual Cryptanalysis is not very useful against MARS.

Timing attacks and Differential fault analysis. With a proper implementation, MARS should
be resilient to timing attacks and differential fault analysis. We note that although in older ma-
chines the multiplication time varies widely between different inputs, our key-expansion routine
eliminates exactly those keys for which multiplication works much faster (i.e., those with many
consecutive 0’s or 1’s).

Algebraic properties. It is very unlikely that MARS has any algebraic properties. In particular,
it is almost surely not a group.

5 Extensions (2.B.6)

5.1 Increasing the block length

Though MARS was designed for a block length of 128 bits, a similar design can be used also for
larger blocks. Below we discuss some options for extending the current design to support block
length of 256 bits.

Applying generic constructions. There are a few generic constructions which can be used to
increase the block length of any cipher. For example, one may use the construction of Naor-
Reingold [11], in which a 256-bit block is processed by two invocations of the 128-bit cipher in
ECB mode, wrapped between two layers of invertible universal hashing. We estimate that applying
this technique to MARS, using fast methods for universal hashing (such as the ones in [6]) yields
a cipher with block length of 256 bits that runs in about half the speed of MARS.

Increasing the number of rounds. One way to alter the current design in order to support a
block length of 256 bits, is by keeping the same round functions and increasing the number of
rounds. Namely, instead of working with four 32-bit words we may work with eight 32-bit words,
but still use the same round functions (with one source word and three target words), where in
roundi we useD[i] as the source word andD[i+1];D[i+2];D[i+3] as the target words (where
the index arithmetic is done modulo eight). This, of course, forces us to at least double the number

MARS IBM submission to AES 57

of rounds. More analysis needs to be done to determine if doubling the number of rounds is enough
to get a sufficient level of security.

Working with 64-bit words. An alternative approach to increasing the block length is to increase
the word length. Namely, instead of working with four 32-bit words, we may work with four 64-bit
words. This change would have almost no effect on the design of the E-function and the keyed
transformation phase, except that we would have to adjust the fixed rotation amounts. However, it
would require a re-design of the mixing phases, since each word now has 8 bytes rather than 4, so
we need many more S-box lookups.

5.2 Modes of operation

Block ciphers are routinely used as “building blocks” in the design of other cryptographic al-
gorithms, including collision-resistant hash functions, pseudo-random number generators, stream
ciphers, and message authentication codes (MACs). There are standard ways of adapting a block
cipher for these applications, and MARS can be used in any of these ways. The underlying security
of these constructed modes rests on the assumption that the block cipher simulates the behavior
of a random permutation. The good cryptographic properties of MARS ensure that such construc-
tions are strong when the underlying block cipher is instantiated with MARS. Below we briefly
review some of these constructions.

Collision resistant hash functions. In the following we assume a 128-bit block and 128-bit key
cipherE like MARS. We denote the ciphertext block resulting from encryptingx with key k by
Ek(x). Before processing, an input stringx is always padded as necessary to make its length a
multiple of128 (for example a1 and then extra0’s can be added tox). In the following we assume
that the length ofx is a multiple of 128, i.e.x = x1 : : : x` where eachxi is a 128-bit block and
that we use some fixed 128-bit block as an initial valueIV . Some known constructions of hash
functions include:

MEYER HASH. Define recursivelyH0 = IV andHi = EHi�1
(xi) � xi. The hash ofx is defined

asH(x) = H`.

DAVIES HASH. Define recursivelyH0 = IV andHi = Exi
(Hi�1) � Hi�1. The hash ofx is

defined asH(x) = H`.

MIYAGUCHI -PRENEEL HASH. Define recursivelyH0 = IV andHi = EHi�1
(xi) � xi � Hi�1.

The hash ofx is defined asH(x) = H`.

When instantiated with a secure block-cipher such as MARS, the above constructions result in
secure 128-bit collision resistant hash functions (meaning that the best strategy to find a collision,
i.e. two stringx 6= y such thatH(x) = H(y) would involve� 264 operations). If a longer hash
code is desired then one could use the ISO/IEC Standard 10118-2 which results in a hash code
whose length is two ciphertext blocks (e.g. 256 bits in the case of MARS).

