SERVICE MANUAL MODEL 1540/1541 DISK DRIVE
 Preliminary

SERVICE MANUAL
 MODEL 1540/1541 DISK DRIVE

Preliminary

APRIL 1985

PN-314002-01

Commodore Business Machines, Inc. 1200 Wilson Drive, West Chester, Pennsylvania 19380 U.S.A.
 Commodore makes no expressed or implied warranties with regard to the information contained herein. The information is made available solely on an as is basis, and the entire risk as to quality and accuracy is with the user. Commodore shall not be liable for any consequential or incidental damages in connection with the use of the information contained herein. The listing of any available replacement part herein does not constitute in any case a recommendation, warranty or guaranty as to quality or suitability of such replacement part. Reproduction or use without expressed permission, of editorial or pictorial content, in any matter is prohibited.

This manual contains copyrighted and proprietary information. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of Commodore Electronics Limited.

Copyright © 1985 by Commodore Electronics Limited.
All rights reserved.

CONTENTS

Title Page
SPECIFICATIONS 1
BLOCK DIAGRAM 2
CARE AND MAINTENANCE 3
OVERVIEW 4
FLASH CODE 4
CIRCUIT THEORY
POWER SUPPLY 5
RESET CIRCUIT 6
CLOCK CIRCUITS 7
MICROPROCESSOR CONTROL OF RAM \& ROM 8
SERIAL INTERFACE 9
MICROPROCESSOR R/W AND MOTOR CONTROL LOGIC 10
READ/WRITE CONTROL LOGIC 11
READ AMPLIFIER 12
WRITE AMPLIFIER 13
POWER UP/DOWN WRITE PROTECTION 14
STEPPER MOTOR CONTROL CIRCUITS 15
SPINDLE MOTOR CONTROL CIRCUITS 16
TROUBLESHOOTING GUIDE 17
RESISTANCE CHECKS 19
CASEWORK/ACCESSORY PARTS LIST 20
MODEL IDENTIFICATION 21
DEVICE NUMBER CHANGE 21
PCB ASSEMBLY 1540001
BOARD LAYOUT 22
PARTS LIST 23
PIN CONFIGURATIONS 25
SCHEMATIC 25
PCB ASSEMBLY 1540048
BOARD LAYOUT 26
PARTS LIST 27
UPGRADE NOTES 29
SCHEMATIC 29

CONTENTS (Continued)

Title Page
PCB ASSEMBLY 250442, 250446
BOARD LAYOUT 30
PARTS LIST 31
IC PINOUTS AND INTERNAL DIAGRAMS 33
SCHEMATIC 33
POWER SUPPLY ASSEMBLY 1540002
PARTS LIST 34
TRANSFORMER 34
ASSEMBLY DRAWING 34
ALPS DRIVE ASSEMBLY
PARTS LIST 35
WIRING DIAGRAM AND LAYOUT 35
MOTOR CONTROL PCB SCHEMATIC 36
NEWTRONICS DRIVE ASSEMBLY
PARTS LIST 37
WIRING DIAGRAM AND LAYOUT 37
MOTOR CONTROL PCB SCHEMATIC 38

GENERAL DESCRIPTION	The C1541 Disk Drive is an external 5-1/4 inch floppy diskette recorder, offering high-speed and capacity for programs and data. It is an intelligent device, containing its own microprocessor, RAM, ROM and operating systems software for faster speed of throughput and memory efficiency in the computer.
MAXIMUM STORAGE	170K of data (formatted) - 35 tracks
MEDIA	5-1/4 Inch floppy disk. Single sided, single density, soft sectored (double density can be used, but not needed).
INPUT/OUTPUT	Commodore serial interface Second serial port for chaining a second drive or printer
CONTROLLER	MOS 6502 microprocessor - 1 MHz clock
MEMORY	2K RAM, 16K ROM
DATA TRANSFER RATE	400 Bytes/sec
FILE TYPES	Program, sequential, relative, random-access and user
NUMBER OF FILES	Up to 144 different files per diskette
COMPUTERS	C64, VIC 20, SX64, Educator 64, Plus/4, C16
MEDIA COMPATIBILITY	2031, 4040, C1551, C1571
POWER REQUIREMENTS	120 Volts AC, 60 Hz - integral power supply with external 1 Amp fuse
POWER CONSUMPTION	30 Watts maximum

BLOCK DIAGRAM

CARE AND MAINTENANCE

- DO NOT use MAGNETIZED tools when repairing or adjusting a disk drive.
- DO NOT place a disk drive near any device which generates "noise" e.g., - motors, radios, televisions.
- DO NOT stack drives upon each other or in any way inhibit air flow around the unit. HEAT BUILD-UP can cause disk failures.
- Periodically CLEAN the read/write head with 90% isopropyl alcohol and a cotton swab. CHECK load pad for excess wear. Clean or replace as necessary.
- Take the following precautions when handling a diskette:

ALWAYS store a diskette in its jacket.
Use ONLY felt-tip pens when writing on the label of a diskette.
Do not bend or physically damage a diskette.
Do not place a diskette in the area of a magnetic field.
Do not attempt to clean a diskette.
Do not touch the exposed area of a diskette.

- DIAGNOSTIC and ADJUSTMENT procedures are outlined in detail on the diagnostic disk (Commodore Part \# 31405101). A manual has been added to the diagnostic package. It contains descriptions of testing procedures and adjustment methods.

