CM-141 SERVICE MANUAL

PN 314004-02

Commodore Business Machines, Inc.

 1200 Wilson Drive, West Chester, Pennsylvania 19380 U.S.A.Commodore makes no expressed or implied warranties with regard to the information contained herein. The information is made available solely on an as is basis, and the entire risk as to quality and accuracy is with the user. Commodore shall not be liable for any consequential or incidental damages in connection with the use of the information contained herein. The listing of any available replacement part herein does not constitute in any case a recommendation, warranty or guaranty as to quality or suitability of such replacement part. Reproduction or use without expressed permission, of editorial or pictorial content, in any matter is prohibited.

This manual contains copyrighted and proprietary information. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Commodore Electronics Limited.

Copyright © 1985 by Commodore Electronics Limited.
All rights reserved.

CM-141 SERVICE MANUAL

CAUTION

Before servicing this chassis, it is important that service technician read the "Safety Precaution" and Product Safety Notices" in this service manual.

PN 314004-02
CONTENTS
SPECIFICATIONS 2
SAFETY PRECAUTIONS 3
MAJOR CIRCUIT DESCRIPTIONS 5
CIRCUIT DESCRIPTIONS 6
BLOCK DIAGRAM 9
CHASSIS TOP VIEW 10
COMPONENT AND TEST POINT LOCATION 11
INSTALLATION AND SERVICE ADJUSTMENTS 12
REPLACEMENT PARTS LIST 16
TERMINAL VIEW OF SEMICONDUCTORS 21
MECHANICAL DISASSEMBLIES 22
SCHEMATIC DIAGRAM 23
PRINTED CIRCUIT BOARD 24

SPECIFICATIONS

1. SYSTEM NTSC TV SYSTEM (With luminance and chrominancesignal separate INPU 「).
2. CPT
*Type TV Grade CRT, Slit type screen
*Size \& Deflection Angle 13 , 90° deflection angle
*Neck Diameter 29.1 mm
3. INPUT
3-1. Video Input
Signal Type: Color video composite signal. Input Level: 1.0 Vp-p (Negative synchronous signals)
3-2 Commodore Video Input
1) Luminance Signal Input Signal Type Composite video signal Input Level 1.0Vp-p
2) Chrominance Signal Input Signal Type NTSC chrominance signalInput Level ... 1.0Vp-p
3-3 Audio
*Input Signal 0.4V RMS max.
3-4 Input Impedance
*Video 75 ohm
*Audio 10 K ohm min.
4. Input Terminal RCA pin jack
5. Horizontal Scanning Frequency 15.75 KHz
6. Vertical Scanning Frequency 60 Hz
7. Video Amplifier Type Linear
8. Horizontal Resolution (at center) 270 lines
9. Commendable Display Area $235 \times 190(8 \times 8$ dot $)$
10. Outside Controls*Front ControlsVolume, Brightness
*Rear Controls int, Color, Contrast, H-Position, V-Hold*Side Controls
Power ON/OFF
11. Audio Output Power (Option) 1.2 watts.
12. Power Input

IMPORTANT SERVICE SAFETY PRECAUTION

Service work should be performed only atter you are thoroughly familiar with all of the following safety checks and servicing guidelines.

WARNING

1. No modification of any circuit should be attempted for continued salety.
2. Disconnect the $A C$ piug from the $A C$ outlet before replacing parts.

3 Semiconductor heat sinks shoutd be regarded as potential shock hazards when the chassis is operating.
4. The chassis in this receiver is hot. (connected to one side of the AC line).
Use an isolation transformer between the line cord and power receptacle, when servicing this chassis.

SERVICING OF HIGH VOLTAGE SYSTEM AND PICTURE TUBE

When servicing the high voltage system, remove the static charge by connecting a 10K ohm Resistor in series with an insulated wire (such as a test probe) between the chassis and the anode lead. (AC line cord should be disconnected from AC outlet.)

Picture tube in this receiver employs integral implosion protection.
2. Replace with tube of the same type number for continued safety

3 Do not lift picture tube by the neck.
4. Handle the picture tube only when wearing shatter-proof goggles and after discharging the high voltage completely.

X-RADIATION AND HIGH VOLTAGE LMMITS

1. Be sure your service personnel are aware of the procedures and instructions covering X-radiation. The only potential sources of X ray in current solid state TV receivers is the picture tube. However, the picture tube does not emit measurable X-ray radiations if the high voltage is kept at factory-set levels.
It is only when high voltage is excessive that X-radiation is capable of penetrating the shell of the picture tube including the lead in glass material. The important precaution is to keep the high voltage at factory-set levets.
2. It is essential that servicemen have available at all times an accurate high voltage meter. The calibration of this meter should be checked periodically.
3. High voltage should always be kept at rated valueno higher. Operation at higher voltages may cause a failure of the picture tube or high voltage circuitry and, also, under certain conditions, may produce radiation in excess of desirable levels. When the high voltage regulator is operating properly there is no possibility of an X -radiation problem. Every time a color chassis is serviced, the brightness should be tested while monitoring the high voltage with a meter to be certain that the high voltage does not exceed the specified value and that it is regulating correctly.

X-RADIATION AND HIGH VOLTAGE LMAITS (Continued)

5. Do not use a picture tube other than that specified or make unrecommended circuit modifications in the high vollage circuitry.
6. When trouble shooking and taking lest measurements on a receiver with an excessive high voltage, avoid being unnecessarity close to the receiver. Do not operate the receiver longer than is necessary to locate the cause of excessive voltage.

BEFOPE RETURNING THE RECEIVER (Fire \& Shock Hazard)

Before returning the receiver to the user, perform the following safety checks.

1. Inspect all lead dress to make certain that leads are not pinched or that hardware is not lodged between the chassis and other metal parts in the receiver.
2. Inspect all protective devices such as non-metallic control knobs, insulating fishpapers, cabinet backs, adjustment and compartment covers or shields, isolation resistor-capacity networks, mechanical insulators etc.
3. To be sure that no shock hazard exists, check for leakage current in the following manner.

