
STATUS REPORT
ON THE FIRST ROUND OF THE

DEVELOPMENT OF THE
ADVANCED ENCRYPTION STANDARD

James Nechvatal,
Elaine Barker, Donna Dodson, Morris Dworkin, James Foti, Edward Roback

Computer Security Division
Information Technology Laboratory

National Institute of Standards and Technology

Abstract:
In 1997, the National Institute of Standards and Technology (NIST) initiated a process to
select a symmetric-key encryption algorithm to be used to protect sensitive (unclassified)
Federal information in furtherance of NIST’s statutory responsibilities. In 1998, NIST
announced the acceptance of fifteen candidate algorithms and requested the assistance of
the cryptographic research community in analyzing the candidates. This analysis included
an initial examination of the security and efficiency characteristics for each algorithm.
NIST has reviewed the results of this research and selected five algorithms (MARS,
RC6™, Rijndael, Serpent and Twofish) as finalists. The research results and rationale
for the selection of the finalists are documented in this report. The five finalists will be
the subject of further study before the selection of one or more of these algorithms for
inclusion in the Advanced Encryption Standard.

Key words: Advanced Encryption Standard (AES), cryptography, cryptanalysis,
cryptographic algorithms, encryption.

Table of Contents:
1. Overview of the Development Process for the Advanced Encryption Standard and

Summary of Round 1 Evaluations .. 3
1.1 Evaluation Criteria ... 3
1.2 Results from Round 1 .. 4
1.3 Selection Process Prior to Round 2.. 5
1.4 Round 2 Finalists ... 6
1.5 Next Steps .. 7

2. Technical Details of the Round 1 Analysis... 8
2.1 Abbreviations... 8
2.2 Organization of Section 2 .. 8
2.3 General Security... 8

2.3.1 Major Attacks .. 8
2.3.2 Lesser Attacks ... 9
2.3.3 Minimal Rounds and Security Margins... 10
2.3.4 Provable Security Claims .. 11

2

2.3.5 Design Paradigms, Ancestry and Prior Art ... 11
2.3.6 Simplicity, Cleanness and Confidence .. 12

2.4 Efficiency... 12
2.4.1 Platforms.. 12

2.4.1.1 Machine Word Size... 12
2.4.1.2 Other Architectural Issues... 13
2.4.1.3 Software .. 13

2.4.2 Measured Speed on General Platforms ... 14
2.4.3 Fair Speed.. 15
2.4.4 Memory Usage .. 15
2.4.5 Encryption vs. Decryption... 15
2.4.6 Key Computation Options... 16
2.4.7 Other Versatility and Flexibility.. 17
2.4.9 Variation of Speed with Key Length... 18
2.4.10 Potential for Parallelism/Optimal Theoretical Performance 18

2.5 Smart Card Implementations ... 18
2.5.1 Low-End Suitability .. 18
2.5.2 Vulnerability of Operations to Timing and Power Attacks................... 19
2.5.3 Implicit Key Schedule Weaknesses... 21

2.5.3.1 A Power Analysis Variant .. 21
2.5.3.2 Another Power Analysis Variant .. 22

2.5.5 Performance... 23
2.5.6 Related Environments ... 24

2.6 Profiles of the Candidates .. 24
2.6.1 CAST-256.. 24
2.6.2 CRYPTON .. 25
2.6.3 DEAL .. 26
2.6.4 DFC ... 26
2.6.5 E2... 27
2.6.6 FROG .. 27
2.6.7 HPC ... 28
2.6.9 MAGENTA ... 28
2.6.10 MARS.. 29
2.6.11 RC6.. 29
2.6.12 Rijndael.. 30
2.6.13 SAFER+ .. 31
2.6.14 Serpent... 32
2.6.15 Twofish.. 32

2.7 Assessments of the Candidates .. 33
2.7.1 Candidates with Major Security Attacks... 33
2.7.2 Candidates without Major Security Attacks.. 34
2.7.3 Candidates Selected for Round 2 .. 35

2.8 Modified Versions ... 36
2.8.1 CRYPTON .. 37
2.8.2 HPC ... 37
2.8.4 SAFER+ .. 38

3

2.9 Conclusion ... 38
APPENDIX... 39
Acknowledgements... 50
References... 50

1. Overview of the Development Process for the Advanced Encryption
Standard and Summary of Round 1 Evaluations

The National Institute of Standards and Technology (NIST) has been working with
industry and the cryptographic community to develop an Advanced Encryption Standard
(AES). The overall goal is to develop a Federal Information Processing Standard (FIPS)
that specifies an encryption algorithm(s) capable of protecting sensitive (unclassified)
government information well into the next century. The algorithm(s) is expected to be
used by the U.S. Government and, on a voluntary basis, by the private sector.

On January 2, 1997, NIST announced the initiation of an effort to develop the AES [16]
and made a formal call for algorithms on September 12, 1997 [17]. The call stipulated
that the AES would specify an unclassified, publicly disclosed encryption algorithm(s),
available royalty-free, worldwide. In addition, the algorithm(s) must implement
symmetric key cryptography as a block cipher and (at a minimum) support a block size of
128-bits and key sizes of 128-, 192-, and 256-bits.

 On August 20, 1998, NIST announced its acceptance of fifteen AES candidate
algorithms at the First AES Candidate Conference (AES1). These algorithms had been
submitted by members of the cryptographic community from around the world. At that
conference and in a published notice [18], NIST solicited public comments on the
candidates. A Second AES Candidate Conference (AES2) was held in March 1999 to
discuss the results of the analysis conducted by the global cryptographic community on
the candidate algorithms. The public comment period on the initial review of the
algorithms closed on April 15, 1999.

Using the analyses and comments received, NIST selected five finalist algorithms from
the fifteen. The selected algorithms are MARS, RC6TM, Rijndael, Serpent and Twofish.
These algorithms will receive further analysis during a second, more in-depth review
period prior to the selection of the final AES algorithm(s).

 The remainder of Sec. 1 summarizes the evaluation process and briefly describes the
selected algorithms. Section 2 of this report contains the technical details of the analyses
conducted during Round 1.

1.1 Evaluation Criteria

In the call for candidate algorithms [17], NIST specified the evaluation criteria that would
be used to compare the candidate algorithms. These criteria were developed from public

4

comments to [16] and from the discussions at a public AES workshop held on April 15,
1997 at NIST.

The evaluation criteria are divided into three major categories: 1) Security, 2) Cost, and
3) Algorithm and Implementation Characteristics. Security is the most important factor
in the evaluation, and it encompasses features such as: resistance of the algorithm to
cryptanalysis, soundness of its mathematical basis, randomness of the algorithm output,
and relative security as compared to other candidates.

Cost is a second important area of evaluation that encompasses licensing requirements,
computational efficiency (speed) on various platforms, and memory requirements. Since
one of NIST’s goals is that the final AES algorithm(s) be available worldwide on a
royalty-free basis, intellectual property claims and potential conflicts must be considered
in the selection process. The speed of the algorithms on a wide variety of platforms must
also be considered. During Round 1, the focus was primarily on the speed associated with
128-bit keys. Additionally, memory requirements and constraints for software
implementations of the candidates are important considerations.

The third area of evaluation is algorithm and implementation characteristics such as
flexibility, hardware and software suitability, and algorithm simplicity. Flexibility
includes the ability of an algorithm: 1) to handle key and block sizes beyond the
minimum that must be supported, 2) to be implemented securely and efficiently in many
different types of environments, and 3) to be implemented as a stream cipher, hashing
algorithm, and to provide additional cryptographic services. It must be feasible to
implement an algorithm in both hardware and software, and efficient firmware
implementations are advantageous. The relative simplicity of an algorithm’s design is
also an evaluation factor.

1.2 Results from Round 1

The Round 1 public review extended from the official announcement of the fifteen AES
candidates on August 20, 1998, at AES1 [36] until the official close of the comment
period on April 15, 1999. During Round 1, many members of the global cryptographic
community supported the AES development effort by analyzing and testing the fifteen
AES candidates.

NIST facilitated and focused the discussion of the candidate algorithms by providing an
electronic discussion forum which was used to comment on the candidates, discuss
relevant AES issues, inform the public of new analysis results, etc. This discussion
forum is located at [1]. The AES home page [2] has served as a tool to disseminate
information such as papers for AES2 and other Round 1 public comments.

Twenty-eight papers were submitted to NIST for consideration for AES2. Twenty-one of
those papers were presented at AES2 as part of the formal program, and several of the
remaining seven were also presented during an informal session at that conference. All

5

of the submitted papers were posted on the AES home page [2] several weeks prior to
AES2 in order to promote informed discussions at the conference.

AES2 gave members of the global cryptographic community a chance to present and
discuss the analysis that had been performed on the AES candidates during Round 1, as
well as to discuss other important topics relevant to the AES development effort. A
summary of AES2 presentations and discussions can be found in [15]. In addition to the
AES2 papers, NIST received fifty-six sets of public comments during Round 1 regarding
the candidate algorithms. All of these comments were made publicly available on the
AES home page [2] on April 19, 1999.

NIST performed an analysis of mathematically optimized ANSI C and Java™
implementations1 of the candidate algorithms that were provided by the submitters prior
to the beginning of Round 1. Additionally, extensive statistical testing was performed by
NIST on all of the candidates. The testing of ANSI C implementations focused on the
speed of all fifteen candidates on various desktop systems, using different combinations
of processors, operating systems, and compilers. The submitters’ Java code was tested
for speed and memory usage on a desktop system, and other features of the code were
measured as well. Statistical testing was performed on all fifteen candidates to determine
if the algorithms generate output that is statistically indistinguishable from truly random
data. The results of this testing is available on the AES home page [2].

1.3 Selection Process Prior to Round 2

At the conclusion of the Round 1 public review, NIST established an internal AES
technical review team to recommend algorithms for Round 2 evaluations. The members
of this team included NIST employees who had been engaged in: 1) reviewing the
algorithms, 2) reviewing the public comments on the candidates, 3) selecting papers for
AES2, 4) conducting NIST’s efficiency and randomness testing, 5) attending and
presenting information at the AES conferences, and 6) managing the AES development
process. The team met several times over the course of two months to develop their
consensus position.

During the evaluation process, all comments, papers, verbal comments at conferences,
NIST studies, reports and proposed modifications were considered. Each candidate was
discussed relative to the announced evaluation criteria and other pertinent criteria
suggested during the public analysis. The review of each algorithm included a
methodical evaluation of: 1) security (including any known attacks or weaknesses), 2)
efficiency (both speed and memory usage), 3) flexibility (implementation on low- and
high-end smart cards; support of additional key and block sizes – including whether the
reference code actually supported the additional key sizes; suitability for use as a pseudo-

1 Certain commercial equipment, instruments or materials are identified in this paper to
foster understanding. Such identification does not imply recommendation or endorsement
by the National Institute of Standards and Technology, nor does it imply that the
materials or the equipment identified are necessarily the best available for the purpose.

6

random number generator, hashing algorithm, etc.; and whether or not encryption and
decryption were the same procedure), 4) algorithm simplicity, and 5) other issues that
were discussed in the received public comments. Refer to Sec. 2 for the detailed
evaluation of all fifteen algorithms.

Although it was considered, the team readily agreed that it was not possible to conduct a
thorough quantitative selection of the finalists. For example, comments were not
received regarding the security analysis of some candidates, whereas other algorithms
were reported as “broken.” Since security is considered the most important evaluation
criteria, the AES review team made a first cut of the candidates based on security then
proceeded with the other selection criteria. As a result of this evaluation process, the five
candidates with superior characteristics were selected as finalists for Round 2 evaluation.