OVERVIEW

The drive is itself an independent memory device. The drive is composed of a media clamp rotating mechanism, a head positioning mechanism and an eject mechanism. All positioning operations, excluding insertion and removal of the diskette, are controlled by the internal guide mechanism. Closing the front door causes the media clamp mechanism to operate. Two operations are performed in the following order:
a) The diskette is centered.
b) The diskette is clamped and retained between the spindle and the hub.

The spindle and hub rotate at 300 r.p.m. through a closed-loop control circuit employing a D.C. motor/tachometer. It is important that the relationship between the head and the media is maintained correctly during operation. For this purpose, a pressure pad is used to hold and press down the media (about 12 g) from the opposite side of the head. This head assembly is coupled by a metal band to a four phase stepping motor which performs the track positioning. One step of the stepping motor corresponds to a $1 / 2$ track movement. The control circuit on the logic board selects the direction and number of steps to the desired track.

The Read/Write head uses a glass-bonded, ferrite/ceramic head. Track-to-track erasing is accomplished by the straddle erase method. The surface of the Read/Write head is mirror-ground to minimize wear of the head and media. Also, the head is designed in such a way that the maximum signal can be obtained from the media surface.

The spindle drive motor operates on 12 VDC and turns the spindle, through a belt drive, at 300 revolutions per minute. The speed of the drive motor is controlled by a feedback signal from a tachometer, which is housed in the drive motor assembly. The feedback signal controls a servo amp that supplies the 12 VDC drive current.

FLASH CODE

The 1541, upon power-up, goes through its own internal diagnostic. If an electronic problem is detected, it is indicated by a FLASH CODE. The LED's will blink a set number of times, pause, and then flash again until the problem is corrected.

Number of Flashes	Possible Failure
2	Zero Page
3,4	DOS ROM's
$5,6,7,8$	RAM

Circuitry associated with these components can also cause the failure code. Therefore, it should be suspected as the next possible defect.

1541 CIRCUIT THEORY

All circuit diagrams have been taken from the short board schematic 1540049 unless otherwise noted. The short boards use a 6116 RAM which replaces the four 2114 l.C.s on the long board. See page 11 for the Read/Write logic differences.

The Power Supply

The input AC voltage is controlled by switch 1 (SW1). Disk circuit protection is provided by fuse 1 (F1). If SW1 is closed, the AC voltage input is applied to the primary winding of transformer one (T1). T1 steps down the AC input voltage into two smaller AC voltages. The top secondary AC output (approx. 16VRMS) is converted to DC by the Full Wave Bridge Rectifier CR1. The DC output of CR1 is regulated at 12VDC by VR1. The bottom secondary AC output of T1 (approx. 9VRMS) is converted to DC by the Full Wave Bridge Rectifier CR3. The DC output of CR3 is regulated at +5VDC by VR2. High frequency filtering is provided by C1 and C3 for the 12VDC supply, and C4, C6 to C9, C22, C 27 to C 30 for the 5VDC supply. Low frequency filtering is provided by C17 and C2 for the 12VDC supply, and C5 and C16 for the 5VDC supply.

The Reset Circuit

The output of the exclusive 'or' gate UD3 pin 6 will be "low' until C46 has charged through R25. Once the voltage across C46 reaches 2 volts, the output of UD3 pin 6 will go "high". This occurs when the disk is powered on, or a reset pulse is generated by a device connected to the serial bus. The reset pulse on the serial bus interface is input on, pin 6 of P2 or P3. This "low" to "high" going pulse on pin 6 of UD3 is input to the microprocessors reset interrupt input. This causes a restart or reset routine to be executed giving control of the disk drive operation to the Disk Operating System (DOS).

The Clock Circuits

Crystal Y1 outputs a 16 MHz clock signal. This is input to UD5 on pin 8 . UD5 is configured as a $\div 16$ frequency divider. The output of UD5 pin 12 is a 1 MHz clock signal used as the system clock (Phase 0) for the microprocessor. UE6 is a programmable counter ($\div 16, \div 15, \div 14, \div 13$) that outputs a varying frequency clock used to compensate for the difference in recording area/sector for sectors on inner tracks (Trks 1,2,3) as compared to sectors on out most tracks (Trks 33,34,35). The area/sector for inner tracks is less than the area/sector for out most tracks, so the recording clock frequency is increased when writing on inner tracks to keep the flux density constant. This clock output is on pin
12 of UE6.

Tracks
1-17
18-24
25-30

$$
31-35
$$

Clock Frequency
1.2307 MHz
1.1428 MHz
1.0666 MHz

1 MHz

Divide By

13
14
15
16

Microprocessor Control of RAM and ROM

UB3 and UB4 are 8192×8 bit ROMS that store the Disk Operating System (DOS). UB3 resides at memory locations \$C000-\$DFFF. UB4 resides at memory locations \$EO00-\$FFFF. UC5 and UC6 decode the addresses output from the microprocessor when selecting these ROMS.

UB2 is a 2048×8 bit RAM. UB2 resides at memory locations $\$ 0000-\$ 07 F F$. This memory is used for processor stack operations, general processor housekeeping, user program storage, and 4 demporary buffer areas. UC5, UC6, and UC7 decode the addresses output from the processor when selecting RAM.