- Plug the AC line cord directly into a 120 volt AC outlet. (Do not use an isolation transformer for this test.)
- Using two clip leads, connect a 1.5 K ohm, 10 watt resistor paralleled by a 0.15 uF capacitor in series with all exposed metal cabinet parts and a known earth ground, such as water pipe or conduit.
- Use a VTVM or VOM with 1000 ohm per volt, or higher, sensitivity to measure the AC voltage drop across the resistor (See Diagram).
- Move the resistor connection to earth exposed metal part having a return path to the chassis (antenna, metal cabinet, screw heads, knobs and control shafts, escutcheon, etc.) and measure the $A C$ voltage drop across the resistor.
All checks must be repeated with the AC line cord plug connection reversed. (If necessary, a non-polarized adapter plug must be used only for the purpose of completing these checks.) Any reading of 0.3 volt RMS (this corresponds to 0.2 milliamp. AC.) or more is excessive and indicates a potential shock hazard which must be corrected before returning the receiver to the owner

IMPORTANT SERVICE SAFETY PRECAUTION (Continued)

SAFETY NOTICE

Many electrical and mechanical parts in television receivers have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them be necessarily increased by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this manual; electrical components having such features are identified by "(s)'"and shaded areas in the Replacement Parts Lists and Schematic Diagrams. For continued protection, replacement parts must be identical to those used in the original circuit. The use of a substitute replacement part which does not have the same safety characteristics as the factory recommended replacement parts shown in this service manual, may create shock, fire, X-radiation or other hazards

MAJOR CIRCUIT FEATURES

1. Newly developed components

Hybrid-IC type STR 470A serves the stable B^{+}output against input and load variations
In application of this reliable component, the power circut has merits as listed:
a No adjustment for B^{+}(DC115) output is necessary.
b. Simplification of the circuit.
c. No voltage setting against the variation of main power voltage is necessary.
2. MSI (Medium Scale Intergrated Circuit)

This Monitor Consists of 3 MSIs.
Each MSI is provided with the function of the conventional circuits, which enables it to improve reliability and stability of picture quality by reducing the number of parts and adjusting points.
3. Low Loss Vertical Output Circuit.

The power loss in the vertical output circuit is reduced by changing over from high voltage to low voltage in the front and back halves of the scanning period.
4. High voltage Circuit

FBT (flyback transformer) is multi-single type, that is, high voltage rectifier diodes are connected, between high voltage winding, and these are sealed.
This FBT decreases the variation of picture size and reduces the dragging of the picture. The raised high voltage improves focussing to make picture quality better.

FRONT AND BACK VIEW

DESCRIPTION	OUT GOING STATUS
1. POWER INDICATER	
2. VOLUME	
3. BRIGHTNESS	
4. POWER SWITCH	OFF
5. TINT	CENTER
6. COLOR	CENTER
7. CONTRAST	CENTER
8. H. POSITION	-

DESCRIPTION	OUT GOING STATUS
9. V HOLD	-
10. POWER CORD	-
11. VIDEO	-
12. LUMA	-
13. CHROMA	-
14. AUDIO-1	-
15. AUDIO-2	-
16. SIGNAL SELECT	-

CIRCUIT DESCRIPTIONS

1. POWER SUPPLY

This Monitor power supply is switching mode power supply (SMPS) that is consist of switching IC (IC901). SMPS TRANSFORMER (T901), pulse TRANSFORMER (T902) and associated component. The Basic theory of the SMPS is the circuit of Blocking Oscillation and by turning ON, OFF of STRA470A, the secondary of the SMPS TRANS is applied the pulse, instant +115 V DC that pulse is rectifired is abtains
All other operating voltage and pulse are drived from the secondary winding of the high voltage transtormer (also called FBT, T703)

2. START UP CIRCUIT

An initial start-up circuit provides drive to the horizontial output stage when the set is initially turned on.
This circuit consists of Q703 and associated components. It proveds the initial voltage necessary to activate IC701 and provides a drive pulse to the horizontal drive transistor Q701
Once the FBT drived voltages operational, D708 is forward-biased and D701 is reverse-biared, providing +45 V DC to IC701 and Q701 Switching voltage supply circuit like this results in saving power consumption
3. HORIZONTAL DEFLECTION SYNCHRONIZATION AND VERTICAL

Integrated circuit IC701 performs the horizontal synchronization (also called horizontal oscillator)
A horizontal rate output pulse is coupled from IC701 pin 15 to horizontal driver Q701. The driver stage drives the horizontal output Q702.
Horizontal synchronization signal is derived from composite video signal which coupled to IC701 pin. 10.
Vertical synchronization signal is derived from composite signal at 1C701 pin 8 and coupled to pin 7 through R601

4. HORIZONTAL AFC AND OSCILLATION LIMITTER

AFC circuit is consists of phase detection circuit of IC701 and Q704 assoclated component Osciliation limit crrcuit is necessary to prevent from excessive high voltage. This circuit is located in IC701 and controls the oscillator to maintain the control signal in correct frequency and phase with the horizontal sync signal

5. X-RAY PROTECTION CIRCUIT

The X-ray protection circuit is consists of D703, R731 (Hold. Down) R729. R730 and associated component that connected to pin 16 of IC701. A pulse from FBT pin 6 s rectilied by D705. Under normal operating condtrons. the resultant voltage maintains at specified value
If a malfunction causes excessive high voltage, the amplitude of pulse from FBT increases, causing a corresponding increase in D703 which results in vositage increase at pin 16 of IC701. Voltage increase at IC701 pin 16 makes X-ray protection circuit conduct and horizontal oscilation operation no ionger function.
The circuit will latch as above and the instrument is necessary to turn off for at least 30 seconds to function again.

6. VERTICAL OSCILLATION/DRIVE CIRCUIT

Vertical oscillation and drive circuit are located in IC701. R603, R605. R606. C604 and R604 which connected at IC701 pin 6 are time constant circuit that determine the vertical oscillation frequency Vertical size control function is performed by R604, causing the negative feed back to change.

7. VERTICAL OUTPUT

Q601 and Q602 are SRPP (SHUNT REGULATED PUSH PULL) vertical output circuit.
45V-supply through D604. D605, C6Q8 is the main voltage supply line.
R620. C613. D603 is pump up circuit which supplies sufficient current driving the first half of vertical scan.

8. HORIZONTAL DRIVE CIRCUIT

To obtain horizontal drive Dulses from 1C701 pin 15. the horizon. tal oscillator must be working.
Horizontal drive pulses from IC701 pin 15 are applied to horizontal driver Q701. B^{+}for Q701 is is supplied from 45 V line through D708. During intial receiver turn-on before the FBT--DRIVED SUPPLY VOLTAGE ARE DEVELOPED. Q701 is splied initial B^{+}from the regulated 115 volt tine through R736.