It is important to note that the selection of an algorithm as a finalist does not constitute
endorsement by NIST of the algorithm or its security. Similarly, the non-selection of an
algorithm is not necessarily to be taken as a statement about the algorithm’s quality,
security, efficiency or other characteristics.

1.4 Round 2 Finalists

The five candidates that NIST selected for further analysis in Round 2 are MARS, RC6,
Rijndael, Serpent, and Twofish.

No significant security vulnerabilities were found for these candidates during the Round
1 analysis, and each of these algorithms constitutes potentially superior technology.
Below is a summary of each of the finalist candidates in alphabetical order; profiles and
overall assessments for all fifteen Round 1 candidates can be found in Sec. 2.6 and 2.7.

MARS incorporates its “cryptographic core” into an innovative, heterogeneous overall
structure. It also features a wide variety of operations, including the technique of rotating
digits by a varying number of places that is determined by both the data and the secret
key. Consequently, while MARS performs well in general, it performs particularly well
on computer platforms that support its rotation and multiplication operations efficiently.
NIST accepted a modification to MARS for Round 2 (proposed by the submitter) that
should improve its ability and flexibility to function in some memory-constrained
environments, such as low-end smart cards. MARS was submitted to the AES
development effort by the International Business Machines Corporation.

RC6 is an algorithm that is simple enough to memorize, and should be easy to implement
compactly in both software and hardware. Its simplicity also should facilitate its further
security analysis in Round 2, which is assisted by the analysis of its predecessor, RC5.
RC6 does not use substitution tables; instead, the principal engine for its security is the
technique of rotating digits by a varying number of places that is determined by the data.
In general, RC6 is fast, and it is particularly fast on platforms that support its rotation and
multiplication operations efficiently; its key setup is also fast. RC6 was submitted to the
AES development effort by RSA Laboratories.

7

Rijndael performs excellently across all considered platforms. Its key setup is fast, and
its memory requirements are low, so it also should perform well in hardware and in
memory-constrained environments. The straightforward design and the conservative
choice of operations should facilitate its further analysis, and the operations should be
relatively easy to defend against certain attacks on physical implementations. Even
though parallel processing was not considered during the Round 1 selection process by
the AES review team, Rijndael has the potential of benefiting from advances in computer
processors that allow many instructions to be executed in parallel. Rijndael was
submitted to the AES development effort by Joan Daemen and Vincent Rijmen.

Serpent is ultra-conservative in its security margin: the designers chose to use twice as
many iterations as they believed secure against currently known attacks. Consequently,
Serpent’s performance is relatively slow compared to the other four finalists; however, in
some settings this should be mitigated by the efficiency of optimized implementations
using what the submitters call the “bitslice” mode, for which the algorithm was specially
designed. Serpent should fit well in hardware (with potential tradeoffs of speed versus
space) and in memory-constrained environments. The straightforward design and the
conservative choice of operations should facilitate further analysis of this candidate, and
the operations should be easy to defend against certain attacks on physical
implementations. Serpent was submitted to the AES development effort by Ross
Anderson, Eli Biham, and Lars Knudsen.

Twofish exhibits fast and versatile performance across most platforms; it also should
perform well both in hardware and in memory-constrained environments. It features
variable substitution “tables” that depend on the secret key. The submitters believe that
such tables generally offer greater security than tables with fixed values. The possibility
of pre-computing these tables to varying degrees helps Twofish to offer a wide variety of
performance tradeoffs: depending on the setting, Twofish can be optimized for speed, key
setup, memory, code size in software, or space in hardware. Twofish was submitted to
the AES development effort by Bruce Schneier, John Kelsey, Doug Whiting, David
Wagner, Chris Hall, and Niels Ferguson.

1.5 Next Steps

With the announcement of the finalists, NIST formally opens the "Round 2" public
evaluation process and solicits comments on the remaining algorithms through May 15,
2000. Comments and analysis are actively sought by NIST on any aspect of the
candidate algorithms, including - but not limited to - the following topics: cryptanalysis,
intellectual property, crosscutting analyses of all of the AES finalists, selection and use of
multiple AES algorithms, overall recommendations and implementation issues.

NIST is providing an opportunity for the sponsors of the AES finalists to revise the ANSI
C and Java implementations of their algorithms. NIST intends to make these
implementations available (via CDROM) within two months of the beginning of Round
2.

8

Near the end of Round 2, NIST will sponsor the Third AES Candidate Conference
(AES3) - an open, public forum for discussion of the analyses of the AES finalists.
Submitters of the AES finalists will be invited to attend and engage in discussions
regarding comments on their algorithms. AES3 will be held April 13-14, 2000 in New
York, NY. Registration and logistical information will be posted on the AES home page
[2]. Proposed papers for this conference are due to NIST by January 15, 2000.

Following the close of the Round 2 public analysis period on May 15, 2000, NIST
intends to study all available information and propose the AES, which will incorporate
one or more AES algorithms selected from the finalists. The AES will be announced as a
proposed Federal Information Processing Standard (FIPS) which will be published for
public review and comment. Following the comment period, the standard will be revised,
as appropriate, by NIST in response to those comments. A review, approval, and
promulgation process will then follow. If all steps of the AES development process
proceed as planned, it is anticipated that the standard will be completed by the summer of
2001.

2. Technical Details of the Round 1 Analysis

2.1 Abbreviations

The following abbreviations will be used in the remainder of the report: DFC =
Decorrelated Fast Cipher, HPC = Hasty Pudding Cipher.

2.2 Organization of Section 2

The analysis in this paper is predicated upon the original specifications and code
submitted for the candidates prior to the beginning of Round 1, in response to NIST’s call
for candidate algorithms [17]. General security issues pertaining to these candidates are
discussed in Sec. 2.3. Another area which received a lot of attention during Round 1
were general efficiency issues, which follow in Sec. 2.4. Sec. 2.5 discusses issues related
to smart cards. Profiles of the candidates are presented in Sec. 2.6, summarizing
information from Round 1 for each individual candidate. Sec. 2.7 gives overall
assessments for the candidates, and the decision regarding each is presented.
Modification proposals for four of the candidates are addressed in Sec. 2.8.

2.3 General Security

Security was the foremost concern in evaluating the candidates. Some security issues
regarding implementation pertain to smart cards and similar environments; these are
discussed in Sec. 2.5. General issues are discussed below.

2.3.1 Major Attacks

The following are the major attacks against the candidates found to date:

9

a. DEAL: in [30], it is claimed that DEAL-192 is no more secure than DEAL-128.

b. FROG: in [41], it is claimed that a fraction (about 2–30) of the key space is weak; for
these keys, attacks with a work factor of about 256 are feasible. It is also claimed
that diffusion is weaker in the reverse direction.

c. HPC: in [14], it is claimed that for 128-bit keys, 1 in 256 keys has 230 equivalent
keys.

d. LOKI97: in [25], it is claimed that attacks exist using only about 256 chosen or
known plaintexts.

e. MAGENTA: in [7], it is claimed that attacks using only about 264 chosen plaintexts
are feasible; [7] also claims an attack using 233 known plaintexts and 297 steps of
analysis.

NIST has verified the attacks on MAGENTA and LOKI97, as well as equivalent keys of
HPC, whose existence has been confirmed via statistical testing [32]. Coincidentally, the
five attacked candidates were also among the slowest candidates. Combined with weak
or questionable security, the conclusion was that none of these was a strong candidate for
the AES, as discussed for each candidate in Sec. 2.6 and 2.7.

2.3.2 Lesser Attacks

Some attacks of a lesser magnitude have also been found:

a. CRYPTON: in [8], it is claimed that there are 232 weak 256-bit keys. The same
claim is made independently in [40]. In addition, [13] claims an attack on a 6-round
version of CRYPTON.

b. DEAL: in [24], equivalent keys are claimed for a fraction (2–64) of the 192-bit and
256-bit key spaces.

c. DFC: in [26], an attack on a 6-round version is claimed, using about 270 chosen
ciphertexts and about 2129 evaluations of the round function.

d. E2: in [31], attacks on 9- and 10-round versions are claimed.

e. SAFER+: in [23], a related-key attack and a meet-in-the-middle attack are claimed
against SAFER+ for the 256-bit key size.

None of the above attacks was deemed by NIST to be serious enough to be a sole factor
in deciding admission to Round 2. All of the candidates mentioned above were
eliminated from the AES because of their overall profiles (Sec. 2.6).

10

2.3.3 Minimal Rounds and Security Margins

The two previous sections summarize the known concrete information about the general
security of the candidates. Beyond such concrete information lies an array of more
heuristic information, much of which is difficult to quantify. Perhaps the most
quantifiable dimension (i.e., security margins) is explored in this section; Sec. 2.3.5 and
2.3.6 explore some considerations which are less quantifiable.

Many different phases of an algorithm are subject to attack. The resistance of a particular
phase against attack is generally difficult to quantify; an example is key schedule
strength. On the other hand, some notable attacks (e.g., differential and linear
cryptanalysis) are directly round-oriented. That is, such attacks may be effectively
resisted if the number of rounds is high enough. This suggests a quantitative (though
obviously incomplete) measure of the security of a candidate (i.e., the actual number of
rounds vs. the minimal number needed for security). Unfortunately, the latter is difficult
to measure in any absolute sense; the best that can be hoped for is an estimate based on
the current state of the art in cryptanalysis.

A scheme for measuring the minimal number of rounds needed for a candidate to be
secure against known attacks was formally introduced in [5]. The precise method used to
obtain this minimal number has been the subject of some controversy. A weakness of the
treatment in [5] is that “educated guesses” are freely intermixed with concrete
information. In addition, a technical detail of the scheme of [5], namely the automatic
addition of 2 rounds (or the equivalent) to each raw minimal number, has been received
with some skepticism (e.g., [37]).

An alternative measurement scheme is to rely exclusively upon the greatest number of
rounds at which an attack currently exists, and to use this raw number per se. Neither
approach is correct or incorrect in any absolute sense. The significance of any such
measure should be carefully considered; the bottom line is that all such measurements are
estimates, regardless of whether a particular estimate is closer to a guess or to something
concrete.

If the validity of any such measurement scheme is assumed, it leads to the corresponding
notion of security margin. For example, if the minimal number of rounds needed for a
candidate to be secure is measured as 10, and the actual number of rounds specified is 12,
then the security margin is measured as 20%. Table 5 of the appendix gives security
margins for the candidates, using two measurement schemes (i.e., that of [5] and the
alternative measurement scheme based on raw numbers). However, the two schemes are
not disjoint; many of the alternative measurements constitute a reformulation of the
information in [5]. Note: NIST does not vouch for the accuracy of any data quoted in this
report, if said data is obtained from a source outside NIST.

In constructing profiles of the candidates, NIST gave some consideration to security
margins; however, it was kept in mind that such measures are at best approximate, and
are based exclusively on defense against existing attacks, as described in public analysis.

11

2.3.4 Provable Security Claims

In [17], NIST called for the submissions to include analysis of the security of the
algorithms. One candidate, DFC, offered a form of evidence called “provable” security.
This does not refer to an absolute proof of security, but rather to proofs that the
“decorrelation module” in the round function makes DFC secure against some forms of
attack, under a certain mathematical model.

