
>IOOBONVH SH3Sn

..Ja:a,ndt.uoo :a,ad

a.1opo

J

'IVDNVW 8 I S V EI

~~

...........

- 0 -

C 0 N T E N T S

-Jri(-;',-k*-;'~..;..-,':~'rlc*-;'(*,':

SUBJECT

Contents

Programming Guide for Commodore PET BASIC

Language Details for Commodore PET BASIC

Appendices

Cassette File Managemnt

Space Hints

Speed Hints

Derived Functions

Correcting Programs written in other BASIC

ASCII Codes

Basic Bugs

Questions & Answers

The USR Function

Details of User Port Connections

PET Editing

IEEE 488 Description

Some Compatible Devices

Error Messages

;'n':*-lrl:;"**-l'*;'(~(*'i':-a'r

PAGE

1

1-26

27-46

46-64

65-66

67

68

69-70

71

72-74

75-82

83-86

87-100

101-107

108-120

121-125

126-134

- 1 -

I N T R 0 D U C T I 0 N

Before a computer can perform any useful function, it must

be 'told' what to do. Unfortunately, at this time, computers are

not capable of understanding English or any other 'human' language.

This is primarily because our languages are rich with ambiguities

and implied meanings. The computer must be told precise instruc

tions and the exact sequence of operations to be performed in order

to accomplish any specific task. Therefore, in order to facilitate

human communication with a computer, programming languages have been

- developed.

.....

PET BASIC is a progra~ning language both easily understood

and simple to use. It serves as an excellent 'tool' for applicat

ions in areas such as business, science and education. With only

a few hours of using BASIC, you 'l,vill find that you can ;üready

write programs with an ease that few other computer languages can

duplicate.

Originally developed at Dartmouth University, BASIC laneuage

has found wide acceptance in the computer field. Although it is

one of the simplest computer languages to use, it is very powerful.

BASIC uses a small set of common English words as its 'commands' •

Designed specifically as an 'interactive' language, you can give a

co~nd such as "PRINT 2 + 2", and BASIC will immediately reply

with "4". It is not necessary to submit a card deck with your

program on it and then wait hours for the results. Instead, the

full power of the PET is 'at your fingertips'.

We hope that you enjoy BASIC and are successful in using it
I

to solve all of your programming needs.

In order to maintain a maximum quality level in our docu

mentation, we will be continuously revising this manual. If you

have any ~uggestions on how we can improve it, please let us know.

. ..,. ..

- 2 -

If you are already familiar with BASIC programrning, the

following section may be skipped.

Material on Page d.(, .
Turn directly to the Reference

.~. -~ ·:t

,-

,...

- 3 -

This section is not intended to oe a detailed course in
BASIC prograrruning. It •.dl1, however, serve as an excel1ent
introduction for those of you unfamiliar with the language.

The text here ,v ; 11 introduce the prima:ry conce:_)ts and uses
of BASIC enough to get you stßrted writing programs.

• . .Je recommend that you try each exarnple in this section as
it is presented. This w;.11 enhance your "feel" for 13ASIC and
how it is used.

\.Jhen PET is turned on, the follow-Lng shou l ,} appear:

~b'd: CONHODORE BASIC ''"'•-.·~

7167 BYTES FREE

READY.

NOTE: All corn.rnands to PET should end 'l.vi th a 'R.ETUT(N' . The
'RETURN' tells BASIC that you have fiuished typing the cofTlln~nd.

Nm11, try typine iP. the following:

PRINT 10-4 (end with RETTJRN)

. PET BASIC will immediatelv orint: - ~

6

RSADY.

The print statement you typed in was executed as ~oon as
you hit the 'RETURN' key. BASIC evaluated the formu1a after the
PRI~'T and then nrinted its value, in this case 6.

Now try typing in this:

PRIHT 1/2, 31•10

PET will print:

. 5 30

("*" means multiply, "/" means
divide)

As you can see, PET BASIC can do division and rnultipli
cation as well as subtraction. Note how a "," (comma) was used
in the PRINT co~rnand to print two values instead of just one.
The comma divides the 40 character line into 4 co1umns, each 10
characters wide. The resu1t of a "," causes BASIC to skip to the
next 10 column fie1d where the value 30 was pr~_nted.

Cornmands such as the PRINT statements you have just typed
in are cal1ed Direct Commands. There is another type of command

- 4 -

called an Indirect Command. Every Indirect Corrunand begins with
a Line Number. A Line Number is any integer from 0 to 64000.

Try typing in the following lines:

10 PRINT 2+3

20 PRINT 2-3

A sequence of Indirect Corrunands is called a "Program".
Instead of executing iudirect st,gtements irrrr:1ediately, BASIC saves
Indirect Corrunands in the raemory. Hhen you type in RUN, BASIC
will execute the lowest numoered indirect statement that has
been typed i.n first, then the next highest, etc. , for as fllcmy as
were typed in.

Suppose \ve type in Rt.J1.l now:

RUN

BASIC will type out:

5

-1

READY.

In the example above, we typed in line 10 first and line
20 sec01•d. However, it makes no difference in what order you
type in indirect Statements. BASIC always puts thern into correc.t
numerical order according to the Line Number.

If we v:ant a listing of the complete program currently in
memory, we type in LIST. Type thi_s in:

LIST

BASIC will reply with:

10 PRHIT 2+3

20 PRT.NT 2-3

READY.

Sometimes it is desirable to delete a line of a proeram
altogether. This is accomplished by typing the Line Number of
the line we wish to delete, followed only by a carriage return.

r-.._

,...

'"'

- 5 -

Type in the following:

10

LIST

BASIC will reply with:

20 PRINT 2-3

READY.

We have now deleted line 10 frorn the program. There is
no way to get it back. To insert a new line 10, just type in
10 followed by the statement we want BASIC to execute.

Type in the following:

10 PRINT 2*3

LIST

BASIC will reply with:

10 PRINT 2~'•3

20 PRINT 2-3

READY.

There is an easier way to replace line 10 than deleting
it and then inserting a new line. You can do this by just typing
the new line 10 and hitting the carriage return. BASIC throws
away the old line 10 and replaces it with the new one.

Type in the following:

10 PRINT 3-3

LIST

BASIC will reply with:

10 PRil\"'T 3-3

20 PRINT 2-3

READY.

It is not recommended that lines be numbered consecutively.
It may become necessary to insert a new line between two existing
lines. An increment of 10 bet\veen line numbers is generally
sufficient.

If you want to erase the complete program c ,Irrently stored
in memory, type in NEW . If you are fir.ished running one prozrAm
and are about to read in a new one, be sure to type in NEW first.
This should be done in order to ~revent a mixture of the old and
new programs.

- 6 -

Type in the follmv-ing:

T'1E~- .J

BASIC will r~ply with:

~· l';Ot•7 t~rr>e

i{EAD.f.

i .. n:

Ll:ST

BASIC will reply with:

READY.

Oft:en :Lt i .. s desirable tr:> incltlde ;::.ext al o,,_~ '~rith BTIS\vers
thc=d:: .qre printt: ;! 011t:. , i.>:1 0~der tn exola i..n the me.9nin2; of the
numbers.

Type i.n the follo\·'inc:

PR HIT r'ONF 'T'Hr'D T :- r:: :pA 1 Tf1" 1/3 . .. ·- .. I"\ ,. . . .) .; ·;. l J_ - .l...l . • • ' #

BASIC will re~ly with:

OTJf THIRD IS s :!U:\l.. rT0 .333333333

READY.

As exp1Ri"':"lec1 earlier, includLn~ a "," icl a print stA.ternent
cAnses it t.o space over t0 the next. 10 col11mn f~. el cl b efore the

1 ,.. 11 . h " " . . d va ue r0 ow1ne t e , lS pr~nte .

I f !I fl ' J ,.. h 1 • 11 - we nse ~- ; l.nsteA o ·- !3. corrlrrta, t .e up~ __ ue >::ext wl

be printeJ immed:i.ately fo1lov.rin3 thF: :)revious valne.

~rorrj: . '-iJ1 ,., · ::1l ·r v r' ~+- ·' r'tl f-lt 1 t -., ·'· -~·1·",..,. , ~ - -. t .llu)ers are c:. \'a. s ;-> . l .l : ... eu ~· .L . l <- .Le .:=ts ot.e L1:c.l. .L.'t',

s~ac.e. . Anv U:xt to ~-·e •) r inte.l is Hlv.rC"lvs i:o 1">e er .. closeJ h , double
quotes.

rr,....,,
- - J

.:\.)

B)

C)

the L>l1oFLrw exrt;'lnles: ,__, .

PRitH "ONE TIURD IS E·JJAL 10"; 1/3

ONS THI:itD IS EQUAL TO • 333333333

READY.

PRINT 1, 2, 3

1 ...,
3 '-

HEADY.

PRINT 1;2;3

1 2 3

READY.

/

""'""'

,.,

D)

- 7 -

PRINT -1;2;-3

-1 2 -3

READY.

Y.Je will digress for a moment to explain the format of
nurnbers in BASIC. Numbers are stored internally to over nine
digits of accuracy. Hhen a number is printed, only nine digits
are shmm. Every nurober may also have an exponent (a power of
ten scaline factor).

~~e largest number that may be represented in BAS!39is
l. 71(10 , while the smallest positive number i.s 2. 93.,':10 •

\.,Jhen a numoer is printed, the following rules are used to
determitte the exact fonnat:

1) If the number is negative, a minus sign (-) is printed.
If the number is positive, a space is printed.

2) If the absolute value of the number is an integer in
the range 0 to 999999999, it is printed as an integer.

3) If the absolute value of the number is greater than
or equal to .1 and less than or equal to 999999999, it is
printed in fixed point notation, with no exponent.

4) If the nurnber cloes not fall under categories 2) or 3),
scientific notation is used.

Scientific notation is formatted as follows:

SX.XXX~·:XXXXESTT (each X being some integer 0 to 9)

The leading "S" ls the s ;_ gn of the number, a space for a
positive nu1nber and a "-" for R negative one. · One non-zero
digit is printed before the decimal point. This is followed
by the decimal point and then the other eight digits of the
mantissa. An "E" is then printed (for exponent), followed
by th:: sign "S" of the exponent; then the t\vo digits "TT"
of the exponent itself. Leading zeroes are never printed;
L e. the digi t before the decimal is neuer zero. Also,
trailing zeroes are never ~rlnted. If there is only one
digit to print after all trailing zeroes are suppressed, Tto
decimal point is priutecl. The exponent sign will be ''+"
f . . 1 " " f . T d" . c: h or pos1t1ve anc ~ ~or negat1ve. wo 1g1ts OL t e exponent
are always printed; that is zeroes are not suppressed in
the exponent field. The value of n.ny number expressed thus
is the number to the left of the rtE" times 10 raised to the
power of the number to the right of the "En.

No matter \•lhat format is used, a space is always printed
following a number.

- 8 -

The follo\ATing a-ce examoles of vA.rious numoers and the
output format ßAST'~ w:i.ll place them into:

:nmrK;:a

·i-l

-l

6523

-23. 1-:-60

lZ20

-12. 34567891~·-7

l. 23L~5 (1 7?:-10

1000000

9<19999'-19:::

1
.Jl

.000123

OUfPliT FORHAT

1

-1

5523

-23.46

l~ ·-l-20

-l. 23l!-_tl6 7 3 g;:;; -0 ()

l . 23t~SG7 :~-l0

l~+J(y

9?3119999

. l

l T>02

1. 23-r:-04

A number \r:t:··u t f:com thF - ~,-~·. rbo ~:;_rd o·c a numeric cons tant used
' "

• ~t1.C'T ,~ ; r.-. • ,, "1· ." .A n1~nv ·1·n·t~ ·]p.-:ir-1 :,,. +-o the ~n a D. ") '-)r,)urar,t 1 ,a_, . k .. ve s .. c. .. _, ,_l'='~ • dS < - -···- ec. , . .J __

naxif'1U1'1 length. of p line (72 cr:ar.Qct.ers). HOi·lCVer' ot'll~r l~he
fiYst. 9 digits are s~gnificant, :=o_nJ the rdn tl1 cLeit. is t.-:,:mded
l.l!).

PI\TF'T 1. 2.1! .. 56 7 39Jl2345G 7n90

l. 21456789

i-\iADV.

The following is an examp1e of H pr0gra.m that reA.ds a.
value frmn the keyboard and uses that va.lue to calcu1ate and
T)rint a result:

10 l:NPUT 'R

20 PHnrr 3.14159 ·. -R :~R

RUN

? 10

31!~.159

READY.

NOTE: "J'ff" ma~r be use<.l as 3.14159265 at any time. This saves

I

-J

~

- 9 -

memory space Rnd decreases execu.tion t i me considerab1y.

Here is 1-.rhat is happening. ~.fuen BASIC encou.nters the input
statement, it types a question mark (?) on the screen and then
waits for you to type in a nurnber. When you do (in the above
examp1e 10 \vas typed), execution continues \v Lth the next sta::e
ment in the prograr:t after the variab le (R) has been set (in this
case to 10). In the above examp1e, 1ine 20 \vould nmlll be executed.
h'hen the fonnula after the PRINT statement is evaluated, the
value 10 is subst:ituted for the variable R each t i me R appears
in the formu1a. Therefore, the formula becomes 3 .14159-:c- 10~':10,

or 314.159.

If you have not already guessed, what the program above
actua11y does is to calculate the area of a circ1e \vith the
radius "R".

If we 'l.vanted to ca1cu1ate the area of various circ1es, we
cou1d keep re-running the program over each time for each successive
circle. But there is an easier \•.ray to do it simply by addine
another line to the program as fol1ows:

30 GOTO 10

RUN

? 10

314.159

? 3

28.2743

? 4.7

69.3977

READY.

By putting a "GOTO" statement on the end of our program,
we have caused it to eo back to line 10 after it prints each
answer for the successive circles. This roulJ have gone on
indefinitely, ~1t we decided to stop after calculating the area
for three circles. This was accomplished by typing a RETURN to
the input statement (thus a blank line).

The letter "R" in the program we just used was termed a
"variable". A variable name can be any alphabetic character
and may be fol1owed by any alphanumeric character.

Any alphanumeric characters after the first t\vo are
ignored, but accepted. An alphanumeric character is any letter
(A-Z) or any nurober (0-9).

names:

- J.O -

Below are some examples of legal and illegal variable

LEGAL

AC>'
/;:,

TP

PSTG$

COUNT

RESERVED V&,IABLES

TI and TT.$

ILLEGAL

(% after a variable means
"INTEGER" and uses only
two bytes of memory and
has the range -32767 to
32767.)

TO (variable names cannot
be reserved words).

aGOTO (variable names
cannot contain reserved
words)

TI is a 1 digit counter that is incremented every
1/60 second.

TI$ is a string variable which behaves as a :l.4-
hour clock and is format tecl "H!-INHSS". You may set TI$ in this
fashion: TI$ = "Hfll-1MSS".

The words used as BASIC statements are "reserved" for
this specific purpose. You cannot use these 1-1ords as varL=tble

f . . ' f . l l F . "F·~~1D" names or lTISl..cte o any varU'iü e nar:1e. · or 1..nstance, . c. :~
would be illegal becasue "EN'J" is a reserve.l \vor<J.

The followint.; is a list of the reserved words in DASTC:

ABS CLR DATA DI11 El\TD FOR GO SUB GOTO IF INPUT

INT LET :LIST t~1E1 ,r i'TEXT PR TNT READ REN R~STORE

RETUK.N RND RUN SGN -~ - -J
,:JJ.!\1 s:Jr:<. STEP ~TOP T"""'(•. JH.)

TH;::N TO P"'""' J~l' syrs PRTNT~ Gt:~r (;i.OST~ CNn OPZN ~('I"
hl) '. ,J

A?rD A'f'H rJP$ ' .J .. f \. . lJIAD CON'J' c:o::; St\\11~ DEF ?:XP fN

:FRE LEFT$ Lt:N LOG HTD$ ()J:-J OR rmT P:-=?:K POK~

POS RIGHT/ spr~ ('' 'T'~ $ l.~; - '\. ...
:-jl • '!'1

• .~j\ \T! L ~J/\. Irr

:3esides havtng va1 ues ass'Lgned to cr>-~.:::· iables with an input
statement, you can also set the value of a variRble Hith A L~~T

or assignment staternent.

The "?" character may be used at any time instead of the
keyword PRINT.

--.

.-

- 11 -

Try the following examples:

A=S

READY.

PRINT A, A.-' ·?

5 10

READY.

LET Z=7

READY.

PRINT Z, Z-A
7 2

READY ..

As can be seen from the examples, the "LET" is optional in
an assignrnent statement.

. " BASIC rernembers" the values that have been assigned to
variables using this type of statement. This 'remembering" process
uses space in the memory to store the data.

The values of variables are thro~m away and the space in
memory used to store them is released when one of four things
occur:

1) A new line is typed into the program or
an old line is deleted •

2) A CLR command is typed in

3) A RUN command is typed in

4) NB~ is typed in

Another important fact is that if a variable :ts encountered
in a formula before it is assigned a value, it is automatically
assigned the value zero. Zero is then substituted as the value
of the variable in the particular fomula. Try the example below:

PRINT Q, Q+2, rt'r2
0 2 0

READY •

- 12 -

Another statement is the REM statement. REH is short for
remark. This statement is used to insert comments or notes into
a program. \Jhen BASIC encounters a REM statement the rest of the
line is ignored.

This serves mainly as an aid for the programmer himself, and
serves no useful function as far as the operation of the program
in solving a nr:trticular Droblem. . ..

Surpose we ~,rr:tnt to Frite a progrr:tm to check if a number is
zero or not. r"Tith the st~t. ements we 've gone over so far this
could not be done. \Jhat is needed is R statement. '·Jhic.h ·c.an be
used to conditionally branch t >) another sta.tement. The "IF-THEN"
statement does jnPt that.