9. HORIZONTAL OUTPUT

Horizontal drive pulses from Q701 are coupled through T703 to the bare of horizontal output Q702. Q702 is biased on when the beam is at about mid-screen
The charge stored on C724. C729 causes current to flow through the horizontal yoke winding and Q702 to ground. When the beam reaches the right side of the screen, Q702 is turned off and the current in the yoke is directed into C719, C720. At the same time current flows into C719, C720 from the regulated B^{+}via the FBT primary winding.
Due to resonance, the current then reverses and flows back through the horizontal yoke winding into C724, C729. This action defects the electron beam back to the +115 V regulated B^{+}

10. PINCUSHION CORRECTION

Pincushion correction circuit is T702 and its associated components
Horizontal yoke current is increased or decreased in response to vertical parabola pulse. The circuit of Q751, Q752, T751 and associated component is for improving high voltage transicent response
11. POWER SUPPLY DETAIL DESCRIPTIONS

RCC (RINGING CHOKE CONVERTER)

1. Basic circuit and its operation

a) Q1 is biased by the stanting resistor R902 and Q1 becomes ON.
b) Induced voltage will appear at base drive winding " B ". And the loop current thru C913, R904, Q1B-E and " B " is added on bias current made by starting resistor
c) Collector current of Q1 is increased making linear curves
d) At this moment. there is induced voltage at secondary winding but it is blocked by D909.
e) Collector current is increased but it is limited because base current is constant. The limited current, threshold point is $\mathrm{H}_{\mathrm{fe}} \times$
f) During Q1 is ON, input voltage Vin is added on the primary winding P. But, it is added on Q1 C-E suddenly.
g) At same time, inverted voltage appears at " B " which will bias Q1 B-E reversely and Q1 is OFF.
h) The energy charged in P is discharged by the secondary winding S thru D909.
i) Q1B-E biased reversely.
j) The energy is discharged thru D909 and when id is zero, starting current by R902 makes Q1 on again. Repeating from (a)
(In the actual case, restart is made by leakage inductance of the transformer and after starting by R902, switching of Q1 is kept continuously without R902.)
here

* Energy charged in P is $1 / 2 \times \mathrm{LL}^{2}$
* The curves of collector current at increasing is soft if inductance is large. The larger, the softer.
* Natural foldback characteristics is given to this circuit against over load and output short, so, additional protection circuit is not needed.

2. Operation circuit
(1) The operation circuit has function for voltage regulation in addition to the basic circuit.
When the output voltage is going to increase, base drive cur-
rent is going to decrease, so that Q1 is switched off during small coliector current and the cutput voltage is regulated.

If the output voltage is going to exceed rated voltage. Q3 is switched on and Q2 is switched on and base current for Q1 is proportionately decreased Voltage regulation is done like this.

$$
\text { Switching frequency } F \text { is } \frac{V \text { in }}{\text { lout } \times L} \times k
$$

proportionate to input voltage and reversely proportionate to output current and inductance.
(2) If the output voltage is directiy detected the reguiation accuracy is improved But the secondary will not be insulated from primary. (Hot chassis) In order to make cold chassis. voltage detecting winding is to be added. The output voltage is regulated indirectly and secondary w:ll be insulated from primary.
When this detecting winding is added the winding construction is to be considered to get coupling characteristics. Split each winding into two and construct sandwich windings to improve load regulation.

(3) it is possible to use the former SMPS at free running frequency as mentioned above. But it is also possible to lock the switching frequency to horizontal frequency.
In the latter case, frequency is constant and only Ton is changed. This is pulse Width MOdulation (PWM). If this is applied to CTV, the time of switch on is met to blanking time of CRT and noise suppression is easier than free frequency If locking to some frequency is needed. the primary induc-
tance shall be determined so that the free running frequency before locking may be smaller than the horizontal frequency even if at worst case. Worst case means that Vin is maximum and lo is minimum. The Fo will be the highest during free running without locking.)
(4) The wave shape of voltage and current at free Fo and locking respectively.

(5) Operation circuit for frequency iocking

BLOCK DIAGRAM

CHASSIS TOP VIEW

COMPONENT AND TEST POINT LOCATION

INSTALLATION AND SERVICE ADJUSTMENTS

1. GENERAL INFORMATIONS

All adjustments are thoroughly checked and corrected when the monitor leaves the factory. Therefore the monitor should operate normally and produce proper colour and pictures upon installation. However, serveral minor adjustments may be required depending on the particular iocation in which the monitor is operatede. This monitor is shipped completely in cardboard carton. Carefully draw out the monitor from the carton ad remove all packing materials.
Plug the power cord into a convenient 120 volts 60 Hz AC power outlet. Never connect to direct current or any other power outlet or frequency
Check and adjust all the customer controls such as BRIGHTNESS, CONTRAST, and COLOUR Fint Controls to obtain natural colour or $B W$ picture

2. AUTOMATIC DEGAUSSING

A degaussing coil is mounted around the picture tube so that external degaussing atter moving the monitor is normally unnecessary, providing the monitor is properly degaussed upon installation. The degaussing coil operates for about 1 second after the power to the monitor is switched ON. If the set is moved or faced in a different direction, the power switch must be switched off at least 10 minutes in order that the automatic degaussing circuit operates properly.
Should the chassis or parts of the cabinet become magnetized to cause poor colour purity, use an external degaussing coil. Slowly move the degaussing coil around the faceplate of the picture tube, the sides and front of the monitor and slowly withdraw the coil to a distance of about 2 meters before disconnecting it from AC source. It colour shading still persists, perform the COLOUR PURITY ADJUSTMENT and CONVERGENCE ADJUSTMENTS procedures, as mentioned later.

3. HIGH VOLTAGE CHECK

CAUTION: There is no HIGH VOLTAGE ADJUSTMENT on this chassis. The +115 volt power supply must be properly adisuted to insure the correct high voltage.

1. Connect an accurate high voltage meter to the second anode of the picture tube.
2. Turn on the move. Set the BRIGHTNESS and CONTRAST Controls to minimum (zero beam current).
3. High voltage will be measured below 25 KV .
4. Rotate the BRIGHTNESS Control to both extremes to be sure the high voltage does not exceed the limit of 25 KV under any conditions.

