A GUIDE TO

MSX-BASIC
Version 2.0

BIET 38T

Scanned and converted to PDF by HansO, 2005

ABOUT THIS BOOK

This book is going to introduce you to MSX2-BASIC. It is divided into
two sections—BEGINNING and ADVANCED.

The BEGINNING SECTION is written for those who are learning BASIC
for the first time. It shows you what BASIC is all about and how to
write simple BASIC programs. By practicing writing the programs in
the BEGINNING SECTION, you will learn all of the most important
commands used in writing BASIC programs.

If you are already familiar with MSX-BASIC, you can skip the BEGIN-
NING SECTION and go on to the ADVANCED SECTION. Or if you
haven’'t written programs in MSX-BASIC before, but have had ex-
perience with some other BASIC language, you can glance through
the BEGINNING SECTION to see what are the main commands used
in MSX-BASIC, and then go on to the ADVANCED SECTION.

MSX-BASIC Version 2.0

This book explains how to write programs in MSX-BASIC Version 2.0.
MSX-BASIC Version 2.0 is a more powerful version of the MSX-BASIC
used in the Sony HB-55P, HB-75P/B, HB-101P, and HB-201P com-
puters. All of the commands and functions of MSX-BASIC are includ-
ed in MSX-BASIC Version 2.0. Any program written in MSX-BASIC can
be run on a computer that uses MSX-BASIC Version 2.0.

Commands or functions that are used only in Version 2.0 are referred
to as MSX2-BASIC in this book. Commands or functions that apply to
both MSX-BASIC and MSX2-BASIC are referred to simply as BASIC.

CONTENTS

INTRODUCTORY COURSE

Chapter 1 What is a Program?
Your First Computer CommandsS........ocoeeoeieeeiee e
Getting Ready ...

Starting Up BASIC ..o,

Using the Keyboard To Enter Commands
Command 1—"'‘Coffee Please”ccoeovmeeeeeieecieieeeeeenn.
Doing Calculations PRINT expressioncccoceene...
Giving Values to Variables LET ...,
Displaying Characters PRINT “character string”
Using the $ Mark with String Variables

Making a BASIC Programccccccccvicinenieesinneeeeesrcesenean e
Direct mode and Program modec.cccocecenninivenceneinncnn
A One-Line Programcccccccevciiiieninscie e
Checking a Program LIST .o
Running a Program RUN ...
Erasing a Program in Memory NEW ...
Entering Variable Values From The Keyboard
INPUT et
Getting the Most From the PRINT Command...................
Erasing One Part of the Program DELETE
To Erase the Display on the Screen CLS
Making @ Loop GOTO ...coiiiiiiiineieeeete e

Chapter 2 More Like A Computer
Escaping From a LOOP .cccuiveeeieeieeeieeee e
Satisfying a Condition IF—THEN ...,
To Stop the Program END ...,
Conditional EXpressionsoccvoevviceceeeccieeeee e
Renumbering Lines RENUM ...,

The Loop SpecialiSt .
Specifying Loop Repetitions FOR—NEXT

Reading Dataccoeiiieeieee et
Another Method for Assigning Values to Variables
READ—DATA e

Saving Programs On TaPe ..ccccecceccueeieeieeeeee e
Saving the Computer Program on Tape CSAVE

Checking that the Program is Saved Correctly

CLOAD? e

Saving Programs on Disks ...c.ccoooeveeieeiiiieeeeeeeeeec
Formatting a Disk CALL FORMATccooiiiiiiiie
Saving the Computer Program on a Disk SAVE
Checking that the Program is Saved |FILES
Loading a Program from the Disk LOADcccoe.......
Erasing a Program on the Disk KILLccccocoviviiiieenn.

Chapter 3 Array Variables
A Program Using Array Variablesccccccoceeeviievecinciecee e
How to Use Array Variables DIMccooiviviiiiiceeeee

ADVANCED COURSE

Chapter 4 The Memory Switch Function

The SET Statement ... e
The Memory Switch FunNcCtion...........ccocevvoeieceen s
Adding a Title SET TITLE ..ccooiiiiieciie e
Changing the Prompt Statement SET PROMPT
Specifying a Password SET PASSWORD

Changing the Location of the Display on the Screen

SET ADJUST ettt
Setting the “BEEP” SET BEEPccoooovioeieiieeeeee,

Specifying the Initial Status of the Screen

SET SCREEN ...t

Chapter 5 Screen Configuration and Graphics

SCreen MOAEoiiiiicet e s
Screen Configuration............ooceveiiiiciciccene e
Setting the Mode SCREENcoooooiiiiiieeeiee e
Character MOde......cocoouiiiiiieceeee e,

Specifying the Number of Characters Per Line

WIDTH e e e
The Graphic Mode and Coordinates..........cccoeeeeeeveeneennnn..
Multicolor Mode (SCREEN 3) ..o,

SPECIfYiNG StEP coueviiicci et

SPeCifying ColOrS .t 102

The Color Code and the Palette Function...........c........... 102
How to Use the Palette Function............ccooiii. 104
Palette Specification COLORccociiiiiiiiiicini e 105
The SCREEN 6 Mode and the Palette Function............. 109
The SCREEN 8 Mode and Color........ccccoiviieicien e 109
Color Spill in SCREEN 2 and SCREEN 4 Modes............ 110
Returning the Color Specifications to the Initial Settings
(070 1 1K@ 1 = R 112
Setting Pages oo e e 114
Graphic Mode Displays and Pages......c.ccoocevcevvcenennnenneen. 114
Effects That Can Be Achieved by Setting the Page...... 115
Setting Pages SET PAGE ... 119
Copying Graphics Data.........coooiiiii it 123
Copying GraphiCs ...t 123
Copying Between Screens COPY (1).ccciiiiiiiiinniiiinnnee 123
Copying Between the Screen and Internal Memory
COPY (2) oottt ee et a et eeeaesnaaa e banennes 127
Copying Between the Screen and a Floppy Disk
10101 S N 1< | T UUPRUSTURIUN 133
Copying Between Memory and a Floppy Disk
1010 = U TS URRURN 136
Logical Operationsc.cccccoovviiiii i 137
The SCREEN Statement......cc.ooiieiiiiiciieiece e 145
The Screen Statement. ... 145
Key Click Switch, Baud Rate, Printer Typecccccocceeee. 146
The Interlace Mode ... 147

Chapter 6 Sprite Patterns

Sprite Pattern Definition and Use ..., 152
Sprite Patterns. . 152
Sprite Pattern Definition SPRITES$ variable 155
Sprite Pattern Display PUT SPRITEcccoiiiiiieiiin. 159
Animating Sprite Patterns ..o, 161

Using Enhanced Function Sprites......cccccoiiciinreciicicicnnneee 163
The Enhanced Sprite FUnctionsccccoveiveiciii e 163
Changing the Color of a Sprite COLOR SPRITE 164
Specifying the Color of Each Line of a Sprite
COLOR SPRITES ...t 166

Sprite Definition Technique.......... 170

Chapter 7 Using Functions

Numeric Type Functions......ccooooeviiiieceeie e 176
What Are FUNCHioNS? ..o 176
Numeric Type FUNCtionS.....cccooveiiiieccecce e, 177
The Square Root Function SQR(X) .coovereereeei e 178
Trigonometric Functions SIN(X) ..ccooviiiieiiiiiiiee, 180
The Absolute Value Function ABS(X) ..ccccoeovivevrerinnenn. 181
The Random Function RND(X) ..c.ccccooiivineveiieiieeceee, 182
RDN(X) and the Integer Function INT(X)ccccoeevurrrne 183

String Type FUNCHIONS .o, 188
What Are String Type Functions?c.coooeveieiiecee 188
Specifying Spaces SPACES$(N), SPC(N)ccccovvrernnnne. 189
Processing Character Strings
LEFT$(X$,N), MID$(X$,M,N), RIGHTS(XE,N) ..cvirrrene 190

Functions Which Convert Numeric and String Type Data.... 193
The Conversion FUNCHONS.......ccccviivccinie e 193
Changing the Type of Numbers VAL(X$), STR$(X) 194
Character Codes and Functions ASC(X$), CHR$(X) 196
Returning the Length of a Character String LEN(X$) .. 197

Data Input FUNCHIONS ..o 198
The Operation of Data Input Functions...............c.......... 198
Data Input from the Keyboard INKEY$cccooveeeenn 200
Inputting the Status of the Cursor Key STICK(N) 203

Chapter 8 Interrupts

MaKing INterrupts. ..o 206
What [s an INterrupt?ccoeciiiinneciec e, 206
MSX2-BASIC INterrupts ..cooeeveveece e 206
Making INterrupts....ccccoverciniiiiren e 207

Programs Using INterruptsccocooveoicevmviceees e 209
A Function Key Interrupt Program.......cccccccoeeeiiiiiieeinene, 209
Invalidating an Interrupt KEY(N) OFFccooiiiennnen. 210
Interrupt HOIA ..o 212
Re-Validating an Interrupt During an Interrupt Processing
Routine KEY(N) ON ..o 213
Holding an Interrupt in a Program KEY{(N) STOP 214
Sprite Overlap Interrupt ...co.ooeeeiecceecee e 216

Chapter 9 Processing Files

Files and File DeVICeS. ..o 220
Files and File NAMEScccovvricieriiricriri e 220
File Devices and Device Names.......c..cccoviiinnicniciiinnen, 221
File Name Rules and the Type Namecccoeieee. 224
Program Files and Data Files ... 225
Operating Program Files........cciiiiininiininis 226
File Managementccccernieniciiii e 230
Auto-Start Program File ..., 232

Sequential File Operation........c.ccoo i 233
Sequential Files and Random Access Files................... 233
Writing Data in a Sequential File
OPEN FOR OQUTPUT ..o e 234
Reading Data from a Sequential File
OPEN FOR INPUT ..ot 237
Adding Data OPEN FOR APPEND ..., 240
Writing Characters on a Graphic Screen.........ccoceeeeins 242
The Number of Files Which Can Be Opened at One Time
MAXFILES ettt s 243

Random Access File Operation.......ccccceviiiiinnieniinnccicenne, 244
What Is a Random Access File? ... 244
Writing Data in a Random Access File......cccoiiiiie 246
Reading Data from a Random Access File.................... 251

Chapter 10 Machine Language Subroutines

Writing and Executing Machine Language Subroutines 254
Machine Language Subroutines..........cceceeiriiiiiiinnee 254
Specifying the Area and Start Address of a Subroutine
CLEAR, DEFUSRooi ittt 255
Writing a Machine Language Subroutine POKE 256
Calling a Machine Language Subroutine USR 257
Saving a Machine Language Subroutine BSAVE 262
Loading a Machine Language Subroutine BLOAD 263

(1N] 1 = GO UURPP 265
BASIC Commands, Statements, Functions and Error
MESSBGES ..veveeerrireeeririr et et 266
B I 0 11 TR 268
USING BASIC .o 270

INTRODUCTORY COURSE

Chapter 1
What Is A Program?

Execute the following statements first.

SET TITLE "*,1
SET PROMPT “Ok"
SET aDJUST (a,a)
SET EEEP 1,3
SCREEM @,,1,1,0,0
KEY 0N

WIDTH 3%

COLOR 15,4,4

YOUR FIRST COMPUTER
COMMANDS

®How to Give Commands

® MSX-BASIC

®Doing Calculations—PRINT “‘expression”
®Variables and the LET Command
®Displaying Words—Print ‘‘character string”
@ String Variables

GETTING READY

Do you have everything ready to begin learning how to make BASIC
programs? Have you hooked up your computer and monitor TV? If
not, refer to your computer manual for how to do it. If your computer
doesn’t have a built-in floppydisk drive, you will need to connect
either a cassette tape recorder or a floppydisk drive. That’s all the
preparations you need.

The preparations
are complete!

If your monitor TV is a color monitor without a speaker, you should
connect an external speaker, since sound plays an important part in
operating a computer.

STARTING UP BASIC

When you have everything ready, turn on your computer following the
directions in your computer manual. The procedure for starting up
BASIC is also given in your manual. When you start BASIC, your
screen will show one of these displays:

MZx B&ASIC version 2.9
Copyright 1925 by Microsoft
“xuxy Brtes free

1%

Without a floppydisk drive

MEX BASIC wverei
Coprright 1985 by Microsoft
2

With a floppydisk drive

If, as shown above, the second line from the bottom displays Ok with
a square mark below it, then BASIC is ready for you to use.

USING THE KEYBOARD TO ENTER COMMANDS

You use your computer’s keyboard to give commands to the com-
puter. By typing letters or numbers you can tell your computer to per-
form many different kinds of operations.

—
—>, Input your
o e e i Y e e Y] Commands

Tt od 7 3 i d b pd et
oy oty yul -yt pulirgr pub p ere!

-
- —y

10

COMMAND 1—“COFFEE PLEASE”

Let’s ask the computer for some coffee. Type the following letters on
the keyboard.

[cl[o][e][F][el[e] [[p][L][E][A][s][E]

The empty [|space in the middle represents the space bar. When
you hit a key, the character appears on your screen at the position
where the square mark is located.

This square mark is called the cursor. It shows where the next charac-
ter will be written.

If you typed your command, “COFFEE PLEASE” correctly, the screen
should look like this:

O
COFFEE PLEASEN

The next step is very important. After inputting your command, you
must press the key (RETURN key). When you press this key, you
tell the computer that you have completed inputting your command,
and now the computer should execute it.

COFFEE PLEASE

“The command
stops here!”

11

What happened to the screen when you hit the key?

Ol
COFFEE FLEASE
Svntax error

The instant you hit the key, you heard a BEEP!, and the “Syntax
error’”’ message was displayed. This is the computer’s answer to your
command “COFFEE PLEASE.”

The “Syntax error’” message means that you made a mistake in giv-
ing your command to the computer. The message was transmitted to
the computer, but the computer didn’t understand it.

BASIC

The computer can’t understand a command like “COFFEE PLEASE,”
and therefore didn’t give you any coffee. But there are many other
commands that the computer does understand. These are the BASIC
commands. If you use these BASIC commands to give commands to
the computer, it will perform many interesting and even difficult feats
for you. Let’s take a look at some of these commands that the com-
puter understands.

12

DOING CALCULATIONS PRINT expression

Let’s give a command like the “COFFEE” command, which will have
the computer add 10 + 5. Input the following characters:

[PIR]IL] NI Il o] 1[5][]

The screen will look like this:

PRIMT 18+3
1=

Ok

]

The computer followed the PRINT 10 + 5 command, and displayed the
total, 15.

[PRINT expression |

PRINT tells the computer to display whatever comes after it on the
screen. This is a BASIC command, and therefore one that the com-
puter can easily understand. When you write an expression (math for-
mula) after PRINT, this tells the computer to “‘do this calculation and
display the answer on the screen.”

Doing Various Calculations

“10 + 5” is simple addition, but the computer can do other, more com-
plicated, calculations, too. The following signs are BASIC calculating
signs that the computer understands.

Sign Example Meaning
Addition + PRINT 123 +234 123+234
Subtraction - PRINT 300-125 300-125
Multiplication % PRINT 9% 8 9x8
Division / PRINT 72/36 7236
Power A PRINT 5A3 53

If you want an operation in a formula to be performed first, you can
enclose it in parentheses, ().

13

GIVING VALUES TO VARIABLES LET

Let’s put a 5 in the “A” hat, and a 7 in the “B” hat.

%3‘ ﬂi

What would A+ B be? It would be 5+ 7=12, wouldn’t it.
Then what would Ax B be? It would be 35.

Now let’s do the same thing on the computer. You begin by putting
5in “A” and 7 in “B.” To do this type the following:

[el(r] [J[a][=][s][1]
LilelinJlsl=]lz][]

LET A=35
Ok

LET B=7
ik

]

The computer only responds with “Ok”, but inside the computer an
operation just like putting the numbers in the hats has been per-
formed.

[LET variable = value|

LET is the command used to put a number in a variable.

The A and B in the commands above are the same as the hats in our
illustrations. A letter like A dr B that is used to contain a number is
called a variable.

Let's take another look at the above command.

14

LET &=35

The rule to remember in using the LET command is:
Put the variable letter on the left of the equal sign,
and the number on the right of the equal sign.

Here the = sign doesn’t mean “equals,” as it does in arithmetic. In-
stead, you can think of it as meaning that ‘‘the number on the right
goes into the variable on the left.”

We gave the computer two commands.

LET A=5
LET B=7

Therefore, 5 has been placed in A, and 7 has been placed in B. Let’s
use the PRINT command to check and see if this really happened.

PRIMNT &
Gk
FRINT B

0K

This is how you use the “PRINT expression” command. And in this
command, you can see that it is all right to use variables as part of
the expression. Let’s try the following commands.

FRINT A+EBE
12

e

PRIMNT A=B

0K

When we used only the variables in the expression part of the “PRINT
expression” command, the computer used the numbers in the varia-
bles, and gave us the answers.

15

A Few Magic Tricks Using the LET Command

Here we have used a new variable, C. Using the LET command, we
made the value of C be the value of the formula Ax2. A is one of our
previous variables, and we assigned the value of 5 to it. The value of
C therefore became 10.

Let’s now use C to get a new value.

LET C=0C+z@
ik
PRIMT I

eye]

(1

Let’s look at the first command you gave to the computer:

LET C=C+24d

16

If you think of the = sign above as meaning ‘“‘equals”, then the for-
mula looks a little strange. But remember that the = sign means that
what is on the right becomes the value of what is on the left. Since
the original value of C is 10, the formula is telling the computer to use
this value, and then add 20 to it, to give C the new value of 30.

LETC= C+20

It might seem a little comptlicated at first, but once you understand
the trick, it becomes very simple.

We’ve seen how to use three variables up to now—A, B, and C. Now
we can make some general rules about how variables are used.

THE RULES FOR USING VARIABLES
®You can use as many letters as you want for a variable but the
computer will only read the first two letters. Consequently, such
variables as
ABC, ABCD, ABD, AB1, AB2
will all be read by the computer as the same variable:
AB
®You cannot use a number or a sign as the first character of a vari-
able. You can use A1, or C3, as variables, but you cannot use
variables like 1AB or *AB.
® You cannot use functions or words that are used in BASIC as
variables. Also, if a part of the variable contains such words, the
computer will not accept it.
Words like PRINT or LET, or PRINTA or ALET, cannot be used as
variables.

17

Omitting LET

Variables are used very frequently in BASIC, and this means that the
LET command is also used frequently. Because it is used so often,
BASIC allows you to omit LET when you write a variable command.
Instead of

LET A=10
you can simply write
A=10

Now let’s make some other commands which uses the abbreviated
form of the LET command.

PRINT &R No value has been given to AB yet.
@ So its value is stiil 0
14)
oo o The value 100 has been placed in
AE=184d the variable AB
i (This is the same as LET AB = 100)
Ch=206 The value 200 is placed in CD
ok AB and
B . g The result of adding an
¥=pB+Ch CD (300) is placed in variable X
Ok
I MT %
F’F_{:EIJ s X is displayed
San
Ok
FRIK B
REUT ABC ABC is read as the same as AB,
iag so its value is 100
Ok

18

DISPLAYING CHARACTERS
PRINT ‘“character string”

This command is used to display words on the screen. The same
PRINT command is used for words, aiso. Try the following command.

[PI[R]ILINI 1L J[<][s][o]N] [Y][~][d]

The quotation marks (') are typed by holding down the shift key and

hitting [2].

FRIMT ooy
SO
ik

13

Any word you want to print can be displayed by enclosing it in “ 7,
after the PRINT command. Since “SONY” is the word enclosed in
quotation marks above, it is the word that is displayed. Words en-
closed in ““ " are called a character string.

[PRINT “character string” |

Try putting different words inside the quotation marks. For example: -

In the second PRINT command
FRIMT "2+%¢

3+ 5 is an expression, but because it has quotation marks around it,
it is treated like the three words ““three plus five” instead of as an ex-
pression for adding. If you remove the quotation marks, then 3+5
would be calculated, and the answer 8 would be displayed. In making

19

a command for a computer, it is important to remember that numbers
can be treated as either numerical values or as letters, depending on
whether or not quotation marks are used.

PRINT "SO"+"NYy"

SONY

QK

FRINT “HOME "+"COMPUTER"
HOME COMPUTER

aK

In the first example above, the character strings “SO” and “NY” are
connected and displayed as the word “SONY.” But in the second ex-
ample, a blank space has been left after the letter E in “HOME”. (The
blank space is made by hitting the space bar once.) Leaving one
space blank after E results in a space between the two character
strings when they are joined. From this you can see that a blank
space is treated as one character, also.

/blank space character

HOMECJCOMPUTER

Dee? A

v
character string character string

Now that we can make character strings like this, we need some hats
(variables) to put them in.

20

USING THE $ MARK WITH STRING VARIABLES

Before, we put numbers in variables such as A, B, and CD. We can
also use variables to contain character strings. This kind of a variable
is called a string type variable (or simply, string variable), to distin-
guish it from a variable which contains numbers, which is called a nu-
meric type variable (or simply, numerical variable).

A $ sign is added to a variabie to make it a string variable—AS$, B$,
or CD$. Variables that have a $ sign attached to them will only accept
character strings as their contents. (If a number is being used as a
word, then it also can be placed in a variable with the $ sign at-
tached).

Let’s practice using string variables.

LET ag="S0NT"
ik

FRINT A%

SONY

ak

Here we used the LET command to put the character string “SONY”
in the string variable A$. In writing the LET command, we could have
omitted the word LET. Also, a character string must be enclosed in
“ in order to put it in a string variable.

Eg="1232"

Ok

FRIMNT EB%

123

14

CE=123

Type mismatch

L

In the above example we tried to put the numerical value 123 into the
string type variable C$. But instead the “Type mismatch” error mes-
sage was displayed. This is the computer’s way of telling you that
you have tried to match two different types—like trying to put a nu-
meric type value into a string type variable.

21

ERROR MESSAGE

When you give the computer the wrong command, it displays a
message which tells you what kind of mistake you made. These
messages are called “error messages.” If the computer cannot un-
derstand the meaning of a command you give it, it will display

Sryntax error

Or if you haven’t matched the right types of values and variables,
it displays

Trpe mismatch

to tell you what your mistake is.

22

MAKING A BASIC PROGRAM

® A One-Line Program

® Checking a Program—LIST

® Running a Program—RUN

®FErasing a Program in Memory—NEW

®Entering Variable Values From the Keyboard—INPUT
® Getting the Most From the PRINT Command

® Erasing One Part of the Program—DELETE

®To Erase the Display on the Screen—CLS

e Making a Loop—GOTO

In the previous section we learned how to give commands to the com-
puter. When we input a command from the keyboard and pressed the
key, the command was immediately executed.

But a computer is designed to perform many operations in succes-
sion, and executing a command as soon as you input it from the key-
board allows you to do only one operation at a time. This is where
programs come in.

DIRECT MODE AND PROGRAM MODE

Entering just one command and then executing it by hitting the
key, like we have done up to now, is called the direct mode. But there
is another method of using the computer. It is called the program
mode. Using the program mode makes the computer act like a com-
puter should.

23

A ONE-LINE PROGRAM

Now let's use the program mode to make a program. You don’t have
to do anything special to use the program mode. Just input the fol-
lowing characters.

[1le] [eIR] [N J[s]l+]s][]

e FPRINMNT Z+5
|

The command PRINT 3+5 means that the computer should add 3
and 5 and display the answer, 8. But when you hit the key after
inputting the command, nothing was displayed. This was because
you entered the 10 before the PRINT command. When a number is en-
tered before a command, this tells the computer that instead of ex-
ecuting the command when the key is hit, it should remember
the command in its memory. This kind of number is called a line
number.

The program
is remembered
inside the
computer when
the [] key is

pressed.

The command with the line number that the computer remembered
is called a program.

24

CHECKING A PROGRAM LIST
The computer has remembered the program
18 PRIMNT Z+5

We can check to make sure of this by using

Input the following characters from the keyboard.

LD]s)F] 4]

LIST
18 PRIMT 3+3
ik

LIST is the command that tells the computer to display the program
list. You input it in the direct mode, without a line number in front of
it.

25

RUNNING A PROGRAM RUN

In the direct mode the [d] key was pressed to execute a command.
In the program mode, the RUN command is used.

Input the following characters.

[R][u]N] [}

FUr
s

Ok

The program that has been remembered by the computer
18 PRINT 2+%5
is now executed for the first time, and the answer, 8, is displayed on

the screen. If you input the RUN command again, 8 will again be dis-
played. You can do this as many times as you want.

RLI
9]’
R
&
Ok
RLik
=]

Ok

20

What is a Program?
Let’s compare

FRIMT Z+5

as it is executed in the direct mode and in the program mode.

Direct Mode Program Mode
Line no. No Yes
To execute Press [J] key | Input RUN command
Command remembered | No Yes
No. of times executed 1 time only Any number of times

Because a program uses line numbers, the computer remembers the
program. And it can be executed any number of times using the RUN

command.

Without programs, a computer would not be very useful to you.

Programs are procedures which can be written to have the computer
perform a series of operations. They are called software. The com-
puter itself is a machine designed to faithfully perform any of a given
set of actions. In contrast to software, a computer itself is called

hardware.

27

ERASING A PROGRAM IN MEMORY NEW

We now want to write a new program and have the computer remem-
ber it, but the computer still has the program

18 PRIMT 3+5

in its memory. We therefore must execute the NEW command so that
we can have the computer remember the new program.

[NEW]

The NEW command erases the entire program that is currently
remembered in the computer’s memory.

Input the NEW command, and then use the LIST command to check
that the program has been erased.

(][] w][]

MEL]
Ok
LIST
Cik

As you can see, the program is not displayed.

28

Ways To Erase The Memory
You can erase a program in the computer’s memory by using the
NEW command. The program will also be erased in the following
situations.

eWhen the button is pressed.
®When the computer is turned off.

The button is provided for emergency use in case there is
some problem with a program you have made, and you cannot
stop the program no matter what key you press.

Pressing the button is just like turning the computer off
and on again. This action erases the program in the computer’s
memory and places the computer in the same condition as when
it is first turned on.

Be careful not to press the button or the on/off switch
while you are writing a program.

Help!
| can’t stop!

I guess I'll have to press

the button.

29

ENTERING VARIABLE VALUES FROM THE
KEYBOARD INPUT

Let’'s now make a program in which you give a different value to A and
B every time you execute it. When we do this, then each time the pro-
gram is executed it will add different numbers. But for such a pro-
gram we need to use a different command in place of the LET
command—the INPUT command.

‘ INPUT variable namew

INPUT is the command used to enter a value in a variable from the
keyboard.

1g INFUT &
28 IMFUT B
I8 PRINT A+B

Once you have input the lines, check the program like you always do
using the LIST command to make sure that they have been remem-
bered. Once the change is made, execute the program using the RUN
command.

FUM
* B

When you run the program, a question mark immediately appears be-
low RUN, with the cursor beside it. This is the result of the

IMNPUT &

command in line 10. The computer is waiting for you to give it an in-
struction from the keyboard telling it what value to put in the variable
A. You can input any number you want. Let’s try 25.

2][s][]

30

Remember to press the key after typing 25. This tells the com-
puter that the number it should place in the variable A is 25.

FLr

7 25

After you input 25, the question mark is again displayed. This is the
result of the computer executing line 20. Let’s enter 75 for variable B.

[7][s](]

When 25 is entered for A and 75 is entered for B, line 30 is executed
and 100, the total of A + B, is displayed.

U

e
H)

= 75

188
ke

Run the program again, and enter different values for A and B. You
will see that the correct total is always displayed on the screen.

Making the INPUT Command More “User Friendly”

When this program is run, the only thing you see on the screen is a
question mark and the cursor. If you are the one who wrote the pro-
gram, you will know that this means that you are to enter the value
for A. But someone else might not know what to do when they see
just the question mark. To make the program more “user friendly” for
other people, we can modify the INPUT command as follows.

18 INFUT “f="1é
2e INFUT "B=";B
38 PRINT A+B

31

When you execute the program after the above changes have been
made, the screen will first display:

RUN
=7 il

The character string that is enclosed in quotation marks before the
variable name is called a prompt statement. The prompt statement is
displayed in front of the question mark when the program is execut-
ed. When you use a prompt statement anyone will know immediately
what they are being asked to input.

[INPUT ‘“prompt statement”; variable name]

Remember that you have to type a semicolon (;) between the prompt
statement and the variable name.

Let’s run the whole program.

RUN

f=7 1234
B=7 4321
5555

pu |

(1] 34

You can use any words you want for the prompt statement. For
example:

186 INFUT "First value" ;A
28 IMPUT "Second values";B
38 FPRINT A+B

32

GETTING THE MOST FROM THE PRINT COMMAND

With the change we made in the above program, the computer is be-
ginning to act more and more like a computer. But there are still other
things we can do to make what is displayed on the screen easier to
use. Right now the program displays just the total of A and B, and
doesn’t tell us what it is. It would be better if the computer told us
that the number being displayed was the total of A+ B. This can be
done by using the PRINT command to add a line to the program as
follows.

16 INPUT "&=" ;A

28 INFUT "B=";B

25 PRINT "@+B=" «— added line
36 PRINT A+B

Line 25 was added to the program. A line can be added to a program
anytime “Ok” is displayed. You type the line in just like you do when
you type a line in a new program.

2] 51 eIRID N 3 [l L) [e] (=) [1]

input the LIST command to check that line 25 has been added to the
program.

LIST

18 IMFUT "A="1#A
28 INFPUT "B=":iE
23 PRIMT "a&+B="
38 PRINT &+E

Ok

Line 25 has been added between line 20 and line 30, just where we
wanted it. It doesn’t make any difference what order you enter the
lines of a program. The computer automatically rearranges them in
the proper order, from the lowest numbered line to the highest num-
bered line.

