SERVICE MANUAL

MPS-1000

NOVEMBER 1986
PN-319907-01

SERVICE MANUAL

MPS-1000

NOVEMBER 1986
PN-319907-01

Commodore Business Machines, Inc.

1200 Wilson Drive, West Chester, Pennsylvania 19380 U.S.A.

Commodore makes no expressed or implied warranties with regard to the information contained herein. The information is made available solely on an as is basis, and the entire risk as to quality and accuracy is with the user. Commodore shall not be liable for any consequential or incidental damages in connection with the use of the information contained herein. The listing of any available replacement part herein does not constitute in any case a recommendation, warranty or guaranty as to quality or suitability of such replacement part. Reproduction or use without expressed permission, of editorial or pictorial content, in any matter is prohibited.

This manual contains copyrighted and proprietary information. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Commodore Electronics Limited.

Copyright © 1986 by Commodore Electronics Limited.
All rights reserved.

PRECAUTIONS

Precautionary notations throughout the text are categorized relative to 1) personal injury, and 2) damage to equipment:

DANGER Signals a precaution which, if ignored, could result in serious or fatal personal injury. Great caution should be excercised in performing procedures preceded by a DANGER heading.
WARNING Signals a precaution which, if ignored, could result in damage to equipment. The precautionary measures itemized below should always be observed when performing repair/ maintenance procedures.

DANGER

1. ALWAYS DISCONNECT THE PRODUCT FROM BOTH THE POWER SOURCE AND THE HOST COMPUTER BEFORE PERFORMING ANY MAINTENANCE OR REPAIR PROCEDURE.
2. NO WORK SHOULD BE PERFORMED ON THE UNIT BY PERSONS UNFAMILIAR WITH BASIC SAFETY MEASURES AS DICTATED FOR ALL ELECTRONICS TECHNICIANS IN THEIR LINE OF WORK.
3. WHEN PERFORMING TESTING AS DICTATED WITHIN THIS MANUAL, DO NOT CONNECT THE UNIT TO A POWER SOURCE UNTIL INSTRUCTED TO DO SO. WHEN THE POWER SUPPLY CABLE MUST BE CONNECTED, USE EXREME CAUTION IN WORKING ON POWER SUPPLY AND OTHER ELECTRONIC COMPONENTS.

WARNING

1. REPAIRS ON OUR PRODUCT SHOULD BE PERFORMED ONLY BY OUR CERTIFIED REPAIR TECHNICIAN.
2. MAKe Certain that the source voltage is the same as the rated voltage, LISTED ON THE SERIAL NUMBER/RATING PLATE. IF OUR PRODUCT HAS A PRIMARY AC RATING DIFFERENT FROM THE AVAILABLE POWER SOURCE, DO NOT CONNECT IT TO THE POWER SOURCE.
3. ALWAYS VERIFY THAT OUR PRODUCT HAS BEEN DISCONNECTED FROM THE POWER SOURCE BEFORE REMOVING OR REPLACING PRINTED CIRCUIT BOARDS AND/OR INDIVIDUAL CHIPS.
4. IN ORDER TO PROTECT SENSITIVE $\mu \mathrm{p}$ CHIPS AND CIRCUITRY, USE STATIC DISCHARGE EQUIPMENT, SUCH AS ANTI-STATIC WRIST STRAPS, WHEN ACCESSING INTERNAL COMPONENTS.
5. REPLACE MALFUNCTIONING COMPONENTS ONLY WITH THOSE COMPONENTS RECOMMENDED BY THE MANUFACTURER; INTRODUCTION OF SECOND-SOURCE ICs OR OTHER NONAPPROVED COMPONENTS MAY DAMAGE THE PRODUCT AND VOID ANY APPLICABLE OUR WARRANTY.

PREFACE

This manual describes theory of operation, maintenance, and repair of highquality, multifunctional, dot matrix printer: Commandore MPS-1000. The manual concentrates on the features of the MPS-1000.
The instructions and procedures included herein are intended for the experienced repair technician, and attention should be given to the precautions on the preceding page. The chapters are organized as follows:

Chapter 1 - Provides a general product overview, lists specifications, and illustrates the main components of the printer.

Chapter 2 - Describes the theory of printer operation.

Chapter 3 - Discusses the options.
Chapter 4 - Includes a step-by-step guide for product disassembly, assembly, and adjustment.

Chapter 5 - Provides the approved techniques for troubleshooting.
Chapter 6 - Describes preventive maintenance techniques and lists lubricants and adhesives required to service the equipment.

Chapter 7 - Includes IC descriptions, schematics, and reference materials.

* The contents of this manual are subject to change without notice.

REVISION TABLE

REVISION	DATE ISSUED	CHANGE DOCUMENT
A	July 1, 1986	1st issue

TABLE OF CONTENTS

CHAPTER 1. PRODUCT DESCRIPTION
 CHAPTER 2. PRINCIPLES OF OPERATION
 CHAPTER 3. OPTIONAL EQUIPMENT
 CHAPTER 4. DISASSEMBLY, ASSEMBLY, AND ADJUSTMENT
 CHAPTER 5. TROUBLESHOOTING
 CHAPTER 6. MAINTENANCE
 CHAPTER 7. REFERENCE MATERIALS AND SCHEMATICS

\cup

CHAPTER 1 PRODUCT DESCRIPTION

1.1 FEATURES 1-1
1.2 SPECIFICATIONS 1-2
1.3 INTERFACE OVERVIEW 1-7
1.3.1 Commodore Serial Interface 1-7
1.3.2 Centronics Parallel Interface 1-11
1.4 MAIN COMPONENTS 1-14
1.4.1 Power Supply Circuit 1-15
1.4.2 CATX Control Board 1-17
1.4.3 COMI Circuit Board 1-18
1.4.4 Printer Mechanism. 1-19
1.4.5 Housing 1-20
1.5 SELF TEST 1-21
1.6 DIP SWITCH AND JUMPER SETTINGS 1-22
LIST OF FIGURES
Fig. 1-1 Printable Area of Fanfold Paper 1-4
Fig. 1-2 Printable Area of Cut Sheet 1-5
Fig. 1-3 Serial Connector 1-7
Fig. 1-4 Serial Interface Timing Chart 1-8
Fig. 1-5 Data Structure 1-10
Fig. 1-6 Parallel Inteface Timing Chart 1-13
Fig. 1-7 Power Supply Components (120V Ver.) 1-15
Fig. 1-8 Power Supply Components (220 and 240V Ver.) 1-16
Fig. 1-9 CATX Control Board (120V and 240V Ver.) 1-17
Fig. 1-10 CATX Control Board (220V Ver.) 1-17
Fig. 1-11 COMI Circuit Board 1-18
Fig. 1-12 Printer Mechanism 1-19
Fig. 1-13 Housing (Upper Case and Lower Case) 1-20
Fig. 1-14 ROM Error Occurance. 1-21
Fig. 1-15 RAM Error Occurance. 1-21

LIST OF TABLES

Table 1-1 Serial Connector Pin Assignments 1-7
Table 1-2 Parallel Connector Pin Assignments 1-11
Table 1-3 DIP Switches Setting for Commodore Mode (120V and 240V Version) 1-22
Table 1-4 DIP Switch Setting for Commodore Mode (220V Version) 1-22
Table 1-5 International Character Sets 1-23
Table 1-6 DIP Switch Setting for IBM 5152+ Mode (120V and 240V Version) 1-23
Table 1-7 DIP Switch Setting for IBM 5152+ Mode (220V Version) 1-24
Table 1-8 Jumper Setting 1-24

1.1 FEATURES

The Commodore MPS-1000 is multifunctional, impact dot matrix printer capable of producting bidirectional print at 100 characters per second. The printer feature small size, light weight, and high performance, including the following functions:
(1) Impact dot matrix printing.
(2) 9 needles - print head.
(3) 100 cps printing speed for Draft printing.
(4) 20 cps printing speed for NLQ printing.
(5) Friction feed.
(6) Tractor feed.
(7) Cut Sheet Feeder (optional).
(8) Three printing mode.

Commodore mode with Comodore serial interface.
IBM-5152+ mode with Commodore serial interface.
IBM-5152+ mode with Commodore parallel interface.
NOTE: IBM 5152+ mode is IBM5152 compatible with enhancement.
(9) Near Letter Quality 1 font resident for each mode.

1.2 SPECIFICATIONS

Operation Characteristics

(a) Commodore mode

Printing speed:

Line spacing:
Dot matrix format:

Character sets:

Draft (Pica): $\quad 100 \mathrm{cps}$
Double-width: $\quad 50 \mathrm{cps}$
NLQ: 20 cps
Double-width NLQ: 10 cps
$1 / 216^{\prime \prime}$ to $127 / 216^{\prime \prime}$ ($1 / 6^{\prime \prime}$ at power on)
$12 \mathrm{~W} \times 18 \mathrm{H}$ NLQ characters
$9 \mathrm{~W} \times 9 \mathrm{H}$ standard characters
$6 \mathrm{~W} \times 8 \mathrm{H}$ standard characters (for Graphics characters)
$12 \mathrm{~W} \times 7 \mathrm{H}$ reversed standard characters
Commodore Graphics character set
Commodore Business character set

Character size:

Character Pitch	Width (mm)	Height (mm)
Pica	2.1	3.1
Double-width	4.2	3.1
Reversed Draft	4.2	2.5

Column width (maximum characters/line):

Character Pitch	Column Width	Column/inch
Pica	80	10
Double-width	40	5
Reversed Draft	40	5

Printing direction:

Duty cycle:

Line feed time:

Paper feed method:

Bidirectional with logical seeking in the text mode and Graphic characters. Unidirectional (left to right) in the bit image mode or set from a DIP switch.
Sustain a print rate of 9 dots per character on an 80-character line after temperature stabilization.
Approximately $150 \mathrm{~ms} /$ line for $1 / 6^{\prime \prime}$ line spacing.
Pproximately $100 \mathrm{~ms} /$ line for a page feed.
Friction feed.
Tractor feed.
Cut sheet feeder (optional).
(b) IBM 5152+ mode (for both interfaces)

Printing speed:	Pica:	100 cps
	Double-width:	50 cps
	Emphasized:	50 cps
	Double-width emphasized:	25 cps
	Condensed:	82 cps
	Double-width condensed:	41 cps
	Elite:	60 cps
	Double-width elite:	30 cps
Line spacing:	Programmable Minimum 1/216" (1/6" at power on)	
Dot matrix format:	$9 \mathrm{~W} \times 9 \mathrm{H}$ standard characters	
	$6 \mathrm{~W} \times 12 \mathrm{H}$ standard characters (for Graphics characters)	
	$12 \mathrm{~W} \times 18 \mathrm{H}$ NLQ characters	
Character sets:	Draft ASCII characters	
	Draft Internatinal characters	
	Graphics characters	
	NLQ ASCII	
	NLQ International	

Character Pitch	Width (mm)	Height (mm)
Pica	2.1	3.1
Elite	1.4	3.1
Condensed	1.05	3.1
Double-width Pica	4.2	3.1
Double-width Elite	2.8	3.1
Double-width Condensed	2.1	3.1
Emphasized	2.1	3.1
Double-width Emphasized	4.2	3.1
Super/Subscript	depends on pitch.	1.6

Column width (maximum characters/line):

Character Pitch	Column Width	Column/inch
Pica	80	10
Elite	96	12
Condensed	$132(137)^{*}$	17
Double-width Pica	40	5
Double-width Emphasized	40	5
Double-width Elite	48	6
Double-width Condensed	$66(68)^{*}$	8.5
Emphasized	80	10

NOTE: * When Left/Right margin is set with ESC X.

Printing direction:

Duty cycle:
Line feed time:
Paper feed method:

Paper Specifications

Fanfold paper:
Cut sheet:
Copies:
Paper path:
Basic weight of paper:
Ribbons exclusive:
Printable area:

Bidirectional with logical seeking in the text mode and Graphic characters. Unidirectional (left to right) in the bit image mode or programmable from a host computer.
same as Commodore mode.
same as Commodore mode.
same as Commodore mode.

The adjustable tractor feed can handle paper 101.6 mm (4") to 254 mm ($10^{\prime \prime}$) wide.
The built-in friction feed mechanism can handle paper 182 mm ($7.15^{\prime \prime}$) to 216 mm ($8.5^{\prime \prime}$) wide.
Up to 2 sheets (including the original)
Total paper thickness not to exceed 0.13 mm ($0.005^{\prime \prime}$).
Rear
46.5 to $81.4 \mathrm{~g} /$ square m for 1 sheet.
39.5 to $52.3 \mathrm{~g} /$ square m for multi-form.

Black ribbon cartridge.
Fanfold paper: See Fig. 1-1
Cut sheet: See Fig. 1-2

The border width indicated by the asterisks (${ }^{*}$) varies according to the paper width.
With 254 mm paper, the border width is 25.4 mm .
With 241 mm paper, the holder width is 19 mm .

Fig. 1-1. Printable Area of Fanfold Paper

Fig. 1-2 Printable Area of Cut Sheet

Electrical Specifications

Power line voltage:
AC $120 \mathrm{~V} \pm 10 \%$
AC $220 \mathrm{~V} \pm 10 \%$
AC $240 \mathrm{~V} \pm 10 \%$
Power line freequency range:
Power consumption:
D.C. insulation resistance:

Dielectric strength:
49.5 Hz to 60.5 Hz

60 VA maximum
Over 10 M ohms (between the AC line and chassis) 1000 VAC, 1 min. (for 120 VAC version) 1500 VAC, 10 sec. (for 220/240 VAC version)

Environmental Specifications

Temperature	Storage:	$-30^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.149{ }^{\circ} \mathrm{F}\right)$
	Operating:	$5^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}\left(41^{\circ} \mathrm{F}\right.$ to $\left.95^{\circ} \mathrm{F}\right)$
Humidity	Storage:	5% to $85 \% \mathrm{RH}$ (no condensation)
	Operating:	10% to $80 \% \mathrm{RH}$ (no condensation)
Shock	Storage:	$2 \mathrm{G}, 1 \mathrm{msec}$.
	Operating:	$1 \mathrm{G}, 1 \mathrm{msec}$.
Vibration	Storage:	$0.50 \mathrm{G}(55 \mathrm{~Hz}$ max.)
	Operating:	$0.25 \mathrm{G}(55 \mathrm{~Hz}$ max:)

Reliability Specifications

MCBF - Mechanism 3 million lines (excluding print head)
Life of Print head 100 million characters
Life of Ribbon 1 million characters
NOTE: MCBF: Mean Cycle Between Failure.

Safety Standard Agency and Radio Frequency Interference. (R.F.I.)

Safety Standard:
R.F.I.

Physical specifications

Dimensions: Height: 84 mm
Width: 421 mm
Depth: 314 mm
Weight:
5.2 kg

1.3 INTERFACE OVERVIEW

The MPS-1000 printer has Commodore serial interface and Centronics parallel interface. It has three combination modes of control systems and interfaces.

Commodore control system with Commodore serial interface.
IBM 5152+ control system with Commodore serial interface.
IBM 5152+ control system with Centronics parallel interface.
This section describes the specifications of each interface.

1.3.1 Commodore Serial Interface

The serial interface is used when the printer is in its Commodore mode or IBM $5152+$ mode. Connector pin assignments and a description of respective interface signals are shown in follow.
(1) Input connector (TCS 0560-01-1010)

Fig. 1-3. Serial Connector

Table 1-1. Serial Connector Pin Assignments

Pin No.	Signal	Direction	Description
1	SERIAL $\overline{\text { SRQ }}$	OUT	Always "HIGH". (Pulled up to +5V through a 3.3 k Ω register.)
2	GND	-	GND
3	SERIAL $\overline{\text { ATN }}$	IN	Low when the host sends a command to de- vices.
4	SERIAL CLK	IN	Synchronous signal when the host transmits a serial data.
5	SERIAL DATA	IN/OUT	Signal when the host transmits serial data, or to verify the device status.
6	$\overline{\text { RESET }}$	IN	Reset input.

NOTES: 1. When Commodore serial I / F is selected, disconnect parallel cable.
2. Direction refers to the direction of signal flow as viewed from the printer.

REV.-A
(2) Serial Interface Timing Chart

SERIAL BUS TIMING		EXTERNAL DEVICE						NOTES
		LISTENER (μ SEC)			TALKER ($\mu \mathrm{SEC}$)			
DESCRIPTION	SYM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
ATN RESPONSE	TAT	-	-	1000				If MAX. time exceeded, device not present error.
LISTENER HOLD OFF (NRFD)	TH	0	-					Listner must hold off until CLK = HIGH
NON-EOI RESPONSE TO (RFD) BIT SETUP DATA VALID	Tne Ts Tv	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 40 \\ & 70 \\ & 40 \end{aligned}$	200	$\begin{aligned} & 40 \\ & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \\ & 80 \end{aligned}$	-	If MAX. time exceeded, EOI response required.
FRAME HANDSHAKE	TF	20	60	1000				If MAX. time exceed-
FRAME TO RELEASE OF ATN	TR	20	80	-				ed, frame error.
TIME BETWEEN BYTES	TBB	100	-	-				
DOI RESPONSE TIME	Tye	200	250	-				
EOI RESPONSE HOLD	TEI	100	-	-	70	90	-	
TALKER RESPONSE LIMIT	TRY	20	60	200				
BYTE-ACKNOWLEDGE	TPR	20	30	-	60	80	-	
TALK-ATN RELEASE	TTK	20	60	100				
TALK-ATN ACKNOWLEDGE	TDC	0	20	-				
TALK-ATN ACK HOLD	TDA	90	100	-				
EOI-BYTE ACK	TER	60	-	180	20	-	180	TED series computer
ATN TO CLOCK LOW TALK ERROR RELEASE	$\begin{aligned} & \text { TCL } \\ & \text { TRR } \end{aligned}$	-	40	100	20	-	-	If used with VIC-20, TCL MAX. $3000 \mu \mathrm{sec}$.