MARS IBM submission to AES 58

In general, block-cipher based hash functions are not as efficient as customized ones (e.g. the
MDX-family). There are several reasons for this, one of them being the need to re-key the algo-
rithm E at each stage. This is true also whenE is instantiated with MARS. However for MARS
the penalty is limited as the cost of re-keying is bounded by 10 times the cost of encrypting a block.

Pseudo-random number generation. Pseudo-random number generators (PRNGs) are created
out of a block cipherE by running it in various specific modes of operation. In each such mode,r
is a parameter1 � r � 128 that specifies how many bits should be taken as pseudo-random from
any specific iteration of the block cipherE. Given a 128-bit wordw we denote bywjr the leftmost
r-bits ofw.

COUNTER MODE. In this mode the seed is the keyk and the sequencea1; a2; : : : of r-bit numbers
is generated asai = Ek(i)jr.

OUTPUT FEEDBACK MODE. In this mode the seed is the keyk and the sequencea1; a2; : : : of
r-bit numbers is generated asai = Ei

k(IV)jr whereIV is a fixed constant (or can be part of the
seed), andEi

k(IV) denotes the 128-bit word obtained by successively encryptingIV i times.

Other methods have been proposed in the literature to generate strong PRNGs from a block cipher
(for example see the method cited in the ANSI Standard X9.31-1998).

Stream Ciphers. A cryptographically strong PRNG automatically yields a good stream cipher:
if ai is theith bit output by the PRNG then one can use it to mask theith bit mi of the message
stream by transmittingci = mi � ai. Thus the above two modes also constitute good implementa-
tions of stream ciphers.

CIPHER FEEDBACK MODE. This mode of operation for a block cipher can be used to implement
a stream cipher (but it’s not a PRNG since it uses previous bits derived from the input stream to
modify the subsequent mask bits.) The CFB mode works as follows: define initiallyx0 = IV ,
w0 = Ek(x0)jr andc0 = m0 � w0 wherem0 are the firstr bits in the input stream. Then define
recursivelyxi = (xi�1jci�1)127::0 (that is, the lowest 128 bits in the concatenation ofxi�1 andci�1)
andwi = Ek(xi)jr andci = mi � wi, wheremi is theith r-bit block in the input stream. The
encrypted stream isc0; c1; :::

Message authentication codes (MACs). Block ciphers are used in two basic ways to generate
MACs.

CBC-MAC. In this method, the messagem to be tagged is encrypted in CBC mode using the
block cipherE, but the tag consists only of half of the bits of the last encrypted block. That is, if
m = m1 : : :m` wheremi’s are 128-bit blocks, andc = c1 : : : c` is the CBC encryption ofm using
E with keyk, thenMACk(m) = c`j64.

CARTER-WEGMAN MACS [14]. In this method the keyk is split in two partsk1; k2. The first
subkeyki is used to pick a hash functionHk1 from a universal family and the second is used as
a key for the encryption. (A family of hash functions is universal if the probability of getting

MARS IBM submission to AES 59

a collision for any two specific pre-images when picking a random function from the family is
small.) The messagem is first hashed down by computingh = Hk1(m). The valueh should
be of the same length as the block used by the cipher. Then the tag is computed asc = Ek2(h).
Alternatively, the tag for thei’th message can be computed asc = Ek2(i)� h.

Acknowledgments

We thank Dr. Brian Gladman for pointing out to us a few errors in the original version of this
document.

References

[1] C.M. Adams. “Constructing symmetric ciphers using the CAST design procedure”. Designs,
Codes and Cryptography, 12(3):283-316, November 1997.

[2] W. Becker, “Method And System For Machine Enciphering And Deciphering” U.S. Patent
No. 4157454, 1979.

[3] E. Biham and A. Shamir, “Differential cryptanalysis of the data encryption standard”,
Springer-Verlag, 1993.

[4] FIPS 46, “Data encryption standard”, Federal Information Processing Standards Publication
46, U.S. Department of Commerce/National Bureau of Standards, National Technical Infor-
mation Service, Springfield, Virginia, 1977 (revised as FIPS 46-1:1988; FIPS 46-2:1993).

[5] A. Biryukov and E. Kushilevitz, “Improved cryptanalysis of RC5”,Advances in Cryptology,
EUROCRYPT 98, Lecture Notes in Computer Science, vol. 1403,K. Nyberg ed., Springer-
Verlag, pages 85–99, 1998.