The value of provable security is called into question by [26], in which differential
attacks outside the framework of the model are applied to decorrelated ciphers in general
and reduced versions of DFC in particular. The submitters of DFC acknowledge in [4]
that a decorrelation design “has to be heuristically secure without the decorrelation
modules,” and that “provable security is not a panacea outside its domain of
applicability.” Nevertheless, the submitters maintain that “decorrelation properties
provide an additional level of security,” and that provable security “provides added value
to new designs.”

2.3.5 Design Paradigms, Ancestry and Prior Art

One method of classifying the candidates is by design paradigm, although the
methodology for doing so is not completely standard. In [5], the candidates are classified
as follows:

a. Feistel: DEAL, DFC, E2, LOKI97, MAGENTA, RC6, Twofish.

b. Extended Feistel: CAST-256, MARS.

c. Substitution Permutation: SAFER+, Serpent.

d. Square: CRYPTON, Rijndael.

e. Other: FROG, HPC.

A slightly different classification is given in [22]. However, the details do not seem to
matter very much. The question arises as to whether there is a correlation between the
design paradigm chosen and the security of the resulting cipher. The answer is not clear.
For example, one of the oldest and best-understood design paradigms is Feistel, but three
of the seven Feistel candidates (per the above grouping) have apparently had major
security gaps exposed (cf. Sec. 2.3.1). At the opposite extreme, the candidates employing
nonstandard design paradigms (FROG and HPC) have also had apparent weaknesses
exposed. Thus, it appears to be difficult to draw any reliable conclusions from paradigm
alone.

A second consideration is ancestry. Some of the candidates are descendants of a
relatively long line of members of a family. For example, RC6 is descended from RC5,

12

which has been subject to prior analysis. Similarly, LOKI97 is the latest version of a
family that dates to 1989. However, LOKI97 apparently has a major security gap (cf.
Sec. 2.3.1). Thus it appears that lineage alone does not guarantee security, although it
may provide some insight into candidates.

A review of the public comments received by NIST indicates that the reputation and prior
art of the designers of the candidates provided the public with more confidence in the
security of the candidate algorithms than the membership of the candidates in any
particular family or category.

2.3.6 Simplicity, Cleanness and Confidence

An even less tangible criterion that could be applied to the candidates is simplicity. This
would be difficult to quantify; however, it appears to have played a role in influencing the
confidence of the AES community in the security of the candidates. Some candidates
(notably, RC6) were praised for simplicity of design; others were criticized for
complexity of design. It should be carefully noted that simplicity is not equitable to
security. The only assertion that appears to have some real substance is that a simple
design may be more amenable to analysis than a more complex one, especially in a
restricted timeframe.

Another intangible criterion is cleanness, as defined in [27]. This refers to a very specific
issue (i.e., whether a candidate mixes group operations such as XOR and addition).
Although this criterion is more concrete than general simplicity, it is not clear whether
“cleanness” can be made any more rigorous in terms of implications for security.

2.4 Efficiency

This section focuses on efficiency with respect to general-purpose computer platforms. It
largely omits issues specifically pertaining to smart cards; these are treated separately in
Sec. 2.5.

2.4.1 Platforms

There has been considerable debate within the AES community as to which platforms are
most relevant in regard to measuring the efficiency of candidates. Some people have
commented that the original NIST platform specification was not comprehensive enough.
This concern has been mitigated somewhat via the efforts of the AES community; the
candidates have been implemented on a variety of platforms, and relative efficiency data
on many platforms is available. In addition, many opinions have been expressed
regarding the relative merits of these platforms. The question of how to measure
candidates across platforms is an issue that will undoubtedly continue to warrant
discussion.

2.4.1.1 Machine Word Size

13

One issue that arises is basic underlying architectures. The NIST platforms were
exclusively oriented to 32-bit architectures. However, performance on 8-bit and 64-bit
machines is also important, as was recognized in the public comments and analyses. It is
difficult to project how various architectures will be distributed over the next 10 to 30
years; hence, it is difficult to assign weights to the corresponding performance figures.
Nonetheless, from the information received by NIST, the following picture emerges:

It appears that over the next 10 to 30 years, 8-bit, 32-bit, and 64-bit architectures will all
play a significant role (in fact, 128-bit architectures will presumably be added to the list
at some point). Although 8-bit architectures used in certain applications such as smart
cards will gradually be supplanted by 32-bit versions, 8-bit architectures will not
disappear. 8-bit architectures will still be used in some low-end smart cards and in
similar cryptographic modules. Meanwhile, some 32-bit architectures will be supplanted
by 64-bit versions at the high-end; but 32-bit architectures will become increasingly
relevant in low-end applications, so that their overall significance will remain high.
Meanwhile, 64-bit architectures will grow in importance. Since none of these predictions
can be quantified, it appears that versatility is of the essence (i.e., an AES should exhibit
good performance across a variety of architectures). Some candidates were specifically
oriented to a particular word size (e.g., 8 or 64 bits) and did not port well to other
architectures. This was taken into account by NIST when seeking Round 2 candidates.

2.4.1.2 Other Architectural Issues

Besides word size, various features of architectures affect performance of the candidates.
For example, some architectures provide better support for variable rotations than others.
The same is true for multiplications. In addition, 32-bit operations of this sort may be
difficult to port to 8-bit or 64-bit machines. It is more difficult to characterize the
performance of candidates that require special architectural support than for candidates
that rely on operations (e.g., table lookups or XORs) which adapt easily to various
architectures. Candidates requiring special architectural support produce performance
charts characterized by upward or downward spikes, depending on the presence or lack of
appropriate support; the latter produce smoother charts. This does not mean that an
algorithm benefiting from special support is inferior or superior to the more uniform
performers. However, this factor needs to be taken into account when attempting to select
an AES algorithm(s) that will perform well on various platforms.

2.4.1.3 Software

The performance of candidates also depends to some degree on the particular software
used (e.g., assembler, compiler or interpreter). In some cases, the role played by
particular software has a strong effect on performance figures. For example, optimized,
hand-coded assembly code will generally produce better performance than even an
optimizing compiler. In addition, some compilers do a better job than others in making
use of the support provided by the underlying architecture for operations such as 32-bit
rotations. Again, this increases the difficulty of measuring performance across a variety
of platforms.

14

There is no clear consensus on the relative importance of different types of software. In
[37], the opinion is expressed that assembler is the best means of evaluating performance
on a given architecture. The reason provided is that hand-coded assembler will be
employed in situations in which speed is of the essence and hardware is not available.
However, from the rest of the information received by NIST, there does not appear to be
universal agreement with respect to this viewpoint.

2.4.2 Measured Speed on General Platforms

An enormous amount of data has been gathered on speeds of candidates on various
platforms. The majority of this data pertains to 32-bit platforms, which, as noted earlier,
are not necessarily indicative of the environments in which the majority of AES
applications over the next 20 years will be implemented. A lesser amount of data has
been accumulated for 64-bit architectures, but not much detailed information on 8-bit
and/or hardware performance is available at this point (hopefully, Round 2 will shed
more light on the latter platforms). Table 1 of the appendix summarizes some
information received from the public on speeds; Table 2 reformulates Table 1 by giving
relative ranks. NIST has also accumulated information on speeds by testing the ANSI C
and Java supplied by the algorithm submitters [33] and [34]. A rough summary of all
available information (which pertains to encryption of 128-bit blocks using 128-bit keys)
is as follows:

a. Uniformly fast: Rijndael, Twofish. These exhibited excellent performance across a
variety of platforms.

b. Platform-dependent: MARS, RC6. These performed well on platforms providing a
high degree of support for 32-bit multiplications and variable rotations, but not as
well otherwise.

c. Word size-dependent: DFC, HPC. These are oriented to 64-bit architectures, and do
not port well to lower word sizes.

d. Mediocre: CAST-256, CRYPTON, E2, and Serpent. These algorithms performed
fairly uniformly across platforms, but at slower speeds than Rijndael or Twofish.

e. Slow: DEAL, FROG, LOKI97, MAGENTA, SAFER+. These were slow across
most platforms.

As discussed earlier, it is difficult to interpret speed data, or groupings of candidates such
as the above, in a totally ordered framework; partial ordering is the best that can be hoped
for. Thus, in some cases it is possible to say that one algorithm is faster than another, if
this holds in a uniform sense; but this type of linear comparison may not hold. Also,
there is a segment of the AES community that regards speed data as strictly secondary,
and places far more emphasis on security. NIST agrees that speed is not the primary

15

determining factor in assessing a candidate; thus, one slower algorithm (Serpent) was
promoted to Round 2, ahead of some faster candidates.

2.4.3 Fair Speed

The notion of “fair speed” is introduced in [5]. The idea is to utilize some measure of the
minimal number of rounds for a candidate, as discussed in Sec. 2.3.3. Then, a
hypothetical version of a candidate is constructed which uses this minimal number of
rounds. Speeds for these hypothetical versions are then compared.

NIST does not endorse the notion of fair speed comparisons, because they deal with
hypothetical versions of the algorithms as opposed to the submitted versions. As noted in
Sec. 2.3.3, some “fair speeds” are really guesses, as are the underlying estimates of
minimal number of rounds for security. On the other hand, [5] notes that in the process
of constructing candidates, different authors made different decisions on the issue of
speed/security tradeoff. NIST agrees that such tradeoffs were undoubtedly made, and
that the candidates should be neither rewarded nor penalized based purely on their
decision for handling the security/speed tradeoff. Rather, it was decided that both
security and speed should be taken into account. NIST considered a wide spectrum of
speed/security tradeoffs to be a priori viable, as long as some security margin was
provided according to the “raw” measurement scheme discussed in Sec. 2.3.3.

Some observers have criticized some of the candidates for having “inadequate” security
margins. Suggestions have been made (e.g., [27]) regarding possible changes to the
number of rounds of some candidates, in order to increase security margins. Each
submitter had the opportunity to propose changes to their candidate algorithm prior to
Round 2; however, no modifications were proposed for changing the number of rounds
for any candidate.

2.4.4 Memory Usage

Another way to examine efficiency is via memory usage. Candidates that use large
quantities of memory during execution can cause problems in memory-restricted
environments (e.g., the candidate cannot operate in the environment at all). One
motivation for the use of Java as a reference platform was to obtain some idea of the
dynamic memory usage of candidates. Obtaining such information can be more
problematic in some other programming environments. Some results for Java are
summarized in Table 9; see also [2].

2.4.5 Encryption vs. Decryption

In the cases of some candidates, encryption and decryption utilize identical functions,
except for the reversal of the key schedule. In other cases, encryption and decryption are
distinct functions. This has some impact on the measurement of efficiency. For
example, Table 1 of the appendix is based on encryption speed. However, some
candidates have different speeds for encryption and decryption. These cannot simply be

16

averaged, since there are many applications that require only encryption or decryption,
but not both. Most candidates do not exhibit a significant performance decrease during
decryption. An exception is FROG, whose decryption function is about twice as slow as
encryption. For all other candidates, decryption speed is generally no more than about
6% slower than encryption speed, although there may be specific environments in which
a greater discrepancy occurs.

Another consideration is the extra space needed for decryption, in the event that the
decryption function is different from the encryption function and both must be included
in an implementation. The penalty in this regard depends on the amount of shared code
between the two functions. In addition, the significance of this penalty depends on how
significant space requirements are and upon the total amount of space needed to house
both functions. Note that in some environments, such as certain restricted memory
applications or certain modes of operation, it may be necessary to implement only one
function, so that there is no general space penalty associated with separate encryption and
decryption functions.