Fig. 1-4. Serial Interface Timing Chart
(3) Serial interface protocols

Explanation of Terms: LA - Listen address
TA - Talk address
SA - Secondary address
SA (O) - Secondary address open
SA (C) - Secondary address close
DB - Data byte
FN - File name byte
eoi - End or identify handshake
TKATN - Talk-Atn handshake

Command	Abbreviation	Binary Value
Talk Address	(TA)	010 x xxxx
Listen Address	(LA)	001 x xxxx
Untalk	(UNTLK)	01011111
Unlisten	(UNLSN)	00111111
Secondary Address Open	(SA(O))	1111 yyyy
Secondary Address Close	(SA(C))	1110 yyyy
Secondary Address Normal	(SA)	011 zzzzz

NOTE: 1. Device Address $(T A)(L A)=x x x x x$ values $0-30$ possible
0-3 Intrnal device
4-7 Normal CBM printers
8-11 normal disk units
12-30 unused
2. Channel address $(S A(O))(S A(C))=$ yyyy values $0-15$ possible
$0 \quad$ PRG-TYPE Read Data Channel (special)
1 PRG-TYPE Write Data Channel (special)
12-14 Channel for all file types (read/write)
15 Unit command channel (read/write)
3. Normal Secondary address $(S A)=z z z z z$ values $0-31$ possible

Load: This routine loads data bytes from any input device directly into the host memory.
LA SA (O) FN1 FN2...FNn-1 eoi FNn UNLSN =>
TA SA TKATN DB1 DB2...DBn-1 eoi DBn UNTLK = >
TA SA (C) UNLSN
Save: \quad This routine saves a section of memory.
LA SA (O) FN1 FN2...FNn-1 eoi FNn UNLSN =>
TA SA DB1 DB2... DBn-1 eoi DBn UNLSN =>

LA SA (C) UNLSN

Open: \quad This routine is used to open a logical file for I/O operations.
with SA LA SA (O) FN1 FN2...FNn-1 eoi FNn UNLSN

REV.-A

Close: This routine is used to close a logical file after all I/O operations have been completed on
with SA that file.
LA SA (C) UNLSN
Chkout: This routine must be called before any data is sent to any output device.
with SA LASA
Chkin: This routine is called to define any previously opened channel as a input channel.
with SA TA SA TLKATN
Chrout: This uses a single character buffer, and will send previously buffered character, if any exists. This buffer is also sent along with eoi, prior to sending any SERIAL BUS COMMAND sequence (LA, TA, SA(O), SA(C), SA ULTLK, UNLSN).
Chrin: \quad This routine is called to get a byte of data from a channel already set up as a input channel. DBc or eoi DBc (if external device sends eoi)

Getin: - see Chrin -
CIrchn: This routine is used to clear and restore all open channels to there default values.
If Chkin channel open: UNTLK
If Chkout channel open: eoi DBc UNLSN
Clall: - see Clrchn -
Stop: This routine is used to detect the stop key. If stop key down, Clrchn called.

Fig. 1-5. Data Structure

NOTE: 1. Data is processed by synchronous transfer with CLOCK.
2. The first bit is the LSB. All bits are of 8 -bit construction.
3. Listener address data is 24 H or 25 H , device 4 and 5 respectively.
4. SA is $6 \mathrm{XH}, 0 \mathrm{OXH}, \mathrm{OEXH}$, where X is 00 H ... 0 FH .

1.3.2 Centronics Parallel Interface

The parallel interface is used when the printer is in its IBM 5152+ mode. Connector pin assignments and a description of respective interface signals are shown in follow.
(1) Connector pin assignment

Table 1-2. Parallel Connector Pin Assignments

Signal Pin No.	Return Pin No.	Signal	Direction	Description
1	19	$\overline{\text { STROBE }}$	In	$\overline{\text { STROBE }}$ pulse to read data in. Pulse width must be more than $0.5 \mu \mathrm{~s}$ at receiving terminal.
2	20	DATA 1	In	These signals represent information of the 1 st to 8th bits of paralle data, respectively. Each signal is at "HIGH" level when data is logical " 1 " and "LOW" when logical " 0 ".
3	21	DATA 2	In	
4	22	DATA 3	In	
5	23	DATA 4	In	
6	24	DATA 5	In	
7	25	DATA 6	In	
8	26	DATA 7	In	
9	27	DATA 8	In	
10	28	$\overline{\text { ACKNLG }}$	Out	Approx. 5μ s pulse. "LOW" indicates that data has been received and that the printer is ready to accept other data.
11	29	BUSY	Out	A "HIGH" signal indicates that the printer cannot receive data. The signal becomes "HIGH" in the following cases: 1. During data entry 2. During printing operation 3. During printer error status
12	30	PE	Out	A "HIGH" signal indicates that the printer is out of paper.
13	-	-	-	pulled up to +5 V through 3.3 k ohms resistance.
14	-	NC	-	Not used.
15	-	NC	-	Not used.
16	-	OV	-	Logic ground level.
17	-	$\begin{gathered} \text { CHASSIS } \\ \text { GND } \end{gathered}$	-	Printer chassis GND. In the printer, the chassis GND and the logic GND are isolated from each other.
18	-	NC	-	Not used.
19 to 30	-	GND	-	TWISTED-PAIR RETURN signal GND level.

$\begin{array}{c}\text { Signal } \\ \text { Pin No. }\end{array}$	$\begin{array}{c}\text { Return } \\ \text { Pin No. }\end{array}$	Signal	Direction	Description
31	-	$\overline{\text { INIT }}$	In	$\begin{array}{l}\text { When the level of this signal becomes "LOW", the } \\ \text { printer controller is reset to its initial state and the } \\ \text { print normally at "HIGH" level, and its pulse width } \\ \text { must be more than } 50 ~\end{array}$ s at the receiving terminal.

NOTE: 1. "Direction" refers to the direction of signal flow as viewed from the printer.
2. "Return" denotes "TWISTED PAIR RETURN" and is to be connected at signal ground level.
As to the wiring for the interface, be sure to use a twisted-pair cable for each signal and never fail to complete connection of the Return side. To prevent noise effectively, these cables should be shielded and connected to the chassis of the host computer and the printer, respectively.
3. All interface conditions are based on TTL level. Both the rise and fall times of each signal must be less then $0.2 \mu \mathrm{~s}$.
4. Data transfer must not be carried out by ignoring the $\overline{\text { ACKNLG }}$ or BUSY signal.
(Data transfer to this printer can be carried out only after confirming the $\overline{\text { ACKNLG }}$ signal or when the level of the BUSY signal is "LOW".)
5. Under normal conditions, printer cable pins 11,12 and 32 are activated when out of paper is detected.
ESC 8 code disable pins 11 and 32 from the PE (Paper-End) signal, but it does not disable pin 12.
6. When parallel I/F is selected, disconnect Commodore serial cable.
(2) Parallel interface timing chart

Fig. 1-6. Parallel Interface Timing Chart

1.4 MAIN COMPONENTS

The MPS-1000 includes four major subassemblies - the power supply, the circuit boards, COMI interface board, and printer mechanism - all of which are housed in a two-piece plastic case.
The kinds of circuit board are described in follow.

CATX Board: Main Control Circuit Board for 120 V and 240 V Ver.
UNIT No. Y560201400ㅁ
CATX Board: Main Control Circuit Board of 220V Ver.
UNIT No. Y560201500םa
COMI Board: Interface Circuit Board
UNIT No. Y561208000ㅁ
CFIL Board: Filter Circuit Board
UNIT No. Y560202500םa (120V Ver.)
UNIT No. Y560202200ロロ (220/240V Ver.)
COMPNL Board: Control Panel Board
UNIT No. Y563501000ㅁ

1.4.1 Power Supply Circuit (Figs. 1-7 and 1-8)

A DC regulator, line filter, and power transformer make up the power supply, which converts the AC line voltage to DC voltages usable by the printer subassemblies. A fuse is inserted in the input circuit to prevent product damage due to overcurrent. The power supply components are connected to the lower case as illustrated.

Fig. 1-7. Power Supply Components (120V Version)

Fig. 1-8. Power Supply Components (220 and 240V Version)

1.4.2 CATX Control Board (Figs. 1-9 and 1-10)

The CATX circuit board includes all of the logic components which control operation of the printer, including a 7810 CPU, a $2 k$-byte 6116 RAM, and driver ICs for the carriage and paper feed motors. A gate array is also incorporated into the simple design of the circuit.
The difference of Fig. 1-9 and Fig. 1-10 is only DIP SW2.

Fig. 1-9. CATX Control Board (120V and 240V Version)

Fig. 1-10. CATX Control Board (220V Version)

1.4.3 COMI Interface Board (Fig. 1-11)

The COMI Interface Board is mounted on the CATX circuit board. It consists of a serial interface connector for Commodor and IBM modes, a centronics parallel interface connector for IBM mode and a control 27256 ROM.
The CPU7810 on the CATX board is controlled by program in this ROM.
There are two kinds of control ROM:
27256 (CE8-ED) is used for 120 V and 240 V Version.
27256 (CE8-LD) is used for 220V Version.

Fig. 1-11. COMI Board

1.4.4 Printer Mechanism (Fig. 1-12)

The printer mechanism is composed of a friction platen, simplified carriage assembly, paper feed and carriage motors, printhead, ribbon feed mechanism, sensors and detachable sprocket unit. A cut sheet feeder are available as options.

Fig. 1-12. Printer Mechanism

1.4.5 Housing (Fig. 1-13)

The housing, consisting of the upper and lower cases, accomodates the printer mechanism, control circuit board, and the power supply circuit as described above. The lower case is designed to facilitate easy access, removal, and replacement of those components. (The lower case is also used as a frame for the printer mechanism.)

Fig. 1-13. Housing (Upper Case and Lower Case)

1.5 SELF TEST

The printer has a self-test function to check the following.
(1) ROM, RAM check
(2) Print head operation and print quality
(3) Operation of the printer mechanism (motor, ribbon cartridge mechanism, drive belt, etc.)

The self-test function is preprogrammed in the printer's circuit and can be performed by turning the power switch on while pressing the LF switch for testing Draft mode or the FF switch for testing NLQ mode.
All characters provided by the internal software are printed out on the paper.
The self-test funciton, however, can't be performed when the printer is out of paper.

If there is any trouble on ROM, the printer displays it be blinking ONLINE LED in below timing. (See Fig. 1-14.)
approx. [sec]

Fig. 1-14. ROM Error Occurance

If there is any trouble on RAM, the printer displays it by blinking ONLINE LED in below timing. (See Fig. 1-15.)

Fig. 1-15. RAM Error Occurance

REV.-A

1.6 DIP SWITCH AND JUMPER SETTINGS

The DIP SW is positioned at the rear center of the printer, and has the functions as shown in Table 1-3 and 1-6 for 120V and 240V Version and Table 1-4 and 1-7 for 220V Version.
Table 1-8 describes jumpers available on the CATX board. Note that the states of the DIP switches are read only when the power is switched on.

Table 1-3. DIP Switch Setting for Commodore Mode (120V and 240V Version)

SW NO.	Function	ON	OFF	Factory Setting
$1-1$	Print Mode Selection	$5152+$	Commodore	OFF
$1-2$	Device Select	5	4	OFF
$1-3$	Buzzer	Mute	Beep	OFF
$1-4$	Controls the Cut-sheet Feeder	Valid	Invalid	OFF
$1-5$	NLQ/Draft Selection	NLQ	Draft	OFF
$1-6$	Page Length	$12^{\prime \prime}$	$11^{\prime \prime}$	OFF
$1-7$	Paper-out Sensor	Inactive	Active	OFF
$1-8$	Select Printing Direction	Unidirection	Bidirection	OFF

Table 1-4. DIP Switch Setting for Commodore Mode (220V Version)

SW NO.	Function	ON	OFF	Factory Setting
1-1	Print Mode Selection	5152+	Commodore	OFF
1-2	Device Select	5	4	OFF
1-3	Select Printing Direction	Unidirection	Bidirection	OFF
1-4	Controls the Cut-sheet Feeder	Valid	Invalid	OFF
1-5	NLQ/Draft Selection	NLQ	Draft	OFF
$\begin{aligned} & 1-6 \\ & 1-7 \\ & 1-8 \end{aligned}$	International Character Sets	See Table 1-5		
2-1	Page Length	11"	12"	OFF
2-2	-	-	-	OFF
2-3	Paper-out Sensor	Inactive	Active	OFF
2-4	Buzzer	Mute	Beep	OFF

Table 1-5. International Character Sets

$1-6$	$1-7$	$1-8$	
OFF	OFF	OFF	ASCII (USA/UK/Netherlands)
OFF	OFF	ON	Denmark/Norway
OFF	ON	OFF	Sweden/Finland
OFF	ON	ON	Germany
ON	OFF	OFF	France/Belgium
ON	OFF	ON	Italy
ON	ON	OFF	Switzerland
ON	ON	ON	Spain

Table 1-6. DIP Switch Setting for IBM 5152+ Mode (120V and 240V Version)

SW NO.	Function	ON	OFF	Factory Setting
$1-1$	Print Mode Selection	$5152+$	Commodore	OFF
$1-2$	Device Select CG Select	5 Table 2	4 Table 1	OFF OFF
$1-3$	Interface	Serial	Parallele	OFF
$1-4$	Controls the Cut-sheet Feeder	Valid	Invalid	OFF
$1-5$	NLQ/Draft Selection	NLQ	Draft	OFF
$1-6$	Page length	$12^{\prime \prime}$	$11^{\prime \prime}$	OFF
$1-7$	Paper-out Sensor	Inactive	Active	OFF
$1-8$	Auto LF with CR	Valid	Invalid	OFF

NOTE: 1. When in the IBM mode with Centronics Parallel Interface (DIP SW. 1-1 on and DIP SW. 1-3 off), DIP SW. 1-2 is defined to CG select.
2. When in the IBM mode with Commodore Serial Interface (DIP SW. 1-1 on and DIP SW. 1-3 on), DIP SW. 1-2 is defined to Device select. And in this state default CG table is set to Table 1.

Table 1-7. DIP Switch Setting for IBM 5152+ Mode (220V Version)

SW NO.	Function	ON	OFF	Factory Setting
$1-1$	Print Mode Selection	$5152+$	Commodore	OFF
$1-2$	Device Select	5	4	OFF
$1-3$	Auto LF with CR	Valid	Invalid	OFF
$1-4$	Controls the Cut-sheet Feeder	Valid	Invalid	OFF
$1-5$	NLQ/Draft Selection	NLQ	Draft	OFF
$1-6$	Character Set Selection	Table 2	Table 1	OFF
$1-7$	IBM International Group	Group Il subset	Group I U.S.A.	OFF
$1-8$	Interface	Serial	Parallel	OFF
$2-1$	Page Length	$12^{\prime \prime}$	$11^{\prime \prime}$	OFF
$2-2$	-	-	-	OFF
$2-3$	Paper-out Sensor	Inactive	Active	OFF
$2-4$	Buzzer	Mute	Beep	OFF

NOTE: When in the IBM mode with Centronics Parallel Interface (DIP SW. 1-1 on and DIP SW. 1-8 off), DIP SW. 1-2 is not define any function.

