
IEC-bus documentation as used for the 1541-III

J. Derogee Page 1 2008-02-24

IEC disected

This document describes the IEC-bus information gathered during the development of the 1541-III.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 2 2008-02-24

General info:

The serial (IEC) bus uses a synchronous protocol. There are three lines: DATA, CLK, and -ATN.
The lines are driven by a 6526 CIA on the C-64, through open-collector inverters (7406's); 1 kohm
pull-up resistors are used. The 1541 and 1571 drives do the same, but they don't drive the -ATN
line, and they use 6522 VIA's. The lines are also read, directly by the C-64. Address $DD00 (PA of
CIA2) is used by the C-64. Bit 3 is ATN OUT, bit 4 is -CLK OUT, bit 5 is -DATA OUT, bit 6 is
CLK IN, and bit 7 is DATA IN.

A device's identity is usually stored in RAM after boot up, so a drive POKE will let it change to
anything in the range 0-30. The C64 kernal (unless patched) prevents 0-3 from actually going down
the serial bus....

CBM Device ID’s
Device ID Device type

0 Keyboard
1 Cassette port
2 RS232 on user port or second cassette on older units
3 Screen
4 Printer
5 Printer
6 Typically plotter device
7 Second plotter?

Also used by a freeze cartridges named TurboTape, but that's only an internal definition
8 Primary Disk Drive
9 Disk Drive
10 Disk Drive

Also used by some serial-to-parallel printer interface cartridges
11 Disk Drive
12 Disk Drive
13 Disk Drive
14 Disk Drive

Sometimes used by some serial-to-parallel printer interface cartridges
15 Disk Drive
16-30 Unknown
31 Device #31 is reserved as a command to all devices

Devices will not ignore a command to #31, since they cannot do this. Sending a TALK command to #31 means UNTALK, sending a
LISTEN to #31 means UNLISTEN. This however is just a statement found on the web and has not been verified by other sources.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 3 2008-02-24

Regarding the signals on the bus:
0V = TRUE or PULLED DOWN
5V = FALSE or RELEASED

Regarding the data on the bus:
0V = logical 0
5V = logical 1

Bytes are sent with low bit first.
Data is valid on rising edge of clock

CBM Serial Bus Control Codes
Base address Command name and details

20 LISTEN + device number (0-30)
3F UNLISTEN
40 TALK + device number (0-30)
5F UNTALK
60 OPEN CHANNEL / DATA + Secondary Address / channel (0-15)
70 -Undefined-
80 -Undefined-
90 -Undefined-
A0 -Undefined-
B0 -Undefined-
C0 -Undefined-
D0 -Undefined-
E0 CLOSE + Secondary Address / channel (0-15)
F0 OPEN + Secondary Address / channel (0-15)

/ = byte is send under attention (ATN low)
↑ = bus turn around (computer is set to slave)
↓ = bus turn around (computer is set to master (normal situation)

Note: the device (1541) is called by the computer (C64)

IEC-bus documentation as used for the 1541-III

J. Derogee Page 4 2008-02-24

This article appeared in Compute! July 1983 and is Copyrighted 1983 by Jim Butterfield.

HOW THE VIC/64 SERIAL BUS WORKS
By Jim Butterfield

The Serial bus connects VIC or Commodore 64 to its major peripherals, especially disk and tape.
The workings of this interface have been a source of bafflement to most of us. We know that it's
somehow related to the IEEE-488 bus which is used on PET and CBM computers. But it has fewer
wires, and it's slower. For anyone interested in interfacing details, this article will clear up the
mystery.

 GROUND RULES
To understand the workings of this bus, you must work through a few concepts. Later, we'll get
technical for this who want it. The bus, like the IEEE, has two modes of operation: Select mode, in
which the computer calls all devices and asks for a specific device to remain connected after the
call ("Jones, would you stay in my office after the meeting?"); and Data mode, in which actual
information is transmitted ("Jones, I've decided to give you a raise"). Select mode is invoked by
the use of a special control line called "Attention," or ATN. By using Select mode, you can call in
any device you choose, but you may need to do more before you transmit data. You might have
several disk files in progress - writing some and reading others – and when you select the disk,
device 8, you'll still need to specify which "part" of the disk you want to reach: subchannel 3,
subchannel 15, or whatever. To do this, we use a "secondary address" which usually signals a
subsystem within a specific device. That goes in as part of the command during Select mode.
Finally, we may need to send other control information: the name of the file we wish to open, for
example. That's not data; it's device setup information, so we also send it in Select mode. But the
main part is: you select a device, and then you send to it or receive from it. Finally, you shut it off.
All devices are connected, but only the one you have selected will listen or talk.