2.4.6 Key Computation Options

There are two basic modes for key schedule computation: precomputation and storage of
subkeys, and on-the-fly computation of the latter (i.e., computation of one subkey at a
time). Some candidates support the on-the-fly option; others do not. This is an
oversimplification; there are schemes for subkey computation that lie between
precomputation of all subkeys and computation of one subkey at a time (cf. Sec. 2.8.3).

In the case of candidates supporting on-the-fly subkey computation, a second
consideration may arise. If the decryption function requires the subkeys in the opposite
order from the encryption function, a candidate may require the key schedule to be
computed in the forward direction and then “unwound” [37]. On the other hand, some
candidates permit subkeys to be computed in any order. This issue does not arise if the
encryption and decryption functions use separate key schedules.

Based on these considerations, the candidates may be classified as follows:

a. No direct support for on-the-fly subkey computation: E2, FROG, HPC, LOKI97,
MARS, and RC6.

b. Support for on-the-fly subkey generation, with:

i. Separate key schedules for encryption and decryption: CRYPTON, Rijndael.

ii. Subkeys computable in any order: MAGENTA, SAFER+, and Twofish.

iii. Subkeys computable in the forward direction only and requiring unwinding for
decryption: CAST-256, DEAL, DFC, and Serpent.

17

Although this issue is discussed in this section because it is a general property of
candidates, different modes of key computation are mainly relevant in restricted-memory
environments (cf. Sec. 2.5).

2.4.7 Other Versatility and Flexibility

The previous section discussed one example of the versatility of some candidates;
however, there are various other possibilities. Since there are many possible features in
this regard, no attempt will be made to catalog these. One common example deals with
table representation and/or computation: if a candidate uses large tables, there may be an
option for on-the-fly table computation. This may be relevant in adjusting space/time
tradeoff decisions to particular environments. Another example is treated separately in
the next section.

Some candidates also exhibited some degree of flexibility in the treatment of parameters
such as key and round sizes. For example, both MARS and RC6 support key sizes much
larger than the 256 bits required in the AES (unfortunately, in both cases there are
weaknesses associated to very large key sizes; e.g., 1248-bit keys). In addition, some
candidates offer some support for interpolated sizes (e.g., from 128 to 256 bit keys in
increments of 32 bits). Furthermore, in some cases round numbers were parameterized
(e.g., RC6).

Versatility and flexibility played a tertiary role in assessing candidates in Round 1. Such
tertiary considerations could conceivably play a greater role in Round 2.

2.4.8 Key Agility

In cases where large amounts of data are processed with a single master key, the setup
time for the key schedule may be unimportant, unless it is enormous. On the other hand,
in applications in which the key is changed frequently, key agility is a factor. One basic
component of key agility is key setup time; some measurements of key setup times are
given in Table 3 of the appendix (see also [2]). A rough summary of this data,
accumulated on only a limited number of platforms, is as follows:

a. Slow: FROG, HPC. These generally take over 100,000 clock cycles for a 128-bit
key setup.

b. Medium: CAST-256, DEAL, DFC, E2, LOKI97, MARS, SAFER+, Serpent, and
Twofish. These generally take from 2,0002 to 10,000 clock cycles for a 128-bit key
setup.

c. Fast: CRYPTON, MAGENTA, RC6, and Rijndael. These generally take less than
2,000 clock cycles for a 128-bit key setup.

2 2000 clock cycles was arbitrarily chosen as a cutoff point.

18

There are other factors that enter into key agility as well. Such factors tend to arise in
restricted-memory environments such as smart cards, and are noted in Sec. 2.5.

2.4.9 Variation of Speed with Key Length

The major key length considered when measuring speed during Round 1 was 128 bits.
However, a few candidates have encryption speeds that vary with key length because of
an increase in the number of rounds with increasing key length. For example, Rijndael is
20% slower for 192-bit keys than for 128-bit keys, and 40% slower for 256-bit keys.
Similar variations exist in DEAL, MAGENTA, and SAFER+. These speed decreases are
entirely in line with expectations (i.e., extra security gained by increasing the number of
rounds is traded off against speed loss).

2.4.10 Potential for Parallelism/Optimal Theoretical Performance

It is to be anticipated that future processors will support various modes of parallelism to a
greater extent than existing processors do. This raises the following type of question: if
an unlimited amount of processing power is available, so that any potential parallelism in
a candidate can theoretically be exploited, to what extent can the candidate take
advantage of this situation? The answer to this question is necessarily vague, since
explorations can only be carried out on hypothetical machines. Nonetheless, some
information can be gleaned from an examination of the operations to be executed for a
candidate. One concept in this regard is that of a critical path through code [11]: each
instruction can be weighted according to the number of latent clock cycles. A critical
path could then be defined to be the path from plaintext to ciphertext with the highest
weight. Such measurements are only approximate, and only a small amount of
information is available in this regard at present. Some information about theoretical
support for parallelism may be found in Table 7 of the appendix; unfortunately, it applies
to only the subset of the candidates (which were studied in [11]). Therefore, this
information did not play a role in deciding which candidates advanced to Round 2.
Further public study of parallelism during Round 2 would be welcomed by NIST, and the
information in [11] may be a valuable starting point for that study.

A closely related concept is that of optimal theoretical performance [21]. This measure
also depends on a notion of critical path. The conclusions of [21] are summarized in
Table 7 of the appendix.

2.5 Smart Card Implementations

A number of security and efficiency issues arise in smart card and related environments;
as noted earlier, these were largely deferred to this section.

2.5.1 Low-End Suitability

There is no standard delineation of low-end and high-end smart cards. For the purpose of
this discussion, a low-end card will refer to a card with about 256 bytes of RAM

19

available. In theory, intermediate forms of storage such as EEPROM could be used for
non-static quantities such as keys. In practice, however, this would be impractical in
many instances, since it would negatively impact key agility. Thus, in particular, it must
be assumed that subkeys are stored in RAM. In addition, even if a card has 256 bytes of
RAM available, it cannot be assumed that a large portion of this space is available for
subkey storage. A more conservative (and probably more realistic) assumption is that
only about 128 bytes of RAM can be used for this purpose. Also, ROM consumption
should be reasonable; it is generally assumed in this report that 2000 bytes of ROM meets
this criterion, although some low-end cards may support more.

The issue thus arises as to whether a candidate can be implemented on low-end cards. A
major advantage (and in most cases, a virtual prerequisite) is support for on-the-fly key
generation (or some equivalent scheme which obviates the necessity of computing and
storing all subkeys in advance), as discussed in Sec. 2.4.6. In addition, ROM usage must
be reasonable. The only systematic accumulation of RAM and ROM information made
available to NIST is in [37]; Table 4 of the appendix summarizes this information.
Roughly, the situation is as follows:

a. CRYPTON, DEAL, DFC, MAGENTA, Rijndael, SAFER+, Serpent, and Twofish
are implementable on cards having at least 256 bytes of RAM and 2000 bytes of
ROM.

b. CAST-256, E2, MARS, and RC6 require more than 256 bytes of RAM, 2000 bytes
of ROM, or both. However, they are suitable for higher-end cards (e.g., 512 bytes
of RAM and 6000 bytes of ROM would accommodate each of these four
candidates).

c. FROG, HPC, and LOKI97 are poorly suited to smart cards, needing more than 2000
bytes of RAM, 6000 bytes of ROM, or both.

As noted earlier, the above classifications are heavily dependent on the precise storage
limits used as delineators. Also, there is some disagreement as to how important
implementability on low-end cards is to the AES. This issue was not directly confronted
in Round 1; two candidates unsuitable for low-end cards (referring to the original
submissions) were promoted to Round 2. However, the proposed modification for
MARS is claimed by the submitter to address that deficiency. Since the other three
Round 2 candidates are suitable for implementation on low-end cards, this issue is sure to
arise in the future.

2.5.2 Vulnerability of Operations to Timing and Power Attacks

Timing attacks can be effected against operations that execute in different amounts of
time, depending on their arguments. Power analysis attacks can be effected against
operations that use different amounts of power, depending on their power consumption
pattern, which may vary with the arguments to the operation. A possible defense against
power analysis attack is software balancing. This technique may be effective for certain

20

operations whose power consumption can be “masked” to some extent by executing the
operation twice, employing the complement of argument(s) the second time. A rough
summary of vulnerabilities of the operations used in candidates is as follows [12]:

a. Table lookup: not vulnerable to timing attacks. Defense against power attacks may
be effected by using the address and its complement.

b. Fixed shifts/rotations: not vulnerable to timing attacks. Defense against power
attacks may be effected by using the contents of the register containing the
shift/rotate amount, and its complement.

c. Boolean operations: not vulnerable to timing attacks. Defense against power attacks
may be effected by using the complements of arguments.

d. Addition/subtraction: somewhat difficult to defend against timing or power attacks.

e. Multiplication/division/squaring or variable shift/rotation: most difficult to defend
against timing and power attacks.

Note: in the above, saying that a defense may be effected does not guarantee that a given
operation is in fact protected; it merely means that such a defense is theoretically
possible. Conversely, saying that an operation is difficult to defend against an attack
does not imply that any given implementation of a candidate employing that operation is
vulnerable to attack. A discussion of the actual attacks and defenses against them is
outside the scope of this paper.

A summary of the operations used by the candidates is given in Table 6 of the appendix.
A rough summary of this information is as follows:

a. CRYPTON, DEAL, MAGENTA, Rijndael, and Serpent use only Boolean
operations, table lookups, and fixed shifts/rotations. These are easiest to defend
against attacks.

b. FROG, LOKI97, SAFER+, and Twofish use addition/subtraction, and are somewhat
more difficult to defend against attacks.

c. CAST-256, DFC, E2, HPC, MARS, and RC6 use multiplication/division/squaring
and/or variable shift/rotation, and are most difficult to defend.

Note: saying that a candidate uses an operation which is difficult to defend does not mean
that the candidate is indefensible; this simply refers to the complexity of the task of
defense. For example, in some cases, software defenses may be sufficient to defend
against a particular attack. In other cases, this may be infeasible, and some form of
hardware defense may be necessary. Furthermore, there is no guarantee that in a
particular situation, any form of defense will work. That is, timing and power analysis
are implementation-dependent attacks; the vulnerability of candidates to such attacks is

21

not an intrinsic algorithm characteristic. Thus, considerations such as the above did not
play a primary role in deciding advancement to Round 2; much more attention was paid
to general attacks which are essentially implementation-independent.

2.5.3 Implicit Key Schedule Weaknesses

In [9] an interesting theory is developed concerning the resistance of the key schedules of
the candidates to attack. A more general question is the following: if an attacker gains
access to a subkey (or, in some cases, a whitening key), does this yield information about
other subkeys or the master key? If so, this might be termed an implicit (or perhaps
conditional) key schedule weakness. Unfortunately, the classification of key schedules in
[9] is somewhat ill posed. Nonetheless, this theory raises an issue that has had significant
consequences in practice, particularly in connection with attacks on smart card
implementations. Further research on this subject would be useful. At the present time,
two attacks are known which exploit implicit key schedule weaknesses; these are
discussed below. NIST has not verified these attacks. Hence, implicit key schedule
weaknesses did not play a significant role in determining advancement to Round 2.
These attacks, and defenses against them, require further study.