Table 1-8 Jumper Settings

Jumper No.	Description	Factory Setting
J1	ON: Latches the data at the trailing edge of $\overline{\text { STROBE }}$ OFF: Latches the data at the leading edge of STROBE	OFF
J2	ON: 2K RAM OFF: 8K RAM	ON
J3	ON: 8K RAM OFF: 2K RAM	OFF
J4	ON: 8K or 16K ROM OFF: 32K ROM	OFF
J5	ON: 32K ROM OFF: 8K or 16K ROM	ON
J6	ON: μ PD7811 OFF: μ PD7810	OFF

CHAPTER 2 PRINCIPLES OF OPERATION

2.1 SIGNAL FLOW AND CONNECTOR PIN ASSIGNMENT 2-1
2.2 POWER SUPPLY OPERATION 2-7
2.2.1 Filter Circuit 2-8
2.2.2 Power Transformer 2-8
2.2.3 Rectifier and Regulator Circuits 2-9
2.2.4 Vx Circuit 2-13
2.3 CATX BOARD OPERATION 2-14
2.3.1 Reset Circuit. 2-14
2.3.2 Data Input and Decoding. 2-15
2.3.3 Carriage Motor Control Circuit 2-18
2.3.4 Paper Feed Motor Control Circuit 2-23
2.3.5 Printhead Circuit. 2-25
2.3.6 Buzzer Circuit 2-26
2.3.7 AD Converter 2-26
2.4 PRINTER MECHANISM OPERATION 2-28
2.4.1 Sensors 2-28
2.4.2 Carriage Mechanism 2-29
2.4.3 Paper Feed Mechanism 2-29
2.4.4 Printhead 2-31
2.4.5 Ribbon Drive Mechanism 2-31
LIST OF FIGURES
Fig. 2-1 Cable Connections 2-1
Fig. 2-2 Power Supply Block Diagram 2-7
Fig. 2-3 CFIL Filter Board 2-8
Fig. 2-4 Power Transformer Windings 2-8
Fig. 2-5 Chopping Switching Regulator Operation 2-9
Fig. 2-6 Choke Input Filter Current Waveform 2-9
Fig. 2-7 +24V Regulator Circuit 2-10
Fig. 2-8 494 IC Block Diagram 2-11
Fig. 2-9 494 IC and +24V Regulator Circuit 2-11
Fig. 2-10 Switching Transistors $\mathbf{Q 2 5}$ and 027 2-12
Fig. 2-11 Flywheel Diode and Choke Input Filter 2-12
Fig. 2-12 +5V DC Regulator Circuit 2-13
Fig. 2-13 Vx Voltage Circuit 2-13
Fig. 2-14 CATX Control Board Block Diagram 2-14
Fig. 2-15 Reset Circuit 2-15
Fig. 2-16 Address Decoder Circuit 2-16
Fig.2-17 Memory Map. 2-16
Fig. 2-18 Input and Download Buffering. 2-17
Fig. 2-19 Carriage Control Circuit 2-18
Fig. 2-20 Carriage Motor Timing Circuit. 2-19
Fig. 2-21 PTS Sensor Operation 2-20
Fig. 2-22 Closed Loop Operation 2-22
Fig. 2-23 Paper Feed Motor Control Circuit 2-23
Fig. 2-24 Print Timing 2-25
Fig. 2-25 Energizing Pulse 2-25
Fig. 2-26 Buzzer and PE Circuit 2-26
Fig. 2-27 AD Converter 2-26
Fig. 2-28 Relationship between Head Driver Voltage and Energizing Pulse Width 2-27
Fig. 2-29 Printer Mechanism 2-28
Fig. 2-30 Sensor Operation. 2-28
Fig. 2-31 Carriage Mechanism 2-29
Fig. 2-32 Friction Feed Mechanism 2-30
Fig. 2-33 Sprocket Feed Mechanism 2-30
Fig. 2-34 Printhead Firing 2-31
Fig. 2-35 Ribbon Drive Mechanism 2-31
LIST OF TABLES
Table 2-1 CATX Board Connector Summary 2-2
Table 2-2 COMI Board Connector Summary 2-2
Table 2-3 CN2 Pin Assignment (Power) 2-2
Table 2-4 CN3 Pin Assignment (COMI CN4) 2-3
Table 2-5 CN4 Pin Assignment (Control Panel) 2-4
Table 2-6 CN5 Pin Assignment (Printhead) 2-4
Table 2-7 CN6 Pin Assignment (HP sensor) 2-5
Table 2-8 CN7 Pin Assignment (Motors and PTS) 2-5
Table 2-9 CN8 Pin Assignment (PE sensor) 2-5
Table 2-10 CN10 Pin Assignment (COMI CN3) 2-6
Table 2-11 Power Supply Voltages 2-7
Table 2-12 Carriage Motor Voltages 2-18
Table 2-13 Carriage Motor Drive Sequence. 2-20
Table 2-14 Carriage Timing Data 2-21
Table 2-15 Acceleration Control 2-24
Table 2-16 Deceleration Control 2-24
Table 2-17 Paper Feed Motor Drive Sequence 2-24
Table 2-18 Paper Feed Pitch 2-24

2.1 SIGNAL FLOW AND CONNECTOR PIN ASSIGNMENT

The interconnection of the primary subassemblies of the MPS-1000 is diagrammed in Figure 2-1, blow. Table 2-1 and 2-2 summarize the purpose, size, and type of the connectors designated in the figure, and Table 2-3 through 2-10 list the signals exchanged on each.

Fig. 2-1. Cable Connections

Table 2-1. CATX Board Connector Summary

Connector	Purpose	Pins	Reference Table
CN2	Power supply to control circuit board	6	$2-3$
CN3	COMI Board to control circuit board	26	$2-4$
CN4	Control panel to control circuit board	9	$2-5$
CN5	Control circuit board to printhead	12	$2-6$
CN6	HOME (HP) sensor to control board	4	$2-7$
CN7	Control board to carriage and paper feed motors and PTS sensor	18	$2-8$
CN8	PE sensor to control board	2	$2-9$
CN10	COMI Board to control circuit board	28	$2-10$

Table 2-2. COMI Board Connector Summary

Connector	Purpose	Pins	Reference Table
CN1	Parallel interface	36	$1-2$
CN2	Serial interface	6	$1-1$
CN3	From CN10 of CATX	28	$2-10$
CN4	From CN3 of CATX	26	$2-4$

Table 2-3. CN2 Pin Assignment (Power)

Pin	Signal	Lead Color	Description
1	AC3	Blue	
2	AC3	Blue	
3	AC2	Purple	10V AC for logic circuit
4	AC2	Purple	
5	AC1	Red	28 V AC for stepper motor.
6	AC1	Red	

Table 2-4. CN3 Pin Assignment (COMI CN4)

Pin	Signal	Direction	Description
1	$\overline{\text { ERR }}$	Out	Error
2	PE	Out	Paper end
3	D7 (CLK)	In	Data bit 7 (Serial CLK)
4	BUSY	Out	Ready
5	D6 ($\overline{\text { ATN }}$)	In	Data bit 6 (Serial $\overline{\text { ATN }}$)
6	ACK	Out	Acknowledge
7	D5	In	Data bit 5
8	$\overline{\text { INIT }}$ (RESET)	In	Initial (RESET)
9	D4	In	Data bit 4
10	$\overline{\text { STB }}$	In	Strobe
11	D8	In	Data bit 8
12	AC12	Out	Not used
13	$\overline{\mathrm{RS}}$	Out	Reset
14	AC12	Out	Not used
15	D3	In	Data bit 3
16	+5	Out	+5V DC
17	D2	In	Data bit 2
18	+24	Out	Not used
19	D1	In	Data bit 1
20	+12	Out	Not used
21	P/S	In	Not used
22	-	-	-
23	$\overline{\text { SELIN }}$ (S DATA)	In	Select in (Serial DATA)
24	GL	-	Ground
25	TXD $\overline{\text { PET } / T R S ~}$	In	Not used
26	GL	-	Ground

NOTE: Signal direction is viewed from the control circuit board.
The parenthesized descriptions are for the serial interface.

Table 2-5. CN4 Pin Assignment (Control Panel)

Pin	Signal	Direction	Description
1	+5	Out	LED drive power
2	RDY LP	Out	READY LED drive signal
3	PE LP	Out	PAPER END LED drive signal
4	BUZZER	Out	Buzzer drive signal
5	ON LINE LP	Out	ON LINE LED drive signal
6	ON LINE SW	In	ON/OFF LINE switching signal
7	LF SW	In	LINE FEED signal
8	FF SW	In	FORM FEED signal
9	GL	-	Logic ground

NOTE: Signal direction is viewed from the control circuit board.
Table 2-6. CN5 Pin Assignment (Printhead)

Pin	Signal	Direction	Description
1	HD2	Out	Print solenoid \# 2 drive signal
2	HD4	Out	Print solenoid \# 4 drive signal
3	HD6	Out	Print solenoid \# 6 drive signal
4	HD8	Out	Print solenoid \# 8 drive signal
5	HD9	Out	Print solenoid \# 9 drive signal
6	+24	Out	Print solenoid common line (+24V Power)
7	+24	Out	Print solenoid common line (+24V Power)
8	+24	Out	Print solenoid common line (+24V Power)
9	HD5	Out	Print solenoid \#5 drive signal
10	HD7	Out	Print solenoid \#7 drive signal
11	HD1	Out	Print solenoid \# 1 drive signal
12	HD3	Out	Print solenoid \#3 drive signal

NOTE: Signal direction is viewed from the control circuit board.

Table 2-7. CN6 Pin Assignment (HP sensor)

Pin	Signal	Direction	Description
1	GH	-	HOME (HP) sensor GND
2	HOME	In	HOME (HP) sensor R signal
3	Gн	-	HOME (HP) sensor GND
4	H+5	Out	HP sensor LED power

NOTE: Signal direction is viewed from the control circuit board.
Table 2-8. CN7 Pin Assignment (Motors and PTS)

Pin	Signal	Direction	Description
1	CR A	Out	Carriage motor phase A
2	CR C	Out	Carriage motor phase C
3	CR B	Out	Carriage motor phase B
4	CR D	Out	Carriage motor phase D
5	CR COM	Out	Carriage motor phases C \& D common line
6	CR COM	Out	Carriage motor phases A \& B common line
7	LF A	Out	Paper feed motor phase A
8	LF C	Out	Paper feed motor phase C
9	LF B	Out	Paper feed motor phase B
10	LF D	Out	Paper feed motor phase D
11	LF COM	Out	Paper feed motor phases A \& B common line
12	LF COM	Out	Paper feed motor phases C \& D common line
13	G.	-	PTS sensor GND
14	M +5	Out	PTS sensor LED power (+5V DC)
15	MTS	In	PTS sensor timing signal
16	NC	-	Not used
17	G.	-	PTS sensor shield
18	G.	-	PTS sensor shield

NOTE: Signal direction is viewed from the control circuit board.
Table 2-9. CN8 Pin Assignment (PE Sensor)

Pin	Signal	Direction	Description
1	PE +	In	Paper end sensor + side (PE signal)
2	PE -	-	Paper end sensor - side (Logic ground)

NOTE: Signal direction is viewed from the control circuit board.

Table 2-10. CN10 Pin Assignment (COMI CN3)

Pin	Signal	Direction	Description
1	ROM1	-	ROM VPP
2	ROM2	Out	A12
3	ROM3	Out	A7
4	ROM4	Out	A6
5	ROM5	Out	A5
6	ROM6	Out	A4
7	ROM7	Out	A3
8	ROM8	Out	A2
9	ROM9	Out	A1
10	ROM10	Out	AO
11	ROM11	In	DO
12	ROM12	In	D1
13	ROM13	In	D2
14	ROM14	-	GND
15	ROM15	In	D3
16	ROM16	In	D4
17	ROM17	In	D5
18	ROM18	In	D6
19	ROM19	In	D7
20	ROM20	Out	$\overline{\mathrm{CE}}$
21	ROM21	Out	A10
22	ROM22	Out	$\overline{\mathrm{OE}}$
23	ROM23	Out	A11
24	ROM24	Out	A9
25	ROM25	Out	A8
26	ROM26	Out	A13
27	ROM27	Out	A14
28	ROM28	Out	$V_{c c}+5 \mathrm{~V}$

NOTE: Signal direction is viewed from the CATX board.

2.2 POWER SUPPLY CIRCUIT

The power supply circuit in the printer is diagrammed in Fig. 2-2; the circuit includes noise filter, transformer, and +24 and +5 VDC regulator circuits, enabling the voltages listed in Table 2-11 to be output.

Fig. 2-2. Power Supply Block Diagram

Table 2-11. Power Supply Voltages

Voltage	Application
+24V	Carriage motor drive Paper feed motor drive Print solenoid drive Optional interface circuit board voltage
$\begin{aligned} & +5 \mathrm{~V} \\ & (\mathrm{Vcc}) \end{aligned}$	Logic circuit drive Carriage motor holding voltage Paper feed motor holding voltage LED voltage Optional interface circuit board voltage
+12V	Buzzer voltage
AC 12V	Not used
$\mathrm{V} \times(+5 \mathrm{~V})$	Power reset

REV.-A

2.2.1 Filter Circuit (Fig. 2-3)

The CFIL filter circuit board assembly includes the fuse, power switch, and AC input cable. The AC line voltage is filtered by C1 and M1 before being supplied to the transformer primary. The circuit also inhibits outgoing noise to the power line.

Fig. 2-3. CFIL Filter Board

2.2.2 Power Transformer (Fig. 2-4)

The power transformer converts the 120 or $220 / 240 \mathrm{~V} \mathrm{AC}$ input to approximately 10 V AC and 28 V AC , as illustrated below.

Fig. 2-4. Power Transformer Windings

2.2.3 Rectifier and Regulator Circuits

Two rectifier and regulator circuits, discussed in the following sections, are used to convert the 10V AC and 28 V AC from the transformer to +24 and +5 DC voltages for the motors and logic circuitry. Both use "chopping" switching regulation, based on the principles illustrated in Figs. 2-5 and 2-6 and described in the following text.

Basic Chopping Circuit

Current Flow with Tr On

Current Flow with Tr Off

Fig. 2-5. Chopping Switching Regulator Operation

The transistor is turned on and off at a specified duty cycle. When the transistor is on (Ton), input voltage (Vin) is supplied to L and C and load current IL flows. When the transistor is off (Toff), energy accumulated in choke coil L is supplied to the load via diode D. The output voltage (Vout) can be expressed as follows, and is maintained by varying Ton in accordance with changes in Vout:

Fig. 2-6. Choke Input Filter Current Waveform

2.2.3.1 +24V Switching Regulator Operation

Voltage over 28V AC from the transformer secondary is applied to the +24 V rectifier circuit (Fig. 2-7) through bridge rectifier DB1, where it is full-wave rectified before being regulated at the 494 regulator at 8 B . The +24 V regulator circuit includes the 494 , switching transistors, and a flywheel diode and choke input filter.

- 494 Regulator IC (Figs. 2-8 and 2-9)

Fig. 2-8 diagrams the internal circuitry of the 494 ; the operation of the 494 in relation to the +24 V regulator circuit is shown in Fig. 2-9.
ICs EA1 and EA2 are differential amplifiers. EA1 is used to detect the output voltage, which is determined by resistors R13, R14 and R15 (Fig. 2-9). EA2 is used to detect the output current, determined by R60, R15, R6, R13, and R14, enabling an average 1 A current to flow. (Max. 4.4A)
The oscillation frequency is determined by C17 and R57, and is set at approximately 27 KHz . The pulsewidth modulator (PWM) compares the outputs of EA1 and EA2 with the sawtooth wave from the oscillation circuit. The feedback terminal, pin 3, is used for phase correction; the dead time control terminal, pin 4, uses the input voltage to control the transistors off time.
The output control terminal, pin 13, selects push/pull or parallel output. The Vref (Ref out) terminal, pin 14 , outputs a $+5 \mathrm{~V}(\pm 0.25 \mathrm{~V})$ reference voltage.
Approximately 0.44 V , divided by R14, R13, and R15, is input to the inverse terminal, pin 15, of EA2. If no output voltage is generated, approximately 0.03 V is input, equaling the resistance-divided +5 V reference voltage from pin 14. R6 monitors the value of the load current at the non-inverse terminal, pin 16. The overcurrent terminal operates when R 6 receives approximately 4.4A.
The +5 V reference voltage is input at the inverse terminal of differential amplifier EA1 via R61. Approximately +5 V is also input at the non-inverse terminal of EA1, pin1, derived from +24 V resistance-divided by R13, R14, and R15. The accuracy of the output is determined by the accuracy of these reference voltages.

Fig. 2-7. +24V Regulator Circuit

Fig. 2-8. 494 IC Block Diagram

Voltage Control

Current Limitation

$17 \operatorname{VDC}(\sqrt{2} \times 12 \mathrm{VAC})$
Fig. 2-9. 494 IC and +24V Regulator Circuit

- Switching Transistors (Fig. 2-10)

Darlington transistors $\mathbf{Q 2 5}$ and $\mathbf{0 2 7}$ increase the current amplification rate, operating in the following sequence:

```
Control Pulse ON \(\rightarrow\) Q16 ON \(\rightarrow\) Q27 ON \(\rightarrow\) Q25 ON
```


Fig. 2-10. Switching Transistors $\mathbf{Q 2 5}$ and $\mathbf{Q 2 7}$

- Flywheel Diode and Choke Input Filter (Fig. 2-11)

Diode D8 in the +24 V circuit is a flywheel diode. R8, C20, and D7 limit noise and maintain power efficiency.

Fig. 2-11. Flywheel Diode and Choke Input Filter

2.2.3.2 +5V Regulator Circuit (Fig. 2-12)

Voltage of approximately 10V AC from the transformer secondary is applied to DB2, where it is full-wave rectified before being regulated by the regulator, SR1, a 78L05A.
Rectified +14 V DC $(\sqrt{2} \times 10)$ is input to the input terminal of the 78L05 via R51 as the bias current. The input produces a +5 V reference voltage, which is monitored by the output terminal and compared with the voltage at the output side. If the voltage at the output side is lower than the reference voltage, $\mathbf{Q} 26$ turns on until an upper voltage boundary is reached, at which point the transistor oscillates off and potential again drops; when the voltage approaches the lower boundary, the process repeats.
Resistors R49 and R50 divide the resistance, causing approximately 60 kHz of the oscillation frequency to determine.
Capacitor C14 is used to quickly switch the output of transistor. Approximately 1 A may be supplied in this circuit.