1541 CIRCUIT THEORY

The Serial Interface

UC3 is a 6522 Versatile Interface Adapter (VIA). Two parallel ports, handshake control, programmable timers, and interrupt control are standard features of the VIA. Port B signals (PBO-PB7) control the serial interface driver IC's (UB1 and UA1). CLK and DATA signals are bidirectional signals connected to pins 4 and 5 of P2 and P3. ATN (Attention) is an input on pin 3 of P2 and P3 that is sensed at PB7 and CA1 of UC3 after being inverted by UA1. ATNA (Attention Acknowledge) is an output from PB4 of UC3 which is sensed on the data line pin 5 of P2 and P3 after being exclusively "ored" by UD3 and inverted by UB1. UC3 is selected by UC7 pin 7 going "low" when the proper address is output from the processor. UC3 resides at memory locations \$1C00-\$1C0F.

Microprocessor R/W and Motor Control Logic

UC2 is a VIA also. During a write operation the microprocessor passes the data to be recorded to Port A of UC2. The data is then loaded into the PLA parallel port (YBO-YB7). The PLA contains a shift register which converts the parallel data into serial data. The PLA generates signals on pins 2, 3, 4, and 40 which control the write amplifiers during the write operation. During a read operation serial data is received from the read amplifier circuits on D-IN input on pin 24 of the PLA. The PLA shift register converts serial data into parallel data that is latched at the parallel port (YBO-YB7). The microprocessor reads the parallel PLA output by reading Port A of UC2 when BYTE READY on pin 39 goes "low".

The stepper motor is controlled by two outputs on port B of UC2 (STPO, and STP1). A binary four count is developed from these two lines, driving the four phases of the stepper motor. The PLA converts STPO and STP1 into four outputs that represent one of the four states in the count (YO, Y1, Y2, Y3). The Spindle motor is controlled by the output MTR of UC2. The PLA inverts this signal. It is then passed to the motor speed control pcb.

UC2 pin 14 is an input that monitors the state of the write protect sensor, and pin 13 is an output that controls the activity light (RED LED). UC7 decodes the addresses output from the processor when selecting UC2. UC2 resides at memory locations $\$ 1800-\$ 180 F$.

1541 CIRCUIT THEORY

The circuit shown here is from the long board schematic 1540008. This logic was integrated in the PLA (Programmable Logic Array) on the short boards.

Read/Write Control Logic

During a write operation, UD3 converts parallel data into serial data. The output on pin 9 is input to 'NAND' gate UF5 pin 4. UF5 outputs the serial data on pin 6 at the clock rate determined by input signal on pin 5. The output clocks the D flip flop UF6. The outputs of UF6, Q and $\overline{\mathrm{O}}$, drive the write amplifiers.
During a read operation, data from the read amplifiers is applied to the CLR input of counter UF4. The outputs, C and D, are shaped by the 'NOR' gate UE5. UE5 outputs the serial data on pin 1, then it is converted to parallel data by UD2. The output of UD2 is latched by UC3. The serial bits are counted by UE3, when 8 bits have been counted, UF3 pin 12 goes "low", UC1 pin 10 goes "high", and UF3 pin 8 goes "low" indicating a byte is ready to be read by the processor. UC2 monitors the parallel output of UD2, when all 8 bits are " 1 ", the output pin 9 goes "low" indicating a sync bit has been read.

Read Amplifier Circuits

When data is recorded on the disk, a " 1 " bit is represented on the disk by a change in direction of magnetic flux, caused by a change in direction of current passed through the R/W coil in the R/W head. When a " 0 " bit is to be recorded, no change in current flow direction occurs, causing the direction of the magnetic flux to remain the same on the disk.

R/W HEAD

When data is being read from the disk, CEMF is induced into the R/W coil by the magnetic fields on the disk, causing current flow which is detected by the read amplifiers. Current flow through the R/W coil will forward bias either CR16 or CR17, depending on the direction. O7 and CR14 must be forward biased. The first amplifier UF3, senses this current flow from the R/W coil on one of the inputs and amplifies it. L9, L10, L11, L12 and C45 act as a low pass filter, suppressing noise on the amplified output. UF4 is a differential amplifier which amplifies the difference of the two input signals from the filter section. UE4 is a peak detector. The output of UE4 will pulse "high" when a " 1 " is read. This signal is the reconstruction of data recorded. The Time Domain Filter, UD4, times out when a " 1 " bit has been read, so unwanted " 1 " bits are not added to the actual data. The One Shot UD4 generates the correct data pulse width so the PLA can convert the data to parallel for processor control.

1541 CIRCUIT THEORY

Write Amplifier Circuits

During a write operation, B must be "high". This forward biases Q7 and CR14. If \bar{B} goes "low", Q3 and Q 6 become forward biased. If Q goes "low', Q 5 and CR15 become forward biased, passing current flow through R/W 1. If $\overline{\mathrm{O}}$ goes "low", Q4 and CR18 become forward biased, passing current flow through R/W 2.
When a write operation occurs, the ERASE coil is energized by forward biasing Q6. This demagnetizes the outer edges of the track, preventing data on one track from bleeding into the next track.

Power Up/Down Write Protection

This circuit prevents erroneous data from being written on the disk during power up/down sequences. During a power up, the 12VDC supply is not applied to the R/W coils and amplifier circuits before the processor has control of the logic. During a power down the 12VDC supply is removed from the R/W coils and amplifier circuits before the processor loses control of the logic.

Q1 acts as a series pass transistor, biased to regulate the 12VF output to the R/W coils and Amplifier circuits. $\mathbf{Q 2}$ is a feedback amplifier monitoring the 5VDC supply. CR5 develops a precise reference voltage for Q 2 . L8 and C15 delay the 12VDC supply.

