SERVICE MANUAL

 1571 DISK DRIVE
Preliminary

OCTOBER 1986 PN-314002-04

Commodore Business Machines, Inc.
1200 Wilson Drive, West Chester, Pennsylvania 19380 U.S.A.
Commodore makes no expressed or implied warranties with regard to the information contained herein. The information is made available solely on an as is basis, and the entire risk as to quality and accuracy is with the user. Commodore shall not be
liable for any consequential or incidental damages in connection with the use of the information contained herein. The listing of any available replacement part herein does not constitute in any case a recommendation, warranty or guaranty as to quality or suitability of such replacement part. Reproduction or use without expressed permission, of editorial or pictorial content, in any matter is prohibited.
This manual contains copyrighted and proprietary information. No part of this publication may be reproduced, stored in a retrieval system, or transimitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Commodore Electronics Limited.

Copyright © 1986 by Commodore Electronics Limited.
All rights reserved.

TABLE OF CONTENTS

TITLE PAGE
SPECIFICATIONS 1
PRODUCT PARTS LIST 2
MEMORY MAP 3
GATE ARRAY CIRCUIT THEORY 4
GATE ARRAY BLOCK DIAGRAM 6
IC PIN ASSIGNMENTS 8
DETAIL PARTS LIST 17
BOARD LAYOUT 18
SCHEMATIC 19

COMMODORE 1571 DISK DRIVE SPECIFICATIONS

GENERAL FEATURES	- 5-1/4" Floppy Disk Drive - Supports Fast Data Transfer Rates - Two Serial Ports for Adding Peripherals - Software Disk Format Selectable - Comes with Serial and Power Cables Compatible with Commodore 128, Commodore 64, and Plus/4 Computers
SYSTEM FEATURES	- Built-in 6502 Microprocessor - 2K RAM - 32K ROM - Built-in DOS - Program Load Transfer Rates - 300 cps under C64 Control - 5200 cps Max under C128 Control (Burst Rate) - 5200 cps Max under CP/M® Control (Burst Rate)
MEDIA CHARACTERISTICS	- Commodore Standard (GCR) - Double Sided/Single Density - 350K Storage Capacity (Formatted) - Compatible with 1541 Disk Drive - Supports Program, Sequential, Relative and User Files - CP/M Compatible (MFM) - Single or Double Sided/Double Density Formats - Up to 410K Storage Capacity (Formatted) - Read/Write Compatible with Kaypro®, Osborne ${ }^{\circledR}$, IBM®, CP/M® 86, Epson ${ }^{\circledR}$ QX-10 and Numerous Other Formats - Supports Most CP/M® Files
INPUTS/OUTPUTS	- Two Serial Ports - Power Connector
POWER REQUIREMENTS	- 117 Volts AC, 60 Hz , Less than 25 Watts
	Specifications subject to change without notice. CP/M is a registered trademark of Digital Research, Inc. KayPro is a registered trademark of Kaypro, Inc. Osborne is a registered trademark of Osborne Computer Corporation. IBM is a registered trademark of International Business Machines Corp. Epson is a registered trademark of Epson Corporation.

PARTS LIST
 1571

PLEASE NOTE: Commodore part numbers are provided for reference only and do not indicate the availability of parts from Commodore. Industry standard parts (Resistors, Capacitors, Connectors) should be secured locally. Approved cross-references for TTL-chips, Transistors, etc. are available in manual form through the Service Department. Unique or non-standard parts will be stocked by Commodore and are indicated on the parts list by a "C".