33

When you added line 25 you probably guessed why 10, 20, and 30 had
been used as the line numbers for the other lines. This leaves room
for adding new lines later, such as line 25.

After adding line 25, the computer will now display “A + B=" before
it displays the total of A and B. Let’s run the program and see what
the display looks like.

RUN
A=7 1BE
B=? 5@
A+ B=
158

“A+B=""has been displayed before the answer of 150, but it would
look better if both A+ B = and 150 were displayed on the same line,
like this.

A+E= 150

Using the Semicolon (;) to Connect What is Displayed
Let’s change line 25 as follows:

23 PRINT "A+B=";
t————— this is added

A semicolon (;) has been added after the final quotation mark. You
use the following procedure to make this revision. First input the LIST
command to display line 25.

LIST 25

34

Don’t forget to press the key after typing the command.

LIST 25

25 PRINT "m+B="
Ok

]

[LIST line number |

You can use the LIST command to display just one line of a program
by typing the line number after LIST. Also, if you type

LIST line number—line number
you can display just one part of the program. For example,

LIST 28-3

would display lines 20 through 30 of a program. For our program, this
would mean that lines 20, 25, and 30 would be displayed. Try it and
see.

After you have displayed line 25 with the LIST command, use the cur-
sor keys (BZ(]) to move the cursor (the B mark) to a position right after
the last character () in line 25, which is where you want to add the
semicolon.

25 PRINT “a+B="H
Ok

move the cursor here

Then press the [] key

25 PRINT "aA+B="; Nl

The semicolon has been displayed on the screen, but that’s not the
end of the operation. To enter the change you have to press the Dj
key. When you wrote the original program, you pressed the key
after each line. When you revise a line you also must remember to
press it. It is only by pressing the key that the revised line is en-
tered into the computer’s memory.

35

Use the LIST command to check that line 25 has been revised, and
then execute the program using the RUN command. Adding the semi-
colon has caused the total to be displayed on the same line as

A+B=.

RUN
A=7 188
=7 56
A+B= 150
Tk

Using a comma (,) instead of a semicolon (;)
Next, let’s use a comma in place of the semicolon in line 25.

25 PRINT "m+B=",
t put the comma here

After replacing the semicolon with a comma, RUN the program.

RLIM

A=7 1848

B=7 5@

£+ B= U159

Now the 150 is positioned 16 characters (the 15th space is for a minus
sign) after the beginning of the line, instead of right after A+ B=.

36

ERASING ONE PART OF THE PROGRAM DELETE

Lines 25 and 30 in our program are currently:

25 FRINT "&tB=",
38 PRINT A+E

We can combine these two lines into one line.
25 FEINT "At+tB=" ,A+E

Revise your program to combine the two lines, using the same proce-
dures you used when you changed the semicolon to a comma.

Now we don’t need line 30 anymore. Let’s erase it from the program.

There are two ways of removing one line from a program. One is to
use the DELETE command.

DELETE 3@

The DELETE command deletes specified lines from a program. The
normal form of this command is:

[DELETE line no.-line no.|

After typing DELETE you specify the first line and the last line of the
part of the program you want to erase, separating them by a hyphen
()

When you just want to delete one line from a program, you don’t have
to use the DELETE command. You can just type

[s1[e][1]

37

TO ERASE THE DISPLAY ON THE SCREEN CLS

The way your program is written now, each time you run it the lines
advance on the screen, and the result is displayed. The lines that
were displayed when you ran the program the previous time also re-
main displayed. It would be easier to see what you are doing if the
screen were cleared each time before the calculation. The CLS com-
mand is provided for this job. (CLS is read “clear screen”.)

CLs

Let's add the CLS command to our program. We can make it line 5.

LIST

S CLS

18 INFUT "a=";4
28 INPUT "B=";B

Z5 PRINT "A+B=",a+E

With line 5 added to the program, the screen is cleared each time you
execute the program, which makes it easier to see what you are
doing.

MAKING A LOOP GOTO

Loop Using the GOTO Command
We will add a new command to the program.

2@ GOTO 1a

Run the program and see what happens after adding the new line.

GOTO line no.

GOTO tells the computer to go to (or return to) the specified line
number.

38

Normally the program is executed starting with the smallest line
number. But the GOTO command can be used to change the flow of
the program.

Therefore, the command
COTO 1a

returns the flow of the program to line 10, and the program continues
from there. Anytime you want the computer to jump to a different part
of the program, you can specify the line number using the GOTO
command.

The reason why the program keeps on running is because the GOTO
10 command in line 30 returns the program to line 10, and then after
lines 10, 20, and 25 have been executed the flow of the program
comes to line 30 again, and is again returned to line 10, and this goes
on and on indefinitely. The program continues to perform the follow-
ing sequence:

—10

i
20

{
25

i
—30

The only way this repetition can be stopped is to press [cTRL]+
[sTor].

A part of a program that is repeated is called a loop. And when the
repetition is repeated over and over again, as in our program, it is
called an endless loop. The GOTO command was what produced the
endless loop.

This chapter has served to introduce programs and give you a feel for

how they work. In the next chapter we will introduce some new com-
mands, and practice making more advanced programs.

39

Chapter 2
More Like A Computer

41

ESCAPING FROM A LOOP

® Satisfying a Condition—IF—THEN
®To End the Program—END
® Renumbering Lines—RENUM

SATISFYING A CONDITION IF—THEN

The Endless Loop

When an endless loop program is started with the RUN command, it
will normally continue to run over and over again, until you stop it
with the [cTRL]+[sToOP| keys. Here we will show how to get out of an
endless loop without using the [cTRL]+ [sTOP]keys. When you escape
from an endless loop by hitting the [cTRL|+[sToP]keys, the program
will stop. But with the method we describe here, the program con-
tinues to run after you have escaped from the endless loop.

First, let’s make a simple endless loop program.

[10 Clear screen]
ta CLS l
28 INFUT "START":X EEXTYCTTTE
30 INFUT "ANY NUMBER" ;Y
4 W=M4Y
Sa PRIMT "TOTAL=":X l 30 Give a value to Yj
S8 PRIMT
e GOTOo =24 f 40 Give the value of |
L X+YtoX '
{ 50 Display X]

[60 Skip one line _]

70 GOTO 30 |

]

42

Stopping the Program On the Basis of the Value of Y

Every day we do all sorts of actions on the basis of some kind of con-
ditions. If it’s a nice day, then we will have the school athletic meet,
but if it rains, then it will be postponed. Or if we have some money,
then we will go to the movies, but if we don’t have any money, then
we will stay home and take a nap.

There are all sorts of times when we will do one thing if there is such-
and-such a condition, but do something else if the condition is
different.

We can also make the computer act on the basis of such conditional
decisions. The IF—THEN command is the command used to have the
computer perform the next command if a certain condition is met. Ac-
tually, this type of command, which gives an order to the computer,
is normally called a “statement,” as in the “IF—THEN statement.”
Such commands as PRINT, LET, or INPUT are all commands used to
make a statement, so they are referred to as the PRINT statement,
the LET statement, etc.

Fconditional expression THEN statementj

IF—THEN tells the computer that if the conditional expression that
follows IF is true, then it should perform the statement that follows
THEN.

Let’s add the following IF—THEN statement to the program we have
written.

il
LR

1F wv=@ THEM END

LIST

14 CLS

26 INPUT "START" ;X

38 INFUT "ahy MNUMBER" 3
25 IF ¥=8 THEN EMD

48 X=x+Y

5@ PRINT "TOTAL=" X

48 PRIMNT

7@ GOTO Za

The meaning of line 35 which we added is “if Y is 0, then stop the
program.”

43

TO STOP THE PROGRAM END

In line 35, the conditional expression is Y=0, and END is the
statement.

END is the statement used to stop a program. When this statement
is executed, the program stops at that point.

CONDITIONAL EXPRESSIONS

The foliowing list shows the signs which can be used to make condi-
tional expressions.

Sign | Meaning Example

= equals IFA=B if A and B are equal
> is greater than IFA>B if A is greater than B
< is less than IF A<B if Ais less than B

> = y|is greater than or IF A> =B, if Ais greater than or
=>} equal to IF A:>BE equal to B
<=1is less than or equal to IF A<=B if Ais less than or
=<} IFA=<B} equal to B

<> 1is not equal to IFA<>B,y if Aand B are

><} IF A><B} not equal

The sign used in the conditional expression in Line 35 is
IF v=é

which means, “If Y is equal to 0.” If this condition is true, then the
statement which foliows THEN will be executed. In our program, this
is the END statement, so the program would be ended.

In the LET statement, the = sign was used to mean that the number
on the right of the sign is the value of the variable name on the left
of the sign. But when the = sign is used in the conditional expres-
sion in the IF—THEN statement, it means “is equal to.”

44

Now let’s RUN the program:

FUR

START? 18

ANY MUMBERT Z@
TOTAL= 24

Ay MUMBERYT 1S

TOTAL= 45

AT MUMBERT 166
TOTaL= 145

o)

AMY NUMBER?Y @
Ok

First 20 was added to 10, then 15 was added to that total, and then
100 was added to that. Then the next time a number was input, it was
0. The program is at line 30 at this point. Since 0 was input as the
value for the variable Y, at line 35 the conditional expression Y =0 be-
comes true, and the END statement following THEN is executed, and
the program ends.

45

RENUMBERING LINES RENUM

When we first wrote the program, we numbered the lines in units of
10—10, 20, 30 ... 70. But later we added line 35, which broke up the
units of 10. This is all right—if you want, you can use irregular num-
bers like 1, 3, 28, 29, 78, 105 ... and so forth to number the lines of your
programs. But if you want to keep the lines numbered in units of 10,
or if you have added so many lines between two of the original line
numbers that there is no more space, you can use the RENUM state-
ment to renumber the lines.

Input the

RERUF

command in the direct mode, and check to see if the numbers are
renumbered in units of 10.

46

THE LOOP SPECIALIST

®Making a Loop—FOR—NEXT
® A Loop Within a Loop

ekt s i

SPECIFYING LOOP REPETITIONS FOR—NEXT

Previously we learned how to escape from a loop using the IF—THEN
statement.

There is also a way to specify how many times a loop will be repeated
which is sometimes more convenient to use. Let’s learn this new
method by writing a simple program.

f 10 Placeatinl |

16 FOR L=1 TO §
28 PRINT "*x "
38 NEXT L

[20 Display ** |

[30 Increase L by 1

S T

Yes

l End j

The following display appears on the screen when this program is
run.

RUN
EE EE EX EE EE
QK

The PRINT statement in line 20 of the program display %% ., one
time. (. indicates a space.)

Then with the execution of the whole program, %% , , is dispiayed
five times. This is the result of line 20 being repeated five times. The
statements in line 10 and line 30 give the instructions for repeating
line 20.

47

FOR variable = first value TO last value

|
NEXT variable

The FOR—NEXT statement tells the computer to repeat the part of
the program that is between FOR and NEXT the specified number of
times.

FOrR L=1 70O 2

MEXT L

Line 10, FOR L=1 TO 5, and line 30, NEXT L, form a pair which tell
the computer to increase the value of L, beginning with 1, and to
repeat the part of the program in between the two statements until
the value of L reaches 5. When the program is executed, 1 is placed
in L. Line 10 also declares that the final value of L will be 5.

Then line 20 is executed one time. Next line 30 increases L’s value by
1. If the value of L has not reached 5, the line after the FOR statement
(line 20) is executed again. This process is repeated until the value of
L becomes 5.

The FOR statement and the NEXT statement act in this way to repeat
the part of the program that is between them for whatever number of
times you specify. Since they are always used as a pair, they are
often referred to as the FOR—NEXT statement, and a loop made by
a FOR—NEXT statement is called a FOR—NEXT loop. An important
point to remember is that the same variable must be used in both the
FOR statement and the NEXT statement (in this case it is L).

Let's do it 100 times!

48

A Loop Within a Loop

There are many interesting things you can do with the FOR—NEXT
statement. For example, you can put one or more FOR—NEXT loops
inside the FOR—NEXT loop that is enclosed by the first FOR—NEXT
statement.

The structure of a program like this is:

FOR L=1 TO 18
FOR M=1 TO S
FOR N=1 TOQ 7

loop (3) |ioop (2) |loop (1)

MNEXT N
NEXT ™
MNEXT L

In this example, loop (2) is inside loop (1), and loop (3) is inside both
of them. Loop (1) is repeated ten times, but each time it is repeated,
loop (2), which is enclosed by loop (1), is repeated five times. And
each time loop (2) is repeated, loop (3), which is inside it, is repeated
seven times.

In writing a program like this, you must always use a different varia-
ble (like L, M, and N, above) inside each loop.

49

COMPUTERS AND LANGUAGE
A computer remembers your directions as a series of steps, and
executes them in the order you give them. The method used to
write this series of steps, or procedure, is called computer lan-
guage. BASIC is one of the computer languages.
If you were able to write a program in regular English as:

1. Display %**

2. Wait one second

3. Display #%%* on the next line
it would be easier for you. But to have the computer understand
commands written in this way would require much more compli-
cated software for the computer than BASIC.

BASIC is a computer language that resembles human language
quite closely, and it is fairly easy to understand. But the real
strong-point of computers is handling numerical values. There-
fore, instead of using normal English like “Wait one second,” in
BASIC you have the computer perform an operation that changes
the value of a variable, such as

FOR T=1 TO 42@:MNEST T

and achieve the same results as you would if the computer under-
stood the regular English.

Variables and line numbers play important roles in making BASIC
programs. Becoming familiar with how they are used is one of the
keys to making progress in learning how to do BASIC
programming.

50

READING DATA

® Preparing Data in the Program for Variable Values—
READ—DATA

Y o IRET S O O TR PR B

ANOTHER METHOD FOR ASSIGNING VALUES
TO VARIABLES READ-DATA

As we have seen, using variables is one of the keys to successful
BASIC programming. All kinds of values are given to variables, and
then they are used for making calculations and decisions. Giving a
value to a variable is referred to as assigning a value.

Let’s review the methods used to assign values to variables.

First, we can assign values using the LET statement.
To assign a value of 100 to variable A, we write:
LET A =100 (or just A=100).

The next method we learned was the INPUT statement.

In contrast to the LET statement, which assigns a fixed value to a
variable in the program, the INPUT statement allows you to input any
value you want from the keyboard while the program is being ex-
ecuted.

If you enter 500 from the keyboard when

INFUT A

is executed and a question mark (?) is displayed, then 500 will be as-
signed as the value of A.

The READ-DATA statement is another BASIC statement that can be
used to assign values to variables.

51

Let’s try it with a simple program.

18 READ A
28 PRINT &
38 DATa 185
R~

185
0K

When line 10

READ A

is executed, the value given in the DATA statement (185, line 30 in this
program) is assigned to the variable A. (The value is displayed by the
PRINT statement in line 20.) The same is true for character variables,
also.

18 READ B%
28 PRIMT E#
28 DATa SONY
RLIM

SONY

ok

SONY is a character string value, but it is not necessary to enclose
itin “ " in the DATA statement.

(However, if you want to include a comma, or want to leave a space
before a word, the entire character string must be enclosed by “ ")

16 READ B%
28 PRINT E%

26 DATA "SONY, HITEBIT!
RUN

SONY, HITEIT

Ok

52

Increasing the Amount of Data

The above programs assigned just one value to one variable. Let’s in-
crease the data (values) to three. Since our data are increased to

three, we increase the number of variables to three also.

180 READ A&,B,C
28 PRINT &:E;C
38 DaTé 18,20,36
RUR

1@ 28 38
ok

A comma is used to separate each variable included in a READ state-
ment. The data in the DATA statement that is assigned to each varia-

ble is listed in the same order, and also separated by commas.

The most important point to remember is that you must provide at
least as much data in the DATA statements as the READ statements

demand.

53

SAVING PROGRAMS ON
TAPE

e Connecting a Tape Recorder

@ Saving the Computer Program on Tape—CSAVE
® Checking that the Program is Saved—CLOAD?
® Loading a Program from the Tape—CLOAD

Anyone who has ever seen a large computer in operation probably no-
ticed that there was another machine beside it that had tapes whirl-
ing back and forth inside it and looked like a large tape recorder.
Such a machine is in fact a tape recorder—one of the very best. Such
tape recorders are used to record the programs the large computers
run.

Your own computer remembers a program as long as it is turned on.
But when you turn it off, press the RESET button, or execute the NEW
command, the program instantly disappears from the computer’s
memory.

If you had a device like the tape recorders used with large computers,
you could record (save) your program on its tape before you turn off
your computer. Then even though the computer’s memory is erased
when you tuin off the switch, you would be able to read (load) the pro-
gram into the computer’s memory from the tape the next time you
turn on the computer.

Actually, you don’t need a large tape recorder like those used with
large computers. The regular cassette tape recorder you probably al-
ready have will work very well as a recording device for your
computer.

This section explains how to save a program you have made by
recording it on cassette tape. If you have a computer with a disk
drive, you can skip this section and go on to the next section, “Sav-
ing Programs on Disks,” which decribes how to record your pro-
grams on floppydisks.

54

If your cassette tape recorder is not already connected to your com-
puter, turn off the computer and refer to the following explanation for
directions on how to connect a tape recorder. When you turn off the
computer, the program will be erased from the computer’s memory.
So after you connect your cassette recorder, enter the program again.

Eonnecting a Tape Recorder]
Connect your cassette tape recorder to the computer TAPE connec-
tor using the cassette tape recorder connecting cord. There is also a
MIC jack on your cassette recorder which you use when recording
sound. And there is another jack for earphones, which is indicated by
one of the following labels:

EAR, EARPHONE, MONITOR, MON, or ®

There also might be a
REMOTE
jack for remote control.

Connect the computer connecting cord to these jacks as shown in
the below diagram.
white to EAR-

.]
T=p~ = PHONE

Connect to TAPE black jack

connector (smail) !
COMPUTER <4 - = toc REMOTE

' CONTROL jack
mp to MIC]
Match the red jack
plug with the RETCEAO'DFEDER
@‘ pin holes

If your cassette recorder does not have a remote control jack, you can
leave the black plug unconnected.

55

SAVING THE COMPUTER PROGRAM ON TAPE
CSAVE

The BASIC command for saving a computer program on tape is
CSAVE.

[CSAVE “file name”|

CSAVE records a program with a specified file name on the cassette
tape in intermediate language.

The file name is the name you give to a program to distinguish it from
other programs.

There are three rules to remember in giving a program a file name:
®the name can be no longer than 6 characters.
®you can use numbers and signs, in addition to the letters of the
alphabet.
e®the computer distinguishes between capital letters and small
letters.

Now let’s give a file name of HEART to a program to be saved, and
save it on the tape. Type the following command.

But do not press the [J] key yet.
CSAVE "HEARTY

Now, before pressing the key, place the cassette recorder in the
record mode. If you have the remote control jack connected, the tape
will not move. It only starts recording when you press the key.
The program passes through the computer TAPE connector and is
recorded on the tape.

If the remote control jack is not connected, the tape will start moving

when you place the cassette recorder in the record mode. Check that
the tape is moving, and then immediately press the [] key.

56

CHECKING THAT THE PROGRAM IS SAVED
CORRECTLY CLOAD?

Always check to make sure that the program has been accurately
saved after you record it on the tape. First rewind the tape to a point
on the tape just before where you recorded the program. (On some
tape recorders you must disconnect the remote jack before you can
rewind the tape.) Now set the tape recorder volume control at about
its mid-point, and then input the following command.

CLOAD? "HEART®

[CLOAD? “file name” |

CLOAD? checks the program on the tape and the program in the com-
puter’s memory to make sure that they are exactly the same.

After typing the CLOAD? command, press the key and then
place the cassette recorder in the PLAY mode. (If the remote jack is
connected and you press PLAY before pressing the key, the
tape will not begin to move until you press the key.) When the
tape comes to the place where the program is recorded.

Found:HEART

will be displayed. This message tells you that the computer has
found the file named HEART on the tape. Then the computer com-
pares the program on the tape with the program it has retained in its
memory. The time required for this comparison depends on the
length of the program. If the two programs are exactly the same

QK
will be displayed on the screen.

If the program in the computer’s memory and the one saved on the
tape are not the same, the

Verity error

message will be displayed. The “Verify error’” message means that
the program has not been recorded correctly on the tape. If this mes-
sage appears, you should save the program again, using the CSAVE
command.

57

Also, sometimes the
Found:HEART

message is not disptayed, even though the tape has passed the place
where the program is recorded. This is usually due to the volume set-
ting on the tape recorder being set either too low or too high. Change
the level of the volume, and execute the CLOAD? command again.
When the “Found HEART” message is displayed, remember the
volume control setting on the cassette recorder, as that is the correct
level for using the CLOAD? command.

58

LOADING A PROGRAM FROM THE TAPE CLOAD

The CLOAD command is used to have the computer read (load) a pro-
gram from the tape into its memory.

[CLOAD “file name”|

CLOAD loads the program with the specified file name into the com-
puter’s memory.

You enter the name of the file that you want to transfer from the tape
to the computer in the ““file name” space of the command. If this case
it would be:

CLOAD "HESRT"

Press the key and place the cassette recorder in the PLAY mode.
(If the remote jack is connected and you press PLAY before pressing
the [/] key, the tape will not begin to move until you press the
key.)

When the tape comes to the place where the program is recorded,

Found:HEART

will be displayed. Then after the entire program has been loaded into
the computer’s memory, the screen display will show:

CLOAD "HEART®
Found:HEART
ok

If instead of Ok,

Device 10 error

is displayed, the program has not been properly loaded into the com-
puter’'s memory. Change the volume level on the tape recorder and
use the CLOAD command to load the program again.

Once the program has been loaded, input the LIST command to

check that the program is in the computer’'s memory, and then exe-
cute the program with the RUN command.

59

SAVING PROGRAMS ON
DISKS

® Formatting a Disk—CALL FORMAT

® Saving the Computer Program on a Disk—SAVE
®Checking that the Program is Saved—FILES

® Loading a Program from the Disk—LOAD

® Erasing a Program on the Disk—KILL

This section is for computers with disk drives. If your computer
does not have a disk drive, refer to the previous section, “Saving
Programs on Tape” for directions on how to save programs.

If your MSX2 computer does not have a disk drive, you can still
save programs on disks by using a floppydisk drive unit such as
the Sony HBD-50. In this case it is necessary to connect the floppy-
disk drive unit to your computer and start up MSX-Disk BASIC.
Refer to the directions “Using an External Disk Drive,” below.

|Using an External Disk Drive]
(1) Turn off the computer and the external disk drive.
(2) Plug the disk drive interface cartridge into the computer car-
tridge slot.
(3) Turn on the disk drive. Next, turn on the TV monitor and the
computer. After a short pause, the following display may ap-
pear on the screen.

Enter date {(Y-M-D2:
(4) If the above message appears, press the key.

This completes the start-up procedure for MSX-Disk BASIC.

60

FORMATTING A DISK CALL FORMAT

When you turn the computer off, the program you worked so hard to
write will be erased from the computer’s memory. So before turning
off the computer the program should be saved on a floppydisk in the
computer’s disk drive. Then even if you turn off the computer, you will
be able to load the program from the floppydisk into the computer’s
memory again the next time you use the computer.

But before you can save a program on a new floppydisk, the disk
must be formatted.

When you format a disk, the computer writes special data on the disk
following a fixed set of rules, which serve as “guideposts” for the
computer to know immediately where each file is located on the disk.
Formatting a disk is like drawing lines on a sheet of plain paper so
that you will know where to write and where to leave spaces between
lines. You don’t need to be concerned with the data used to format
a disk—the computer takes care of that. But the rule to remember is
always format a new disk before you use it.

Note: When you format a disk, all the data written on the disk will be
erased.

Now, let’s format a new disk. The procedure is as follows:
(1) Execute the CALL FORMAT command.

When you press the [.1] key,
Drive pname 7 {(&,B2
is displayed.

This message asks if you want to format a disk in drive A or a disk
in drive B. When you are using only one disk drive, it is drive A,
so you would press the [A] key.

(2) If your disk drive accepts double-sided disks,

- Tingle sided, ¥ sei

1 ctors
2 = Double sided, ¥ sectars

ar

will be displayed next. If your disk is the single-sided type, press
the [1] key. If it is a double-sided type, press the [2] key.

61

When you press the key,

Strike a Key when ready

is displayed. (With a single-sided disk drive such as the SONY
HBD-50, this message is displayed when you press the key.)

(3) Insert the new disk into the disk drive and press any key on the

keyboard. The computer then formats the disk. When formatting
is completed the screen displays:

Format complete
Ok

62

SAVING THE COMPUTER PROGRAM ON A DISK
SAVE

The SAVE command is used to save on a disk, in intermediate lan-
guage, the program in the computer’s memory.

LSAVE “A: file name. type nameﬂ

A: specifies the A disk drive, but if you are using only one disk drive
it can be omitted.

The file name is the name you give to a program to distinguish it from
other programs.

There are four rules to remember in giving a program a file name:

®the name can be no longer than 8 characters

®you can use numbers and signs, in addition to the letters of the
alphabet

®the computer does not distinguish between capital letters and
small letters

® The following characters cannot be used as part of a file name:

,.; " *? and space

The type name shows the type of the file. It consists of a period (.)
followed by a name of three letters or less. Since the type of file we
are saving is a BASIC file, let’s use “.BAS” as the type name. This in-
dicates that the file is a program written in BASIC. The type name can
be omitted, but as you begin saving different types of files on disks
you will see that it is very convenient always to include it as part of
the SAVE command. So you should develop the habit right from the
start of including the .BAS type name in the names of all of your BASIC
programs.

Let’s give a program the file name HEART, and the type name .BAS
and save it on the disk.

Input the following command:
SAVE "HEART . BasY
When you press the key, you will hear the sound of the disk

drive operating. When the program has been saved, Ok will be dis-
played.

63

CHECKING THAT THE PROGRAM IS SAVED FILES

The FILES command is used to check if the program has been saved
on the disk.

The FILES command displays the file names and type names of all
files saved on a disk.

FILES
HERRT . BAS
Ok

When you execute the FILES command, HEART.BAS, the name of the
file you just saved, should be displayed. If other files are saved on the
same disk, their file names will also be displayed.

64

LOADING A PROGRAM FROM THE DISK LOAD

Use the NEW command to clear the computer’s memory before load-
ing a program from the disk.

LOAD is the command for loading a program from the disk.

]LOAD “A: file name .type namﬂ]

A: can be omitted. The file name and the type name are the same
names you used when you saved the program. Therefore, you would
input

LOSD "HEART . BAS"

When you press the key, the disk drive will operate and begin to
load the program. When it has been loaded, Ok will be displayed.
Check that the program is in the computer’'s memory using the LIST
command, and then execute the program with the RUN command.

Anytime you want to use a particular program that has been saved on

a disk, you can load it into the computer’s memory using the LOAD
command.

65

ERASING A PROGRAM ON THE DISK KILL
The disk will become full as you save more programs on it.

KILL is the command for erasing programs on the disk you no longer
need.

[KILL “A: file name file .type name”l

A: can be omitted. To erase the HEART .BAS program you saved on
the disk, input the command:

KILL "HEART.BAS"

66

Chapter 3
Array Variables

67

A PROGRAM USING
ARRAY VARIABLES

®The Array Variable Declaration—DIM

HOW TO USE ARRAY VARIABLES DIM

Let’s use some array variables in an actual program. We’ll use two
string type array variables, N$(N) and T$(N), and have each of them
contain five different pieces of data. The value of N will therefore be
from 0 to 4.

We'll use the N$(N) array variable for people’s names, and the T$(N)
array variable for telephone numbers. They will contain the following
data.

Array variable | Data | Array variable Data
N$(0) PETER T$(0) 111-2222
N$(1) PAUL T$(1) 222-3333
N$(2) MARY T$(2) 333-4444
N$(3) TOM T$(3) 444-5555
N$(4) SUSIE T$(4) 555-6666

Assigning Data to Array Variables

Just as you did with regular variables, you use the LET statement, IN-
PUT statement, or READ—DATA statement to assign data to array
variables. Here we will use a READ—DATA statement.

DIM MNECd) ,TH(4)

FOR L=& TO 4

READ M$(L),TH(L)

NEXT L
END
DaTE PETER,111-2222
DaTA PAUL, 222-3333
DaTA MARY , 333-444¢
DaTa TOM,444-5555
DATA SUSIE,SSS5-8664

e N i T S SR U S B g
[{ I R N I SN O e A o)
£

[B s e B o Y

68

We have used a completely new statement in line 10.
1@ DIM NECdr T4

The DIM statement is used to declare how many array variables will
be used in a program, and how many variables they will contain.

DIM N$(4), T$(4) declares that N$, which will have 5 variables from
N$(0) to N$(4), and T$, with 5 variables from T$(0) to T$(4), will be used
in the program.

|DIM array variable name (maximum value)|

The DIM statement specifies the maximum value of the number of
variables within the () of an array variable. If the maximum value is
N, then the array variable will have variables form 0 to N, which would
be equal to the value of N plus 1.

Always remember to declare an array variable with the DIM statement
before you use the array variable in a program.

After the array variables have been declared in line 10, the FOR—
NEXT loop in lines 20 to 40 assigns data to the array variables. The
first time the loop is executed, the value of L is 0, so the READ state-
ment in line 30 assigns PETER to N$(0) and 111-2222 to T$(0).

69

Then data is assigned consecutively to N$(1), T$(1) and so forth. The
program ends when the final loop assigns SUSIE to N$(4) and
555-6666 to T$(4).

You can use the PRINT statement in the direct mode to check that
these data have in fact been assigned to the variables.

When you input

FRIMT MNEody ,TE0E

FREIMT MEi@: T8
FETER 111-2222
Cik;

will be displayed. If you input PRINT N$(1), PAUL will be displayed,
or if you input PRINT T$(2), 333-4444 will be shown.