4. FS CIRCUIT CHECK (Hold down)

The Fail Safe (FS) circuit check is indispensable for the final check in the servicing checking should be done following the steps below. 1. Turn the power SW ON and adjust customer controls for normal operation
2. Connect a VTVM between TP7 (the cathode of D703) and the chassis ground
3. Adjust Brightness, contrast. color volume for mechanical minimum.
4. Adjust Hold down VR (R731) on the main Board for the voltage at TP7 (the cathode voltage of D703) is $10.3 \pm 0.02 \mathrm{~V}$ DC.
5. After the adjustment of the voltage, fix the Hold down VR (R731) with silicon bond.
6. Check the set is in hold down mode when the voltage of TP7 (the cathode voltage of D703) is $13.2 \mathrm{~V}+0.5,-0 \mathrm{~V}$.
7. if this monitor is not the Fall Sate (FS), repeat steps 1 through 5.

5. HORIZONTAL OSCILLATOR ADJUSTMENT

If there is an indication of unstable horizontal sync. adjust the HORIZONTAL HOLD COntrol (R708). Adjust the HORIZONTAL HOLD Control to the centre of the pull-in range.

6. VERTICAL OSCILLATOR ADJUSTMENT

If the picture moves up or down on the screen. adjust the VERTICAL HOLD Control (R604) at the back of the monitor until there is a single image without vertical movement.

7. VERTICAL SIZE ADJUSTMENT

VerticalSize Control (R609) on MAIN Board changes the size of the picture or pattern, having an equal effect on the top and bottom. Make final adjustment for v-size of picture is 190 mm .

8. FOCUS ADJUSTMENT

Adjust FOCUS Control on FOCUS PACK Z701 for well defined scanning lines in the $1 / 4$ and $3 / 4$ point of the screen.

9. HORIZONTAL WIDTH ADJUSTMENT

Adjust the Horizontal width control coil (L704) by turning it with a hexagonal adjusting tool so that the width of the picture (DATA DISPLY AREA) is 240 mm .

10. COLOUR SYNC. ADJUSTMENT

1. Tune in a colour program and warm up for five minutes.
2. Connect terminal TP5 (the pin 8 of the IC301) and TP6 with a short jumper wire.
3. Then the colour stripes will appear on the screen when the adjustment is incorrect. Adjust the colour sync. VR (R314) so that the colour bar pattern stand still.
4. Remove the short jumper wire.

11. COLOUR PURITY ADJUSTMENT

NOTE: Before attempting any purity adjustments, the monitor should be operated for at least fifteen minutes.

1. Receive a video signal (raster) to the video input terminal.
2. Demagnetize the picture tube and cabnet using a degaussing coil.
3. Turn the CONTRAST and BRIGHTNESS Controls to maximum
4. Adjust RED and BLUE CUT OFF controls (R358 and R354) to provide only a green raster. Advance the GREEN CUT OFF Control (R362) if necessary.
5. Loosen the clamp screw holding the yoke, and slide the yoke backward or forward to provide vertical green belt (zone) in the picture screen.
6. Remove the rubber Wedges.
7. Rotate and spread the tabs of the purity magnet (See figure 13) around the neck of the picture tube until a green belt is obtained in the center of the screen. And at the same time, center the raster vertically by adjusting the magnet.
8. Move the yoke slowly forward or backward until a uniform, green screen is obtained Tighten the clamp screw.
9. Check the purity of the red and blue raster by adjusting the CUT OFF Controls.
10. tighten the clamp screw of the yoke temporarily.
11. Obtain a white raster; referring to "CRT GRAY. SCALE ADJUSTMENT ${ }^{\prime}$
12. Proceed with convergence adjustment.

12. SUB-BRIGHTNESS ADJUSTMENT

1. Supply white color with a computer to the video input terminal
2. Turn the contrast to be MAXIMUM with the contrast volume (fully clockwise) and BRIGHTNESS to be MINIMUM with the Bright Volume (fully count clock wise)
3. Adjust the Sub-Bright Volume (R239) to cutt off the picture slightly

13. VERTICAL CENTER ADJUSTMENT

Adjust the V-Center Contro! (R625), so that the center of picture is the same as the mechanical center of color picture tube.
14. BAND PASS TRANS ADJUSTMENT (T201)

1. Supply a video signal to the video input terminal
2. Connect oscilloscope probe to the base of Q202
3. Turn the core of T201 so that the 3.58 MHz signal is maximized
4. 3.58 MHz TRAP (DL201)
5. Supply a video signal to the video input terminal
6. connect oscilloscope probe to the pin 27 of IC301
7. Turn the core of PL201 so that the 3.58 MHz signal is minimized

16. WHITE BALANCE ADJUSTMENT

1. Remove the input signal.
2. Remove the connector of the P351.
3. Short the terminal TP1 and TP2 with a jumber wire.
4. Turn the screen control fully counterclockwise
5. By rotating the RED, GREEN, and BLUE bias controis (R358, R354, R362) counter clockwise from the maximum. set them to the $1 / 3$ position
6. Set the RED and BLUE DRIVE CONTROLS (R355, R351) to the mid-position.
7. Turn on the Monitor
8. Rotate the SCREEN CONTROL gradually clockwise until the first horizontal line appears
9. Set the line to be white color with the other two Bias Controls (Except the first color Bias Control)
10. By Rotating the screen volume counter clockwise. adjust for the point that the horizontal line appears faintly
11. Remove a jumper wire between terminals TP1 and TP2
12. Adjust the RED and BLUE DRIVE CONTROLS to obtain proper white balanced picture in high light areas
13. Rotate the BRIGHTNESS and CONTRAST CONTROLS to obtain dark gray raster. Then check the white balance in low brightness. It the white balance is not proper, retouch the BIAS CONTROLS and DRIVE CONTROLS to obtain a good white balance in both low and high light area

NOTE: Before attempting any convergence adjustments, the receiver should be operated for at least fifteen minutes.