TOP CASE ASSY

Top Case
C 310508-01

BOTTOM CASE ASSY

Bottom Case C 310509-01
PCB Assembly C 310420-01
Power Supply Assembly C 250772-01
Drive Assembly - Newtronics C 252083-01
Drive Assembly - Alps C 252092-01
PCB Shield C 252069-01
PCB Insulation Sheet C 252070-01

FRONT CASE ASSY

Front Bezel - Alps
C 252086-01
Front Bezel - Newtronics C 310507-01
Disk Eject Lever C 252050-01
LED Assembly C 250754-04
LED Clip
Nameplate

C 252013-01
C 310411-01

ACCESSORIES

Users Manual
Demo Disk
Power Cord

6-Pin Din Cable

C 252095-01
C 252093-01
C 252164-01 sub:
C 903508-04
C 252159-01 sub:
C 1540027-01

MEMORY MAP

* ONLY 2K OF RAM SPACE AVAILABLE IN THE 1571

ADDRESS DECODING IS ACCOMPLISHED BY THE 64H157 GATE ARRAY.

20 PIN GATE ARRAY
 1541B AND 1571

The 20 pin gate array used in the 1541B and 1571 disk drives is designed to work in conjunction with the 40/42 pin gate array also used in these drives. As illustrated in the block diagram, this I.C. controls 3 operations:

1. ADDRESS SELECTOR

The function of the address selector is to produce ROM, RAM and I/O chip select signals by decoding the addresses A10, A12, A13, A14 and A15. The system clocks are not gated with the address lines in this I.C. All chip select outputs are ACTIVE LOW.

Address	Decode Map:	RAME	0000	--07 FF
	IO1	1800	--1 BFF	
	IO2	1000	--1 FFF	
	CS1	2000	$--3 F F F$	
	CS2	4000	--7 FFF	
	ROME	C000	-- FFFF	

2. SADDLE CANCELER

This correction signal is generated during the period that the data pattern is two consecutive zeros. With the Commodore GCR type recording format, a problem occurs in the waveform of the read signal. In the worst case pattern of 1001, a saddle condition will occur as illustrated below.

The worst case saddle will occur in tracks 31 to 35 and if not compensated for, will result in a read error. In the original 1541 drives, a one-shot was used to correct the condition; however, in this gate array it is corrected digitally.

The data output line, pin 19, of the R/W Hybrid's data comparitor is fed to the data input line, pin 3, of this gate array.

The data is then compared with the last data value which has been latched by the gate array, 2.6 usec after the rising or falling edge of the data line. If the current data value differs from the previous data value, the clear line is set to a high level for a duration of 63 nsec . If the values are the same, the clear line is not set.

20 PIN GATE ARRAY (continued)

It takes 2.56 to 2.62 usec to cancel the saddle. If the saddle should be longer than this length of time, the saddle can not be corrected and will result in a read error. Also, if the time for correcting the saddle is set for a longer time interval, the clear signal will not be set when the data is equal to 11 . Therefore, approximately 2.6 usec the most suitable time setting for saddle correction.

Note: The minimum bit rate for tracks 1-17 is equal to 2.6 usec. If this time should become less due to motor speed, the SYNC signal cannot be recognized on the outer tracks resulting in error.

3. MOTOR SPEED COMPENSATOR (PLL)

This gate array detects the motor speed and generates an internal data sampling clock signal that matches with the motor speed (see below).

When the SYNC signal goes to the low level, the LOCK signal goes false and the sampling clock is switched to the internal clock signal of the gate array. Once the PLL has sampled the data one's, the LOCK signal will go high to indicate that the output of the PLL is valid. If the PLL cannot lock on, the internal clock signal will be used and the LOCK signal will remain at the low level. This can occur when the stepper is still moving or the spindle motor is not up to speed yet. In short, this allows the reading of data independent of motor speed within the lock on limits of the PLL.

The 1571 runs on the SYSTEM CLOCK and does not implement the LOCK signal.