Try typing in t.he folJmdng program: (remember, type NEH first)

10 INPtrr B

20 IF B=O THEN 50

30 ?RINT "NON-ZERO"

1~0 GOTO 10

50 PRINT "ZERO"

60 GOTO J IJ

hThen this program is typed into the PET and run, it Hill ask
for a value of B. T'yDe anv value vou ~~1ish in. The Drogram will

L J ~ ~

then come to the "IF" statement. Bet~,:een the "IF" and the "THEN"
portion of the statement there are t\vo expressions separated by
a relation.

A relation j s one of the follo~-1ing six symbols:

RELATION

=
>
<..
<> <·=

)=

NEANING

EQUAL TO
GREATER THAN
LESS THAN
NOT EQUAL TO
LESS THAN OR EQUAL TO
GREATER THAN OR EQUAL TO

-

- 13 -

The IF statement is either true or false, depending upon
whether the t'>Jo expressions satisfy the relation or not. For
example, in the program we just did, if 0 was typed in for B the
IF statement would be true because 0=0. In this case, since the
number after the THEN is SO, execution of the program would
continue at line SO. Therefore, "ZERO" would be printed and then
the program would jump ·back to line 10 (because of the GOTO
statement in line 60).

Suppose a l was ty~ed in for B. Since 1=0 is false, the IF
state~ent would be false and the program would r.ontinue execution
with the next 1ine. Therefore, "NON-ZERO" '"oulcl be printed and
the GOTO in 1ine 40 would send the program back to line 10.

Now try the following program for comparing two numbers:

10 INPUT A,B
20 IF A<=B THEN SO
30 PRINT "A IS BIGGER"
40 GOTO 10
SO IF A(B THEN 80
60 PRINT "THEY ARE THE SAME"
70 GOTO 10
80 PRINT _"S IS BIGGER"
90 GOTO 10

14hen this program is run, line 10 will input two numbers
from the terminal. At line 20, if A is greater than B, A(=B
will be fa1se. This will cause the next statement to be executed
printing "A IS BIGGER" and then line 40 sends the computer back
to line 10 to begin again.

At 1ine 20, if A has the same va1ue as B, A(=B is true so we
~ go to line SO. At line SO, since A has the same value as B, A(B

is false; therefore, 've go to the following statement and print
"THEY ARE THE SAt-tE". Then line 70 send us back to the beginning
again.

At line 20, if A is smaller than B, A(=B is true so we go to
line SO. At line SO, A(B will 1 be true so we then go to line 80.
"B IS BIGGER" is then printed and again we go back to the beginning.

Try running the last two programs several times. It may make
it easier to understand if you try writing your own program at this
time using the IF-THEN statement. Actually trying programs of your
own is the quiekest and easiest way to understand how BASIC works.
Remember, to stop these programs just give a carraige return to the
input statement.

- 14 -

One advantage of computers is their ability to perform
repetitive tasks. Let's take a closer look and see how this
works.

Suppose we want a table of square roots from 1 to 10. The
BASIC function for square root is "SQR"; the form being SQR(X),
X being the number you wish the square root calculated from.
We could 1,rrite the program as follows:

10 PRINI' l,SQR(l)
20 PRINT 2,SQR(2)
30 PRINT 3,SQR(3)
40 PRINT 4,SQR(4)
50 PRINT S,SQR(S)
60 PRINT 6,SQR(6)
70 PRINT 7,SQR(7)
80 PRINT 8,SQR(8)
90 PRINT 9,SQR(9)
100 PRINT lO,SQR(JO)

This progrAm ,._rill do the job; however, it is terribly
inefficient. We can improve the program treraendously by using
the IF statement just introduced as fol.l0\<7 5:

10 N=l
20 PRINT N,SQR(N)
30 N=N+l
40 IF N<=lO THEN 20

When thi~ program is run, its output will look exactly
like that of the 10 statement program above it. Let's look at how
it works.

At line 10 we ha.ve a I.ET statement ,.,hich sets the value ~

of the variable N at 1. At 1 ine 20 \<.!e print N and the square
root of N using its current value. It thus becomes 20 PRINT 1,
SQR(l), and this calculation is ~rlnted out.

At line 30 '"e use what '\vill appear at first to be a rather
unusual LET statement. Mathematically, the statement N=N+l is
nonsense. However, the important thing to remernher is that in a
LET statement, the symbol "=" does not signify equality. In this
case "=" means "to be replaced with". All the statement does is
to take the current value of N and add 1 to it. Thu~ after the
first time through line 30, N becomes 2.

/"""">

"...

- 15 -

At line 40, since N now equals 2, N<=lO is true so the THEN
portion branches us back to line 20, with N now at a value of 2.

The overall result is that lines 20 through 40 are repeated,
each time adding 1 to the value of N. ~~en N finally equals 10
at line 20, the next line will increment it to 11. This results
in a false statement at line 40, and since there are no further
statements to the program it stops.

This technique is referred to as "looping" or "iteration".
Since it is used quite extensively in programming, there are
special BASIC statements for using it. He can show these with
the following program:

10 FOR N=l TO 10
20 PRINT N,SQR(N)
30 NEXT N

The output of the program listed above will be exactly the
same as the previous two programs.

At line 10, N is set to equal 1. Line 20 causes the value
of N and the square root of N to be printed. At line 30 we see
a new type of statement. The "NEXT N" statement causes one to
be added to N, and then if N(=lO we go back to the statement
following the "FOR" statement. The overall operation then is the
same as with the previous program.

Notiae that the variable following the "FOR" is exactly the
same as the variable after the "NEXT". There is nothing special
about the N in this case. Any variable could be used, as löng as
they are the sarne in both the "FOR" and "NEXT" statements. For
instance, "Zl" could be substituted everywhere there is an "N" in
the above program and it would function exactly the same.

Suppose we wanted to print a table of square roots from 10
to 20, only counting by two's. The following program would ?erform
this task:

10 N=lO
20 PRINT N,S~R(N)
30 N=N+2
40 IF N<=20 THEN 20

Note the similar structure between this program and the one
listed on page for printing square roots for the numbers 1 to 10.
This program can also be written using the "FOR" loop just
introduced.

- 16 -

10 FOR N=lO TO 20 STEP 2
20 PRINT N,SQR(N)
30 NEXT IN

Notice that the only major difference between this program
and the previous one using "FOR" loops is the addition of the
"STEP 2" clause.

This teils BASIC to add 2 to N each time, instead of 1 as
in the previous program. If no "STEP" is given in a "FOR"
statement, BASIC assumes that one is to be added each time. The
"STEP" can be followed by any expression.

Suppose v.re wanted to count backv.1ards from 10 to 1. A proerar..1
for doing this would be as follm.vs:

10 !=10
20 PRINT I
30 !::iti-I
40 IF I)=l THEN 20

Notice that we are nmv checking to see that I is greater
than or equal to the final value. The reason is that l.ve are nmv
counting by a negAtive number. In the previous examples it v7as
the opposite, so '\·le were checking for a variable less than or
equal to the final value.

The "STEP" statement previously shovm can also be used
with negative numbers to accomplish this same purpose. This
can be done using the same format as in the other program,· as
follows:

10 FOR I=lO to 1 STEP -1
20 PRINT I
30 NEXT I

"FOR" loops can also be "nested". An example of this
procedure follows:

10 FOR I=l TO 5
20 FOR J=l TO 3
30 PRINT I,J
40 NEXT I
50 NEXT J

It does not work because when the "NEXT I" is enconntered,
all knowledge of the J-loop is lost. This happens because the
J-loop is "inside" of the I-loop.

..---..

"....

- 17 -

It is often convenient to be able to select any element in
a table of numbers. BASIC allows this to be done through the use
of matrices.

A matrix is a table of numbers. The name of this table,
called the matrix name, is any legal variable name, "A" for
example. The matrix name "A" is distinct and separate from the
simple variable "A", and you could use both in the same program.

To select an element of the table, we subscript "A": that
is to select the I'th element, we enclose I in parenthesis "(I)"
and then follow "A" by this subscript. Therefore, "A(I)" is the
I'th element in the matrix "A".

NOTE: In this section of the manual we will be concerned
with one-dimensional matrices only. (See Reference Material)

·!'A(I)" is only one element of matrix A, and BASIC must be
told how much space to allocate for the entire matrix.

This is done with a "DIH" statement, using the format "DIH :
A(l5)". In this case, we have reserved space for the matrix index
"I" to go from 0 to 15. Hatrix subscripts always start at 0;
therefore, in the above example, we have allowed for 16 numbers in
matrix A.

If "A(I)" is used in a program before it has been dimensioned,
BASIC reserves space for 11 elements (0 through 10) • ..

As an example of how matrices are used, try the following
to sort a list of 8 numbers with you picking the numbers to be
sorted.

10 DIH A(8)
20 FOR I=l T0-·8
30 INPUT A(I)
50 NEXT I
70 F=O
80 FOR I=l TO 7
90 IF A(I)<=A(I+l) THEN 140
100 T=A(I)
110 A(I)= A(I+l)
120 A(I+l)=T
130 F=1
140 NEXT I
150 IF F=l THEN 70
160 FOR I=1 TO 8
170 PRINT A(I)
180 NEXT I

- J 8 -

When line 10 is executed, BASIC sets aside space for 9
numeric values, A(O) through A(8). Lines 20 through SO get
the unsorted list from the user. The sorting itself is clone by
going through the list of numbers and upon finding any two that
are not in order, \'le S'\vi tch them. "F" is used to indicate if
any switches were clone. If any were clone, line ISO tells BASIC
to go back and check some more,

If we did not switch any numbers, or after they are all
in order, lines 160 through 180 will print out the sorted list.
Note that a subscript can be any expression.

Another useful pair of statements are "GOSUB" and "RETURN"
If you have a program that performs the same action in several
different places, you could duplicrate the same statements for the
action in each place within the program.

The "GOSUB"-"RETURN" statements can be used to avoid this
duplication.When a GOSUB is encountered,BASIC branches to the
line whose number follows GOSUB.However,BASIC remembers where it
was in the program before it branched. Hhen the RETURN statement
is encountered,BASIC goes back to the first statement following
the last GOSUB that was executed. Observe the following program:-

10 PRINT "HHAT IS THE NUMBER";
30 GOSUB 100
40 T=N
SO PRINT "TmAT IS THE SECOND NillffiER";
70 GOSUB 100
80 PRINT ''THE SUH OF THE T~~ro NUHBERS IS", T-1-N--
90 STOP

100 INPUT N
110 IF N = It\"'T(N) THEN 140
120 PRINT "SORRY, ~UHBER MUST BE AN INTEGER. TRY AGAIN".
130 GOTO 100
140 . RETURN

Hhat this progrAm does is to ask for t'•70 numbers which must
be integers, and then r>rints the sum of the t\vo. The subroutine in
this program is lines 100 to 130. The subroutine asks for a
number, and if it is not an int.eger, asks for a number again. It
will continue to ask until an integer value is typed in.

The main program prints "~.JHAT IS THE NUMBER", and then cR1ls
the subroutine to get the va1ue of the number into N. When the
subroutine returns (to line 40), the value input is saved in the
variable T. This is clone so that when the subroutine is called
a second time, the value of the first number will not be lost.

"l.vHAT IS THE SECOt\TD NUMBER" is then printed, and the second

. ,....

/~

- 19 -

value is entered \\fhen the subroutine is again called.

When the subroutine returns the second time, "THE SUM OF THE
TWO NUMBERS IS" is printed, followed by the value of their sum.
T contains the value of the first number that was entered and N
contains the value of the second number.

The next statement in the program is a "STOP" statement.
This causes the program to stop execution at line 90. If the
"STOP" statement was not included in the program, \ve would 'fall
into' the subroutine at line 100. This is undesirable because we
would be asked to input another number. If we did, the subroutine
would try to return; and since there was no "GOSUB" which called
the subroutine, an RG error would occur. Each "GOSUB" executed in
a program should have a matchine RETURN executed later, and the
opposite applies, i.e. a RETURN should be encountered only if it is
part of a subroutine which has been called by a GOSUB •

Either "STOP" or "END" cRn be used to separate a program
from its subroutines. "STOP" will print a message saying at what
line the STOP was encountered.

Suppose you had to enter numbers to your program that did
not change each time the program was run, but you would like it to
be easy to change them if necessary. BASIC contains special
statements for this purpose, called the READ and DATA statements.

Consider the following program:

10 PRINT "GUESS A NUMBER"
20 INPUT G
30 READ D
40 IF D=-999999 THEN 90
50 IF D(:>G THEN 30
60 PRINT "YOU ARE CORRECT"
70 END
90 PRINT "BAD GUESS, TRY AGAIN"
95 RESTORE

100 GOTO 10
110 DATA 1,393, -39, 391, -8, O, 3.14, 90
120 DATA 89, 5, 10, 15, -34, -999999

This is waht happens when this program is run. ~fu~n the
READ statement is encountered, the effect is the same as an INPUT
Statement. But instead of getting a number from the teTiminal,
a number is read from the DATA statements.

The first time a nurober is needed for a READ, the first
number in the first DATA statement is returned. The second time
one is needed, the second nlllnber in the first DATA statement is
returned. When the entire contents of the first DATA statement

- 20 -

have been read in this Inanner, the second DATA statement will then
be used. DATA is always read sequentially in this manner, and
there may be any number of DATA statements in your program.

The purpose of this program is to play a little gamE in which
you try to g,_less one of the numbers contained in the DATA statements.
For each guess that is typed in, we read through all the numbers
in the DATA staternents until we find one that matches the guess.

If more values are read than there are numbers in the DATA
statements, an out of data (OD) error occurs. That is why in line
40 we check to see if -999999 was read. This is not one of the
numbers to be matched, but is used as a flag to indicate that all
the data (possible correct guesses) has been read. Therefore, if
-999999 was read, ,.,e know t.hat the guess given was incorrect.

Before going back to line 10 for another guess, ~ve need to
make the READ begin viith the first piece of data again. This is
the function of the RESTORE. After the RESTORE is encountered,
the next piece of data read will be the first piece in the first
DATA statement Hgain.

DATA statements may be placed anywhere within the progra.m.
Only READ statements make use of the DATA statements in a program,
and any other time they are encountered during program execution
they will be ignored.

A list of characters is referred to as a 'String'. PET,
COMMODORE and THIS IS A TEST are all strings. Like numeric
variables, string variables can be assigned specific values.
String variables are distinguished from numeric variables by a
"$" after the variable na.me.

For example, try the following:

A$ = "PET 2~~1"

READY.

PRINT A$

PET 2~~1

READY.

In this example, we set the string variable A$ to the
string value PET 2~~1. Note that we also enclosed the character
!tring to be assigned to A$ in quotes.

Now that we have set A$ to a string value, we can find out

.",.._

r·

- 21 -

what the length of this value is (the nurober of characters it
contains). We do this as follows:

PRINT LEN (A$), LEN ("PET")

8

READY.

3

The LEN function returns an integer equal to the number of
characters in a string.

The nurnber of characters in a string expression rnay range
frorn 0 to 255. A string which contains 0 characters is called
the "NULL" string. Before a string variable is set to a value in
the prograrn, it is initialized to the null string. Printing a
null string on the screen will cause no characters to be printed,
and the cursor will not be advanced to the next coltmm. Try the
following:

PRINT LEN (Q$); Q$; 3

0 3

READY.

Another way to create the null string is: Q$ = ""

Setting a string variable to the null string can be used
to free up the string space used by a non-null string variable.

Often it is desirable to access parts of a string and
rnanipulate thern. Now that we have set A$ to "PET 2~911", we rnight
want to print out only the first three characters of A$. ~~e
would do so like this:

PRINT LEFT$ (A$,3)

PET

READY.

LEFT$ is a string function which returns a string cornposed
of the leftmost N characters of its string argument. Here is
another exarnple:

FOR N=l TO LEN (A$): PRINT LEFT$ (A$, N): NEXT N
p

PE
PET
PET
PET 2

PET 2~
PET 2~~
PET 2~9'1

READY.

- 22 -

Since A$ has 8 characters, this loop will be executed with
N=l, 2, 3, ••• 8. The first time through only the first charac
ter will be printed, the second time the first two characters will
be printed etc.

There is another string function called RIGHT$, which
returns the right N characters from a string expression. Try
substituting RI<IHT$ for LEFT$ in the previou.s example and see what
happens.

There is also a string function which allov1s us to take
characters from the middle of a string. Try the follmving:

FOR N=l TO LEN (A$): PRINT MID$ (A$, N): NEXT N

PET 2~{61
ET 2{69'1
T 2~9'1

29'{61
29'{61
001
~1
I

READY.

MID$ returns a string starting at the Nth position of A$ to
the end (last character) of A$. The first position of the string
is position 1 and the last possible position of a string is
position 255.

Very often it is desirable to extract only the Nth character
from a string. This can be done by calling MID$ with three
argurnents. The third argument specifies the number of characters
to return.

For example:

FOR N=l TO LEN (A$): PRINT HID$ (A$, N, 1), MID$
(A$, N, 2): NEXT N

p PE
E ET
T T

2
2 2~
~ ~f6
~ ~1
1 1

READY.

,......

- 23 -

See the Reference Material for more details on the workings
of LEFT$, RIGHT$ and MID$.

Strings may also be concatenated (put or joined together)
through the use of the "+" operator. Try the follm'ling:

B$ = "UK" + " " + A$

READY •

. PRINT B$

UK PET 2f6f61

READY.

Concatenation is especially useful if you '\..rish to take a
string apart and then put it back together with slight modifications.

,_ For instance:

r

C$ = LEFT$(B$,2)+"-"+HID$(A$,1,3)+"-"+RIGHT$(A$,4)

READY.

PRINT C$

UK-PET-2f6f61

READY.

Sometimes it is desirab1e to convert a number to its string
representation and vice-versa. VAL and STR$ perform these functions.

Try the fol1owing:

STRING$ = "567.8"

READY.

PRINT VAL(STRING$)

567.8

READY.

STRING$ = STR$(3.1415)

READY.