[6] S. Halevi and H. Krawczyk, “MMH: software message authentication in the Gbit/sec rates”,
Proceedings of 4th FSE workshop, Lecture Notes in Computer Science, vol. 1267, Springer-
Verlag, 1997, pages 172-189.

[7] X. Lai, J.Massey and S. Murphy, “Markov ciphers and differential cryptanalysis”, Proceed-
ings of Eurocrypt ’91, pages 17-38.

[8] W.E. Madryga, “A high performance encryption algorithm”, Computer security: a global
challenge, Elsevier Science Publishers, 1984, pages 557-570.

[9] M. Matsui. “Linear cryptanalysis method for DES cipher”.Advances in Cryptology, EURO-
CRYPT 93, Lecture Notes in Computer Science, vol. 765,T. Helleseth ed., Springer-Verlag,
pages 386–397, 1994.

[10] S. Moriai, K. Aoki, and K. Ohta. Key-dependency of linear probability of RC5.IEICE Trans.
Fundamentals, E80-A(1):9–18, 1997.

MARS IBM submission to AES 60

[11] M. Naor and O. Reingold, “On the construction of pseudo-random permutations: Luby-
Rackoff Revisited”, Proceedings of the 29’th ACM Symposium on Theory of Computing,
1997, pages 189-199.

[12] R. Rivest, “The RC5 Encryption Algorithm” K.U. Leuven workshop on cryptographic algo-
rithms, Springer-Verlag, 1995.

[13] A. Shamir, “Visual Cryptanalysis”,Advances in Cryptology, EUROCRYPT 98, Lecture Notes
in Computer Science, vol. 1403,K. Nyberg ed., Springer-Verlag, pages 201–210, 1998.

[14] M. Wegman. and L. Carter. New hash functions and their use in authentication and set equal-
ity. J. of Computer and System Sciences,vol. 22, 1981, pp. 265-279.

A S-box

Below is the S-box we use in the cipher.

WORD Sbox[] = {
0x09d0c479, 0x28c8ffe0, 0x84aa6c39, 0x9dad7287, 0x7dff9be3, 0xd4268361,
0xc96da1d4, 0x7974cc93, 0x85d0582e, 0x2a4b5705, 0x1ca16a62, 0xc3bd279d,
0x0f1f25e5, 0x5160372f, 0xc695c1fb, 0x4d7ff1e4, 0xae5f6bf4, 0x0d72ee46,
0xff23de8a, 0xb1cf8e83, 0xf14902e2, 0x3e981e42, 0x8bf53eb6, 0x7f4bf8ac,
0x83631f83, 0x25970205, 0x76afe784, 0x3a7931d4, 0x4f846450, 0x5c64c3f6,
0x210a5f18, 0xc6986a26, 0x28f4e826, 0x3a60a81c, 0xd340a664, 0x7ea820c4,
0x526687c5, 0x7eddd12b, 0x32a11d1d, 0x9c9ef086, 0x80f6e831, 0xab6f04ad,
0x56fb9b53, 0x8b2e095c, 0xb68556ae, 0xd2250b0d, 0x294a7721, 0xe21fb253,
0xae136749, 0xe82aae86, 0x93365104, 0x99404a66, 0x78a784dc, 0xb69ba84b,
0x04046793, 0x23db5c1e, 0x46cae1d6, 0x2fe28134, 0x5a223942, 0x1863cd5b,
0xc190c6e3, 0x07dfb846, 0x6eb88816, 0x2d0dcc4a, 0xa4ccae59, 0x3798670d,
0xcbfa9493, 0x4f481d45, 0xeafc8ca8, 0xdb1129d6, 0xb0449e20, 0x0f5407fb,
0x6167d9a8, 0xd1f45763, 0x4daa96c3, 0x3bec5958, 0xababa014, 0xb6ccd201,
0x38d6279f, 0x02682215, 0x8f376cd5, 0x092c237e, 0xbfc56593, 0x32889d2c,
0x854b3e95, 0x05bb9b43, 0x7dcd5dcd, 0xa02e926c, 0xfae527e5, 0x36a1c330,
0x3412e1ae, 0xf257f462, 0x3c4f1d71, 0x30a2e809, 0x68e5f551, 0x9c61ba44,
0x5ded0ab8, 0x75ce09c8, 0x9654f93e, 0x698c0cca, 0x243cb3e4, 0x2b062b97,
0x0f3b8d9e, 0x00e050df, 0xfc5d6166, 0xe35f9288, 0xc079550d, 0x0591aee8,
0x8e531e74, 0x75fe3578, 0x2f6d829a, 0xf60b21ae, 0x95e8eb8d, 0x6699486b,
0x901d7d9b, 0xfd6d6e31, 0x1090acef, 0xe0670dd8, 0xdab2e692, 0xcd6d4365,
0xe5393514, 0x3af345f0, 0x6241fc4d, 0x460da3a3, 0x7bcf3729, 0x8bf1d1e0,
0x14aac070, 0x1587ed55, 0x3afd7d3e, 0xd2f29e01, 0x29a9d1f6, 0xefb10c53,
0xcf3b870f, 0xb414935c, 0x664465ed, 0x024acac7, 0x59a744c1, 0x1d2936a7,
0xdc580aa6, 0xcf574ca8, 0x040a7a10, 0x6cd81807, 0x8a98be4c, 0xaccea063,
0xc33e92b5, 0xd1e0e03d, 0xb322517e, 0x2092bd13, 0x386b2c4a, 0x52e8dd58,
0x58656dfb, 0x50820371, 0x41811896, 0xe337ef7e, 0xd39fb119, 0xc97f0df6,
0x68fea01b, 0xa150a6e5, 0x55258962, 0xeb6ff41b, 0xd7c9cd7a, 0xa619cd9e,
0xbcf09576, 0x2672c073, 0xf003fb3c, 0x4ab7a50b, 0x1484126a, 0x487ba9b1,