251829
 BLOCK DIAGRAM 20 PIN GATE ARRAY FOR 1541B/1571

251828
 BLOCK DIAGRAM 40/42 PIN GATE ARRAY FOR 1541B/1571

40/42 PIN GATE ARRAY

40 PIN	42 PIN	DESC	FUNCTION
1	1	TEST	Input used in design verification.
$2-9$	$2-9$	YB0-YB7	Data input/output lines for read/write operation.
10	10	Vss	Ground.
11,12	11,12	STP0,STP1	Input to stepper driver.
13	13	MTR	Control line used to activate the stepper motor.
14	14	A	Write protect input. Indicates disk is write protected.
15,16	15,16	DS0,DS1	Inputs used to produce the binary count for the frequency divide ratio.
17	17	SYNC	Sync output.
18	18	TED	A low input clears the BYTE line in 2 MHz mode. A high sets 1541
			mode.
19	19	OE	Input to read/write block to set mode. 0 for Write, 1 for Read.
20	20	ACCL	Input select line for the CPU clock. 0 for $1541-1$ MHz, 1 for $1571-2$
	21,22		MHz.
XX	23	OSC	N/C
21	23	16 MHz clock input.	
22	24	ATNA	Attention acknowledge input.
23	25	ATNI	Attention line input from serial bus.
24	26	ATN	Attention data input from serial bus.
$25-28$	$27-30$	Y0-Y3	Control output lines for the 4 phases of the stepper motor.

31
32
33
34
35

36
37,38
39
40
41
42

XRW
Vcc
CLR
PLL
LOCK

R/W
Q,Qx
CK
B
SOE
BYTE

RAM write enable output.
+5 VDC .
High input when the read data is logical 1.
Input from the 20 pin gate array. Clock compensation.
Indicates the PLL LOCK status. When logical 1, PLL is locked. When 0 , the internal clock is used for sampling data.
R/W select input.
Write pulse outputs.
Clock select output - 1 or 2 MHz .
Write enable output.
Enable byte input.
Data latched output.

WD 1770/1772
 FLOPPY DISK CONTROLLER/FORMATTER

PIN ASSIGNMENT			
$\overline{\mathrm{CS}}$			
	1	28	$ص$ INTRQ
$\mathrm{R} / \overline{\text { Wr }}$	2	27	$ص$ DRQ
A0	3	26	$ص \overline{\text { DDEN }}$
A1	4	25	$ص$ WPRT
DaL0	5	24	$ص \overline{\mathrm{IP}}$
DAL1	6	23	ص $\overline{\text { TR00 }}$
DAL2 \square^{-}	7	22	$ص$ WD
Dal3	8	21	$ص W G$
DaL4	9	20	$ص$ MO
DAL5	10	19	$ص \overline{\mathrm{RD}}$
DaL6 $\square^{\text {c }}$	11	18	ص CLK
DAL?	12	17	$ص \mathrm{DIRC}$
MR	13	16	$ص$ STEP
GND \square	14	15	Ucc

PIN	DESC	DESC	FUNCTION
1	CS	CHIP SELECT	T A logic low on this input selects the chip and enable Host communication with the device.
2	R/W	READ/WRI	A logic high on this input controls the placement of data on the D0-D7 lines from a selected register, while a logic low causes a write operation to a seleeted register.
3,4	A0,A1	ADDRESS 0	These two inputs select a register to Read/Write data:
5-12	DAL0-DAL7	7 DATA ACCESS LINES 0 THRU 7	Eight bit bidirectional bus used for transfer of data, control, or status. This bus is enabled by CS and R/W. Each line will drive one TTL load.
13	MR	MASTER RESET	A logic low pulse on this line resets the device and initializes the status register (internal pull-up).
14	GND	GROUND	Ground.
15	Vcc	POWER SUPPLY	$+5 \mathrm{~V} \pm 5 \%$ power supply input.
16	STEP	STEP	The STEP output contains a pulse for each step of the drive's R/W head. The WD 1770 and WD1772 offer different step rates.
17	DIRC	DIRECTION	The DIRECTION output is high when stepping in towards the center of the diskette, and low when stepping out.