1541 CIRCUIT THEORY

Stepper Motor Control Circuits

Outputs Y0, Y1, Y2, and Y3 from the PLA are inverted by UD1. The outputs of the inverters drive Q8-011. The current output from these transistors drive the individual phase coils in the stepper motor and return to the 12 VDC supply. CR8-CR11 suppress the CEMF developed by the motor coils.

1541 CIRCUIT THEORY

Spindle Motor Control Circuits

$\overline{\text { MTR }}$ output from the PLA is active "low". This signal is passed, through the current driver UD2, to the motor control PCB. When MTR is "low," O 1 is biased off, and Q2, Q3, and Q4 are biased on, allowing current flow through the spindle motor coil. Attached to the shaft of the spindle motor is an inductive tachometer that generates low level AC voltages, as the motor spins. The output of the tachometer is rectified by CR1-CR4. IC 1 monitors the output of the rectifier and adjusts the bias to Q 2 , which changes the bias on Q 3 and Q 4 to regulate motor current for a constant velocity. VR1 is a manual speed adjustment. The speed can be adjusted by watching the 60 Hz strobe as the adjustment is made or loading the system test from the diagnostic disc.
The Newtronics Motor Speed PCB is electronically the same as the ALPS Motor Speed PCB, but some of the discrete components have been integrated.

TROUBLESHOOTING GUIDE

NOTE: Always check for latest ROM/ECO upgrade. If socketed IC is suspected bad, be sure to check socket with ohmmeter.

SYMPTOM:	POSSIBLE SOLUTION:
No LED's on power up.	Is Power cord plugged into wall outlet correctly? Is Power cord plugged into the disk drive correctly? Check line fuse. Check power switch. Check clock on 6502 pin 37. Check +5 and +12 volt lines.
Error LED flashes on power up.	Check all RAM and ROM locations.
Error LED stays on all the time.	Check 6502 microprocessor. Check ROMs.
Drive motor runs continuously and red LED stays on.	Check +12 V . Check 6502, logic gates, logic array.
Drive motor runs continuously and red LED stays off.	Check Rom Check drive motor PCB.
Drive motor runs continuously with no red or green LED's.	Check VR2 (5V Regulator). Check Power Transformer.
After the drive warms up the motor runs continuously.	Check 6522s. Check motor control PCB.
Loads programs with red LED flashing.	Check drive speed. Check stepper motor.
Loading is intermittent.	Check ROMs. Check drive alignment.
Does not load when hot or LED flashed 3 times.	Check ROMs.
Searches with LED flashing continuously.	Check ROMs.
Searching with no red LED.	Check 6522s, logic gates, logic array.
Message of 'FILE NOT FOUND' is displayed.	Clean drive head w/alcohol. Check \emptyset stop adjustment. Check alignment.
Drive fails to read.	Check the 311, 9602, and 592s. There are two +12 volt sources for stepper output and read circuit, make sure both are good.

SYMPTOM:	POSSIBLE SOLUTION:
Fails to format disk.	Check components related to connector P7. Check 6522s. Check logic array.
Stepper Motor does not step forward.	Check 6502, 6522s, logic array.
Drive speed will not stabilize.	Check DC motor.
Will not save when the drive heats up.	Check 6502 microprocessor.
Locks-up when loading.	Check serial port components. Check ROM.
Fails the performance test and displays a 21 read error.	Check test diskette. Check Drive Motor.
Fails the performance test and displays a 27 read error.	Check stop adjust.
Passes performance test to track 18 then displays 21 read errors.	Check read/write head.
Passes the performance test but will not load certain programs.	Check stepper motor.

RESISTANCE CHECKS

32 OHMS END TO CENTERTAP
64 OHMS END TO END

MOTOR COIL = 17 OHMS
TACH COIL $=175$ OHMS AT REST
TACH COIL = 135 - 190 OHMS IN MOTION

R/W END TO END = 32.4 OHMS R/W END TO CENTERTAP $=16.3$ OHMS ERASE COIL END TO END = $\mathbf{1 0 . 5}$ OHMS

CASEWORK/ACCESSORY PARTS LIST

1540/1541 TOP CASE (IVORY) C 1540014-01
1540/41 BOTTOM CASE (IVORY) C 1540015-00
1541 TOP CASE (BROWN) C 1540014-03
1541 BOTTOM CASE (BROWN) C 1540015-01
SHIELD COVER 1540013-01
LED ASSEMBLY 1540003
SELF ADHESIVE FOOT C 950150-02
1540 NAMEPLATE C 1540016-01
1541 NAMEPLATE C 1540052-01
POWER CORD ASSEMBLY C 903508-04
6 PIN DIN CABLE C 1515001-01
USER'S MANUAL C 1540031-03
DEMO DISKETTE C 1540024-01

1541 MODEL IDENTIFICATION

PCB Assy \# 1540008-01	• Schematic \# 1540001
	• Original "‘Long' Board
	• Has 4 discreet 2114 RAMs
	- ALPS Drive only

NOTE: The simplest way to identify which drive you have is by the door assembly. Alps is made with a "push down" door and Newtronics has a "flipper" type door.