PRINT STRING$, LEFT$(STRING$,5)

3.1415 3.14

READY.

STR$ can be used to perform formatted I/0 on numbers. You
can convert a number to a string and then use LEFT$, RIGHT$, MID$
and concatenation to reformat the number as desired.

- 24 -

STR$ can also be used to conveniently find out how many
print columns a number will take. For example:

PR INT LEN (STR$ (3. 15 7))

6

READY.

If you have an application where a user is typing in a
question such as "WHAT IS THE VOLUME OF ·A CYLINDER OF RADIUS 5.36
FEET, OF HEIGIIT 5.1 FEET?", you can use VAL to extract the numeric
value~ 5.36 and 5.1 from the question. For further functions
CHR$ and ASC, see Appendix

The fo11owing program sorts a 1ist of string data and prints
out the sorted list. This program is very similar to the one given
earlier for sorting a numeric 1ist.

100 DIM A$(15): REM ALLOCATE SPACE FOR STRING MATRIX
110 FOR I=1 TO 15: READ A$(1): NEXT 1: REM READ IN STRINGS
120 F=O: I=1: REM SET EXCHANGE FLAG TO ZERO AND SUBSCRIPT TO 1
130 IF A$(1)<=A$(I+1) THEN 180: REM DON'T EXCHANGE IF ELEMENTS

IN ORDER
140 T$=A$(I+1): REM USE T$ TOSAVE A$(I+l)
150 A$(I+1)=A$(I): REH EXCHANGE Th70 CONSECUTIVE ELEHENTS
160 A$(I)=T$
170 F=1: REM FLAG THAT \.JE EXCHANGED T\-10 ELE~1ENTS
180 I=I+1: IF I< 15 GOTO 130
185 REM ONCE ~~ HAVE MADE A PASS THRU ALL ELEMENTS, CHECK
187 REH TO SEE IF HE EXCHANGED ANY. IF NOT, -- DONE SORTING
190 IF F THEN 120: REN EQUIVALENT TO IF F{")O THEN 120
200 FOR I=1 TO 15: PRINT A$(1): NEXT I: REM PRINT SORTED LIST
210 REM STRING DATA FOLLmvS
220 DATA APPLE,DOG,CAT,PET,DEREK,KIT
230 DATA MONDAY, "•'d:~':ANSWER~':-,b'~", "FOO"
240 DATA COMPUTER, ABC,LONDON,CAMBRIDGE,LIVERPOOL,ALBUQUERQUE

~

/

- 25 -

E D I T I N G

The~key, when pressed, causes the character to the left
·of the cursor to be deleted. If this character is not the last
character on a line, the line will be shortened accordingly.

TheliNSTI (insert) key inserts a space to the left of the cursor
and will open out the current line accordingly. If too many

~ spaces are inserted in a linepress~twice the number of times
you have excess spaces. When you are happy with the edited line
press~

E
T
u
R
N

Use "LIST" nn ••• to recall the line tobe edited from memory.

,.-

N 0 I J, :J 8 S

I

- 26 -

COMMANDS

A command is usually given after BASIC has typed READY. This
is called the 'Co~nand Level'. Commands may be used as program
statements. Certain commands, such as LIST, NE\v and LOAD will
terminate program execution when they finish.

NAME

CLR

LIST

RUN

NEW

CONT

EXAMPLE

CLR

LIST

LIST 100-

LIST X

LIST -X

LIST X -Y

RUN

RUN 30

NEH

CONT

PURPOSE/USE

Clears all variables, resets 'FOR'
and 'GOSUB' pointers, RESTOREs data.

Lists current program.

Optionally starting at specified
line. List can be STOPped using
the STOP key. (BASIC will finish
listing the current line).

Lists just line X.

Lists from start of program up to
line X.

Lists lines X to Y inclusive.

NOTE: If during listing the RVS
key is held down, listing will slow
to approximately 2 lines per second.

Starts execution of the program
currently in memory at the lowest
numbered statement. Run deletes all
variables (does a CLR) and restores
DATA. If you have stopped your
program and wish to continue execut
ion at some point in the program,
use RUN followed by line number.

Deletes current program and all
variables.

Continues program execution after
the STOP key is pressed or a STOP
statement is executed. You cannot
continue after any error, after
modifying your program, or befare
your program has been run. One of
the main purposes of CONT is

'

.I

0

OPERATORS

SYMBOL

...

- 27 -

debugging. Suppose at some point
after running your program nothing
is printed. This may be because
your program is performing some time
consurning calculation, but it may be
because you have fallen into an
'infinite loop'. An infinite loop
is a series of BASIC statements from
which there is no escape. The PET
will keep executing the series of
statements over and over, until you
intervene or until power to the PET
is cut off. If you suspect your
program is in an infinite loop, press
STOP, the line number of the statement
BASIC was executing will be typed out.
After BASIC has typed out READY., you
can use PRINT to type out some of the
values of your variables. After
examining these values, you may
become satisfied that your program
is functioning correctly. You should
then type in CONT to continue exec
uting your program where it left off,
or type a direct GOTO statement to
resume execution of the program at
a different line. You could also
use assignment (LET) statements to
set some of your variables to differ
ent values. Remember, if you press
STOP in a program and expect to
continue it later, you must not get
any errors or type in any new program
lines. If you do, you will not be
able to continue and will get a can
not continue error. It is impossible
to continue a direct commend. CONT
always resumes execution at the next
statement to be executed in your
program when STOP was pressed.

SAMPLE STATEMENT PURPOSE/USE

A =- 100

LET Z • 2.5

Assigns a value to a variable •

The LET is optional

-.4

I
+

· B=-A

l30 PRINT Xt3

140 X =R ·· (B·':D)

150 PRINT XIL 3

1 60 Z=R+T+(!

170 J=lOO-f

- 28 -

Negation. Note that 0-A is subtraction,
while -A is negation.

Exponentiation
(equal to x~·~x·kX in the saraple statement
0 0 =1 0 to any other power = 0

Nultiplication

Division

Additiot~

Subtractlon

RULES FOR EVALUATING EXPRESSIONS:

l) Operations of higher precedence are performed before
operations of lower precedence. This means the multiplication
and divisions are performed before additions and Rubtractions.
As an example, 2+1.0/5 equals 4, not 2.4. rvnen operatlons of
equal precedence are found in A. formulA., the left hand one is
executed first: 6-3+5=8, not -2.

2) The order in which opeJ:at ~ons axe performed can always be
specified explicitly through the use of parentheses. For in
stance, to Rdd 5 to 3 and then divide that by 4, we v7ould use
(5+3)/4 vlhich equals 2. If instead we had used 5+3/4, we
would get 5.75 as a result (5 plus 3/4).

The precede1~ce of operators used in evaluating expressions is as
follows, in order beginning wi t h the highest precedence:

(note: Operators listed on the same line have the same precedence.)

l) F,ormulas enclosed iP parenthesis are always ev,qluated L .rst /
2) t :~· . ~,,. , ,_ .; t . J. .xponc. , .P -~on

3) Negati0n -X i,Jhere X may bP. :2 formula
4) ·:. I N11l tip lication and d i visioi-1
5) + - Additi0n anc1 svbtraction
6) Relational nperators: =E~ual

7) NOT

8) A~'D
9) OR

(>Not ec,ual
< Less Th.:m
) Greater T: i.Hn

.(=Less than or equal
) ==Great~r than or enual

(These 3 bAlow ~ re lo~ical operators)

L ' 1 ..1 b. . "•'OT" ogJ_ca anu 1 tF:u:;e ,.,

like negatinn, not takes only the
forr.mla t.o its r Lght as an argumen t

Logical and Bitwise "AND"
Logical and :Sit\~Tise "OR"

--...

,

- 29 -

Relational operator expressions will always have a value
of True (-1) or a value of Fase (0). Therefore, (5=4)=0, (5=5)=-1,
(4)5)=0, (4(5)=-1 etc. Any value other than zero is taken as TRUE.

The THEN clause of an IF statement is executed whenever the
formula after the IF is not e~ual to 0. That is to say, IF X THEN ••• ~
is equivalent to IFX(/0 THEN .••

SYMBOL
-

=
()

.,
(

<=, =<

): J'=>

AND

OR

SAt1PLE STATEMENT

10 IF l\==15 THEN 40
70 IF A()O Then 5

30 IFTI~100 Then 8

PURPOSE/USE

Expression Equals Expression
Expression Does Not Equal
Expression
Expression Greater Than
Expression.

160 If B<lThen 10 Expression less than
Expression

180 If 100(=B+C ThenlOO Expression less than or Equal
to Expression.

190 IF Q=)R Then 50 Expression Greater than or
e~ual to Expression.

2 IF A< 5 AND B(2 THEN 7 If expression 1 (A<.5) AND
expression 2 (B~2) are both
true, then branch to line 7

IF A<l or B<2 THEN 2 If either expression 1 (A,l)
OR expression 2 (~2) is
true, then branch to line 2

NOT IF NOT Q3 THEN 4 If express.ion "NOT Q3" is true
" because Q3 is false) then

branch to line 4 Note:(NOT
true = false)

AtiD, OR and NOT can be used for bit manipulation , and for
performing boolean operations.

These three operators, convert their arguments to sixteen bit,
signed two's complement integers in the range -32768 to +32767
They then perform the specified logical operation on them and return a
resul t \..-rithin the same range. If the arguments are not in this range,
an error results.

The Operations are performed in bitwise fashion, this means
that each bit of the result is obtained by examining the bit in the
same position for each argument.

- 30 -

The following truth tab1e shows the logical relationship between bits:

OPERATOR ARG.1 ARG.2 RESULT -
AND 1 1 1

0 1 0
1 0 0
0 0 0

OPERATOR ARG.1 ARG.2 RESULT

OR 1 1 1
1 0 1
0 1 1
0 0 0

NOT 1 - 0
0 - 1

EXA}1PLES: (In a11 of the examp1es be1ow, 1eading .zeroes on binary
numbers arenot shown.)

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 AND 2=0

4 OR 2=6

10 OR10=10

-1 OR-2=-1

NOT 0=-1

NOT X

NOT 1=-2

Since 63 equa1s binary 111111 and 16 equa1s binary
10000, the resu1t of the AND is binarylOOOO or 16.

15 equals binary 1111 and 14 equa1s binary 1110
so 15 and 14 equals binary 1110 or 14.

-1 equa.1s binary 111111111111111 and 8 equa1s binary
1000, so the resu1t is binary 1000 or 8 decima1.

4 equals binary 100 And 2 equals binary 10, so the
result is binary 0 because none of the bits in either
argument match to give a. 1 bit in the resu1t.

Binary 100 OR'd with binary 10 equa1s binary 110,or
6 decima1.

Binary 1010 OR'd with binary 1010 equa1s binary 1010,
or 10 decima1.

Binary 1111111111111111 (-1) OR'd with binary
1111111111111110 (-2) equa1s binary 11111111111111,
or -1.

The bit comp1ement of binary 0 to 16 p1aces is
sixteen ones (1111111111111111) or -1. Alsb Not-1=0
NOTXis equa1 to -(X+J). This is because to form the
sixteen bit two's comp1ement of the number, you take
the bit (one's) complement and add one.

The sixteen bit comp1ement of 1 is 11111111111110
which is equa1 to -(1+1) or -2.

,......

~

-31 -

A typical use of the bitwise operators is to test bits set in the
computer's I/0 locations which reflet the state of some external device.
Bit position 7 is the most significant bit of a byte, while position
0 is the least significant.

For instance, suppose bit 1 of location 5000 is 0 when the door to Room
X is closed, and 1 if the door is open. The following program will print
"Intruder Alert" if the door is opened:

10 IF NOT (PEEK(5000)AND 2) THEN 10 This line will execute
over and over until bit 1
(masked or selected by the
2) becomes a 1. \•Then that
happens, we go to line 20.

20 PRINT "INTRUDER ALERT" Line 20 will output
"INTRUDER . ALERT".

However, we can replace statement 10 '\vi th a "\vai t n stateme rt:, '\vhich
has exactly the same effect.

10 HAlT 5000,2 This line delays the
execution of the next
statement in the program
until bit 1 of location
5000 becomes 1,. The wait
is much faster than the
equivalent IF statement
and also takes less bytes
of program storage.

Sense switches may also be used as an input device by the function.
The program below prints out any changes in the sense switches.

10 A =300: REM SET A TO A VALUE THAT \'liiLL FORCE PRINTING
20 J=PEEK (sense S\vi tch Location) : IF J=A THEN 20
30 PRINT J;:A=J:GO TO 20

The following is another
125 A=- (B)C) ,.~"B- (B(::C),.~c

useful Hay of using relational operators:
This Statement will set the variable A to
MAR (B,C) = the larger of the two variables
B and C.

STATEMENTS

Note: In the following description of statements, an argument of Vor
W denotes a numeric variable, X denotes a numeric expression, X$
denotes a string expression and an I or J denotes and expression
that is truncated to an integer before the statement is executed
Truncation means that any fractional part of the number is lost, e.g.
3.9 becomes 3, 4.01 becomes 4.

- 32 -

An expression is a series of variables,operators,function calls and
constants which after the operations and function calls are performed
using the precedence rules,evaluates to a string or numeric value.

A constant is either a m1mber 2. 71 or a string literal "abc"

NAME

CLOSE

DATA

DEF

EXAMPLE

10 CLOSE N

20 DATA 1,-3, .Ol~

30 DATA "ABC",PET

PURPOSE/USE

CLOSEs logical file N
(See cassette file)

Specifies data read from left
to right.Information appears in
data statements in the same order
as it will be read in the program.

Strings may be read from data
statements.If you want the string
to contain leading spaces(blanks)
colons(:) or commas(,) you must
enclose the string in quotes(")
It :Ls impossible to have quote
marks within a string.

40 DEF FNA(V)=B+C+V The user can define functions

50 Z=FNA(3)

like the built in functions
(SQR,SIN,TAN etc) through the use
of the DEF sta.tement.The name of
the function is "FN" followed by
any legal variable name,for exam
ple:FNX,FNJ7,FNPET.User defined
functions are restricted to one
line.A function may be defined to
any expression,but may only have
one argument.In the example,B andC
are variables that are used in the
program.Executing the DEF statement '
defines the function.User defined
functions can be re-defined by
executing another DEF statement
for the same function.User defined
string functions are not allowed.
"V" is called the dummy variable.
Exexcution of this statement foll
owing the above would cause Z to
be set to B+C+3, but the value of
V would be unchanged.

[

DIM

END

FOR

~

- 33 -

80 DIH A(3),B(l0) Allocates space for matrices.
All matrix elements are set to zero
by the DIM statement.

75 A(5,5),D$(3,4,4) Matrices may have more than one dim
ension.Up to 255 dimensions are all
owed, but due to •1the restriction of
80 characters per line the practical
maximum is about 34 dirnensions.

35 DIM Ql(N),Z(2*I) Matrices can be dimensioned dynam
ically during program execution.If
a matrix is not explicitly dimensioned
with a DIH statement,it is assumed
to be a single dimensioned matrix of
whose single subscript may range
from 0 to 10 (eleven elernents).If

20 A(8)=4.2 this statement was encountered bef
ore a DIH statement for A was found
in the program,it would be as if a
DIH(lO) had been executed previous
to the execution of line 20.All sub
scripts start at zero,which means
that DIM(lOO) really allocates 101
matrix elements.

999 END Terrninates program execution '\A!ith
out printing a break message.(see
STOP). CONT 8ftP.r an END statement
causes execution to resume at the
statemP.nt after the END statement.
END can be used anywhere in the
program and is optional.

20 FOR V=l TO 9.3 STEP .6 (see NEXT statement) V is set
equal to the value o~f the
expression following the =

310 FOR V=l TO 9.3

in this case l.This value is
cAlled the initial value.Then
the staternents bet"1een FOR and
NEXT are executed.ThP. final
value is the value of the exp
ression following the TO.The
increment is the value of the
ex-pression follo,d.ng STEP. \Then
'i,Jhen the NEXT statement is enc
ountered,the step is added to the
variable.

If no STEP was specified,it is ass
umed to be one.If the steo is positive .. -

GET

GOTO

GO SUB

IF ••• GOTO

- 34 -

and the new value of the variable is
the final value (9.3 in this example),
or the step value is negative and the
new value of the variable is(~ the
final value , then the first statement
following the FOR statement is executed.
Otherwise, the statement following the
NEXT statement is executed.
All FOR loops execute the statements
between the FOR and the NEXT at
least once, even in c.ases like FOR V=l TO ~-

315 FOR V=lO ' N TO 3.4/Q STEP SQR(R) Note that expressions
may be used for the initial, final and
step values in a FOR loop. The values of
the expressions are computed only once,
before the body of the FOR •.•••••• NEXT
loop is executed.

320 FOR V=9 TO 1 STEP -1 When the statement after the NEXT
is executed, the loop variable is never
equal to the final value, but is equal to
Nhatever value caused the FOR •.•• NEXT loop
to terminate. The staternents between the
FOR and its corresponding NEXT in both ex ... ,
amples above (310 & 320) would be executed
9 times.

330 FOR U=l TO 1.0: FOR '-7=1 TO :NEXT W:NEXT W Error: do not
use nested FOR .•• NEXT 1oops with the sarne
index variable.

10 GET C
20 GET C$

30 GET1fD, C

40 GET ~ D, C:(;

SO GOTO 100

10 GOSUB 910

FOR loop nesting is 1imited on1y by.the
a.vailable mernorv.

. -
Accepts single character from keyboard.
Accepts single string character frorn
keyboard.
Accepts single character from soecified
logica1 fi1e.
Accepts specif ied single string character
from logical file. (SEE CASSETTE FILE).

Branches t o t he statement specified.

Branches to the specified statement (910)
until a RETURN is encountered; when a
branch is then made to the statement
after the GOSUB. GOSUB nesting is limited
only by the available memory.