Contre Convergence Adjustment

1. Supply crosshatch pattern with a color bar signal generator to the video input.
2. Adjust the BRIGHTNESS and CONTRAST Controls for well defined pattern
3. Adjust two tabs of the 4-Pole Magnets to change the angle between them (See figure 2) and superimpose red and blue vertical lines in the center area of the picture screen. (See figure 2)
4. Turn the both tabs at the same time keeping the angel constant to superimpose red and blue horizontal lines at the centre of the screen. (See figure 3)
5. Adjust two tabs of 6-Pole Magnets to superimpose red/blue line and green one, adjusting the angle affects the vertical lines and rotating both magnets affects the horizontal lines.
6. Repeat adjustments $3.4,5$ with understanding red, green and blue movement, because 4-Pole Magnets and 6-Pole Magnets have mutual affection and it makes dots movement complex.

- Circumference Convergence Adjustment

1. Loosen the clamping screw of deflection yoke to allow the yoke to tilt.
2. Put a wedge as shown in figure 1 temporarily. (Do not remove cover paper on adhesive part of the wedge.)
3. Tilt front of the deflection yoke up or down to obtain better convergence in circumference. (See figure 1 push the mounted wedge into the space between picture tube and the yoke to fix the yoke temporarlly.
4. Put other wedge into bottom space and remove the cover paper to stick.
5. Tilt front of the yoke right or left to obtain better convergence in circumference. (See figure 1)
6. Keep the yoke position and put another wedge in eighter upper space. Remove cover paper and stick the wedge on picture tube to fix the yoke.
7. Detach the temporarily mounted wedge and put it in another upper space. Stick it on picture tube to fix the yoke.
8. After fixing three wedges, recheck overall convergenc. Tighten the screw firmly to fix the yoke and check the yoke is firm.
9. Stick 3 adhesive tapes on wedges as shown in figure 1 .

FIGURE 1.

CONVERGENCE MAGNET ASSEMBLY
adjust the angle (VERTICAL LINES)

ROTATE TWO TABS at the same time (HORIZONTAL LINES)
adjustment of magnets

FIGURE 2.

INCLINE THE YOKE UP (OR DOWN)

INCLINE THE YOKE RIGHT (OR LEFT)

Circumference by DEF Yoke

FIGURE 3. DOT MOVEMENT PATTERN

REPLACEMENT PARTS LIST

CAUTION: Before replacing any these components, read carefully the "SAFETY PRECAUTION" on page 3. Do not degrade the safety of the receiver through improper servicing.

ABBREVIATIONS: Capacitors
Resistors \qquad BP: Bipolor, CQ: Myler, PE: Polyester, PP: Polypropylene RD: Carbon Film, RS: Metal Oxide Film, RN: Metal Film, RV: Variable RF: Fusing, SR: Semifix
(All CC and plastic Capacitors are $\pm 5 \%, 50$ Volts and all resistor, $\pm 5 \%, 1 / 8 \mathrm{~W}$ unless other wise noted).
(5) : Recommend Service Parts

1. MAIN PWB

LOCATION NUMBER	PART NO.	DESCRIPTION	LOCATION NUMBER	PART NO.	DESCRIPTION	
RESISTOR			$\begin{aligned} & \text { R307 } \\ & \text { R308 } \end{aligned}$		RD, $1 / 8 \mathrm{~W} 820 \mathrm{~K}$ RD, 1/8W 22 ohm	
R201		RD, 1/8W, 75 ohm		R309		RD, 1/8W 1.2 K
R202		RD, 1/8W, 100 ohm	R310		RD, 1/8W 15K	
R203		RD, 1/8W 100 ohm	R311 (5)		RV, 10KB	
R204		RD, 1/8W 30 ohm	R312		RD, 1/8W 5.1 K	
R205		RD, 1/8W 47 ohm	R313		RD, 1/8W 1.5 K	
R206		RD, 1/8W 360 ohm, G	R314 (s)		SR-19R 47 KB	
R207		RD, 1/8W 330 ohm	R315		RD, 1/8W 200K	
R208		RD, 1/8W 330 ohm	R316		RD, 1/8W 1 K	
R209		RD, 1/8W 68 ohm	R317		RD, 1/8W 1 K	
R210		RD, 1/8W 82 ohm	R318R319		RD, 1/8W 5.6K	
R211		RD, 1/8W 5.6 K			RD, 1/8W 5.6K	
R212		RD, 1/8W 5.6K	R319 R320		RD, 1/8W 180 ohm	
R213		RD, 1/8W 5.6 K	R320 R322		RD, 1/8W 470 ohm	
R214		RD, 1/8W 10K	R322		RD, 1/8W 8.2 K	
R215		RD, 1/8W 10K	R323		RD, 1/8W 2.2 K	
R216		RD, 1/8W 10K	R324		RD, 1/8W 560 ohm	
R217		RD. 1/8W 33K	R326		RD, 1/8W 51 K	
R218		RD, 1/8W 33k			RD, $1 / 8 \mathrm{~W} 15 \mathrm{~K}$	
R219		RD. 1/8W 33k	R328		SR-19R 4.7KB	
R220		RD, 1/8W 1K	R330		RD, 1/8W 330 ohm	
R221		RD, 1/8W 47 K	R331		RD, 1/8W 330 ohm	
R222		RD, 1/8W 1K	R332		RD, 1/8W 330 ohm	
R223		RD, 1/8W 470 ohm	R333		RD, 1/8W 3.3 K	
R224		RD, 1/8W 1 K			RD, 1/8W 3.3K	
R225		RD, 1/8W 39 K	R334 R335		RD, 1/8W 3.3K	
R226		RD. 1/8W 1.8 K	R335		RD, 1/8W 4.7 K	
R227		RD, 1/8W 1.8 K	R336 R337		RD, 1/8W 100 ohm	
R228		RD, 1/8W 3.6K	$\begin{aligned} & \text { R337 } \\ & \text { R338 } \end{aligned}$		RD, 1/8W 560 ohm	
R229		RD, 1/8W 3.6K	R339		RD, 1/8W 33 ohm	
R230		RD, 1/8W 33 K	R340		RD, 1/8W 100K	
R231		RD, 1/8W 68K	R601		RD, 1/8W 8.2 K	
R232		RD. 1/8W 33K	R602		RD, 1/8W 120 ohm	
R233		RD, 1/8W 4.7K	$R 603$		RD, 1/8W 4.3 K	
R234		RD, 1/8W 27K	R604 (s)		RV, 5KA	
R235		RD, 1/8W 330 ohm	R605		RD, 1/8W 3.9K	
R236		RD, 1/8W 1 K	R606		RD, 1/8W 8.2K	
R238		RD. $1 / 8 \mathrm{~W} 150$ onm	R607		RD, 1/2W 560 ohm	
R239		RD, 1/2W 82 ohm	R608		RD, $1 / 8 \mathrm{~W} 22 \mathrm{~K}$	
R240		RD, $1 / 2 \mathrm{~W} 1.5 \mathrm{~K}$	R609 ${ }^{\text {s }}$		SR-19R 470B	
R301		RD, 1/8W 2.4 K	R610		RD, 1/8W 270 ohm	
R302 (s)		RV, 10KB	R611		RD, 1/8W 2.2 K	
R303		RD, 1/8W 8.2 K	R612		RD, 1/2W 5.1 ohm	
R304		RD, 1/8W 5.1 K	R613		RS, 1W 560 ohm	
R305 (s) R306		RV. 10 KB RD $1 / 8 \mathrm{~W} 15 \mathrm{~K}$	R614		RD, 1/2W 270 ohm	
R306		RD, 1/8W 15K				