18	CLK	CLOCK	This input requires a free-running 50% duty cycle clock (for internal timing) at $8 \mathrm{MHz} \pm 1 \%$.
19	RD	READ DATA	This active low input is the raw data line containing both clock and data pulses from the drive.
20	MO	MOTOR ON	Active high output used to enable the spindle motor prior to read, write or stepping operations.
21	WG	WRITE GAT	This output is made valid prior to writing on the diskette.
22	WD	WRITE DATA	FM or MFM clock and data pulses are placed on this line to be written on the diskette.
23	TR00	TRACK00	This active low input informs the WD1770 that the drive's R/W heads are positioned over Track Zero (internal pull-up).
24	IP	INDEX PULSE	This active low input informs the WD1770 when the physical Index Hole has been encountered on the diskette (internal pull-up).
25	WPRT	WRITE PROTECT	This input is sampled whenever a Write Command is received. A logic low on this line will prevent any Write Command from executing (internal pull-up).
26	DDEN	DOUBLE DENSITY ENABLE	This input pin selects either single (FM) or double (MFM) density. When DDEN $=0$, double density is selected (internal pull-up).
27	DRQ	DATA REQUEST	This active high output indicates that the data register is full (on a READ) or empty (on a Write operation).
28	INTRQ	INTERRUPT REQUEST	This active high output is set at the completion of any command or reset or read of the status register.

6502 MICROPROCESSOR

PIN	DESC	FUNCTION
1,21	Vss	Ground.
2	RDY	Ready. TTL level input, used to DMA the 6502. The processor operates normally while RDY is high. When RDY makes a transition to the low state, the processor will finish the operation it is an, and any subsequent operation if it is a write cycle. On the next occurrence of read cycle the processor will halt, making it possible to tri-state the processor to gain complete access to the system bus.
3	Phi1	Phase 1 clock output.
4	IRQ	The Interrupt Request input is a request that the processor initiate an interrupt sequence. The processar will complete execution of the current instruction before recognizing the request. At that time, the interrupt mask in the Status Code Register will be examined. If the Interrupt Mask is not set, the processor will begin an interrupt sequence. The Program Counter and the Processor Status Register will be stored on the stack and the interrupt disable flag is set so that no other interrupts can occur. The processor will then load the Program Counter from the memory location \$FFFE and \$FFFF.
6	NMI	The Non-Maskable Interrupt Request is a negative-edge sensitive request that the processor initiate an interrupt sequence. The processor will complete execution of the current instruction before recognizing the request.
7	SYNC	The SYNC output is used in conjunction with RDY to allow single instruction execution.
8	Vcc	+5VDC input.
9-20,22-25	A0-A15	Address bus outputs. Unidirectional bus used to address memory and I/O devices.

26-33

D0-D7 Bi-directional bus for transferring data to and from the device and the peripherals.
R/W The read/write line is a TTL level output from the processor to control the direction of data transfer between the processor and memory, peripherals, etc. This line is high for reading memory and low for writing.
Phi0 Phase 0 clock input.
S.O. Set Overflow flag. A negative going edge sets the overflow bit in the status code register.
Phi2 Phase 2 clock output.
RES The Reset input is used to reset or start the microprocessor from a power down condition. During the time that this line is held low, writing to or from the microprocessor is inhibited. When a positive edge is detected on the input, the microprocessor will immediately begin the reset sequence. After a system initialization time af 6 cycles, the mask interrupt flag will be set and the processor will load the program counter from the contents of the memory location \$FFFC and \$FFFD. This is the start location for program control. After V_{cc} reaches 4.75 volts in a power up routine, reset must be held low for at least 2 cycles. At this time the R/W line will become valid.

6522
 VERSATILE INTERFACE ADAPTOR (VIA)

T520
 VOLTAGE DETECTOR I.C.