32 IF X =Y+23.4 GOTO 92 Equivalent to IF ••• THEN, except
that IF ••• GOTO must be followed by a line
number, while IF ••• THEN can be follm-.red by
either a line number or another statement.

(

IF ••• THEN

r

INPUT

- 35 -

IF X(lO THEN 5 Branches to specified statement if the
relation is True.

20 IF X{O THEN PRINT "X LESS THAN O" Executes all of
the statements on the remainder of the
line after the THEN if the relation is
True.

25 IF X=5 THEN SO:Z=A HARNING. The "Z=A" will never be
executed because if the relation is true,
BASIC will branch to line SO.
If the relation is false Basic will
proceed to the line after line 25.

26 IF X(O THEN PRINf "ERROR, X NEGATIVE": GOTO 350
In this example, if X is less than 0,
t:he PRINT statement ~·7ill be executed and
then the GOTO 51tatement will branch to
line 350. If the X \vas 0 or positive,
BASIC will proceed to execute the lines
after line 26.

3 INPUT V, ~'l ,~V2, AB Requests
be typed in).
separated from
a comma (,).
The last value

data from terminal (to
Each value must be
the preceeding value by

typed should be followed
b • II "?" .• d y carr~age return. ,'""_ . .ts type as
a prompt character. Only constants may
be typed in as a r~ sponse to an INPUT
statement, such as 4.SE-3 or "CAT'1 •

If rnore data was re0nested in an INPUT
st.e.tement than ~,r-3_ s typed in, a·· "?" is
printed and the rest of the data. should

r"\ be typed in. If more data ~.ras typed in
than ,,ras re c:ue·sted, the extra data ~>7ill
be ignored.
Strings must be input in the same format
as they are specified in DATA statements. '
If Alpha data is input 1-Ihen numer ic is
expected or vice versa, the BASIC ~-.rill

respond with ?? "REDO FROH START".

5 INPtiT "VALUE"; V Optionally types a prompt string
("VALUE") before requesting data from the
terminal. If carriage return is typed to
an input statement, BASIC returns to
command mode.
Typing CONT after an INPUT command has
been interrupted Nill cause execution to
resume at the INPUT statement.

LET

LOAD

OPEN

NEXT

ON ••• GOTO

- 36 -

40 INPUT4D,A Accepts value of A from logical file D.
50 INPUTMD,A$ Accepts specified string from logical

file D.
60 INPUT~D,A,A$,B,B$ Accepts specified values and strings

from logical file D. Strings do not have

300 LET vl=X
310 V=5.1

10 LOAD

20 LOAD "NAHE"

30 LOAD "NAHE"
'

10 OPEN A

20 OPEN A,D

30 OPEN A,D,C

40 OPEN A,D,C,

340 NEXT V
345 NEXT

350 NEXT V', 'i,T

to be enclose4 in quotes. (SEE CASSETTE
FILE).

Assigns a value to a variable.
"LET" is optional.

Loads next encountered program or file,
on bui1t-in tape unit, into PET's memory.
Loads !?rogram or file NAHE into memory
from built-in tape unit.
D Loads specified file NAHE from device
D. (SEE CASSETTE FILE).

Opens loeiaal file A for read only from
built-in tape unit.
Opens logical file A for read only from
device D.
Opens logical fil c ,~_ for r:orrnnand C from
device D.

"NAME" Opens logical file A on device D.
If device D accepts formatted files, file
NA}ffi is positioned for corrnnand.
(SEE CASSETTE FILE).

Harks the end of a FOR loop.
If no variable is given, matches the most
recent FOR loop.
A single NE~'T may be used to tTlatch mu.ltiple
FOR statements.
Equivalent to NEXT V:NEXT W.

100 ON I GOTO 10,20,30,40 Branches to line indicated
by the-I'th number after the GOTO. That is:
IF I=l, THEN GOTO LINE 10
IF I=2, THEN GOTO LINE 20
IF 1=3, THEN GOTO LINE 30
IF I==4, THEN'-,GOTO LINE 40.

If I=0 or I attempts to select a non
existent line () =5 in this case), the
statement after the ON statement is
executed. However, if I is 255 or 0,
an error message will result. As
many line numbers as will fit on a line
can follow an ON ••• GOTO.

(~

ON ••• GOSUB

POKE

...

r'\

PR INT

- 37 -

105 ON SGN(X)+2GOTO 40,50,60

110 ON I GOSUB 50,60

357 POKE I,J

360 PRINT X,Y;Z
370 PRINT
360 PRINT X,Y;
390 PRINT "VALUE IS";A
400 PRINT A2,B,

This statement will branch
to line 40 if the expression
X is less than zero, to line
50 if it equals zero, and to
line 60 if it is greater than
zero.

Identical to "ON ••• GOTO",
except that a subroutine call
(GOSUB) is executed instead
of a GOTO. RETURN from the
statement after the ON ••• GOSUB.

The POKE statement stores the
byte specified by its second
argument (J) into the location
given by its first argument
(I). The byte to be stored
must be =)0 and (=255, or an
error will occur. The address
(I) mu~t be =)0 and(65535, or
an error ~.,rill result. Careless
use of the Poke statement ~.,rill

probably cause you to "roke"
BASIC to death. A poke to a
non-existent memory location
is harmless. One of the main
uses of POKE is to pass argu
ments to machine language sub
routines. You could also use
PEEK and POKE to write a
memmory diagnostic or an
assembler in BASIC.

Prints the value of expressions
on the terminal. If the list
to be printed out does not end
with a comrnR (,), or a semicolon
(;), then a carriage return/
line feed is executed after all
the values have been printed.
Strings enclosed in quotes (")
may also be printed. If a
semicolon separates two expres
sions in the list, their values
are printed next to each other.

READ

REM

RESTORE

- 38 -

410 PRINT MID$(A$,2);

490 READ V, 'v

500 REH NOlJ SET V=O

505 REM SET V=""(;: V==1J

SOf-1 V=f/J: REM · SET V=~

510 RESTORE

String expressions may be
printed.

Read data into specified
varibles from a DATA statement.
The first peice of data read
will be the first piece of
data read will be the first
piece of data listed in the
first DATA statement of the
program. The second piece of
data read will be the second
piec.e listed in the first DATA
st.Rtement, and so on. When all
of the data have been rea.d from
the first: DATA statement, the
next piece of data. to be read
will be the first piece listed
in the secono DATA Statement of
the ~rogram. Attempting to
read more data than there is
in all the DATA statements in
a program lrJill cause an out of
dnta error.

Allmvs the programrner to put
co1nments in his nro~ram. REM . ~

stat.ef'lents are not executed,
but r.a:1. be branched to. A REM
statemen t is teminated by end

.c l. b t t , "·" o.r . 1ne, l u no oy a • •

I n 1-h l. C' ,.. ~ se tl,r, TT-fll 'Tl.. 1 1 1. - 1 - <... ., ... o - i .. r.: \ · -,_.. \\ ' . i..

never be execut.ed by BASIC.

In thi s c ase V==~ \·7ill. 1:-e ex
r-..•.lted

Allo~v~ the re-reading of DATA
st.qtemen ts. After a RESTORE,
the next piece of data read
r,rill be t-.he -First piece listed
i n the first D_li_TA statement of
the ,..,rogram. The second uiece . ~ ~

(

listed i n the first DATA state-
ment, and so on as in a normal
READ operation.

RETURN

STOP

SYS

TI
TI$

"..-..,
l

USR

VERIFY

~

WAIT

- 39 -

50 RETURN

900 STOP

120 SYS (64824)

75 PRINT TI
85 TI ~· == "HHNMSS"

95 USR(X)

10 VERrFY

20 VERIFY "NAHE"

30 VERIFY "NAME",D

805 WAIT I,J,K

Cause a subroutine to return
to the statement after the
most recently executed GOSUB.

Causes a program to stop execu
tion and to enter command mode.
Causes the computer to jump to
location 64824 decimal in
memory and run in machine code
from there. Return to command
or Ba~:;ic '"ill a machine code
RTS.

Line 75 Prints the number of
JIFFIES since thE~ ::nachine was
turned on or the number of
JIFFIES equivalent to the time
in TI4~ .

Line 85 sets PET'S interna]
24 hour clock to real time.
JIFFIES are 1/60 TH of a second

Tran~fers program control to a
program whose address is at
locations 1 and 2.X is a para
meter passed to and from the
machine language program.
(SEE APPENDIX)

VERIFIES most recent program
saved on built-in cassette by
reading it and comparing it witl
;::>rogram still in PET's memory.

Verifies specified file NAME
saved on built-in cassette by
reading it and comparing it
with program still in PET's
memory.

Verifies specified file N~ffi
saved on device D by reading
it and comparing it with
program still in PET's memory.

This statement reads the
status of location I, exclusive
OR's K with the status, and
then AND's the result with J
until a non-zero result is
obtained. Execution of the
program continues at the state
ment following the WAIT

- 40 -

INTRINSIC FUNCTIONS

ABS(X) 120 PRINT ABS(X)

INT(X) 140 PRINT INT(X)

RND(X) 170 PRINT RND(X)

SGN(X) 230 PRINT SGN(X)

SIN(X) 190 PRINT SIN(X)

statement. If the WAIT state
ment on1y has two argurnents, K
is assurned to be zero. If you
are waiting for a bit to become
zer~ there shou1d be a one in
the corresponding position of
K. I, J and K must be =)0 and
(=255.

Gives the absolute value of
the expression X. ABS return
X if X(=O, X otherwise.

Returns the 1argest integer
1ess than or equal to its argu
ment X. For exarnple: INT(.23) ~
=0, INT(7)=7, INT(-.1)=1, !NT
(-2)= -2, INT(l.l)=l.
The following \vould round X to
D decimal olaces:

INT(X , 1~1'D+. 5 /l~tD

Generates a random number
between 0 and 1. The argument
of random numbers as follows:

x<~ starts a new sequence
of random numbers using X.
Calling RND with the same
X starts the same random
number sequence. X=~
gives the last random
number generated~- Repeate(
calls to RND(~) will always
return the same random
nurnber. X/~ generates a
new random nurober between
~ and 1.
Note that (B-A)*RND(l)fA
~.vill generate a random
nurober bet,veen A & B.

Gives 1 if X)~, ~ if X=~, and
-1 if X<~.

Gives the sine of the expres-
• V

s~onA.

- 1+1 -

SQR(X) 180 PRINT SQR(X)

TAB (I) 240 PRINT TAB (I)

".--...

ATN (X) 210 PRINT ATN(X)

COS(X) 200 PRINT COS(X)

EXP(X) 150 PRir.."T EXP(X)

~

FRE(X) 270 PRINT FRE(O)

LOG(X) 160 PRINT LOG(X)

X is interpreted as being in
radians. Note: COS (X)=SIN
(X+3.14159/2) and that 1 Rad
ian =180/Pl degrees=57.2958
degrees; so that the sine of
X degrees = SIN(X/57.2958).

Gives the square root of the
arguernent X. An error will
occur if X is less than zero.

Spaces to the specified print
position (column) on the term
inal. May be used only in
PRINT statements. Zero is the
leftmost column on the terminal,
3~ the rightmost. If the
carriage is beyond position 1,
then no printing is done. I
must be =)0 and (=255.

Gives the arctcmgent of the
arguement X. The result is . ret
urneci in radians and ranges
from -PI/1 to PI/2. (PI/2 =
1.5708)

Gives the cosine of the ex
pression X. X is interpreted
as being in radians.

Gives the constAnt "E" (2.718-
28) raised to the pov1er X. (E+X)
The maximum arguement that can
be passerl to EXP without over
flow occuring is 88.

Gives the number of memory
bytes currently unnsed by
BASIC.

Gives thP. natural (Base E)
logarithm of its arguement
X. To obtain the Base Y
log.qrithm of X 1.1se the form
ulR LOG(X)/LOG(Y).
Exarn;:->le: th~ base 10 (common)
log nf 7 = LOG(7)/LOG(l0).

- 42 -

PEEK 356 PRINT PEEK (I) The PEEK function returns the
contents of memory address I.
the value returned will be
=)~ and (=255. If Iis)65535
or < fJ, an error will occur.
An attmpt to read a non-existent
memory address will return
on unknown value. (see POKE
statement)

SPC(I) 250 PRINT SPC(I) Prints I space (or blank)
characters on the screen.
Hav be used onlv in a PRINT

- J

statement. X rnust be =)ftJ and
(:255 or an error will result.

TAN(X) 200 PRINT TAN(X) Gives the tangent of the
expression x. X is interpret~A
as being in radians.

STRINGS

1) A string may be from 0 to 255 characters in length. All string
variables end in a dollar sign (t): for example, A~,B9~ ,KS,
HELLO$;

2) String matrices may be dimensioned exactly like numeric matrices.

NAME

DIM

LET

=

For instance, DIM A~ (l~,l0) creates a string matrix of !21 elements,
eleven rmvs by eleven columns (rows 0' to lß and columns -- ~ to 10).
Each string rnatrix element is a complete string, -.;vhic.h c.an be up to
255 characters in length.

EXAMPLE

2 5 D IM NJ (10, 10)

27 LET A$="PET"+V$

PURPOSE/USE
~

Allocates space for a pointer
and length for each element of
a string ~trix. No string
space is alloc.ated.

AssiE:ns the value of a string
expression to a string variable
Let is o~tional.

String comparison operators.
Comparison is made on the
basis of ASCII codes, a
character at a time until a
difference is found. If
during the comparison of two
strings, the end of one is
reached, the shorter string
is considered smaller Note

+

INPUT

",.-.

......... AD

PRIN'f

~C(X$)

CHR~(I)

LEFT~(X~,I)

30 LET A$=B$+C$

40 INPUT ~'?' ,lf.
A :.,

50 READ X~

60 PR INT X:[:
70 PR INT "FOO" +N:

STRING FUNClONS

300 PRINT ASC(X:.')

275 PRINT CHR~ (I)

- 43 -

310 PRINT LEFT~. (Xf:: , I)

that "A 11is greater than "A"
since trailing spaces are
significant.

String concatentation. The
resulting string must be less
than 256 characters
in length or an error will
will occur.

Reads a string from the user's
keyboard. Sr. ring does not have
to be. 0uoted; but if not,
lead ing. hl;::mks ;;,,i 11 be ignored
ar , ~ ':1

l(' strin[; ~ ·till be termi
nated on a "," or "·"
c.har ;:v:-.t· er .

R'?. Ad:::: a string front DATA state
menl.s ,,,I_! hin t he program.
Strln~s dn not have tn bP
,--, torl· , _ 1t i -F '1v::q r ot c: u-.) -· , . JC . _ _ 1:. . ./ Fl ._ e n ,

they are termi_neted nn a ","
character nr en<1 of 1 ine and
lew-1i.ng S'?aces are i..gnored.
See DATA for the format of
~tring data.

?rints the string expression
on the screen.

Returns the ASCII.numeric value
of the first character of the
strinp.; expression xt-. See
AnT)endix for an ASCII/number

~ .
conversion tahle. An error will
occur if X:f> is the null string.

Returns B one character string
whose single character is the
ASCII ~quivalent of the value
of the argument (I) Nhich must
be =>~ and (=255

Gives the leftmost I characters
of the string expression X~.
If I(=~ or/255 an error occurs.

- 44 -

LEN(X$) 200 PRINT LEN(X$)

MID$(X$' ,I)
330 PRINT MID$(X~: , I)

MID$ (X$,I,J)
340 PRINT MID0 (X:~ ,I,J)

RIGHT$(X$,I)

STR~(X) 290 PRINT STR~ (X)

CAL(X$) 280 PRINT VAL(X$)

SPECIAL CHARACTERS

CHARACTER USE

1(120 PRINT 'i1
140 A=.11 .>f d__

Girves the length of, the string
expression x~; in characters (bytes).
Non-printing characters and blanks
are counted as part of the length.

MID$ called lvith t"\vo arguments
returns characters frorn the string
expression X$starting at character
position I. If I LEN(I~), then
HID$ returns a null (zero length)
string. If I(=foi or) 255, an error
occurs.

MID~~ called ,.;ith three argurnents
returns a string expression composed
of the characters of the string
expression X~ starting at the Ith
character for J characters. If I

LEN(X$), MID~ returns a null
string. If I or J(=~ or) 255, an
error occurs. If J specifies rnore
characters than are left in the string,
all characters frorn the Ith on are
returned.

Gives the rightrnost I characters of
the string expression X~ . When I(=O
or:;> 255 an error will occur. If
I =LEN(X=) then RIGET$ returns all
of X$

Gives a string \-7hich is the character
representation of the numeric expres
sion X. For instance, STR'H3.1)="3.l!....,

Returns the string expression X$
converted to a number. For instance,
VAL("3.1")=3.l. If the first non
space character of the string is not
a plus (+) or minus (-)sign, a digit
or a decimal point (.) then zero
will be returned.

Gives 3.14159265

RETURN

STOP

: (colon)

~~

1

%

(\

- 45 -

Return must end~veryline typed in. Returns
print head or CRT cursor to the first position
(leftmost) on line. A line feed is always
executed after a carriage return.

Interrupts execution of a program or R list
command. Stop has effect when a statement
finishes execution, or in the case of interrup
ting a LIST command, when a complete line has
finished printing. In both cases a return is
made to BASIC's command level and READY is typed.
Prints "BREAK IN LINE XXXX", ~"here XXXX is the
line number of the next statement to be executed.
A colon is used to separate statements on a line.
colons may be used in direct and indirect State
ments. The only limit on the number of statements
per line is the line length. It is not possible
to GOTO or GOSUB to the middle of a line.

Questionmarks are equivalent to PRlNT. For
instance, ? 2+2 is equivalent to PRINT 2+2.
Question marks can also be t1sed in indirect state
ments. 10 ? X, when listed will be typed as
10 PRINT X. Do pot use?' vrtth~to form PRINT~
in other words ahvays type out PRINT>IY in full,

' I do not use? •

l~A%=INT(X) Integer identifier. Designates
an integer veriable in the range - 3276(to 32767

_)

S ~ 8 I a N ~ d d V

- 46 -

PET CASSETTE FILE

First of all, find some suitable blank tapes.* At least
three tapes are needed, and eight of them will let you get
through the bulletin with a minimum of re-running or re-enter
ing your programs.