DEVICE NUMBER CHANGE

The 1540 and 1541 drives are shipped from the factory set for device \# 8. The channel can be hardware altered to \# 9, 10, or 11 by two methods:

1) Refer to appropriate board layout drawing for the location of the pads provided for this purpose. The device change pads must be CUT to alter the channel number and re-soldered if another change is needed later.
2) The preferred method to alter the device number is to lift certain pins of the 6522 chip. The I.C. should always be socketed, so removal of the chip is simple. Once removed, the proper pin can be carefully bent to eliminate it from the circuit. If another change is needed, simply remove the I.C. and re-install with the pin back in place.

PCB ASSY \#	LOCATION	DEVICE \#	LIFT PIN
1540008	UAB1	9	15
1540048,251748	UC3	10	16
and 251834	UC3	11	15 and 16

PCB ASSEMBLY \#1540001

PARTS LIST
 PCB ASSEMBLY \#1540001

PLEASE NOTE:

Commodore part numbers are provided for reference only and do not indicate the availability of parts from Commodore. Industry standard parts (Resistors, Capacitors, Connectors) should be secured locally. Approved cross-references for TTL chips, Transistors, etc. will be available in manual form through the Service Department in November of 1984. Unique or non-standard parts will be stocked by Commodore and are indicated on the parts list by a " C ".

INTEGRATED CIRCUITS				DIODES		
UAB1	6522 VIA		C 901437-01	CR1	Bridge, 1.5A, 50V	900756-01
UAB2	2114 RAM		901471-01	CR2	Rectifier, IN4002	900750-02
UAB3	2114 RAM		901471-01	CR3	Bridge, 4A, 50V	900755-02
UAB4	ROM \$COOO-\$DFFF		C 325302-01	CR4	Rectifier, IN4002	900750-02
UAB5	ROM \$E000-\$FFFF	(1540)	C 325303-01	CR5	Zener, 3.3V, 500 mW	
UAB5	ROM \$EOOO-\$FFFF	(1541)	C 901229-07		HZ3C-2	325505-01 sub:
UB2	2114 RAM		901471-01		HZ4A-1	325505-02 sub:
UB3	2114 RAM		901471-01		IN5226B	900948-06
UCD4	6522 VIA		C 901437-01	CR6-11	Signal, WG713C	900850-05 sub:
UCD5	6502 CPU		C 901435-01		IN4148	900850-01
UG3	9602		901510-01	CR12	Zener, 5.1V, 500 mW	
UH4	LM311		901523-04		HZ5C-2	325506-01 sub:
UH5	NE 592		901523-08		IN5231	900948-11
UH7	NE 592		901523-08	CR13-16 CR17, 18	Rectifier, IN4002 Signal, WG713C	$\begin{aligned} & 900750-02 \\ & 900850-05 \text { Sub: } \end{aligned}$
TTL					IN4148	900850-01
$\begin{aligned} & \text { UB6 } \\ & \text { UB7 } \\ & \text { UB8 } \end{aligned}$	74LS04		901521-02	RESISTORS - All Values are in ohms- $1 / 4 \mathrm{~W}$ 5% unless noted otherwise.		
	74LS00		901521-01			
	74LS42		901521-17	R1, 2	330	
UC1	74LS14		901521-30	R3 ${ }^{2}$	47	
UC2	74LS133		901521-15	R4	220	
UC3	74LS245		901521-45	R5	330	
UC6	74177		901522-03 sub:	R6	1 K	
	74LS197		901521-54	R7	22K	
UC7	7402		901522-32	R8	91, Metal Oxide 1/4	
UD1	7406		901522-06	R9	680	
UD2	74LS164 901521-28			R10	22K	
UD3	74LS165 901521-12			R11	1 K	
UE2	74LS139 901521-18			R12, 13	9.1K, Metal Oxide 1	
UE3	74LS191 901521-40			R14, 15	2.2K	
UE4	74LS74 901521-06			R16, 17	220	
UE5	74LS02 901521-21			R18, 19	150	
UF2	7406 901522-06			R20	330	
UF3	74LS10 901521-24			R21-23 R24	2 K 510	
UF4	74LS193 901521-26			R25	360	
UF5 UF6	74LS00 901521-01			R26	5.1 K	
UF6	74LS74 901521-06			R27, 28	470	
UG4	74LS86 901521-32			R29	22K	
	7417 $901522-01$ 7407 $901522-30$			R30 R31-34	360 1 K	
TRANSISTORS				$\begin{aligned} & \text { R31-34 } \\ & \text { R35, } 36 \end{aligned}$	100	
$\begin{aligned} & \text { Q1 } \\ & \text { Q2, } 3 \end{aligned}$	2SA673 PNP		902720-01	R37	330 2 K	
	2SC945 NPN		902671-01 sub:	R39-42	680	
	2SC1815 NPN		902693-01	R43	6.8K	
04, 7	2SD467 NPN		$\begin{aligned} & \text { 902679-01 sub: } \\ & 902682-01 \end{aligned}$	R44	1K	
08-11	$\begin{aligned} & \text { 2SA733 PNP } \\ & \text { 2SA1015 PNP } \\ & \hline \end{aligned}$		$\mathrm{g}_{9026817-01}^{\text {9ub: }}$	R45 R46	220 100 K	
			902744-01	R46	100K	

PARTS LIST PCB ASSEMBLY \#1540001 (Continued)