If you're not into volts and signals and things, the rest of this article may not do much for you. I
want to talk about technical aspects of the bus. First, all the data flows over two wires; They are
called the Clock line and the Data line. There are other wires used for control purposes, but the
data uses only the two main ones. All wires connect to all devices. The wires don't go "one way";
any device can put a ground on a signal line, and all other devices will see it. Indeed, that's the
secret of how it works: each wire serves as a common signal bus.

When no device puts a ground on a signal line, the voltage rises to almost five volts. We call this
the "false" logic condition of the wire. If any device rounds the line, the voltage drops to zero; we
call this the "true" condition of the line. Note that if two devices signal "true" on a line (by
grounding it), the effect is exactly the same as if only one has done so: the voltage is zero and that's
that. We can summarize this as an important set of logic rules:

 -A line will become "true" (PULLED DOWN, or 0V) if one or more devices signal true;
 -A line will become "false" (RELEASED, or 5V) only if all devices signal false.

Remember that we have several lines, but the important ones for information transmission are the
Clock line and the Data line. Let's watch them work.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 5 2008-02-24

TRANSMISSION: STEP ZERO
Let's look at the sequence when a character is about to be transmitted. At this time, both the Clock
line and the Data line are being held down to the true tate. With a test instrument, you can't tell
who's doing it, but I'll tell you: the talker is holding the Clock line true, and the listener is holding
the Data line true. There could be more than one listener, in which case all of the listeners are
holding the Data line true. Each of the signals might be viewed as saying, "I'm here!".

STEP 1: READY TO SEND
Sooner or later, the talker will want to talk, and send a character. When it's ready to go, it releases
the Clock line to false. This signal change might be translated as "I'm ready to send a character."
The listener must detect this and respond, but it doesn't have to do so immediately. The listener will
respond to the talker's "ready to send" signal whenever it likes; it can wait a long time. If it's a
printer chugging out a line of print, or a disk drive with a formatting job in progress, it might hold
back for quite a while; there's no time limit.

STEP 2: READY FOR DATA
When the listener is ready to listen, it releases the Data line to false. Suppose there is more than
one listener. The Data line will go false only when all listeners have released it - in other words,
when all listeners are ready to accept data. What happens next is variable. Either the talker will
pull the Clock line back to true in less than 200 microseconds - usually within 60 microseconds - or
it will do nothing. The listener should be watching, and if 200 microseconds pass without the
Clock line going to true, it has a special task to perform: note EOI.

INTERMISSION: EOI
If the Ready for Data signal isn't acknowledged by the talker within 200 microseconds, the listener
knows that the talker is trying to signal EOI. EOI, which formally stands for "End of Indicator,"
means "this character will be the last one." If it's a sequential disk file, don't ask for more: there
will be no more. If it's a relative record, that's the end of the record. The character itself will still
be coming, but the listener should note: here comes the last character. So if the listener sees the 200
microsecond time-out, it must signal "OK, I noticed the EOI" back to the talker, I does this by
pulling the Data line true for at least 60 microseconds, and then releasing it. The talker will then
revert to transmitting the character in the usual way; within 60 microseconds it will pull the Clock
line true, and transmission will continue. At this point, the Clock line is true whether or not we
have gone through the EOI sequence; we're back to a common transmission sequence.