70

This ends the introduction to MSX2-BASIC. If you have learned the
fundamentals of making BASIC programs, the objective of this in-
troduction has been accomplished.

Now you can use the BASIC commands you have learned to make
your own programs. The best way to continue making progress in
writing programs is to use the ability you now have to make some re-
visions to the programs you made using this book. There are many
ways these programs can be made easier to use if you just think
about them a little bit. And when you start to make your own pro-
grams, don’t be afraid of making a mistake. Even if there is a mistake
in your program, it won’t damage the computer. The computer will
simply read the mistake and then will display an error message to tell
you what and where you did something wrong. If an error message is
displayed, use the LIST command to display the program and see
what you did wrong. Trying different things out, and correcting any
mistake you make, is the way to make progress in becoming a good
BASIC programmer.

71

ADVANCED COURSE

Chapter 4
The Memory Switch
Function

73

THE SET STATEMENT

e The Memory Switch Function

® Adding a Title—SET TITLE

e® Changing the Prompt Statement—SET PROMPT

e Specifying a Password—SET PASSWORD

e® Changing the Location of the Display on the Screen—
SET ADJUST

® Setting the “BEEP”—SET BEEP

e Specifying the initial Status of the Screen—SET SCREEN

THE MEMORY SWITCH FUNCTION

MSX2-BASIC has a special function called the memory switch func-
tion which can be used to change the initial settings of the computer
when BASIC is started up, and have the changed settings retained by
a battery-backup RAM in the timer IC.

RAM (random access memory) is the main memory of the computer.
(We referred to it as the “computer’s memory” in the BEGINNING
SECTION.) When the computer is turned off, the content of the RAM
is erased. But a battery-backup RAM will retain its content even if the
power is turned off. Consequently, if we have this special RAM retain
the initial BASIC settings, the next time the computer is turned on
these settings will be the settings it uses.

The following initial settings can be changed and retained by the
battery-backup RAM.

®Title and Prompt Statements

® Password

@ The position of the display on the screen

® The type and loudness of the “BEEP” sound

® SCREEN statement settings

74

ADDING A TITLE SET TITLE

When BASIC is started up, the following display is shown on the
screen before Ok is displayed.

VRAM: 128K bytes

You can add a title of your choice below the “VRAM: 128K bytes” (or
VRAM 64K bytes) line in this display. The title is defined by the SET
TITLE statement.

|SET TITLE [“title statement], [color]]

The title can contain up to six characters. Also, four different color
combinations can be specified for the 124 logo display. If you
want, you can omit the title and specify only the color combination
of your choice.

To display the title “SONY,” execute the following SET TITLE state-
ment in the direct mode.

SET TITLE "SONY”

After executing this statement press the button or turn off
the computer briefly and then turn it back on. The title will now be dis-
played as shown in the below illustration.

75

VRAM: 128K bytes
SONY

This title will be retained in the battery-backup RAM even if the com-
puter is turned off, and will be displayed each time BASIC is started

up.

Freezing the Screen Display with the Title Statement

If you specify a title of exactly six characters, the display will be
frozen on the screen when the title appears. For example, if you
specify

SET TITLE "MOMENT"

the next time you start BASIC the screen will show the following
display

VRAM: 128K bytes

MOMENT

/6

Since “MOMENT” is exactly six characters, this display will remain
on the screen until a key is pressed on the keyboard. Then Ok will be
displayed and BASIC will be ready for use. If you use the SET TITLE
statement to specify six spaces with the space bar, instead of
characters, no title will be displayed, but the [I=4 display will re-
main on the screen until a key is pressed.

To Cancel a Title
A title can be canceled by executing

SET TITLE "*

Do not type any character or space between the quotation marks.
Also, if the SET PROMPT statement or SET PASSWORD statement is
executed, the title specification will be canceled.

Changing the Color of the Title Display

The color specification in the SET TITLE statement can be used to
specify any of four different screen color combinations when the
=23 logo is displayed. The color is specified with the numbers from
1 to 4. When

SET TITLE "SONY",Z

is executed, the screen will show the following colors.

VRAM: 128K bytes
SONY

77

The following table shows the color combinations that can be

specified.

Color
1 2 3 4
dark dark
Y d
dark blue green re yellow
| black dark blue {magenta| red

78

CHANGING THE PROMPT STATEMENT
SET PROMPT

The Ok message is displayed when BASIC is in the ready condition
to accept commands. Ok is called the prompt statement. You can
change this prompt statement to any word of up to six characters in
length. For example, the following SET PROMPT statement would
change the prompt from Ok to Please.

SET PROMPT "Flease"

Once the PROMPT has been changed with the SET PROMPT state-
ment, the new PROMPT will be displayed each time BASIC is started
up, and will not change until another PROMPT statement, a SET
TITLE statement, or a SET PASSWORD statement is executed. When
a SET TITLE statement or a SET PASSWORD statement is executed,
the PROMPT will revert to the original Ok prompt.

SET PROMFT "Pleace"
Flease

79

SPECIFYING A PASSWORD SET PASSWORD

A password is a word known only to you which must be input before
BASIC can be started up. The SET PASSWORD statement is used to
specify a password.

I SET PASSWORD “‘password” |

The password can be a character string of any length up to 255
characters. For example, if you want to use “l LIKE BASIC” (12
characters, including spaces) as the password, you would input:

SET PASSWORD "1 LIKE BASIC”

Once this statement has been executed, the next time BASIC is start-
ed up the screen will show the following display until the password
is entered.

VRAM: 128K bytes

Password:

BASIC will not start until you enter the password | LIKE BASIC and
press the key. If the password is not entered, or the wrong pass-
word is entered, BASIC will not start. In this way, only you (or whoever
knows the password) can use the computer.

Once a password has been set, cartridge software such as games
also cannot be started until the password is entered.

80

To Cancel the Password
The password is canceled when a SET PROMPT statement or a SET
TITLE statement is executed. For example, when

SET PROMPT "Ok"

is executed, the PROMPT will become Ok, and the password will be
canceled. In summary, the last SET statement—SET PROMPT, SET
TITLE, or SET PASSWORD—to0 be executed becomes the valid state-
ment, and any previously executed SET statement is canceled.

If You Forget the Password
If you forget the password you have set, hold down both the

key and the key and press [RESET]. Continue to press the three

keys, and the [I2d logo display will appear on the screen. After you
have checked that

FPassword:

is not displayed on the screen, release the three keys. BASIC will then

start.
Another way to bypass the password is to press and hold down both

the key and the key when you turn the computer power

switch ON.

81

CHANGING THE LOCATION OF THE DISPLAY ON
THE SCREEN SET ADJUST

Depending on the type of monitor TV you use, the display area some-
times will not be centered precisely on the screen. The SET ADJUST
statement is provided to allow you to adjust the display area so that
it is properly centered.

[SET ADJUST (X,Y)]

Numbers from —7 to + 8 can be specified for both X and Y. The loca-
tion of the display area will be changed one coordinate point with
each change in the value of the number specified.

The initial default settings of X and Y are 0. Specifying a + value for
X will move the display area to the right, and a — value will move it
to the left. A + value for Y moves the display area vertically down the
screen, and a — value moves it up.

+Y

For example, if the display area is off-center to the top and left, as
shown in the below illustration, you can center it by moving it 3 coor-
dinate points to the right, and 4 coordinate points down by executing

SET abJUST 2,49

82

l

DISPLAY AREA = 4
SET ADJUST (3,4)

“ monitor TV

Let’s use the SET ADJUST statement in a short program to obtain an
interesting effect.

18 SCREEN 2

28 CIRCLE (125,95),40
38 FOR ¥Y=-F TO 3

468 FOR xX=-7 TO 8

58 SET ADJUST OX,¥Y)
&8 MEXT X

78 MEXT
g@ GoTO

L) =
(s

83

SETTING THE “BEEP” SET BEEP

MSX BASIC produces a “BEEP” sound when there is an error in a pro-
gram. The SET BEEP statement is used to set the sound pattern and
volume.

[SET BEEP [pattern] [volume]]

The sound patterns and volumes are specified with the numbers from
1 to 4. For the volume, 1 is the lowest volume and 4 is the highest
volume.

No. 1 2 3 4

Pattern ﬁ J J J J?j

Volume lowest highest
volume volume

To set the BEEP pattern at the 3 setting, and the volume at the 4 set-
ting, you would execute

SET BEEP 3,4

84

SPECIFYING THE INITIAL STATUS OF THE
SCREEN SET SCREEN

The SCREEN statement will be explained in detail in Chapter 5. Here
we will just list the settings that can be made with the SCREEN
statement.

echaracter mode (SCREEN 0 or 1)

e key click switch ON/OFF

@ printer type

e®cassette baud rate

e®interlace mode

Also, the number of characters in one line can be specified with the
WIDTH statement.

The KEY ON/OFF statement specifies whether the contents of the
function keys are listed at the botton of the screen or not.

The COLOR statement is used to specify the foreground color, the
background color, and the border color.

When the SET SCREEN statement is executed in the direct mode, the
current settings specified by the SCREEN statement, the WIDTH
statement, the COLOR statement, and the KEY ON/OFF statement
become the initial settings for when BASIC is started.

SET SCREEN

For example, when

SET SCREEN

is executed after the SCREEN 1 mode is set and the foreground color
has been set as black, the background color as gray, and the border
color as light blue as follows:

SCREEN 1
COLOR 1,14,38

these colors will be the screen colors the next time BASIC is started.

85

Chapter 5
Screen Configuration
and Graphics

87

SCREEN MODE

@ Screen Configuration

@ Setting the Mode—SCREEN

e Specifying the Number of Characters Per Line—WIDTH
e Graphic Mode Coordinates and STEP Specification

SCREEN CONFIGURATION

The following diagram shows the MSX2-BASIC screen configuration.

border area

background

(32 planes from 0 to 31)

88

SETTING THE MODE SCREEN

Characters (letters, numbers, etc.) are displayed in the character
modes, and figures and drawings are displayed in dot units in the
graphic modes. There are a total of nine text and graphic screen
modes in MSX2-BASIC. The SCREEN statement is used to specify a
screen mode.

SCREEN [mode number], {sprite size], [key click switch],
[baud rate], [printer type], [interlace]

The SCREEN statement specifies the screen mode, sprite size, key
click on/off, cassette tape baud rate, printer type, and interlace mode.

Nine screen modes can be selected with the SCREEN statement.

(The parts of the SCREEN statement other than the screen mode are
explained beginning on page 145.)

89

SCREEN Modes

Mrf: e Mode Screen Display Color Page Sprite
Maximum 80 Color palette Not
1} characters horizontal, | function — usable
Text 24 lines vertical 16 colors/512 colors
X
Maximum 32 Color palette
1 characters horizontal, | function — Used
24 lines vertical 16 colors/512 colors
256 x 192 dots Color palette
function
2 16 colors/512 colors - Used
(2 colors/8 dots)
64 x 48 dots Color palette
3 multicolor function — Used
16 colors/512 colors
Graphic [256 x 192 dots Color palette Used
4 64K or function _ (enhanced
128K 16 colors/512 colors sprite)
VRAM (2 colors/8 dots)
256 x 212 dots Color palette 2 pages Used
5 function (VRAM 64K) | (enhanced
16 colors/512 colors | 4 pages sprite)
(VRAM 128K)
512x 212 dots Color palette 2 pages Used
6 function (VRAM 64K) | (enhanced
4 colors/512 colors | 4 pages sprite)
(VRAM 128K)
512x 212 dots Color palette 2 pages Used
7 Graphic function (enhanced
128K 16 colors/512 colors sprite)
VRAM| 256 x 212 dots 256 colors 2 pages Used
8 only (enhanced
sprite)

in all modes, characters and figures are displayed on the foreground
screen. Behind the foreground is the background screen. You can
change the color of the background screen, but you cannot display
characters or figures on it. There is a border area at the top and bot-
tom of the display screen. Like the background screen, you can only
change the color of the border area, and cannot display anything on

it.

There are 32 sprite planes in front of the foreground screen which can
be used to display and animate sprite patterns in all modes except
SCREEN 0. Sprite patterns and their use are explained in the follow-
ing chapter.

90

[Note on the VRAM Size |

As is indicated in the above chart, SCREEN 7 and SCREEN 8 modes
are used only by computer with 128K bytes of VRAM. Also, the num-
ber of pages which can be used in SCREEN 5 and SCREEN 6 modes
is different depending on the size of the VRAM.

VRAM stands for video RAM. It is the memory which remembers the
content of what is to be displayed on the screen.

The size of the VRAM in your computer is shown on the 53 logo
display which is displayed when BASIC is started.

VRAM: 128K bytes the VRAM size

The initial display when the
computer is turned on

AN

CHARACTER MODE

The character mode for displaying text on the screen is specified by
SCREEN 0 and SCREEN 1. In SCREEN 0, characters are displayed in
6 dot (width)x 8 dot (height) size. In SCREEN 1, characters are dis-
played in 8 dot (width) x 8 dot (height) size. The width of some of the
MSX computer graphic characters is 8 dots, so you should use
SCREEN 1 when you want to display graphic characters.

92

SPECIFYING THE NUMBER OF CHARACTERS PER
LINE WIDTH

SCREEN 0 displays up to 80 characters per line. SCREEN 1 displays
up to 32 characters per line. The WIDTH statement specifies the num-
ber of characters to be displayed on each line in the text mode.

IWIDTH number of displayed charactersl

In SCREEN 0, the width of the characters displayed is different when
1to 40 characters and when 41 to 80 characters are displayed on one
line.

When SCREEN 0: WIDTH When SCREEN 0: WIDTH
40 is executed 80 is executed
ABECDEFG ABCDEFS

When from 1 to 40 characters are specified for one line, it is called
the 40 character mode. When 41 to 80 characters are specified, it is
called the 80 character mode.

93

The number of characters per line in SCREEN 1 is from 1 to 32, and
the size of the characters are all the same.

the WIDTH
40 character mode statement

Character mode{
SCREEN 1——32 character mode

When WIDTH 80 is executed in the SCREEN 0, 80 character mode,
when WIDTH 40 is executed in the SCREEN 0, 40 character mode, and
WIDTH 32 is executed in the SCREEN 1 mode, the number of charac-
ters first fill the screen from left to right, and then as the number of
characters displayed on each line is decreased in each mode, the dis-
play area of the characters is centered at the center of the screen.

80 character mode | specified by
SCREEN 0{

SCREEN 0: WIDTH 30 SCREEN 1: WIDTH 10

ABCDEFG ABCDEFG

The following program demonstrates the kinds of changes in the
number of characters per line which can be made.

8 AF="ABCDEFGHI JKLMNOPGRSTUVWXYZ"
d B¥="abcdefghijklimnopgretuvwxyz"
38 SCREEN @:CLS

48 FOR W=28 TO 1@ STEFP -18

58 WIDTH W

& GOSUB 15@

78 MNEXT W

g8 SCREEN

?8 FOR W=32 TO 12 STEF -16

1@ WIDTH W

116 GOSUB 158

128 NEXT W

1268 SCREEN 6:WIDTH 46

148 END

158 PRINT "WIDTH" ;W

148 PRINT:PRINT:FRINT

178 PRINT &%;B%

126 FOR T=6 TO 1G6@B:NEXT T

178 RETURN

THE GRAPHIC MODE AND COORDINATES

SCREEN 2 through SCREEN 8 specify graphic modes. The following
statements are used to draw figures in all graphic modes.

PSET, PRESET ... draws dots on the screen

LINE ... draws lines and rectangles

CIRCLE ... draws circles, ovals, arcs, and fan shapes

PAINT ... colors a figure

DRAW ... draws figures specified by graphics sub-commands

The screen is divided into coordinates which are used to specify loca-
tions on the screen when the above statements are used. The coor-
dinates are different in different modes.

0 255 @ 255
0 7 0 T
| |
mm 1
N ¥ = >
—+ -

191 {F 211 1 n—=
SCREEN 2, SCREEN 3, SCREEN 5, SCREEN 8
SCREEN 4

" 511
0 —if
l |
211 L, 0
77

SCREEN 6, SCREEN 7

95

In the following program the same coordinates are used in SCREEN
2, SCREEN 5, and SCREEN 6 but the circle is positioned at different
locations on the screen.

i@ SCREEM 2

28 GOSUB 188

28 SCREEN S

48 G0OSUB 1a@

@ SCREEN &

48 GOSUB 184

78 EMND

188 CIRCLE (125,188),%78
116 FOR T=@ TO 18@GG:NEXT T
128 RETURN

96

MULTICOLOR MODE (SCREEN 3)

The same 256 x 192 dot coordinates are used in the SCREEN 3 mode
as are used in the SCREEN 2 and SCREEN 4 modes, but the unit for
. drawing a figure is a 4 x4 dot block.

0123456 7 89101112131415

~N OOV WN = O

PSET ¢12,4),1
PSET ¢14,5),1
PSET ¢15,7),1

For example, the above statements all specify locations within the
same 4 x 4 dot block, so any of these PSET statements will paint the
entire block black, as shown above.
The LINE statement

LIMNE ¢17,30-(1268,118)

will draw a rough line between the blocks which includes the coor-
dinates (17,5) and (130,110).

97

Let’s run a program which uses the multicolor mode.

1@
26
38
44

SCREEN 3

COLOR ,1@8,16:CLS

LINE (88,78)—-(17%,1688),8,BF
FOR ¥Y=8@8 TO 164 STEP 4

&8 READ

8@ PSET
78 GOTO
iga
118
12a
138

PSET
NEXT
NEXT
148 GOTO
158 DATA
6,0 ,8,8
148 DATA
LB, 1,1,1,
178 DaTA
8,1,8,1,
158 DATA
1,01,
198 DATA
VB, 1,0,1,
200 DATA
A, 1,11,
21@ DATA
@,60,6,8,

58 FOR X=

84 TO {72 STEF 4

70 IF P=8 THEN SET BEEP 1 ELSE 18@
(XYY,
128

SET BEEF 2

S:BEEF

¢X,Y),4:BEEP
X

Y

146

8,0, a ,0,08,8,0

-
-

-
=

-
—

L@,
@
@
@
@
@ .1,8,1
@,

B,

@
a
#
B,
@

KL

’1!851!1!15651!1!1.‘3!

,0,6,08,08,0,0

@@@@G‘E’QH@@@GAP

L]
’
]
)
L)
]
s
L]
L]
s
’
]

51!BFI!G!E!B!ISB!B!B!ISBS

,0,0,0,6,0,0,0,0,6

1,1,8,1,6,6,8,1,8,8

@

;1,8,8,1,06,08,0,1,0,0
»1,0,1,06,06,06,1,0,6,08,1,0,4
1,1,1

,8,0,06,0,0,8,8

98

The SCREEN 3 statement in line 10 specifies the multicolor mode. In
the loop, the READ statement in line 60 assigns data to variable P.
If the value of P is 0, then the dot (block) drawn by the PSET statement
will be color 15 (white). If the value is other than 0, the color will be
4 (dark blue). The value of P also determines which SET BEEP state-
ment will be executed, and therefore which sound will be specified.
This produces a different sound each time the PSET statement is ex-
ecuted.

When the program is executed, the following display should be
drawn: :

the surrounding
area is dark yellow

dark blue :white red

99

SPECIFYING STEP

The STEP (X,Y) specification can be used with the PSET, PRESET,
LINE, CIRCLE, PAINT, and PUT SPRITE (explained in the following
chapter) statements to specify the (X,Y) coordinates.

When these graphic statements are executed, the last specified point
is remembered. If STEP (X,Y) is then executed, the location of (X)Y) is
determined on a new coordinate system with the point specified last
as the origin (0,0). If the STEP specification is omitted, locations are
specified in the regular coordinate system in which the top left corner
of the screen is the origin.

18 SCREEN Z

2@ FSET (98,56

3@ LINE STEP (&8,-48)-(156,188>
4@ GOTO 48

In this program, the coordinate (50,50) specified by the PSET state-
ment in line 20 is remembered. Then in line 30, STEP (60, — 40) is used
to specify the starting point for the LINE statement. (50,50) becomes
the new origin, and the location 60 in the X direction and — 40 in the
Y direction from the new origin is the starting point for the line.

(150,100}

100

The following formats are used when STEP is included in graphic
statements.

PSET STEP(X,Y), color
PRESET STEP(X,Y), color

LINE STEP(X,Y)—STEP(X,Y), color, EF

CIRCLE STEP(X,Y), radius, color, start angle, end angle,
aspect ratio

[Displaying Characters in the Graphic Modesj

Characters can also be displayed on graphic mode screens. To do
this, the graphic screen is used as a file device. The file is opened and
the characters to be displayed are output to the file. See page 242 for
a full explanation.

101

SPECIFYING COLORS

@ The Palette Function
® Palette Specification—COLOR
®SCREEN 8 Mode Color
@ Color Spill (SCREEN 2 and SCREEN 4)
® Returning the Color Specifications to the Initial Settings

—COLOR

THE COLOR CODE AND THE PALETTE FUNCTION

In the SCREEN 2 mode, 16 colors can be used, and each color has a
color code. We will list the color codes below:

Color Code Table

Code Color Code Color Code Color Code Color
0 transparent 4 dark blue 8 medium red 12 dark green
1 black 5 light blue 9 light red 13 magenta
2 medium green 6 dark red 10 dark yellow 14 gray
3 light green 7 sky blue 11 light yellow 15 white

The Transparent Color
When color code 0 is specified, the color is transparent. This means

that when the transparent color is used toc draw a figure in the fore-
ground, the background color will show through the figure. You can
check this with the following program.

18
2a
24
44
58
&
78
g
bl

SCREEN
FOR B=2
COLOR ,

2

TO 14
B,B:CLS

LINE (58,56)-¢18@8,146),15,BF

LINE (78,78)-¢14@,128),8,BF

FOR T=6 TO 18@@:NEXT T

NEXT B
CaLor ,
END

4,4:CLS

102

The FOR—NEXT loop successively changes the background color
and the border area color from 2 (medium green) to 14 (gray). A white
square is drawn (line 40), and inside it a smaller transparent square
is drawn (line 50).

Then each time the background color changes, the transparent .
square becomes the same color, since the background color shows
through the transparent color.

transparent™ |~ //white

The Color Palette

As was shown on page 90, the modes which use the 16 colors from
color code 0 to color code 15 are: SCREEN 0, SCREEN 1, SCREEN 2, -
SCREEN 3, SCREEN 4, SCREEN 5, and SCREEN 7.

The 16 colors shown in the color code table above are the 16 colors
that can be used when BASIC is started up. But they are by no means
all of the colors available with the MSX2. The color codes from 0 to
15 can be used to create 512 different colors of your choice.

It is not possible to give names to all of these 512 colors, so the
colors are specified by designating the amount of red, green, and
blue that is combined to produce any given color—for example, red
3, green 2, and blue 7—just as though you were mixing the red, green
and blue on an artist’s color palette. This is called the palette
function.

Colors can be specified for color code 0 also, but this is a special
case. Here we will explain how to use color codes 1 through 15 to cre-
ate different colors.

103

HOW TO USE THE PALETTE FUNCTION

The three colors red, green, and blue have brightness levels from 0
through 7. These levels are called the brightness. Since there are 8
different levels for each color, these levels can be combined to
produce 512 colors—8x8x8=512.

The color is black when the red, green, and blue brightness is set at
0 for each of the colors, and it is white when the brightness of all
three colors is set at 7. Setting the same brightness for the three
colors (for example, brightness 4 for red, green and blue) produces

gray.

red green blue color

0 0 0 black

1 1 1)

2 2 2 dark gray
3 3 3 1

4 4 4 !

5 5 5 light gray
6 6 6 1

7 7 7 white

When the brightness of one of the colors is made greater than that
of the other two colors, (or the closer the brightness setting of the
other two colors is to 0) the brighter color will predominate. For in-
stance, 7, 0, 0 would produce a pure red color, as shown in the follow-
ing brightness setting examples.

red green blue color

4 3 3 gray, with a slightly red tinge

5 2 2 a color close to red

5 0 0 red (slightly dark)

7 0 0 red (pure red, the brightest color)
2 0 0 red that is almost black

104

PALETTE SPECIFICATION COLOR

The COLOR statement is used to specify the color code and the
brightness settings necessary to produce a given color.

COLOR = (color code, red brightness, green brightness,
blue brightness)

The COLOR statement is used to specify the red, green, and blue
brightness levels in values from 0 to 7 and assign these values to the
specified color code.

For example, to assign a red brightness of 4, a green brightness of
3, and a blue brightness of 1 to color code 5, you would execute

COLOR=(5,4,3,12

18 SCREEN S

28 COLOR=(1,7,7,77
%@ FOR C=2 TO %
49 COLOR=(C,@,8,C~-2)

56 MEXT C

4@ COLOR ,1,1:CLS
76 FOR CC=2 TO ¥

88 R=18@-CC*18

@ CIRCLE ¢125,166),K
168 PAINT ¢125,95),CC
118 NEXT CC

128 GOTO 126

OO

105

The colors for color codes 1 through 9 are specified in lines 20
through 50 in this program.

code | red green blue

OO ~NOOO A WN =
OCOO0OO0ODOCOOON
OO OO O0O0OO0OON
NO O WN2ON

Code 1 is white, code 2 is black, and codes 3 through 9 change the
color in steps from a blue color that is almost black to pure blue.
In the COLOR statement in line 60 coior code 1 is specified for the
background color and the border color, but color code 1 is now white
instead of black. From line 70 on, circles of different shades of blue
are drawn inward towards the center point, with the final circle
colored pure blue.

The palette function can be used in this way to make a drawing which
uses different shades of the color.

The above program uses the SCREEN 5 mode, which is the best mode
for making graphic displays rapidly. The drawing speed made with
graphic statements in the SCREEN 2 and SCREEN 4 modes is slower,
and there is also a possibility of color spill. Color spill is explained
in a later section. ’

Let’s write another program which uses the palette function.

1@ SCREEN S
28 FOR L=8 TO 1 STEF -t

26 CIRCLE (126,1@86) ,L*18+5,L
48 PAINT ¢128,18@),L,L

5@ NEXT L

48 K=(K+1) MOD &

78 FOR L=1 TO &

88 COLOR=(L ,K,K,8)

96 K=(K+1) MOD &

188 NEXT L

116 GOTO &6

106

The foliowing illustration shows the color codes for the concentric
circles drawn by the FOR-NEXT loop in lines 20 to 50.

WA OO~ 0O

At first, the colors corresponding to color codes 1 to 8 are black,
medium green, light green, dark blue, light blue, dark red, sky blue,
and medium red. The circles are drawn in these colors.

Next, the palette function is used to change the colors corresponding
to the code numbers. This is done in lines 60 through 110.

In the COLOR statememt in line 80, the variabie K is used to specify
the red brightness and the green brightness. The value of K is set in
lines 60 and 90. The MOD used in these lines is one of the arithmetic
signs, like +, —, *, and /.

a+b will add a and b, but a MOD b gives the remainder of dividing
a by b. The following table shows the relationship between K and
(K+ 1), (K+ 1) MOD 8.

107

K|K+1]|(K+1) MOD 8
0] 1 [1(1=8=0..1)
1] 2 |2@+8=0..2
2! 3 |3(3+8=0..3)
3| 4 |4(4-8=0..4)
4] 5 |5(5-8=0..5)
5/ 6 |6(6+-8=0..6)
6| 7 |7(7=-8=0..7)
7! 8 l0(8-8=1..0)

If no value is assigned to a variable, its value will be 0. Consequently,
the value of K before line 60 is executed is 0, and when the line is ex-
ecuted it becomes 1. Then each time K=(K + 1) MOD 8 is executed
in line 90 and line 60, the value of K is increased by 1. After K be-
comes 7 it next becomes 0, and then increases up to 7 again.
Then as a result of the changes in the value of K and the COLOR
statement inside the FOR—NEXT loop, the colors of the color codes
from 1 to 8 are changed by the changes in the red and green bright-
ness levels from 0 to 7. Throughout the program the blue brightness
level remains at 0.

If line 80 were changed as follows:
2@ COLOR=(L,8,K K

then the red brightness level would remain at 0 and the green and
blue brightness levels would be changed. Green can also be set at 0,
and the brightness of the other two colors changed. Try the various
combinations and see the results on the screen.

108

THE SCREEN 6 MODE AND THE PALETTE
FUNCTION

The palette function can be used in the SCREEN 6 mode also, but
only the color codes from 0 to 3 can be used, or only 4 of the 512
colors. The SCREEN 6 colors are set as shown in the following table
when BASIC is started up.

code color
0 transparent
1 black
2 green
3 bright green

THE SCREEN 8 MODE AND COLOR

The palette function is not used in the SCREEN 8 mode, but 256
colors are available using the color codes.

In the SCREEN 8 mode red and green each have 8 levels of brightness
from 0 to 7, and there are 4 levels of blue brightness, from 0 to 3.
Since 8 x8x 4 =256, color codes from 0 to 255 can be used. A color
code is determined by the following formula:

color code =32 x (green brightness)+ 4 x (red brightness)+
(blue brightness)

For instance, if green brightness is 1, red brightness 5, and blue
brightness 3, the color code would be 55:

32x1+4x5+3=55

109

COLOR SPILL IN SCREEN 2 AND SCREEN 4
MODES

In the SCREEN 2 and SCREEN 4 modes, only 2 colors (including the
background color) can be specified for one block of 8 horizontal dots.
If more than two colors are specified, the color specified last be-
comes the valid color.

18 SCREEN 2
26 LINE (%,5@8)-(14,56),15
2@ LINE ¢12,408)-(12,48),1

48 GOTO 448
- (12,40)
<]
(Q.50) (9,?0) (14,50)
4] [[<1 |
AN —/\. ~
1 block 1 block
[~} (12.60)

In this program, a horizontal line is drawn from X9 to X14 in the
horizontal block of 8 dots extending from X8 to X15. Then a vertical
line is drawn at X12 from Y40 to Y60, which intersects the horizontal
line. This adds a third color to the horizontal block from X8 to X15,
and therefore even though white has been specified, the horizontal
line is displayed as black, since black, as the last color specified, has
become the valid color for this block.