Fig. 2-12. +5V DC Regulator Circuit

2.2.4 Vx Circuit

The Vx circuit is used during system reset and supplies a +5 V pull-up voltage to the stepper motor. Zener diode ZD2 is connected via R85 to the +24 V line; ZD 2 is biased at 4 V , causing point A (Fig. 2-13) to become 4 V . Q1 1 turns on when 4.6 V (the zener voltage plus the potential drop in sequential direction at the PN junction) is supplied to its emitter. This circuit enables correct operation of the motor and efficient system reset.

Fig. 2-13. Vx Voltage Circuit

2.3 CATX CONTROL BOARD OPERATION

The operation of the CATX control board is diagrammed in Fig. 2-14; the board includes reset, data input and decoding, carriage motor drive, paper feed motor drive, and printhead drive circuits.

Fig. 2-14. Block Diagram

2.3.1 Reset Circuit (Fig. 2-15)

System reset occurs at power on, or upon receipt of the INIT signal from the host. Power on reset occurs when the +5 V from the Vx circuit is applied to the reset circuit; the 7810 requires approximately $6 \mu \mathrm{~s}$ to reset, the entire circuit requires approximately 47 ms . The $\overline{\operatorname{RESET}}$ signal is output low for the time constant Z $=\mathrm{CR}(\mathrm{S})$. D3 is used to discharge C5 when power is turned off, permitting the unit to be switched on and off rapidly.

Pin 4 of IC4C goes low when a low INIT signal is input at the interface connector, as in system or I/O reset at the host. A filter circuit eliminates line noise, the Schmitt trigger modifies the wave, and the resulting $\overline{\text { RESET }}$ signal is applied for the duration of $\overline{\mathrm{NIT}}$.
With $\overline{\text { RESET, }}$, the following initialization sequence occurs:

1. The printhead moves to the left margin, home position.
2. The pointer position in the print buffer is rewritten.
3. DIP switch settings are made valid.
4. The software is initialized (default value of initalization is written to the working registers.)
5. If the printer is supplied with paper, the ON LINE/READY status is entered.

Fig. 2-15. Reset Circuit

2.3.2 Decoding and Data Flow

2.3.2.1 Decoding

During decoding, the Mode 1 and Mode 2 terminals of the CPU are pulled high; the CPU is therefore able to access the full, 64 K -byte external memory.
The CPU outputs both address (ABO - AB7) and data (DBO - DB7) to ports PDO - PD7. The gate array uses the ALE signal to separate the data of addresses; when ALE is high, addresses ABO - AB7 are output from ports PDO - PD7 to ABO - AB7 of the SLA5040COM, and are latched at the trailing edge of the ALE signal. Addresses AB8 - AB15 are output to port PFO - PF7 of the 7810 CPU.
For ROM, an individual memory position becomes active when PF7 is low, enabling logical addresses from 0000 H to 7FFFH to be accessed.
For RAM accessing, PF7 is high and PF6 is low, causing addresses from 8000 H to OBFFFH to be logically accessible; however, the RAM size limits actual accesses to the $2 k$-byte range of OAOOOH to OA7FFH. The CPU uses memory mapping for I/O access from the SLA5040 COM. The SLA5040 COM uses AB15 as a chip select signal to enable the gate array: when PF7 is high and PF5 is low, logical addresses from 8000 H to 9 FFFH and 0 COOOH to ODFFFH are accessible; however, only the 8000 H to 8005 H range is actually used as addresses ABO - AB7 are decoded by the SLA5040 COM.

Fig. 2-16 Address Decoder Circuit

Fig. 2-17. Memory Map

2.3.2.2 Data Flow with parallel interface

The 7810 main microprocessor is controlled by the program in the 32 K -byte ROM on the COMI Board to perform serial or parallel data transfer with the host. Data transfer between buffers is diagrammed in Fig. 2-18.

HOST COM: Load the data on an interface data line
HOST COM: Set the STROBE signal to low
SLA5040 COM: Latch the data in the gate array by the STROBE signal from host computer
SLA5040 COM: Automatically output the BUSY signal to the host by the STROBE signal
CPU7810: Input of the STROBE signal is recognized by reading address
8X01H 1..... Recognized 0..... Not Recognized
CPU7810: Read the latched data in the SLA5040 COM by reading address $8 \times 00 \mathrm{H}$ and automatically clear the BUSY signal output from the SLA5040 COM
CPU7810: Store the input data in the input buffer area (1) and increment the pointer
Continue the above steps until either a CR-LF is received or the input buffer becomes full
CPU7810: \quad Set PB3 to high to forcibly output the BUSY signal (Output only at buffer full)
CPU7810: Analyze the control codes (control characters) of the input buffer: if a download code is received, the download data are transferred to the download buffer (2); if a control code is received, the data is set in the working area; if the data is not a control or downloard code, the data (ASCII code) are stored in the line buffer (2).

The carriage timing is omitted. (Refer to Section 2.3.5)
CPU7810: Fetch one character from the line buffer and send the print data D7 ~ DO from the corresponding character generator to the SLA5040 COM (3). (This is enabled by saving to address 8 XO 02 H)
CPU7810: Send print data D7 (pin 9 of HED) to the SLA5040 COM (3). (This is enabled by saving to address 8 XO 03 H)
CPU7810: \quad Setting PC6 to low causes $\overline{\text { PWD }}$ to be set low to output the data from HD1~HD9 of the SLA5040 COM, and start the CPU built-in timer at the same time. (When setting PWD to low, measure the voltage on the +24 V line to determine the energizing pulse width)
CPU7810: \quad Setting PC6 to high after the energizing pulse time passes causes $\overline{\text { PWD }}$ to be set high with outputs HD1 ~ 9 of the SLA5040 COM set to low. (1 column of the character is complete)
CPU7810: \quad New data are received as space becomes available in the input buffer (4).

Fig. 2-18. Input and Download Buffering

REV.-A

2.3.3 Carriage Motor Control

The carriage motor control circuit is diagrammed in Fig. 2-19. This circuit uses unipolar drive with a direct drive system by the CPU and a star connection as well in hardware. A two-two phase excitation method is employed in software (Refer to Table 2-13), and the LS75 at 6B is a latch which buffers drive transistors Q18 ~ Q20 while 1G and 2G are high.
The pulse motor current drops due to reactance influence while rotating. However, no reactance influence occurs when the pulse motor stops. The voltage output to the motor is changed corresponding to print mode to maintain constant current during various motor states, as described in Table 2-12.

Table 2-12. Carriage Motor Voltages

Speed	Font	Voltage	Motor PPS
High speed	Pica	+24 V	600 PPS
Low speed	Condensed	+17 V	270 PPS
Holding	-	+5 V	-

Fig. 2-19. Carriage Control Circuit
Voltage is selected by the following sequence:
Pica: CPU PA2 goes low, IC2C pin 6 goes high, Q12 turns on, Q14 turns on, and +24 V is output to the motor.
Condensed: CPU PA3 goes low, Q 10 turns off, $\mathrm{Q} 28 \mathrm{Vb}=18 \mathrm{~V}$, and +17 V are output to the motor.
Holding: CPU PA2 and PA3 go high, IC2C pin 6 goes low and Q10 turns on, Q12 turns off and Q28 Vb $=0 \mathrm{~V}, \mathrm{Q} 14$ turns off and $\mathrm{Q} 28 \mathrm{Vc}=\mathrm{OV}$, and +5 V are output to the motor through the R10 and D4.

The motor timing circuit is diagrammed in Fig. 2-20. As the motor rotates a corresponding motor-position timing signal is generated by the PTS sensor beneath the motor (Refer to Fig. 2-21); this signal is fed back into the CPU, where motor speed is monitored in a closed loop during acceleration and constant speed.

- At acceleration

When the timing signal is received before a set time has elapsed, the timing signal is ignored and the phase is switched with the established timing. (Refer to Fig. 2-22 (a)).
If the PTS signal is received after the set period, the phase is switched in conjunction with receipt of PTS. (Refer to Fig. 2-22 (b)).
A new set time is required for the next phase selection. The set time requires twelve kinds of time data to correspond with each drive speed of 600 PPS and 270 PPS, as shown in Table 2-14 (a), to fetch each of these for every phase selection.

- At constant speed

The following set time performs the closed loop control:

$$
\begin{aligned}
& 1.67 \mathrm{~ms} \pm 10 \mu \mathrm{~s} \text { at } 600 \mathrm{PPS} \\
& 3.70 \mathrm{~ms} \pm 10 \mu \mathrm{~s} \text { at } 270 \mathrm{PPS}
\end{aligned}
$$

- At deceleration

An open loop control is performed. The PTS signal from the printer mechanism and the set time are not checked. The deceleration timing data performs phase selection in sequential order as shown in Table 2-14 (b).

Fig. 2-20. Carriage Motor Timing Circuit

NOTE: INT1 is a maskable interrupt input of the edge trigger (leading edge).

Table 2-13. Carriage Motor Drive Sequence
a) When driving the carriage from left to right (clockwise)

Step	A phase	B phase	C phase	D phase
1	ON	OFF	OFF	ON
2	ON	OFF	ON	OFF
3	OFF	ON	ON	OFF
4	OFF	ON	OFF	ON

b) When driving the carriage from right to left (counterclock-wise)

Step	A phase	B phase	C phase	D phase
1	ON	OFF	ON	OFF
2	ON	OFF	OFF	ON
3	OFF	ON	OFF	ON
4	OFF	ON	ON	OFF

Fig. 2-21. PTS Sensor Operation

Table 2-14. Carriage Time Data
a) Acceleration Time Data b) Deceleration Time Data

Data No.	Set Time (ms)	
	$\mathbf{6 0 0}$ PPS	$\mathbf{2 7 0}$ PPS
1	4.50	5.50
2	3.30	4.70
3	2.70	4.20
4	2.30	3.91
5	2.10	3.80
6	2.00	3.70
7	1.95	3.70
8	1.92	3.70
9	1.90	3.70
10	1.85	3.70
11	1.80	3.70
12	1.76	3.70

Time Accuracy

Data No.	Set Time (ms)	
	600 PPS	270 PPS
1	1.68	3.70
2	1.72	3.70
3	1.76	3.70
4	1.84	3.70
5	2.00	3.70
6	2.12	3.70
7	2.28	3.70
8	2.48	3.80
9	2.80	3.91
10	3.20	4.20
11	3.52	4.70
12	4.00	5.50

$\pm 30 \mu \mathrm{~s}$
Time Accuracy
$\pm 30 \mu \mathrm{~s}$

(a) PTS occurs before the set time

(b) PTS occurs after the set time

Fig. 2-22. Closed Loop Operation

2.3.4 Paper Feed Motor Control

The paper feed motor advances the platen a fixed increment by switching current at the drive coil for direct, uniploar drive.
The paper feed motor control circuit (Fig. 2-23) outputs two two-phase signals for drive, and the LS75 at 6 B is a latch which buffers drive transistors $\mathrm{Q} 21 \sim \mathrm{Q} 24$ while 1 G and 2 G and high. The stepper motor requires current even in the halt state; therefore, the voltage is decreased to eliminate heat build-up, as described below, when motor rotation stops.
The Commodore MPS-1000 performs acceleration and deceleration control. However, this control is not used for less than 10 steps. Tables 2-15 through 2-18 describe paper feed motor timing, the drive sequence, and paper feed pitch.

Fig. 2-23. Paper Feed Motor Control Circuit
Voltage Selection:
Stop \rightarrow Rotation: CPU PB2 goes low, IC2C pin 2 goes high, Q13 turns on, Q15 turns on, and +24 V is supplied to the motor.
Rotation \rightarrow Stop: CPU PB2 goes high, IC2C pin 2 goes low, Q13 turns off, Q15 turns off, and +5 V is supplied to the motor through R11 and D5.

Table 2-15. Acceleration Control

Step No.	Set Time [ms]
tC 1	4.2
tC 2	3.7
t 33	3.3
tC 4	3.0
$\mathrm{tC5}$	2.8

TIME Accuracy

$$
\begin{array}{r}
+300 \mu \mathrm{~s} \\
-50 \mu \mathrm{~s}
\end{array}
$$

Table 2-16. Deceleration Control

Step No.	Set Time $[\mathrm{ms}]$
tD1	3.0
tD2	3.3
tD3	3.7
tD4	4.2

TIME Accuracy
$+300 \mu \mathrm{~s}$
$-50 \mu \mathrm{~s}$

Table 2-17. Paper Feed Motor Drive Sequence

Step No.	A phase	B phase	C phase	D phase
1	ON	OFF	ON	OFF
2	ON	OFF	OFF	ON
3	OFF	ON	OFF	ON
4	OFF	ON	ON	OFF

Table 2-18. Paper Feed Pitch

Paper Feed Pitch	Paper Feed Step	Paper Feed Time
$0.12 \mathrm{~mm}\left(1 / 216^{\prime \prime}\right)$	1 pulse	-
$4.23 \mathrm{~mm}\left(1 / 6^{\prime \prime}\right)$	36 pulses	124 ms
$3.18 \mathrm{~mm}\left(1 / 8^{\prime \prime}\right)$	27 pulses	99 ms
$2.82 \mathrm{~mm}\left(1 / 9^{\prime \prime}\right)$	24 pulses	90 ms

2.3.5 Printhead Control

The PTS signal is used to time the firing location of the printhead as described in Fig. 2-24. Data output to the printhead is described in Section 2.3.2 and printhead/carriage operation in Section 2.5.

Fig. 2-24. Print Timing

Fig. 2-25. Energizing Pulse

2.3.6 Buzzer and PE Lamp Circuit (Fig. 2-26)

The buzzer receives an output pulse from the CPU at the buffer of the open collector. The buzzer drive voltage is drived by the resistance dividing by the +12 V DC non-stabilized power source. This prevents the buzzer from riding on the +5 V power.
The PE LED flickers according to by the signals from the paper end sensor.

Fig. 2-26. Buzzer and PE Circuit

2.3.7 AD Converter (Fig. 2-27)

The 7810 CPU has a built-in, 8 -bit A-D converter and a multiplexer to enable input of eight lines, ANO to AN7. AVcc and AVss supply power to the A-D converter; +24 V is biased through R69 and +5 V is obtained at zener diode ZD1. To determine the energizing pulse width, +24 V is resistance divided by R16 and R12 to input about 4.34 V (at 24 V) to ANO. Diode D1 is used to discharge C16 when the power is OFF; R53 and C16 perform a simple sample holding; and C34 and C35 are decoupling capacitors.
The other analog input terminals are connected to the DIP switch and verify the DIP switch status when power is turned on.
When the +24 V line risis above 27.1 V , the abnormal voltage is recognized, the carriage motor stops, and the user is alerted of the condition by the buzzer.

Fig. 2-27. AD Converter

Fig. 2-28. Relationship between Head Driver Voltage and Energizing Pulse Width

2.5 PRINTER MECHANISM OPERATION

The printer mechanism (Fig. 2-29) comprises the HOME POSITION (HP), PTS, and PAPER END (PE) sensors, the carriage components, the platen assembly, the printhead, and the ribbon drive mechanism.

Fig. 2-29. Printer Mechanism

2.5.1 Sensors (Fig. 2-30)

The home position (HP) sensor determines the left margin reference for print timing. The HP sensor assembly is composed of a stationary sensor at the lower left of the mechanism and a sensor flag located on the lower left of the carriage. The output signal goes high when the flag intercepts the optical axis of the photosensor.
The print timing signal (PTS) sensor outputs timing signals in relation to carriage motor rotation speed.
The PTS sensor is composed of a slotted disk, mounted on the motor shaft, and a sensor plate. The output signal goes low when the slot of the sensor disk passes the optical axis of the photosensor.
The paper end (PE) sensor outputs a signal when the printer is out of paper. The PE assembly consists of a lever on the paper guide and a microswitch; when no paper is present at the sensor, a continuity signal is ouput.

Fig. 2-30. Sensor Operation

2.5.2 Carriage Mechanism (Fig. 2-31)

The carriage is moved bidirectionally by the timing belt, driven via the driving pulley and the carriage motor. The components of the mechanism are shown below.

Fig. 2-31. Carriage Mechanism

2.5.3 Paper Feed Mechanism (Figs. 2-32 and 2-33)

A friction platen is standard on the MPS-1000; to use tractor feed paper, a detachable sprocket assembly is available. Each of these assemblies operates in normal and high speed modes.
When using the friction platen (Fig. 2-32), paper is placed between the platen, paper feed rollers, and the paper support roller. As the platen motor operates, the transmission gears rotate in the direction indicated in the figure; paper is pressed against the platen by the rollers and advanced according to motor control. The release lever frees the paper from the platen.
When the sprocket assembly is installed above the platen (Fig. 2-33), the sprocket gear interconnects with the motor transmission gear assembly and the sprocket tractors are advanced accordingly. The paper support roller provides slight tension during paper feed, and the release lever should be in the open position.