2.5.3.1 A Power Analysis Variant

In [6], the authors employ a variant of power analysis to attack the key schedules of the
candidates when implemented in smart cards. Their approach correlates power consumed
with the number of ones in a byte of a subkey. Evaluating the number of ones yields an
equation involving the bits of the master key, regarded as independent variables. A
sufficient number of such evaluations may provide a system of equations that can be used
to obtain the master key, assuming a sufficiently high rank. The rank in turn depends
upon the randomness of the process used to generate subkeys from the master key;
conversely, redundancy in this process inhibits the attack by lowering the rank.
However, even if the full master key cannot be recovered, it may still be possible to
obtain some information about it.

Assuming that such a power analysis attack can in fact be effected, a rough classification
of candidates by key schedule is as follows:

a. Significant implicit weaknesses: CAST-256, CRYPTON, DEAL, DFC, E2, and
SAFER+. These are highly vulnerable to the attack (the equivalent of at least 50%
of the master key can be recovered).

b. Lesser implicit weaknesses: LOKI97, MARS, RC6, and Rijndael. Attack may
reveal some information about the master key.

c. No weakness: MAGENTA, Serpent, and Twofish.

d. FROG, HPC: these are not well suited to smart card or similar applications in which
key schedule weaknesses are typically exploited.

22

Note: [6] should be consulted for the precise conditions under which the above attack can
be executed. Saying that a candidate is vulnerable to the attack presupposes that the
attack is in fact feasible for a given implementation of a candidate. As in Sec. 2.5.2,
vulnerability to this type of attack is not an intrinsic algorithm characteristic. Thus,
saying that a candidate has an implicit weakness that might be exploited under certain
conditions simply means that certain defenses may be needed to defend against the
attack. There might also be restrictions on the class of smart cards for which a given
candidate is suitable. More generally, the feasibility of an attack such as the above may
be impacted by algorithm characteristics, implementation characteristics, card
characteristics, and usage scenarios. A discussion of the feasibility of such an attack, and
defenses against it, is outside the scope of this paper.

2.5.3.2 Another Power Analysis Variant

In [10], yet another variant of power analysis is employed to attack the key schedules of
candidates when implemented in smart cards. The attack exploits the particular
operations used to generate subkeys. If some subkeys (or, in some cases, whitening keys)
can be found, it may be possible to obtain information about other subkeys or the master
key. Viability of the attack depends partially on the number of rounds that need to be
attacked to obtain the sought-after information. From the point of view of this attack, the
candidates may be classified roughly as follows:

a. Most vulnerable: CRYPTON, DEAL, LOKI97, MAGENTA, Rijndael, SAFER+,
Serpent, and Twofish. Their vulnerability springs from the derivability of the
master key from a small number of subkeys or whitening keys. Only a small
number of rounds need to be attacked.

b. Less vulnerable: CAST-256, DFC, E2, MARS, and RC6. All or a large number of
rounds need to be attacked.

c. FROG, HPC: these are not well suited to smart card or similar applications in which
key schedule weaknesses are typically exploited.

Note: as in Sec. 2.5.3.1, saying that a candidate is vulnerable to the attack presupposes
that the attack is feasible. See [10] for a discussion of the precise conditions under which
the attack is feasible. In addition, again it should be noted that vulnerability to such an
attack is not an intrinsic algorithm characteristic, but rather is heavily implementation-
dependent.

2.5.4 Some Possible Defenses

Various mechanisms have been proposed to defend against timing and power analysis
attacks, such as those discussed in Sec. 2.5.3. Proposed defense mechanisms include
(e.g., [12]):

23

a. Elimination of branching in program execution, to defend against timing attacks.

b. Software balancing (e.g., using complements of arguments to even out the total
power consumed).

c. Algorithm design (e.g., avoiding operations that are difficult to defend, and avoiding
implicit key schedule weaknesses).

d. Hardware mechanisms (e.g., random noise production).

e. Choice of card.

f. Operational defenses.

Notes on the above: software balancing and algorithm design strategies have been
discussed earlier. The other mechanisms relate to the fact that the essence of most attacks
is to collect statistical samples of quantities such as power consumption. Hardware
defenses may raise the noise to signal ratio, requiring the number of samples to be higher.

The choice of card is significant in several respects. First, high-end cards may have
hardware defenses unavailable in lower-end cards. Secondly, attacks often model cards
as finite-state automata. The difficulty in effecting an attack (reflected in the number of
statistical samples of a quantity such as power consumption) may be related to the
number of possible states of the card. The number of states determines, in part, the
complexity of the state space that must be analyzed. The latter may be greater for high-
end cards.

Operational defenses also relate to the sampling phase of an attack. It may be possible to
limit an attacker’s ability to obtain samples pertaining to one key (e.g., by limiting the
number of encryptions which can be performed by one key). Of course, an obvious
method of defending against timing or power attacks is to physically protect the card.
This is feasible in cases in which the owner of the card is not a potential adversary of the
entity that places keys on cards (in particular, when the card stores only keys generated
by the owner).

2.5.5 Performance

It is generally agreed that speed on smart cards is a tertiary consideration, with
implementability and security being more fundamental. In addition, a peculiar feature of
smart card and related environments is that implementations may need to be protected
against attacks such as power analysis. This may mean that the most efficient
implementation of a candidate on a given card is undesirable for security reasons.
Another consideration is that speed and space may be traded off (e.g., by on-the-fly vs.
precomputed generation of data objects). Thus, it is more difficult to assess performance
of candidates on smart cards than on general-purpose computers.

24

For these reasons, concrete information about the performance of candidates on smart
cards is sketchy at present. One collection of speed measurements on 8-bit processors is
given in Table 8 of the Appendix.

2.5.6 Related Environments

Various other environments share characteristics in common with smart cards. A notable
example is hardware implementations. All such environments are characterized by
restrictions on RAM and ROM, due either to lack of space or cost that increases linearly
with space. Hence, some of the above discussion extrapolates to other environments as
well. For example, a candidate with a large RAM requirement will probably be costly in
hardware, paralleling the lack of implementability on low-end smart cards.

There is even less concrete (and homogeneous) information available for environments
such as hardware than for smart cards. Hopefully, this gap will be addressed in Round 2.

2.6 Profiles of the Candidates

The following summarizes the salient information that NIST was able to accrue about the
candidates during Round 1. In cases where modified versions have been submitted,
profiles are still based largely on the original versions, since modified versions have not
been subject to public inspection or thoroughly analyzed by NIST. See Sec. 88 for
further information on the modification proposals.

Security gaps are divided into two distinct categories. General (major and minor)
security gaps refer to those attacks that can be executed in a manner that is essentially
implementation-independent (i.e., these attacks exploit intrinsic algorithm weaknesses).
In assessing security of candidates, such general attacks were regarded as being the
primary area of concern. A second category of attacks is implementation-dependent; the
major examples of such attacks are related to smart card implementations. Attacks on
smart card implementations may exploit intrinsic algorithm characteristics; nonetheless,
they cannot be regarded as being indicative of intrinsic algorithm weaknesses, since any
given implementation may or may not be vulnerable (cf. Sec. 2.5.3). Thus, statements in
the following to the effect that a candidate is vulnerable to a smart card attack mean that
certain defenses may be needed in implementations, or that there may be restrictions on
the class of feasible implementations.

2.6.1 CAST-256

Major security gaps: none known.

Minor general security gaps: none known.

Advantages:

a. High security margin.

25

b. Supports on-the-fly subkey generation.

 c. Descended from CAST-128, which has previously been analyzed.

Disadvantages:

a. Mediocre speed across platforms.

b. Large ROM requirement rules out many low-end smart card implementations and
makes hardware implementation expensive.

Security gaps related to smart card implementations:

a. Difficult to secure against power-analysis attacks due to the use of variable rotations
and additions/subtractions.

b. Very vulnerable to the attack in [6].

c. Slightly vulnerable to the attack in [10].

2.6.2 CRYPTON

Major security gaps: none known.

Minor general security gaps: some key schedule weaknesses, as noted in Sec. 2.3.2.

Advantages:

a. Good speed across platforms.

b. Implementable on low-end smart cards: supports on-the-fly key generation;
reasonable ROM requirement.

c. Operations employed are easiest to defend against timing and power analysis attacks
on smart card implementations.

d. Fast key setup.

e. Good support for instruction-level parallelism.

f. Supports additional key sizes in increments of 32 bits, to 256 bits; also supports a
block size of 512 bits.

Disadvantages: relatively low security margin.

26

Security gaps related to smart card implementations: very vulnerable to the attacks in [6]
and [10].

2.6.3 DEAL

Major security gaps: see Sec. 2.3.1.

Minor general security gaps: see Sec. 2.3.2.

Advantages:

a. Implementable on low-end smart cards: supports on-the-fly key generation;
reasonable ROM requirement.

b. Operations employed are easiest to defend against timing and power analysis attacks
on smart card implementations.

Disadvantages: slow across platforms.

Security gaps related to smart card implementations: very vulnerable to the attack in [10].

2.6.4 DFC

Major security gaps: none known.

Minor general security gaps: see Sec. 2.3.2.

Advantages:

a. Implementable on low-end smart cards: supports on-the-fly key generation;
reasonable ROM requirement.

b. Provable security is provided against some attacks under a certain mathematical
model.

c. Very fast on 64-bit platforms.

d. Supports arbitrary key sizes to 256 bits.

Disadvantages:

a. Security margin appears to be relatively low.

b. Operations employed (viz., 64-bit multiplications) do not port well to 8-bit or 32-bit
platforms.

27

Security gaps related to smart card implementations:

a. Difficult to defend against timing and power analysis attacks due to the use of
multiplications and additions.

b. Very vulnerable to the attack in [6].

c. Slightly vulnerable to the attack in [10].

2.6.5 E2

Major security gaps: none known.

Minor general security gaps: see Sec. 2.3.2.

Advantages: adequate security margin.

Disadvantages:

a. Relatively mediocre speed across platforms.

b. Lack of on-the-fly subkey generation rules out implementation on many low-end
smart cards.

c. Very high ROM usage (see Table 9 in the appendix).

Security gaps related to smart card implementations:

a. Difficult to defend against timing and power analysis attacks due to the use of
multiplications and divisions.

b. Very vulnerable to the attack in [6].

2.6.6 FROG

Major security gaps: see Sec. 2.3.1.

Minor general security gaps: none known.

Advantages: no significant advantages.

Disadvantages:

a. Design paradigm makes analysis difficult in a restricted timeframe.

b. Very slow key setup.

28

c. Slow speed across platforms.

d. Unsuitable for many smart card implementations due to a high RAM requirement.

 e. Decryption is about twice as slow as encryption.

2.6.7 HPC

Major security gaps: see Sec. 2.3.1 (modified version (cf. Sec. 2.8.2) purports to correct
this problem).

Minor general security gaps: none known.

Advantages:

a. Good performance on 64-bit platforms.

 b. Supports arbitrary block and key sizes.

Disadvantages:

a. Design paradigm makes analysis difficult in a restricted timeframe.

b. Very slow key setup.

c. Does not port well to 8-bit or 32-bit platforms.

d. Unsuitable for many smart card implementations due to high RAM requirement.

2.6.8 LOKI97

Major security gaps: see Sec. 2.3.1.

Minor general security gaps: none known.

Advantages: no significant advantages.

Disadvantages:

a. Slow across platforms.

b. Poorly suited to smart card implementation due to large ROM requirement.

2.6.9 MAGENTA

29

Major security gaps: see Sec. 2.3.1.

Minor general security gaps: none known.

Advantages: no significant advantages.

Disadvantages: slow across platforms.

2.6.10 MARS

Major security gaps: none known.

Minor general security gaps: none known.