C - Indicates Commodore Stocked Part Number

RESISTORS (Continued) - All values are in ohms- $1 / 4 \mathrm{~W} 5 \%$ unless noted otherwise.				CAPACITORS (Continued)			
R47	470			C51	Electrolytic	6800 $\mu \mathrm{F}$	
R48	1.5K			C52	Electrolytic	$10000 \mu \mathrm{~F}$,	16 V
R49	100, Metal	1/4W,		C53-55	Ceramic	. $1 \mu \mathrm{~F}$	50 V
R50	470			C56	Electrolytic	$100 \mu \mathrm{~F}$	16 V
R51, 52	2.2 K			C57	Ceramic	. $1 \mu \mathrm{~F}$	50 V
R53	22K			C58, 59	Ceramic	. $022 \mu \mathrm{~F}$	16 V
R54	150, Metal	1/4W,		C60, 61	Ceramic	. 1 F F	50 V
R55	470			C62	Tantalium	$4.7 \mu \mathrm{~F}$	25 V
R56	2.2 K			C63	Tantalium	$1 \mu \mathrm{~F}$	35 V
R57	470			C64	Ceramic	. $033 \mu \mathrm{~F}$	25 V
R58	1K			C65	Electrolytic	$220 \mu \mathrm{~F}$	25V
R59 220	220			MISCELLANEOUS			
CAPACITORS				$\begin{aligned} & \text { L1 } \\ & \text { L2-6 } \end{aligned}$	$\begin{aligned} & \text { Coil Inductor } 2.2 \mu \mathrm{H} \\ & \text { Ferrite Bead }(2743005112) \end{aligned}$		
C1	Electrolytic	$1 \mu \mathrm{~F}$,					
C2	Electrolytic	$47 \mu \mathrm{~F}$,		L7	Coil Inductor 100		
C3	Ceramic	. $1 \mu \mathrm{~F}$,		L8	Coil Inductor 22		
C4	Electrolytic	$1 \mu \mathrm{~F}$,		L9, 10	Coil Inductor 100		
C5	Electrolytic	$47 \mu \mathrm{~F}$,		L11	Coil Inductor 22		
C6-9	Ceramic	. $1 \mu \mathrm{~F}$,	50 V	L12-16	Ferrite Bead (27	005112)	
C10	Ceramic	68pF,	50 V				
C11	Ceramic	. $1 \mu \mathrm{~F}$,	50 V	VR1	Voltage Reg 12	1.5A (LM340	-12 TO-3)
C12	Tantalium	$10 \mu \mathrm{~F}$,	25 V	VR2	Voltage Reg 5	1.2A (LM340	-5 TO-3) Sub:
C13, 14	Ceramic	. 14 F ,	50 V			3A (LM323)	
C15	Tantalium	$.47 \mu \mathrm{~F}$,	16V +/-20\%				
C16	Ceramic	680 pF,	$50 \mathrm{~V}+/-5 \%$	Y1	Crystal 16MHz	900556-02	
C17-22	Ceramic	. $1 \mu \mathrm{~F}$,	50 V		Shield Box	4022048-0	
C23	Tantalium	$3.3 \mu \mathrm{~F}$,	25 V		Shield Cap	4022047-0	
C24	Tantalium	. $47 \mu \mathrm{~F}$,	16V +/-20\%	CONNEC	ORS		
C26	Ceramic	1000 pF ,	50 V	P1	Header Assy, 3	Pitch, 4Pin	(Mole 5271-04A)
C27	Ceramic	680pF,	$50 \mathrm{~V}+1-5 \%$	P2, 3	6 Pin Din,		
C28	Ceramic	330 pF ,	$50 \mathrm{~V}+1-5 \%$		(Hoshidenki	4460-01-101	C 903361-01
C29-32	Ceramic	. $1 \mu \mathrm{~F}$,	50 V	P4, 5	Header Assy, 2	Pitch, 3Pin	(Molex 3022-03A)
C33	Ceramic	33 pF ,	50 V	P6	Header Assy, 2	Pitch, 15Pin	(Molex 3022-15A)
C34-48	Ceramic	. $1 \mu \mathrm{~F}$,	50 V	P7	Header Assy, 2	Pitch, 6Pin	(Molex 3022-06A)
C49	Ceramic	330pF,	$50 \mathrm{~V}+1-5 \%$	P8	Header Assy, 2	Pitch, 4Pin	(Molex 5048-04AG)

PIN CONFIGURATIONS:

2048 X 8 STATIC RAM

Approved Replacements	
Mitsubishi	M58725P
Toshiba	TMM2016P
Hitachi	HM6116LP-4/AP-20

PARTS LIST
 PCB ASSEMBLY \#1540048

PLEASE NOTE:

Commodore part numbers are provided for reference only and do not indicate the availability of parts from Commodore. Industry standard parts (Resistors, Capacitors, Connectors) should be secured locally. Approved cross-references for TTL chips, Transistors, etc. will be available in manual form through the Service Department in November of 1984. Unique or non-standard parts will be stocked by Commodore and are indicated on the parts list by a " C ".