Fig. 2-32. Friction Feed Mechanism

Fig. 2-33. Sprocket Feed Mechanism

2.5.4 Printhead (Fig. 2-34)

When current flows to a drive coil, the electromagnent within the printhead causes the printhead pin to fire and the wire strikes the ribbon; following energization, the actuator plate returns to its original position and the wire is held in a wait state.

Fig. 2-34. Printhead Firing

2.5.5 Ribbon Drive Mechanism (Fig. 2-35)

The components for ribbon drive are included in the drive gear assembly on the carriage and within the ribbon cartridge (Fig. 2-35). The gear configuration provides for counterclockwise revolution of the ribbon drive gear and unidirectional ribbon movement. The ribbon braking spring improves spring tension.

Fig. 2-35. Ribbon Drive Mechanism

CHAPTER 3 OPTIONAL EQUIPMENT

Intentionally omitted at this time.

CHAPTER 4 DISASSEMBLY, ASSEMBLY, AND ADJUSTMENT

4.1 GENERAL REPAIR INFORMATION 4-1
4.2 DISASSEMBLY AND ASSEMBLY 4-2
4.2.1 Upper Case Removal 4-2
4.2.2 COMI Board Removal 4-3
4.2.3 CATX Circuit Board Removal 4-3
4.2.4 Power Transformer Removal 4-4
4.2.5 Filter Circuit Board Removal 4-5
4.2.6 Printhead Removal 4-5
4.2.7 Head Cable Removal. 4-6
4.2.8 Home Position Sensor Removal 4-6
4.2.9 Paper End Sensor Removal 4-6
4.2.10 PTS Sensor Removal 4-7
4.2.11 Carriage Motor Removal 4-8
4.2.12 Paper Feed Motor Removal 4-8
4.2.13 Paper Feed Mechanism Removal. 4-9
4.2.14 Paper Guide Auxiliary Removal 4-11
4.2.15 Timing Belt Removal 4-11
4.2.16 Printer Circuit Board Removal 4-12
4.2.17 Sprochet Unit Disassembly 4-13
4.3 ADJUSTMENT. 4-16
4.3.1 Paper Feed Motor Backlash Adjustment 4-16
4.3.2 Carriage Motor Backlash Adjustment 4-16
4.3.3 Timing Belt Tension Adjustment 4-17
4.3.4 PTS Sensor Adjustment 4-18
4.3.5 Carriage Guide Plate Adjustment 4-18
4.3.6 Printhead Gap Adjustment. 4-19

LIST OF FIGURES

Fig. 4-1 Upper Case Removal 4-2
Fig. 4-2 COMI Board Removal 4-3
Fig. 4-3 CATX Circuit Board Removal 4-4
Fig. 4-4 Power Transformer Removal 4-4
Fig. 4-5 Filter Circuit Board Removal 4-5
Fig. 4-6 Printhead and Head Cable Removal 4-5
Fig. 4-7 Head Cable Set Removal 4-6
Fig. 4-8 HP and PE Sensor Removal 4-7
Fig. 4-9 PTS Sensor and Carriage Motor Removal 4-7
Fig. 4-10 Paper Feed Motor Removal 4-8
Fig. 4-11 Side Frame and Paper Support Roller Disassembly 4-9
Fig. 4-12 Position of Hooks 4-10
Fig. 4-13 Paper Feed Mechanism Removal 4-10
Fig. 4-14 Timing Belt Removal. 4-11
Fig. 4-15 Printer Circuit Board Removal 4-12
Fig. 4-16 Belt Tension Plate Removal 4-13
Fig. 4-17 Left Side Plate Removal 4-13
Fig. 4-18 Sprocket Set Removal 4-14
Fig. 4-19 Sprocket Pinion Removal 4-14
Fig. 4-20 Sprocket Set Disassembly 4-15
Fig. 4-21 Wheel Positions 4-15
Fig. 4-22 Paper Feed Motor Backlash Adjustment 4-16
Fig. 4-23 Carriage Motor Backlash Adjustment. 4-17
Fig. 4-24 Tension Adjustment of Timing Belt 4-17
Fig. 4-25 PTS Signal Synchronization 4-18
Fig. 4-26 Position Adjustment of PTS Sensor 4-18
Fig. 4-27 Carriage Guide Plate Position Adjustment 4-19
Fig. 4-28 Ribbon Mask Removal 4-19
Fig. 4-29 Platen Gap Adjustment 4-20
Fig. 4-30 Platen Gap 4-20
LIST OF TABLES
Table 4-1 Repair Tools 4-1
Table 4-2 Measuring Instruments 4-1

4.1 GENERAL REPAIR INFORMATION

This chapter describes how to remove the MPS-1000 main components for maintenance or repair. The tools and measuring instruments listed in Tables 4-1 and 4-2 are recommended for use when disassembling and/or repairing the printers.

Table 4-1. Repair Tools

Tool	Type	Part No.	Vendor Part No.
Brush \# 1	O	$601162-28$	B741400200
Brush \# 2	O	$601162-29$	B741400100
Cleaning brush	O	$601162-30$	B741600100
Round nose pliers	O	$601162-31$	B740400100
Tweezers	O	$601162-32$	B741000100
Electric soldering iron	O	$601162-33$	B740200100
E-ring holder 3	O	$601162-34$	B740800500
E-ring holder 5	O	$601162-35$	B740800700
Phillips Screwdriver No. 1	O	$601162-36$	B743800100
Phillips Screwdriver No. 2	©	$601162-37$	B743800200
Thickness gauge (0.65 mm)	O	$601162-38$	B776700601
Tension gauge (2000 g)	O	$601162-40$	B7477700100
Box screwdriver (7 mm wide)	$O=$ Commercially available		
	© EPSON exclusive tool		

Table 4-2. Measuring Instruments

Name	Description	Class
Oscilloscope	50 MHz	A
Tester		A
Multimeter		B
Logic analyzer		B

A = Mandatory
$B=$ Recommended

4.2 DISASSEMBLY AND ASSEMBLY

The section describes removal of the main subassemblies of the printer. Component replacement is accomplished by reversing the removal procedure, noting any reassembly comments at the end of each section.

4.2.1 Upper Case Removal (Fig. 4-1)

1. Remove paper from the printer.
2. Remove the platen knob.
3. Remove two screws (1) from the upper case.
4. Lift the front edge of the case and move it backward until the control panel is exposed.
5. Remove the control panel (3) from the upper case (2), then remove the upper case. (To remove the control panel, depress the hook in the direction shown by the arrow).

Fig. 4-1. Upper Case Removal

4.2.2 COMI Board Removal (Fig. 4-2)

1. Remove the upper case. (Refer to Section 4.2.1)
2. Remove three screws (1), securing the COMI board.
3. Remove the screw (2), securing the Frame ground.
4. Lift the COMI Board to disconnect it from connectors CN3 and CN10.

Fig. 4-2. COMI Board Removal

4.2.3 CATX Circuit Board Remove (Fig. 4-3)

1. Disconnect the power cord.
2. Remove the upper case. (Refer to Section 4.2.1)
3. Remove the COMI board. (Refer to Section 4.2.2)
4. Disconnect connectors CN6, CN2, CN4, CN7, CN8, and CN5 from the CATX circuit board.
5. Release the five clamps (1) on the lower case and carefully remove the CATX circuit board.

Fig. 4-3. CATX Circuit Board Removal

WARNING

When reinstalling the CATX board, verify that no connector wires are caught beneath it.

4.2.4 Power Transformer Removal (Fig. 4-4)

1. Turn the power switch OFF, unplug the power cord from the power source, and disconnect the printer from any peripheral device.
2. Remove the upper case. (Refer to 4.2.1)
3. Disconnect connector CN2 from the CATX circuit board.
4. Disconnect connector CN1 from the filter circuit board.
5. Remove two screws (1) securing the power transformer (2), and carefully remove the transformer. (The transformer auxiliary board may be removed at the same time).

Fig. 4-4. Power Transformer Removal

4.2.5 Filter Circuit Board Removal (Fig. 4-5)

1. Turn the power switch OFF, unplug the power cord from the power source, and disconnect the printer from any peripheral devices.
2. Remove the upper case. (Refer to Section 4.2.1)
3. Disconnect connector CN1 from the filter circuit board.
4. Remove screw (1) which secures the A.C. ground wire.
5. Remove the clamp (2) from the lower case which securies the filter circuit board (3), and carefully remove the board.

Fig. 4-5. Filter Circuit Board Removal

4.2.6 Printhead Removal (Fig. 4-6)

1. Remove the printer cover.
2. Remove screws (1) from the printhead unit.
3. Lift the printhead (2) straight up to remove.

Fig. 4-6. Printhead and Head Cable Removal

4.2.7 Head Cable Removal (Figs. 4-6 and 4-7)

1. Remove the printer cover.
2. Remove the printhead. (Refer to Section 4.2.6)
3. Remove three screws (3) from the cartridge base and remove the base (4). (Refer to Fig. 4-6)
4. Remove screws (2) from head cable (1).
5. Remove connector (3) of the head cable toward the front of the printer. Remove from dowel (4) of the carriage and lift.
6. Hold the plastic tabs on the head cable (marked with arrows) and pull to remove the cable from connector (5).

Fig. 4-7. Head Cable Removal
4.2.8 Home Position Sensor Removal (Fig. 4-8)

1. Remove the upper case. (Refer to Section 4.2.1)
2. Remove the COMI board. (Refer to Section 4.2.2)
3. Remove connector CN6 from the CATX circuit board.
4. Remove screw (1) from HP sensor (2) and carefully remove the sensor.

4.2.9 Paper End Sensor Removal (Fig. 4-8)

1. Remove the upper case. (Refer to Section 4.2.1)
2. Remove the COMI board. (Refer to Section 4.2.2)
3. Remove the CATX circuit board. (Refer to Section 4.2.3)
4. Disconnect connector CN8 from the CATX circuit board.
5. Release hooks (3) from the PE sensor unit (4) and carefully remove the sensor.

4.2.10 PTS Sensor Removal (Fig. 4-9)

1. Remove the upper case. (Refer to Section 4.2.1)
2. Cut wire band (1) from the lead wires of the PTS sensor.
3. Disconnect connector CN7 from the CATX circuit board and remove the connectors for the PTS sensor.
4. Release screw (2) from PTS sensor (3) and carefully remove the sensor.

NOTE: Following reassembly refer to section 4.3 .4 and adjust the PTS sensor.

Fig. 4-9. PTS Sensor and Carriage Motor Removal

4.2.11 Carriage Motor Removal (Fig. 4-9)

1. Remove the upper case. (Refer to Section 4.2.1)
2. Cut wire band (1) from the lead wires of the carriage motor.
3. Disconnect connector CN7 from the CATX circuit board, and remove the connectors for the carriage motor.
4. Remove screws (4) from the carriage motor heat sink (5) and remove the heat sink.
5. Remove screws (6) from the carriage motor (7), then carefully remove the motor.

NOTE: When mounting the carriage motor, the PTS sensor position must be adjusted (Section 4.3.4) and the backlash between the carriage motor and the belt driven pulley must also be set (Section 4.3.2).

4.2.12 Paper Feed Motor Removal (Figs. 4-10 and 4-11)

1. Removal the upper case. (Refer to Section 4.2.1)
2. Loosen the four fixing screws (1) securing the left (2) and right (3) side frames.
3. Lift the side frames to remove.
4. Disconnect connector CN7 from the CATX circuit board and remove the connectors for the paper feed motor.
5. Remove screws (4), which secure the paper feed motor (5), and carefully remove the motor. (Refer to Fig. 4-11)
6. To disassemble the side frames/support roller, refer to Fig. 4-11.

NOTE: When the side frames and the paper feed motor are reassembled, verify that the operation of the release lever is smooth, and adjust the backlash between the motor and the transmission gear. (Refer to Section 4.3.1)

Fig. 4-10. Paper Feed Motor Removal

Fig. 4-11. Side Frame and Paper Support Roller Disassembly

4.2.13 Paper Feed Mechanism Removal (Figs. 4-12 and 4-13)

1. Remove the upper case. (Refer to Section 4.2.1)
2. Remove the side frames and paper support roller set. (Refer to Section 4.2.12)
3. Lift the platen unit.
4. Remove eight hooks (1) from the back of the unit.
5. Lift the four paper feed roller spring guides (2) straight up to remove.
6. Slide the paper feed roller shaft (3) in the direction of the arrow to remove. (The paper feed roller (4) and paper feed roller springs (5) may be removed at the same time).
NOTE: When mounting the platen unit, the printhead gap must be properly adjusted. (Refer to Section 4.3.6)

Fig. 4-12. Position of Hooks

Fig. 4-13. Paper Feed Mechanism Removal

4.2.14 Paper Guide Auxiliary Plate Removal (Fig. 4-13)

1. Remove the upper case. (Refer to Section 4.2.1)
2. Remove the side frames and paper support roller set. (Refer to Section 4.2.12)
3. Remove the timing belt from the carriage (Refer to Section 4.2.15)
4. Remove two screws (6) from the carriage guide plate. Remove the carriage guide shaft (7) and the carriage unit (8).
5. Remove the paper guide auxiliary plate (9).

NOTE: When mounting the paper guide auxiliary plate, the position of the carriage guide plate must be properly adjusted (Section 4.3.5) and the printhead gap must be set (Section 4.3.6).

4.2.15 Timing Belt Removal (Fig. 4-14)

1. Remove the upper case. (Refer to Section 4.2.1)
2. Remove two screws (1) to remove carriage motor heat sink (2).
3. Remove the bottom cap (3) from the rear side of the unit.
4. Place the carriage unit in the holes of the removed bottom cap, and remove timing belt (5) from carriage unit (4).
5. Loosen screws (6) on the belt tension plate and remove the timing belt.

NOTE: When assembling the timing belt, the tension must be properly adjusted (Section 4.3.3) and the backlash between the carriage motor and the belt driven pulley must be set (Section 4.3.2).

Fig. 4-14. Timing Belt Removal

4.2.16 Printer Circuit Board Removal (Fig. 4-15 and 4-16)

1. Remove the eight screws which secure the base plate from the rear side of the unit. (Refer to Fig. 4-12)
2. Remove the upper case. (Refer to Section 4.2.1)
3. Remove the timing belt from the drive gear. (Refer to Section 4.2.15)
4. Remove screw (1) from the lead wires on the carriage guide plate.
5. Remove head cable (2) from the connector.
6. Remove the side frames and paper support roller set. (Refer to Section 4.2.12)
7. Remove the two fixing screws (3) to remove the carriage guide plate.
8. Remove the carriage guide shaft (4).
9. Remove screws (5) to remove the carriage guide shaft holder.
10. Remove screws (6) to remove the PF motor holder.
11. Remove screws (7) to remove the power transformer.
12. Remove the COMI board. (Refer to Section 4.2.2)
13. Remove the CATX circuit board.
14. Remove cable CN5 from the CATX circuit board.
15. Lift the lower case to remove it from the base plate.
16. Remove screw (9) to remove printer circuit board plate (10). The belt tension plate (11) may be removed at the same time (Figure 4-16).

WARNING

When assembling the printer circuit board set, be sure no cables are caught beneath the base plate when it is inserted into the lower case, or beneath the CATX circuit board when it is installed.

NOTE: The timing belt must be properly adjusted after reassembly (Section 4.3.3), the backlash between the carriage motor and the belt driven pulley must be set (Section 4.3.2), the position of the carriage guide plate must be verified (Section 4.3.5), and the printhead gap must be properly adjusted (Section 4.3.6).

Fig. 4-15. Printer Circuit Board Removal

Fig. 4-16. Belt Tension Plate Removal
4.2.17 Sprocket Unit Removal (Figs. 4-17 through 4-21)

1. Depress the sprocket mounting levers, roll the sprocket assembly back, then slide the unit forward to remove it from the printer.
2. Remove the side covers (1) from the left and right sides of the sprocket assembly.
3. Remove the four nuts (2) from the left and right sides.
4. Remove the E-ring (3) from the left side, and remove the bearing (4).
5. Remove the left side plate (5).
6. Remove the sproket guide shaft (6).
7. Remove the sproket L set (7), the paper guide roller ((8), the sproket R set (9), and the right side plate (10).
8. Remove the pin (11), and the pinion (12).
9. Disassemble the L and R sprocket sets (Refer to Fig. 4-20).

NOTE: When the sprocket unit is assembled, position the wheels as shown in Fig. 4-21 and make certain the unit is horizontally aligned.
<Left side>

Fig. 4-17 Left Side Plate Removal

Fig. 4-18. Sprocket Set Removal

Fig. 4-19. Sprocket Pinion Removal

Fig. 4-20. Sprocket Set Disassembly

Fig. 4-21. Wheel Positions

4.3 ADJUSTMENT

When the paper feed motor or carriage motor, timing belt, PTS sensor unit, carriage guide plate, or platen is removed from the printer, reinstallation requires adjustment according to the following procedures.