MARS IBM submission to AES 61

0xa64fc9c6, 0xf6957d49, 0x38b06a75, 0xdd805fcd, 0x63d094cf, 0xf51c999e,
0x1aa4d343, 0xb8495294, 0xce9f8e99, 0xbffcd770, 0xc7c275cc, 0x378453a7,
0x7b21be33, 0x397f41bd, 0x4e94d131, 0x92cc1f98, 0x5915ea51, 0x99f861b7,
0xc9980a88, 0x1d74fd5f, 0xb0a495f8, 0x614deed0, 0xb5778eea, 0x5941792d,
0xfa90c1f8, 0x33f824b4, 0xc4965372, 0x3ff6d550, 0x4ca5fec0, 0x8630e964,
0x5b3fbbd6, 0x7da26a48, 0xb203231a, 0x04297514, 0x2d639306, 0x2eb13149,
0x16a45272, 0x532459a0, 0x8e5f4872, 0xf966c7d9, 0x07128dc0, 0x0d44db62,
0xafc8d52d, 0x06316131, 0xd838e7ce, 0x1bc41d00, 0x3a2e8c0f, 0xea83837e,
0xb984737d, 0x13ba4891, 0xc4f8b949, 0xa6d6acb3, 0xa215cdce, 0x8359838b,
0x6bd1aa31, 0xf579dd52, 0x21b93f93, 0xf5176781, 0x187dfdde, 0xe94aeb76,
0x2b38fd54, 0x431de1da, 0xab394825, 0x9ad3048f, 0xdfea32aa, 0x659473e3,
0x623f7863, 0xf3346c59, 0xab3ab685, 0x3346a90b, 0x6b56443e, 0xc6de01f8,
0x8d421fc0, 0x9b0ed10c, 0x88f1a1e9, 0x54c1f029, 0x7dead57b, 0x8d7ba426,
0x4cf5178a, 0x551a7cca, 0x1a9a5f08, 0xfcd651b9, 0x25605182, 0xe11fc6c3,
0xb6fd9676, 0x337b3027, 0xb7c8eb14, 0x9e5fd030,
0x6b57e354, 0xad913cf7, 0x7e16688d, 0x58872a69, 0x2c2fc7df, 0xe389ccc6,
0x30738df1, 0x0824a734, 0xe1797a8b, 0xa4a8d57b, 0x5b5d193b, 0xc8a8309b,
0x73f9a978, 0x73398d32, 0x0f59573e, 0xe9df2b03, 0xe8a5b6c8, 0x848d0704,
0x98df93c2, 0x720a1dc3, 0x684f259a, 0x943ba848, 0xa6370152, 0x863b5ea3,
0xd17b978b, 0x6d9b58ef, 0x0a700dd4, 0xa73d36bf, 0x8e6a0829, 0x8695bc14,
0xe35b3447, 0x933ac568, 0x8894b022, 0x2f511c27, 0xddfbcc3c, 0x006662b6,
0x117c83fe, 0x4e12b414, 0xc2bca766, 0x3a2fec10, 0xf4562420, 0x55792e2a,
0x46f5d857, 0xceda25ce, 0xc3601d3b, 0x6c00ab46, 0xefac9c28, 0xb3c35047,