STEP 3: SENDING THE BITS
The talker has eight bits to send. They will go out without handshake; in other words, the listener
had better be there to catch them, since the talker won't wait to hear from the listener. At this point,
the talker controls both lines, Clock and Data. At the beginning of the sequence, it is holding the
Clock true, while the Data line is released to false. the Data line will change soon, since we'll send
the data over it. The eights bits will go out from the character one at a time, with

the least significant bit going first. For example, if the character is the ASCII question mark, which
is written in binary as 00011111, the ones will go out first, followed by the zeros. Now, for each
bit, we set the Data line true or false according to whether the bit is one or zero. As soon as that's
set, the Clock line is released to false, signalling "data ready." The talker will typically have a bit
in place and be signalling ready in 70 microseconds or less. Once the talker has signalled "data
ready," it will hold the two lines steady for at least 20 microseconds timing needs to be increased to

IEC-bus documentation as used for the 1541-III

J. Derogee Page 6 2008-02-24

60 microseconds if the Commodore 64 is listening, since the 64's video chip may interrupt the
processor for 42 microseconds at a time, and without the extra wait the 64 might completely miss a
bit. The listener plays a passive role here; it sends nothing, and just watches. As soon as it sees the
Clock line false, it grabs the bit from the Data line and puts it away. It then waits for the clock line
to go true, in order to prepare for the next bit. When the talker figures the data has been held for a
sufficient length of time, it pulls the Clock line true and releases the Data line to false. Then it
starts to prepare the next bit.

STEP 4: FRAME HANDSHAKE
After the eighth bit has been sent, it's the listener's turn to acknowledge. At this moment, the Clock
line is true and the Data line is false. The listener must acknowledge receiving the byte OK by
pulling the Data line to true. The talker is now watching the Data line. If the listener doesn't pull
the Data line true within one millisecond - one thousand microseconds - it will know that
something's wrong and may alarm appropriately.

STEP 5: START OVER
We're finished, and back where we started. The talker is holding the Clock line true, and the
listener is holding the Data line true. We're ready for step 1; we may send another character - unless
EOI has happened. If EOI was sent or received in this last transmission, both talker and listener "let
go." After a suitable pause, the Clock and Data lines are released to false and transmission stops.

ATTENTION!
This is all very well for a transmission that's under way, but how do we set up talker and listener?
We use an extra line that overrides everything else, called the ATN, or Attention line. Normally,
the computer is the only device that will pull ATN true. When it does so, all other devices drop
what they are doing and become listeners. Signals sent by the computer during an ATN period look
like ordinary characters - eight bits with the usual handshake - but they are not data. They are
"Talk," "Listen," "Untalk," and "Unlisten" commands telling a specific device that it will become
(or cease to be) a talker or listener. The commands go to all devices, and all devices acknowledge
them, but only the ones with the suitable device numbers will switch into talk and listen mode.
These commands are sometimes followed by a secondary address, and after ATN is released,
perhaps by a file name. An example might help give an idea of the nature of the communications

IEC-bus documentation as used for the 1541-III

J. Derogee Page 7 2008-02-24

that take place. To open for writing a sequential disk file called "XX," the following sequence
would be sent with ATN on:DEVICE-8-LISTEN;SECONDARY-ADDRESS-2-OPEN. When
ATN switches off, the computer will be waiting as a talker, holding the Clock line true; and the
disk will be the listener, holding the Data line true. That's good, because the computer has more to
send, and it will transmit: X;X;comma;s;comma;W - the W will be accompanied with an EOI
signal. Shortly thereafter, the computer will switch ATN back on and send DEVICE-8-
UNLISTEN. The file is now open; later, the computer will want to send data there. It will transmit,
with ATN on, DEVICE-8-LISTEN;SECONDARY- ADDRESS-2-DATA. Then the computer
releases the ATN line and sends
its data; only the disk will receive the data, and the disk will know to put it onto the file called XX.
The last character sent by the computer will also signal EOI. After the computer has sent enough
data for the moment, it will pull ATN on again and send DEVICE-8-UNLISTEN. Many bursts of
data may goto the file; eventually, the computer will close the file by sending (with ATN on, of
course) DEVICE-8-LISTEN;SECONDARY-ADDRESS-2-CLOSE. ATN overrides everything in
progress, A disk file might have lots of characters to give to the computer, but the computer wants
only a
little data. It accepts the characters it wants, then switches on ATN and commands the disk to
Untalk. The disk has not sent EOI, but it will disconnect as commanded. Later, when it's asked to
Talk again, it will send more characters.