When the specified color becomes a different color in this way, it is
called color spill. Care is required in assigning colors in the SCREEN
2 and SCREEN 4 modes to avoid such color spill.

If line 20 is revised as follows:

110

LINE (&,58)-(15,56)

the horizontal line wiil then fili the entire block of eight dots from X8
to X15 and the color specified (white) will remain valid.

However, if another color is subsequently specified for this same
block, with a statement such as

PSET ¢&,56),&

then the color of the entire block will change to the color last speci-
fied (in the case of the PSET statement, color code 8).

Always remember that in the SCREEN 2 and SCREEN 4 modes, a
maximum of two colors only can be used in any given block of 8 dots.

In SCREEN modes 5 to 8, colors can be freely specified in units of 1
dot each.

111

RETURNING THE COLOR SPECIFICATIONS TO
THE INITIAL SETTINGS COLOR

Color codes and the color specifications were changed using the
COLOR statement. To return the specifications within a program to
their initial status when BASIC is started up

COLOR=NEW

is executed.

LSampIe Programw
The following program uses the palette function in the SCREEN 5
mode.

18 S=2:CN=10:=50 :M=L %2

26 XS=(255 MOD MY/ 2:¥S=(211 MOD M>/Z

38 COLOR 15,8,86:5SCREEN §

46 -

S6 FOR T=@ TO TIME-INT<TIME-16&)*168:J=R
NDC1) NEXT

4@ 7 =¥ draw box *x¥

78 FOR XC=L+xS TQ 255-L STEF M

88 FOR YC=L+YS TO 211~L STEF M

98 =0
le@ FOR P=L TO @ STEP -S

118 LINE{XC—-P,vYC—P)>-STEP(P*2,P%2) ,C+1
BF

128 C=(C+1IMAD €N

130 NEXT F
148 NEXT ¥C
1596 NEXT XC

188 7 #xx% define color %=
178 R=RND(17#5+2:6=RND(1)*%5+2Z2:B=RND(1)*5
+2

18@ FOR P=1 TCO CN

196 J=P/CN:R{P)=R#J:G{P)=GxJ:B{(P)=B*J
288 NEXT P

218 ° %%¥% change color *%x

226 FOR K=8 TO 26

2386 FOR P=1 TO CN

244a COLOR=(J+1,R(P),G{P) ,B(P))
258 J={J+1> MDD CN

280 NEXT P

278 J=:J+1) MQD CN

288 NEXT K

298 GOTO 178

112

There are several commands used in this program which have not yet
been explained, but input them as they are written and run the
program.

The following is a brief description of the program.

First, lines 70 to 150 draw squares. The variables used in these lines
are defined in lines 10 and 20. The following illustration shows how
the variables are used.

YS M (100)

I\ I
XS YC (first loop)

L XC (second loop)—

XC (first loop) M YC (second loop)

Array variables R(P), G(P), and B(P) are used in lines 170 to 200. Values
from 2 to 7 are assigned to R(1)—R(10), G(1)—G(10), and B(1)—B(10).
The RND function in line 170 determines what value is assigned. The
RND function gives a positive number greater than 0 and less than 1.
Functions are explained in Chapter 7.

In lines 220 to 280 the values of R(P), G(P), and B(P) are used to
change the colors of color codes 1 to 10 using the palette function.

The single quote mark () in lines 40, 60, 160, and 210 is used in place
of REM. The REM or (’) statememt is used to write a remark in the
program which is not executed as part of the program.

13

SETTING PAGES

@ Concerning Pages
®The Display Page and the Active Page
@ Setting Pages—SET PAGE

GRAPHIC MODE DISPLAYS AND PAGES

Take another look at the SCREEN Mode Chart on page 90. It has a
column title “Page.” Modes from SCREEN 5 through 8 in the graphic
mode use ‘“‘page.” This part of the chart can be rewritten as follows:

Mode VRAM 64K | VRAM 128K

SCREEN 5 | 2 pages 4 pages
SCREEN 6 | 2 pages 4 pages
SCREEN 7 — 2 pages
SCREEN 8 — 2 pages

As the name implies, page is like the page in a notebook. For exam-
ple, for 64K VRAM computers, two pages can be used in the SCREEN
5 and SCREEN 6 modes. When a drawing is drawn on the screen with
graphic statements, only one of the two pages is used, and the other
page remains blank.

page 0 Q
O page 1

For 64K VRAM, SCREEN 5, SCREEN 6

As shown in the above illustration, when two pages are used, they are
given page numbers. One is called page 0 and the other is called page
1. With a 128K VRAM, four pages can be used in SCREEN 5 and
SCREEN 6. They are calied page 0, page 1, page 2, and page 3.

114

The Display Page and the Active Page

In the modes in which 2 pages or 4 pages can be used, page 0 is al-
ways the page on which drawings can be drawn and the page that is
displayed on the monitor TV at the time BASIC is started up.

The page on which drawings can be drawn is called the active page.
The page that you see on the monitor TV is called the display page.

EFFECTS THAT CAN BE ACHIEVED BY SETTING
THE PAGE

Unless specified otherwise, the display page and the active page are
both page 0. Therefore, when a statement such as LINE, CIRCLE, or
DRAW is executed, the figure will be drawn on page 0, and displayed
as is on the monitor TV. But if page 0 is set as the display page, and
page 1 set as the active page, and graphic statements are then ex-
ecuted, the figures will be drawn on page 1. But since what you see
on the monitor TV is page 0, the figures will not be displayed on the
screen.

page 1
(active page)

/'\)
page O
(display page)

if page 1 is made the display page, then the figures drawn on it will
be displayed on the screen.

115

1-page 0

O +-1--page 1 (display page)

At this time, if page 0 is set as the active page, then subsequent
figures will be drawn on page 0. If page 1 is made the active page,
then the subsequent figures drawn will be added to page 1.

Using Pages
There are many ways to utilize the page setting function. Two in-
teresting effects that can be achieved are described below.

® Show only the completed drawing on the screen.

It takes time for a complicated drawing to be drawn on the
screen, especially if a lot of PAINT statements are used. If you
don’t want to show the drawing being drawn on the screen, you
can set different pages for the display page and the active page,
and then draw the drawing on the active page. When the drawing
is completed, you can change the active page to the display
page, and the completed drawing will be displayed all at once on
the screen.

116

’/ going on backstage!

% Don’t show what’s

NI R /
JUST A MOMENT PLEASE

The completed picture
appears all at once!

o Draw a different drawing on each page, and then shift back and
forth between pages to create an effect of movement.
For example, the following effect can be achieved:

117

page 0 page 1

+

cd

Change the display page back and
forth from page 0 to page 1

118

SETTING PAGES SET PAGE

The SET PAGE statement sets page numbers as the display page and
the active page.

|SET PAGE [display page], [active page]l

For example, to set page 0 as the display page and page 1 as the ac-
tive page, execute

SET PAGE @,1

After this SET PAGE statement is executed, page 0 is the page that
is seen, and page 1 is the page that figures are drawn on.

Changing the Pages
The following program changes the pages back and forth.

119

18 SCREEN S

28 SET PAGE ©,1:CLS

36 Xi=116:X2=1060

48 GOSUE 138

S@ SET PAGE @,6:CLS

&8 X1=148:X2=158

786 GOSUE 136

8@ SET PAGE 1

98 FOR T=& TO ZEE:NEXT T

188 SET PAGE @

116 FOR T=& TO Z@0:NEXT T

126 GOTO S8

126 COLOR 132,3,3:CLS

148 LINE (75,18)-(175,288), B
156 PAINT (7&,11)

168 CIRCLE (125,467,48,15

178 PAINT (125,468),15

188 LINE ¢125,48)-(125,25),1
196 LINE (125,86)-(115,86) 1
208 LINE (8@,120)-(178,158),4,8F
218 LINE ¢X1,128)-(X2,176),1a
228 CIRCLE (X2,178),12,1@

236 PAINT (X2,171),1@

248 RETURN

This program draws different drawings on page 0 and page 1 in the
SCREEN 5 mode. First, page O is set as the display page and page
1 is set as the active page (line 20).

Then the subroutine from line 130 draws the following drawing.

120

\»page 1
(active page)

\\-page 0
(display page)

Then the display page and the active page are both set at page 0 (line
50), and the following drawing is drawn.

- 1--page 1

.‘page 0
(display page,
active page)

121

The page 1 drawing remains as it is. The loop from line 80 to line 120
then changes the display page back and forth from page 1 to page
0, which results in the two drawings being displayed alternately on
the screen. This gives the impression that the pendulum of the clock
is moving back and forth.

Specification of the active page has been omitted in the SET PAGE

statements in lines 80 and 100. When the specification is omitted, the
previous specification remains in effect.

122

COPYING GRAPHICS DATA

® Copying Graphics—COPY

®Copying Between Screens

®Copying Between a Screen and Internal Memory
o Copying Between a Screen and a Disk File
®Copying Between Memory and a Disk File

® | ogical Operations

COPYING GRAPHICS

Drawings drawn in the SCREEN 5 to SCREEN ‘8 graphic modes can
be copied. In copying an area of the screen is specified, and the color
data for each dot within that area is copied to another place. There
are three places to which such data can be copied:

®the screen (VRAM)

®internal memory (an array variable)

@ a floppydisk (file)

The COPY statement is used to copy graphic data.

COPYING BETWEEN SCREENS COPY (1)

In copying between screens, you can copy onto the same page or
onto a different page. In both cases, the graphics data is copied in
the computer VRAM.

For instance, iet’s assume that the following graphics is drawn on
page O in the SCREEN 5 mode.

123

/(1 0,10)

page 0

(150,140)

If the part of this graphics from (20,30) to (90,100) (shown by the dot-
ted lines in the below illustration) is copied to the same page in the
area that has (160,70) as its top left coordinate, the following result
will be obtained. '

/(20,30)
: T

4160,70)

(90,100) (230.140)

page 0 page 0

You can also copy to a different page. if you copy the same part of
the graphics as was copied above to the same location on page 1, the
result will be as shown below.

124

copy
- page 1

page 1

page 0 page 0

When you copy, the figures and colors in the foreground are copied
to the designated destination area, while the original figures and
colors also remain on the original source page.

The COPY statement format is:

COPY (X1,Y1)—(X2,Y2)}{,source page]TO(X3,Y3)
[,destination page]

(X1,Y1) is the top left coordinate of the source area, (X2,Y2) is the bot-
tom right coordinate of the source area, and (X3,Y3) is the top left
coordinate of the destination area. If the source page and/or the des-
tination page are not specified, the active page is assumed to be
specified.

125

18
24
Ia
44
=1
48
78

SCREEN S
SET PAGE 8,0

LINE ¢16,16)-(156,148),8,BF

CIRCLE (%@,48),48,1,,,.3

PAINT ($8,48),1

COPY (26,38)>-(98,188),8 TO (146,78),0
GOTO 7@

Line 60 copies the area (20,30)—(90,100) on page O to the area with
the top left coordinate of (160,70) on page 0.

10
26
26
4@
=15
4@
78
ga
>a
1a4d
118
126
136
146
150

SCREEN S
SET PAGE @,1:CLS

LINE ¢78,145)~(186,1487,1
SET PAGE 1,8:CLS
LINE (78,148)-(188,185),1
CIRCLE (7@,7@),28,12
PAINT (78,78),12
COPY (S@,56)-(%8,98),8 TO (146,128),08
COPY (58,50)-(98,98),8 TO (148,58),1
COPY (5@,56)-(%8,%8),8 TO (58,126),1
SET PAGE ©
FOR T=8 TO S@8:MEXT T
SET PAGE 1
FOR T=@8 TO 3@@:NEXT T
GOTO 118

This program draws the figures shown below on page 0 and page 1
in the SCREEN 5 mode. The first circle is drawn on page 0 with the
CIRCLE and PAINT statements in lines 60 and 70. The rest of the cir-
cles are drawn by being copied with the COPY statement (lines 80,90,

100).

50,50
) - CIRCLE,

N COPY
i

T 90,90) COPY

\Q fine 100)
CoPY

(line 80)

126

page 0 page 1

COPYING BETWEEN THE SCREEN AND INTERNAL
MEMORY COPY (2)

Screen data is retained in the VRAM, but it can also be copied to in-
ternal memory (RAM). Also, data that has been copied to internai
memory can be copied back to the screen (VRAM) and re-displayed.
When data is copied back to the VRAM, the orientation of the data
on the screen can be changed.

For example, let’s say you draw the following figure on page 0 in the
SCREEN 5 mode.

page 0

Then if you copy the screen area from (20,20)—(60,105) to the internal
memory, you can copy the following display to page 1.

127

Copied without changing
th? orientation

]
/
/

;

V1 page
N
Copied changing
the orientation
Before copying graphics data to memory, you must define a numeric
type array variable with the DIM statement to receive the data.

The following COPY statement format is used to copy graphics data
to memory. ,

B)OPY(X1,Y1)—-(X2,Y2)[,source page} TO array variable nameJ

(X1,Y1) is the top left coordinate, and (X2,Y2) is the bottom right coor-
dinate, of the area to be copied.

The size of the array variable is determined with the following
formula:

INT ((ABS(X1-X2) + 1) % (ABS(Y1-Y2) + 1) % pixel size + 7)/8 + 4)/8) + 1
INT and ABS are BASIC functions. They are explained in Chapter 7.

Pixel size (the number of pixels equal to one dot on the screen) differs
according to the SCREEN mode.

128

Mode Pixel size
SCREEN 5 4
SCREEN 6 2
SCREEN 7 4
SCREEN 8 8

For instance, to copy the data for the area (20,20)—(60,105) in the
SCREEN 5 mode, since X1 is 20 and Y1 is 20, and X2 is 60 and Y2 is
105, X1-X2= -40 and Y1-Y2= —-85. Therefore the size of the array
variable would be computed as follows:

INT(CCCABSC~4@8) +1) % CABSC—85) +1) %44 7)
/844 /B +]

Consequently, the following two lines would be written at the begin-
ning of the program to define an array variable P.

S=INTCCC CABSE—48) + 1) ¥ (ABS(~B5) +1)
¥4+7)/8+4)FEI 41
DIM P{S)

Once this kind of array variable has been defined, the COPY state-
ment can be used to copy the data for the area (20,20)—(60,105) to
memory, that is, to the array variable.

It is only necessary to specify P in the COPY statement as follows:

COPY (28,28)-(&46,185),8 TO P

The tollowing COPY statement is used to copy data from memory (ar-
ray variable) to the screen (VRAM).

COPY array variable name [,orientation] TO(X3,Y3)
[,destination page]

(X3,Y3) is the start location for drawing the data to be copied to the
destination page.

129

There are four “orientations,” specified by the numbers 0 through 3.
“Orientation” indicates the direction in which the drawing should be
drawn from the start iocation.

“Orientation” no. | Drawing direction
0 from top left to bottom right
1 from top right to bottom left v
2 from bottom left to top right ~
3 from bottom right to top left ~

0 is assumed when specification is omitted.

For example, when the data for the following graphics has been cop-
ied to memory,

S =
I
| The area within the
I dotted lines is copied
i to memory
|
|
I
______]

the data can be copied back to the screen using the four orientation
numbers and the (X3,Y3) drawing start locations as follows:

“orientation” 0 “‘orientation” 1 ‘“‘orientation” 2 ‘“‘orientation’” 3

CBYSIN T | (X3,Y3) = ol
l | | ! : ! : ,
' ! ! i] | ! I
| | | |] i ! :
| | |) i i ! !
: : ! ' ' ' | [
L= P e LA B N
(X3,Y3) X3,v3)

If the orientation number is omitted, the default setting is 0, from top
left to bottom right.
Let’s write a program which displays the example given on page 128.

130

16

24
30
4@
58
&
7a
aa
Ed
1aa
i1e
124
138
148
158
is8@

S=INT((((ARG(-4B)+1) (ABS(-ET)+1) %4+7
2/8+4)/8)+1

DIM P(S)

SCREEN 3

SET PAGE @,1:CLS

SET PAGE @,8:CLS

LINE (z@,26)>-{28,185)
LINE (28,205-(58,165)
LINE (28,185 -(56,185)
PAINT (25,58

COPY (Z2@,28,-(&6,165),68 TO P

COPY P,B TO (138,16),1

COPY P,1 TO ¢117,18),1
COPY P,2 TO (138,208@),1
COPY P,2 TO (117,266),1
SET PAGE 1

GOTO §é&@

The array variable P is defined in lines 10 and 20. Then the following

drawing is drawn on page 0 in the SCREEN 5 mode.

(20,105)

(20,20)

(60,105)

page 0

131

The COPY statement in line 100 copies the area which includes this
drawing, (20,20)—(60,105), to the array variable in memory. Then lines
110 to 140 change the orientation of the data that has been copied
to memory on page 1.

For example, line 120 copies the data using “orientation” 1 and a
drawing start location of (117,10).

"{117,10)

page 1

The other COPY statements perform similar functions, and a drawing
like the one shown on page 128 is drawn on page 1.

132

COPYING BETWEEN THE SCREEN AND A
FLOPPYDISK COPY (3)

The COPY statement can also be used to copy data that has been
drawn on the screen (VRAM) to a floppydisk file with computers
which have an internal disk drive or a floppydisk drive unit attached.
The COPY statement format for copying (saving) graphics data on a
floppydisk is:

COPY (X1,Y1)—(X2,Y2) [, source page] TO “[drive name], file
name [.type name}]”’

The rules for assigning a file name are exactly the same as those for
saving a program. The type name can be omitted, but it is convenient
to always include it so that you will know what kind of file it is. In the
following program example, .PIC is used as the type name.

Now let’s write a program to copy on a floppydisk the same figure we
previously copied to memory.

14 SCREEMN S

28 SET PaAGE @,6:CLS

38 LINE (20,280-(26,105)

48 LINE (28,268)~(&6,185)

98 LINE (208,185)~(46,185)
&8 PAIMT (25,56) :
78 COPY (208,28:-(568,185),8 TO "TRIANGLE.

PIC"

A triangle is drawn by lines 30 through 60. Then line 70 copies the
data of the area (20,20)—(60,105) which includes the triangle to the
floppydisk file. The file name is TRIANGLE, and the type name is .PIC.
When this program is executed, a triangle is drawn on page 0 in the
SCREEN 5 mode. Immediately after the triangle is drawn, the disk
drive begins to operate, and the drawing data is copied to the disk.
When the data is copied, the program also ends, and Ok is displayed
on the screen.

If the FILES command is executed, the file name and type name

133

TRIANGLE.PIC

will be displayed, and you can check that the graphics data has in
fact been copied to the floppydisk file.

The COPY statement format for copying graphics data from a floppy-
disk file back to the screen (VRAM) is:

COPY “[drive name] file name [. type name]” [, orientation]
TO (X3,Y3) [, destination page]

The same file name and type name that was used when the data was
copied to the disk is specified. The “orientation” and drawing start
coordinates are just like those used in copying from memory.

The following program changes the data copied to the disk to four
different orientations and copies this data to the screen.

19 SCREEN 5

28 SET PAGE 1,1:CLE

38 COPY "TRIAMGLE.PIC",@8 TO (138,1@),1

44 COPY "TRIANGLE.PIC",1 TO (117,185 ,1

3@ COPY "TRIANGLE.PIC",2 TO (133,206 ,1
&8 COPY "TRIANGLE.PIC",2 TO (117,208@5,1
78 GOTO 78

The COPY statements in lines 30 to 60 copy the drawing with differ-
ent drawing start locations and orientations to page 1 in the SCREEN
5 mode. When you execute this program you will see how the data is
copied.

In the above program both the display page and the active page were
set at page 1. But if different pages are set for the display page and
the active page and the image data is first copied from the floppydisk
to the active page, and then when the copying is completed the active
page is changed to the display page, the completed drawing will be
displayed all at once on the screen.

Revise the previous program as follows, and execute it.

134

16
24
28
498
od
68
&5
78

SCREEW S

SET PAGE 8,1 :CLS<+——changed

COPY "TRIANGLE.PICY
COPY "TRIANGLE.PIC"

COPY "TRIANGLE.PIC",Z2 TO (132&,286),1

COoFYy "TRIANGLE.PICY
SET PAGE l1<-—added
GOTO 76

e Ta
,1 TO

,3 TO

(138,180 ,1
£117,18) ,1

(117,200 ,1

135

COPYING BETWEEN MEMORY AND A
FLOPPYDISK COPY (4)

The COPY statement format for copying graphics data saved on a
floppydisk to an array variable in memory is as follows:

COPY “[drive name] file name [. type name]” TO array
variable name

To copy graphics data from an array variable in memory to a floppy-
disk use the following format:

COPY array variable name TO “[drive name] file name
[. type name]”

136

LOGICAL OPERATIONS

In copying graphics data with the COPY statement, logical opera-
tions can be performed between the color code of the drawing color
and the color code of the destination screen.
The following ten logical operations can be used with the COPY

statement.

PSET, PRESET, XOR, OR, AND

TPSET, TPRESET, TXOR, TOR, TAND

The result of the logical operation can be seen when the color codes
are changed to binary codes. The following chart shows the binary
color codes of the 16 colors in SCREEN 5 mode when BASIC is start-

ed up.
Color Color code|Color code|Color Color code |Color code
(decimal) (binary) (decimal) (binary)

transparent 0 0000 medium red 8 1000
black 1 0001 light red 9 1001
medium green 2 0010 dark yellow 10 1010
light green 3 0011 light yeliow 11 1011
dark blue 4 0100 dark green 12 1100
light blue 5 0101 magenta 13 1101
dark red 6 0110 gray 14 1110
sky blue 7 0111 white 15 1111

Let’s consider what happens when a medium red figure (color code
1000) is copied onto a medium green (color code 0010) figure.

COPY
= P
f \
/ ‘
/ |
] X\
L T
medium red medium green

asy

e

i

1

Y

i o
medium red medium green

137

If no logical operation is performed, the medium red square will be
superimposed on the green square. But when a logical operation is
performed, the color of the portion of the medium green square
will be a color other than medium red. The color the square becomes
depends on which logical operation is performed.

Let’s take the logical operation OR as an example. OR performs the
following operations on each digit (0 or 1) of the two binary color
codes.

result of XOR Y
0

- | s |O|O| X
- Ol = |0 <

1
1
1

In the above example, the OR operation is performed on each pair of
digits in the medium red color code 1000 and the medium green color
code 0010 as shown below.

medium red........ 1000
medium green...0010

The result of the OR operation is 1010, which, as shown in the above
color code table, is dark yeliow. Consequently, when a medium red
figure is copied on a medium green figure with the logical operation
OR, the color of the copied figure will be dark yellow.

copied

with

OR
medium red medium green medium medium 45,k yellow
(1000) (0010) red green (1010)

138

The results obtained by using logical operations other than OR are
shown below.

® PSET—the color copied remains the same, regardless of the color
of the destination area.

PSET

medium red medium green medium medium medium
red green red

® PRESET-—changes each digit of the color code of the color copied
to the opposite number—0 to 1, and 1 to 0— with no reference to
the color of the destination area. For instance, if medium red (1000)
is copied with PRESET, the color will become sky blue (0111).

medium green

PRESET

medium
green

medium red mgdium sky blue (0111)
(1000) re

139

® XOR—the following operations are performed on the color code of
the color copied and the color code of the destination area color.

result of X XOR Y

|
“T=[=T=[x

Y
0
1
0
1

O|l=s|=|O

For example, when the XOR operation is performed on medium red
(1000) and medium green (0010), the result is dark yellow (1010).

1000
0010

1010

XOR

» bd

—

medium red (1000) medium medium red medium dark yellow
green (0010) green {(1010)

140

® AND—performs the following operations on the color code of the
copied color and the color code of the destination area.

Y | result of X AND Y

s lalo|lo]| x

0
0
0
1

-1 O| =] 0O

When the AND operation is performed on medium red (1000) and
medium green (0010), the result is the transparent color (0000).

1000
0010

0000

AND
(r = 4
medil}m red medium\green medium rJd trans;(arent meéium
(1000) (0010) (0000) green

®TPSET, TPRESET, TOR, TXOR, TAND—these operations are the
same as PSET, PRESET, OR XOR, and AND, except that when a
color is transparent, if T is prefixed it will remain transparent after
being copied, regardless of the color of the destination area.

Using Logical Operations with the COPY Statement

The following COPY statement formats are used when logical opera-
tions are performed.

141

@ From Screen to Screen
COPY (X1,Y1)—(X2,Y2) [, source page] TO (X3,Y3) [, destination
page] [, logical operation]

Example: COPY (10,10)—(100,100), 0 TO (30,30), 1, XOR

® From Memory (Array Variable) to Screen
COPY array variable name [, orientation] TO (X3,Y3)
[, destination page] [, logical operation]

Example: COPY P, 1 TO (30,30), 0, TAND

@ From Floppydisk (File) to Screen
COPY “[drive name] file name [. type name]” [, orientation] TO
(X3,Y3) [, destination page] [, logical operation]

Example: COPY “TRIANGLE .PIC”, 2 TO (30,30), 1, PRESET

When the logical operation is omitted, it is the same as specifying
PSET.

Now let’s make a program which uses a logical operation in copying
a drawing from screen to screen.

18 SCREEN S

28 SET PAGE 8,8:CLS

3@ READ C1,C2,C3,C4

48 LINE (38,38)-(1@0,188)>,C1,BF
s@ LINE (45,45)-(85,85),C2,BF

48 LINE (126,185)-¢188,218),C3,BF
78 LINE ¢(189,165)-(256,218),C4,BF
8¢ COPY (38,38)-¢(100,1008),8 TO (153,124)
,@,0R

$8 GOTO 98

166 DATA §,3,18,2

This program makes the following drawing.

142

145,45)
(30,301 /

|_-(85,85)

126,105) —(189,105)

(100,100)

(188,210) (250.210)

The colors are determined by the values assigned to the C1, C2, C3,
and C4 variables.

c2
C3 (o7}

Then the COPY statement in line 80 copies the drawing. During the
copying, logical operations are performed on the parts of the drawing
that are superimposed.

143

[

"/

\ N

/

\

£
C1,C3 OR

C2, C3 OR

This program shows the results of logical op
four different colors. The colors assigned to

51, C4 OR

C2, C4 OR

erations which combine
the variables in the pro-

gram are: C1, medium red; C2, light green; C3, dark yellow; and C4

medium green (the DATA statement in line
operation performed (line 80).

100). OR is the logical

Running the program produces the following results:

|_-medium red

|

/ ' /dark

yellow

light/green

1 —medium

green

L

\
dark yellow

dark yellow light yellow jight green

144

THE SCREEN STATEMENT

®SCREEN Statement Settings

e Key Click On/Off

®The Cassette Tape Interface Baud Rate
e Printer Type

®|nterlace

THE SCREEN STATEMENT

The SCREEN statement is used to make a number of other settings,
in addition to the SCREEN mode.

SCREEN [mode], [sprite size], [key click switch], [baud rate),
[printer typel, [interlace]

145

KEY CLICK SWITCH, BAUD RATE, PRINTER TYPE

Key Click On/Otf

The third parameter (key click switch) of the SCREEN statement is
used to specify whether a sound will be made when the keyboard
keys are pressed. There is no sound when the key click switch is set
at 0. When it is set at any other number (1—255), a click sound is
produced when a key is pressed.

SCREEM , ,8
SCREEN ,,1

key click sound off
key click sound on

The Cassette Baud Rate Setting

The baud rate is the number of bits per second that data is transmit-
ted. A baud rate of 1200 means that 1200 bits of data are transmitted
each second. With a baud rate of 2400, 2400 bits of data are transmit-
ted per second.

The fourth parameter of the SCREEN statement specifies the baud
rate for data transmission to and from the cassette tape recorder.
Baud rate 1 is 1200 bauds, and baud rate 2 is 2400 bauds. The initial
default setting is 1 (1200 baud).

SCREEN ,,, 1 —— 1200 bauds
SCREEMN ,, ,2—— 2400 bauds

If the baud rate is set at 2400 by the SCREEN ,,,2 statement before
saving a program on cassette tape, the 2400 baud rate must be set
with the SCREEN ,,,2 before loading the program back from the tape.

Printer Type

The fifth parameter of the SCREEN statement makes the setting to
conform with the type of printer used. 0 is the setting for MSX-type
printers. A setting other than 0 (1—255) is made for other types of
printers. The initial default setting is 0 (MSX-type printer).
MSX-type printers are especially designed for MSX computers, and
have a font of the special MSX graphic characters.

If a printer other than an MSX-type printer is used, and SCREEN 1
is executed, the special MSX graphic characters will be printed as
blank spaces.

146

THE INTERLACE MODE

Interlace Scanning

MSX computers normally perform non-interlace scanning. Scanning
can be changed to interlace scanning by the sixth parameter (inter-
lace mode) of the SCREEN statement.

When interlace scanning is used, the locations of the first field scan
and the second field scan are different. This provides a more detailed
display. A monitor TV with long afterglow properties is necessary if
interlace scanning is used. Flicker will result if a normal TV or moni-
tor is used.

the first field and) .
_the second field are ~ irst field
e “" in the same location. . _second field

Non-interlace Scanning Interlace Scanning
h M ——— e B e B e o
- - "]]

—_—— &

- > 8 Y
e — @
- - B —
e &

L - i -
& ———

& &

Non-Interlace Scanning Interlace Scanning

147

The Even/Odd Alternating Pages Display Mode

The SCREEN statement interlace parameter can be used to select the
even/odd alternating pages display mode. To select this mode, first
the display page must be set as an odd page (1 or 3) with the PAGE
statement. Then when the even/odd alternating pages display mode
is specified with the SCREEN statement, the display page and the
page numbered one number less than the display page will be dis-
played alternately at a rapid speed.