PRODUCT SAFETY NOTE: Components shaded have special characteristics important to safety. Before replacing any of these components, read carefully the PRODUCT SAFETY NOTICE of this service manual. Dont degarde the safety of the receiver through improper servicing.

LOCATION NUMBER	PART NO.	DESCRIPTION	LOCATION NUMBER	PART NO.	DESCRIPTION
R615		RD. 118 W 8.2 K	R405		RD. 1/8W 120K
R616		RD, $1 / 8 \mathrm{~W} 12 \mathrm{~K}$	R406		RD, 1/2W 5.6 ohm
R617		RD, 1/8W 470 ohm	R411		RD. 1/8W 1.2 K
R618		RS. 1 W 10 ohm	R901 (5)		RWR, 10W 3.3 ohm
R619 (5)		RF, 1/2W 10 ohm	R902		RD, 1/2W 150K
R620		RN. 164.7 ohm	R903 (3)		RS, 5W 10k
R621		RS, $1 W 51 \mathrm{ohm}$	R904		RS, 1W 220 ohm
R622 (5)		RF. 1W 5.1 ohm	R906 (5)		RC, $1 / 2 \mathrm{~W} 2.2 \mathrm{M}$
R623		RD, 1:2W 1 K	R907 (s)		RC, 1/2W 2.2 M
R624		RD, 1/2W 2.2 K	R908		RN, 1/2W 0.47 ohm
R625 (5)		SR-19R 4.7 KB	R909		RS, 1W 56 ohm
R627		RD. $1 / 2 \mathrm{~W} 5.1 \mathrm{ohm}$	TH901		THERMITOR PTH 631-04 BF7
R628		RD. 118 W 56 K			ROM140
R631		RD. 1/8W 1 K			
R632		RD. 1/8W 10K	CAPACITOR		
R630		RS, 1W 15 K ohm			
R701		RD 1/8W 120 ohm	C201		CE. 10uF 16V
R702		RD. 1/8W 56K	C202		CE, 10uF 16 V
R703		RD. $1 / 8 \mathrm{~W} 1 \mathrm{~K}$	C203		CE, 10, 16 V
R704		RD, 1/8W 68 K	C204		CK, 103pF $+80 \%$, -200%
R705		RD, 1/8W 15K	C205		CK. 103pF $+80 \%$. -20%
R706		RD. 1/8W 10K	C206		CE, 10uF 16 V
R707		RD. 1/8W 10 K	C207		CC. $39 \mathrm{pF} \pm 5 \%$
R708 (5)		SR-19R 10KB	C208		CE, 10uF 16 V
R709		RD. $1 / 8 \mathrm{~W} 47 \mathrm{ohm}$	C210		CK, 103pF $+80 \%$. -20%
R710		RD. 118W 470 ohm	C211		CK, 103pF $+80 \%-20 \%$
R711		RD. $1 / 8 \mathrm{~W} 4.7 \mathrm{~K}$	C212		CK. 103pF $+80 \% .-200 \%$
R712		RD. 118 W 82 ohm	C213(5)		BP, 10uF 16 V
R713		RD. 118 W 47 K	C214		CE, 10uF 16 V
R714		RD. $1 / 8 \mathrm{~W} 1 \mathrm{~K}$	C215		CE 220uF 16 V
R715		RD. $1 / 8 \mathrm{~W} 22 \mathrm{~K}$	C 217		CK. 103pF + 80\%\%, - 20\%
R716		RD. $1 / 8 \mathrm{~W} 12 \mathrm{~K}$	C218		CE, 47uF 16V
R717 (5)		RV. 10 KB	C301		CK. 103pF $+80 \%-200 \%$
R718		RD. 118 W 82 K	C302		CK. $103 \mathrm{pF}+80 \% .-20 \%$
R719		RD, 1/8W 4.7 K	С303		CE, 1uF 50 V
R720		RS, 1W 4.7 K	C304		CE, 1uF 50 V
R721		RN 1/2W 0.47 ohm	C305		CE, 1uF 50V
R723		RD, 1/2W 150 K	C306		CC. $39 \mathrm{pF} \pm 5 \%$
R724		RD. $1 / 2 \mathrm{~W} 1 \mathrm{~K}$	C307		CK. 103pF $+80 \%-200 \%$
R725		RD, 1/8W 270 K	C308		CE, 1uF 50 V
R726		RD, 1/8W 6.8K	C309		CC. $22 \mathrm{pF} \pm 5 \%$
R727		RD. 1/8W 3900 ohm	C310		CC. $27 \mathrm{pF} \pm 5 \%$
R728		RD, 1/2W 5.6 ohm	C311		CE, 10, FF 16 V
R729		RD. $1 / 8 \mathrm{~W} 1 \mathrm{~K}$	C312		CQ. 333pF $\pm 10 \%$
R730		RD. $1 / 8 \mathrm{~W} 1 \mathrm{~K}$	C313		CC. $470 \mathrm{DFF} \pm 5 \%$
R731 (5)		SR-19R 2.2 KB	C314		CK. $470 \mathrm{pFF} \pm 50$
R732		RS. 1 W 820 ohm	C315		CE. 1uF 50 V
R733		RD, 1/8W 82 K	C316		CK. $103 \mathrm{pF}+80 \%-200 \%$
R734		RS, 1/2W 1.5 K	C317		CE, 220uF 16 V
R735		RD. 1/8W 39 K	C318		CE, 4.7uF 50 V
R736		RD. 1/2W 220 ohm	C319		CK. $103 \mathrm{pF}+80 \%$ \% - 2000
R737		RS 1 W 18 K	C320		CE, 1OUF 16 V
R741		RD. 1i8W 56 K	C321		CE. 10uF 16 V
R738		RS, iW 1 K	C322		CE. 0.47 uF 50 V
R401		RD. 118 W 68 K	С323		CC. $270 \mathrm{pF} \pm 50$
R403		RD. 18 W 150K	C324		CC, $270 \mathrm{pF} \pm 50 \%$
R404		RD. 1/8W 47K	C325		CC. $270 \mathrm{pF} \pm 50$ \%