ATN SEQUENCES
When ATN is pulled true, everybody stops what they are doing. The processor will quickly pull the
Clock line true (it's going to send soon), so it may be hard to notice that all other devices release the
Clock line. At the same time, the processor releases the Data line to false, but all other devices are
getting ready to listen and will each pull Data to true. They had better do this within one
millisecond (1000 microseconds), since the processor is watching and may sound an alarm ("device
not available") if it doesn't see this take place. Under normal circumstances, transmission now
takes place as previously described. The computer is sending commands rather than data, but the
characters are exchanged with exactly the same timing and handshakes as before. All devices
receive the commands, but only the specified device acts upon it. This results in a curious
situation: you can send a command to a nonexistent device (try "OPEN 6,6") - and the computer
will not know that there is a problem, since it receives valid handshakes from the other devices.
The computer will notice a problem when you try to send or receive data from the nonexistent
device, since the unselected devices will have dropped off when ATN ceased, leaving you with
nobody to talk to.

TURNAROUND
An unusual sequence takes place following ATN if the computer wishes the remote device to
become a talker. This will usually take place only after a Talk command has been sent.
Immediately after ATN is released, the selected device will be behaving like a listener. After all, it's
been listening during the ATN cycle, and the computer
has been a talker. At this instant, we have "wrong way" logic; the device is holding down the Data
line, and the computer is holding the Clock line. We must turn this around. Here's the sequence:
the computer quickly realizes what's going on, and pulls the Data line to true (it's already there), as
well as releasing the Clock line to false. The device waits for this: when it sees the Clock line go
true, it releases the Data line (which stays true anyway since the computer is now holding it down)
and then pulls down the Clock line. We're now in our starting position, with the talker (that's the
device) holding the Clock true, and the listener (the computer) holding the Data line true. The

IEC-bus documentation as used for the 1541-III

J. Derogee Page 8 2008-02-24

computer watches for this state; only when it has gone through the cycle correctly will it be ready
to receive data. And data will be signalled, of course, with the usual sequence: the talker releases
the Clock line to signal that it's ready to send. The logic sequences make sense. They are hard to
watch with a voltmeter or oscilloscope since you can't tell which device is pulling the line down to
true. The principles involved are very similar to those on the PET/CBM IEEE-488 bus - the same
Talk and Listen commands go out, with secondary addresses and similar features. There are fewer
"handshake" lines than on IEEE, and the speed is slower; but the principle is the same.

-End of document-
Copyright 1983 by Jim Butterfield (published in Compute!)

IEC-bus documentation as used for the 1541-III

J. Derogee Page 9 2008-02-24

IEC-bus documentation as used for the 1541-III

J. Derogee Page 10 2008-02-24

IEC-bus documentation as used for the 1541-III

J. Derogee Page 11 2008-02-24

CBM Serial Bus Control Codes

Description Symbol Min. Typ. Max.

ATN RESPONSE (REQUIRED)1 TAT - - 1000µs
LISTENER HOLD-OFF TH 0 - infinite
NON-EOI RESPONSE TO RFD2 TNE - 40µs 200µs
BIT SET-UP TALKER4 TS 20µs 70µs -
DATA VALID T V 20µs 20µs -
FRAME HANDSHAKE3 TF 0 20 1000µs
FRAME TO RELEASE OF ATN TR 20µs - -
BETWEEN BYTES TIME TBB 100µs - -
EOI RESPONSE TIME TYE 200µs 250µs -
EOI RESPONSE HOLD TIME5 TEI 60µs - -
TALKER RESPONSE LIMIT TRY 0 30µs 60µs
BYTE-ACKNOWLEDGE4 TPR 20µs 30µs -
TALK-ATTENTION RELEASE TTK 20µs 30µs 100µs
TALK-ATTENTION ACKNOWLEDGE TDC 0 - -
TALK-ATTENTION ACK. HOLD TDA 80µs - -
EOI ACKNOWLEDGE TFR 60µs - -

Notes:
1: If maximum time exceeded, device not present error.
2: If maximum time exceeded, EOI response required.
3: If maximum time exceeded, frame error.
4: TV and TPR minimum must be 60µs for external device to be a talker.
5: TEI minimum must be 80µs for external device to be a listener.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 12 2008-02-24

Serial Bus Pinouts

Pin Pin name and function

1 SRQ : Serial Service Request In
2 GND : Ground
3 ATN : Serial Attention In/Out
4 CLK : Serial Clock In/Out
5 DATA : Serial Data In/Out
6 RESET : Serial Reset

SRQ: Serial Service Request In:
This signal is not used on the C64. On C128 it is replaced with Fast Serial Clock for the 1571 disk drive.