Advantages:

a. Large security margin.

b. Good performance on 32-bit platforms; excellent performance on platforms
providing strong support for 32-bit variable rotations and multiplications.

c. Supports key sizes much higher than 256 bits (theoretically up to 1248 bits, but
some equivalent keys emerge at the boundary).

 Disadvantages:

a. Performance drops off on platforms not providing the support needed.

b. Original version is not well suited to smart card implementation due to lack of on-
the-fly subkey generation and borderline large ROM requirement (modified version
(cf. Sec. 2.8.3) apparently corrects RAM problem. Status of ROM problem depends
on precise ROM limit of card).

c. Complexity makes analysis difficult in a restricted timeframe.

Security gaps related to smart card implementations:

a. Difficult to defend against timing and power analysis attacks due to the use of
multiplications, variable rotations, and additions.

b. Slightly vulnerable to the attacks in [6] and [10].

2.6.11 RC6

Major security gaps: none known.

30

Minor general security gaps: none known.

Advantages:

a. Fast on 32-bit platforms; very fast on platforms providing strong support for 32-bit
variable rotations and multiplications.

b. Very simple structure facilitates analysis, especially in a restricted timeframe.

c. Evolved from RC5, which has been subjected to prior analysis.

d. Fast key setup.

e. Supports key sizes much higher than 256 bits (theoretically up to 1248 bits, but
some equivalent keys emerge at the boundary).

f. Key size, block size, and round number are fully parameterized.

Disadvantages:

a. Relatively low security margin.

b. Performance drops off on platforms not providing support needed.

c. Lack of support for on-the-fly key generation rules out implementation on many
low-end smart cards.

Security gaps related to smart card implementations:

a. Difficult to defend against timing and power-analysis attacks due to use of squaring
and variable rotations.

b. Slightly vulnerable to the attacks in [6] and [10].

2.6.12 Rijndael

Major security gaps: none known.

Minor general security gaps: none known.

Advantages:

a. Excellent performance across platforms.

b. Good security margin.

31

c. Well-suited to smart cards due to low RAM and ROM requirements.

d. Operations employed are easiest to defend against attacks on smart card
implementations.

e. Fast key setup.

f. “Clean” as defined in [27].

g. Good support for instruction-level parallelism.

h. Supports other key and block sizes in increments of 32 bits.

Disadvantages: no significant disadvantages.

Security gaps related to smart card implementations:

a. Very vulnerable to the attack in [10].

b. Slightly vulnerable to the attack in [6].

2.6.13 SAFER+

Major security gaps: none known.

Minor general security gaps: see Sec. 2.3.2 (modified version (cf. Sec. 2.8.4) submitted to
correct this problem).

Advantages:

 a. Good security margin.

b. Well-suited to smart cards due to low RAM and ROM requirements.

 c. Supports on-the-fly subkey generation with subkeys computable in any order.

Disadvantages: Very slow across platforms.

Security gaps related to smart card implementations:

a. Employs addition, which is somewhat difficult to defend against timing and power
attacks.

b. Very vulnerable to the attack in [10].

32

2.6.14 Serpent

Major security gaps: none known.

Minor general security gaps: none known.

Advantages:

a. Large security margin.

b. Well-suited to smart cards due to low RAM and ROM requirements.

c. Operations employed are easiest to defend against timing and power attacks.

d. “Clean” as defined in [27].

e. Bitslice implementations can allow for an efficient, parallel computation of S-boxes.

Disadvantages: slow across platforms.

Security gaps related to smart card implementations: very vulnerable to the attack in [10].

2.6.15 Twofish

Major security gaps: none known.

Minor general security gaps: none known.

Advantages:

a. Large security margin.

b. Very fast across platforms.

c. Well-suited to smart cards due to low RAM and ROM requirements.

d. Supports on-the-fly subkey generation with subkeys computable in any order.

e. Good support for instruction-level parallelism.

f. Versatile; admits several modes of implementation, allowing for space/time
tradeoffs.

g. Supports arbitrary key sizes up to 256 bits.

Disadvantages:

33

a. Key-dependent S-boxes complicate analysis.

b. Overall complexity of design has drawn some concern.

Security gaps related to smart card implementations:

a. Employs addition, which is somewhat difficult to defend against timing and power
analysis attacks.

b. Very vulnerable to the attack in [10].

2.7 Assessments of the Candidates

NIST stated in [17] that it intended to “narrow the field of candidates to no more than
five candidate algorithms” for Round 2 analysis. Doing so will focus the analysis
(particularly cryptanalysis) on a small set of the candidates and maximize the amount of
information that can be developed on each of the finalists. NIST also believes that the
narrowing of the field is appropriate in order to develop the AES in a reasonable
timeframe. During the finalist selection process, NIST maintained its goal of selecting
five candidate algorithms representing potentially superior technology that would have a
very good chance of being selected for the AES FIPS.

The following are NIST’s overall assessments of the candidates, summarizing the results
of Round 1 analysis and stating whether NIST advances a candidate to Round 2. For
those algorithms that did not have major security weaknesses, NIST examined
advantages and disadvantages. NIST also drew comparisons and contrasts between
algorithms with similar profiles in order to determine which candidates were better suited
for Round 2 analysis and possible selection for the AES FIPS. The assessments below
are not intended to be a comprehensive list and description of the features and properties
of the algorithms, which were discussed in the preceding sections of this document and in
the public comments and analyses. Those sources should be consulted for the specific
Round 1 details of each algorithm.

For those candidates advancing to Round 2, the profiles (see Sec. 2.6) and the
assessments below will serve as a starting point for further analysis.

2.7.1 Candidates with Major Security Attacks

Round 1 analysis revealed major security attacks against the following five candidates:

DEAL: Serious questions have been raised about the security of DEAL. Additionally, in
terms of performance, it is consistently very slow for encryption and decryption across all
platforms used in the Round 1 analysis. DEAL is not advanced to Round 2.

34

FROG: Serious questions have been raised about the security of FROG, in spite of the
fact that its design paradigm makes analysis difficult in a restricted time frame. The
algorithm also demonstrates slow encryption and decryption speeds across almost all
platforms, with decryption being twice as slow as encryption. Concerns about extremely
slow key setup and large RAM requirements were also raised during Round 1.
Additionally, no significant advantages were identified for FROG. For these reasons,
FROG is not advanced to Round 2.

HPC: Serious questions have been raised about HPC (original version) due to a very
large number of equivalent keys. Also, HPC’s design is extremely difficult to analyze in
a restricted time frame. A modified version of HPC claims to correct the security
problem (cf. Sec. 2.8.2). Although HPC appears to perform well on 64-bit platforms, it
performs slowly on all other platforms, and has an extremely slow key setup time. High
RAM requirements also make HPC unsuitable for many smart card implementations.
HPC is not advanced to Round 2.

LOKI97: Serious questions have been raised about the security of LOKI97, with respect
to both linear and differential cryptanalysis for relatively few known and chosen
plaintexts. This algorithm also exhibits poor performance across the platforms used in
the Round 1 analysis. Large ROM requirements result in poor suitability for smart card
implementations. The algorithm does not possess any significant, identifiable
advantages. LOKI97 is not advanced to Round 2.

MAGENTA: Serious questions have been raised about the security of MAGENTA, with
respect to a chosen plaintext attack. Encryption and decryption speeds for MAGENTA
are consistently among the slowest of any of the fifteen Round 1 candidates. No
significant, identifiable advantages of the algorithm were identified during Round 1.
MAGENTA is not advanced to Round 2.

2.7.2 Candidates without Major Security Attacks

Below are five algorithms that had either minor or no security weaknesses identified
during Round 1. They also possessed varying degrees of advantages and disadvantages.

CAST-256: This candidate belongs to a class of candidates with the speed/security ratio
tilted strongly in favor of security. This resulted in inevitable comparisons to Serpent,
which has a comparable security profile. In terms of performance, CAST-256 appears to
have mediocre speed across most platforms. Another disadvantage of CAST-256 is its
relatively high ROM requirement, which rules out many low-end smart card
implementations and increases the expense of hardware implementations. On the other
hand, Serpent is more versatile, and its low ROM requirements make it better suited for
restricted-memory environments. Thus, the edge in this class appears to belong to
Serpent. Since it was considered unlikely that two algorithms with this type of profile
would be chosen for the AES FIPS, CAST-256 was deemed to have a low chance of
becoming an AES, and, therefore, is not advanced to Round 2.

35

CRYPTON: This candidate has the same general profile as candidates like Rijndael and
Twofish, but CRYPTON has a lower security margin, based on evidence produced during
Round 1. Additionally, the original version of CRYPTON has a key schedule weakness
(a modified version was submitted but rejected (cf. Sec. 2.8.1)). Rijndael and Twofish
have no known general security gaps. Regarding performance, CRYPTON is among the
faster of the candidates, but it is slower than either Rijndael or Twofish on most
platforms. Taking into account all of these factors, it was considered unlikely that
CRYPTON would surpass either Rijndael or Twofish when the AES algorithm(s) is
selected. Thus, CRYPTON is not advanced to Round 2.

DFC: The precise security status of DFC is difficult to ascertain due to a lack of
resolution of the issue of provable security ([26], [39]). It has been argued that the scope
of the submitter’s provable security claims is sufficiently limited such that a case for a
strong proof of overall security cannot be made. In addition, there is a concern about
DFC’s low security margin. Thus, the only concrete advantage of DFC appears to be its
performance on 64-bit platforms. However, DFC’s performance drops off substantially
on platforms with smaller word sizes, due to its use of 64-bit multiplications. There are
other candidates (e.g., Rijndael) that perform roughly the same on 64-bit platforms and
are much more versatile with respect to word size, in addition to having larger security
margins. It was deemed unlikely that DFC would be chosen ahead of some of the more
versatile candidates. Hence, DFC is not advanced to Round 2.

E2: The general profile of E2 is similar that of Rijndael and Twofish, although E2’s
security margin is lower. In terms of performance, E2 is slower than Rijndael and
Twofish on most platforms. Due to its high RAM requirement, E2 is not implementable
on low-end smart cards, unlike Rijndael and Twofish. A high ROM requirement is also a
problem for E2. For these reasons, it was considered unlikely that E2 would surpass
either Rijndael or Twofish when the AES algorithm(s) is selected. Thus, E2 is not
advanced to Round 2.

SAFER+: Although SAFER+ has a good security margin, another candidate with a
similar profile – Serpent - has a significantly higher margin. SAFER+ is very slow,
especially on 32-bit and 64-bit platforms, but the lack of speed is not fully commensurate
with its security margin (unlike Serpent). Hence, it was felt that if a slow candidate were
to be chosen for the AES FIPS, it would more likely be a candidate such as Serpent that
exhibits a better performance/security profile. SAFER+ is not advanced to Round 2.

2.7.3 Candidates Selected for Round 2

Based on the Round 1 analysis and comments, the following five candidates had no
major or minor security gaps, and possessed numerous advantages:

MARS: One of MARS’ strengths is its large security margin. No security gaps were
evident from Round 1 analysis and comments. Additionally, MARS demonstrates very
good performance on 32-bit platforms, and its speed excels on platforms that provide
strong support for 32-bit variable rotations and multiplications. The algorithm also has

36

the flexibility to handle key sizes much higher than the required 256 bits. Some concerns
about MARS include its performance on platforms that do not provide the support
needed, as well as the algorithmic complexity. The effect of a heterogeneous round
structure on security would be an appropriate subject of further study. Overall, it was felt
that the plusses significantly outweighed the minuses; hence, MARS is advanced to
Round 2.