4.3.1. Paper Feed Motor Backlash Adjustment (Fig. 4-22)

1. Loosen the screws on the paper feed motor and move the motor so that the distance between the paper feed motor shaft gear and the transmission gear is minimized but the gears do not bind.
2. Manually rotate the platen to verify operation of the assembly without slippage or binding.
3. When the adjustment is correct, tighten the screws.

Fig. 4-22. Paper Feed Motor Backlash Adjustment

4.3.2 Carriage Motor Backlash Adjustment (Fig. 4-23)

1. Loosen the screws on the carriage motor heat sink.
2. Move the carriage motor manually to adjust the backlash so there is no slippage or binding when the timing belt is moved manually back and forth.
3. When the adjustment is correct, tighten the screws.

Fig. 4-23. Carriage Motor Backlash Adjustment
4.3.3 Timing Belt Tension Adjustment (Fig. 4-24)

1. Loosen the screw on the belt tension plate.
2. Insert a tension gauge through the side frame and into the hole on the tension plate, then adjust the plate position so that 1500 ± 50 gr tension is applied.
3. When the adjustment is correct, tighten the screw.

Fig. 4-24. Tension Adjustment of Timing Belt

4.3.4 PTS Sensor Adjustment (Figs. 4-25 and 4-26)

1. Activate the printer and use a synchroscope to verify that the cycle (T) of the PTS signal is approximately the same in both directions.
If the waveform deviates from the permissible tolerance, perform step 2.
2. Insert a screwdriver through the hole used to secure the front cap (Refer to Fig. 4-26). Loosen the screw securing the PTS sensor set.
3. Move the PTS sensor set in the direction shown by the arrow to perform the necessary adjustment.
4. Tighten the screw.

Fig. 4-25. PTS Signal Synchronization

Fig. 4-26. Position Adjustment of PTS Sensor

4.3.5 Carriage Guide Plate Adjustment (Fig. 4-27)

1. Loosen the screw on the carriage guide plate.
2. Move the carriage guide until the tension between the ribbon transmission gear and the guide is maximized without binding. Slide the carriage assembly back and forth to test the adjustment along the length of the platen.
3. When the adjustment is correct, tighten the screws, then verify the adjustment.

Fig. 4-27. Carriage Guide Plate Position Adjustment

4.3.6 Printhead Gap Adjustment (Figs. 4-28 through 4-30)

1. Remove the ribbon mask (see Fig. 4-28).
2. Loosen the two screws on the ribbon mask guide.
3. Move the carriage to the middle of the platen and use a $0,65 \mathrm{~mm}$ feeler gauge to adjust the gap between the ribbon mask guide (and top wire of the printhead) and the platen.
4. When the adjustment is correct, tighten the screws, then verify the adjustment at the center and ends of the carriage.
5. Verify the positions of the head holder and shaft holder according to Fig. 4-30.
6. Install the ribbon mask.

Fig. 4-28. Ribbon Mask Removal

Fig. 4-29. Platen Gap Adjustment

Fig. 4-30. Platen Gap

CHAPTER 5 TROUBLESHOOTING

5.1 TROUBLESHOOTING PROCEDURE 5-1
5.2 PROBLEM DIAGNOSIS BY SYMPTOM 5-3
5.3 DIAGNOSIS BY COMPONENT EVALUATION 5-11
5.4 PROBLEM DIAGNOSIS BY CIRCUIT EVALUATION 5-22
5.4.1 Troubleshooting the CATX circuit Board 5-22
5.4.2 Troubleshooting the Printer Mechanism. 5-41
LIST OF FIGURES
Fig. 5-1 Printhead Cable Diagram 5-7
Fig. 5-2 PC6 (pin 23) Waveform 5-24
Fig. 5-3 Base Voltage Waveform of Print Solenoid Driver Transistor 5-25
Fig. 5-4 Collector Voltage Waveform of Print Solenoid Driver Transistor 5-25
Fig. 5-5 PA0 and PA1 Voltage Waveform 5-27
Fig. 5-6 CR Motor Switching Transistor Voltage Waveform 5-27
Fig. 5-7 LF Motor Switching Transistor Voltage Waveform 5-31
Fig. 5-8 CT Waveform 5-37
Fig. 5-9 E1 Waveform 5-37
Fig. 5-10 016 Collector Waveform 5-37
Fig. 5-11 025 Base Voltage Waveform 5-38
Fig. 5-12 Normal PTS Signal 5-40
LIST OF TABLES
Table 5-1 Replacement Parts 5-2
Table 5-2 Troubleshooting Tools 5-2
Table 5-3 Power Transformer Winding Resistance 5-4
Table 5-4 Printhead Resistance 5-7
Table 5-5 Troubleshooting the Printer Mechanism 5-42

5.1 TROUBLESHOOTING PROCEDURE

When followed in order of presentation, the problem evaluation procedures outlined below are felt to be the most efficient method for isolating a defective component. Once the malfunctioning component is identified, refer to the Disassembly Assembly and Adjustment section for repair/replacement instructions, and to Table 5-1 for replacement part numbers.

1. Problem Diagnosis By Symptom

Procedure: Symptom diagnosis by evaluation of printer malfunction signals; procedures performed with aid of tester or multimeter, as required. (No use of oscilloscope or synchroscope.)
NOTE: If problem diagnosis is performed by replacing the defective unit without testing with an oscilloscope or synchroscope, be sure to verify that the replacement component is not defective.
Level: Requires a thorough familiarity with printers and their principles of operation.
2. Diagnosis By Component Evaluation

Procedure: Component evaluation by inspection and/or component exchange. Multimeter or tester used as required.
Level: Requires a thorough familiarity with printers and their principles of operation.
3. Problem Diagnosis by Circuit Evaluation

Procedure: Circuit evaluation using an oscilloscope to identify deviant waveforms.
Level: Requires a high-degree of electronics knowledge.

WARNING

Perform each check item which appears on the troubleshooting flow chart. When a unit or a component part is replaced without following this procedure, the replacement unit or component may be damaged again in the same manner.

NOTE: If you become caught in a loop or lose track of your position in a flowchart, return to the beginning and start again.

Table 5-1. Replacement Parts

Component	Part Number
Filter Circuit Board (CFIL) 120V	Y560202500
Filter Circuit Board (CFIL) 220/240V	Y560202200
CATX Circuit Board (For 120V and 240V Version)	Y560201400
CATX Circuit Board (For 220V Version)	Y560201500
Main CPU (μ PD 7810G)	X400078100
23256 EPROM	Y563501000
Control Panel (COMPNL)	X400161164
6116 SRAM	X440034940
Regulator IC (494)	X502040040
Fuse (1A) 120V	X502015010
Fuse (315 mA) 220/240V	Y435501800
Power Transformer (CT-P8RU-1) 120V	Y435501600
Power Transformer (CT-P8RE-1) 220V/240V	Y435501700
Power Transformer (CT-P8RE-1) 240V/220V	Y561201800
COMI Circuit Board	F322151000
Reed Switch (P.E. Sensor)	F322054000
PTS Sensor Board Assembly	F322154000
HP Sensor Board Assembly	F322052000
Carriage Motor	F322003000
Paper Feed Motor	F406100000
Printhead	

Table 5-2. Troubleshooting Tools

Item	Description	Part No.	Vendor Part No.
Cable \#938	Extension between CATX Board and COMI Board 26 pins	$601162-41$	Y42232000
Cable \#E503	Extension between CATX Board and COMI Board 28 pins	$601162-42$	B765101501

5.2 PROBLEM DIAGNOSIS BY SYMPTOM

This section addresses those symptoms which are clear indicators of a particular component malfunction.
Problem indicators are discussed as follows:
Printer Does Not Operate with Power Switch ON

- Carriage does not move.
- No indicator on the control panel lights.

Abnormal Carriage Operation

- Carriage moves away from home position at power ON.
- Although the carriage returns to the home position, the printer does not enter READY mode. Incorrect Printing (in self-test) with Normal Carriage Operation
- No printing is executed.
- Some dots do not appear.

Incorrect Color Printing

- Specified color is not printed.

Abnormal Paper Feed

- No paper is fed.
- Separation between lines varies with irregular paper feed.

Abnormal Operation of Control Panel

- No paper is fed (by operation of the LF or FF switch) in OFF-LINE mode.
- No operation mode is set from the control panel.
- ON-LINE or OFF-LINE mode is not obtained.

Incorrect Printing in ON-LINE Mode

- Carriage operates normally at power ON and the result of the self-test is correct. However, the print data from the computer is not output normally.

REV.-A
(1) Printer Does Not Operate With Power Switch ON

Table 5-3. Power Transformer Winding Resistance

Transformer		Tester leads		Resistance value		
		\oplus	\ominus	120 V	220 V	240 V
Primary windings (CFIL Board Side)	120 V	White	Gray	13Ω	44Ω	49Ω
	220 V	Blue	brown			
	240 V	Blue	Orange			
Secondary windings (CATX Board Side)		Red	Red		0.8Ω	
		Purple	Purple		0.4Ω	
		Blue	Blue		17Ω	

(2) Abnormal Operation Of Carriage

REV.-A
(3) Incorrect Printing (in self-test) With Normal Carriage Operation

Fig. 5-1. Printhead Cable Diagram

Table 5-4. Printhead Resistance

Test Leads		Resistance value
Positive lead \oplus	Negative lead \ominus	
Common line	Each dot wire	Approx. 22 ohms

(4) Abnormal Paper Feed (with normal printing)

(5) Abnormal Operation Of Control Panel

(6) Incorrect Printing In ON-LINE Mode

NOTE: It is assumed that the host computer operates normally.

5.3 DIAGNOSIS BY COMPONENT EVALUATION

<Self-print test>

To activate the printer self-test:
a) Turn the power switch OFF.
b) While depressing the line feed (LF) switch; turn the power switch ON.

REV.-A

Carriage Does Not Return to Home Position at Power ON

Power Is Not Supplied to Some Part

Power Feed Motor Does Not Operate

Buzzer or Abnormal Sound is Generated. Carriage Does not Move at Self Test. No. 1

Carriage Does not Move at Self Test

1. Disconnect connector CN7.
2. Measure the resistances at CN7 on the printer mechanism side.
A phase:
Between pin 6 and pin 1

B phase:

Between pin 6 and pin 3

C phase:

Between pin 5 and pin 2
D phase:
Between pin 5 and pin 4
3. Each measurement value shoud be about 54Ω.

Paper Feed is not normal

Turn the power OFF.

Measure the coil resistances of the paper feed motor:

1. Disconnect connector CN7.
2. Measure the resistances at CN7 from the printer mechanism side.
Between pins 11 and 7 (phase A).
Between pins 11 and 9 (phase B).
Between pins 12 and 8 (phase C).
Between pins 12 and 10 (phase D).
3. Each resistance value should be approx. 46 ohms.

Printing Is Incorrect

LF and FF Switches Do Not Operate in OFF-LINE Operation is Incorrect With Host Computer Connected.

5.4 PROBLEM DIAGNOSIS BY CIRCUIT EVALUATION

5.4.1 Troubleshooting the CATX Circuit Board

The following test procedures require use of an oscilloscope or a synchroscope.

NOTE: Set in the pica
mode by turning DIP SW 1-1 and 1-2 OFF

Check the following points prior to entering this flow chart:

(1) DC Voltages
(2) PTS Signal
(3) HOME Signal
(4) A-D Converter

Fig. 5-5. PAO and PA1 Voltage Waveform

Observe the wavefrom from $3 \overline{\mathrm{Q}}$ (pin 1), 30 (pin 16), 4 $\overline{\mathrm{Q}}$ (pin 15) and 40 (pin 14) of IC6B.

Fig. 5-6.
CR Motor Switching
Transistor Collector
Voltge Waveform (Lower).
Base Voltage Waveform (Upper).

Fig. 5-7.
LF Motor Switching
Transistor Base
Check Q13 and Q15
Voltage Waveform (Upper)
for normal operation
Collector Voltage Waveform (Lower) at FF switch ON.

Fig. 5-8. CT Waveform

Fig. 5-9. El Waveform

Fig. 5-12. PTS Signal (at Pica Mode Printing)

5.4.2 Troubleshooting the Printer Mechanism

If a problem occurs, carefully check its symptoms, isolate its cause according to the troubleshooting instructions given in Table 5-5, and repair it. The troubleshooting information in Table 5-5 is given in the following five columns for easy and efficient analysis and remedy of the problem without errors.
(1) PROBLEM

Indentify problems.
(2) SYMPTOM

Check trouble against the symptoms given in this column if it can be identified.
(3) CAUSE

Check trouble against the causes specified in this column according to trouble sympton. Refer to the repair levels specified for each cause.
(4) CHECKPOINT

Observe the instructions given in this column for checking trouble points.
(5) REPAIR METHOD

Make repairs according to the instructions given in this column. If the same problem or symptom persists as before even after repairs, check other items in the column of causes and try again.

Table 5-5. Troubleshooting the Printer Mechanism

Problem	Symptom	Cause	Checkpoint	Method
1. Carriage motor does not rotate.	The carriage mo- tor does not operate at all at power ON.	Foreign sub- stances are lodged in the gears or me- chanism.	Move the timing belt manual- ly to check if the carriage motor roatates.	- Remove foreign sub- stances.
	The carriage motor is defec- tive.	Check the continuity of each phase.	- Replace the carriage mo- tor.	

Table 5-5. Troubleshooting the Printer Mechanism (cont'd)

Problem	Symptom	Cause	Checkpoint	Method
4. Dot is not imprinted.	A specific dot is no imprinted.	The printhead is defective.	Verify that the dot wire is not broken or missing.	- Replace the printhead unit.
			Check the resistances of the head coil.	- Replace the printhead unit.
	The dot is not printed sometimes.	The cable head is not connected correctly.	Verify that the head cable is firmly inserted into the connector.	- Insert the head cable firmly.
			Check for dirt around the head cable connector.	- Clean and reconnect.
		The printhead is defective.	Verify that the tip of the dot wire is not worn.	- Replace the printhead unit.
			Check the resistances of the head coil.	- Replace the printhead unit.
5. Printing color is light, and the printing density is not uniform.	The overall printing color is light, the overall printing density is not uniform.	The printhead is defective.	Verify that the tip of the dot wire is not worn.	- Replace the printhead unit.
			Check the resistances of the head coil.	- Replace the printhead unit.
		The platen gap is not properly adjusted.	Check the gap between the tip of the dot wire and the platen.	- Readjust the platen gap.
6. Paper is not fed.	Printing is executed, but the paper is not fed, or the paper feed pitch is not normal.	The release lever does not operate correctly.	Verify that the release lever is in the right position.	- Place it in the right position.
		Foreign substances are caught in the paper path.	Verify that no foreign substances are lodged in the paper guide path.	- Remove any foreign substances.
		The paper feed motor does not drive the gear correctly.	Verify that no foreign substances are lodged between the gears (paper feed transmission gear, etc), and that the gears are not broken or worn.	- Remove the foreign substances. - Replace the paper feed transmission gear. - Replace the platen gear. - Replace the sprocket gear. - Replace the sprocket transmission gear.
		The sprocket unit is defective.	Verify that the sprocket wheel is positioned correctly.	- Readjust the sprocket wheel.
7. Ribbon is not fed.	The ribbon is not fed.	The cartridge ribbon is defective.	Verify that ribbon is fed when the cartridge ribbon is rotated manually by the knob.	- Replace the cartridge ribbon.
		The cartridge is defective.	Verify that the ribbon drive gear rotates when the carriage moves.	- Replace the gears in the cartridge unit.

Table 5-5. Troubleshooting the Printer Mechanism (cont'd)

Problem	Symptom	Cause	Checkpoint	Method
	The ribbon is fed only when the carriage moves to the right (or to the left).	The ribbon planetary lever is defective.	Verify that the ribbon driven gear rotates when the carriage moves.	- Replace the ribbon planetary lever set.
8. Paper becomes stained.	The paper becomes ink stained where printing is not executed.	The ribbon mask is not in the right position.	Verify that the ribbon mask is in the right position.	- Readjust the ribbon mask.
		The platen gap is not properly adjusted.	Check the gap between the tip of the dot wire and the platen.	- Readjust the platen gap.
9. Printing is executed without paper setting.	Printing is executed without paper setting.	The PE sensor is defective.	Use a tester to verify the microswitch turns ON/OFF when the paper is inserted/ drawn out.	- Replace the PE sensor unit.
			Verify that the PE sensor lever moves smoothly.	- Replace the PE sensor unit.