ATN: Serial Attention In/Out:
Sending any byte with the ATN line low (sending under attention) causes it to be interpreted as a Bus
Command for peripherals on the serial bus. When the C64 brings this signal LOW, all other devices start
listening for it to transmit an address. The device addressed must respond in a preset period of time;
otherwise, the C64 will assume that the device addressed is not on the bus, and will return an error in the
STATUS word.

CLK: Serial Clock In/Out:
This signal is for timing the data sent on the serial bus. This signal is always generated by the active
TALKER. RISING EDGE OF THE CLOCK means data bit is valid.

DATA: Serial Data In/Out:
Data on the serial bus is transmitted bit by bit at a time on this line.

RESET: Serial Reset:
Some say that you may disconnect this line to save your disk drive, but in fact resetting the drive when
you reset your computer is very logical and is the only way to reset your drive whithout switching it
OFF and ON.

IEC connector
(on rear of CBM computer)

D
IN

, 6
 p

ol
e,

 fe
m

al
e

IEC-bus documentation as used for the 1541-III

J. Derogee Page 13 2008-02-24

NORMAL OPERATION:

Read file from device#8

LOAD”filename”,8,1

/28 /F0 filename /3F
/48 /60 ↑read data↓ /5F
/28 /E0 /3F

Write file to device#8

SAVE”filename”,8,1

/28 /F0 filename /3F
/28 /60 send data /3F
/28 /E0 /3F

FILE NOT FOUND SITUATION:

Read file from device#8

LOAD”filename”,8,1

/28 /F0 filename /3F
/48 /60 ↑↓ release data and clock This situation is recognized by the computer as an error
/28 /E0 /3F

READING THE ERRORCHANNEL:

OPEN 15,8,15 This line does not start IEC traffic, it prepares the computer for communication
INPUT#15,A,B$,C,D
PRINT A,B$,C,D
CLOSE 15

/48 /6F ↑ 30 30 2C 20 …
TALK #8 DATA ch15 Turn ‘0’ ‘0’ ‘,’ ‘SPACE’ …

Reading the error channel only works when no file has been opened on channel 15.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 14 2008-02-24

The difference between a 2-line and a single line command to the 1541 drive :

Scratch a file name “T” on a media inside device#8

OPEN 15,8,15 ◄this line does not start IEC traffic, it prepares the computer for communication
PRINT#15,”S:T”

/28 /6F 53 3A 54 0D /3F
LISTEN #8 DATA ch15 ‘S’ ‘:’ ‘T’ ‘CR’ UNLISTEN

OPEN 15,8,15,”S:T”

/28 /FF 53 3A 54 /3F
LISTEN #8 OPEN ch15 ‘S’ ‘:’ ‘T’ UNLISTEN

IEC-bus documentation as used for the 1541-III

J. Derogee Page 15 2008-02-24

To send a data byte to a drive, that device must first be "listened". If the Secondary address (from
here referred to as: SA or channel) is 15, the drive will interpret the data as a DOS command. A
DOS command is executed when the drive is UNLISTENed ($3F).

If the channel is not 15, DOS will ignore it unless you first sent an OPEN.
An OPEN is sent to tell DOS where you want your data to go.
That is done by LISTENing the device. With -ATN high, a character string must be sent. That will
be either a filename (to open a write file), or something like "#", "#2", etc. That tells DOS to write
your data to one of the five DOS buffers. Then, with -ATN low, send an UNLISTEN.
channel = 0 is reserved for a reading a PRG file.
channel = 1 is reserved for a writing a PRG file.
channel = 2-14 need the filetype and the read/write flag in the filename as ",P,W" for example.
channel = 15 for DOS commands or device status info.

After the OPEN is sent, you can send a LISTEN using the channel used in the OPEN.
DOS has a table of opened files, and will use the channel to write your data to the corresponding
file.

The purpose of a CLOSE, for a file named "#", is to free up that DOS buffer. For a file whose
name appears in the disk directory, a CLOSE will set bit 7 of the filetype byte in the directory
descriptor, update the block count, and save BAM back to disk. DOS will even turn off the drive-
LED.