Secondly, follow the directions EXACTLY. Do not take any
'short cuts', as thesewill lead you to some of the errors shown
in PART III.

Third, Part IV describes the cassette related BASIC state
ments and variables in detail.

The BASIC statements for cassette files are:

OPEN Open a file

CLOSE Close a file

PRINT~ Write to a file

INPUT~ Read to a file

GET~ Read a single character from a file

The BASIC variable used for file status is:

ST Status word

* Don't use the "three-for-a-pound 11 type tapes! We use a.· good,
low noise, high energy tape.

')

- 47 , -

CASSETTE (continued)

I. Some examples:

Example 1: Writing and reading numbers

Try out this program, being sure to type it in exactly as it
appears here:

10 OPEN 1,1,1
20 FOR J = 1 TO 20
30 PRIN~ 1 ,J

40 NEXT J

50 CLOSE 1

Spell out the word PRINT •••••
Do not use ?#

60 PRINT "REWIND YOUR TAPE AND THEN PRESS A KEY"
70 GET A$: IF A$ = 1111 THEN 70
80 OPEN 1
90 FOR J = 1 TO 20
100 INPU~ ,X

110 PRINT X
120 NEXT J

130 CLOSE 1
140 PRINT 11DONE"

Now list the program and compare each line with tqe listing
above.

And finally, save the program on a cassette using the SAVE
command:

SAVE "PGM 1 11

Mark the cassette with the label "PGM 1 11 • If you don't save
and mark your program, you'll have to type it in again later.
This Bulletin assumes from now on that you know how to save
and load programs by name.

Remove the program cassette and put a fresh cassette in the
recorder unit. Be sure the tape has been rewound, and then
run the program. The screen will show

RUN

PRESS PLAY AND RECORD ON TAPE~1

- 48 -

When you have pressed the right buttons on the cassette unit,
the screen will display "OK"

RUN
PRESS PLA Y & RECORD ON TAPE .,
OK

The program will write data onto the tape, and when it is finished,
you should see on your screen:

RUN
PRESS PLAY AND RECORD ON TAPE~
OK
REWIND YOUR TAPE AND THEN PRESS A KEY

So ••• rewind your tape and then press a key. Be sure the
tape is fully rewound. Then, as the screen instructs, press
PLAY on the cassette unit. The program now reads the numbers
from the cassette and puts them onto the screen:

OK
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
DüNE
READY _"Cursor
• 4!('-----~

Rewind the tape, label it "DATA 111 , and put it away for the
time being.

Now LIST the program. If you are experienced in BASIC, have
patience, for here comes a line-by-line explanation of what the
program does.

(

-

- 49 -

30 PRINT") , "I AM A PET! "

100 INPUT~ ,X$

Again, don't use ?~

110 PRINT X$

Now RUN your new program and watch while the screen shows:

OK

I AM A PET
I AM A PET
I AM A PET
I AM A PET
I AM A PET
I AM A PET
I AM A PET.
I AM A PET!
I AM A PET!
I AM A PET!
I AM A PET!
I AM A PET!
I AM A PET!
I AM A PET!
I AM A PET!
I AM A PET!
I AM A PET!
I AM A PET!
I AM A PET!
I AM A PET!
I AM A PET!
DONE

READY •
LIST the program and check that lines 30, 100 and 110 are
changed. Save this program as "PGM 2 11 on a fresh cassette.
Don't destroy PGM 1 on the first cassette.

If you find this too dull, look at the descriptions of the
statements at the back of this bulletin.

Line 10

Lines
20 I to
40

Line 50

Opens logical file 1 on tapedrive 1, for write only
(I/0 option 1)

Write the integers 1 through 20 on the tape

Closes the file

Lines 601 to
70

Line 80

Lines 90 I
to

120

Line 130

Line 140

Exam,Ele 2:

- so -

Tells you to rewind the tape and waits for you · to
press a key

Opens logical file 1, with defaults of tapedrive 1
for read only (equivalent to 80 OPEN 1,1,0)

Reads the numbers from tape and shows them on the
display screen

Closes the file

Lets you know the program is comple~d correctly

Writing and reading strings

Change the following lines in PGM 1. Hopefully, you still have
the program in your PET. If you don't, load it from tape or type
it again. In any event, when you're ready, type in these new lines,
and PET will replace the old lines with the new ones.

Use a fresh cassette for the data, and label it "DATA 2 11 •

From now on, we'll show the results, and not show the step-by-step
displays, or mount/discount cassettes, etc. You should have four
cassettes now: "PGM 1 11 , "DATA 2 11 , "PGM 2 11 and "DATA 2 11 •

Example 3: Mixing strings and numbers

Make these changes to "PGM 2 11 and save the new program qS "PGM 3".

35 PRINT.1 ,J

105 INPUT --1 ,X

115 PRINT X

Note that lines 30, 100 and 100 are still present.

10
I AM A PET!
11
I M-1 A PET!
12
I AM A PET!
13
I AM A PET!
14
I AM A PET!
15
I AM A PET!
16
I AM A PET!
17
I AM A PET!
18
I AM A PET! (cont 1 d)

,-

~-------\

19
I AM A PET!
20
DONE

READY

•

- 51 -

Run the program and save the data on a cassette marked "DATA 3".
Now you have three programs and three data tapes. In the follow
ing sections, we will use these programs to show you the use of
GE~ and ST. Later on, some common errors will be examined.

II. Looking at data on tapes

First of all, read the descriptions of GET~and ST at the end
of this bulletin. Then clear the program out of your PET by
typing "NEW" and enter the following program EXACTLY:

10 REM SHOW CONTENTS OF CASSETTE TAPES
20 REM TO SOLVE TAPE MYSTERIES
30 REM BY COMMODORE
40 PRINT " Ii] -- SHOW TAPE PGM -- The reverse
50 PRINT field heart
60 PRINT 11 PUT YOUR DATA TAPE IN indicates a "clear
70 PRINT "CASSETTE *1 AND REWIND IT. Screen" character
80 GOSUB 1000
90 PRINT "THE TAPE WILL BE READ AND

100 PRINT "SHOWN TO YOU IN 80 CHARACTER
110 PRINT "HUNKS. WHEN YOU WANT TO STOP
120 PRINT "PRESS ANY KEY. THE PROGRAM
130 PRINT "IHLL ASK IF YOU WANT MORE
140 PRINT "DATA TO BE SHOWN.
150 GOSUB 1000
160 OPEN 1

170 PRINT "~ " :H=O
180 H=H + 1 : PRINT 11 HUNK it-" H

190 FOR J = 1 TO 80
200 GET*1,B$
210 IF ST) 0 THEN 400
215 IF ASC(B$) = 13 THEN PRINT "(.RETURN)"; :GOT0230
220 PRINT B$;
230 NEXT J
240 PRINT

- 52 -

250 GET A$
260 IF A$ = "" THEN 280
270 PRINT "MORE ?";
280 GET A$
290 IF A$ = ""THEN 280
300 IF A$ = "Y" THEN PRINT:GOT0180
310 END
400 PRINT:PRINT "STATUS WORD IS: ST"
410 IF (ST) AND 4 THEN PRINT "SHORT BLOCK
420 IF (ST) AND 8 THEN PRINT "LONG BLOCK
430 IF (ST) AND 16 THEN_ PRINT "READ ERROR
440 IF (ST) AND 32 THEN PRINT "CHECKSUM ERROR
450 IF (ST) AND 64 THEN PRINT ttEND OF FILE
460 IF (ST) AND 128 THEN PRINT "END OF TAPE
470 END

1000 PRINT:PRINT "PRESS ANY KEY
1010 GET A$: IF A$ = ""THEN 1010
1020 PRINT:RETURN

Note that the~ in lines 40 and 170 is the "clear screen and
home the cursor" character.

Save this program on a fresh cassette and label it "SHOW TAPE".
You will find it handy for seeing what is on your tapes ••• often
what you intended to do is not what you did!

Now run this program, using the "DATA 1 11 tape. The CRT will show:

HUNK #1
1 (RETURN) 2
5 <RETURN) 6
9 (RETURN> 10
13 (RETURN> 14
N) 17 (RETURN>
ETURN)

(RETURN) 3
(RETURN) 7
(RETURN> 11

(RETURN> 15
18 <RETURN>

STATUS WORD IS: 64
END OF FILE

READY

II

(RETURN) 4
(RETURN) 8
(RETURN) 12

<RETURN> 16
19 (RETURN~

(RETURN)
<RETURN>
(RETURN>

(RETUR
20 <R.

,....

- 53 -

And here's the sameprogram using the "DATA 2" tape:

HUNK~
I AM A PET! :
I AM A PET!
I AM A PET!
I

(RETURN~
<RETURN)
<RETURN>

I AM A PET!
I AM A PET!
I .Aiv1 A PET!

<RETURN~
<RETURN>
(RETURN>

HUNK*2
.Alvl A PET!
.Aiv1 A PET!
AM A PET!
AM
MORE? .

<RETURN>
<RETURN>
<RETURN>

I Ar-1 A PET!
I AM A PET!
I AJvl A PET!

<RETURN> I
<RETURN> I
<RETURN> I

Here, a key was pressed during HUNK~. Some of the critical lines
in "SHOW PROGRAM" are:

20 GET~ ,B$
210 IF ST)O THEN 400

215

400 - 460

This gets the character from the file
If any file condition is encountered,
this jumps to a report of the condition.
Since GE~will read past end-of-file
marks, the status must be checked each
time a character is read.
Detects RETURN and displays it in a
visible form.
Reports status. Note the "AND" is a
logical mask operation which checks for
the appropriate bit in ST.

Run this program with "DATA 3" and see if the file looks like you
expect it to look.

III. Some Examples that Don't Work

It is easy to make errors with cassette files. Some will give a
?SYNTAX ERROR and others will stop BASIC and force you to turn
the PET's power off and start again. Be sure you have the tapes
"SHOW TAPE", "PGM 111 and "DATA 1 11 available before you start this
section.

ERROR:f1 : THE "?IJl" SHORTCUT

Load "PGM 1" and change line 30. Type in: 30 ?~1,J

Now try to run it •••

? SYNTAX ERROR IN 30

So LIST 30

- SL~ ••

30 PRINT .1 , J

Mysterious, isn't it? Now you know that "?f:1" does not work.
You must always spell out the word PRINTf when using cassette
files.

Okay, here's the explanation. When you typed in line 30, BASIC
converted the PRINT, or "?", into a token. However, the tokens
for PRINT and PRIN~are different.

Suppose PRINT becomes ~

and PRINT# becomes [1]
Then,if you type in 30 PRINT J BASIC stores it as 30 ~

J,
and if you type in_29 PRIN~1,J BASICstores it as 30 1,J.
30 ?J becomes 30 UU J ~-- but 30 ~1,J becomes 30 ~1,J.
So, 30 ~1,J LISTS as 30 PRIN~1,J and looks correct. However,
when i t is run, BASIC sees the '*- following the PRINT token.
Since ~ is not a number or a legal variable name, BASIC gets
upset and tells you you have a syntax error. In line 30.

REMEMBER! 1 ! ! ! IF YOU GET A SYNTAX ERROR IN
A PRINT TO A FILE STAT~1ENT, AND IT LOOKS OK
WHEN YOU LIST IT, THE FIX IS:

IV. The Output Image

RETYPE THE LINE USING
THE FULLY SPELLED WORD

PRINT~

The PRINT ~statement prints exactly as it is told to. If more
than 40 characters are output to a file without a carriage return,
no carriage return will be inserted. Type in the following program:

10 OPEN 1,1,1
20 X$="1234567890"
30 FOR J + 1 TO 5
40 PRINT X$;
50 PRINT 1,X$;
60 NEXT J

70 CLOSE 1

Put the "DATA 111 tape in the cassette drive, rewind it, and run
the program. Then load "SHOW TAPE" and use i t to look at the "DATA
1" tape. Notice that when you run the first program, the screen
looked like this:

~

- 55 -

PRESS PLA Y AND RE CORD ON TAPE 1
OK
1234567890123456789012345678901234567890\
1234567890

READY

II No carriage return
was put here!

The line ran off the right edge of the screen and appeared on
the next line, but no carriage return was ever printed. The
"SHOW TAPE" program proves this: No <.RETURN> appears in
HUNK.1.

Try a few more combinations. PRIN~will always write what
it is told to write on the tape. Remember that PRIN~writes on
the tape just like PRINT does on the screen (if you had a mile
wide screen, that is).

V. The Input Image

The INPUT statement in PET BASIC has some oddities. To under
stand this, some e~amples without using cassettes are in order.

Example 1. Discard of Extra Input

10 INPUT A,B,C
20 PRINT A,B,C

RUN, and enter 1,2,3,4,5 when the question mark appears on the screen.
The screen will show:

RUN
? 1,2,3,4,5
? EXTRA IGNORED

1 2 3

READY

II
Example 2. 80 Character INPUT limit

Try: 1 0 INPUT X$
20 PRINT X$

Run, and enter AAAAAAAAAA ••••••••••• until you have 100 "A"s entered.

The screen will show:

- 56 -

RUN

~~~~~~~~~~.AAAAAAAAAAAAAAA 

AAAAAAAAAAAAAAAAAA ~ 
AAAAAAAAAAAAAAAAAA _ ' 

READY --------------------11 PET printed this line 

This is because the input buffer can only accept 80 characters 
at a time. If more are entered, the first 80 are lost. 

Example 3: Too Li~tle INPUT 

Try: 10 INPUT A,B,C,D,E,F 
20 PRINT A;B;C;D;E;F 

Now RUN, and enter 1,2,3 RETURN 
4,5,6 RETURN 

RUN 
? 1,2,3 
?? 4,5,6 

1 2 3 4 5 6 

READY 

II 

and you get: 

INPUT will look past a carriage return until all the variable 
list is satisfied (A,B,C,D,E,F in the example). Now try this one 
again, but enter 1 2 3 4 5 6 RETURN 

You will get a ??. Enter RETURN until you see READY. INPUT ignores 
blanks when reading numbers and will keep asking for more until it 
is finished. Note that a nurober for A is 123456. 

This digression really will help you understand the following 
rules for writing cassette file data. 

RULES FOR WRITING ON CASSETTE FILES 

1. Be sure to have matehing INPUTJf and PRINT*variable lists. If 
your INPUT list is too short, you will lose data. 

2 o Don't ever print more than 79 characters without a carriage 
return. If INPU~ reads over 80 characters, it will either 
lose the first 80 characters or CRASH BASIC! 

3. Extra carriage returns don't hurt anything. 

( . 



~ 

I 

~ 

) 

- 57 -

4. If you want to write several numbers on a line, separate them 
with a comma "," or else, when they are read, you will get 
the wrong values. 

Here are some examples to show what happens with tapes. In each 
example, load your ~1 PGM 1 " and modify i t accordingly. Don' t 
save it, though, since each example assumes you use the original 
"PGM 111 • Then use "SHOW TAPE" to see what is on your data tape 
afterwards. Use the "DATA 1" tape for these examples. 

ERROHig No carriage returns or commas between numbers 

Type 30 PRINTI1,J; and run it. The program will eventually show: 

OK 
1.23456789E+31 
?OUT OF MEMORY ERROR IN 8224 
FORMULA TOO COMPLEX ERROR IN 8224 

and CRASH! You have to turn the power off and start again. 
is sometimes unpredictable. With "DATA 1" you will see 1 2 
5 6 • • • • • without carriage returns or commas. 

ERRORif',2 Loss of additional INPUTs 

Load "PGM 1" and type 30 PRIN'I'f1,J","; and run it ••••• 
a "1" appears 

This 
3 4 

and CRASH! Again, INPU~tried to read past the end of the file, 
looking for a ~RETURN> , wi th disastrous resul ts. 

Change line 105: 105 IF ST) 0 THEN PRINT "END OF FILE" :GOT0140 

You will get: END OF FILE 
DONE 

So ••••• If you test the status after INPUT~ you can avoid a 
crash, though more than likely you will not have done what you 
wanted to. 

ERROR'*-4 More than 80 characters in a line 

Again, load "PGM 1" and change it as follows: 

30 PRIN~ 11ABC123"; 

90 I 
120 Delete these lines 
1 00 INPUTf.1 , X$ 
110 PRINT X$ 



- 58 -

Now run it •••• 
and CRASH! (Yet again. I hope you can see why the rules are to 
be followed!) 

ERRO~ Substring File name matehing 

If you open a file with a name, the PET will read the tape until 
it finds a suitable name. - Enter the following program: 

10 OPEN 1,1,1,"FILE1" 
20 PRI~, "THIS IS FILE1" 
30 CLOSE 1 
40 OPEN 1,1,1,"FILE" 
50 PRINT'I/I:J,"THIS IS FILE FILE" 
60 CLOSE 1 
70 PRINT "FILENANE"; 
80 INPUT F$ 
90 PRINT "REWIND YOUR TAPE • • 

100 GET A$: IF A$ = "" THEN 100 
110 OPEN 1,1,0,F$ ~ 
120 INPUT1i1 , X$ ~ 
130 PRINT X$ 
140 CLOSE 1 

" . . 
Notice that you have 
to include all the 
parameters here 

If you get a syntax error in 10 (or 20 or 110) chances are you 
forgot the last comma! 

Run this program and enter "FILE" as the filename (F$). You 
will see the contents of FILE1 displayed. 

So • • • Be sure you file names do not match each other even 
in substrings like: COM and COMMODORE, or MODE and REMODEL. 

ERROR~ Reading a program as data 
I 

Enterthis program. When you run it, use your "PGM 1" tape -for the 
data tape. 

10 OPEN 1 
20 INPUT.,1,X$ 
30 PRINT X$ 
40 CLOSE 1 

You will get a BREAK in 10 message. If you type ?ST, you will 
see a 0 because the file never opened successfully. 

( 



f' 

~""""') 

- 59 -

ERROßi7 Going past End-of-File with GE~ 

Load "PGM 1" and run it using "DATA 111 • Then do a "NEW" and enter 
this program: 

10 OPEN 1 

20 GETf-1 , X$ 
30 PRINT X$; 
40 GOTO 20 
50 CLOSE 1 

The numbers 1 to 20 will appear, then a 1, then the cassette goes 
on. It will go on with garbage or other stuff appearing; you 
have done a lot with "DATA 1"! Now, you can fix it with: 

25 IF ST)O then 50 

and run it again. Note: You may stop functioning (well, your 
PET may) and have to start over again. Halting during a tape read 
is hazardous! 

NOW i t works! 

ERRO~ Not fully rewinding the tape 

In many instances, people fail to fully rewind a tape, and the 
program fails to read it. So be careful. If you fail after 
checking your program carefully and after three careful attempts to 
load, you may have a hardware problem. 



- 60 -

CASSETTE RELATED BASIC STATEMENTS AND VARIABLES 

.Q.f§li Opens a file for input/output. The syntax is: 

OPEN (logical file~), (physical device number), (I/0 option), 
(filename) 

The keyword "OPEN" and the logical file number are required. The 
other items are optional. If they are not specified, a default 
value will be used. 

Logical File~ This number is used in the CLOSE, PRINT, INPUT 
and GET statements to refer to this file. The logical file 
number can be from 1 to 255. Up to 10 files may be open at the 
same time. 

NOTES: If you try OPEN,O you will get a syntax error 
OPEN,-1 or OPEN,256 gets "ILLEGAL QUANTITY ERROR" 

If you get more than 10 files at 
will have to turn off the power. 
logical file number as one which 
"FILE OPEN ERROR". 

once, the PET will "hang" and you 
If you open a file with the same 

is already open, you will get a 

Physical Device Number For cassettes, the numbers 1 and 2 are 
legal. Number 1 refers to the cassette in the PET and 2 is for 
the auxiliary, or external cassette unit. The default value is 
1 • 

NOTES: The physical device number may be from 0 to 255. The 
PET currently recognizes devices 0 - 15. If a device number is out 
of range, you will get an "ILLEGAL QUANTITY ERROR". 

IhO Option This tells the cassette whether to read or write to 
t e file. 0 is for read only, 1 is for write only, and 2 is for 
write only with end-of-tape marker. The default value is 0 (read). 

NOTES: If option 2 is used, an EOT will be written on the tape 
when the file is closed. An error will result if, at a later 
time, you attempt to read past the EOT mark. 

WARNING: WARNING: WARNING: WARNING: WARNING: 

A. If you use physical device numbers other than 1 or 2, you 
must follow the rules for that device. For instance, the 
IEEE buss conventions are different from the cassette rules. 

B. If you attempt to use 

OPEN 
OPEN 1, 
OPEN, 1 
OPEN,, 1 

etc., you will get a syntax error. 



....... 

r, 

- 61 -

FILENAHE The filename is used to identify a file. It may be 
up to 187 characters long. However, please note that: 

1. If you ask in your program for a filename, the longest 
string you can input is 80 characters. 

2. If you are searching for a file with a short name, and your 
tape has a file with a long name on it, the search looks for 
a matehing sub-string. This means that if you are looking 
for a file named 11 CAT", and the tape has on it a file named 
"CONCATENATE", it will be recognized as "CAT". 

3. Only the first 16 characters of a filename will be displayed 
after the "SEARCHING" message appears on the screen. 

To summarize, 

* Keep your filenames short (preferably under 16 characters) 

* Avoid files named alike, such as 

AC COUNT 
ACCOUNTS 
ACCOUNTING 

If you are looking for a 
file named "COUNT", any 
of these files will be 
recognized as correct files. 

* The default filename is a null string ""· Ari "OPEN 111 will 
open any file, as null is always recognized as a filename, 
regardless of the name of the file. 

CLOSE This tells the PET to: 

1. Stop reading a file or, I Open Option 0 

2. Stop writing a file and Open Option 1 
make an end-of-file mark or, 

3. Stop writing a file and 1 Open Option 2 
make an end-of-file mark and 
make an end-of-tape mark 

depending on how the file was opened. 

All files which have been opened should be closed before a program 
ends and before you remove the cassette. If you do not close the 
file, your files may become garbled. For example, if you are 
writing a file on a previously used tape, and you don't close it, 
then when you read it later, you will either have a read error or 
you will read past the files' end into the old (and meaningless) 
junk on the tape. 

PRINT* (logical file~, (variable list) 



- 1;2 -

PRI~writes an exact copy of the characters produced by an 
equivalent PRINT statement. This includes graphics, upper/ 
lower case and cursor control characters. 

NOTES: 10 FOR J = 1 TO 100:PRINT "X";:NEXT J will print 100 
successive "X"s on the display. Though this will appear as 
2-1/2 lines of "X" on the screen, no carriage returns are present 
at the ends of the first two lines. When 10 FOR J = 1 TO 100: 
PRIN'Jlil,"X";:NEXT J is executed, 100 successive "X"s are written 
onto the cassette with no carriage returns. 

Some warnings are worth noting. First,1? will not work. If you 
get a syntax error and the LIST gives a correct appearing line, try 
retyping the line using PRIN~. Do not use the screen editor 
unless you type "PRINT" over the PRINT which appears on the screen. 

If you intend to read the file later,using the INPUT~command, be 
sure that the carriage returns are liberally included and that no 
more than 79 characters in succession appear without a carriage 
return. This applies only to INPUT~ and not to GE~. 

INPUT>'t (logical file~, (variable list) 

This reads tape exactly as if it were the keyboard. As with 
keyboard input, a maximum of 80 characters, including the 
carriage r -eturn' -rhäy. be entered. 

This means the tape cannot have more than 79 successive characters 
without a carriage return, if it is to be read successfully with 
INPUT~ 

WARNING: WARNING: WARNING: WARNING: WARNING: 

If you attempt to INPUT~from a tape with more than 79 characters 
between carriage returns, BASIC will either go away entirely 
(CRASH) and you'll have to turn the power off and start again, 
or strange errors and unidentified flying glitches may appear. 

Note that 79 character limitation is due to an 80 character 
input buffer and is not currently modifiable. 

GET~ (logical filejO, (string or numeric variable) 

This reads the tape one character at a time. There are two varieties: 

1. GE~ (logical file~), (numeric variable) 

if the character in the file is a digit (0- 9), then 
the numeric variable will be set to the value of the digit. 

if the character is one of these: + - blank then the numeric 
variable is set to zero. 

---., 
I 



_,--. 

".-, 
' } 

- 63 -

any other character or the end-of-fj.le marker will produce 
a syntax error. And THIS error will NOT tell you the line 
number in which it occurs! 

2. GETir (logical file-), (string variable) 

This reads the file, one character at a time, and returns the 
character in the string variable as a one character string. If 
the status word is not checked, successive applications of GET~ 
will read the file past the end-of-file mark. · · 

NOTE: It is not necessary to write carriage returns at 79 
characters or less if you read your data back with a GET~ 
command. 

STATUS WORD 

The Status word can be checked after each I/0 operation for 
certain conditions. 

To detect the status, use the "AND" Operation in BASIC as shmvn 
in the example in this bulletin. Another way to do it is 10 GET~, 
A$:B$=B$+A$:IF NOT (ST)AND64)THEN 10 which will read data into 
B$ until an EOF is encountered. 

The status word ST is updated each time there is an I/0 operation, 
with a code indicating the outcome of that operation. To indicate 
a unique condition, one bit is set at a time. Multiple bits may 
be set so it is necessary to break down the decimal number into 
its binary powers to determine which bits were set. For example, 
if ST = 56, then bits 8, 16 and 32 were set: 56=32+16+8 

STATUS CODES FOR TAPE I/0 

4 Short Block 
8 Long Block 

16 Unrecoverable read error 
32 Checksum error 
64 End of file 

128 End of tape 

SHORT BLOCK (4) When reading a block from tape, shorts 
(the delimiter between blocks) were encountered before the expected 
number of bytes had been read from that block. Possible cause: 
attempting to read a short load file as a data record. 

LONG BLOCK (8) \Vhen reading a block from tape, shorts were 
not encountered after the expected number of bytes had been read from 
that block. Possible cause: reading a long load file as data. 



- f14 -

UNRECOVERABLE READ ERROR (16) **FATAL ERROR** Return to BASIC and 
print error message •. Cause: More than 31 errors on the first 
block of redundant blocks - or - an error that could not be 
corrected because it occured in the same place in both blocks. 

CHECKSUM ERROR (32) After a LOAD or reading of data, a checksum 
is computed over the bytes in RAM and compared to a byte received 
from the input device. If they do not match, this bit is set. 
Possible Cause: faulty RAM- or- multiple bit error in data 
transmitted. This bit is also set if data or program fails a 
verify operation. 

END OF FILE (64) This bit is set when an attempt to read data 
from a tape file is made when there is no more data. 

END OF TAPE (128) **FATAL ERROR** An EOT record was found before 
the file being searched for was encountered. 

! 



~ 

- 65 -

SPACE HINTS 

In order to make your program srnaller and save space, the 
following hints may be useful. 

1) Use multiple staternents per line. There is a srnall arnount 
of overhead (Sbytes) associated with each line in the prograrn. Two 
of these five bytes contain the line nurober of the line in binary. 
This rneans that no matter how many digits you have in your line number 
(rnimirnurn line nurober is 0, maxirnuro ls 64000), it is still two 
bytes. Putting as rnany staternents as possible on a line will cut down 
on.the nurober of bytes nsed by your program. 

2) Delete all unnecessary spaces frorn your prograrn •. For instance: 
10 PRINT X, Y, Z 
uses three more bytes than 
10 PRINTX1 Y, Z 

Note: All spaces betweP-n the line number and the first non
blanK character are ignored. 

3) Delete all REH statements. Each REM statement uses at 
least one byte plus the number of bytes in the comment text. For 
instance, the staternent 130 REM THIS IS A Cot,lMENT uses up 24 bytes 
of rnemory. 

In the statement 140 X=X+Y: REM UPDATE Sillv1, the REH uses 14 
bytes of rnemory including the colon before the REH. 

4) Use variables instead of constants. Suppose you use the 
constant 3.14159 ten times in your program. If you insert a State-
ment 10 P=3.14159 

-~) in the prograrn, and use P instead of 3.14159 each time it is needed, 
you will save 40 bytes. This will also result in a speed imporvement. 

5) A program need not end with an END; so, an END statement 
at the end of a program may be deleted. 

6) Reuse the same variables. If you have a variable T which 
is used to hold a temporary result in one part of the program and 
you need a ternporary variable later in your program, use it again. 
Or, if you are asking the user to give a YES or NO answer 
to two different questions at two different times d11ring the execution 
of the program, use the same temporary variable At:! to store the reply. 

7) Use GOSUB's to execute sections of program statements 
that perform identical actions. 



- 66 -

8) Use the zero elements of matrices; e.g. A(O), B(O,X). 

BASIC 

BASIC 

Line Nurnbers 

STORAGE ALLOCATION INFORMATION 

BYTES 

1028 

4 

USED FüR 

1/0 buffers 
Tables 
Scratch Fad 

BASIC keywords 1 

Characters 

Variables 

1 ••• Includes RETURN 

7 ... If a value is assigned (for 
integers and floating point 
variables) 

7 + length of string for string vari
ables 

Arrays * (S+1) + (2*D) 

(Size includes Where: 
the Oth element) A = 5 Floating point array 

A = 3 String array 
A = 2 Integer array 

and S = 

D = 
. . . . . . . Size of array 

Number of dimensions 

When a program is being executed, space is dynamically allocated 
on the stack as follows: ( 

a) Each acti.ve FüR • • • NEXT loop uses 22 bytes 

b) Each active GOSUB (one that has not returned yet) uses 
6 bytes 

c) Each parenthesis encountered in an expression uses 4 
bytes and each temporary result calculated in an expression 
uses 12 bytes. 

9) Use integer variables or arrays - A%, HX% (I,J)etc. where
ver possible. 

~ 



,..-. 

/"'· 

- 67 -

SPEED HINTS 

The hints should improve the execution time of your BASIC 
program. Note that some of these hints are the same as those used to 
decrease the space used by your programs. This means that in many 
cases you can increase the efficiency of both the speed and size of 
your programs at the same time. 

1) Delete all unneccesary spaces and R.Ervl' s from the program. 
This may cause a small decrease in execution time because BASIC would 
otherwise have to ignore or skip over spaces and REM statements. 

2) THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR 