CHAPTER 6 MAINTENANCE

6.1 PREVENTIVE MAINTENANCE 6-1
6.2 LUBRICATION AND ADHESIVE APPLICATION 6-1
LIST OF FIGURES
Fig. 6-1 Correct Adhensive Application 6-2
Fig. 6-2 Lubrication and Adhesive Application Diagram 1 6-3
Fig. 6-3 Lubriccation and Adhesive Application Diagram 2 6-4
LIST OF TABLES
Table 6-1 Lubrication Schedule 6-1
Table 6-2 Adhesive Application Points 6-1
\cup
\cup

6.1 PREVENTIVE MAINTENANCE

Proper maintenance is essential to maintain optimal printer performance for the longest possible period and to minimize malfunction frequency. Preventive maintenance includes regular cleaning of the case exterior, using alcohol, and occasional vacuuming of the mechanism interior to remove dust and paper particles. Following cleaning, refer to Section 6.2 to verify that the unit is adequately lubricated. Before returning the serviced printer to the consumer, inspect the springs and paper feed rollers and the basic operation of the unit.

WARNING

Disconnect the printer from the power supply before performing maintenance. Do not use thinner, trichloroethylene, or ketone-based solvents on the plastic components of the printer.

6.2 LUBRICATION AND ADHESIVE APPLICATION

We recommend that the points illustrated in Figure 6-1 be lubricated, according to the schedule listed in Table 6-1, with G-14, which has been extensively tested and found to comply with the needs of the Commodore MPS-1000 printer. Lubricate the printer when it is disassembled for part replacement, or every 6 months or 3,000,000 lines of print, whichever comes first. Be sure that the parts to be lubricated are clean before applying lubricant, and avoid excessive application, which may damage related parts.
Adhesive application is necessary at the points listed in Table 6-2 when the unit is disassembled, or as needed following routine maintenance. We recommend Neji-lock green \#2 adhesive to be applied to the points diagrammed in Figure 6-1; apply adhesive to one-third the edge of screws and at the edges of sensor boards, and avoid overflow of excess to related parts.

Table 6-1. Lubrication Schedule

Ref	Lubrication Point
1	Teeth of the carriage guide plate
2	Carriage assembly
3	Shaft of platen transmission gear
4	Carriage guide shaft

G-14 is available in 40 cc containers.
Part No.: 601162-43 (Vendor P/N: B701400001)
Table 6-2. Adhesive Application Points

Ref	Application Point
5	Belt tension plate securing screw
6	PTS sensor securing screw
7	Two ribbon mask securing screws
8	Point where timing belt is connected beneath the carriage

Neji-lock green \# 2 is a commercially available adhesive.
Part No.: 601162-44 (Vendor P/N: B730200100)

Fig. 6-1. Correct Adhesive Application

Fig. 6-3. Lubrication and Adhesive Application Points Drawing 2

CHAPTER 7 REFERENCE MATERIALS AND SCHEMATICS

7.1 IC DESCRIPTIONS 7-1
7.1.1 7810/7811 Microprocessor 7-2
7.1.2 494 Regulator IC 7-7
7.1.3 SLA5040 COM 7-9
7.1.4 6116 Static RAM 7-11
7.1.5 Miscellaneous TTL and CMOS Devices 7-12
7.2 EXPLODED DIAGRAMS, SCHEMATICS
AND PARTS LIST 7-14
LIST OF FIGURES
Fig. 7-1 7810/7811 Pin Diagram 7-2
Fig. 7-2 7810/7811 Block Diagram 7-5
Fig. 7-3 OP Code Fetch Timing 7-6
Fig. 7-4 Memory Read Timing 7-6
Fig. 7-5 Memory Write Timing 7-6
Fig. 7-6 494 Pin and Block Diagrams 7-7
Fig. 7-7 494 Dead Time and Feedback Control 7-8
Fig. 7-8 SLA5040 COM Pin Diagram 7-9
Fig. 7-9 6116 Pin and Block Diagrams 7-11
Fig. 7-10 05 Hex Inverter with OC Diagram 7-12
Fig. 7-11 07 Hex Buffer with OC Diagram. 7-12
Fig. 7-12 75 Quad Latch Diagram 7-12
Fig. 7-13 32 Quad 2-Input OR Diagram 7-13
Fig. 7-14 4584 Hex Schmitt Trigger 7-13
Fig. 7-15 CATX Circuit Diagram 7-19
Fig. 7-16 CATX Component Layout 7-20
Fig. 7-17 COMI Circuit Diagram 7-21
Fig. 7-18 COMI Component Layout. 7-22
Fig. 7-19 Exploded Diagram 1 7-23
Fig. 7-20 Exploded Diagram 2 7-24
Fig. 7-21 Exploded Diagram 3 7-25
LIST OF TABLES
Table 7-1 CATX Board LSIs 7-1
Table 7-2 CATX Board Transistors. 7-1
Table 7-3 COMI Board LSI 7-1
Table 7-4 7810/7811 Port Functions 7-3
Table 7-5 7811 Port F Operation 7-4
Table 7-6 7810 Port F Operation 7-4
Table 7-7 7810 Mode Setting 7-4
Table 7-8 494 IC Port Functions 7-7
Table 7-9 SLA5040 COM Port Functions. 7-9
Table 7-10 SLA5040 COM Address Assignment 7-10
Table 7-11 6116 Static RAM Port Functions 7-11
Table 7-12 Parts list 7-14

7.1 IC DESCRIPTIONS

This section describes the primary ICs on the CATX board (Table 7-1) and supplements the data provided in Chapter 2. Tables 7-2 and 7-3 list associated transistors.

Table 7-1. CATX Board LSIs

Name of IC	Part Number	Type	Location
μ PD7810G	X400078100	CPU	5A
E05020AA	Y560800001	SLA5040 COM	1A
μ PC494C	X440064940	Switching regulator	8B
μ PC78L05A	X440078052	Regulator	SR1
7505	X420100050	Hex Inverter	2C
7407	X420100070	Hex Buffer/Driver	7A
74LS32	X420300320	Quad 2-Input OR	3C
74LS75	X420300750	4 Bit Bistable Latch	6B
TC4584BP	X460458400	Hex Schmitt Trigger	4C
HM6116LP	X400161164	S-RAM	2A

Table 7-2. CATX Board Transistors

Name of Transistor	Part Number	Type	Location
2SA1015	X300101509	PNP 50V 0.4W	Q11
2SA1020	X300102009	PNP 50V 2A 0.9W	Q27, 14, 15
2SC1815	X302181509	NPN 60V 0.4W	$010,12,13,16$
2SA1307	X300130700	50V 5A 20W	Q26
2SC3293	X302329300		Q1 $\sim 9,28$
2SC3299	X302329900	50V 5A 20W	Q25
2SD1630	X303163000		Q17 ~24

Table 7-3. COMI Board LSI

Name of IC	Part Number	Type	Location
27256	-	ROM	1 A

REV.-A

7.1.1 7810/7811 Microprocessor

Figures 7-1 and 7-2 describe the 7810/7811 microprocessor, and Tables 7-4 through 7-7 describe its functions.

Fig. 7-1. 7810/7811 Pin Diagram

- 256 bytes built-in RAM (addresses OFFOOH-OFFFFH)
- 4096 bytes mask-ROM (7811 only, addresses O-OFFH)
- Direct addressing of up to 64 K bytes
- 8-bit A/D converter
- 158 instructions
- $1 \mu \mathrm{~s}$ instruction cycle
- 16-bit event counter
- Two 8-bit timer counters
- 3 external and 8 internal interrupts; 6 levels priority and 6 interrupt addresses
- General purpose serial interface (asynchronous, synchronous, and I/O modes)
- I/O line (7811: 40-bit I/O port; 7810: 24 bits edge detection, 4 inputs)
- Zero cross detection
- Standby function
- Built-in clock pulse circuit
- NMOS

Table 7-4. 7810/7811 Port Functions

Pin	Signal	Direction	Description
1 ~ 8	PAO ~ 7	1/0	Port A. Eight-bit I/O with output latch. I/O possible by mode A (MA) register. Output high.
$9 \sim 16$	PBO ~ 7	1/0	Port B. Eight-bit I/O with output latch. I/O possible by mode B register (MB). Output high.
$\begin{gathered} 17 \sim \\ 24 \end{gathered}$	PCO ~ 7	1/0	Port C. Eight-bit I/O with output latch. Port/control mode can be set by mode control C (MCC) register. Output high.
25	$\overline{\mathrm{NMI}}$	IN	Non-maskable interrupt of the edge trigger (trailing edge).
26	INTI	IN	Maskable interrupt input of the edge trigger (leading edge). Also used as the $A C$ input zero cross detecting terminal.
27, 29	MODE 1,0	1/0	7811: 0 = low and 1 = high 7810 modes set in accordance with external memory (see Table 7-5).
28	RESET	IN	Low reset
30, 31	X2, X1	-	Crystal connection for built-in clock pulse. When clock pulse is supplied externally, input must be to X 1 .
32	Vss	-	Supply voltage, Vss, OV
33	AVss	-	Analog Vss
$\begin{gathered} 34 ~ \\ 41 \end{gathered}$	ANO ~ 7	IN	Eight analog inputs of A/D converter. AN7 ~ 4 can be used as the input terminals to detect the leading edge and to set the test flag upon detection of the trailing edge
42	Varef	IN	Reference voltage
43	AVcc	-	Analog Vcc
44	$\overline{\mathrm{RD}}$	OUT	Read strobe. Low at the read machine cycle and at reset, high at other times.
45	$\overline{\mathrm{WR}}$	OUT	Write strobe. Low during the write machine cycle and at reset, high at other times.
46	ALE	OUT	Address latch enable. Latches the lower 8 address bits to access external memory.
$47 \text { ~ }$	PFO ~ 7		Port F 7811: Port bit-by bit I/O possible by mode F register. In extension mode, gradual address output assignment is possible in accordance with the size of external memory. See Table 7-6. 7810: By setting modes 0 and 1, assignment to the address bus (AB15 ~8) can be made in accordance with the size of the external memory. The remaining terminals can be used as $1 / O$ ports. See Table 7-7.
$\begin{array}{\|c\|} \hline 55 \sim \\ 62 \end{array}$	PDO ~ 7		Port D. 7811: Port bit-by-bit I/O possible. In extension mode, PD7-0 act as the multiplexed address/data bus (AD7-0). 7810: Multiplexed address/data bus to access external memory.
63	VDD	-	Supply voltage, VDD, +5 V
64	Vcc	-	Supply voltage, Vcc, +5 V

Table 7-5. 7810 Mode Setting

Mode 1	Mode 0	External memory
0	0	$4 K B$ Addresses 0 to OFFF
0	1 (Note)	16 KB Addresses 0 to 3FFF
1 (Note)	1 (Note)	$64 K B$ Addresses 0 to FEFF

Table 7-6. 7811 Port F Operation

PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	External Memory
Port	256 bytes (max.)							
Port	Port	Port	Port	AB11	AB10	AB9	AB8	4 K bytes (max.)
Port	Port	AB13	AB12	AB11	AB10	AB9	AB8	16 K bytes (max.)
AB15	AB14	AB13	AB12	AB11	AB10	AB9	AB8	60 K bytes (max.)

Table 7-7. 7810 Port F Operation

MODE 1	MODE 0	PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0	External Memory
0	0	Port	Port	Port	Port	AB11	AB10	AB9	AB8	$4 K$ bytes
0	1	Port	Port	AB13	AB12	AB11	AB10	AB9	AB8	$16 K$ bytes
1	1	AB15	AB14	AB13	AB12	AB11	AB10	AB9	AB8	$64 K$ bytes

NOTE: Pull-up is made.

Fig. 7-2. 7810/7811 Block Diagram

REV.-A
CPU Timing (Figs. 7-3 through 7-5)
Three oscillations define one state. The OP code fetch requires four states: during T1 to T3, program memory is read; instructions are interpreted during T4. AB15-8 are output from T1 to T4. AD7 ~ 0 (PD7 ~ 0) are used in the multiplex mode; the address is latched during $T 1$ at the ALE signal. Since the memory addressed is enabled after disengaging the driver (AD7 ~ 0), $\overline{\operatorname{RD}}$ is output from T1-T3, fetched at T3, and processed internally at T4.
ALE and $\overline{R D}$ signals are executed from $\mathrm{T} 1-\mathrm{T3}$; the OP code fetch for these two signals is performed at T 4 . $\overline{\mathrm{WR}}$ is output from the middle of T 1 to the beginning of T3. The address and ALE timing is the same as that for memory read; however, following address output, AD7 $\sim 0(P D 7 \sim 0)$ are not disabled, and write data are output at AD7 ~ 0 at the beginning of T1 and the end of T3.
NOTE: When PD7 ~ 0 are set to the multiplexed address (AD7 ~ 0)/data bus and PF7 ~ 0 to the address bus (AB7 ~ 0), the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{WR}}$ signals in the machine cycle are high when memory is not being accessed.

Fig. 7-3. OP Code Fetch Timing

Fig. 7-4. Memory Read Timing

Fig. 7-5. Memory Write Timing

7.1.2 494 Regulator IC

The 494 regulator IC is described in Figures 7-6 and 7-7 and Table 7-8.

Fig. 7-6. 494 IC Pin and Block Diagrams

Table 7-8. 494 IC Port Functions

Pin	Signal	Description
1	NON INV	Non. Inv. Input of error amplifier for output voltage detection.
2	INV	Inv. Input of error amplifier for output voltage detection.
3	FEEDBACK	Feedback for phase correction.
4	CONTROL	Controls transistor OFF time.
5	CT	Capacitor for oscillation frequency adjustment.
6	RT	Resistor for oscillation frequency adjustment.
7	GND	Ground
8	C1	Transistor collector for pulse amplification.
9	E1	Transistor emitter for pulse amplification.
10	E2	Transistor emitter for pulse amplification.
11	C2	Transistor collector for pulse amplification.
12	Vcc	Power
13	OUTPUT CONTROL	Selection of parallel or push-pull.
14	REF OUT	+5 V reference voltage
15	INV	Inv. Input of error amplifier for output current detection.
16	NON INV	Non. Inv. of error amplifier for output current detection.

Fig. 7-7. 494 Dead Time and Feedback Control

7.1.3 SLA5040 COM

Figure 7-8 diagrams the pin assignment of the SLA 5040 COM gate array. Tables 7-9 and 7-10 describe its functions.

HD 1		42	$V D D(+5 \mathrm{~V})$
HO 2		41	HD 5
HD 3		40	HD 6
HD 4		39	HD 7
ALE 5		38	HD8
$\overline{W R} \quad 6$		37	HD9
$\overline{\mathrm{RD}} \mathrm{T}^{7}$		36	AB 15
$\overline{P W D} 8$	SLA 5040	35	BUSY
A 779	COM	34	STRB
AB6 10		33	IN7
AB 511		32	$1 N 6$
AB4 12		31	1 N 5
A B 313		30	$1 \mathrm{~N}_{4}$
A B 214		29	$1 N 3$
AB1 15		28	IN 2
A B 016		27	INI
D 8717		26	1 NO
D B 018		25	DB6
D B 19		24	DB 5
D B2 20		23	DB4
v SS 21		22	DB3

Fig. 7-8. SLA5040 COM Pin Diagram

Table 7-9. SLA5040 COM Port Functions

Pin	Signal	Direction	Description
$\begin{gathered} 1 \sim 4 \text { and } \\ 37 \sim 41 \end{gathered}$	HD1 ~ 9	Out	Head data written to 02 H and 03 H and output by PWD..
5	ALE	In	Address latch enable. When high, DBO ~ 7 are output to ABO ~ 7. When ALE is low, the data are latched.
6	$\overline{W R}$	In	Strobe for writing head data, and timing parameter of the STROBE signal.
7	$\overline{\mathrm{RD}}$	In	Strobe for reading input data.
8	$\overline{\text { PWD }}$	In	Power down signal. HD1-9 are output when PWD low. When $\overline{\text { PWD }}$ is high, HD1 ~ 9 are low.
$9 \sim 16$	ABO ~ 7	Out	Lower addresses latched by ALE.
$\begin{gathered} 17 \sim 20 \text { and } \\ 22 \sim 25 \end{gathered}$	DBO ~ 7	In	Address/data bus. Tri-state I/O; multiplexed address/ data bus.
21	Vss	-	Ground
$26 \sim 33$	IN $0 \sim 7$	In	Data is latched-in by STROBE signal and can be read by 00 H . And Data can be read directly at 04H.
34	STRB	In	Strobe pulse to latch-in data.
35	BUSY	Out	Output high when STROBE is input.
36	AB 15	In	Address bus 15. Chip select.
42	VDD	In	+5V

- Functions of SLA5040 COM

1. The 7810 outputs both address (ABO ~AB7) and data (DBO ~ DB7) to port PDO ~ PD7. The gate array uses the ALE signal to separate the signals; when ALE is high the addresses (ABO ~AB7) from ports PDO ~ PD7 are output to terminals ABO ~ AB7 of the SLA5040 COM and are latched by the trailing edge of the ALE signal.
2. The data (INO ~ IN7) is latched by the positive edge of the STROBE signal and SLA5040 COM automatically outputs the BUSY signal.
3. The SLA5040 COM has the six functions described in Table 7-10.