You can keep files open in several devices, and write data first to one and then another. Just
UNLISTEN a device before LISTENing another. You can have a drive with a "LISTEN" device
address of 8 and a "TALK" device address of 9. Another drive can use 8 for both "LISTEN" and
"TALK" device addresses. That is how you can download a file to both devices at the same time,
and still be able to read the individual error channels.

The KERNAL routines, when the computer is sending data, always buffer one byte. The KERNAL
UNLISTEN, UNTALK, LISTEN, and TALK routines check for a buffered byte. If one is present,
it is sent delayed. Then the routine does its regular job.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 16 2008-02-24

To open a file in a disk drive, there is no need also to open a file in the computer. However, that is
usually done for the sake of convenience. But the KERNAL LOAD and SAVE routines open read and
write files in the IEC (serial) device, without also opening files in the computer. To open a file in an
IEC device, the -ATN line must be taken low (by setting bit 3 of $DD00). Then, the CLK line is taken
low (bit 4 of $DD00 is set), and the computer waits for one millisecond. After which the device number
ORed with $20 is sent via slow serial. With -ATN still low, the channel ORed with $F0 is then sent; -
ATN is then taken high. Next, the filename string is sent to the drive, still using slow serial. The string
is terminated by "=", by ",", or by a count of 16 characters, whichever comes first. If the drive DOS
encounters ",a" or ",a,b" (where "a" and "b" may be any characters), it uses that information to
determine file type and data direction. If the character is not valid it is tossed; there is no error. First
direction is checked; "w" is "write" and "r" is "read". That may be overridden by the channel; an
channel of 0 defines "read" and an channel of 1 defines "write". For any other channel (2 to 14), if there
is no direction character, "read" is set. DOS then looks for a file type characater; "u" is "usr", "p" is
"prg", and "s" is "seq". If the direction is "read", and there is no file type character, ANY file type is
acceptable. An exception occurs for no file type character and an channel of 0; that defines "prg". If the
direction is "write", and there is no file type character, "seq" is set. An exception occurs for no file type
character and an channel of 1; that defines "prg". In the special case of the string's being ",w", the
infamous "comma" filename will appear in the directory of a 1541 disk. This C-64 BASIC program will
write 144 files named "," to a freshly formatted disk. The files cannot be directly deleted.

10 fori=1to144:open8,8,8,",w":close8
20 next

After the string is sent, the device is UNLISTENed. -ATN is taken low, CLK is taken low, the
computer waits for one ms, and $3F is sent to the device. The file is now opened in the device; the file
may be closed by doing a modified OPEN. No string is sent, and the channel is ORed with $E0 rather
than with $F0. Between the OPEN and the CLOSE, data may be read from a "read" file by TALKing
the drive, or written to a "write" file by LISTENing the drive. Also, a device may be UNTALKed or
UNLISTENed. For LISTEN, the device number ORed with $20 is sent as with OPEN or CLOSE.
Then, with -ATN still low, the channel is sent ORed with $60. -ATN is then taken high. For TALK, it's
the same, except that the device number is ORed with $40. Also for TALK, after the channel is sent, the
bus must be "turned around". That is accomplished by taking the DATA line low (setting bit 5 of
$DD00), taking the -ATN line high (clearing bit 3 of $DD00), taking the CLK line high (clearing bit 4
of $DD00), and looping until the CLK line is low (until bit 6 of $DD00 is clear). For UNLISTEN and
UNTALK, just one byte is sent (in the same manner as the device number is sent for LISTEN, TALK,
etc.). That byte is $3F for UNLISTEN and $5F for UNTALK; ALL devices on the bus are commanded
either to close their ears or to shut up. After the byte is sent, -ATN is taken high.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 17 2008-02-24

How to change the device number without changing the jumpers

This actually works on all the drives. It works on all the variations of the 1541, plus the 1571, 1581,
and all the CMD drives including the RAMLink and the RAMDrive.
If you want to disable a drive, modify line 20 so it will accept a value of 1. Since no software will
ever attempt to access device 1 the drive will never respond and will sit there quietly even though
it is still turned on. If you still want to be able to bring it back to life, change the device number to 6
or 7. Very few programs ever look for anything below device 8.