The following table shows the interlace mode settings.

Interlace mode Specified mode

normal (non-interlace, no alternating pages)

interlace mode

even/odd alternating pages display mode

WIN|=O

even/odd alternating pages, interlace mode

The following program draws a yellow circle on page 0 and a white
oval on page 1 in the SCREEN 5 mode. First page 0 and page 1 are
displayed alternately by changing the display page with the SET
PAGE statement, and the interval between page changes is progres-
sively shortened. Then an interesting effect is achieved by changing
to the even/odd alternating pages display mode at the end of the
program.

148

1@
28
3e
40
58
4@
78
2a
28
iga
118
12a
138
146
158
148
178
igea
178
208
218
220

COLOR 15,4,4:SCREEN 5,,,,,0
SET PAGE 8,1:CLS
XC=128 : YC=108
‘¥%% draw yellow circle %x3¥
SET PAGE 8,6
CIRCLE (XC,¥(C>,45,16
PAINT (XC,¥C),1@
FOR T=8 TO 288@:NEXT T
‘%%% draw white oval *x=x
SET PAGE 1,1
CIRCLE (XC,YLC),%?8,15,,,.7
PAINT (XC,YC)»,15
FOR T=8 T0 Z2008:NEXT T
‘%% change pages *%¥
J=12080:DP=08:AP=1
SET PAGE DP,DP:SWAF DP,AP
FOR T=8 TO J:NEXT T
J=J%,8:IF J>1 THEN (é&@
‘x¥%% evensodd mode *%x*
SET PaGE 1,1
SCREEN ,,,4.2
GOTO ZZ@

149

Chapter 6 Sprite Patterns

1561

SPRITE PATTERN DEFINITION
AND USE

® Sprite Patterns

e Sprite Pattern Definition—SPRITES$

e Displaying a Sprite Pattern—PUT SPRITE
® Animating Sprite Patterns

SPRITE PATTERNS

A sprite is a freely defined pattern composed of 8 x8 dots or 16 x 16
dots which can be moved about on the screen. In MSX2-BASIC, sprite
patterns can be displayed and moved about on 32 different sprite
planes.

The Screen Mode and Sprite Patterns

Sprite patterns can be used in SCREEN 1 through 8, or all modes ex-
cept SCREEN 0. A sprite pattern used in the SCREEN 4 through 8
modes has several functions which are not available in the SCREEN
1 through 3 modes.

152

Type of Sprite Patterns

One sprite pattern is made up of either 8 x 8 dots or 16 x 16 dots. Each
can be displayed in either a standard size or a magnified size. The
magnified size is twice the size, both vertically and horizontally, of
the standard size.

8 x 8 dot 16 x 16 dot
standard standard

16 x 16 dot TT1 T
magnified

T T

]
|

Specifying Sprite Size—SCREEN Statement
The second parameter of the SCREEN statement selects the sprite
pattern size.

153

SCREEN Mode, Sprite Size

Sprite size | Size selected

0 8 x 8 dot, standard

1 8 x 8 dot, magnified

2 16 x 16 dot, standard
3 16 x 16 dot, magnified

For example,

SCREEM 2,3
would specify the SCREEN 2 mode and select the 16 x 16 dot magni-
fied sprite size. Once the sprite size is selected with the SCREEN

statement, the sprites in all sprite planes will be displayed in that
size.

154

SPRITE PATTERN DEFINITION SPRITES$ variable

The 8 x 8 Dot Sprite Pattern

To define an 8 x8 dot pattern, the pattern is first separated into 8
horizontal lines. For instance, an arrow pattern is defined as shown
in the following figure.

Each of the 8 horizontal lines is divided into a small pattern of 8 dots.

LITTITTT
CLITTITT]
(LT TTTT1T]
LITTTITT]
LLITTITT]
LIITTTTTT]
LI T LT TTT]

Next a 1 is assigned to a marked dot, and a 0 to an unmarked dot to
produce a binary number. For example, the top line would be
00011000, and the second line would be 00111100.

155

[T T MM TT] = [ofofoft[1]o]o]o]

[T [] = [ofo[1[1]1[1[o][0]

The binary numbers are then converted to hexadecimal or decimal.
The top line becomes: 00011000 (binary)= 18 (hexadecimal) or 24
(decimal). The second line becomes 00111100 (binary)=3C (hex-
adecimal) or 60 (decimal).

The following table is used to convert binary numbers to hex-
adecimal.

Pattern Hexadecimal Pattern Hexadecimal

LHCEE
L L

First the eight dot pattern is divided into 4 dots on the left side of the
pattern and the 4 dots on the right side. Then the above table is used
to determine the hexadecimal equivalents.

For the [| pattern, the left 4 dots are [| | 1l
which would be hexadecimal 1 in the above table, and the right 4 dots
are Il T 11, which is 8. Therefore the hexadecimal equivalent
would be 18.

The final step is to obtain the character for which the hexadecimal
{or decimal) is the character code using the CHR$ function, as shown
below.

156

[[[BEW [[]— 18 —CHR$(&H18)

[T FENNRN | | 3C— CHR$(&H3C)
%’E_]—> 7E — CHR$(&HTE)

- — SRR~ FF— CHR$(&HFF)

———— [T B T 118 —=CHR$(&H18)

s:m—ﬂs —CHR$(&H18)
[T ESN T3 18 — CHR$(&H18)
[[TEB [[1 18 — CHR$(&H18)

The character data obtained by the 8 x 8 dot sprite pattern is added
sequentially from the top, and is assigned to the SPRITE$ variable to
define the sprite pattern. The arrow pattern in the above example
would be defined as follows:

SFRITE#(1 >=CHRE(&HI 8 + CHRE(&EHIC» +CHRE(&H
FEY+CHR$(&HFF 3+ CHR$(&H1 3+ CHR:E (&H1 2> +CHR
FL&HIS)+CHRE(AHI S

The number of the defined sprite pattern is 1, as indicated by the
number 1 inside the parentheses of SPRITE$ (1).
(The use of functions is explained in Chapter 7).

]SPRITE$ (sprite number) = character string]

Also, if there is a character that can be obtained with the CHR$ func-
tion, it can be used directly in the character string. In the above exam-
ple, since CHR$ (&H3C) is ““<”, and CHRS$ (&H7E) is “~ ", these two
characters can be used directly as follows:

SPRITE$#C(1)=CHR$E(&HIG)+" {"+" ="+ CHRE (&HFF
+CHR${&HI 2+ CHR$(&HI 30+ CHRE(AHI8) +CHR® (&
H12)

(For the conversion to characters, refer to the character code table in
the BASIC Programming Reference Manual)

157

The 16 x 16 Dot Sprite Pattern

The 16 x 16 dot sprite pattern is defined in a similar way. However, a
16 x 16 dot sprite pattern is considered to be made up of four
separate 8 x 8 dot sprite patterns. These four patterns are defined in
the following sequence.

| | 8
AS [cs 8 1 3
| 16
1 1 2 4
BS D$ 16
|]

s

AE=CHR$ (&HE) + CHR$ (&HB) + CHRE(&H1 8) +CHRE (&
H3C)» +CHR$(&H3C) +CHR$ (&H18) + CHR$(&H4) +CHR
F&HZE)
BE=CHR¥(&HI1A) +CHR$ (&H&) + CHR$ (&HF) + CHRE (&
HF > +CHR#% (&H7) +CHR$ { &H7 » + CHR® (&H3) + CHR$ (&
H3»
C$=CHR*{&HC)» +CHR$(&HI1 E) + CHR® (&H23) + CHR%(
33)+CHR$(&HIE)» +CHR$(&H2C Y +CHR$ (&H26) +CHR
F(&HSC)

D¥=CHR# (&HS8) +CHR$ (&HA®) + CHRE (&HFB) + CHR#
{&HF@> +CHR$ (&HE®@) + CHR$ (&HEB > + CHR$ (&HCa8) +
CHR#$ (&HC@>

SPRITE#(2)=A%+B$+C$+D%

The Number of Sprite Patterns That Can Be Defined

A maximum of 256 8 x 8 dot sprite patterns can be defined, using the
numbers from 0 to 255, and a maximum of 64 16 x 16 dot sprite pat-
terns can be defined, using the numbers from 0 to 63.

158

SPRITE PATTERN DISPLAY {

The PUT SPRITE statement is used to display a defined sprite pattern
on a sprite plane.

PUT SPRITE sprite plane number, [(X,Y)], [color], [sprite
pattern number]

The PUT SPRITE statement displays the sprite pattern with the speci-
fied number on the specified sprite plane in the specified color.
To display the sprite pattern defined above (pattern no. 1) on sprite
plane 0 in medium green (color code 2) at the (120,80) location, you
would execute:

PUT SPRITE @,(120,80),2,1

The specified display location corresponds to the dot at the top left
of the sprite pattern frame. The X, Y coordinates are specified in a
coordinate system on the graphic screen which takes (0,- 1) as the
origin (0,0).

sprite plane 0

/

medium
green

sprite pattern 1

159

— Sprite Pattern Display Rules (for SCREEN 1, 2, 3 modes) —

e Only one sprite pattern can be displayed on one sprite plane.

eWhen sprite patterns overiap on different sprite planes, the
sprite pattern on the sprite plane at the back (the large numbered
plane) is hidden by the sprite pattern in front.

®When 5 or more sprite patterns are lined up on the same horizon-
tal line, only the 4 sprite patterns with the higher priority (the
ones on the sprite planes with the lowest numbers) will be dis-
played.

®When the display location is omitted, the location specified by
the last graphic command will be taken as the specified lo-
cation.

®When the color code is omitted, the foreground color is taken as
the specified color.

®When the sprite pattern number is omitted, the sprite plane num-
ber is taken as the specified number.

160

ANIMATING SPRITE PATTERNS

A sprite pattern is animated by repeatedly executing the PUT SPRITE
statement while changing the display location specified in the state-
ment. Each time the PUT SPRITE statement is executed, the previous
sprite in the same sprite plane disappears, so it is not necessary to
erase the previous sprite each time in a program. Also, the display lo-
cation is changed in units of 1 dot, so the movement of the sprite pat-
tern is smooth.

The following program moves a UFO-shaped pattern diagonally
around the screen.

19 SCREEN 2,8

28 SPRITE$(@)=CHR$(&HIC) + CHRE(&H7E) +CHRE
(&HB1) +CHRS (&HB1)+ CHRS (&HFF) + CHR$ (&HTE) +
CHR$ {&HZ4) +CHR$ (&H42)

2@ COLOR ,1,1:CLS

48 X=120:Y=50:1Ux=1:1y=1

S@ PUT SPRITE @,(X,Y),5,0

A8 X=X+UX

78 IF X>248 OR X<8 THEN UX=-UX

2@ Y=T+UY

8 IF Y>188 OR Y<@ THEN Uy=-Uy

tge GOTO S

The SCREEN mode is 2, and the sprite size is 8 x 8 dot standard (line
10).
The following illustration shows the sprite pattern defined in line 20.

— 3C
—7E
— 81
— 81

— FF
—7E
— 24
— 42

161

This sprite pattern is displayed by the PUT SPRITE statement in line
50. The initial values of (X,Y), which show the display location, are set
at (120,50). Then the (X,Y) values are changed in lines 60 to 80, and the
program returns to line 50. This causes the sprite pattern to move on
the screen.

The following program shows what happens when two sprite pat-
terns overlap.

18 SCREEN 2,1
28 SPRITE$(8)=CHR$(&H3C)+CHRS$(&H7E) +CHRS
(&HS1) +CHR$ (&HB1) + CHR$ (&HFF) + CHR$ (&H7E) +
CHR$ (&H24) + CHR$ (&H42)

30 COLOR ,1,1:CLS

48 FOR X=6 TO 117

S8 PUT SPRITE 8,(X,88),4,0

4@ PUT SPRITE 1,(246-X,84),8,8

70 NEXT X

86 GOTO 8@

The 8x 8 dot magnified sprite size is used so that the overlap can be
clearly seen. The sprite pattern is the same as the pattern used in the
previous program. This sprite pattern is displayed on sprite planes 0
and 1 by the two PUT SPRITE statements in lines 50 and 60. The pat-
tern on sprite plane 0 is dark blue and moves from left to right. The
pattern on sprite plane 1 is medium red and moves from right to left.
When the two sprite patterns overlap, the sprite on sprite plane 0
(dark biue) appears on top of the other sprite.

the sprite on sprite
plane 0 (dark blue)

the sprite on sprite
plane 1 (medium red)

162

USING ENHANCED SPRITE
FUNCTIONS

®The Enhanced Sprite Functions

®Changing the Color of a Sprite—COLOR SPRITE

® Specifying the Color for Each Line of a Sprite—COLOR
SPRITES

® Sprite Definition Technique

THE ENHANCED SPRITE FUNCTIONS

Sprites with enhanced functions can be used in the SCREEN 4
through SCREEN 8 modes.

The following table shows the enhancement of the sprite functions
in the SCREEN 4 through 8 modes, in comparison to the SCREEN 1
through 3 modes.

Function SCREEN 1—3 SCREEN 4—8

Number of sprites | A maximum of 4 A maximum of 8
displayed on one
horizontal line

Sprite color 1 color for 1 sprite A maximum of 8 (8 x8 dot)
colors, or 16 (16 x 16 dot)
colors for 1 sprite

To change the Specified with the Specified with the PUT
sprite color PUT SPRITE statement | SPRITE statement or the
COLOR SPRITE statement

163

CHANGING THE COLOR OF A SPRITE
COLOR SPRITE

The color of a sprite is specified with the PUT SPRITE statement, but
in the SCREEN 4 to 8 modes the color of a sprite after it has been dis-
played can be changed with the COLOR SPRITE statement.

[COLOR SPRITE (sprite plane number) = palette number|

The COLOR SPRITE statement changes the color of the sprite pattern
in a specified plane to the specified color.

For example, to change the color of the sprite pattern displayed in
sprite plane 2 to medium red (color code 8), you would execute

COLOR SPRITE.Z2)=8

164

When the following program is executed, 6 UFOs of different colors
land, and then their colors are changed. The last color they become
is transparent, and then the ianding routine is repeated.

ie

CHR

268
z27a
zZca
z27e
zea
318
zze
336

SCREEN 9,1

% {&HZ3) +CHREC&HA2)
COLOR ,1,1:CLS

20 SPRITE$(A)=CHR&{&HIC)+CHRE(&H7E) +CHRS
(&HB1 » + CHRS (&HE1 3+ CHRE (& HFF » + CHRE (&H7E) +

Ki=@:yi={18
FOR L=1 TO 14
READ X2,YZ
LINE ©X1,Y1)=¢X2,Y2),2
XI=XZ:1Y1=YZ
NEXT L

PAINT €1,119),3

| draws the
background

P=@:%=5:YE=10{:C=3:GOSUB 2568 |
P=1:X=45:YE=122:C=4:GOSUB 254
P=2:X=83:YE=87:C=5:G0OSUE 258
P=2:X=132:1YE=143:C=&:GOSUE ZT6
P=4:X=168:YE=127:C=7:G0SUB 25¢
P=SiX=218:YE=26: (=R GOSUR 2%@__|

FOR S=1 TO 1@
FOR SP=@ TO S

' of the sprites

SC=S5+3:1F 5=18 THEN SC=@
COLOR SPRITE (SPy=SC
MEXT SP

FOR T=86 TO 3@@:NEXT T
MEXT S

GOTO 11@

FOR v=-8 TO YE
PUT SPRITE P,4X,¥35,C,8
NEXT ¥
RETURN

" subroutine

DATA 24,119,48,13%,87,13%
DaTA 7%,184,183,184,128,146@
DaTA 154,148,151,144,192,144
DATA Z66,113,252,113,252,212
DATA 8,212,0,118

background
[drawing data

—moves the sprites

changes the color

sprite movement

The COLOR SPRITE statement in line 200 changes the color of the
sprites. The sprite plane numbers are assigned to the variable SP.
The color code {variable SC) changes from 3 to 13, but with the final
repetition of the loop (S = 10), the color code becomes 0 (transparent).

165

SPECIFYING THE COLOR FOR EACH LINE OF A
SPRITE COLOR SPRITE$

An 8x 8 dot sprite is composed of eight horizontal lines, while a
16 x 16 dot sprite has sixteen horizontal lines. In SCREEN modes 4 to
8, it is possible to specify the color of each of these lines separately.

[COLOR SPRITES (sprite plane number) = character string]

The COLOR SPRITES statement uses a character string to specify the
color of each line of a sprite pattern on the specified sprite plane.
The character string in the COLOR SPRITE$ statement is composed
of

CHRS$ (color code)
character strings connected by the + sign. The first CHR$ (color

code) specifies the color for the first line of the sprite, the second
CHRS$ (color code) the color of the second line, and so on.

—— line 1 color code ... 1

—— line 2 color code ...

L 4.4] —— line 3 color code ...

—— line 4 color code ...
—— line 5 color code ...
— line 6 color code ...

—— line 7 color code ...

0w N O s W DN

—— line 8 color code ...

The following COLOR SPRITE$ statement will specify the colors
shown in the above illustration for a sprite pattern on sprite plane 0.

COLOR SPRITE${@8)=CHR£{1)+CHR$(ZI+CHR$(I
+CHRB (4 +CHRE(SH+CHR$ (A +CHREC I+ CHRE (3D

If only seven or less CHR$ (color code) character strings are speci-
fied, the color of the lines not specified will not be changed.
In the statement

166

COLOR SPRITE(@)=CHR$(1)+CHR$(2)

the color of line 1 will become color code 1 and the color of line 2 will
become color code 2, but the color of lines 3 and below will not be
changed. ‘

The following program is a revision of the previous program to dis-
play UFOs which have a medium red and dark blue striped pattern.

16 SCREEN 5,1

20 SPRITE$(@)=CHR$(&H3C) +CHR$ (&H7E) +CHRS
(&HB1) +CHR$ ¢ &HE1) + CHRE (&HFF) + CHR$ (&H7E) +
CHR$ { &H24) + CHR% (&:H42)

36 COLOR ,f,1:CLS

49 X1=8:Y1=118

S FOR L=1 TO 14

68 READ X2,Yv2

78 LINE (X1,Y131-(X2,Y2),%

g0 X1=X2:Y1=Y2

98 NEXT L

188 PAINT <1,119),3

118 P=@:X=5:YE=181:C=3:G0SUR 25@

120 P=1:X=45:YE=122:C=4:605UB 25@

138 P=2:X=83:YE=87:0=5:G0SUB 256

149 P=3:X=133:YE=143:0=4:G0SUB 258

156 P=4:%=148:YE=127:C=7:GOSUE 256

148 P=S:X=218:1YE=96:C=8:G0SUB 258

178 FOR SP=@& TO S
180 COLOR SPRITE$(SP)=CHR${S)+CHRS(4) +CH
R$(8) +CHRE (4) +CHR$ (8 +CHR$ (43 +CHRS(8) +CH
R$(4)

198 NEXT SP
280 GOTO 2080
258 FOR Y=-8 TO YE

2648 PUT SPRITE P,{(X,Y),C,@

278 NEXT Y

238 RETURN

298 DATA 26,118,40,139,47,13%
388 DATA 79,104,163,104,128,148
318 DATA 154,168,161,144,192,144
‘320 DATA 200,113,252,113,252,212
338 DATA @,212,8,118 ‘

- changed

167

Line 180 in the part of the program that was changed specifies the
red and blue striped pattern for the sprite.

Character String Data

Data that can be used with the CHR$ function in the COLOR SPRITE$
statement is not limited only to color codes. When the data is dis-
played in binary numbers, each bit has the following function:

MSB LSB

B7 B6 B5 B4 B3 B2 B1 BO

v
Color code.

Sprite overlap is ignored when set at 1.

Sprite priority and overlap is ignored when set at 1.
When sprites overlap, the OR value of the color codes
is taken, and the result becomes the color code for
displaying the color.

The line is moved 32 dots to the left when set at 1.

Sprite overlap is explained in Chapter 8.

When B7 is set at 1, and the color code (B3—B0) is set at 0010 (=2,
medium green), the data becomes 10000010. Since 10000010 is &H82
in hexadecimal, when

COLOR SPRITE$#:{@)=CHR#%{&HE2Z)
is executed, the first line of the sprite pattern on sprite plane 0 be-
comes medium green and the line is moved 32 dots to the left.

When the following program is executed, the hatch of the UFO opens,
and a spaceman appears.

168

18 SCREEN 5,1

28 SPRITE#(@)=CHR$ (&HIC) +CHRF (&HTE) +CHRE
(&HS1 3 +CHR$ (&HB1 Y+ CHR$ (&HFF) +CHRE C&HFE) +
CHRE(AHZA) + CHRE (&HE 2D

38 SPRITE$(1)=CHR${&HS8)+CHR$(&HS2) +CHR®
(&H7E) +CHR$(&H1AY +CHRE(&HI) +CHRECAEHLI SO +
CHR$ (&HB » + CHR$ (&HB >

48 CLE

58 PUT SPRITE 8,(128,1062,1,8

48 FOR T=8 TOG 18@08:NEXT T

78 COLOR SPRITE$(B)=CHR$%(&H21)+CHR$ (&HE!
b

88 FOR T=8 TO 18@68:NEXT T

28 PUT SPRITE 1,{126,743,14,1

14 GOTO 1ea@

Line 70 moves the first and second lines of the sprite pattern (pattern
no. 0) displayed on sprite plane 0 32 dots to the left.

32 dots

169

SPRITE DEFINITION TECHNIQUE

The basic method of defining a sprite pattern is to use the CHRS func-
tion to assign the pattern data to the SPRITES variable. In the follow-
ing program the sprite pattern data is written in DATA statements
and assigned to the SPRITES$ variable by the READ statement. The
sprite pattern data is written in the DATA statements using periods
() and the capital letter O in order to give a visual presentation of the
shape of the pattern.

1@ SCREEN 5,1

268 SP$="":5C$=""

3 FOR SI=8 TO 7

46 READ SG%,SC:SP=6

58 FOR SJ=1 TO 8

4B SP=SP%2Z-(MID$(SG$,SJ,1>="0")
78 NEXT SJ

S8 SP$=SP$+CHRE(SP) : SC$=5C$+CHRE(SC)
9@ NEXT SI

188 SPRITE$(8)=SP$

119 COLOR SPRITE$(8)=5C%

126 PUT SPRITE @,{128,7@),,@
138 GOTO 138

148 ¢

158 DATA ...0....,15

168 DATA ..0.0000,16

178 DATA ...00...,15

16 DATA00..,15

198 DATA ..00000.,15

za6 DATA 00000000,15

218 DATA 00000000,15

226 DATA .000000.,15

170

In the DATA statement in lines 150 to 220, the sprite pattern to be de-
fined is expressed with periods and O. A period indicates an un-
marked dot, and an O indicates a marked dot. The number at the end
of each DATA statement is the color code which specifies the color
of that line of the sprite pattern. Lines 20 through 110 assign the data
in the DATA statements to the SPRITE$ variable and specify the
colors with the COLOR SPRITE$ statement. in line 60 a function is
used (explained in Chapter 7) to change the data to hexadecimal.
Then lines 100 and 110 define the pattern and the colors. The follow-
ing pattern is defined. '

— white (15)
— dark yellow (10)
— white (15)
— white (15)
— white (15)
— white (15)
— white (15)
— white (15)

The method used to define the sprite pattern in this program might
seem to involve a somewhat advanced programming technique, but
it is simple if you think of it as a formula for defining the pattern.
Using this method makes the program a littie longer, but it has the
advantage of giving a visual representation of the sprite in the pro-
gram list so that you can check it, and you do not have to convert
each piece of data to hexadecimal when you are writing the program.
Also, it is very easy to revise the sprite pattern simply by changing
a period into an O or an O into a period.

[Sample Program |

The following program uses the DATA statement technique to define
sprites. This program uses two statements (DEFINT and DEFFN)
which are not explained in this book. For an explanation of these
statements you can refer to the Programming Reference Manual.

The program displays a mother duck and her baby ducks swimming
on a pond.

171

18 SCREEMN 9,1

28 DEFINT A-ZJ:xX=8:Y=8:2=6

38 DEFFNX=(Z+248)MOD 258

48 7 ¥%% cprite definition %=
S8 RESTORE 388:5M=8:G0OSUR 288
&8 RESTORE 47@:5N=1:G0OSUE 244
78 RESTORE 478:5N=2:60SUB 2460
2@ RESTORE 478:SMN=2:G0OSUEBE 248
78 RESTORE 478 :5N=4:G05UB 248
1@ RESTORE 476:&5N=5:GOSUB Z&@
118 7 *%% draw pond %x%

126 LINE (@8,11&8>-(235,11&2,7
138 PAINT ta,118:,7

148 7 *#¥ move sprite x:x»

138 Y=104d

148 FOR X=8 TO 255

1786 Z=X «PUT SPRITE 8,(Z,¥),,@
186 Z=FNX:PUT SPRITE 1,¢2,72,,1
196 Z=FNx:PUT SPRITE 2,(2,Y),,2
286 Z=FNx:PUT SPRITE 32,{(2,¥),,3
218 Z=FNX:PUT SPRITE 4,{2,¥2,,4
226 Z=FNx:PUT SFRITE 5,¢(2,¥2,,5
238 NEXT X

248 GOTO 1é&8

258 7 %%% sprite definition subroutine
5%

258 SPg="":3C$=""

278 FOR sI=86 TO 7

288 READ 50%,5C:5P=8

298 FOR SJ=1 TO 8

268 SP=SP%2-{MID${S0%,5J,1="0")

218 NEXT &J

328 SP#=5P$+CHR$(SP> :SCs=5CH+CHR${ S0
338 NEXT &1

248 SPRITE®(SHN)=5P%

258 COLOR SPRITE#(EN)=SC$

348 RETURN

172

03 0 L
))
=D

448
41@
428
426
448
458
458
47
438
4%@
S56@
S1a
SZ28
338
S48

*%% cprjte data =%
DATA ..v.0....,15
DATA ..0.0000,18
DATA ...00...,15
DATA00..,15
DATA L. 00000, ,15
DATa oGooocon,1s
DaTa 00000000, 15
DaTa 000000, ,15

#%#% =prite data ===
DaTa oL, v 8@
DATA o uu.. 8
DATHA L., 18

DATA ...0.000,3
pATS00..,1@
DATA .00..00.,1@
DATA . 000000, , 18
DATA ..0000..,18

173

Chapter 7
Using Functions

175

NUMERIC TYPE FUNCTIONS

®What are Functions?
® Various Numeric Type Functions
@®The Random Function

WHAT ARE FUNCTIONS?

The BASIC language is divided into commands and functions. Up to
now this book has focused primarily on explaining the use of com-
mands. We will now concentrate on functions.

A BASIC function can be thought of as a box that processes a value
and gives the result.

For example, suppose we had a function which doubled a number.
(Actually, such a function is not included in MSX2-BASIC). If the num-
ber 10 were put into this function, it would come out as 20. If 100 were
input, it would become 200. 450 would become 900 and so forth. Any
number put into the function would be doubled.

the “doubling
function”

If 10 is put in

the “doubling
function”

20 comes out

176

NUMERIC TYPE FUNCTIONS

In MSX2-BASIC, functions for which the input is a number and the
output is a number are called numeric type functions. There are a to-
tal of 17 numeric type functions in MSX2-BASIC.

ABS(X) CDBL(X) CINT(X) CSNG(X)
FIX(X) INT(X) SQR(X) SGN(X)
ATN(X) COS(X) SIN(X) TAN(X)
LOG(X) EXP(X) RND(X)

ERR ERL

177

THE SQUARE ROOT FUNCTION SQR(X)

Let’'s use the SQR(X) function as an example to see how functions
work. This function gives the square root of the number X. in talking
about functions, instead of using the word “gives,” the word
“returns’ is normally used. Rephrased in this way, we can say the
SQR(X) function returns the square root of X.

For instance, if X is 3, then the square root is 1.7320508... . If X is 5
then the square root would be 2.2360679... .

'\2@)\

?3\

When 3 is put into the SQR(X) function %

How to use Functions
When 3 is put into the SQR(X) function, 1.7320508... is returned. When
a value is entered into a function, it is entered in place of X.

SR

Now 3 has been entered into the SQR(X) function. You can also as-
sign 3 to a variable, and enter the variable into the function instead
of the number.

If you first execute

with
SEROAD
the number 3 will be entered in the SQR(X) function.
In either case, whether the number is entered directly or a variable is
used, the SQR(X) function now has the value 1.7320508... . Any time

you call this function in the program, it will return the value
1.7320508... .

178

The procedure for returning the value of a function in a program is as
follows. Since functions themselves are not commands, they cannot
be used by themselves to control the computer. They must be com-
bined with some command, in order to have the value returned. The
LET statement and the PRINT statement can be used for this
purpose.

R=5QR{ 32

This LET statement assigns the value of SQR(3), that is, 1.7320508...
to the numeric variable R. Let’s check to make sure this happens.

R=SGR(3

Ok

FRINT R
1.73286508875488

Cik

The value of the square root of 3, to 13 decimal places (a total of 14
digits), has been assigned to the variable R.

In MSX2-BASIC all calculation results normally have a precision of 14
digits. But 6 digit precision can also be used. 14 digit precision is
called double precision. 6 digit precision is called single precision.

The value -of a function can be directly displayed using only the .
PRINT statement.

PRINT SQRIS)
2.2368479774958
oK

Functions can also be used in an IF—THEN conditional expression.

IF SQR{A2 =18 THEN EMD

The value of SQR(A) changes according to the value of A. In this IF—
THEN statement, if the value of SQR(A) becomes 10 or greater, the
program is ended.