PIN CONFIGURATION

EQUIVALENT CIRCUIT

6526/8520 COMPLEX INTERFACE ADAPTOR (CIA)

	PIN	ASSIGNM	EN	
Uss	1		40	$\square \mathrm{CNT}$
PAO	2		39	$ص$ SP
PA1	3		38	RS0
PAZ	4		37	$ص$ RS1
Pa3	5		36	$\square \mathrm{RS} 2$
PA4	6		35	- RS3
PA5	7		34	$ص$ RES
PA6	8		33	D D0
PA7	9	6526/	32	D1
PB0	10	8520	31	D2
PB1 단	11	CIA	30	D3
PB2	12		29	D ${ }^{\text {d }}$
PB3	13		28	D5
PB4	14		27	ص D6
PB5	15		26	D7
PB6	16		25	¢ ${ }^{\text {¢ }}$
PB7	17		24	Flag
$\overline{\mathrm{PC}}$	18		23	二 $\overline{\mathrm{CS}}$
TOD	19		22	ص $\mathrm{R} / \overline{\mathrm{W}}$
Ucc	20		21	IRQ

PIN DESC FUNCTION
1 Vss Ground.

2-9 PA0-PA7 Parallel port A signals. Bi-directional parallel port.
10-17 PB0-PB7 Parallel port B signals. Bi-directional parallel port.
18 PC Handshake output. A low pulse is generated after a read or write on port B.
19 TOD Time of day clock input. Programmable 50 Hz or 60 Hz input.

20 Vcc 5V DC input.
21 IRQ Interrupt output to microprocessor.
22 R/W READ/WRITE input from microprocessor's R/W output.
23 CS Chip select input. A low pulse will activate CIA.
FLAG Negative-edge sensitive interrupt input. Can be used as a handshake line for either parallel port.
25 Phi2 Phase 2 clock input.
26-33 DB0-DB7 Bi-directional data bus.
34 RES Low active reset input. Initializes CIA.
35-38 RS0-RS3 Register select inputs. Used to select all internal registers for communications with the parallel ports, time of day clock, and serial port (SP).
39 SP Serial Port bi-directional connection. An internal shift register converts microprocessor parallel data into serial data, and visa-versa.
40 CNT Count input. Internal timers can count pulses applied to this input. It is used for frequency dependent operations.

23256 32K x 8 ROM

PIN ASSIGNMENT			
Upp	1	28	$ص$ Ucc
A12	2	27	صA14
	3	26	ص 13
	4	25	ص A8 $^{\text {8 }}$
	5	24	صA9
	6	23	ص A11
	7	ROM 22	$ص \overline{\mathrm{OE}}$
	8	NOM 21	ص A10
		20	$ص \overline{\mathrm{CE}}$
A0	10	19	$ص$ D7
D0	11	18	ص D 6
	12	17	D D5
	13	16	صD4
GND	14	15	D 3

PIN	DESC	FUNCTION
1	Vpp	5V DC
$2-10,21,23-27$	A0-A14	Address Bus Inputs.
$11-13,15-19$	D0-D7	Data Outputs.
14	GND	Ground.
20	CE	Chip Enable.
22	OE	Output Enable.
28	Vcc	5V DC Input.

2016
 2K x 8 STATIC RAM

PIN	DESC	FUNCTION
$1-8,19,22,23$	A0-A10	Address Bus Inputs.
$9-11,13-17$	D0-D7	Common Data Input/Output Lines.
12	Vss	Ground.
18	CS	Chip Select Enable, Low Active.
20	OE	Output Enable, 21
	WE	Low Active. Write (Input) Enable, Low Active.
24	Vcc	5V DC Input.

FUNCTIONAL DIAGRAM

COMMON I.C.'S PIN ASSIGNMENTS AND LOGIC

7406
HEX INVERTER BUFFER/DRIVER (OPEN COLLECTOR)

TRUTH TABLE

INPUT	OUTPUT
\mathbf{A}	\mathbf{Y}
H	L
L	H

7407
HEX BUFFER/DRIVER (OPEN COLLECTOR)

LOGIC DIAGRAM

TRUTH TABLE

INPUT	OUTPUT
\mathbf{A}	\mathbf{Y}
H	H
L	L

7414•74LS14•74F14
HEX INVERTER SCHMITT TRIGGER
PIN ASSIGNMENT
LOGIC DIAGRAM
TRUTH TABLE

INPUT	OUTPUT
\mathbf{A}	\mathbf{Y}

COMMON I.C.'S PIN ASSIGNMENTS AND LOGIC

7432•74S32•74LS32 • 74F32
 QUAD 2-INPUT OR GATE

LOGIC DIAGRAM

TRUTH TABLE

INPUTS		OUTPUT
A	B	\mathbf{Y}
L	L	L
L	H	H
H	L	H
H	H	H

$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level

7474•74S74•74LS74•74F74
DUAL D-TYPE FLIP-FLOP (POSITIVE EDGE TRIGGERED)