RC6: The simplicity of RC6 is very attractive, especially with respect to facilitating
security analysis in a restricted timeframe. No security gaps were evident from Round 1
analysis and comments. RC6 is very fast on 32-bit platforms, and it is the fastest
performer on any platform providing the needed support. Its key setup time is very fast.
Additionally, this algorithm is extremely flexible in the sense that the key size, block
size, and number of rounds are all fully parameterized. Some concerns about RC6
include the relatively low security margin, declining performance on platforms that do
not provide strong support for 32-bit variable rotations and multiplications, and the lack
of low-end smart card suitability. Overall, it was felt that the plusses significantly
outweighed the minuses; hence, RC6 is advanced to Round 2.

Rijndael: Rijndael is an excellent candidate on all major counts, Rijndael has had no
significant disadvantages identified. During Round 1, no major or minor security gaps
were evident, and the algorithm appears to have a good security margin. Fast key setup,
and consistently excellent performance across all platforms considered during Round 1
are very positive characteristics. The algorithm’s low RAM and ROM requirements also
make it very suitable for smart cards. The ability to handle additional key and block sizes
also contributes to the algorithm’s outstanding flexibility. Rijndael is advanced to Round
2.

Serpent: Serpent has one of the strongest overall security profiles and is extremely well
suited for smart cards. It is designed to allow bitslice implementations, in which the S-
boxes can be computed by logical operations rather than table lookups. Such optimized
versions should allow relatively efficient parallel computation of the S-boxes, especially
on 32-bit platforms. Nevertheless, its slow speed remains a minus. Overall, it was felt
that the plusses predominate. Hence, Serpent was advanced to Round 2.

Twofish: On almost all major counts, Twofish is an excellent candidate. It possesses a
large security margin, and, during Round 1, no major or minor security gaps were
evident. In terms of performance, Twofish is very fast across almost all platforms. Low
RAM and ROM requirements make it suitable for smart cards and other restricted
memory environments. Another advantage is Twofish’s flexibility, since it admits
several modes of implementation to accommodate various space/time tradeoffs. During
Round 1, there were a few concerns regarding the overall complexity of its design.
Twofish is advanced to Round 2.

2.8 Modified Versions

37

NIST’s call for candidate algorithms [17] made an allowance for submitters to propose
modified versions of their candidates prior to Round 2. NIST specifically included this in
[17] in case none of the algorithms completed Round 1 without security problems. Since
NIST in fact received twenty-one algorithm submissions, and fifteen were included for
Round 1, that situation did not occur.

In [17], NIST stated that “small modifications to the submitted algorithms will be
permitted for either security or efficiency purposes…[and] no substantial redesigns”
would be allowed. At AES2, NIST expressed its concern that substantial changes would
likely invalidate the majority of Round 1 analysis for an algorithm and would, therefore,
not be allowed. Additionally, NIST stated that “The security provided by an algorithm is
the most important factor in the evaluation” [17]. The submission of a proposed
modification to fix a security deficiency was taken by NIST as a recognition that the
algorithm should be improved. Since many other algorithms did not have security
deficiencies identified during Round 1 (and thus did not propose a security
enhancement), NIST viewed the algorithms not requiring security modifications more
favorably. If security weaknesses were exposed in an algorithm during Round 1, then
NIST was concerned that this might indicate other security problems with the algorithm.

Submitters of four algorithms - CRYPTON, HPC, MARS, and SAFER+ - proposed
modifications to their original submissions after the close of Round 1. Three of the
modification proposals - for CRYPTON, HPC, and SAFER+ - are intended to correct a
specific security weakness. The modification proposed for MARS addresses efficiency
concerns. These modifications are discussed in the following sections.

2.8.1 CRYPTON

Version 1.0 of CRYPTON was submitted as a modification [28] to the original
submission. The submitter claims that the modification will correct the key schedule
weaknesses of the original submission. However, the modification also changes the S-
boxes. It was felt by NIST that the combination of these two changes violates the
criterion that a modification should not invalidate the majority of Round 1 analysis.
Since changes to both the key schedule and S-boxes would presumably necessitate
significant re-analysis, the modification was not accepted.

 2.8.2 HPC

The submitter of HPC proposed a modified version [38] that is intended to correct the
equivalent-key problem in the original submission. NIST could not ascertain that the
modified version is secure. However, even if this modification were successful in
correcting the original key schedule problem, it would not alter the overall profile of HPC
– particularly regarding performance characteristics - significantly enough to gain
admission to Round 2. Thus, the acceptance of this proposal is a moot point.

2.8.3 MARS

38

A modified version of MARS [45] changes the mode of subkey generation. The
submitter claims that the subkeys are now computed in four separate phases, each
encompassing a quarter of the subkeys (assuming this description is accurate, the scheme
would lie somewhere between precomputed and on-the-fly generation).

While some Round 1 analysis of the algorithm would be invalidated by the proposed
modification, it would appear that the limited scope of this change meets the criterion of
not invalidating the majority of Round 1 analysis. Hence, this modification was accepted
by NIST. The consensus was that this modification would improve a candidate algorithm
whose original version was already strong, although the precise extent of this
improvement remains to be seen. MARS was originally limited with respect to
restricted-memory environments because of both RAM and ROM requirements. The
adjustments to subkey generation appear to have reduced the RAM requirement to the
point where implementation on low-end cards is feasible. However, ROM requirements
remain a concern.

2.8.4 SAFER+

A modified version of SAFER+ [42] was proposed to correct the minor key schedule
deficiency noted in Sec. 2.3.2. However, even if this modification produces a secure key
schedule, it would not alter the profile of SAFER+ sufficiently to gain admission to
Round 2, and thus the acceptance of this proposal is a moot point.

2.9 Conclusion

As a result of the analysis of all comments, papers, verbal comments at conferences,
NIST studies, reports and proposed modifications, NIST has selected five finalists for
AES Round 2: MARS, RC6, Rijndael, Serpent and Twofish. No significant security
vulnerabilities were found for these candidates during the Round 1 analysis, and each of
these algorithms constitutes potentially superior technology.

39

APPENDIX

In the following tables, some candidates will be abbreviated, as follows:

 CAST = CAST-256
 CRYP = CRYPTON
 LOKI = LOKI97
 MAG = MAGENTA
 RIJN = Rijndael
 SAFR = SAFER+
 SERP = Serpent
 TWOF = Twofish

NIST does not vouch for the accuracy of data not obtained by NIST.

40

Table 1. Encryption speeds of the candidates

Table 1 provides the encryption speeds of the candidates, measured in clock cycles,
for encrypting one 128-bit block with a 128-bit key:

32-bitC and assembler 64-bit C and assembler Other
 A B C D E F G H I J K L M

CAST 668 2088 660 600 600 633 749 694 600 615 1275 5160 10733
CRYP 390 1282 476 345 390 474 499 477 408 353 865 3630 4155
DEAL 2339 8950 2600 2200 2200 2339 2752 2781 2528 2010 3940 21800 37991
DFC 480 5874 1700 750 1642 323 802 304 232 2435 367000 22668
E2 415 1808 720 410 410 687 587 711 471 510 990 2310 9652
FROG 2572 2182 2600 2417 2752 2337 3750 2620 8800
HPC 1468 2602 1600 1429 402 450 376 420 1315 3620 21759
LOKI 6376 2150 2134 2356 4500
MAG 23186 6600 6539 5074 56200 52681
MARS 376 1600 390 320 550 369 507 840 478 450 950 2960 8908
RC6 243 1436 260 250 700 270 559 1161 467 382 1085 1870 8231
RIJN 284 1276 440 291 320 374 490 328 340 285 735 2230 3518
SAFR 775 4424 1400 800 1100 1722 1502 3002 656 929 5085 8360 10288
SERP 992 1800 1030 900 1100 952 998 992 915 855 1345 3180 14703
TWOF 258 1254 400 258 290 376 490 487 360 315 755 5280 4672

Legend for Table 1:

 A: “Best-known implementation,” Intel Pentium 2. Source: [29], Table 2.
 B: Linux/GCC-2.7.2.2/Pentium 133 MHz MMX. Source: [5], Table 3.
 C: Intel Pentium Pro C. Source: [37], Table 2.
 D: Intel Pentium Pro ASM. Source: [37], Table 2.

41

 E: Intel Pentium ASM. Source: [37], Table 2.
 F: Intel Pentium Pro/II, C. Source: [20], Table 1.
 G: Compaq Alpha 21164a 500 MHz, DEC CC. Source: [4], Table 1.
 H: “Best-known implementation,” SUNTM UltraSPARCTM. Source: [29], Table 2.
 I: DEC Alpha ASM. Source: [37], Table 7.
 J: DEC Alpha AXP 21264, DEC CC. Source: [29], Table 1.
 K: Hewlett-Packard PA7000. Source: [29], Table 1.
 L: Pentium Pro, Java. Source: [35].
 M: Texas Instruments TMS320c541 DSP, C. Source: [43].

42

Table 2. Encryption speeds, ranked

Table 2 provides the ranking of the encryption speeds of the candidates
for encrypting one 128-bit block with a 128-bit key. Note that a ranking of 1 denotes the
fastest encryption speed.

 A B C D E F G H I J K L M

CAST 8 8 6 7 6 6 9 5 9 9 7 9 8
CRYP 5 3 5 5 3 5 5 3 5 4 3 7 2
DEAL 12 14 13 11 10 13 13 12 12 12 12 13 12
DFC 7 12 11 8 10 1 7 1 1 10 15 11
E2 6 7 7 6 4 7 8 6 7 8 5 3 6
FROG 13 9 13 14 3 11 13 11 12
HPC 11 10 10 9 2 2 4 6 8 6 10
LOKI 13 12 12 12 8
MAG 15 15 15 15 14 13
MARS 4 5 2 4 5 2 6 8 8 7 4 4 5
RC6 1 4 1 1 7 1 7 10 6 5 6 1 4
RIJN 3 2 4 3 2 3 3 1 2 2 1 2 1
SAFR 9 11 9 9 8 11 11 13 10 11 13 11 7
SERP 10 6 8 10 8 8 10 9 11 10 9 5 9
TWOF 2 1 3 2 1 4 3 4 3 3 2 10 3

43

Table 3. Key setup times

Table 3 provides the key setup time, in clock cycles, to encrypt a 128-bit block with a
128-bit key:

 A B C D

CAST 11412 4300 4333 60002
CRYP 758 955 744 21416
DEAL 108396 4000 8635 79709
DFC 23914 7200 7166 90011
E2 7980 2100 9473 136499
FROG 3857000 1386000 1416182
HPC 234326 120000 120749 1384217
LOKI 22756 7500 7430
MAG 1490 50 30 208
MARS 4708 4400 4316 54427
RC6 5186 1700 1632 40011
RIJN 17742 850 305 26642
SAFR 4708 4000 4278 38598
SERP 13154 2500 2402 28913
TWOF 18846 8600 8414 88751

Legend for Table 3:

 A: Linux/GCC-2.7.2.2/Pentium 133 MZh MMX. Source: [5], Table 3.
 B: Intel Pentium Pro, C. Source: [37], Table 2.
 C: Intel Pentium Pro/II, C. Source: [20], Table 1.
 D: Texas Instruments TMS320c541 DSP, C. Source: [43].