As shown above, a function processes an entered value following
fixed rules according to what the function is designed to do, and
returns the result. The returned value is used in combination with
such BASIC commands as the LET statement, the PRINT statement,
and the IF-THEN statement.

179

TRIGONOMETRIC FUNCTIONS SIN(X)

The trigonometric function SIN(X) is one of the numeric functions.
This function returns the sine of X. Other trigonometric functions
used in MSX2-BASIC are COS(X) (cosine), TAN(X) (tangent), and
ATN(X) (arc tangent).

Let’s use the SIN(X) function to make a program which draws a sine
curve.

18 SCREEMN Z:CLS

28 PI=32.14

38 LINE (8,%5)-(252,95)
48 FOR X=1@ TO 238
38 R=(x-18)=Pl 48
&8 S=SINCR)

8 LUY=5x326

28 Y=75-Uy

Y8 FSET ox,¥2

188 NEXT X

116 GOTO 116

When trigonometric functions such as SIN(X), COS(X), and TAN(X) are
used, the value of X is expressed in radian units (1 radian = =). In this
program, X has values from 10 to 230. These values are converted to
radian units in line 50. When the value of X is 90 it is 2 radians (2x),
when it is 50 it is 1 radian, and when it is 10 it is 0 radian. (X is the
X-coordinate on the screen when the sine curve is drawn.)

The sines of these radian values are assigned to S by the SIN(X) func-
tion in line 60. When the sine value is 1, the distance on the Y-axis
is 30 (line 70). In line 80 the sine curve Y-coordinate is determined tak-
ing 95 as the Y-coordinate reference point.

When this program is executed, the following sine curve is drawn on
the screen.

,, /\
(10,95)| \/ \

80

180

THE ABSOLUTE VALUE FUNCTION ABS(X)

The ABS(X) function returns the absolute value of X.
For example, when X is 100, ABS(X) returns the value of 100. When X
is — 100, ABS(X) also returns the value of 100.

FRINT ABS(-3.50
3.5

e

FRINT ABS(-18)+ABS(S)
18

oK

Let’s use the ABS(X) function in the previous sine curve program.

18 SCREEN 2:CLS

26 PI=3.14

28 LINE (8,95)~-(252,%%)
46 FOR X=1@6 TO 236
S8 R=(X-18)*PI./ 49
4B S=SIN(R)

78 VY=ABS{S#38)

88 Y=95-UY

P8 PSET (X,Y)

188 NEXT X

118 GOTO 118

The program has been revised so that the absolute value of SIN(R) * 30
is assigned to VY in line 70. As a result, the following figure is drawn
on the screen.

/NN N NN

181

THE RANDOM FUNCTION RND(X)

The RND{X) function returns a random number from 0 to less than 1
when X is a number greater than 0.
Execute

PRINT RND<13

several times in the direct mode.

PRINT RMNDOL12
LDP521743974423

Ok

PRINT RND(1D
L1@4&584286560158

0K

PRIMNT RNDCI

2
LTETRTASL V2823

Each time the RND(X) function is executed it returns a random num-
ber from 0 to less than 1. The RND{X) function can be used to produce
random numbers within a certain range.

182

RND(X) AND THE INTEGER FUNCTION INT(X)

Let’s consider how to use the RND(X) function to return random in-
tegers from 1 to 200. RND(1) itself will return only values from 0 to
less than 1 (from 0 to 0.99999999999999). If we multiply RND(1) by 200

RNDC 1) %288

the value will be a number from 0 to less than 200. But the value will
be a 14 digit number, including the digits after the decimal point. The
numeric type function INT(X) is used to change this value into an
integer.

INT(X) converts any value of X into an integer, and returns the integer.

PRINT INT (12.73)
12

Ok

PRINT INT ¢-7.9%)

-8

al

INT(X) returns the maximum integer value smaller than the value of
X. Consequently, if RND(1) % 200 is used as the value of INT(X),

IMT (RNDCL) %2680

random numbers from 0 to less than 200 (from 0 to 199) will be‘
returned. Therefore to return random numbers from 0 to 200 you only
need to use

INT C{RMNDCL y 2l 2688+1 00
or

INT (RND{L)%2681)

18 FOR L={ TO 1@

28 X=INT(RNDC1)=Z@1)
38 PRINT X;

448 MNEXT L

This program will generate and display 10 random numbers from 0 to
200, as shown below.

183

The standard format for generating a random number from 0 to N is:
X =INT(RND(1) % (N + 1))
With this format, a random number from 0 to N will be assigned to X.

The following format is used to generate a random number from M to
N.

X=INT(RND(1) * (N-M+ 1))+ M

For example, to generate a random number from 2 to 15, M would be
2 and N would be 15. Therefore, N-M+ 1=14.

X=INT(RND(1) % 14) + 2
Random Boxes

Let’s make a program which draws 50 squares of different sizes and
colors at different display locations.

18 SCREEN 5

78 COLOR ,1,1:CLS

386 FOR B=1 TO 5@

46 SX=INTIRNDIL»%2280+3

58 SY=INT(RMDI13%12383+5

&8 ST=INTI(RNDI1)%46)+26

78 C=INTORND{1:%14)+2

a8 LINE (8% ,SY)~-STEPIST,ST»,C,BF
78 NEXT B

1a@g GOTO 1aa

184

The variables SX, SY are the top left coordinates of each square, ST
is the length of one side, and C is the color code. Lines 40 through
70 assign random numbers to these variables with the RND(X) func-
tion. The value range for each of the random numbers is:

SX..5 to 224
SY..5 to 184
ST...20 to 59
C.2t015

Line 80 then draws squares of different sizes and colors at different
display locations.

Generating Different Random Numbers Each Time the Program is Ex-
ecuted

As can be seen if the above Random Boxes program is executed
several times, each time the squares are positioned in the same loca-
tions. Actually, the computer contains a random number list, and
each time a program that uses the RND(1) function is executed, the
RND(1) function returns the values of this list in the same sequence,
beginning with the first value on the list.

It is possible, however, to make a program which returns a different
part of the random number list each time it is executed, and in this
way obtain different results each time the program is executed.
One way to do this is to utilize the computer’s internal timer by ad-
ding the following lines at the beginning of the program.

22 FOR MN=8 TO TIME-INT(TIME/186)*]1080
24 X=RND13
26 MEXT N

185

The TIME variable used in line 22 is a special MSX-BASIC variable.
The current value of the internal timer is always assigned to it. The
internal timer value changes from 0 to 65535 in units of 1 approxi-
mately every 1/50 second. When the value reaches 65535 it returns to
0 and the process is repeated.

The value of the TIME variable when a program containing lines such
as those shown above is executed will be any number from 0 to
65535. However, line 22 contains two TIME variables, and since the
internal timer value is changing at a relative high speed, the values
assigned to each of the two TIME variables will be slightly different.
Forinstance, if an internal timer value of 42280 is assigned to the first
TIME variable, a value of about 42281 will be assigned to the second
TIME variable. Therefore, line 22 would be:

FOR N=0 TO 42280 —1INT(42281/100) * 100
or
FOR N=0TO 80

Or if the value assigned to the first TIME variable is 10900, and the
value assigned to the second TIME variable is 10901, then the state-
ment would becomes:

FOR N =0 TO 10900 —-INT(10901/100) * 100
or
FORN=0TOO

In this way, the final value of N in the FOR—NEXT statement when
the program is executed will change depending on the value of the
internal timer. When the final value of N is 80, X=RND(1) in line 24
will be executed 81 times by the FOR—NEXT loop. Consequently, the
next time the RND(1) function is used in the program it will return the
82nd value on the internal random number list in the computer.
Let’s add these three lines to the previous Random Box program.

186

18 SCREEN 5

28 COLOR ,1,1:CLS

22 FOR N=@ TO TIME-INT(TIME/106)%186
24 X=RND(1)

24 MEXT N

28 FOR B=1 TO S

48 SH=INT(RND(1)*228)+5

S@ SY=INTC(RNDC1) %1861 +5

S8 ST=INTCRMDC1) %485 +28

78 C=INT(RMDC1)*14)+2

28 LINE ¢SX,SY)~STEP{ST,ST»,C,BF
@ NEXT E

196 GOTO 166

There is a second method for obtaining different random numbers
each time a program is executed. This method utilizes the INKEY$
function which inputs data from the keyboard. To use the INKEY$
function the following three lines would be added to the program.

22 AF=INKEY$
24 X=RND(1)
Zé IF A%="" THEN ZZ

The INKEY$ function is explained in detail on page 200. By means of
the above three lines, X = RND(1) will continue to be executed until a
key on the keyboard is pressed.

Add these three lines to the Random Box program and check the
results.

187

STRING TYPE FUNCTIONS

®What Are String Type Functions?
® Processing Character Strings

WHAT ARE STRING TYPE FUNCTIONS?

A string type function processes a character string and returns the
character string result.

There are seven string type functions in MSX2-BASIC.
LEFT$(X$,N), MIDS(X$,M[,N]), RIGHTS$(X$,N)
SPACES$(N), STRINGS$(N,J) or STRINGS(N,X$),
TAB(N), SPC(N)

Several of these functions take a numeric value input and return a
character string, but they are classified as string type functions.

188

SPECIFYING SPACES SPACES$(N), SPC(N)

The functions SPACES$(N) and SPC(N) return N number of blank
character spaces. The results are the same using either of the func-
tions, but SPC(N) can only be used together with a PRINT statement.

Let’s see how these functions work in the direct mode.

FRINT "&";SPaCE£(1a@) ;"B
A B

Ok 10 spaces
PRIWNT “C";SPC{15y;"D"

C O

ok 15 spaces
SE=SPaCE$(D

Ok

FRINT "x";S$%;"Y"5%,;"2"

X Y Z

ik 5 spaces

A string type function always returns characters. Therefore, when the
value is assigned with the LET statement, the variable also must be
a string type variable.
In the above example,

SE=SPACE®(D)

assigns five spaces to the string type variable S$.

189

PROCESSING CHARACTER STRINGS
LEFT$(X$,N), MID$(X$, M, N), RIGHTS$(XS$, N)

The LEFT$(X$, N), MID$(X$, M, N), and RIGHT$(X$, N) string type func-
tions return one part of a specified character string.

LET$(X$,N) returns N number of characters from the left side of the
character string X$.

RIGHT$(X$,N) returns N number of characters from the right side of
the character string X$.

MID$(X$,M,N) returns N number of characters beginning with the Mth
character in the character string.

The following direct mode PRINT statements show the operation of
these three functions.

A$="ABCDEFGHI JK"
ok

PRINT LEFT${A%$,2)
GE

ik

PRINT RIGHT#:{A%,3)
1JK

Dk

PRINT MID$<A%,4,5)
DEFGH

ok

As shown above, the LEFT$(X$,N), MID$(X$M,N), and RIGHT$(X$,N)
functions are used to return a specified part of a character string.

AS$
L i
P i
AB ! C! DEFGH ! IJd K
; . !
- i\ — Ji%,__J
LEFTS$(AS,2) MID$(A$,4,5) RIGHTS$(AS,3)

190

In the following program all of the character strings (personal names)
that are entered with the INPUT statement are displayed, and then
the LEFT$(X$,N) function is used to display separately all of the
names which begin with J, that is, all of the character strings in which
J is the first character on the left.

1@ DIM N$C18) :Y=1

26 CLE

38 FOR L=1 TO 1@

48 INPUT "Mame" jNE(L)

98 MEXT L

4@ CLS

78 FOR L=1 TO 1@

88 LOCATE 2Z,L:PRINT N$C(LJ
78 NEXT L

188 FOR L=1 TO 1@

118 AS=LEFTENELI, 1)

126 IF a$4>"J" THEN 15@
138 LOCATE 15,Y:PRINT N$(L)
146 Y=Y+1

138 NEXT L

148 LOCATE @,26a

The INPUT statement in line 40 assigns personal names to the array.
variable N$(1)—N$(10). For example, the following names could be
assigned in order beginning with N$(1);

PETER, PAUL, JACK, MARY, SUSIE, JOHN, JANE, TOM, DICK,
CATHARINE

After all of the names are displayed by lines 70 to 90, then lines 100
to 150 display only the names that begin with J—JACK, JOHN,
JANE—on the right side of the screen.

FETER JACK
PALIL JOHN
JACK JANE
MAaRY

SUSIE

JOHN

JAMNE

TOM

DICK

CATHARINE

191

The LEFT$(X$, N) function is used in line 110 to display only the
names which begin with J. Here only the first character at the left
side of the character string assigned to the array variable N$ is as-
signed to A$. Then the IF—THEN statement in line 120 checks to see
if this character is “J”. If it is J, then the content of N§ is displayed
at the right side of the screen.

192

FUNCTIONS WHICH CONVERT
NUMERIC AND STRING TYPE

DATA

®The Conversion Functions
®The Character Code

THE CONVERSION FUNCTIONS

Conversion functions are classified according to whether they return
string type data when numeric type data is entered, or return numeric
type data when string type data is entered. There are nine conversion
functions in MSX2-BASIC.

ASC(X$), CHR$(X)

VAL(X$), STR$(X)

LEN(X$), INSTR([N,]X$, Y$)

BINS(X), OCT$(X), HEX$(X)

193

CHANGING THE TYPE OF NUMBERS
VAL(XS), STR$(X)

In BASIC, numbers can be treated either as numeric type numbers or
as string type numbers. For example, if 123 is assigned to a numeric
type variable, as in

A=123

then 123 is treated as the number one hundred twenty-three. But if
123 is assigned to a string variable, as in

AE="122"
then 123 is treated as the characters one two three.
VAL(X$) changes a number treated as characters to a numeric type
number.
STR$(X) changes a number treated as a number to a string type

number.

input the following program:

16 A%="123" 1B$="454"

20 X=VUAL(A$) 1 Y=UAL{B$)

38 PRINT "A$+B$=";A$+B$

46 PRINT "UAL(A$)+UAL(BEI=" ;X+Y

First the numbers 123 and 456 are assigned to the variables A$ and
B$ as string type values. Then in line 20 they are converted to numeric
type values. Lines 30 and 40 display the addition of the string type
numbers and the numeric type numbers. The following illustration
shows the display when the program is executed.

FUN

AB+BE=123436

val (A +VUAL(B$)I= 579
0K

194

STR$(X) performs the opposite function of VAL(AS). Execute the fol-
lowing program:

18 A=122:B=4354

26 XE=STR$E(A) 1Y$=ETRE(B?

38 PRINT "A+B=";A+B

48 PRINT "STRE(AI+STRE(BI=" ;XE+V'E

RUN

A+B= 579
STR$(AI+STRE(BI= 123 454
QK

When a numeric type number is changed to a string type number, the
space before the numeric type number (where the + or — sign ap-
pears) is included as part of the string type value.

195

CHARACTER CODES AND FUNCTIONS

Just as there are color codes, there are character codes for the
characters used in BASIC. For instance, the character code for the
capital A is 65 (decimal number). There are two functions in
MSX2-BASIC which use the character codes.

ASC(X$) returns the character code of a character that is entered.
CHRS$(X) returns the character of a character code that is entered.

These functions can be checked in the direct mode as follows:

PRIMT ASC("A") ldisplays the character
&5 code for A
ok displ th h t
- : 2y 1 displays the character
gRINT CHRE (58D }for character code 66

By
ul%

Refer to the MSX2-BASIC Programming Reference Manual for a list
of the character codes.

196

RETURNING THE LENGTH OF A CHARACTER

STRING LEN(X$)

The LEN(X$) function returns the number of characters in character
string X$ as numeric value data.

A$="ABCDE"

Ok

PRINT LEN(A$)
5

O

The number of characters, 5, in the character string “‘ABCDE” is

returned by LEN(AS).

The following program uses the LEN(X$), MID$(X$, M, N), and CHR$(X)
functions to convert each character assigned to the variable A$ by the
INPUT statement into the character with a character code number
one number higher than that of the input character.

1@ CLS
28 INPUT "aAny
238 N=LENCA$)

lettere" ;A%

41
50
&6
78
8@
oa

FOR L=1 TO N
BE=MID$ (A% ,L,1)
K=ASCCB$)
CE=CHR$ (X+1)
FRINT C#;

MEXT L

1o END

Try inputting your own choice of letters, and see the results.

RUM

any letters? RNMX
SONY

Ok

RUN

Any letters? LRW
S

Ok

197

DATA INPUT FUNCTIONS

e®What Are Data Input Functions?
®Data Input from the Keyboard
e Inputting the Cursor Key Status

THE OPERATION OF DATA INPUT FUNCTIONS

The functions we have discussed up to now have all been functions
which process an entered value and return the result. The functions
discussed in this section are of a slightly different type. Values are
not entered in these functions to be processed directly. The values
entered in these functions are like signs which have special mean-
ings. The signs tell the data input functions to input the status of in-
put devices connected to the computer and the functions then return
the status as data. (Some of these data input functions require no in-
put value).

These functions make it possible to write programs which will per-
form an action based on the status of an input device—for example,
to have a sprite pattern move in the direction of a cursor key that is
pressed.

198

The Data Input Functions
MSX2-BASIC has 22 data input functions:

@ Input from the screen
CSRLIN, POS(X), POINT(X,Y)
®Input from the printer
LPOS(X)
®input from memory
FRE(X), FRE(” "), PEEK(N), VARPTR(variable), VPEEK(N)
®Input from the keyboard
INKEYS, INPUT$(X)
®Input from an /O port
INP(N)
@ Input from the joystick, space bar, mouse, track ball, paddle, touch
pad, or light pen
STICK(N), STRIG(N), PDL(N), PAD(N)
®!nput from a data file
EOF(file number), INPUTS$(N,[#]file number)
®Input from a disk
DSKF(drive number), LOC(file number), VARPTR(# file number)
e Input from a machine language subroutine
USRIX](I)

199

DATA INPUT FROM THE KEYBOARD INKEY$

When a key is pressed on the keyboard, the INKEY$ function returns
the character of the pressed key as string type data.

The following simple program illustrates the operation of the INKEY$
function.

18 K$=INKEY#$
28 PRINT K$;
238 GOTO 18

When this program is executed,
K&=INKEY$

in line 10 will be executed over and over. If no key is pressed when
line 10 is executed, the INKEY$ function returns a character string
with no data. This is called a null string. In the above program, when
a null string is returned it is assigned to K$. But since there is no data
in a null string, when the PRINT statement in line 20 displays the null
string, the effect on the screen is the same as if nothing has
happened.

When a key such as the IZ] key is pressed while line 10 is being ex-
ecuted, the INKEYS$ function will return the character A. (If the small
E] is pressed, it will return the small a.) This character is assigned to
K$, and displayed by line 20, so the character A is displayed on the
screen.

RUr

When [a] is pressed

200

When additional keys are pressed, the characters for these keys are
also displayed. The screen resembles the command-wait condition,
but the cursor is not displayed and this indicates that a program is
being executed. Also, if the [1]key is pressed, the next character is
displayed at the beginning of the same line, instead of being dis-
played on the next line.

[cTRL]+[sTOP] is used to stop the program.

Let's make another program which uses the INKEY$ function.

1a CLES

28 LOCATE 5,4

28 PRINT "7 T
48 LOCATE 35,14

38 PRINT "i P
S8 FOR ¥Y=5 70O 13 S5TEP 2

78 FOR X=& TO Z@

28 K$=INKEY#%

78 IF K$="" THEN B#

188 LOCATE X,Y:PRINT K%

11e NEXT X

128 NEXT ¥

126 LOCATE @,22:END

This program illustrates one of the important uses of the INKEY$
function.

Take a look at the combination of the INKEY$ statement in line 80
with the IF—THEN statement in line 90.

80 Ke=INKE"$
78 IF K&="" THEN <@

If no key is pressed when line 80 is executed, a null string is assigned
to K$. If the content of K$ is a null string, then line 90 returns the pro-
gram to line 80. Therefore, as long as no key is pressed, the program
continues to repeat this loop.

No space between the double quotation marks (*“ ”) in

’_.:$= inn

indicates a nul! string.

201

When a key is pressed, the program advances to line 100, and the
character of the key that was pressed is displayed.

The INKEY$ function is used in this way very frequently in programs
to have a program advance to the next step when a key is pressed.

The INKEY$ function can also be used to have the program advance
to the next step only if a special key, such as the space bar, is
pressed, as in the following program.

ie CL=E

28 INPUT "Any letters" ;A%

38 K$=InNKEY$

48 IF K&="" OR K$<>" " THEW 3@
58 PRINT A%

The IF—THEN statement in line 40 returns the program to line 30 if:
1) K$ is a null string; 2) if K$ is not the space bar. The program ad-
vances to line 50 only when the space bar is pressed.

202

INPUTTING THE STATUS OF THE CURSOR KEY
STICK(N)

The STICK(N) function returns a numeric value which indicates the
direction of the cursor key, the joy stick, the mouse, the track ball, or
the touch pad.

The value of N determines whether the status of the cursor key or one
of the other input devices is returned.

Device

cursor key
device connected to CONTROLLER A
device connected to CONTROLLER B

v, Z

STICK(N) returns values from 0 to 8, which indicate the direction of
the cursor key or other devices.

top: 1

top left: 8 top right: 2

left: 7 ~—center: 0—right: 3

bottom right: 4
bottom: 5

bottom left: 6

For example, for STICK(0), 0 will be returned when no cursor key is
pressed.
When <= (top) is pressed 1 is returned, when = (bottom) is pressed
5 is returned, and when <= and -¢{ are pressed together 2 is
returned.

Let’s use the STICK(N) function to make a program in which the cur-
sor key controls the screen display.

203

1a CLS

28 X=14:¥=1#8

28 LOCATE X,Y:PRINT "o

468 C=S5TICK(@>

S8 IF C=@8 THEMW 44

48 IF C=1 THEN WK=8:Uy=-1:G0SUB 116
78 IF C=3 THEN Ux=1:UY=@:G0SUE 114
88 IF C=35 THEN \x=@:\v=1:G0SUB 118
78 IF C=7 THEN UX=-1:UY=@:G0SUE 11@
169 GOTO 48

118 X=X+ y=y+U0y

128 IF X>29 THEN x=29%

1368 IF X<{@ THEN X=@

148 IF Y>21 THEMN v=21

1568 IF ¥<8 THEMN v=8

148 LOCATE X,Y:PRINT "o

178 RETURN

In this program, the small letter “0” is displayed according to the
direction the cursor key is moved. The “0” is first displayed at the 14,
10 location (lines 20,30). The STICK(0) function in line 40 returns the
status of the cursor key. Lines 50 to 90 determine the values of the
VX and VY variables according to the value returned by the STICK(0)
function in order to specify the location where the next “o” will be
displayed.

For instance, when ¢ is pressed, STICK(0) returns the value 3, and
in line 70 VX becomes 1 and VY becomes 0. Then the program jumps
to the subroutine beginning at line 110.

In the subroutine, the next “o” display location is assigned to X and

Y and the “0” is displayed. Lines 120 to 150 in the subroutine limit the
size of the display area.

204

Chapter 8 Interrupts

205

MAKING INTERRUPTS

®\What is an Interrupt?
® MSX2-BASIC Interrupts
®Making Interrupts

WHAT IS AN INTERRUPT?

An interrupt suspends program flow when a specific condition oc-
curs during program execution and then performs a separate
processing routine, called an interrupt processing program or an in-
terrupt processing routine.

An interrupt is similar to a subroutine, except a subroutine is per-
formed only when a GOSUB statement in the program is executed.
In contrast, an interrupt processing routine is executed by an exter-
nal condition, such as when the [El key is pressed. Regular pro-
gram execution is resumed when the execution of an interrupt
processing routine is completed, just as in the case of a subroutine.

MSX2-BASIC INTERRUPTS

There are five ways to provide an interrupt in MSX2-BASIC.

®When a function key ([F1}—[F10]) is pressed.

®When the space bar is pressed, or when a mouse, joystick, track
ball, or touchpad button is pressed.

®When [CTRL |+ [sToOP]| is pressed.

®When there is sprite overlap.

®When a specified period of time has passed (using the internal
timer).

206

MAKING INTERRUPTS

The following five interrupt declaration statements are used to pro-
vide for an interrupt of the main routine during execution of an

MSX2-BASIC program.

Interrupt

Interrupt Declaration Statement

by a function key

ON KEY GOSUB line number [, line
number]...

by the space bar, or
joystick, mouse,
track ball, or touch
pad button

ON STRIG GOSUB line number [, line
number]...

by [cTRL]+ [sTOP]

ON STOP GOSUB line number

by sprite overlap

ON SPRITE GOSUB line number

by the internal timer

ON INTERVAL =interval time GOSUB line
number

An interrupt declaration statement declares what will cause the inter-
rupt and specifies the line number of the first line of the interrupt

processing routine.

A statement which validates the interrupt is executed immediately af-
ter an interrupt declaration statement. There are five validation’

statements.

Interrupt

Interrupt Validation Statement

by a function key

KEY(N) ON (N is 1—10. 1=[F1] key)

by the space bar, or
joystick, mouse,
track ball, or touch

STRIG(N) ON
(N is 0—4, 0 =space bar)

pad button

by [CTRL]+[sToP] STOP ON

by sprite overiap SPRITE ON
by the internal timer | INTERVAL ON

The following program will execute the interrupt processing routine
beginning in line 1000 when the key is pressed.

207

" 10 ON KEY GOSUB 1000 -function key interrupt
declaration
20 KEY(1) ON«—)
“——|. validates key
interrupt
main
rou’rine<
"
(" 11000
interrupt
processing 4 |-specities line to
routine return to when
e interrupt processing
L [1100 RETURN 500 routine is completed

The main routine is executed when a program like this is run, but
when the key is pressed during execution, the program jumps to
line 1000 and executes the interrupt processing subroutine. When ex-
ecution is completed, RETURN 500 at the end of the processing rou-
tine returns the program to line 500 of the main routine.

208

PROGRAMS USING |
INTERRUPTS

® Function Key Interrupts
e lnvalidating an Interrupt
®Interrupt Hold

@ Sprite Overlap Interrupt

A FUNCTION KEY INTERRUPT PROGRAM

The following program illustrates the use of the [F1]key to make an
interrupt.

18 ON KEY GOSUER i@e
28 KEY(L{)» ON

8 SCREEN 2 main routine
48 LINE (58,58)—*ﬁ2@@,15@),,8
56 GOTO 48

188 “subroutine

iiea BEEP:CLS

126 FOR L=18 TO %8 STEP 10 interrupt

128 CIRCLE ¢12@&,18@),L processing
148 NEXT L routine
158 CLS

148 RETURN 48

Lines 10 and 20 of this program specify that the program will jump
to the interrupt processing routine beginning at line 100 when the [F1]
key is pressed. :

A rectangle is continuously displayed by lines 40 and 50 in the main
program when the program is executed. An interrupt occurs when the
[E] key is pressed, and the program jumps to line 100. A beep is
produced and the rectangle disappears (BEEP:CLS). Then 9 concen-
tric circles are drawn. The screen is cleared after the final circle is
drawn and the program returns to line 40.

209

|—> interrupt processing routine

main routine beep

[F1]
—) o =)

RETURN 40

210

INVALIDATING AN INTERRUPT KEY(N) OFF

Add the following line to the above program.

185 KEY(

1y OFF

When the program is executed with this line added, an interrupt oc-
curs the first time the key is pressed, but there is no interrupt
when is subsequently pressed. This is because

KEY {17

OFF

in line 105 is executed when the interrupt processing routine is ex-
ecuted and this invalidates the E] key interrupt.

The KEY(N) OFF statement invalidates a function key interrupt. N
specifies the function key number.

The following table shows the five MSX2-BASIC statements which in-

validate interrupts.

Interrupt

Interrupt Invalidation Statement

by a function key

KEY(N) OFF

by the space bar, or
joystick, mouse,
track ball, or touch

STRIG(N) OFF

pad button
by [CTRL]+[sTOP] STOP OFF
by sprite overlap SPRITE OFF

by the internal timer

INTERVAL OFF

211

INTERRUPT HOLD

Additional interrupts are placed in a hold condition when the execu-
tion of a program is shifted to an interrupt processing routine by an
interrupt. If another interrupt is attempted during the hold condition,
it will not be executed immediately. Instead, the program will first be
returned to the main routine by the RETURN statement at the end of
the interrupt processing routine. Upon return to the main routine, the
—ON statement is automatically executed and the second interrupt
then occurs in place of execution of the main routine.

Therefore, when an interrupt is attempted during a hold condition,
the interrupt is remembered by the computer but it is not executed
until the initial interrupt processing routine is completed.

In the program on page 209, nine circles are drawn by the interrupt
processing routine when the IE] key is pressed. If the @ key is
pressed again before the last circle is drawn, a second interrupt will
not be executed immediately. But the second interrupt will be execut-
ed as soon as the program returns to the main routine after the last
circle is drawn, and instead of drawing a rectangle, the program will
again draw the circles.

no interrupt
}— interrupt processing routine occurs, and the
processing routine

main routine beep is pressed during s completed
execution of the

interrupt routine

— 0 |meme——————— pe.

the program returns to the main routine]

— beep

the second interrupt is
immediately executed

— ———— o —_————

212

RE-VALIDATING AN INTERRUPT DURING AN
INTERRUPT PROCESSING ROUTINE KEY(N) ON

A statement such as KEY(1) ON can be included in a interrupt
processing routine to re-validate the interrupt when the processing
routine is executed. Then if the interrupt is again applied after the in-
terrupt processing routine has begun, the processing routine will be
executed again from the beginning.’