0x611dfee3, 0x257c3207, 0xfdd58482, 0x3b14d84f, 0x23becb64, 0xa075f3a3,
0x088f8ead, 0x07adf158, 0x7796943c, 0xfacabf3d, 0xc09730cd, 0xf7679969,
0xda44e9ed, 0x2c854c12, 0x35935fa3, 0x2f057d9f, 0x690624f8, 0x1cb0bafd,
0x7b0dbdc6, 0x810f23bb, 0xfa929a1a, 0x6d969a17, 0x6742979b, 0x74ac7d05,
0x010e65c4, 0x86a3d963, 0xf907b5a0, 0xd0042bd3, 0x158d7d03, 0x287a8255,
0xbba8366f, 0x096edc33, 0x21916a7b, 0x77b56b86, 0x951622f9, 0xa6c5e650,
0x8cea17d1, 0xcd8c62bc, 0xa3d63433, 0x358a68fd, 0x0f9b9d3c, 0xd6aa295b,
0xfe33384a, 0xc000738e, 0xcd67eb2f, 0xe2eb6dc2, 0x97338b02, 0x06c9f246,
0x419cf1ad, 0x2b83c045, 0x3723f18a, 0xcb5b3089, 0x160bead7, 0x5d494656,
0x35f8a74b, 0x1e4e6c9e, 0x000399bd, 0x67466880, 0xb4174831, 0xacf423b2,
0xca815ab3, 0x5a6395e7, 0x302a67c5, 0x8bdb446b, 0x108f8fa4, 0x10223eda,
0x92b8b48b, 0x7f38d0ee, 0xab2701d4, 0x0262d415, 0xaf224a30, 0xb3d88aba,
0xf8b2c3af, 0xdaf7ef70, 0xcc97d3b7, 0xe9614b6c, 0x2baebff4, 0x70f687cf,
0x386c9156, 0xce092ee5, 0x01e87da6, 0x6ce91e6a, 0xbb7bcc84, 0xc7922c20,
0x9d3b71fd, 0x060e41c6, 0xd7590f15, 0x4e03bb47, 0x183c198e, 0x63eeb240,
0x2ddbf49a, 0x6d5cba54, 0x923750af, 0xf9e14236, 0x7838162b, 0x59726c72,
0x81b66760, 0xbb2926c1, 0x48a0ce0d, 0xa6c0496d, 0xad43507b, 0x718d496a,
0x9df057af, 0x44b1bde6, 0x054356dc, 0xde7ced35, 0xd51a138b, 0x62088cc9,
0x35830311, 0xc96efca2, 0x686f86ec, 0x8e77cb68, 0x63e1d6b8, 0xc80f9778,
0x79c491fd, 0x1b4c67f2, 0x72698d7d, 0x5e368c31, 0xf7d95e2e, 0xa1d3493f,
0xdcd9433e, 0x896f1552, 0x4bc4ca7a, 0xa6d1baf4, 0xa5a96dcc, 0x0bef8b46,
0xa169fda7, 0x74df40b7, 0x4e208804, 0x9a756607, 0x038e87c8, 0x20211e44,
0x8b7ad4bf, 0xc6403f35, 0x1848e36d, 0x80bdb038, 0x1e62891c, 0x643d2107,
0xbf04d6f8, 0x21092c8c, 0xf644f389, 0x0778404e, 0x7b78adb8, 0xa2c52d53,