PARTS LIST PCB ASSEMBLY \#1540048 (Continued)

C - Indicates Commodore Stocked Part Number

RESISTORS (Continued) - All Values are in ohms- 1/4 W 5\% unless noted otherwise.			CAPACITORS (Continued)						
R40	1.5K		C39	Ceramic $\quad .022 \mu \mathrm{~F}, 16 \mathrm{~V}$					
R41	470		C40	Ceramic $\quad .1 \mu \mathrm{~F}, 50$					
R42	680		C41	Ceramic 1000pF, 50					
R43	1 K		C42	Ceramic $\quad .022 \mu \mathrm{~F}, 1$					
R44	100K		C43						
R45, 46	150		C44	$\begin{array}{lr}\text { Ceramic } & .14 \mathrm{~F}, 50 \\ \text { Tantalium } & 3.3 \mu \mathrm{~F}, 25\end{array}$					
R47-50	680		C45	Ceramic 680pF,		+/-5\%			
R51	91 @ 1\% (ALPS)		$\begin{aligned} & \mathrm{C} 46 \\ & \mathrm{C} 47,483 \end{aligned}$	Electrolytic 10	$\mu \mathrm{F}$,				
	56 @ 1\% (NEWTRONICS)			Ceramic	$1 \mu \mathrm{~F}, 5$				
R52 R53, 54	9.1K @ 1\%		MISCELLANEOUS						
R55	220		L1 L2-7 L8 L9,10 L11,12 L13-16	Coil Inductor $2.2 \mu \mathrm{H}$					
R57	220								
R58	2K			Ferrite Bead (2743005112)					
CAPACITORS				Coil Inductor $22 \mu \mathrm{H}$					
C1	Electrolytic $\quad 1 \mu \mathrm{~F}, 25 \mathrm{~V}$			Coil Inductor $100 \mu \mathrm{H}$ Ferrite Bead					
C2		$47 \mu \mathrm{~F}, 16 \mathrm{~V}$	L13-16	Ferrite Bead					
C3	Ceramic	. $1 \mu \mathrm{~F}$, 50V	VR1 VR2	Voltage Reg 12V, 1.5A (LM340K-12 TO-3)					
C4	Electrolytic Electrolytic	$1 \mu \mathrm{~F}, 25 \mathrm{~V}$		Voltage Reg	5V, 1.2A (LM340K-5 TO-3) Sub:				
C5		47 FF , 16V			M323)	-3) Sub:			
C6-10	Electrolytic Ceramic	. $1 \mu \mathrm{~F}, ~ 50 \mathrm{~V}$							
C11	Tantalium Ceramic	1 $\mu \mathrm{F}, 35 \mathrm{~V}$	Y1	Crystal Module 16 MHz 50ppm (NDK, Tyocom) Sub: 16 MHz 100ppm (NDK, Tyocom, Kyocera) Shield Box C $4022048-01$ Shield Cap C $4022047-01$					
C12		. $033 \mu \mathrm{~F}, 25 \mathrm{~V}$							
C13	Electrolytic Ceramic	220رF, 10V							
C14		.1 F , 50 V							
C15	Tantalium Electrolytic	$10 \mu \mathrm{~F}$, $4700 \mu \mathrm{~F}$	CONNECTORS						
C17	Electrolytic Ceramic	6800^F, 25 V							
C18-20		. $1 \mu \mathrm{~F}, 50 \mathrm{~V}$		Header Assy, 3.96 Pitch, 4Pin 6 Pin Din, Header Assy, 2.5 Pitch, 3Pin Header Assy, 2.5 Pitch, 15Pin Header Assy, 2.5 Pitch, 6Pin Header Assy, 2.5 Pitch, 4Pin		(Molex 5271-04A) C 903361-01 (Molex 3022-03A) (Molex 3022-15A) (Molex 3022-06A) (Molex 5048-04AG)			
C21	Tantalium Ceramic Ceramic Ceramic	$4.7 \mu \mathrm{~F}, 25 \mathrm{~V}$							
C22-30		.1 $\mu \mathrm{F}, 50 \mathrm{~V}$							
C31		33pF, $50 \mathrm{~V}+1-5 \%$							
C32		330pF, $50 \mathrm{~V}+1-5 \%$							
C33, 34	Ceramic	680pF, 50V +/-5\%							
C35	Ceramic Ceramic	. $1 \mu \mathrm{~F}, 50 \mathrm{~V}$							
C36		330pF, $50 \mathrm{~V}+/-5 \%$							
C37-38	Tantalium	. $47 \mu \mathrm{~F}, 16 \mathrm{~V}$							

SCHEMATIC \#1540049

PN 325572 GATE ARRAY FOR FLOPPY DISK DRIVE

PARTS LIST
 PCB ASSEMBLY \#250442/46

PLEASE NOTE:
Commodore part numbers are provided for reference only and do not indicate the availability of parts from Commodore. Industry standard parts (Resistors, Capacitors, Connectors) should be secured locally. Approved cross-references for TTL chips, Transistors, etc. will be available in manual form through the Service Department in November of 1984. Unique or non-standard parts will be stocked by Commodore and are indicated on the parts list by a " C ".

C - Indicates Commodore Stocked Part Number

UPGRADE NOTES

PCB Assembly \# 1540048 (Schematic 1540049) requires an upgrade to the reset circuit. The upgrade consists of:

1) COMPONENT CHANGES:

R25	Change To	6.8 K ohm,	$1 / 4 \mathrm{~W},+/-5 \%$
R57	Add	220 ohm,	$1 / 4 \mathrm{~W},+/-5 \%$
R58 Add	2 K ohm,	$1 / 4 \mathrm{~W},+/-5 \%$	

2) CUT circuit trace near UA1 (See diagram)

3) INSTALL JUMPER WIRES:

BETWEEN: UA1 pin 8 and UB1 pin 5 UA1 pin 9 and CR7 Anode UB1 pin 6 and UD3 pin 5 on BACK of board
4) CUT circuit trace between CR7 Anode and UD3 pin 5 on BACK of board.