5 INPUT "OLD DEVICE NUMBER";ODV
10 INPUT "NEW DEVICE NUMBER";DV
20 IF DV<8 OR DV>11 THEN 10
30 OPEN 15,ODV,15
40 PRINT#15,"M-W"CHR$(119)CHR$(0)CHR$(2)CHR$(DV+32)CHR$(DV+64)
50 CLOSE 15

IEC-bus documentation as used for the 1541-III

J. Derogee Page 18 2008-02-24

A brief history of the IEC-bus
By Jim Butterfield

As you know, the first Commodore computers used the IEEE bus to connect to peripherals such as disk
and printer. I understand that these were available only from one source: Belden cables. A couple of
years into Commodore's computer career, Belden went out of stock on such cables (military contract?
who knows?). In any case, Commodore were in quite a fix: they made computers and disk drives, but
couldn't hook 'em together! So Tramiel issued the order: "On our next computer, get off that bus. Make
it a cable anyone can manufacture". And so, starting with the VIC-20 the serial bus was born. It was
intended to be just as fast as the IEEE-488 it replaced.

"Technically, the idea was sound: the 6522 VIA chip has a "shift register" circuit that, if tickled with the
right signals (data and clock) will cheerfully collect 8 bits of data without any help from the CPU. At
that time, it would signal that it had a byte to be collected, and the processor would do so, using an
automatic handshake built into the 6522 to trigger the next incoming byte. Things worked in a similar
way outgoing from the computer, too. We early PET/CBM freaks knew, from playing music, that there
was something wrong with the 6522's shift register: it interfered with other functions. The rule was:
turn off the music before you start the tape! (The shift register was a popular sound generator). But
the Commodore engineers, who only made the chip, didn't know this. Until they got into final checkout
of the VIC-20.

By this time, the VIC-20 board was in manufacture. A new chip could be designed in a few months
(yes, the silicon guys had application notes about the problem, long since), but it was TOO LATE!

A major software rewrite had to take place that changed the VIC-20 into a "bit-catcher" rather than a
"character-catcher". It called for eight times as much work on the part of the CPU; and unlike the shift
register plan, there was no timing/handshake slack time. The whole thing slowed down by a factor of
approximately 5 to 6.

When the 64 came out, the problem VIA 6522 chip had been replaced by the CIA 6526. This did not
have the shift registerproblem which had caused trouble on the VIC-20, and at that time it would have
been possible to restore plan 1, a fast serial bus. Note that this would have called for a redesign of the
1540 disk drive, which also used a VIA. As best I can estimate - and an article in the IEEE Spectrum
magazine supports this - the matter was discussed within Commodore, and it was decided that VIC-20
compatibility was more important than disk speed. Perhaps the prospect of a 1541 redesign was an
important part of the decision, since current inventories needed to be taken into account. But to keep the
Commodore 64 as a "bit-banger", a new problem arose.

The higher-resolution screen of the 64 (as compared to the VIC-20) could not be supported without
stopping the CPU every once in a while. To be exact: Every 8 screen raster lines (each line of text), the
CPU had to be put into a WAIT condition for 42 microseconds, so as to allow the next line of screen text
and color nybbles to be swept into the chip.(More time would be needed if sprites were being used). But
the bits were coming in on the serial bus faster than that: a bit would come in about every 20uSec! So
the poor CPU, frozen for longer than that, would miss some serial bits completely! Commodore's
solution was to slow down the serial bus even more. That's why the VIC-20 has a faster serial bus than
the 64, even though the 64 was capable, technically, of running many times faster.

Fast disk finally came into its own with the Commodore 128.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 19 2008-02-24

Commodore 64 serial bus functions

Address Function

$ED09

Send TALK command to serial bus.
Input: A = Device number.
Output: –
Used registers: A.

$ED0C

Send LISTEN command to serial bus.
Input: A = Device number.
Output: –
Used registers: A.

$ED40

Flush serial bus output cache, at memory address $0095, to serial bus.
Input: –
Output: –
Used registers: A.

$EDB9

Send LISTEN secondary address to serial bus.
Input: A = Secondary address.
Output: –
Used registers: A.