Table. 7-10. SLA5040 COM Address Assignment

Address	R/W	Pin name	Function
OOH	R	DBO ~ DB7	The data which is latched by STROB pulse can be read at 00 H by clearing the BUSY signal.
01H	R	DBO	Input of the STROB signal is recognized by reading 01 H . 1: Recognized 0 : Not recognized
02H	W	$\begin{aligned} & \text { DBO ~ DB7 } \\ & \text { HD8 ~ HD1 } \end{aligned}$	HD1 ~ 8 are latched by writing to 02 H , and are output when $\overline{\mathrm{PWD}}$ is low.
03H	W	$\begin{gathered} \text { DB7 } \\ \text { H9 } \end{gathered}$	HD9 is latched by writing to 03H, and is output when PWD is low.
04H	R	$\begin{aligned} & \text { INO } \sim \text { IN7 } \\ & \text { DBO } \sim \text { DB7 } \end{aligned}$	The input data (INO \sim IN7) can be read directly at 04 H with an unchanged BUSY signal.
05H	W	DBO	The output timing of the BUSY signal: 0 : Positive edge of STRB signal 1: Negative edge of STRB signal

NOTE: $00 \mathrm{H} \sim 05 \mathrm{H}$ are the values at which address bits $A O \sim 7$ are decoded in the gate array. AB15 is input by decoding A8 ~ 15, thus enabling address mapping.
Correspondence between the data ($\mathrm{DO} \sim 7$) and the head data (HDO ~ 9) is as follows:

D7	\rightarrow HD1 \quad D7 \rightarrow HD9
D6	\rightarrow HD2
\int	$\int_{\text {HD8 }}$
D0	\rightarrow HD8

Address 02H Address 03H

7.1.4 6116 Static RAM

The external pin assignment and internal circuitry of the 6116 SRAM are illustrated in Figure 7-9. Table 7-11 describes port functions of the IC.

Fig. 7-9. 6116 Pin and Block Diagrams

- High-speed access: HM6116/P-2... 120 ns

HM6116/P-3.. 150 ns
HM6116/P-4... 200 ns

- +5 V power
- Low electric consumption: Operation

180 mw (typ)
Standby
100 mw (typ)

- Complete static memory (clock timing and strobe not required)
- All TTL compatible I/O
- Access and cycle times equal
- Standard 16K EPROM/MROM compatible pin arrangement

Table 7-11. 6116 Static RAM Port Functions

Pin	Signal	Direction	Description
$1 \sim 8$	A7 $\sim \mathrm{AO}$	In	Address input
$9 \sim 11$ and $13 \sim 17$	$\mathrm{I} / \mathrm{O}_{1} \sim \mathrm{I} / \mathrm{O}_{8}$	In/Out	Data Input/Data Output
12	GND	-	Ground
18	$\overline{\mathrm{CS}}$	In	Chip select
19	A 10	In	Address input
20	$\overline{\mathrm{OE}}$	In	Output enable
21	$\overline{\mathrm{WE}}$	In	Write enable
22,23	$\mathrm{~A} 9, \mathrm{~A} 8$	In	Address input
24	Vcc	In	+5 V power supply

7.1.5 Miscellaneous TTL and CMOS Devices

Figures 7-10 through 7-14 illustrate the internal circuitry of the primary TTL and CMOS devices used in the printer.

Fig. 7-10. 05 Hex Inverter with OC

Fig. 7-11. 07 Hex Buffer with OC

FUNCTION TABLE
(Each Latch)

In puts	Out puts		
D	G	Q	\bar{Q}
L	H	L	H
H	H	H	L
X	L	Qo	$\bar{Q} O$

Fig. 7-12. 75 Quad Latch

Fig. 7-13. Quad 2-Input OR

Fig. 7-14. 4584 Hex Schmitt Trigger

REV.-A

7.2 EXPLODED DIAGRAMS, SCHEMATICS AND PARTS LIST

Figures 7-15 through 7-17 are exploded (assembly) and schematic diagrams provided to supplement the text. Table 7-12 lists the parts number and the item description.

Table 7-12. Parts List
Commodore part numbers are provided for reference only and do not indicate the availability of parts from Commodore. Industry standard parts (Resistors, Capacitors, Connectors) should be secured locally. Approved cross-references for TTL chips, Transistors, etc. are available in manual form through the Service Department, order part \#314000-01. Unique or non-standard parts will be stocked by Commodore and are indicated on the parts list by a " C ". Vendor Name and part number have been provided for your convenience in ordering custom or unique parts.

Ref. No.	Part No.	Item Description
	601160-00A	MPS-1000 PRINTER (UL)
	601160-00B	MPS-1000 PRINTER (CSA)
	601160-00C	MPS-1000 PRINTER (VDE)
	$601160-00 \mathrm{D}$	MPS-1000 PRINTER (BSI)
	601160-00G	MPS-1000 PRINTER (AUST)
	$601160-00 \mathrm{H}$	MPS-1000 PRINTER (DOMESTIC)
100	601160-01	LOWER CASE C (553-1010)
101	601160-02	UPPER CASE ASS'Y EC
102	601160-03	C.T.B. SCREW (M4 x 12)
103	601160-04	PRINTER COVER C (553-1040)
104	601160-05	SEPARATOR (553-006)
105	601160-06	FRONT CAP C (553-1050)
107	601160-07	BOTTOM CAP C (553-1060)
108	601160-08	BASE PLATE ASS'Y EA (553-S101)
109	601160-09	C.T.P.B.F. SCREW (M3 $\times 10$)
110	601160-10	C.P.(P). SCREW (M3 $\times 10$)
111	601160-11	C.P.O SCREW (M3 x 5)
112	601160-12	LOGO PLATE C
113	601160-13	RUBBER STAND (553-016)
114	601160-14	KNOB (553-1100)
201	601160-15	PULSE MOTOR AD
202	601160-16	C.T.P.B.(P). ($\mathrm{M} 3 \times 8$)
203	601160-17	SIDE FRAME R
204	601160-18	PF TRANSMISSION GEAR
205	601160-19	LEAF SPRING ($5 \times 0.15 \times 10$)
206	601160-20	C.P.(P). SCREW (M3 $\times 10$)
207	601160-21	SIDE FRAME L
208	601160-22	RELEASE LEVER C
209	601160-23	PAPER HOLDING LEVER SPRING
210	601160-24	PF MOTOR SITTING PLATE
211	601160-25	C.P.(P.) SCREW (M3 $\times 5$)
212	601160-26	MOTOR UNIT EA
217	601160-28	BELT TENSION PLATE ASS'Y EA
218	601160-29	CUP SCREW (M3 $\times 4$)
224	601160-30	TIMING BELT
225	601160-31	BELT DRIVING PULLEY ASS'Y EA
226	601160-32	PLAIN WASHER ($4 \times 0.2 \times 7.75$)
227	601160-33	RETAINING RING TYPE-E (3)
231	601160-34	PE SENSOR UNIT EA
232	601160-35	HP SENSOR ASS'Y EA
233	601160-36	C.T.P.B. SCREW (M3 $\times 8$)
234	601160-37	TERMINAL BOARD ASS'Y EA
240	601160-39	CARRIAGE UNIT EA
241	601160-40	HEAD CABLE ASS'Y EA

Table 7-12. Parts List (Cont'd)

Ref. No.	Part No.	Item Description
242	601160-41	HEAD SITTING PLATE L
243	601160-42	HEAD SITTING PLATE R
244	601160-43	C.P.(P). SCREW ($\mathrm{M} 3 \times 8$)
245	601160-44	C.P.(P). SCREW ($\mathrm{M} 3 \times 6$)
260	601160-45	CARRIAGE GUIDE SHAFT
261	601160-46	C, GUIDE SHAFT SITTING PLATE
263	601160-48	CARRIAGE GUIDE PLATE
264	601160-49	LEAD WIRE
265	601160-50	C.P. (P). SCREW (M3 $\times 8$)
266	601160-51	C.B. SCREW ($\mathrm{M} 3 \times 3$)
268	601160-53	RIBBON MASK
270	601160-55	PLATEN UNIT EA
280	601160-56	PAPER FEED ROLLER SPRING GUIDE
281	601160-57	PAPER FEED ROLLER SPRING
282	601160-58	PAPER FEED ROLLER
283	601160-59	PAPER FEED ROLLER SHAFT
284	601160-60	PAPER HOLDING ROLLER ASS'Y EA
285	601160-61	PAPER GUIDE PLATE ASS'Y EA
300	601160-62	CATX CIRCUIT BOARD UNIT
1A	601160-64	LSI (E05020AA)
5A	601160-65	LSI (MPU 78010BD)
2C	601160-66	TTL-IC (HEX INVERTER)
3C	601160-67	TTL-IC (QUAD 2-INPUT OR)
6B	601160-68	TTL-IC (4BIT BISTABLE LATCH)
7A	601160-69	TTL-IC (HEX INV. BUFFER/DRIVER)
4C	601160-70	C-MOS IC (HEX SCHMITT TRIGGER)
8B	601160-71	LINEAR IC (TL 494)
SR1	601160-72	IC (5VDC REGULATOR)
2A	601160-73	RAM (2KX8BIT)
01-9,28	601160-74	TR. (50V 2A 20W)
010,12,13	601160-75	TR. (40V 100MA 0.3W)
014,15	601160-76	TR. (PNP 60V 0.9W)
Q11	601160-77	TR. (40V 100MA 0.3W)
017-24	601160-78	TR. (60V 2A 10W)
025	601160-79	TR. (60V 5A 20W)
026	601160-80	TR. (60V 5A 20W)
027	601160-81	TRANSISTOR (50V 0.9W)
016	601160-82	TRANSISTOR (60 V 100MA 0.4 W)
ZD1	601160-83	ZENER DIODE (4.95-5.05V)
ZD2	601160-84	ZENER DIODE (3.51-3.69V 250MA)
ZD3	601160-85	ZENER DIODE (17.55-18.4V 250MA)
D1,3	601160-86	DIODE (35V 100MA)
D2,4,5	601160-87	DIODE (SI 100V 1A)
D6	601160-88	DIODE (40V 1A)
D7	601160-89	DIODE (SI 200V 0.5A)
D8	601160-90	DIODE (90V 1A)
DB1	601160-91	RECTIFIER STACK (100V 3A)
DB2	601160-92	RECTIFIER STACK (100V 1.5A)
CR1	601160-93	CERAMIC OSCILLATOR (11MHZ)
C1	601160-94	AL. ELECT. CAP. $(6800 \mu \mathrm{~F}$ DC50V)
C2	601160-95	AL. ELECT. CAP. $(6800 \mu \mathrm{~F}$ DC25V)
C3	601160-96	AL. ELECT. CAP. $(2200 \mu \mathrm{~F}$ DC35V)
C4	601160-97	AL. ELECT. CAP. ($470 \mu \mathrm{~F}$ DC10V)
C5	601160-98	AL. ELECT. CAP. (1.0 F F DC50V)

Table 7-12. Parts List (Cont'd)

Ref. No.	Part No.	Item Description
C6	601160-99	AL. ELECT. CAP. ($22 \mu \mathrm{~F}$ DC35V)
C7,14,16	601161-00	CERA. CAP. (470pF DC50V)
C8	601161-01	CERA. CAP. (1500pF DC50V)
C9,10	601161-02	CERA. CAP. ($390 \mu \mathrm{~F}$ DC50V)
C11,12	601161-03	CERA. CAP. (33pF DC50V)
$\begin{gathered} \mathrm{C} 13,15,18 \\ 19,25-35 \end{gathered}$	601161-04	CERA. CAP. ($0.1 \mu \mathrm{~F}$ DC25V)
C20	601161-05	CERA. CAP. $(0.01 \mu \mathrm{~F}$ DC50V)
C21	601161-06	CERA. CAP. $(0.01 \mu \mathrm{~F}$ DC25V)
C17	601161-07	FILM CAP. ($0.01 \mu \mathrm{~F}$ DC50V)
RM1	601161-08	RES. ARRAY (3.3k $\Omega 1 / 8 \mathrm{~W}-9)$
RM2	601161-09	RES. ARRAY ($3.3 \mathrm{k} \Omega 1 / 8 \mathrm{~W}-10$)
RM3	601161-10	RES. ARRAY ($3.3 \mathrm{k} \Omega 1 / 8 \mathrm{~W}-7)$
RM4	601161-11	RES. ARRAY ($2.2 \mathrm{k} \Omega 1 / 8 \mathrm{~W}-8)$
RM5	601161-12	RES. ARRAY ($10 \mathrm{k} \Omega$ 1/8-11)
RM6	601161-13	RES. ARRAY ($3.3 \mathrm{k} \Omega$ 1/8-4)
R1	601161-14	CEMENT RES. (188 5W)
R5	601161-15	CEMENT RES. (0.688 3W)
R6	601161-16	CEMENT RES. (0.1 $2 \mathrm{2W}$)
R2	601161-17	MET. OX. F. RES. (560ת 3W)
R3	601161-18	MET. OX. F. RES. (680』 3W)
R4	601161-19	MET. OX. F. RES. (560ת 2W)
R8	601161-20	MET. OX. F. RES. (56Ω 1W)
R9	601161-21	MET. OX. F. RES. (1.5k Ω 1W)
R58	601161-22	MET. OX. F. RES. (3.9Ω 1W)
R12	601161-23	HIGH STABILIZED MET. F. RES.
R13	601161-24	HIGH STABILIZED MET. F. RES.
R14	601161-25	HIGH STABILIZED MET. F. RES.
R15	601161-26	HIGH STABILIZED MET. F. RES.
R16	601161-27	HIGH STABILIZED MET. F. RES.
R7	601161-28	CARBON F. RES. ($1.2 \mathrm{k} \Omega 1 / 2 \mathrm{~W}$)
R10	601161-29	CARBON F. RES. ($5.6 \Omega 1 / 4 \mathrm{~W}$)
R11	601161-30	CARBON F. RES. (18 $1 / 2 \mathrm{~W}$)
R17-23,90	601161-31	CARBON F. RES. ($1 \mathrm{k} \Omega 1 / 4 \mathrm{~W}$)
$\begin{gathered} \text { R24,25,39, } \\ 42-46,54 \\ 68,72,77 \end{gathered}$	601161-32	CARBON F. RES. (10k Ω 1/4W)
R26	601161-33	CARBON F. RES. (47k Ω 1/4W)
$\begin{array}{r} \mathrm{R} 27,41 \\ 63,64 \end{array}$	601161-34	CARBON F. RES. (1.2k $1 / 4 \mathrm{~W}$)
R28-35	601161-35	CARBON F. RES. ($330 \Omega 1 / 4 \mathrm{~W}$)
$\begin{aligned} & \text { R36-38,40, } \\ & 53,61 \end{aligned}$	601161-36	CARBON F. RES. ($2.2 \mathrm{k} \Omega 1 / 4 \mathrm{~W}$)
R47,74	601161-37	CARBON F. RES. ($100 \mathrm{k} \Omega 1 / 4 \mathrm{~W}$)
R48	601161-38	CARBON F. RES. ($820 \Omega 1 / 4 \mathrm{~W}$)
R49	601161-39	CARBON F. RES. ($3 \mathrm{k} \Omega 1 / 4 \mathrm{~W}$)
R50	601161-40	CARBON F. RES. ($20 \Omega 1 / 4 \mathrm{~W}$)
R51	601161-41	CARBON F. RES. ($51 \Omega 1 / 4 \mathrm{~W}$)
$\begin{gathered} \text { R52,70,71 } \\ 73,88 \end{gathered}$	601161-42	CARBON F. RES. (100 $1 / 4 \mathrm{~W}$)
R85	601161-43	CARBON F. RES. ($3.9 \mathrm{k} \Omega 1 / 4 \mathrm{~W}$)
826	601161-44	FLANGE NUT (M4)
R55	601161-45	CARBON F. RES. (688 1/4W)
R56	601161-46	CARBON F. RES. ($5.1 \mathrm{k} \Omega 1 / 4 \mathrm{~W}$)

Table 7-12. Parts List (Cont'd)

Table 7-12. Parts List (Cont'd)

Ref. No.	Part No.	Item Description
811	$601162-01$	PAPER HOLDING COVER L
812	$601162-02$	PAPER HOLDING COVER SPRING
813	$601162-03$	SPROCKET LOCK LEVER
814	$601162-04$	G-PIN
815	$601162-05$	PLAIN WASHER $(3 \times 0.5 \times 8)$
816	$601162-06$	C.T.P. SCREW $(M 3 \times 6)$
817	$601162-07$	SPROCKET FRAME R
818	$601162-08$	PAPER HOLDING COVER R
819	$601162-09$	SPROCKET MOUNTING PLATE L
820	$601162-10$	SPROCKET MOUNTING PLATE R
821	$601162-11$	SPROCKET GUIDE SHAFT
822	$601162-12$	LOCK LEVER
823	$601162-13$	SPROCKET TRANSMISSION GEAR
824	$601162-14$	PAPER GUIDE ROLLER
825	$601162-15$	RETAINING RING TYPE-E (5)

Fig. 7-15. CATX Circuit Diagram

Fig. 7-16. CATX Component Layout

Fig. 7-17. COMI Board Circuit Diagram

Fig. 7-18. COMI Board Component Layout

Fig. 7-19. Exploded Diagram 1

Fig. 7-20. Exploded Diagram 2

Fig. 7-21. Exploded Diagram 3