PRODUCT SAFETY NOTE: Components shaded have special characteristics important to safety. Before replacing any of these components, read carefully the PRODUCT SAFETY NOTICE of this service manual. Dont degarde the safety of the receiver through improper servicing

LOCATION NUMBER	PART NO.	DESCRIPTION	LOCATION NUMBER	PART NO.	DESCRIPTION
C401		CE, 2.2uF 50 V	C901 ${ }^{\text {(3) }}$		MPP, 0.1uF $\pm 20 \% 125 \mathrm{~V}$
C402		CE, 4.7uF 50V	C902 (5)		MPP, 0.1uF $\pm 20 \%$ AC 125V
C403		CE, 220uF 16V	C903		CK, 472pF $\pm 10 \%$
C404		CC, $100 \mathrm{pF} \pm 5 \%$	C904		CK, 472pF $\pm 10 \%$
C405		CE, 47uF 16V	C905		CK, $472 \mathrm{pF} \pm 10 \%$
C406		CE, 220uF 16 V	C906		CK, 472pF $\pm 10 \%$
C407		CE, 1000uF 16V	C907 (5)		CE, 560uF 200 V
C408		CQ. 104pF $\pm 10 \%$	C909		CE, 10uF 250 V
C409		CK. $103 \mathrm{pFF}+80 \% .-20 \%$	C910 (5)		PP, 272pF $\pm 10 \% 600 \mathrm{~V}$
C601		CE, 1uF 50 V	C911 ${ }^{\text {c }}$		PP, 123pF $\pm 5 \% 630 \mathrm{~V}$
C602		CQ. $223 \mathrm{pF} \pm 10 \%$	C912(5)		CK, 470pF $\pm 10 \%, 2 \mathrm{KV}$
C603		CQ. $473 \mathrm{pF} \pm 10 \%$	C913(5)		PE, 154pF $\pm 20 \%, 100 \mathrm{~V}$
C604 (5)		PE, 682pF $\pm 5 \%$	C914		CE, 10uF 160 V
C605 ${ }^{\text {a }}$		TANTAL 1uF 25 V	C915		CK, 102pF $\pm 10 \% 1 \mathrm{KV}$
C606		CE, 330uF 16 V	C917		CK, 102pF $\pm 10 \% 500 \mathrm{~V}$
C607		CQ. 153pF $\pm 10 \%$	C918 ${ }^{5}$		AC125V 472pF ULICSA
C608		CE, 100uF 50V	C919 (3)		AC125V 472pF ULICSA
C609 ${ }^{5}$		CE, 10uF 50 V	C920 (3)		CE, 220uF 160 V
C610 ${ }^{\text {s }}$		CE, 3.3uF 50V	C921		CE, 1000uF 25 V
C611		CE. 33uF 16 V	C922		CK, 332pF $\pm 10 \% 500 \mathrm{~V}$
C612		CE, 6.8uF 160V	C930		AC125V 4700pF ULCSA
C613(5)		PP, 333pF $\pm 10 \% 200 \mathrm{~V}$	C931		CE, 10uF 100 V
C614		CE, 100uF 50 V			
C615		CE. 330uF 16 V	TRANSISTOR AND DIODE		
C616		CE, 100uF 16 V			
C617		CQ. 103pF $\pm 10 \%$	Q201 (s)		KTC 1815-0/
C618		CE, 220uF 160 V			
C619		CE. 1000 uF 25 V	Q202 (s)		KTC 1959-OM
C620		CE. 180pF $\pm 10 \%$			
C631		CE, 47uF 16 V	Q203 s.		KTC 1815-OM
C701		CE. 1uF 50 V			
C702		CC. $270 \mathrm{pF} \pm 5 \%$	Q204 (5)		KTC 1815-O.Y
C703(${ }^{\text {c }}$		PE. $153 \mathrm{pF} \pm 10 \%$			
C704 (5)		PE. 682pF $\pm 10 \%$	Q205 (5)		K.TC 1815-ON
C705		CE, 1uF 50 V			
C706 ${ }^{\text {s }}$		PP. 562pF $\pm 10 \% 200 \mathrm{~V}$	Q301 ©		KTC 562TM-ON
C707		CC. $270 \mathrm{pF} \pm 5 \%$			
C708		CK, 103pF $+80 \%,-20 \%$	Q601(5)		MJE 9730
C709		CE, 22uF 16 V	Q602 (5)		MJE 9730
C710		CE, 33uF 16 V	Q701(5)		KTC 2068-FA-1
C711		CK, 103pF $+80 \%,-20 \%$	Q702 (5)		2SD1453
C712		CQ, 333pF $\pm 10 \%$	Q703 (3)		KTC 2229-O/
C713		CK, 270pF $\pm 10 \% 500 \mathrm{~V}$			
C714		CK, 820pF $\pm 10 \% 500 \mathrm{~V}$	Q704 (5)		KTC 1959-ON
C715		CC. $82 \mathrm{pFF} \pm 5 \%$			
C716		CK, 560pF $\pm 10 \%$	D201 ${ }^{\text {s }}$		KDS 1555
C717 ${ }^{\text {c }}$		PP, 223pF $\pm 10 \% 200 \mathrm{~V}$	D202 5		KDS 1555
C718		CE, 33uF 25 V	D203 ${ }^{\text {s }}$		KDS 1555
C719 (5)		MPP, 682pF $\pm 5 \% 1.2 \mathrm{KV}$	D204 5		KDS 1555
C720 ©		PP, $222 \mathrm{pF} \pm 5 \% 1.6 \mathrm{KV}$	D205 5		KDS 1555
C721 ${ }^{\text {c }}$		CE, 33uF 160 V (H.R)	D206 (5)		KDS 1555
C722		CQ, 103pF $\pm 10 \%$	D207 5		LED RED (SLP-162B)
C723		BP, 1uF 50 V	D601 ¢		KDS 1555
C724		PP, 270pF $\pm 5 \% 200 \mathrm{~V}$	D602 3		KDS 1555
C727		CE, 4.7uF 250 V	D603 5		RH.12V
C728		CC. $470 \mathrm{pF} \pm 5 \%$	D604 ©		1N 4002
C729 ©		PP, 333pF $\pm 10 \% 200 \mathrm{~V}$	D605 ©		RH.1AV