$EDC7

Send TALK secondary address to serial bus.
Input: A = Secondary address.
Output: –
Used registers: A.

$EDDD

Write byte to serial bus.
Input: A = Byte to write.
Output: –
Used registers: –

$EDEF

Send UNTALK command to serial bus.
Input: –
Output: –
Used registers: A.

$EDFE

Send UNLISTEN command to serial bus.
Input: –
Output: –
Used registers: A.

$EE13

Read byte from serial bus.
Input: –
Output: A = Byte read.
Used registers: A.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 20 2008-02-24

$EE85

Set CLOCK OUT to high.
Input: –
Output: –
Used registers: A.

$EE8E

Set CLOCK OUT to low.
Input: –
Output: –
Used registers: A.

$EE97

Set DATA OUT to high.
Input: –
Output: –
Used registers: A.

$EEA0

Set DATA OUT to low.
Input: –
Output: –
Used registers: A.

$EEA9

Read CLOCK IN and DATA IN.
Input: –
Output: Carry = DATA IN; Negative = CLOCK IN; A = CLOCK IN (in bit #7).
Used registers: A.

$F1AD

Read byte from serial bus; read $0D, Return, if device status != 0.
Input: –
Output: A = Byte read.
Used registers: A.

$F237

Define serial bus as standard input; do not send TALK secondary address if
secondary address bit #7 = 1.
Input: A = Device number.
Output: –
Used registers: A, X.

$F279

Define serial bus as standard output; do not send LISTEN secondary address if
secondary address bit #7 = 1.
Input: A = Device number.
Output: –
Used registers: A, X.

$F3D5

Open file on serial bus; do not send file name if secondary address bit #7 = 1 or file
name length = 0.
Input: –
Output: –
Used registers: A, Y.

$F528

Send UNTALK and CLOSE command to serial bus.
Input: –
Output: –
Used registers: A.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 21 2008-02-24

$F63F

Send UNLISTEN and CLOSE command to serial bus.
Input: –
Output: –
Used registers: A.

$F642

Close file on serial bus; do not send CLOSE secondary address if secondary address
bit #7 = 1.
Input: –
Output: –
Used registers: –

$FE21

Unknown. (Set serial bus timeout.)
Input: A = Timeout value.
Output: –
Used registers: –

IEC-bus documentation as used for the 1541-III

J. Derogee Page 22 2008-02-24

Standard KERNAL functions

$FF93

LSTNSA. Send LISTEN secondary address to serial bus. (Must call LISTEN beforehands.)
Input: A = Secondary address.
Output: –
Used registers: A.
Real address: $EDB9.

$FF96

TALKSA. Send TALK secondary address to serial bus. (Must call TALK beforehands.)
Input: A = Secondary address.
Output: –
Used registers: A.
Real address: $EDC7.

$FFA2

SETTMO. Unknown. (Set serial bus timeout.)
Input: A = Timeout value.
Output: –
Used registers: –
Real address: $FE21.

$FFA5

IECIN. Read byte from serial bus. (Must call TALK and TALKSA beforehands.)
Input: –
Output: A = Byte read.
Used registers: A.
Real address: $EE13.

$FFA8

IECOUT. Write byte to serial bus. (Must call LISTEN and LSTNSA beforehands.)
Input: A = Byte to write.
Output: –
Used registers: –
Real address: $EDDD.

$FFAB

UNTALK. Send UNTALK command to serial bus.
Input: –
Output: –
Used registers: A.
Real address: $EDEF.

$FFAE

UNLSTN. Send UNLISTEN command to serial bus.
Input: –
Output: –
Used registers: A.
Real address: $EDFE.

$FFB1

LISTEN. Send LISTEN command to serial bus.
Input: A = Device number.
Output: –
Used registers: A.
Real address: $ED0C.

$FFB1
TALK. Send TALK command to serial bus.
Input: A = Device number.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 23 2008-02-24

Output: –
Used registers: A.
Real address: $ED09.

IEC-bus documentation as used for the 1541-III

J. Derogee Page 24 2008-02-24

IEC-bus documentation as used for the 1541-III

J. Derogee Page 25 2008-02-24

IEC-bus documentation as used for the 1541-III

J. Derogee Page 26 2008-02-24