18 ON KEY GOSUB 188

28 KEYC(1) ON

38 SCREEN 2

48 LINE ©56,56)~-(286,1568),,B
o8 GOTO 48

186 “subroutine

185 KEY{1)» ON

119 BEEF:CLS

128 FOR L=16 TO 28 STEP 18
138 CIRCLE <12@,168),0L

148 NEXT L

i@ CLS

1568 RETURN 48

KEY(1) ON has been added to the previous program as line 105. This
will cause an interrupt to be executed when the key is pressed
while the processing subroutine is drawing the circles. The program
will immediately return to line 100 and execute the processing
subroutine again from the beginning.

interrupt
|—=interrupt processing routine }—=processing
main routine beep beep routine
[F1]
—) o —— —) o

an interrupt is applied
during the processing routine

213

HOLDING AN INTERRUPT IN A PROGRAM
KEY(N) STOP

The KEY(N) STOP statement is used to reinstate an interrupt hold
condition after an interrupt has been validated by a KEY(N) ON state-
ment in a interrupt processing routine.

18 ONM KEY GOZUEB 1o@

26 KEY (1) 0OM

28 SCREEN 2

4@ LIME (S@8,568)-(Z@06,1%6),,B
Sa GOTO 48

168 “=subroutine

185 KEY<1» ON

ile BEEP:CLEZ

128 FOR L=18 TO %8 STEF 18
128 CIRCLE (1ze,laé) L

135 IF =58 THEN KEY{1) STOP
148 NEXT L

158 CLS

146 RETURM 4@

Line 135, which executes KEY(1) STOP when the value of L reaches
50, has been added to the previous program. Another interrupt will oc-'
cur immediately if the key is pressed before the fifth circle
drawn. But the interrupt hold condition is reinstated by line 135 after
the fifth circle is drawn, and subsequently an interrupt will not occur
immediately when the key is pressed.

214

interrupt
—= interrupt processing routine > processing

routine
main routine beep beep
[F1]
ﬂ o — 3 —) o -———
M is pressed before the
KEY(1)ON P

fifth circle is drawn

—interrupt processing

routine is pressed after the
main routine beep fifth circle is drawn
—) o - —_———]

program returns to

the main routi. KEY(1)ON I

interrupt occurs

here
—) —————— o -——

The KEY(N) STOP statement places a function key in the hold condi-
tion. N specifies the function key number.

The following table shows the five MSX2-BASIC statements which
hold interrupts.

Interrupt Interrupt Hold Statement
by a function key KEY(N) STOP

by the space bar, or | STRIG(N) STOP
joystick, mouse,
track ball, or touch

pad button
by [cTRL]+ STOP STOP
by sprite overlap SPRITE STOP

by the internal timer | INTERVAL STOP

215

SPRITE OVERLAP INTERRUPT

The ON SPRITE GOSUB and the SPRITE ON statements generate an
interrupt when two or more sprite patterns overlap by one dot or
more. In the following program UFOs fly from the left and right, and
a beep occurs when the UFOs overlap.

1@ SCREEN 2

28 SPRITE$(E@)=CHR#{(&HIC)+CHR${&H7E) +CHR$
(&HS1 3+ CHRECLHE1) +CHREC&HFF) + CHREC&HFEY +
CHR# (&HZ4)+CHR$(&H42)

28 ON SPRITE GOSUB 188

48 SPRITE ON

58 FOR X=8 TO 255

48 PUT SPRITE @,(X,1@8@),15,d

78 PUT SPRITE 1,(255-X,1068),18,0

88 NEXT X

78 END

laa SPRITE OFF

118 BEEP

126 SPRITE ON

136 RETURN

|Sample Program |

The following program is an archery game that generates interrupts
by the E] key and by sprite overlap.

An arrow is shot when the [F1] key is pressed. Points are awarded
depending on what part of the target the arrow hits. Five arrows can
be shot. When total points exceed 1000, a free game is awarded.

216

18 SCREEM 5,1

26 0OPEM "GRP:" FOR OQUTPUT AS #1

I8 OM OKEEY GOSUE 258 @ OM SPRITE GOSUE 27

a

46 #¥¥% sprite definition *x=

SE RESTORE 4326 :5H=0:G0SUE 3@ sprite

&8 RESTORE SZg8:SM=1:GOSUR 218 | definition
e %% main routine *%%

S8 H=Z2E0:5=8 =58

76 FOR L=1 TO 5
188 SPRITE OM:KEY (1) O
11 U=bliM=0:B=0:U=1685:6G05UB Zi@
126 FOR ¥Y=8 TO 211
138 PUT SFRITE &,0x,%5

displays the
afrow and
|_moves the

146 U=U+B:IF M=l THEN Y=+l target from
158 PUT SPRITE 1,(U,\),,1 top 1o
1 4@ IF U258 THEM U=l:B=d bottom

178 MEXT Y
186 MEXT L
i9R IF Sr=1068 THENW 28 ELSE END
286 7 =x¥ ccore display ¥EE

218 PRESET (38,18 points
228 PRINT #1,USING "## : ####";L,5 — display
230 RETURM , subroutine
244 %% shoot =xx 3 is assigned
258 KEY (1) OFF:B=3:RETURN - to B when [Fi]
ZEE rxE® hHit s¥%= is pressed {ihe
278 SPRITE OFF:8=8:M=1 | arrow is shot}
226 4 E-ABS(Y U+ 13 ERL G = “i'i‘gﬁ,‘g“
298 GOSUE 218 : RETURN . : fhe sprites |
SEE #%% cprite definition subroutine *® gyertap
x®x
216 SPE="Y G0g=""

@ FOR Sl=8 TO 7

READ 0%, 5C:5P=8
FOR s5J=1 TO 2

SP=SP#Z-(MIDE(SEE,5J,10="0") sprite
HNEXT S5J —definition
SP4=5P%+CHRE(SF) 1 SCE=ECH+ CHRE(SD) subroutine

MEXT &L
SPRITE®{SMNI=S5PE

COLOR SPRITERCSHNI=SCE
RETURMN
T &% cprite data %%
DAaTe .. 00,1

DATE . .ve.. 00,8
fo,T.-:; I s I B sprite
DaTa L., 00,8 - patiern

DETE «ov.. 00,8
DETE ..a...00,15
DATE 00,8
DATE00,1

data {(target)

M T R]

33
34
37
33
2%
45
41
42
43
44
4%
&
47
43
49
S@

217

518 7 ¥%% zprite datx ¥¥x
SE2E DTd L.l L., 8
S2E DATA ... 8
S48 DATA .v..w...,B
S5 DaTa 0000000013
el DT,
SFE DATS oL 8
328 DaTe oo.. ..., B
FEODATA oo B

n

o
1

L

The OPEN statement in line 20 is required in order to display charac-
ters on the graphic mode screen. This is explained in Chapter 9.

218

Chapter 9
Processing Files

219

FILES AND FILE DEVICES

®What are Files?

®File Devices

® Operating Program Files
o File Management

FILES AND FILE NAMES

The computer interacts with devices connected to it in operating pro-
grams or the data in a program. This interaction can be compared
with keeping a diary. Let’s suppose that you have several bookcases
in your room. In one of the bookcases there is a notebook with the
title “Diary” written on it. When you want to read your diary or write
in it, you first go to the bookcase, then search for the notebook titled
“Diary,” and when you find it you remove it from the bookcase.

The computer performs a similar process. But instead of a notebook,
a computer uses a file. A file is different from a notebook in that it
is not something that you can actually pick up and touch. You can
think of it as an area formed on a cassette tape or floppydisk.

File Names

The title “Diary” is used to distinguish the notebook you use for your
diary from other notebooks in your bookcase. In the same way, you
give names to the files you use with your computer. Such a name is -
called a file name.

220

FILE DEVICES AND DEVICE NAMES

Your bookcase corresponds to the file device connected to your com-
puter. There are two types of file devices—input/output devices (cas-
sette tape recorder, floppydisk drive, etc.), and devices which accept
output only (printer, video monitor, etc.). MSX2-BASIC has special
commands and statements which allows it to operate files in con-
junction with the various file devices connected to the computer. The
following diagram shows the file devices that can be used with
MSX2-BASIC.

Text mode screen
Graphic mode screen

- DI
—
| Output Output

COMPUTER <l Memory

Input/Output| disk

Input/Output
Input/Output

i

3.5 inch
Floppydisk

Data recorder
(cassette tape recorder)

Floppydisks are used in the built-in floppydisk drive in your computer,
or in a separate floppydisk drive unit attached to your computer.

221

Device Names

The device to be used must be specified in order for programs and
data to interact with file device files. Therefore, each type of file
device is given a device name, as shown in the following table.

File device Device name

Data recorder (cassette tape recorder) CAS:

Text mode screen CRT:

Graphic mode screen GRP:

Printer LPT:

Floppydisk
A drive A:
B ?rive drive names
H drive H:

Memory disk MEM:

The built-in floppydisk drive in a computer is called drive A. If the
computer has two built-in disk drives, they are called drive A and drive
B. For computers without built-in disk drives, the external disk drive
unit connected to the cartridge slot is called drive A. If additional disk
drive units are connected, they are called drive B, drive C, and so
forth. The device name given to a disk (such as A:, B:) is also called

the drive name. ‘

222

—— |Drive Names for Disk Drives|

The following illustrations show the drive names for possible com-
binations of built-in disk drives and external disk drive units con-
nected to the cartridge slots.

A computer with one internal disk drive:

Slot 2:7—’—‘EZ_I%I

Siot 11

1!%1—1-%%

A:

A computer with two internal disk drives:

Slot 2:7—/_1_-_1__%%%

Slot 1C_}

s=alli=s RESEppis=a

A computer without internal disk drives:

smz[:)—,—f‘ LC%:’_H%I
Slot 1%%‘H‘%—|

Slot 2 E:—

C: Normal condition

Slot 1[:}—-[—_

A:
‘ [cTRL]+ [RESET]

Siot 2——H — iB,_
Slot1l:)—1

A:

223

FILE NAME RULES AND THE TYPE NAME

A file name must begin with a letter of the alphabet, and can have up
to 6 characters for a cassette tape file, and up 8 characters for other
files.

A file name cannot be omitted for a floppydisk file. It can be omitted
with other devices, but it is good practice to always use a file name
for cassette tape or memory disk files in order to distinguish different
files.

The type name is added to the file name by first writing a period (.)
followed by up to three characters. The type name is used to distin-
guish different types of files, such as BASIC files or ASClI files, or to
add characters to file names when eight characters are not sufficient
to distinguish between two different files. The following examples
show the two primary uses of type names.

Example 1

TEST.BAS BAS is added as the type name to indicate that the file
is a BASIC program.

TEST.ASC ASC is added as the type name to indicate that the file
has been saved in the ASCII format.

TEST.DAT DAT is added as the type name to indicate that the file
is a data file.

Example 2

Since the TESTPROG file name is 8 characters, the

TESTPROG1 Z computer will not distinguish between the two

TESTPROG2 different files.
TESTPROG.001 TESTPROG.002
R R e T
| |
file name type name file name type name

Type names can be added to make two different names for the two
files.

224

PROGRAM FILES AND DATA FILES

When a file contains a program, it is called a program file. A file that
contains data is called a data file. Data files are divided into sequen-
tial files and random access files, depending on the method used in
inputting and outputting (writing in and reading out) data.

program file
file——[sequential file
data file{
random access file

Here we will explain all of the commands used for operating program
files for all devices. Data files will be covered in the next section.

225

OPERATING PROGRAM FILES

The following commands are used to save or load files, or to merge
programs in memory.

CSAVE, CLOAD................. for cassette tape only
SAVE, LOAD, MERGE........ the device can be specified

Saving, Loading, and Merging Programs SAVE, LOAD, MERGE

A program saved with the CSAVE statement can be loaded only by
the CLOAD statement, and a program saved by the SAVE statement
can only be loaded by the LOAD statement. The file name that was
used when a program was saved is specified to load the program.
The MERGE statement loads a program and merges it with a program
already stored in memory. Only programs saved in the ASCII format
can be merged.

Save command Save format Load command
CSAVE Intermediate language CLOAD
SAVE ASCII format LOAD or MERGE

(cassette tape or
memory disk)

SAVE Intermediate language LOAD
(floppydisk)
SAVE, A ASCII format LOAD or MERGE

(floppydisk only)

For cassette tape, the CSAVE command saves a program in inter-
mediate language, and the SAVE command saves a program in the
ASCll format. Only the SAVE command can be used with floppydisks.
If the A option is added to the floppydisk SAVE command, the pro-
gram will be saved in the ASCII format. If it is omitted, the program
will be saved in intermediate language.

Only the SAVE command can be used for the memory disk, also. Pro-
grams saved on the memory disk are always saved in the ASCII
format.

Program File Operation Using Cassette Tape CSAVE, CLOAD

A program stored in memory can be saved on cassette tape in the fol-
lowing two ways:

226

CSAVE "PROG"—— saved in intermediate language
with the file name PROG— 1)

SAVE "CAS:PROG"— saved in the ASCII format with the
file name PROG— @2
To load the program saved in (1), above, execute:

CLOAD "PROG"

To load the program saved in @, above, execute:
LOAD "CAS:PROG"

To merge the program saved in (2), above, with another program
stored in memory, execute:

MERGE "CAS:FPROG
Program File Operation Using a Floppydisk SAVE, LOAD

A program stored in memory can be saved on a disk (drive A) in the
following two ways:

SAUE "A:PROG.BAS" saved in intermediate language
with the file/type name
PROG.BAS— (1)

SAVE "A:PROG.ASC" ,& saved in the ASCII format
with the file/type name
PROG.BAS— @

The programs saved in (1) and (2), above, can be loaded by ex-
ecuting:

LOnxD "A:PROG.BAS"

LOAD "A:tPROG.ASC"

To merge the program saved in (2, above, with another program
stored in memory, execute:

MERGE "A:PROG.ASC"

If only one disk drive is used, the drive name (A:) can be omitted. If
the drive name is omitted when two or more disk drives are used, the
disk drive in current use is selected.

227

Program File Operation Using the Memory Disk

In MSX2-BASIC a part of internal memory separate from the part that
stores programs can be used to save and store a program temporari-
ly. Since this part of memory is used like a floppydisk, it is called the
memory disk function. In contrast, the part of memory which normal-
ty remembers programs is called the program area. Programs stored
in the program area can be displayed on the screen with the LIST
command and executed with the RUN command. !f a program stored
in the program area is saved on the memory disk, the program area
can be used to write another program.

However, the instant you turn off the computer, the program in the
memory disk is erased.

To use the memory disk you must first initialize it with the CALL
MEMINI (memory initialize) statement.

[CALL MEMINI [(size)]|

The amount of memory to be used by the memory disk is specified
by the size in the CALL MEMINI statement. Size is specified in bytes,
and can be from 1023 bytes to 32767 bytes. The default setting is
32767 bytes when the size specification is omitted.

When the CALL MEMINI statement is executed, the screen displays
the size specified for the memory disk.

Catt MEMINI
32088 brtes allocated
ok

Once the CALL MEMINI statement has been executed, a program in
the program area can be saved on the memory disk with the following
command:

SAVE "MEM:PROG. BAS" —saved in the ASCII format with tr
file/type name PROG.BAS

To load a program from the memory disk to the program area, exe-
cute the following command:

LOaD "MEM:PROG.BAS"

To merge a program from the memory disk with a program in the pro-
gram area, execute:

228

MERGE "MEM:PROG.ERS"

To Load and Execute a Program RUN

The RUN command followed by the file/type name specification is
used to load a program from a floppydisk or the memory disk and exe-
cute it immediately.

IRUN “Idevice name] file name [.type name]”]

RUN "FROG.BASY----- “PROG.BAS” in drive A is loaded
and executed
RUN "MEM:PROG.BAS"---- “PROG.BAS” in the memory disk

is loaded and executed

229

FILE MANAGEMENT

Displaying File Names FILES, CALL MFILES
To display the names of the files on a floppydisk, execute:

FILES

The file name/type name is specified to check if a specific file is on
a disk

FILES "PROG.BAS"
To display the names of the files on the memory disk, execute:

CAaLL MFILES

CALL MFILES

The number of bytes remaining for use on the memory disk is also
displayed after the CALL MFILES command is executed.

Erasing Files KILL, CALL MKILL

The KILL command is used to erase a file on a floppydisk. For in-
stance, to erase a file named “TEST.DAT” you would execute:

KILL "TEST.DAT"

CALL MKILL is used to erase a file on the memory disk. To erase a
file named “PROG.BAS” you execute:

CALL MKILL <"PROG.BAS")

[CALL MKILL (“file name [.type name]’ﬂ

Changing a File Name NAME, CALL MNAME
The NAME command is used to change the file name and/or a type
name of a file on a floppydisk.

NAME “[drive name] old file name [.old type name]” AS
“new file name [.new type name]”’

230

CALL MNAME is used to change the file name and/or type name of
a file on the memory disk.

CALL MNAME (“old file name [.old type name]”) AS (“new
file name [.new type name]”)

NAME "OLD.BAS" AS "NEW.BAS"

“OLD.BAS” in drive A is changed to “NEW.BAS”
cablt MHNAME ("OLD.BAS" AZS "NEW.BAS")

“OLD.BAS” in the memory disk is changed to
“NEW.BAS”

231

AUTO-START PROGRAM FILE

An auto-start program will automatically be loaded from a disk and
executed when the computer is turned on or when the RESET button
is pressed.

Specify

AUTOEXEC.BAS
as the file namel/type name of the program when it is saved on a disk

to create an auto-start program. Only one auto-start program can be
created on one disk.

232

SEQUENTIAL FILE OPERATION

e®What is a Sequential File?

®Writing Data in a Sequential File

® Adding Data

®Writing Characters on a Graphic Screen

®The Number of Files Which Can Be Opened at One Time

SEQUENTIAL FILES AND RANDOM ACCESS FILES

Data files are used in handling data to be processed by a BASIC pro-
gram. For example, in the case of a telephone directory program, the
program itself is saved as a program file, but the data for the people’s
names and telephone numbers which the program processes is
saved as a data file.

There are two types of data files: 1) a sequential file which writes and
reads data in sequence from the beginning of the file; and 2) a ran-
dom access file which writes and reads data at any specified place
in the file. The devices that can use sequential files and random ac-
cess files are shown below.

Device Which Can Use Devices Which Can Use Random
Sequential Files Access Files

cassette tape floppydisk
floppydisk

printer

text/graphic modes screen
memory disk

In this section, a floppydisk in drive A will be used as a representative
device to explain sequential files.

The following statements are used for data input/output to a sequen-
tial file.

OPEN opens a file
PRINT # writes data in
PRINT # USING} a file

INPUT # reads data from
LINE INPUT # } a file

CLOSE close a file

233

WRITING DATA IN A SEQUENTIAL FILE
OPEN FOR OUTPUT

The procedure for outputting data to a sequential file is:
(1) Open the file with the OPEN statement.

(2) Write the data in the file with the PRINT # statement.
(3) Close the file with the CLOSE statement.

The format for the OPEN statement to output data is:

OPEN “[device name] [file name [.type name]]” FOR
OUTPUT AS [#] file number

The OPEN statement prepares a file with the specified file name in
the specified device to which data will be output. When the computer
writes data in a file or reads data from a file, one part of the memory
is reserved as a buffer. The buffer stores data temporarily until a fixed
amount has been stored, and then outputs or inputs the data. A maxi-
mum of 16 buffers can be specified for use in MSX2-BASIC (the maxi-
mum is 7 for a floppydisk). The file number specified in the OPEN
statement determines which one of the 16 buffers will be used. The
initial default setting is 1.

After a file has been opened with the OPEN statement, the PRINT #
statement is used to output data to the file. The format is:

]PRINT# file number, [expression] [separator] [expression...]l

The file number is the same file number that was specified in the
OPEN statement.

Each time the PRINT # statement is executed, the return code (&HOD)
and the line feed code (&HOA) are automatically added to the data
that have been written by the PRINT # statement. These two codes
serve as a sign which separates the data from the next data written
in the file. When the data are character type data, a comma in paren-
theses (*,”) can be used to separate multiple pieces of data in one
PRINT # statement, as follows:

PRINT #1,4%;",";B%

Since the comma serves the function of separating the data, A$ and
B$ will be treated as different pieces of data when the data is read.
(if the data are numeric type data, separations are automatically
made between each item of data, so no special sign is required.)

234

Each group of data separated by an 0D, OA pair is called a record. For
example if “ABC” is assigned to the variable A$, and “XYZ" is as-
signed to the variable B$, and

PRINT #1,A%
PRINT #1,B%

is executed, the data would be written on the disk as follows:

A B cl|ob]JoAa | X Y Z | 0D} OA

record : rec??)rd
Or if
PRINT #1,A%;",";B%

is executed, with both variables written in one PRINT # statement

and separated by “,”’, the data will be written as follows:
A B C) X Y Z | 0D | OA
L J
Y
record

In this case the data ABC and XYZ are written in one record, but the
comma separates them into two sets of data.

After the data has been output, the file is closed with the CLOSE
statement.

[CLOSE [#] [file number]|

When the CLOSE statement is executed, the file number is no longer
assigned to that particular file, and the same number can be used to
open a different file.

Let’'s write a program that writes data in a sequential file.

235

18 DIM A%(1,3)

26 OPEN "A:DATA.DAT" FOR OUTPUT AS #1
3@ FOR L=8 TO i

46 FOR M=@8 TO =3

56 READ A$cl,M)

&8 FPRINT #1 ,A$(L,M)

78 NEXT M

2@ NEXT L

98 CLOSE #1

186 END

118 DATA JAPAN, ENGLAND ,FRANCE,U.S.A.
126 DATA TOKYO,LONDON,PARIS,MNEW YORK

When this program is executed a data file named “DATA.DAT” is
created on the disk in drive A. The character type data “JAPAN" is
first written in the file, followed by an 0D, OA pair, and then ENGLAND
and the other country names and city names are written in sequence,
each separated by an 0D, 0A pair.

JIA|P|A|N|ODIOAIE|N|G|L|A

OD|OA|N| E [W Y O R[K|OD|OA

If line 60 is changed to
PRINT #1,A%CL M2;",";

the data will be written as follows:

JIA[P|A[N],|E|N[G|IL]|A|IN|D

0A

236

READING DATA FROM A SEQUENTIAL FILE
OPEN FOR INPUT

The procedure for inputting data from a sequential file is:

(1) Open the file with the OPEN statement.

(2) Read the data from the file with the INPUT # statement or the
LINE INPUT # statement.

(3) Close the file with the CLOSE statement.

The format for the OPEN statement to input data is:

OPEN “[device name] [file name [.type name]]” FOR INPUT
AS [#] file number

The OPEN statement opens a file to input data from it. Unless speci-
fied otherwise with the MAXFILES statement (see page 243, only the
number ““1” can be used as the file number.

After the file is opened, the INPUT # statement is used to read the
data.

[INPUT[#] file number, variable]

The INPUT # statement assigns one piece of data to the variable.
The following table shows how data are read by the INPUT#
statement.

Numeric type data|Character type data

spaces, return code, |ignored ignored
and line code in
front of data

things which space comma

separate data or comma return code

when the data is return code line feed code

separated line feed code when 255 characters have
been input

when data is en-

closed in “ — data within “ " are read
as a set of data

237

The LINE INPUT # statement is used only for reading character type
data, and inputs only the return code as a data separator.

The file is closed with the CLOSE statement after the data has been
input, and the file number no longer has any connection with the file.

Now let’s write a program which will read and display on the screen
data from the “DATA.DAT” file we made previously.

1@ DIM A%CL, 3D

26 OPEN "A:DATA.DAT" FOR INPUT AS #1
38 FOR L=8 TO 1

48 FOR M=8 TO 3

S8 INPUT #1,A$(L,M)

68 MEXT M

78 NEXT L

88 CLOSE #1

¢8 FOR M=6 TO 3

160 PRINT A%(8,M) A1, ,M)
116 NEXT M

The INPUT # statement in line 50 reads data in sequence to the array
variable A$. Lines 90 to 110 display the data on the screen.

Let’'s see what would happen if we attempt to read data from the
“DATA.DAT” file using the following program.

1@ OPEN "A:DATA.DAT" FOR INPUT AS #1
28 INPUT #1 ,A4%

38 PRINT A%

48 GOTO Z@

238

When this program is executed, JAPAN, ENGLAND... and the rest of
the data is assigned and displayed on the screen. But even after the
last piece of data, NEW YORK, is read, the program still tries to input
more data. In a case like this, when data input is attempted after the
file has ended, the

Input past end

error message is displayed. The EOF function can be used to prevent
this from happening.

|EOF (file number)]

18 OPEN "A:DATA.DAT" FOR INPUT AS #1
15 IF EOF{1)=-1 THEN GOTO 5@

28 INPUT #1,A%$

38 PRINT A%

48 GOTO 1S

S8 CLOSE #i

The EOF function returns —1 when the last data in a file has been
read. In the above program this function is used each time data is
read to check if there is any more data in the file.

239

ADDING DATA OPEN FOR APPEND

Data can be added to a data file made previously only when you are

operating a sequential file on a floppydisk or the memory dis
data, the file is first opened with the OPEN statement.

k. To add

APPEND AS [#] file number

OPEN “[device name] [file name [.type name])” FOR

The following three programs write, read, and add data o
pydisk.

Write Data

n a flop-

18 OPEN "A:TEST.DAT" FOR QUTPUT &S
28 FOR L=1 TO 3

38 READ A%

46 PRINT #1,4%

S8 NEXT L

&8 CLOSE #1

78 END

a6 DATA JAPAN,ENGLAND , FRANCE

#1

This program creates a file named “TEST.DAT” on the disk in drive
A, and writes the three pieces of data, JAPAN, ENGLAND, FRANCE,

in it.

1@ OPEN "A:TEST.DAT" FOR IMNPUT &S
26 IF EQF(1)=-1 GOTO &@

38 IMPUT #1,A%

48 PRINT A%

58 GOTD 248
&8 CLOSE #1
78 END

#1

240

The data written in the write program is read, assigned to the variable
A$, and displayed on the screen.

1@ OPEM "A:TEST.DAT" FOR AFPPEND AS #1
28 FOR L=1 70O 2

28 READ A%

48 PRINT #1,~%

96 MNEXT L

48 CLOSE #1

a8 EMD

38 DAaTA U.S5.A. ,CHINA

The previous write program has already written three pieces of data
in the “TEST.DAT” file opened in line 10 of this program. But since
FOR APPEND is specified in the OPEN statement, the data written by
the PRINT # statement in line 40 is added after the first three pieces
of data. Therefore, after this program is executed the “TEST.DAT" file
will contain five pieces of data—JAPAN, ENGLAND, FRANCE,
U.S.A., CHINA.

If FOR OUTPUT was used instead of FOR APPEND, the added data
would be written at the beginning of the file and the first three pieces
of data would be erased.

241

WRITING CHARACTERS ON A GRAPHIC SCREEN

Characters cannot be displayed on graphic mode screens using the
PRINT statement. To display characters on a graphic screen, the
screen is treated as a file device and the characters to be displayed
are output to it as a sequential file.

16 SCREEN Z

28 OPEN "GRP:" FOR OUTPUT A5 #1
3@ PRINT #1,"How do you do?"

48 GOTO 448

When the above program is executed the screen changes to the
graphic mode and “How do you do?” is displayed.

To specify the display location, a graphic command is executed im-
mediately before the PRINT # statement. The location specified by
this command becomes the top left corner of the 8 x 6 dot matrix of
the first character in the PRINT # character string.

18 SCREEMN Z

28 0OPEN "GRP:" FOR QUTPUT AS #1
25 PRESET (id@a,S5a)

38 PRINT #1,"How do you do?"

4@ GOTO 4@

The location (100,50) used in the PRESET command in line 25 in this
program becomes the top left corner location of the character string
output by line 30.

242

THE NUMBER OF FILES WHICH CAN BE OPENED
AT ONE TIME MAXFILES

Only the number *“1” can be specified as a file number in
‘MSX2-BASIC in its initialized state. This means that in a program only
one file can be opened at any given time. If you want to open more
than one file at the same time, you must specify the number of files
beforehand using.

[MAXFILES = expression |

For example, if you specify

MAXFILES=3

then a maximum of 6 files from 0 to 5 can be opened simultaneously.
The number of files which can be specified are from 0 to 15 (the num-
ber is from O to 6 when a disk is used). File number 0 is reserved for
use by the CSAVE, CLOAD, CLOAD?, LOAD, and SAVE commands.
Consequently, if

MAXFILES=8

is executed, only the CSAVE, CLOAD, CLOAD?, LOAD, and SAVE
commands can be used.

The MAXFILES statement should be executed either at the beginning
of a program or in the direct mode.

243

RANDOM ACCESS FILE
OPERATION

eWhat is Random Access File?
o Writing Data in a Random Access File
® Reading Data from a random Access File

WHAT IS A RANDOM ACCESS FILE?

Comparison with a sequential file

A random access file can only be operated on a floppydisk. The fol-
lowing diagrams show how data is written in a sequential file and in
a random access file.

Sequential File

JIAIP[A|N|OD|IOAIE|N|GJL|A[N|D|ODJOAl F|R|A
[—

record record

Random Access File

record 1 |J|A[P|A{N]. T|OKIY|O
record 2 |E|N|GiL|A|N|D L |O|N|D|O|N
record 3 |F|R{A(N[C|E P|AR|I|S
record 4

22 bytes

244

As the above sequential file diagram shows, a sequential file is like
data written in order on a roll of paper tape. A record is the unit for
writing in the file one time, and the length of a record depends on the
amount of data.

On the other hand, a random access file is like several pieces of
paper tape that have been cut the same length; each one of them is
a separate record with its own number, such as 1, 2, 3, etc. In the
above random access file diagram, the paper tapes have been cut to
a size that will hold 22 characters.

Since the records in a random access file are like these separate
pieces of paper tape, it is possible to select one record only and write
data in it, or read data from it. For example, if we select record 3, we
can take out the data “FRANCE PARIS” from it. Or we can specify
record 10 and jump over to it to write new data.

A final point which should be mentioned is that even the places
where data are written in each of the records of a random access file
are handled in an orderly way.