PRODUCT SAFETY NOTE: Components shaded have special characteristics important to safety. Before replacing any of these components, read carefully the PRODUCT SAFETY NOTICE of this service manual. Dont degarde the safety of the receiver through improper servicing.

LOCATION NUMBER	PART NO.	DESCRIPTION
D606		IN4004
D607		RU-1V
D608 ©		IN4002
D609 (s)		KDS 1555
D610 5		RD, 9.1EB
D611 ${ }^{\text {s }}$		KDS1555
D701 ${ }^{5}$		KDS 1553
D702 (5)		VARISTOR RVDFV-212
D703 (3)		RD, 11E-B2 (ZENER)
D704 ${ }^{\text {s }}$		RD, 11E-B2 (ZENER)
D705 (5)		SIB-01-01V
D706 ${ }^{5}$		KDS 1553
D707 ${ }^{\text {s }}$		RH-1MV
D708 ${ }^{\text {s }}$		\|N4002
D709 ${ }^{5}$		KDS 1555
D901 ${ }^{\text {(3) }}$		IN4005GP
D902 (3)		IN4005GP
D903 (5)		IN4005GP
D904 (5)		IN4005GP
D905 (5)		RGP10G
D906 (3)		RGP10G
D907 (5)		RGP10G
D908 (5)		RGP10G
D909 ©		RGP10G
D910 (5)		RGP10G
D921 (5)		RGP10G
D922 (5)		RGP10G
COIL AND TRANS		
L201 ¢		COIL PEAKING 15 uH
L202 s		COIL PEAKING 3.3uH
L301 s		COIL CHOKE 15 mH
L302 ©		COIL PEAKING 20 uH
L303 (5		COIL PEAKING 56uH
L304 ©		COIL PEAKING 22uH
L305 (5)		COIL PEAKING 22 uH
L306 ©		COIL PEAKING 22uH
L701 ${ }^{\text {s }}$		CORE FERRITE
L702 ©		CORE FERRITE
L704 (5)		COIL. H. WIDTH
L705 ©		COIL. H. LIN
L706 (3)		COIL CHOKE 100uH
L901 (3)		COIL LINE FILTER
L902 ${ }^{\text {c }}$		COIL CHOKE 10.3uH
L904 (5)		COIL FERRITE
L905 (5)		COIL CHOKE 1.04uH
L906 (6)		COIL HCOKE 10.3uH
T703 ©		F.B.T.
T201 (3)		COIL BAND PASS TRANS
T701 ${ }^{\text {c }}$		TRANS. H. DRIVING
T702 ©		TRANS. SIDE PCC
T901		TRANS. CONVERTER
T902 (5)		TRANS PULSE

LOCATION NUMBER	PART NO.	DESCRIPTION
I.C.		
IC201 웅 IC301 IC401 ${ }^{\circ}$ IC701 IC901 ${ }^{\circ}$		MC14053B HD 140553B HA 11431 uPC 575C2 HA 11423 STR 470A
miscellaneous		
FOCUS PACK $\times 301$ R402 R327 S901 L951 F901		MURATA OSCILLATOR CRYSTAL RESISTOR VAR VM10A 10KA RESISTOR VAR $2 K B$ SWITCH POWER COIL DEGAUSSING FUSE 125V 3A
2. C.P.T PWB		
RESISTOR		
R351 © R352 R353 R354 (5) R355 (5) R356 R357 R358 (s. R359 R360 R361 R362 (5) R363 R364 R366 R367 R368 R369 (3)		SR-29D 330B RD, 1/8W 160 ohm RD, 1/8W 1 K SR-19R 4.7 KB SR-29D 330B RD, $1 / 8 \mathrm{~W} 160 \mathrm{ohm}$ RD, $1 / 8 \mathrm{~W} 1 \mathrm{~K}$ SR-19R 4.7KB RD, 1/8W 160 ohm RD, $1 / 8 \mathrm{~W} 160$ ohm RD. $1 / 8 \mathrm{~W} 1 \mathrm{~K}$ SR-19R 4.7KB RD. 1/8W 33 K RD, 1/8W 33K RS, 3W 7.5K RS, 3W 7.5 K RS. 3W 7.5K RF, 2W 1.2 ohm
CAPACITOR		
$\begin{aligned} & \text { C352 } \\ & \text { C353 } \\ & \text { C354 } \\ & \text { C355 } \\ & \text { C351 } \end{aligned}$		CK, 222pF $\pm 10 \%, 2 \mathrm{KV}$ CK, 102pF $\pm 10 \%$ CK. $102 \mathrm{pF} \pm 10 \%$ CK. 102pF $\pm 10 \%$ CE, 2.2uF/250V
TRANSISTOR		
Q351 ${ }^{\text {ch }}$		KTC2068

PRODUCT SAFETY NOTE: Components shaded have special characteristics important to safety. Before replacing any of these components, read carefully the PRODUCT SAFETY NOTICE of this service manual. Dont degarde the safety of the receiver through improper servicing

TERMINAL VIEW OF SEMICONDUCTOR

DESCRIPTION	KTC1959/KTA562
KTC1815 OH	

DESCRIPTION	FIGURE
KDS1553 KDS1555 RD11E-B2	
1N4002/1N4004 NL005GP RGP10G	
RU-1AV/RU-1V RH-12V/RH-1MV RD9.1EB SIB-01-01V	
VARISTOR	
RVDFV-212	

PRINTED CIRCUIT BOARD

1. MAIN BOARD

SCHEMATIC DII

AGRAM CM-141