44

Table 4. Smart card space requirements

Table 4 provides information taken mainly from [37]. RAM1 is the RAM requirement in
bytes for candidates not supporting on-the-fly subkey generation. RAM2 is the RAM
requirement in bytes for candidates supporting on-the-fly subkey generation. Two entries
are given for MARS, one for the original version and one for the proposed modification.
The ROM column indicates the number of bytes needed for encryption only.

 RAM1 RAM2 ROM

CAST 60 6000
CRYP 52 2000
DEAL 50 2000
DFC 100 2000
E2 300 2000
FROG 2300
HPC 2000
LOKI 400 8000
MAG
MARS 195 60? 3000
RC6 210 1000?
RIJN 52 1000
SAFR 50 2000
SERP 50 1000
TWOF 60 1400

45

Table 5. Security margins

Table 5 provides the actual number of rounds, R, of a candidate for the 128-bit key size.
The table also gives the minimum number of rounds needed for security as stated in [5];
this is denoted by M1. M2 gives the “raw” number of rounds of the best actual or
estimated attack (with no additional rounds). S1 and S2 give the security margins
associated with M1 and M2, respectively.

 R M1 M2 S1 S2

CAST 48 40 20 20% 140%
CRYP 12 11 10 9% 20%
DEAL 6 10 6 -40% 0%
DFC 8 9 6 -11% 33%
E2 12 10 9 20% 33%
FROG 8
HPC 8
LOKI 16 38 16 -56% 0%
MAG 6 11 6 -44% 0%
MARS 32 20 12 60% 166%
RC6 20 21 16 -5% 25%
RIJN 10 8 6 25% 66%
SAFR 8 7 5 14% 60%
SERP 32 17 15 88% 113%
TWOF 16 14 6 14% 166%

46

Table 6. Operations used

Table 6 indicates the operations used by the candidates (Y = used). Source: [4].

TabLoo FixShi VarShi Logica AddSub MuDiSq

CAST Y Y Y Y
CRYP Y Y Y
DEAL Y Y Y
DFC Y Y Y Y
E2 Y Y Y Y
FROG Y Y
HPC Y Y Y Y
LOKI Y Y Y Y
MAG Y
MARS Y Y Y Y Y
RC6 Y Y Y Y
RIJN Y Y
SAFR Y Y Y
SERP Y Y
TWOF Y Y Y

Legend for Table 6:

 TabLoo = Table lookup.
 FixShi = Fixed shift or rotate.
 VarShi = Data-dependent shift or rotate.
 Logica = Logical.
 AddSub = Addition or subtraction.
 MuDiSq = Multiplication, division or squaring.

47

Table 7. Parallelism and optimal theoretical performance

Potential for instruction-level parallelism and optimal theoretical performance can be
measured, in theory, by the number of clock cycles in a critical path, as defined (e.g., in
[11] or [21]). Table 7 provides two estimates for the number of cycles in a critical path
for a 128-bit encryption. The first estimate, Crit1, is from [21]; the second estimate,
Crit2, is from [11]. Par is an estimate of the maximum number of processing elements
that can be effectively employed in parallel, as given in [11].

Crit1 Crit2 Par

CAST 316
CRYP 102 85 7
DEAL 1632
DFC 232
E2 120 210 4
FROG 1796
HPC 386
LOKI 500
MAG 745
MARS 258 214 2
RC6 185 181 2
RIJN 86 71 7
SAFR 265
SERP 556 526 2
TWOF 166 162 3

48

TABLE 8. 8-bit speeds

Table 8 provides 8-bit speeds for the candidates, in clock cycles per 128-bit block
encryption with a 128-bit key. Source: [3], appendix.

CAST 26000
CRYP 12000
DEAL 233000
DFC 35000
E2 6300
FROG 17900
HPC 35000
LOKI 8000
MAG 55000
MARS 5000
RC6 13900
RIJN 3100
SAFR 80000
SERP 34000
TWOF 26500

49

Table 9. Memory Usage

Table 9 provides some memory usage measurements, in bytes, of the candidates in Java.
Source: [19].

 RAM ROM

CAST 2260 29000
CRYP 800 13979
DEAL 4355 20043
DFC 632 11147
E2 880 275857
FROG 576 14100
HPC 15000 44889
LOKI 10240 15956
MAG 464 6088
MARS 456 19719
RC6 480 7800
RIJN 20000 18405
SAFR 320 132000
SERP 1248 38900
TWOF 8000 19181

50

Acknowledgements

NIST is grateful for the efforts of all the AES candidate algorithm submitters, namely for
their work in preparing the submission packages, answering questions and providing
support during Round 1, participating in AES1 and AES2, and most importantly, for
allowing their algorithms to be scrutinized by the global cryptographic community.

Additionally, NIST appreciates the efforts of all the people who performed analysis and
testing of the candidates during Round 1, and who provided comments, testing results,
and recommendations as to which candidates should qualify for Round 2.

Great appreciation is also extended to other members of NIST’s AES team, who
performed testing, reviewed public comments, and participated in the numerous meetings
to discuss the selection of the Round 2 finalists: Lawrence Bassham III, James Dray, Juan
Soto and San Vo.

References

[1] AES discussion forum: http://aes.nist.gov.
[2] AES home page: http://www.nist.gov/aes
[3] Akyman Financial Services Pty Ltd., letter dated February 19, 1999, available at

[2].
[4] O. Baudron, H. Gilbert, L. Granboulan, H. Handschuh, A. Joux, P. Nguyen, F.

Noilhan, D. Pointcheval, T. Pornin, G. Poupard, J. Stern and S. Vaudenay, Report
on the AES candidates, The Second AES Conference, March 22-23, 1999, pp 53-
67.

[5] E. Biham, A note on comparing the AES candidates, The Second AES
Conference, March 22-23, 1999, pp 85-92.

[6] E. Biham and A. Shamir, Power analysis of the key scheduling of the AES
candidates, The Second AES Conference, March 22-23, 1999, pp 115-121.

[7] E. Biham, A. Biryukov, N. Ferguson, et al., Cryptanalysis of Magenta, The
Second AES Conference, March 22-23, 1999, pp 182-183.

[8] J. Borst, Weak keys of CRYPTON, Katholieke Universiteit Leuven, Departement
Elektrotechniek-ESAT/COSIC, Kardinaal, August 28, 1998, also available at [2].

[9] G. Carter et. al., Key schedule classification of the AES candidates, submission
for The Second AES Conference, 1999, available at [2].

[10] S. Chari, C. Jutla, J. Rao, and R. Rohatgi, A cautionary note regarding evaluation
of AES candidates on smart cards, The Second AES Conference, March 22-23,
1999, pp 133-147.

[11] C. Clapp, Instruction-level parallelism in AES candidates, The Second AES
Conference, March 22-23, 1999, pp 68-84.

[12] J. Daeman and V. Rijmen, Resistance against implementation attacks: a
comparative study of the AES proposals, The Second AES Conference, March
22-23, 1999, pp 122-132.

51

[13] C. D’Halluin, G. Bijnens, V. Rijmen and B. Preneel, Attack on six rounds of
CRYPTON,” Fast Software Encryption Workshop, March 24-26, 1999, pp 47-59.

[14] C. D’Halluin et. al., Equivalent keys of HPC, proposed modification, submitted
on April 8, 1999, available at [2].

[15] M. Dworkin, Conference Report: Second Advanced Encryption Standard
Candidate Conference, accepted for publication in the Journal of Research of the
National Institute of Standards and Technology.

[16] Federal Register: January 2, 1997 (Volume 62, Number 93); available at [2].
[17] Federal Register: September 12, 1997 (Volume 62, Number 177); available at [2].
[18] Federal Register: September 14, 1998 (Volume 63, Number 177); available at [2].
[19] A. Folmsbee, AES Java technology comparisons, The Second AES Conference,

March 22-23, 1999, pp 35-49.
[20] B. Gladman, Implementation experience with AES candidate algorithms, The

Second AES Conference, March 22-23, 1999, pp 7-14.
[21] G. Graunke, Yet another performance analysis of the AES candidates, comment

dated April 15, 1999, available at [2].
[22] D. Johnson, Future resiliency: a possible new AES evaluation criterion,

submission for The Second AES Conference, 1999, available at [2].
[23] J. Kelsey, B. Schneier and D. Wagner, Key schedule weaknesses in SAFER+,

The Second AES Conference, March 22-23, 1999, pp 155-167.
[24] J. Kelsey, DEAL key schedule attacks, discussion item, dated March 30, 1999,

available at [1].
[25] L. Knudsen and V. Rijmen, Weaknesses in LOKI97, The Second AES

Conference, March 22-23, 1999, pp 168-174.
[26] L. Knudsen and V. Rijmen, “On the Decorrelated Fast Cipher (DFC) and its

theory,” Fast Software Encryption Workshop, March 24-26, 1999, pp 80-93.
[27] L. Knudsen, Some thoughts on the AES process, University of Bergen, Dept. of

Informatics, comment dated April 15, 1999, available at [2].
[28] C. Lim, A revised version of CRYPTON Version 1.0, Fast Software Encryption

Workshop, March 24-26, 1999, pp 31-46.
[29] H. Lipmaa, AES candidates: a survey of implementations, submission for The

Second AES Conference, 1999, available at [2].
[30] S. Lucks, “On the security of the 128-bit block cipher DEAL,” Fast Software

Encryption Workshop, March 24-26, 1999, pp 60-69.
[31] M. Matsui and T. Tokita, “Cryptanalysis of a reduced version of the block cipher

E2,” Fast Software Encryption Workshop, March 24-26, 1999, 70-79.
[32] J. Soto, Randomness Testing of the AES Candidate Algorithms, NIST AES

report, available at [2].
[33] L. Bassham, Efficiency Testing of ANSI C Implementations of Round1 Candidate

Algorithms For The Advanced Encryption Standard, NIST AES report, available
at [2].

[34] J. Dray, Report on the NIST Java™ AES Candidate Algorithm Analysis, NIST
AES report, available at [2].

[35] NTT Laboratories, Java performance of AES candidates, comment submitted on
April 15, 1999, available at [2]

52

[36] E. Roback and M. Dworkin, Conference Report: First Advanced Encryption
Standard (AES) Candidate Conference, Journal of Research of the National
Institute of Standards and Technology, Vol. 104, No. 1, January-February 1999.

[37] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall and N. Ferguson,
Performance comparison of the AES submissions, The Second AES Conference,
March 22-23, 1999, pp 15-34.

[38] R. Schroeppel, Tweak for Hasty Pudding Cipher, proposed modification,
submitted on May 14, 1999, available at [2].

[39] J. Stern and S. Vaudenay, On decorrelation and provable security, comment
submitted on April 15, 1999, available at [2].

[40] S. Vaudenay, Weak keys in CRYPTON, discussion item, dated December 12,
1998, available at [1].

 [41] D. Wagner, N. Ferguson and B. Schneier, Cryptanalysis of FROG, The Second
AES Conference, March 22-23, 1999, pp 175-181.

[42] C. Williams, Proposal for a ‘tweak’ to Cylink’s AES candidate SAFER+,
proposed modification, submitted on May 14, 1999, available at [2].

[43] A. Zugaj, Comments on AES candidates, comment submitted on April 15, 1999,
available at [2].

[44] N. Zunic, Official comments from IBM’s AES team, comment dated April 9,
1999, available at [2].

[45] N. Zunic, Minor ‘tweak’ submission for MARS, proposed modification,
submitted on May 145, 1999, available at [2].

Sun, Java and all Sun and Java-based marks are trademarks and registered trademarks of
Sun Microsystems, Inc. in the United States and other countries.