1540/1541 POWER SUPPLY ASSEMBLY
PARTS LIST

FUSE HOLDER
ROCKER SWITCH
POWER CNNCT FILTER
FUSE, SLOW BLO, 250V, 1.0A POWER TRANSFORMER

903614-01 904509-01 903467-03 sub 325552-01 1540009-02

TRANSFORMER

ASSEMBLY DRAWING

ALPS DRIVE ASSEMBLIES

1540/1541

PARTS LIST

32551901 Alps Drive (Black)

32551902 Alps Drive (Brown)

31410001 ALP DOOR/HUB ASSEMBLY 1-Door Assy w/Spring2-Hub/Collet Assy31410101 ALP LEFT DISK GUIDE ASSEMBLY 1-Diskette Guide
2-LED Assy w/Harness
3-Write Protect Assy31410201 ALP RIGHT DISK GUIDE
(4) 31410301 ALP FRONT BEZEL (Black) 31410302 ALP FRONT BEZEL (Brown)
(5) 31410401 ALP R/W HEAD ASSEMBLY 1-R/W Head
2-Load Arm w/Pa
3-Metal Band
31410501 ALP STEPPER MOTOR ASSEMBLY 1 -Stepper Motor w/Harness
2-Stepper Pulley31410601 ALP D.C. MOTOR
(7) 31410701 ALP MOTOR CONTROL PCB ASSEMBLY

1-Motor Control PCB
2-Harness Assy31410801 ALP TENSION PULLEY ASSEMBLY 1 -Pulley Wheel w/Spring 2-Plastic Housing31410901 ALP HOUSING/SPINDLE ASSEMBLY 1-Housing Base 2-Spindle Assy
3-L/R Guide Shafts
31411001 ALP DRIVE BELT
(10) 31411101 ALP EJECT ASSEMBLY 1-Eject Plate 2-Eject Spring

31411201 ALP HARDWARE 1-Assorted Screws
2-Zero Stop Tab
31417401 UNIV Replacement Load Pad

READ/WRITE HEAD ASSEMBLY

MOTOR CONTROL P.C.B

NEWTRONICS DRIVE ASSEMBLY

PARTS LIST

\#251643-01 NEWTRONICS DRIVE (Brown) \#251643-02 NEWTRONICS DRIVE (Dk. Grey)
(1) 314120-01 NWT DOOR/LATCH ASSEMBLY 1-Top Plate w/Latch Spring \& Cam 2-Latch Knob w/Allen Screws

314121-01 NWT HUB FRAME ASSEMBLY 1-Hub/Collet Assy 2-Hub Frame

314122-01 NWT FRONT BEZEL ASSEMBLY 1-Front Bezel w/LED \& Harness 2-Write Protect Assy
(4)

314123-01 NWT R/W HEAD ASSEMBLY 1-R/W Head
2-Load Arm w/Pad
3-Metal Band
314124-01 NWT STEPPER MOTOR ASSEMBLY 1-Stepper Motor w/Harness 2-Stepper Pulley
(5)

314125-01 NWT D.C. MOTOR
(6) 314126-01 NWT MOTOR CONTROL PCB ASSEMBLY

1-Motor Control PCB
2-Harness Assy
314127-01 NWT HOUSING SPINDLE ASSEMBLY
1-Housing Base
3-L/R Guide Shaft
4-Brass Pulley
314128-01 NWT DRIVE BELT
314129-01 NWT HARDWARE
1-Assorted Screws
2-Zero Stop Tab
3-Tension Spring
314174-01 UNIV Replacement Load Pad

C commodore COMPUTERS

DOCUMENT CHANGE RECOMMENDATION

THIS FORM PROVIDES OUR CUSTOMERS WITH AN EASY METHOD OF SENDING IN DOCUMENT CHANGE RECOMMENDATIONS. JUST REMOVE, FILL IN, AND MAIL THIS FORM. OUR STAFF WILL REVIEW ALL. RECOMMENDATIONS AND, WHEN APPROPRIATE, MAKE THE CHANGES TO THE DOCUMENT.

THANK YOU FOR YOUR COMMENTS.
DOCUMENT PART NUMBER, TITLE, DATE OF ISSUE:

USER'S EVALUATION OF MANUAL: Check Appropriate Block(s)
\square Excellent \square Good \square Fair \square Poor \square Complete \square Incomplete

REASON FOR CHANGE RECOMMENDATIONS:
To correct error; \square To improve content; \square To improve quality; \square Other (indicate below)

PAGE, PARAGRAPH, OR DRAWING AFFECTED BY RECOMMENDATION:

DETAILS:

dIZ	$\exists \perp \forall \perp$ S	: 人110
		: $\lrcorner \exists \exists บ$ ¢
: 3 NOHd		: $\mathrm{N} *$ VdWOכ
$: \exists \perp \forall 0$		$: \exists W \forall N$

COMMODORE BUSINESS MACHINES C-2654
West Chester, PA 19380

C commodore COMPUTERS

\qquad Manual Name: \qquad
Part Number: \qquad
Issue Date:
The return of this information is essential to the maintenance of your documentation. If necessary, document updates and changes will be distributed to registered persons. Subsequent versions and editions of this document must be purchased.

Name: \qquad
Company: \qquad
Street: \qquad
\qquad

COMMODORE BUSINESS MACHINES C-2654
 West Chester, PA 19380

Service Documentation

Computer Systems Division
1200 Wilson Drive
West Chester, PA 19380