PIN ASSIGNMENT

LOGIC DIAGRAM

TRUTH TABLE

OPERATING MODE	INPUTS				OUTPUTS	
	$\overline{\mathbf{S}}_{\mathbf{D}}$	$\overline{\mathbf{R}}_{\mathbf{D}}$	CP	D	\mathbf{Q}	$\overline{\mathbf{Q}}$
Asyn. Set	L	H	X	X	H	L
Asyn. Reset (Clear)	H	L	X	X	L	H
Undetermined $^{\text {(a) }}$	L	L	X	X	H	L
Load "1" (Set)	H	H	\uparrow	h	H	L
Load "0" (Reset)	H	H	\uparrow	1	L	H

$\mathrm{H}=$ HIGH voltage level steady state.
$\mathrm{h}=$ HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition.
L = LOW voltage level steady state.
l = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition.
X = don't care.
$\uparrow=$ LOW-to-HIGH clock transition.
NOTE
${ }^{\text {(a) }}$ Both outputs will be HIGH while both $\overline{\mathrm{S}}_{\text {Dand }} \overline{\mathrm{R}}_{\text {Dare }}$ LOW.
But the output states are unpredictable if S_{D} and R_{D} go HIGH simultaneously.

DUAL RETRIGGERABLE MONOSTABLE MULTIVIBRATOR

LOGIC DIAGRAM

TRUTH TABLE

INPUTS			OUTPUTS		
$\overline{\mathbf{R}}_{\mathbf{D}}$	$\overline{\mathbf{A}}$	\mathbf{B}	\mathbf{Q}	$\overline{\mathbf{Q}}$	
L	X	X	L	H	
X	H	X	L	H	
X	X	L	L	H	
H	L	\uparrow	Ω	U	
H	\downarrow	H	Ω	J	
\uparrow	L	H	Ω	U	

$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level
$\mathrm{X}=$ Don't care
$\uparrow=$ LOW-to-HIGH transition
$\downarrow=$ HIGH-to-LOW transition
$\Omega=$ One HIGH-level pulse
$\Psi=$ One LOW-level pulse

COMMON I.C.'S PIN ASSIGNMENTS AND LOGIC

74175•74LS175 • 74F175
 QUAD D-TYPE FLIP-FLOP

LOGIC DIAGRAM

TRUTH TABLE

| OPERATING
 MODE | INPUTS | | | OUTPUTS | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\overline{\text { MR }}$ | CP | $\mathbf{D}_{\mathbf{n}}$ | $\mathbf{Q n}_{\mathbf{n}}$ | $\overline{\mathbf{Q}}_{\mathbf{n}}$ |
| Reset (clear) | L | X | X | L | H |
| Load "1" | H | \uparrow | h | H | L |
| Load "0" | H | \uparrow | 1 | L | H |

$\mathrm{H}=\mathrm{HIGH}$ voltage level steady state.
$\mathrm{h}=\mathrm{HIGH}$ voltage level one setup time prior to the LOW-to-HIGH clock transition.
$\mathrm{L}=\mathrm{LOW}$ voltage level steady state.
$1=$ LOW voltage level one setup time prior to the LOW-to-HIGH clock transition.
$\uparrow=$ LOW-to-HIGH clock transition.
$\mathrm{X}=$ don't care.