OF 10. Use variables instead of constants. It takes more time to 
convert a constant to its floating point representation than it does to 
fetch the value of a simple or matrix variable. This is especially 
important with FOR ••• NEXT loops or other code that is executed repeat
edly. 

3) Variables which are encountered first during the execution of 
a BASIC program are allocated at the start of the variable table. This 
means that a statement such as 5 A=O: B=A: C=A, will place A first, B 
second and C third in the symbol table (assuming line 5 is the first 
statement executed in the program). Later in the program, when BASIC 
finds a reference to the variable A, it will search only one entry in 
the symbol table to find A, two entries to find B and three entries to 
find C, etc. 

4) NEXT statements without the index variable, NEXT is somewhat 
faster than NEXT 1 because no check is made to see if the variable 
specified in the NEXT is the same as the variable in the most recent 
FOR statement. 



- 6R -

DERIVED FUNCTIONS 

The following functions, while not intrinsic to PET BASIC, can 
be calculated using the existing BASIC functions: 

FUNCTION 

SE CANT 
COSECANT 
COTANGENT 
INVERSE SINE 
INVERSE COSINE 
INVERSE SECANT 
INVERSE COSECANT 
INVERSE COTANGENT 
HYPERBOLIC SINE 
HYPERBOLIC COSINE 
HYPERBOLIC TANGENT 
HYPERBOLIC SECANT 
HYPERBOLIC COSECANT 
HYPERBOLIC COTANGENT 
INVERSE HYPERBOLIC SINE 
INVERSE HYPERBOLIC 
COSINE 
INVERSE HYPERBOLIC 
TANGENT 
INVERSE HYPERBOLIC 
SE CANT 
INVERSE HYPERBOLIC 
COSECANT 
INVERSE HYPERBOLIC 
COTANGENT 

FUNCTION EXPRESSED IN TERMS OF BASIC FUNCTIONS 

SEC(X) = 1/COS(X) 
CSC(X) = 1/SIN(X) 
COT(X) = 1/TAN(X) 
ARCSIN~X = ATN (X/SQR(-X*X+1)) 
ARCCOS X = -ATN(X/SQR(-X*X+1))+1.5708 
ARCSEC X = ATN SQR(X*X-1))+(SGN(X)-1)*1.5708 
ARCCSC X = ATN~1/SQR(X*X-1))+(SGN(X)-1)*1.5708 
ARCCOT X = -ATN(X)+1.5708 

COSH(X = (EXP(X)+EXP(-X))/2 
SINH(Xl = (EXP(X)-EXP(-X))/2 

TANH~X = -EXP(-X)/(EXP(X)+EXP(-X))*2+1 
SECH X = 2/(EXP(X)+EXP(-X)) 
CSCH X) = 2/(EXP(X)-EXP(-X)) 
COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2+1 
ARGSINH(X) = LOG(X+SQR(X*X+1)) 

ARGCOSH(X) = LOG(X+SQR(X*X-1)) 

ARGTANH(X) = LOG((1+X)/(1-X))/2 

ARGSECH(X) = LOG((SQR(-X*X+1)+1)/X) 

ARGCSCH(X) = LOG((SGN(X)*SQR(X*X+1)+1)/X) 

ARGCOTH(X) = LOG((X+1)/(X-1))/2 



r 
I 

r 

- 69 -

CONVERTING BASIC PROGRAMS NOT WRITTEN FOR THE PET 

Though implementations of BASIC on different computers are in 
many ways similar, there are some incompatibilities which you should 
watch for if you are planning to convert some BASIC programs that were 
not written for the PET. 

1) Matrix subscripts. Some BASICs use " ( 11 and11 ) 11 to denote 
matrix subscripts. PET BASIC uses " ( 11 and 11 ) 11 • 

2) Strings. A number of BASICs force you to dimension (declare) 
the length of strings before you use the~. You should remove 
all dimension statements of this type from the program. In some 
of these BASICs, a declaration of the form DIM A$(I,J) declares 
astring matrix of J elements each of which has a length 1. 
Convert DIM statements of this type to equivalent ones in PET 
BASIC: DIM A$(J), 

PET BASIC uses " + " for string concatenation, not 11 , " or 
" & "· 
PET BASIC uses LEFT$, RIGHT$ AND MID$ to take substrings of 
strings. Other BASICs use A$(I) to access the Ith character 
of the string A$, and A$(I,J) to take a substring of A$ from 
character position I to character position J. Convert as 
follows: 

2m 
A$(I) 

A$(I,J) 

NEW -
MID$(A$,I,1) 

MID$(A$,I,J-I+1) 

This assumes that the reference to a substring of A$ is in an 
expression or is on the right side of an assignment. If the 
reference to A$ is on the left hand side of an assignment, and X$ 
is the string expression used to replace characters in A$, 
convert as follows: · 

OLD 

A$(I)=X$ 

A$(I,J)=X$ 

NEW -
A$=LEFT$(A$,I,1)+X$+MID$(A$,I+1) 

A$=LEFT$(A$,I+1)+X$+MID$(A$,J+1) 

3) Multiple assignments. Some BASICs allow statements of the 
form: 500 LET B=C=O. This statement would set the variables B 
& C to zero. 

In PET BASIC, this has an entirely different effect. All the 
11 = 's 11 to the right of the first one would be interpreted as 
logical comparison operators. This would set the variable B to 
-1 if C equaled 0. If C did not equal 0, B would be set to 0. 
The easiest way to convert statements like this one is to rewrite 
them as follows: 

500 C=O: B=C 



- '! -

4) Some BASICs use 11 I 11 instead of 11 : 11 to delimit multiple 
statements per line. Change the 11 I 11 's to 11 : 111 s in the 
pro gram. 

5) Programs which use the MAT functions available in some 
BASICs will have tobe re-written using FOR ••• NEXT loops 
to perform the appropriate operations. 



- 71 -

ASCII .. CHARACtER CODES 

DECIMAL CllAR. DECIMAL CIIAR. DECif.IAL CHAR. 

000 NUL 043 + 086 V 

001 SOll 044 ~ 087 w 
002 STX 045 - 088 X 
003 ~IX 046 . 089 y 

004 EOT 047 I 090 .. 
"" 

005 CNQ 048 0 ,, 091 [ 
006 . ACK 049 1 092 . \ 
007 BeL 050 2 093 1 
008 BS 051 3 094 + 
009 HT 052 4 095 + 

010 LF 053 5 096 .. 
Oll VT 054 6 097 a 
012 FF 055 7 098 b 

0 
013 CR 056 8 099 c 
014 so 057 9 100 d 
015 SI 058 . 101 e . 
016 DLE . 059 . 102 f , 
017 DC1 060 < 103 g 
018 DC2 061 = 104 h 
019 DC3 062 > lOS i 
020 DC4 06.3 ? 106 j 
021 NAK 064 @ 107 k 
022 SYN 065 A 108 1 
023 cTB 066 B 109 m 
024 CAN 067 c 110 n 
025 • EM 068 0 111 0 

026 SUB 069 E 112 p 
027 ESCAPE 070 F 113 q 
028 FS 071 G 114 r 
029 GS 072 H 115 s 
030 RS 073 I 116 t 
031 us 074 J 117 u 
032 SPACE 075 K 118 V 

f"\ 033 I 076 - L 119 w 
034 .. 077 fwl 120 X 

035 ' 078 N 121 y 
036 $ 079 0 122 z 
037 .. 080 p 123 { • 
038 & 081 Q 124 I 
039 # 082 R 125 } 
040 ' ( 083 s 126 "' 041 ) (.:: 084 T 127 DEL 
042 ·'. * 085 u 

.. 
LF=Line :Feed FF=Form Feed CR=Carriage Return DEL=Rubout 



/ 

" 

~CDMMDDDRE 
- 72 -

BASIC BUGS 

Commodore Systems Division 
446 Bath Road, Slough, Berkshire, SL 1 6BB 
Telephone Burnham (06286) 3224/5/6 
Telex 848316 

We'll publish all the bugs we know about, and a few months 
from now, when we've found and fixed all of them, we'll 
produce a new ROM which you'll be able to buy and plug in. 

l. 10 IF F OR 1 = 10 THEN 10 gets collapsed to 

10 IF FOR I = 10 THEN 10 and yields a ?SYNTAX ERROR 

We've found and fixed this one. The only reserved word that 
can have embedded spaces is COTO, which may appear as GO TO. 
Therefore, "FOR" in this example will no langer be converted 
to a reserved word. 

2. The BYTES FREE message number and the amount of bytes 
free when PRiriT FRE(O) is typed just after start-up 
are different. 

This is not a bug. PRINT FRE(O) uses 3 bytes of RAM. 

3. The SAVE corrunand should respond with "PRESS REC AND 
PLAY" instead of "PRESS PLAY AND REC", since the 
latter sequence doesn't work. 

This is liveable and probably won't be fixed. 

4. The POS function is not effected by Pokes and other 
cursor movements. It does not keep track of where 
the cursor is moved with POKEs and other cursor move
ments. 

POS will be deleted from BASIC. 

5. SPACE and shifted SPACE characters have different 
ASCII values. This is not a bug. Shifted and 
unshifted characters · are indiced separately. 

Directors: I. Gould (Chairman), J. Tramiel (Managing), C. T. G. Fish, C. Spencer, R. Gleadow 

Reg. Office: lndustrial Estate, Eaglescliffe, Stockton-on·Tees, Cieveland, TS16 OPN Reg. in England Reg. No. 956774 

' 

) 

( 

~ 



~ 

r 
I 

- 73 -

6. When a quotation mark (Code 34 or 98) is output, the 
rest of the line treats cursor movement literally. 
Example: 

10 PRINT CHR$(34), 34 (Try it and see) 

This will not be changed at present. 

7. SPC(O) returns 256 spaces. 

Fixed. 

8. Direct lines beginning wit:h colons,":", are ignored. 

Fixed. 

9. Arrays with more than 255 elements fail. 

F:i,xed. 

10. Random Number Function -- Hm~ does it work? 

EXANPLE NAME 

RND (X) 170 PRINT RND (X) 

Generates a random number between 0 and 1. The argument 
X controls the generation of random numbers as follows: 

X> 0 generates a new sequence of random numbers using 
X as a seed. Calling RND with the same X where X 0 
will generate the same random for each X if X does not 
change. 

Example: RND (-1) gives 
2.99196472E-08 for as many times as you use -1. 
2.99205567E-08 for as many times as you use -2. 

Thi.s is useful for debugging where you want the same random 
number to be generated. You can get a different but 
constant random number with any minus number. 

X = 0 generates .564705882 each time you call 

X> 0 will generate the next randomly sequenced random 
number if X does not change. If X changes, the new X is 
used as a seed to a new sequence of random numbers. 



- 74 -

If you want to verify what the RND actually does, enter 
the program: 

10 INPUT R 
20 X=RND (R) 
30 PRINT X 
40 GOTO 10 

Then try various values for the input. 

11. CHR$ accepts string argurnents. 

Fixed. 

12. DEF FN fails in one out of 256 cases. 

Fixed. 

The following is an example of a PET QUIRK._ It is not a bug, 
and happens because the chAracter printed after a nurober is a 
"cursor right" rather than a carriage return or a space. 

Output of a nurober is: [siGN f Nlu!MIBIEIRJ CURSOR RIGHT 

Which can cause havoc with screen overwrites if you aren't aware 
of it. 

10 PR INT "0 "; 
20 FOR I 

30 PRINT 

40 NEXT 

SO PRINT "W " 
60 FOR I = 1 to 10 

70 PRINT I~':lOO*HI!" 

80 NEXT 

And lo! on your screen will appear: 

The black "S" on a white 
field is the character 
used to represent "home 
cursor". 

lOOBHI! BBB 
200BHI! BBB 

. . . . . . . . . 

~ 



QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: ,-... 

QUESTION: 

ANSWER: 

QUESTION: 

/-

ANSWER: 

QUESTION: 

ANSWER: 

- 75 -

SOME QUESTIONS AND ANSWERS 

Will COMMODORE help me design a program or a 
system for my specific ~pplication? 

No. Manuals and bulletins are in the works; a 
software library will be available soon. 
COMMODORE cannot afford to help each person design 
for his specific needs and offer such an incredible 
price. 

How do I get an array of graphics to print on the 
CRT? 

Use a semicolon in your PRINT statement (PRINT) 
" ••• ";). It will look like you built astring 
and printed it. Maximum string length is 255 
characters, and prints in 3.2 lines. If you're 
trying to print all of PET's graphics, you may be 
blanking the screen when you try to print CHR$(146), 
which is a "clear screen" character. 

PET prints .003 as 3E-03. 
notation? 

Can I suppress scientific 

Yes. You'll have to write a formatting program to 
do it. 

Why are the squares of integers not integers? 
For example, 7 1 2=49.0000001 while EXP(LOG(7)*2)=49. 

Logarithms are use and there are ·built-in round 
off problems in binary representation of decimal 
numbers. 

How can I gat around the 255 element array 
limitations? 

A) For multidimensional arrays, use separate 
arrays. For example, DIM A(l00,3)~ DIM 
A(lOO), B(lOO), C(lOO). 

B) Pack your values, two or three to an element• 

C) Change your algorithm to not require arrays. 



QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANS\.ffiR: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

- 76 -

Can PET do matrix arithmetic? 

You will have to write a program to do it. 

Why doesn't the OTHELLO program from October 
BYTE work? 

To many GOSUBS without returns. PET can only 
accept 26 levels of GOSUB nesting. 

Can I write my own tape header? 

Yes. Just SAVE"FILENAME", then LOAD"FILENAME". 
Or, to use data files, OPEN 1, 1, l,"FILENAME". 
FILENAME" can be a string; i.e., F$. 

How can I create a data file on tape? 

The Cassette Bulletin will give you the answer 
to this one. 

Do you have a Fast Forward off a cassette leader 
before saving a program? 

No. The Operating system software provides 
about 7.5 seconds to move the tape off the 
leader before beginning recording of data. 

How fast is cassette data storage? 

The data rate is 30-50 CHAR/SEC. 

What is the tape format? 

The format is a unique COMMODORE scheme. 

What does PET look for on tape when it searches? 

The header blo~k on the tape file. 

How many files can be open at one time? 

Ten. More than ten will hang the PET up and 
you will have to turn the power on and off. 

Where are the cassette buffers? 

Cassette ~~ 1 from $027A to $0339 

Cassette;f~ 2 from $Ö33A to $03FE 

) $ means this 
) is a hexadeci
) mal nurober 



QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

-' 
QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

... 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

- 77 -

How is End-of-Memory determined by BASIC.? 

On Power-up reset, a checkerboard patters is written 
and read back while incrementing a pointed until 
failure occurs. The highest memory location is 
pointer - 1. 

How do you delete a line? 

Type the line number only, then press RETURN. 

Will trig functions work on arguments in degrees? 

SIN, COS, and TAN require arguments in radians. 
Convert degrees to radians by multiplying: 

degrees * 11 /180 

Remember, -n is a constant available from the keyboard. 

What will happen if I try mixed mode arithmetic? 

All arithmetic is performed in floating point. If 
an operation is performed on an integer, it is first 
converted to floating point, and if assigned to an 
integer variable, the result is appropriately truncated 
or left alone. 

Can you program in machine language from BASIC and 
not use a monitor? 

Yes. By using the POKE command, it is possible to 
load RAM. The process can be automated with a BASIC 
loader program which contains the bytes of the machine 
code program in DATA Statements. To be safe, poke 
into casette buffer =/j: 2. 

How is SYS used? 

The parameter for SYS is a decimal address. This is 
evalated and used as a target for a JMP instruction. 
Return to BASIC via RTS. 

How is USR used? 

1. POKE the address of the subroutine 

location 1 gets the low byte 

location 2 gets the high byte 



QUESTION: 

ANSWER: 

QUESTION: 

ANS\-IER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANS~-IER: 

QUESTION: 

ANSWER: 

- 78 

2. Call USR (i.e., A=USR(I)) 

3. The parameter is evaluated and placed in the 
floating accumulator. 

4. The function value is returned in the floating 
accumulator. 

5. Return to BASIC via RTS. 

How do you get lower case letters? 

POKE 59468,14 for lower case 

POKE 59468,12 for graphics 

Lower case letters and graphics cannot be displayed 
on the screen simultaneously. Only use masks 12 
and 14 or you may disable the keyboard interrupts. 
The POKE command sets a chip address select on the 
character generator ROH. 

\.fuere is BASIC text in memory? 

It begins at $0400 and extends to $0FFF or $IFFF, 
depending on whether it is a 4K or an BK PET. 

Where are variables stored, and ca.n they be passed froin 
one program to another7 

During program execution, strings are created and 
stored downward from highest memory. Integers and 
real numbers are stored upward from the end of BASIC 
text. They may be passed to an overlay program 
if the overlay is less than or equal in size to the 
program which initiated the LOAD. 

How do I use the diagnostic routines? 

Special hardware is required which is currently 
available only to dealers and service people. 

Where and when can I get the necessary hardware to 
run the diagnostic routines? 

Only authorized PET service people will have the 
required hardware for the present. 

-, 



QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

~-

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 
,--

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

- 79 -

Can I get an O.S. source listing or a BASIC source( 
listing? 

This will be discouraged for a purpose of rnaintaining 
software compatibility between PET users. 

What level of BASIC is provided in PET's ROMs? 

PET BASIC is very close to MITS BASIC by Microsoft, 
and has been expanded in the area of I/0 and arithmetic 
precision. 

Does PET have a SORT function? 

No. SORTing must be clone by a BASIC program. See 
Knuth, "The Art of Computer Programming'' for a variety 
of algorithms. 

Is PET base page limited? 

No. At the BASIC programming level this is trans
parent to the user. In machine code programming 
page 0 is always at a premium. 

How does PET compare strings? 

In alphabetical order according to ASCII code, for 
example, 

"A "< "AA" and "ABCD" < "ABCE" 

ls the screen refreshed from a specific 'IK of memory? 

Yes, starting at $8000. 

Can I POKE the locations for cursor control? 

We do not recommend using POKE to control the cursor. 
The cursor is controllable from the · keyboard cursor 
control keys, and from Basic. 

Can PET be reset withour destroying RAM content? 

No. 

What is the PET's power consumption? 

Less than 100 watts. 



QUESTION: 

ANSWER: 

QUEST! ON: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

- 80 -

Why is the PET only expandable t9 32K RAM? 

Because the upper 32K is reserved for O.S., I/0, and 
ROM, and the 6502 can only _address 65K. 

Is the 6502 a tristate chip? 

The 6502 has some lines which are tristate and some 
which aren't. Contact MOS Technology for specs. 

Does PET disrupt TV or radio? 

PET is extremely well shielded and emits very little RF 
interference. The only time you may notice it is if 
you place a TV set inches away from PET and tune to an 