MARS IBM submission to AES 62

0x42157abe, 0xa2253e2e, 0x7bf3f4ae, 0x80f594f9, 0x953194e7, 0x77eb92ed,
0xb3816930, 0xda8d9336, 0xbf447469, 0xf26d9483, 0xee6faed5, 0x71371235,
0xde425f73, 0xb4e59f43, 0x7dbe2d4e, 0x2d37b185, 0x49dc9a63, 0x98c39d98,
0x1301c9a2, 0x389b1bbf, 0x0c18588d, 0xa421c1ba, 0x7aa3865c, 0x71e08558,
0x3c5cfcaa, 0x7d239ca4, 0x0297d9dd, 0xd7dc2830, 0x4b37802b, 0x7428ab54,
0xaeee0347, 0x4b3fbb85, 0x692f2f08, 0x134e578e, 0x36d9e0bf, 0xae8b5fcf,
0xedb93ecf, 0x2b27248e, 0x170eb1ef, 0x7dc57fd6, 0x1e760f16, 0xb1136601,
0x864e1b9b, 0xd7ea7319, 0x3ab871bd, 0xcfa4d76f, 0xe31bd782, 0x0dbeb469,
0xabb96061, 0x5370f85d, 0xffb07e37, 0xda30d0fb, 0xebc977b6, 0x0b98b40f,
0x3a4d0fe6, 0xdf4fc26b, 0x159cf22a, 0xc298d6e2, 0x2b78ef6a, 0x61a94ac0,
0xab561187, 0x14eea0f0, 0xdf0d4164, 0x19af70ee

};

B Pseudo-code for decryption

MARS-decrypt(input:D[];K[])

Phase (I): Forward mixing

1. // First add subkeys to data
2. for i = 0 to 3 do
3. D[i] = D[i] +K[36 + i]
4. // Then do eight rounds of forward mixing
5. for i = 7 down to 0 do
6. // rotateD[] by one word to the left for this round
7. (D[3];D[2];D[1];D[0]) (D[2];D[1];D[0];D[3])
8. // and rotate of the source word to the right
9. D[0] = D[0]� 24
10. // four S-box look-ups
11. D[3] = D[3]� S0[2nd byte ofD[0]]
12. D[3] = D[3] + S1[3rd byte ofD[0]]
13. D[2] = D[2] + S0[high byte ofD[0]]
14. D[1] = D[1]� S1[low byte ofD[0]]
15. // followed by additional mixing operations
16. if i = 2 or 6 then
17. D[0] = D[0] +D[3] // addD[3] back to the source word
18. if i = 3 or 7 then
29. D[0] = D[0] +D[1] // addD[1] back to the source word
20. end-for

Phase (II): Keyed transformation

21. // Do 16 rounds of keyed transformation

MARS IBM submission to AES 63

22. for i = 15 down to 0 do
23. // rotateD[] by one word to the left for this round
24. (D[3];D[2];D[1];D[0]) (D[2];D[1];D[0];D[3])
25. D[0] = D[0]� 13
26. (out1; out2; out3) = E-function(D[0];K[2i+ 4];K[2i+ 5])
27. D[2] = D[2]� out2
28. if i < 8 then // last 8 rounds in forward mode
29. D[1] = D[1]� out1
30. D[3] = D[3]� out3
31. else // first 8 rounds in backwards mode
32. D[3] = D[3]� out1
33. D[1] = D[1]� out3
34. end-if
35. end-for

Phase (III): Backwards mixing

36. // Do eight rounds of backwards mixing
37. for i = 7 down to 0 do
38. // rotateD[] by one word to the left for this round
39. (D[3];D[2];D[1];D[0]) (D[2];D[1];D[0];D[3])
40. // additional mixing operations
41. if i = 0 or 4 then
42. D[0] = D[0]�D[3]// subtractD[3] from source word
43. if i = 1 or 5 then
44. D[0] = D[0]�D[1]// subtractD[1] from source word
45. // and rotation of the source word to the left
46. D[0] = D[0]� 24
47. // four S-box look-ups
48. D[3] = D[3]� S1[high byte ofD[0]]
49. D[2] = D[2]� S0[3rd byte ofD[0]]
50. D[1] = D[1]� S1[2nd byte ofD[0]]
51. D[1] = D[1]� S0[low byte ofD[0]]
52. end-for
53. // Then subtract subkeys from data
54. for i = 0 to 3 do
55. D[i] = D[i]�K[i]