Commands and Statements Used to Operate a Random Access File
The foliowing statements are used to make input and output to/from
a random access file.

..................... opens a file

.... specifies a record format
........... writes data in a record

........................ outputs one record to a file

.... inputs one record from a file

................... closes a file

245

WRITING DATA IN A RANDOM ACCESS FILE

The procedure for writing data in a random access file is as follows.
(1) Open the file with the OPEN statement.

(2) Specify the format of one record with the FIELD statement.

(3) Write data in a record with the LSET, RSET statement.

(4) Output the data with the PUT statement.

(5) Close the file.

Each step in this procedure is explained in detail below.
(1) Open the file with the OPEN statement

A file is opened with the OPEN statement in order to write or read
data. The format of the OPEN statement is:

OPEN *“‘[device name] file name [.type name]” AS[#] file
number [LEN =record length]

The device name is always the disk drive name, since a random ac-
cess file can only be operated with a disk.

When the OPEN statement is executed, a file with the specified file
name and type name is ready for data output on the specified disk
drive. Just as with a sequential file, file numbers from 0 to 6 can be
specified, but in the initialized state only the number “1”’ can be
specified. ‘
Unlike a sequential file, in a random access file data can be written
to or read from any part of the file. The smallest unit that can be writ-
ten or read is called a record. The size of a record in byte units is
specified with “record length” in the OPEN statement. Any size from
1 to 256 bytes can be specified. If the size specification is omitted,
256 bytes are automatically specified.

(2) Specify the format of one record with the FIELD statement

FIELD[#] file number, character length AS string variable
[, character length AS string variable]...

The FIELD statement specifies the variables used for writing and
reading data, and assigns the character length of each variable in a
record.

All data processed by a random access file is string type data.

246

FIELD #1,26 A5 A%,238 AS B$,18 AS C$

In the above example, a record is divided in file #1 for input/output,
and 20 bytes are assigned to the string variable A$, 30 bytes to B$,
and 10 bytes to C$. The total length of all the string variables is 60
bytes, so the length of the record must be previously specified as 60
bytes or more in the prior OPEN statement. If the length has, for ex-
ample, been specified as 128 bytes, the FIELD statement divides the
record as follows:

A$ B$ C$
Y— — o —
20 bytes 30 bytes 10 bytes 68 bytes

In this example, no data are input/output for the remaining 68 bytes,
so this results in wasted space on the disk. It would be preferable to
specify only 60 bytes as the record length in the OPEN statement.

(3) Write data in a record with the LSET, RSET statements

After a record has been divided and assigned variables by the FIELD
statement the output data can be set in the record. The LSET state-
ment is used to do this with left justification of the data in the record,
and the RSET statement is used for right justification.

LSET string variable = string data
RSET string variable = string data

The string variable in these statements are the variables previously
assigned to the record by the FIELD statement. The string data are
the data to be written in the file using the string variables.

If

LSET A$=X%

is specified, the string data X$ will be set in variable A$ in the record
with left justification.
If

247

RSET bB#=Y%

is specified, the string data Y$ will be set in variable B$ in the record
with right justification.
If

K$="MEX"
Y$="PERSONAL COMPUTER"

then the data will be set in the record in the following form:

(Note: At this point the record is written in the buffer. It will be written
in the file on the disk later by the PUT statement. This is an example
of the orderly way in which data are handled in a random access file.)

A$: 20 bytes B$: 30 bytes
A AL
¢ Y4 N
MSX PERSONAL COMPUTER
—~ N\ — _J
3 bytes 17 bytes 13 bytes 17 bytes

if the data length is fonger than the length of X variables in the record,
the excess characters on the right side of the data will be ignored.

Character data can now be written in the file. But since only string
variables can be used in records, numeric type data must be convert-
ed to string type data before it can be set in a record. The functions
MKI$ (make integer doilar), MKS$ (make single precision dollar),
MKD$ (make double precision dollar) are used in LSET, RSET state-
ments to convert numeric data into string data.

LSET (or RSET) string variable = MKI$ (integer type data)
LSET (or RSET) string variable = MKS$ (single precision type data)
LSET (or RSET) string variable = MKD$ (double precision type data)

LSET P$ = MKI$(A %)

LSET Q$ = MKS$(B!)
LSET R$ = MKDS$(C #)

248

The length of the numeric data after they are changed into string type
data is 2 bytes for integer type data, 4 bytes for single precision, and
8 bytes for double precision. The number of bytes required for each
variable must be defined in the FIELD statement in accordance with
the size of the numeric data type.

In the above example, P$ is integer type, Q$ is single precision, and
R$ is double precision. These variables would be defined in the FIELD
statement as follows:

FIELD #1,2 AS P#$,4 AS G¢,8 AS RE
(4) Output the data with the PUT statement

Once the data has been set in the record in the buffer, the PUT state-
ment is used to write the data in the file on the disk.

[PUT[#] file number [,record number]|

The PUT statement writes the data currently set in the record to the
specified record location in the file specified by the file number. This
record number is used when the data is read from the random access
file at a later time.

If the record number is omitted in the PUT statement, and if no PUT
statement or GET statement has been previously executed, the num-
ber “1” is automatically specified as the record number. f a PUT or
GET statement has been previously executed, 1 is added to the
record number of the previous statement to become the new record
number.

(5) Close the file

The file is closed with

CLOSE([#] [file number]

which removes the number assigned to the file.

The following program is a complete program for writing data in a
random access file.

249

18 OPEN "A:TELNO.DAT" AS #1 _
26 FIELD #1,Z AS ID$,12 A5 NAM3,11 AS NO
%

3@ FOR R=1 TO 2

48 READ AYX,B$,C$

S8 LSET ID$=MKI$(AM)

&8 LSET NaME=B$

78 RSET MNO$=C$

80 PUT #1,R

9@ NEXT R

168 CLOSE #1

118 DATA 1,TOM,111-2222
126 DATA 2,SUSIE,333-4444
128 DATA 3, J0AN,S55-8444

A% in lines 40 and 50 is an integer type numeric variable. (The type
declaration characters %, !, # are used to define variables as integer,
single precision, or double precision type variables.)

The file “TELNO.DAT” is created on the disk in drive A when the
above program is executed. The total length of 1 record for input/out-
put is 25 bytes, with 2 bytes assigned to the string variable I1D$, 12
bytes assigned to NAMS$, and 11 bytes assigned to NO$. When the
FOR—NEXT loop beginning in line 30 is repeated three times, the fol-
lowing data are written in the file.

ID$: 2 bytes NAMS: 12 bytes NOS$: 11 bytes
r_}_\{ A 7 A -~
record 1| (1) [TOM 111-2222
record 2| (2) [SUSIE 333-4444
record 3| (3) |JOAN 555-6666

The integer type data 1, 2, 3 in this column are
converted to string data based on the internal
expression format, and written as 2 bytes each.

250

READING DATA FROM A RANDOM ACCESS FILE

The procedures for writing data and reading data in a random access
file are almost the same.

(1) Open the file with the OPEN statement.

(2) Specify the format of one record with the FIELD statement.

(3) Read data from a record with the GET statement.

(4) Close the file.

Steps (1) and (2) are the same as for writing data in a file. The data
are read by the (3) GET statement.

|GET[#] file number, [record number]]

The GET statement reads the data in the specified record number and
assigns them to each variable as defined in the FIELD statement.

The numeric data were converted to string data when they were writ-
ten in the file, so when they are read they are assigned to the string
variables specified by the FIELD statement. It is necessary to convert
this string data back to numeric data in order to display it on the
screen or to process it. This is done with the CVI, CVS, CVD func-
tions, which have exactly the opposite functions as MKI$, MKS$, and
MKDS$. If, for example, integer type numeric data have been assigned
by the GET statement to the string variable P$, then they are changed
to integer type data and assigned to the integer type variable A% by

An=CV T (P$ED
CVI(P$) can be used directly in a PRINT statement to display the data,

FRINT CUICP$)

CVI (convert to integer) converts data to integer type data; CVS (con-
vert to single precision) converts data to single precision type data;
and CVD (convert to double precision) converts data to double preci-
sion type data.

numeric type variable (integer type) = CVI (string type data)
numeric type variable (single precision type) = CVS (string type data)
numeric type variable (double precision type) = CVD (string type data)

Once the data have been read, the file is closed with the CLOSE
statement.

251

Now, let’s write a program to read the data from the random access
file we made in the previous program and display it on the screen.

18 SCREEN 8:WIDTH 48

28 OPEN "A:TELNCO.DAT" AS #1

38 FIELD #1,2 AS ID$,12 AS NaMs$,11 AS NO
E

48 INPUT "Record number " ;N

o8 IF N=8 THEN GOTOD 11i@

&8 GET #1,N

78 PRINT "ID NO.";CVICID®Y ;" v
88 PRINT NaM: ;NO$

28 PRINT

1a@ GOTO 4u

116 CLOSE #1

This program would display data similar to that shown in the follow-
ing illustration:

RUN
Record number? |
ID NO.1 TOM 111-2222

Record number? 2
ID NO.2 SUSIE 333~-4444

Record number? @
ok

252

Chapter 10 Machine
Language Subroutines

253

WRITING AND EXECUTING
MACHINE LANGUAGE
SUBROUTINES

® Specifying the Area and Start Address—CLEAR, DEFUSR

e Writing a Machine Language Subroutine—POKE

e Calling a Machine Language Subroutine—USR

®Saving and Loading a Machine Language Subroutine—
BSAVE, BLOAD

MACHINE LANGUAGE SUBROUTINES

With MSX-BASIC, the Z-80 CPU machine language can be used to
write a subroutine in memory. Control can be transferred from BASIC
to the subroutine, and the results of executing the subroutine
returned to a variable defined by BASIC.

A maximum of 10 machine language subroutines can be defined.
Also, only one value can be given to one machine language
subroutine.

254

SPECIFYING THE AREA AND START ADDRESS OF
A SUBROUTINE CLEAR, DEFUSR

To use a machine language subroutine, the CLEAR statement should
be used to specify the high-memory address of the BASIC program
area. The area following the high-memory address will be used in
writing the machine language subroutine.

ICLEAR [size of character area] [,high-memory address]l

For example,
CLEsR 286, 8HCFFF

specifies the high-memory address of the BASIC program area as
&HCFFF (decimal address 53247). Therefore, the area beginning with
the &HDOOO address (decimal address 53248) can be used as the area
for writing a machine language subroutine. In the above CLEAR
statement the character area size is specified as 300 bytes. The initial
default setting is 400 bytes.

Next, the subroutine start address is defined by the DEFUSR state-
ment.

| DEFUSRI[X] = start address]

X is an integer from 0 to 9. The start address of 10 subroutines can
be defined by the USR function.

DEFUSRO=&HDEGEE

This DEFUSR statement defines the subroutine starting at the ad-
dress &HDOO0O (decimal address 53248) as the USR 0 function.

255

WRITING A MACHINE LANGUAGE SUBROUTINE
POKE

The POKE statement is used to write a machine language subroutine
to memory.

[POKE address, expression |

The POKE statement writes one byte of data to the specified address
in memory.

The following program writes the hexadecimal numbers 21, 3C, FO,
C9 in memory beginning at the &HDOO0O address.

188 AD=&HDAES

118 READ M$:IF M$&="END" THEN END
1260 POKE AD,VAL{"&H" +M$)

130 AD=AD+1:GOTO 110

148 DATA 21,3C,F@,CP

158 DATA END

All that is required is to write the machine language subroutine com-
mands (Z-80 commands) in the DATA statement in line 140. The RET
command returns control from the machine language subroutine to
the BASIC program.

256

CALLING A MACHINE LANGUAGE SUBROUTINE
USR

Transferring control to a machine language subroutine is called
*calling a machine language subroutine’.

The USR function is used to call a machine language subroutine.

USRIXKH

X is the USR function number defined in the DEFUSR statement. | is
the value (numeric or string) given to the machine language
subroutine.

For example, the subroutine defined by DEFUSR 0 is called by ex-
ecuting

X=USRB{Y)

After the machine language subroutine is executed, the execution
result value is assigned to the variable X and the BASIC program is
executed.

When the machine language subroutine is called, the value given to
the subroutine (the Y variable value) is stored in the following loca-
tion in memory, and data which indicates the type of Y are entered
in register A. The start address for the area which stores the Y value
is entered in registers HL.

Yt Data entered | Registers HL Y value storage
ype in register A* | address indication | address

integer 2 &HF7F8—&HF7F9

single. 4 &HF7F6 &HF7F6—&HF7F9

precision

double 8 &HF7F6—&HF7FD

precision

* the same data are also entered in the &HF663 address in memory

257

When Y is a string variable:

Data entered | Data entered in

in register A |registers DE String descriptor

3 String descriptor | 1st byte: character string length
start address 2nd & 3rd bytes: start address
of the character string storage
area

When the machine language subroutine execution is completed, the
result value is returned to the X variable by setting the registers and
memory as follows:

Resuit value &HF663 Registers |Registers|Result storage
type memory DE HL address
address
integer 2 &HF7F6 |&HF7F8—&HF7F9
single precision 4 &HF7F6 |&HF7F6—&HF7F9
double precision 8 &HF7F6 |&HF7F6—&HF7FD
string 3 string area starting from
descriptor address indicator
start by the 2nd and
address 3rd string descrip-
tor bytes

258

The generated number to be returned to BASIC is stored in the
&HF7F8 and &HF7F9 address. Also, since the value type is integer,
2 is entered in the address &HF663.

The following BASIC program will write the machine language
subroutine to memory, call it and use the returned values (random
value from 0 to 255) to display 1 to 6 on the dice.

18 CLEAR 3ea,&HCFFF ——specifies the high-memory address

28 SET BEEP 1 of the BASIC program area

3@ -

48 AD=4HDO®E : DEFUSRB=AD —— sets the subroutine start
Se Gosue 424 address at &HD00O

48 1 —-

78 SCREEMN S

S8 OPEN "GRP:" FOR OUTPUT AS #1
8 SET PAGE 1 ,1:CLS

166 R=5:RESTORE 348

11@ FOR L=8 TG 5

128 ®KC=(L MOD 3Z:=38

126 YO=(L “ 3)%168 draws the
148 LINE (xC,YC)~STEP(S#,56),15,BF spots of the
156 FOR M=@ TO L dice (1 to 8)
148 READ XY on page 1

{76 CIRCLE {XC+X,YC+7¥),R,8
188 PAINT (XC+X,YC+Y),8,8
178 MNEXT ™

288 MNEXT L

21a 7 --

228 SET PAGE B8,6

230 PRESET (78,1356

248 PRINT #1,"Press any key" calls the subroutine
256 1IF IMKEY#="" THEN 258-—————when a key is pressed
z2éw J=USRB(8> MOD 20 ——— subroutine call

278 FOR L=8 70 J

280 N=USRe{@> MOD &—— _ subroutine call

2¥8 x=(N MOD Z>»=ga

copies the
268 Y=(N N 3)%160 . g.,‘,\ of the
318 COPY (X,Y)-STEF(&@,48),1 TO (186,76 f.} A
. gice (1 tc 6)
Z28 BEEF:FOR =8 TO S@:NEXT W to page 1in
aza MEXT L accordance
246 GOTO 256 with the value
358 ¢ x#x dice data %% returned by
288 DATA 23,25 the subrouting
378 DAaTA 25,18,25,44]
286 DATA 16,10 ,25,25,46,46 data which
298 DATA 18,10,190,40,46,18,48,48 determines
466 DATA 18,19,10,96,46,16,46,40,25,25 the location

[N
giquATﬂ 18,16,10,.,44,46,18,46,48,16,2%,4 of the spots
y 25

of the dice

259

28 7 ®%x write machine language subrout,
ine #%x

438 RESTORE 326

448 READ M$:IF ME="END" THEN RETURM

4568 POKE AD, VAL "&H"+M$)

458 AD=A0+1:60T0 44@

478 ¢ ®¥% machine codes *%%

428 DeTa 21 ,F8,F7,ED,5F,77,223,4F

458 DATA 77,3E,82,32,43,F&,CF

S8 DAaTa END /

260

Sample Machine Language Subroutine

The following machine language program generates random num-
bers from 0 to 255 using the CPU’s register R (refresh register). The
source list is given below. (The format is based on MACROS80 3.44).

1: HACRO-80 3.44 09-Bec-81 PAGE |
i .180
5 PHASE 0DOOOH
[
720002 INTEGER EQU 2
s Fé63 VALTYPE EQU OF663H
t FIFb DAC o OF 7F 6H
10
11: H
12: o nachine-1anguage sample program

14:

13: D0oo START:

162 DOOO 2t F7F8 LD HL1DAC#2

17: D003 ED SF Lb AR 3 load R register
182 D005 77 LB (HL)sA

19: DO06 23 INC HL

208 D007 AF 1R [

21T Doos 77 Lp (HL) 1A 5 set randon data
221 DO0Y 3 02 LD A+ INTEGER

233 DOOB 32 Fée3 Lp (VALTYPE) 1A 3 set data type
28t DOOE (9 RET

foH

263 END START

27 NACRO-80 3.44 09-Dec-81 PAGE S

28:

29:

30: Macros:

3

32t Symbels:

33: F7F6 DAL 0002 INTEGER D000 START
34: F6b3 VALTYPE

34:
37:
38: No Fatal erroris)
39:
40:

261

SAVING A MACHINE LANGUAGE SUBROUTINE
BSAVE

The machine language subroutine in the above program is written in
the &HD0O00O—&HDOOE address in memory.

The BSAVE command is used to save this machine language subrou-
tine on cassette tape or on a disk.

BSAVE “[device name] [file name [.type name]]”, start
address, end address [,execution start address]

The BSAVE command saves the content of the specified area in
memory.

BSAVE "CAS:RANDOM" ,&HDBOA ,&HDBOE

saves the content of the &HD0O00O—&HDOOE address (the machine
language program) on cassette tape with the file name RANDOM.

BSAVE "A:RANDOM.BIN" ,&HDOOA@ ,&HDABE

saves the same content on the disk in disk drive A with the file
name/type name RANDOM.BIN.

262

LOADING A MACHINE LANGUAGE SUBROUTINE
BLOAD

The content saved with the BSAVE command is locaded with the
BLOAD command.

[BLOAD “[device name] [file name [type name]]” [,R] [offset]]

BLOAD "CAS:RaNDOM®
loads the content of the file saved as RANDOM on cassette tape.

BLOAD "A:RANDOM.BIN"

loads the content of the file saved with the file name/type name RAN-
DOM.BIN on the disk in drive A.

In both cases, the content of the area beginning at the start address
location specified in the BSAVE command is loaded.

When a machine language subroutine is saved separately in the
above manner, it can be loaded and executed in a BASIC program
without writing the subroutine with the POKE statement. In this case,
line 50 and lines 420 to 500 would not be required in the above BASIC
program.

263

INDEX

265

BASIC COMMANDS, STATEMENTS, FUNCTIONS,

AND ERROR MESSAGES

A
A:..222
ABS(X) ... 181
AND ... 141
ASC(X$) ... 196
ATN(X) ... 180
B

B:..222
BLOAD ... 263
BSAVE ... 262
c

CALL FORMAT ... 61
CALL MEMINI ... 228
CALL MFILES ... 229
CALL MKILL ... 229

CALL MNAME ... 232

CAS: ... 222

CHRS$(X) ... 196

CIRCLE ... 95

CLEAR ... 254

CLOAD ... 59, 226
CLOAD? ... 57

CLOSE ... 234, 235, 245249
CLS... 38

COLOR ... 105, 112
COLOR SPRITE ... 164
COLOR SPRITES ... 166
COPY ... 123, 127, 133, 136
COS(X) ... 180

CRT: ... 222

CSAVE ... 56, 226

CVD ... 251

CVI ... 251

CVS ... 251

D

DATA ... 51

DEFUSR ... 255
DELETE ... 37

DIM ... 68

DRAW ... 95

Device /O error ... 59

266

E
END ... 44

EOF ... 239

F

FIELD ... 246
FILES ... 229
FOR—NEXT ... 47
G

GET ... 251
GOTO ... 38
GRP: ... 222

[

IF—THEN ... 42
INKEYS ... 200
INPUT ... 30

INPUT # ... 233, 237
input past end ... 239
INT(X) ... 183
INTERVAL OFF ... 211
INTERVAL ON ... 207
INTERVAL STOP ... 215

K

KEY(N) OFF ... 211
KEY(N) ON ... 207
KEY(N) STOP ... 215
KILL ... 66, 229

L
LEFT$(X$,N) ... 190
LEN(XS) ... 197

LET ... 14

LINE ... 95

LINE INPUT # ... 238
LIST ... 25

LOAD ... 226

LPT: ... 222

LSET ... 247

M

MAXFILES ... 243
MEM: ... 222
MERGE ... 226
MID$(X$,M,N) ... 190
MKDS ... 248
MKIS ... 248
MKSS$... 248
MOD ... 107

N

NAME ... 232
NEW ... 28

o

ON INTERVAL GOSUB ... 207
ON KEY GOSUB ... 207

ON SPRITE GOSUB ... 207
ON STOP GOSUB ... 207

ON STRIG GOSUSB ... 207
OPEN ... 234, 237, 240, 246
OR ... 138

P

PAINT ... 95

POKE ... 256
PRESET ... 95, 139
PRINT ... 13, 19
PRINT # ... 234
PSET ... 95, 139
PUT ... 249

PUT SPRITE ... 159

R

READ—DATA ... 51
REM ... 113

RENUM ... 46
RIGHTS$(X$,N) ... 190
RND(X) ... 182

RSET ... 247

RUN ... 229

S

SAVE ... 226

SCREEN ... 88, 145, 154
SET ADJUST ... 82
SET BEEP ... 84

SET PAGE ... 119

SET PASSWORD ... 80
SET PROMPT ... 79
SET SCREEN ... 85
SET TITLE ... 75
SIN(X) ... 180
SPACES$(N) ... 189
SPC(N) ... 189

SPRITE OFF ... 211
SPRITE ON ... 207
SPRITE STOP ... 215
SPRITES ... 157
SQR(X) ... 178

STEP ... 100

STICK(N) ... 203

STOP OFF ... 211
STOP ON ... 207
STOP STOP ... 215
STR$(X) ... 194
STRIG(X) OFF ... 211
STRIG(N) ON ... 207
STRIG(N) STOP ... 215
Syntax error ... 12, 22

T
TAN(X) ... 180

TIME ... 185

Type mismatch ... 21, 22
U

USR... 257

\')

VAL(XS$) ... 194
Verify error ... 57

w
WIDTH ... 93

267

TERMS D

data ... 53, 225
40 character mode ... 93 data file ... 225
80 character mode ... 93 data input function ... 198
device name ... 221
A direct mode ... 23
active page ... 115 display page ... 115
array variable ... 68 drive name ... 222
ASCII format ... 226
assign ... 51 E
auto-start program ... 232 endless loop ... 39
enhanced sprite
B function ... 163
background ... 90 error message ... 22
battery back-up RAM ... 74
baud rate ... 145 F
border area ... 90 file ... 220
brightness ... 104 file device ... 221
file name ... 220
c FOR—NEXT loop ... 48
character addition ... 20 foreground ... 90
character code ... 196 format ... 61
character mode ... 89, 91 function ... 176
character string ... 19
color code ... 102 G
color spill ... 110 graphic mode ... 89, 95
color palette ... 103
comma (,) ... 36 H
computer language ... 50 hardware ... 27
conditional decision ... 43
conditional expression ... 43, 44 |
coordinate ... 95 interlace mode ... 147
copy ... 123 interlace scanning ... 147
[cTRL]+[sTOP] ... 39 intermediate language
cursor ... 11 format ... 226
cursor key ... 35, 203 interrupt ... 206

interrupt declaration
statement ... 207

K

key click switch ... 146
keyboard ... 10

268

L

line number ... 24

load ... 54, 58, 65
logical operation ... 137
loop ... 39

M

machine language
subroutine ... 254

machine language subroutine
call ... 257

memory disk function ... 228

memory switch function ... 74

merge ... 226

multicolor mode ... 97

N

non-interlace scanning ... 147

null string ... 200

numeric type function ... 177

numeric type variable ... 21

numeric type/string type
conversion function ... 193

p

page ... 114

page setting ... 115

page number ... 119

palette function ... 103, 104

password ... 80

printer type ... 146

program ... 24, 27

program area ... 228

program file ... 225

program list ... 25

program mode ... 23

program revision ... 33-35

prompt statement (in a SET
PROMPT statement) ... 79

prompt statement (in an
INPUT statement) ... 32

R
radian ... 180
RAM ... 74

random access file ... 233, 244

random number ... 182
record ... 235, 244
RESET button ... 29
return key ... 11

S

save ... 54, 56, 63

screen mode ... 90
semicolon (;) ... 34
sequential file ... 225, 233
single quote mark ... 113
software ... 27

space ... 20

space bar ... 11

sprite pattern ... 90, 152
sprite plane ... 90

sprite size ... 153
statement ... 43

string type function ... 188
string type variable ... 21

T
title statement ... 75
transparent color ... 102
type name ... 224

Vv

variable ... 14
video RAM ... 91
VRAM size ... 91

269

USING BASIC

Operation

start BASIC ... 9

give a command to the computer ... 11
format a disk ... 61

make an auto-start program ... 232

Making a Program

program input ... 24

display a program list (LIST)... 25

erase a program (NEW) ... 28

add a line to a program ... 33

display specified lines (LIST) ... 34

revise a line in a program ... 35

deiete a line in a program (DELETE) ... 37
renumber program lines (RENUM) ... 46
write a remark in a program (REM) ... 113

Program Execution and Flow Control
execute a program (RUN) ... 26

end a program (END) ... 44

jump (GOTO) ... 38

make an endless loop (GOTO) ... 38

make a loop (FOR—NEXT) ... 47

make a loop in a loop ... 49

make a conditional decision (IF—THEN)} ... 42

Assign and Display DATA

assign a number to a variable (LET) ... 14

display a calculation result (PRINT expression) ... 13

omit LET ... 18

display a character string (PRINT “character string”) ... 19
add character strings ... 20

assign a value to a variable from the keyboard (INPUT) ... 30
uge a prompt statement in an INPUT statement ... 32

read the DATA to be assigned to variables (READ—DATA) ... 51
return the character of the key pressed (INKEYS$) ... 200
return a space (SPACES$(N), SPC(N)} ... 189

270

Process Numeric Data

calculate (PRINT expression)... 13

convert a numeric value to a string value (STR$(X)) ... 194
return the square root (SQR(X)) ... 178

use trigonometric functions ... 180

return the absolute value (ABS(X)) ... 181

return a random number (RND(X)) ... 182

change to an integer {(INT(X)) ... 183

return the character of a character code (CHR$(X)) ... 196

Process String Data

display a character string (PRINT ‘“character string”) ... 19

add character strings ... 20

return the left side of a character string (LEFT$(XS$,N)) ... 190
return the right side of a character string (RIGHT$(X$,N)) ... 190
return the middle of a character string (MID$(X$,M,N)) ... 190
return the character code (ASC(X$)) ... 196

return the length of a character string (LEN(X$)) ... 197

Loading and Saving Programs

save a program on cassette tape (CSAVE) ... 56, 226

check if a program has been correctly saved on cassette tape
(CLOAD?) ... 57

load a program from cassette tape (CLOAD) ... 59, 226

save a program on a disk (SAVE) ... 63, 226

load a program from a disk (LOAD) ... 65, 226

merge programs (MERGE) ... 226

save a program on the memory disk (SAVE) ... 228

load a program from the memory disk (LOAD) ... 228

load and execute a program (RUN) ... 229

Data Files

write to a sequential file ... 234

read from a sequential file ... 237

add data to a sequential file ... 240
write to a random access file ... 246
read from a random access file ... 251

File Management

display files on a disk (FILES) ... 64, 230

erase a file on a disk (KILL) ... 66, 230

display files in a memory disk (CALL MFILES) ... 230

erase a file in a memory disk (CALL MKILL) ... 230

change file name (NAME, CALL MNAME) ... 230-231

specify the maximum number of files to be opened at the same
time (MAXFILES) ... 243

271

Definition and Setting

Specify SCREEN mode (SCREEN}) ... 88

declare an array variable (DIM) ... 68

add a title (SET TITLE)... 75

delete a title ... 77

specify the color of the title screen (SET TITLE) ... 77

specify a prompt statement (SET PROMPT) ... 79

specify a password (SET PASSWORD) ... 80

delete a password ... 81

if you forget the password ... 81

change the position of the screen display (SET ADJUST) ... 82

change the BEEP pattern (SET BEEP) ... 84

set the SCREEN display specification to the initial status
(SET SCREEN}) ... 85

specify the cassette baud rate (SCREEN) ... 146

specify the printer type (SCREEN) ... 146

initialize the memory disk (CALL MEMINI) ... 228

In the Character Mode
specify the number of characters in a line (WIDTH) ... 93
clear the screen display (CLS) ... 38

In the Graphic Mode

set interlace scanning (SCREEN) ... 148
clear the screen display (CLS) ... 38
change pages (SET PAGE) ... 119

copy figure data (COPY) ... 123

copy using a logical operation ... 137

Color

set the color palette (COLOR) ... 105
determine the SCREEN 8 color ... 109

272

Sprite

define a sprite pattern ... 155

display a sprite pattern (PUT SPRITE) ... 159
animate a sprite ... 161

change the color of a sprite (COLOR SPRITE) ... 164

specify the color for each line of a sprite (COLOR SPRITES) ..

move a sprite line 32 dots ... 168

Programming Technique

sprite pattern specification technique ... 170

return a different random number with each execution ... 185
advance the program by pressing a key ... 201

advance the program by pressing a specific key ... 202
display characters in the graphic mode ... 242

. 166

273

A GUIDE TO
MSX-BASIC Version 2.0

Sony Corgoralion Frimied n dEpan - LO1GEs