74LS241•74F241
OCTAL BUFFER, TRI-STATE
TRUTH TABLE

INPUTS				OUTPUTS		
$\overline{\mathrm{OE}}_{\mathbf{a}}$	$\mathbf{I}_{\mathbf{a}}$	$\mathbf{O E}_{\mathbf{b}}$	$\mathbf{I}_{\mathbf{b}}$	$\mathbf{Y}_{\mathbf{a}}$	$\mathbf{Y}_{\mathbf{b}}$	
L	L	H	L	L	L	
L	H	H	H	H	H	
H	X	L	X	(Z)	(Z)	

$\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level

X = Don't care
$(\mathrm{Z})=$ HIGH impedance (off) state

74LS266
QUAD 2-INPUT EXCLUSIVE NOR GATE (OPEN COLLECTOR)

LOGIC DIAGRAM

TRUTH TABLE

INPUTS		OUTPUT
A	B	Y
L	L	H
L	H	L
H	L	L
H	H	H

$$
\begin{aligned}
& \mathrm{H}=\mathrm{HIGH} \text { voltage level } \\
& \mathrm{L}=\mathrm{LOW} \text { voltage level }
\end{aligned}
$$

PARTS LIST
 PCB ASSEMBLY \#310420

Commodore part numbers are provided for reference only and do not indicate the availability of parts from Commodore. Industry standard parts (Resistors, Capacitors, Connectors) should be secured locally.
Approved cross-references for TTL-chips, Transistors, etc. are available in manual form through the Service Department, order part \#314000-01. Unique or non-standard parts will be stocked by Commodore and are indicated on the parts list by a " C ". Vendor Name and part number have been provided for your convenience in ordering custom or unique parts.

INTEGRATED CIRCUITS

U1	6502 CPU	C $901435-01$
U2	23256 ROM	C 310654-03
U3	2016 RAM 200 NS	
U4	65C22A VIA 2MHZ	C 310653-01
U5	Gate Array 20 Pin	C $251829-01$
U6	Gate Array 40 Pin	C $251828-01$
U7	R/W Hybrid	C 251853-01
U8	7406	
U9	65C22A VIA 2MHZ	C 310653-01
U10	74LS74	
U11	WD 1770 Disk Control	C 310651-01 sub:
	WD 1772 Disk Control	C 310651-02
Ul		

U12 74F32
U13 74LS266
U14 7407
U15 74LS14
U16 7406
U17 74LS14
U18 74LS175
U19 74LS241
U20 6526 CIA 2MHZ
C 906108-02 sub: 8520 CIA 2MHZ

C 318029-02
U21 PST 520C/D Volt Detector C 252034-02
U22 74LS123

TRANSISTORS

Q1 MPSU51 PNP

RESISTORS (Continued)

R14,15 2.7k
R16,17 4.7k
R18,19 47
R20 20k
R21 4.7 k
R22 1k
R23 390
R24 47
R25-28 2k
R29 4.7 k
R30 15k
R31 2k
R32 4.7 k
R33-35 2.7k
R36-38 1k
R39 43k
R40 4.7 k

CAPACITORS

C1-20 Ceramic $11 \mu \mathrm{~F} 16 \mathrm{~V}$
C21 Electrolytic $\begin{gathered}10 \\ \mu \mathrm{~F}\end{gathered} \quad 25 \mathrm{~V}$
C22,23 Ceramic $11 \mu \mathrm{~F} 16 \mathrm{~V}$
$\mathrm{C} 24 \quad \mathrm{NPO} \quad \begin{aligned} & 100 \\ & \mathrm{pF}\end{aligned} 50 \mathrm{~V} \pm 5 \%$
C27 Ceramic $.1 \mu \mathrm{~F} 16 \mathrm{~V}$
C28 Electrolytic $\begin{aligned} & 47 \\ & \mu \mathrm{~F}\end{aligned} \quad 10 \mathrm{~V}+50 \% /-10 \%$

PCB ASSEMBLY \#310420 BOARD LAYOUT

PCB ASSEMBLY \#310420 SCHEMATIC