extremely weak station. Try that with a pocket 
calculator or a digital clock~ 

How do you access the user port? 

The user port is on a MOS 6522. The simplest I/0 is 
accomplished by POKEing a data direction register at 
59459 and then PEEKing or POKEing a data register at 
59471. The I/0 logic levels are TTL. 

Can the IEEE-488 be adapted to S-100? 

The IEEE-488 is an I/0 peripheral bus. The S-100 is 
a memory bus. They are not the same thing. PET does 
have a memory expansion bus which can be adapted to 
drive many S-100 periperals. 

What changes need to be made to an HP printer to get 
it to work on the PET? 

Most HP instruments work on the IEEE bus which PET 
supports. We have tested a thermal printer (HP 5150A) 
and .an impact printer (HP 9871A) successfully. Use 
an edge-card connector instead of the standard pin 
connector. 

How do you get a listing on an IEEE printer? 

Essentially: Open the file, tell the device to "listen", 
and then LIST. 



QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

\ 

"--"' 
QUESTION: 

ANSWER: 

OPEN 4:4 

CMD 4 

- 81 -

establish output channel - open file 

create alternat.ive output device - tell the 
device to listen 

LIST 

GLOSE 4 

list to that device 

close alternate channel - close the file 

Can I use someone else's RAMs to build my own memory 
board? 

Yes. See the memory expansion pinout. 

Can PET be hooked to a terminal? 

An IEEE-488/RS232 interface is in the works. 

What causes my PET's CRT to get the 'jitters'? 

Probably the 12v regulator. v-Jri te to PET service. 

Why won't my PET load and save my program? 

1. 

2. 

Are you using bad tapes? 

Have you fully rewound the tape before a save ör load? 

3. Have you recently cleaned and demagnetized the deck 
heads? 

4. If every one of these questions is answered correctly 
and PET still won't read tapes, it could be due to 
poor alignment to the read/record heads. Check 
with PET service. 

If 
How 

1. 

2. 

3. 

the RETURN key glitches out in the middle of a program, 
can I save myself? Do I HAVE to reset? 

If the cursor can be seen, press RETURN. 

If the cursor can't be seen, press the RUN/STOP key. 

If neither works, you must reset. Check for 
possible hardware mulfunction. Is the keyboard 
connector firmly attached to the main board? 

4. And, if all else fails, check to be sure you haven't 
left any tape or printer files open. PET may be 
sending the RETURN to the file. 

-



QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

QUESTION: 

ANSWER: 

- 82 -

Will COMMODORE be bringing out a big~er CRT? 

Probably not. You can use your own monitor on the 
user port. See the pinout for thi& port in this issue. 

Will CO~MODORE be making a cassette with a counter? 

Possibly, but not for a while. 

Will CO}WODORE be making a bigger keyboard? 

Yes. On a bigger PET. With a bigger price tag. 

If I buy a printer from someone else, will COMMODORE 
help me get it running on the PET? . 

No. An RS232/IEEE-488 interface is in the works. 

Will COMMODORE provide a disassembler as part of the 
purchased package? 

The disassembler is already in the public domain, and you 
can buy it. 

What peripheral is COMMODORE planning for the future? 

Second cassette, printer, floppy disk, telephone modem, 
and memory board, to start. Hore will be contemplated 
later. 



- 83 -

carnmadara (K 
USR 

COIIIIODORI .UIINIII IIACHINU, INC. 
101 CAL.ORNIA AWNUI 
PALO ALTO, CAUFORNIA 14104 
TIUPHONI: (411) IH-4000 TIELD: ....... 
CMU! ADDRI88 COII.UIIIIAC PLA 

The USR function allows a programmer to create a machine 

language subroutine which is callable from BASIC. USR has a 

parameter which is evaluated and placed in the floating 

accumulator at location $80. The format is as follows: 

$BiS - exponent + $8., 
norrnalized so 

$Bl - mantissa MSB B7 set 

$B2 II 

$B3 II 

$B4 - II LSB 

$B5 - sign of mantissa 

0 if mantissa = 0 

+ if mantissa non-zero or plus 

- if mantissa negative 

The floating accumulator may be converted to a two byte 

integer in $B3 and $B4 {MSB, LSB) by a JSR $D0A7. On return 

to BASIC, an integer may be converted and passcd in the floating 

accumulator. The MSB is loaded into the MOS 6502 accumulator 

A and the LSB into index register Y and then JSR $D278. 

Since the return address to BASIC is already on the stad-:. and the 

integer-floating conversion might be the last step to execute, 

it is possible to do a JMP $D278 instead of a JSR $D278 

and RTS. 

Before executing USR from BASIC, locations 1 and 2 must 

be poked with the address, lo-hi, of the machine code su~routine. 

The address may be changed if the programmer desires to have morc 



- 84 -

than one routine resident at one time. 

It is recommended that the machine language subroutines be 

located in protected areas of RAM such as the unused tape buffer. 

example: floating point representation 

1. S.t; 

sfl,f cfl,f 00 00 00 00 

$Bflf ._. 



",.... 

"..-

~ß~ß 4C 3A ~3 

IJ33A 21J A7 Oß 
0330 A5 B3 
.f'33F A6 B4 
IJ34l 85 B4 
ß343 86 B3 
ß345 A2 IJS 
ß347 Al B3 
~349 AB 
~34A €>A 
ß34E 4C 78 02 

- 85 -

USR function example #l 

JMP USR 
INT = $B3 
* = $33A 

USR JSR FLPINT 
LDA INT 
LOX INT+l 
STA I~"'T+l 
STX INT 
LOX #~ 
LDA (INT,X) 
TAY 
TXA 
JMP INTFLP 
INTFLP = $0278 
FLPINT = $OIJA 7 

USR function example: 

X • USR (I) 
-32768 ~ I ~ 32767 

ß ~X ~ 255 

Swap bytes 
to use 
as address 
indirect 
load 
LSB in Y 
MSB in A 

Returns the contents of the byte whose address is 

specified by I. The variable I is preserved. Parameter is 

passed in the floating accumulator and translation is performed 

by appropriate BASIC subroutines. 

lOOOO DATA 32,l67,2ß8,l65,l79,l66,l81J,l33 
lOlOO DATA l81J,l34,l79,l52,~,l6l,l79,l68 
l0200 DATA l38,76,l21J,2liJ 
l0300 FOR .I = 826 TO 845 
l0400 READ N:POKE I,N 
l0500 NEXT 
l0600 POKE l,58 
l0700 POKE 2, 3 

This is a BASIC program to POKE the USR machine 

language subroutine from the previous example into the memory. 

The hex codes have been translated into dccimal and placed in 

data statements. The memory region used is the 2~ cassette 

data buffer area. Note locations l and 2 are poked with the 

start address of the subroutine: 

3*256+3*16+11J - 826 



- 86 -

USR function example #2 

R'33A 2ß A7 Dß LOGB2 JSR $DßA7 floating to integer 
R'33D AR' R'ß LDY #R' LSB of result in 
~33F AS B4 LDA $B4 LSB of integer 
R'341 6A SHIFT ROR A 
R'342 9ß ßS BCC DONE switch closed 
,0344 es INY 
,tl345 c.0 ,08 CPY #8 no swi tchcs ? 
,0347 D,0 F8 BVE SHIFT 
,0348 A9 ßß DONE LDl\ #ß MSB in A = ,0 
R'34A 4C 78 D2 JMP $D278 integer to floating 

*=91 
R'.0.0.0 4C 3A 913 JHP LOGB2 vector for USR 

......._ 
\ 

10 PRI:NT USR(PEEK(5947l)) :GOTO 191 

Switches connected to USR port can be wired to cause 

a low logic level. The port can be PEEK'ed and this routine 

returns the bit #(0-7) or 8 if no switch is closed. 

" 



/ 

cammadare 

PIN OIJr IiiFQfU.IJ\TI Oil 

PIN N LABEL 

1. Ground 

2. T. V. Video 

3. IF.EE Gl'l\1 

",.. 

4. IEEE F:OI 

5. Din~nostic Senne 

6. Tape 111 
TIEAD 

7· Tape #2 
1\EAD 

8. Tnpe Write 

".... I 9. T. V, 
Vertical 

10. T. V. 
llorizontn1 

11, 12 ,A GND 

D CAI 

c PN/J 

" 
D PAI 

- 87 -

(: COIIIIODORE BUliNEil IIACHINII, INC. 
101 CALIFORNIA AVENUE 
PALO ALTO, CALIFORNIA M304 
TELEPHONE: (415) lat-4000 TI!LEX: MS-Ht 
CABLE ADDREIS COIIBUIIIAC PLA 

u:..;ER I'OHT 

DJ~;.CIUPTION 

Digitnl Ground 

Video output usetl for externnl Displny, used 
in dinenostic routine for vcrifyin~ the video 
circuit to the display bonrd. 

Service rcqucst in uncd by a device to in
diente the nccd for nttcntion or servicc nnd 
to rcquest an intcrruption of thc current 
ne~uence of eventn. In used in verifyinp, 
Operation of the STIQ in the diagnostic routine, 

Is unctl to ind.icntc the end of 11 multiple bytc 
trnnsfcr ncquencc. 'fhio pin verifies the EOI 
function when runnin~ the dingnootic routine, 

Hhen this pin i:; low syotem power up the PET 
softwnre jumps to the dinr,nostic routinc 
rather thnn the DASIC routine, 

Used with the diagnostic routine to verify 
cassette tnpe #1 read function. 

Same ao cassette #1 except this pin is for 
cnosette //2. 

Uoed inconjunction with the diagnostic 
routine to verify operation of the WRITE 
function of both cassette ports, 

T, V. vcrtical output for external dioplay 
device, Verified in diaenostic. 

T, V, horizontal output for external dis
plny device. Verified in diagnootic. 

Di~itnl p;round. 

Is an interrupt and flag input, only from 
periphcrnls. (I.c. l!andohnke for data on 
PA Port) 

Input/Output 1ines to periphernls, and can 
be prop;rnmmcd independent of each other ror 
input or output. 

' 

_,1 



PIN I 

E 

F 

II 

J 

K 

L 

M 

N 

~1 

B-2 

C-3 

D-4 

E>-5 

F-6 

2B /\() 

4B Al 

GD /\2 

LAßEL 

P/\2 

PA3 

PAh 

P/\5 

P/\6 

PA7 

CB2 

GND 

- 88 -

Por,c .2 
DEf>CIUPTION 

Cun nct ns o. totoJ.ly indepcndent interrupt 
no a pcriphernl control output or n cerio.l 
input or output. 

Dip;ito.l p:round. 

Cansete H2 Interface 

GND 

t .5 

Hotor 

Rend 

'rlrite 

Senne 

' 

Pover grow1d. 

Positive 5 volts to operate cassette circuitry. 

Unrego.lo.tcd positive 6 volts to operate cas
sette motor. 

Rend line from co.ssette. 

\-lri te linc to cnssette, puts information on 
tupe. 

Gcnsen. Cloaure of mechnnicnl switch on 
cnnsette when motor is engnged. 

Memory Expunnion Port 

All odd pins are p,rounded. (top oide of bonrd) 

Buffered Address Bit ~ uscd for memory cxpanoion 

Buffered Addrcoo Dit 1 uned for mcmory expnnsion 

Duffered Addrcso Bit 2 uscd for memory expanaion 

---... 



- 89 -

an A3 Duffered Address. nit 3, used for memory expansion. 

1(1 DA4 Buffered Address Dit 4, used for memory expnnsion. 

12 DA5 Duffered Addresa nit 5, uncd for memory expnnsion. 

14. BA6 Buffered Adclresa Dit G, uscd for memory expnnsion. 

i6 BA7 Duffered Addrcsn Dit 7, uscd 'for mcmory cxpnnsion. 

18 DAO Duffered Addrcss Bit 8, used for mcmory expnnsion. 

20 DA9 Duffered Addrcss Bit 9 1 used for mcmory exprunsion. 

22 DAl~ Duffered Address Dit 10, uscd for rnemory expnnsion. 

24 BAll Duffered J\ddrcou Bit 11, uned for mcmory cxpnnnion. 

26 NC No connection 
_,. 

28 NC No conncction 

30 NC No connection 

32 NGl .i\ctiVc lov J\ddreso aclcct for locntions 1000-lFFF 

34 NS2 J\ctl ve lov· J\ddresa select for locntions 2000-2F?F 

36 NS3 Active 1o'" J\ddresa sclect for locntions-3000-3FFF 

30 NSI, J\cti vc low Addresa select for locntions 4000-4FFF 

4o rm5 Active low J\ddresn r.elect for locations-5000-5FFF 

h2 N~6 Active lo"' Addresn select for locations 6000-GFFF 

44 NS7 Active low J\ddrcos r.clect for locations 7000~7FFF 

".... .. l16 NS9 J\ctive low J\ddresa sclcct for locntiona 9000-9FFF 

h 0 USA J\cti vc low Addresn sclcct for locntions J\000-J\FFF 

50 NfiD Active low Address r.elect for locations DOOO-BFFF 

52 nc no conncction 

54 HJ::S ncoets microproccsoor. 

% IHQ In~errupt rcqueot linc to the microprocessor. 

50 ],~2 Duffered phnsc 2 clock. 

· 6~ nn/H Buffered rend or writc ennble. 

62 uc No connection. 

64 uc No Connection 



66 BOO 

GO DDl 

70 DD2 

72 BD3 

74 noJ~ 

76 BD5 

78 noG 

80 DD7 

1 D!Ol 

2. DI02 

3. DI03 

4. DIOI1 

' 

7. 

6. 

- 90 -

Buffcrc!l llrttc bi t ~ 

13uffcrcü ünt..e bit 1 

Buffered dntc bit 2 

Duffereil 11ntc bit 3 

Duffereil dntc bit 4 

Buffered d~tc bit 5 

Buffered dntc bit 6 

Buffere d dnte bit- 7 

IEF.F:-hßO IHTF.HFACE 

Dntn input/output bit ß 

Dntn input/output bit 1 

Dntn input/output bit 3 

Dntn input/output bit 3 

The Trnn5 fcr Bus 

A handshake aequencc is cxecuted by the tnlker ond the 
listcners over the Trnnsfer Dus time n dnta byte ia 
tran5ferred ovcr the Dnta Bus. 111e transfer Bus sir,nal 
lines are defined ns fo1lowo: 

f3ignnl 

Not Rendy for 
Dnta (NRJo'D) 

Data Valid 
(DAV) 

Definition 

An activc lov NRFD signal line indicates that 
one or more nssigned listeners are not ready 
to receivc the next data byte. When all ot 
the nsGigned listenera 'for a. particular data 
transfcr .have releaaed NRFD, thc tmFD line 
y.oes innctive high. Thia tella the talker 
to plncc the ncxt data byte on tbe Data ~ua. 

The DAV line ia activated by the talker 
ahortly after the talker placea a valid data 
byto on the Data Bua. An active lov DAV 
aignal tells each li1tener to capture the data 
byte preaently on the Data Bua. The talker 
1a inhibited from activatin& DAV vhen NRP'D 1a 
active lov. 



8. 

- 9. 

10. 

5. 

11. 

"...--.. 

12. 

A. 

D. 

c. 

D. 

E. 

~; 

Signnl 

/Jor Pt17Yr 
Dttta Uot Acccptcd 

(NDAC) 

- 91 -

Definition 

Thc HD/\C sip;nnl line is hcld nctivc low by 
eo.ch listener until the listener co.ptures 
thc -dntn bytc, NDAC p;oco inacti ve high. 
Thio tcllo thc tnlker to tnke thc byte off 
the Dntn Dus. 

MM llßCrncnt Bus 

The Mnnngement Bus is o. r;roup of o ignnl lines which o.re used 
to ~ontrol do.tn trnnsfers ovcr the - Do.ta Dus. The signal 
definitions for the Manne;ement llus o.re o.s follows: 

fiip;nnl 

Interface Clcnr 
(IFC) 

Service Hequest 
(S11Q) 

EOI 

Attention (ATH) 

Cho.ois eround 

DI05 

DI06 

DI07 

DIOß 

N GND 

Defii"li tion 

'I'hc IFC oip;nnl line io activnted by the PET 
when i t WtU1ts to place nll interfacc circui try 
in n prcdctcrmined quiescent state. 

Any periphernl device ca.n request the atten
tion of the rET by setting S11Q active lov. 
The PE'r rcsponds by settinp; (\TN o.ctive lov 
and cxecuting o. serial poll to see vhich device 
is rcqucsting scrvice. 

Is u~cd to indicnte the end of a multiple byte 
transfcr scquence. 

This air;nnl is o.ctivo.ted by the PET when peri
phcro.l dcvices nre being o.ssigned no liateners 
and talkers. Only peripheral addresses and 
control messnges co.n be t~o.nsferred over the 
Do.to. Dus when ATN is active lov. After ATN 
goes h:l.p;h, only those peripheral devices 
which o.rc naoip;ned o.o liotenera and to.lkera 
cnn tnke po.rt in the data transfer. 

Ground line to ground the cho.sis toßether. 

Data input/output bit 4, 

Dnto. input/output bit 5. 

Dntn inpu\/output bit 6. 

Do.ta input/output bit 7. 

Dip;i tnl p;rounds, 



- 92 -

Conncctor!3 

Connector Jl Display connector 

J2 Kcybonrd conncctor 

J3 Cnoscttc #1 conncctor 

J4 Hemory cxprmoion connector 

J5 Uoer Port connector 

J6 Cnsaettc #2 connector 

J7 IEEE-488 connector 
----._ 

----." 



".... 

-

PIA 6520 

PIAL 
PIAL1 
PIAK 
PIAS 

PIA 6520 

IEEl 
IEEIS 
IEEO 
IEEOS 

VIA 6522 

PIA 
SYNC 
P2DB 
P2DA 
TIL 
TIH 
TILL 
TILU 
T2L 
T2H 
SR 
ACR 
PCR 
IFR 
IER 
SYNC1 

SYMBOLIC 
NAME 

- 93 -

UG8 

$E810 5%08 
$E811 59409 
$E812 59210 
$E813 59411 

UB8 

$E820 59424 
$E821 59425 
$E822 59426 
$E823 59427 

VA5 

$ E840 59456 
$ E841 59457 
$ E842 59458 
$ E843 59459 
$ E844 59460 
$ E845 59461 
$ E8l~6 59462 
$ E847 59463 
$ E848 59464 
$ E849 59465 
$ E84A 59466 
$ E84B 59467 
$ E84C 59468 
$ E84D 59469 
$ E84E 59470 
$ E84F 59471 

IlEX DECIMAL 
ADDRESS 



- 94 -

PIAL 

rJ 0 A 
1 0 n keyboanl clccoclc 
2 0 c 
3 0 D 

'• I ftl Casscttc Oll switch 
5 I lt2 Cassett! Oll switch 
6 I EOI input from IEEE 488 
7 I Diugnostic jumpc1. sense 

PIALl 

3 0 ßlank to TV clisplay 

PIAK 

rJ I 
1 I 
2 I \ 

3 I INput from 
4 I kcyboard 
5 I scan 
6 I 
7 I 

PIAS 

3 0 111 cassctte motor control 

N 
0 
I 

N T 
0 p 
I I 
T R 
c c 
E s 

T R E 
I I D 
B D 



- 95 -

IEE1 

0 I nn 
1 I DI2 
2 I DIJ 
3 I DT4 in from IEEE 
4 I DIS <.lnta lincs 
5 I DI6 
6 I DI7 
7 I DI8 

IEIHS 

3 0 NUAC to IEEE 

IEEO 
"...... 

0 0 DOl 
1 0 D02 
2 0 U03 
3 0 D04 Out to IEEE 
4 0 D05 data lincs 
5 0 D06 
6 0 D07 
7 0 DOS 

IEEOS 

-
3 0 DAV to IEEE 

........... 



- 96 -

SYNC or SYNCl (Sec 6522 spcc) 

0 I/0 
1 I/0 
2 I/0 
3 I/0 
4 I/0 User port 
5 I/0 
6 I/0 
7 I/0 

PIA 

0 I NDAC 
1 0 NRl~D 

2 0 ATN 
3 0 Casscttc writc 

#2 cassctte motor 
-----... 

4 0 
5 I Display on (sync) 
6 I NHFD 
7 I DAV 

PCR 

3 0 llus or graphics charactcr set 

ACR 

3 I/0 User port serial line. 



1 

r 

c. 

~ 

- 97 -

I/0 chcckout 
JF 10-28-77 

UG8 kcyboanl tcst 

a. plug in a working kcyboard 

b. type the fo11owing scqucncc of charactcrs 
nnd vcriiy thnt thcy appcnr on thc scrcen: 

~ "11$7.. 1&./ ( 
Q W E RT YU I 0 P t 
A S D F G ll J K L : 
z X c V ß N M ' ; ? «b [ :.J < > 
7 8 9 I 

1 SPA_~~J 

456 * 1 2 3 

R 
E 
T 
u 
R 
N 

+ 

PET shou1d rcspond with 

? SYNTAX ERROR 
READY. 

type this line 

? " lcÜ:-J \ OJiioR \ ~OME 

SIIIFT 

) ~ 

0 • - = 

[ aJ~OR -] I ~~~] 
Screen should clear and 

I AAA J 
READY. 

be printed 

R 
AM I E 

T 
u 
R 
N 



- 98 -

d. if keyboard does not work 

i rechcck UG8 for bent 

ii rcplace UG8 

iii inspect for shorts near 

UG9 - UG8 -.15 

2. UG8 - UAS- Gassettri tcst 

3. 

a. built in cassettc motor 
should be off. 

b. verify cnsucttc motor opcration 
by prcssing PLAY , REWIND , 
and FAST FORWARD 

c. if built in cassettc problern 

i rechcck UG8 for bent pins 

ii replace UG8 

iii check Q 1 - Q6 

d. plug in sccond cnssette 

e. verify cassctte motor opcration 
Motor should only run whcn 
PLAY , REWIND , & FAST FORWARD 
are pressed. 

f. if 2nd cassctte problern then 
go to step C and check UA5 

CA2 UB5 TEST 

•• type 

POKE 59409 , 52 

the TV display sbould go blank 

b. resct thc PET 

Co type 

ZZZ CURSOR 

POKE 59468 , 14 R 
E 
T 
u 
R 
N 

pins 

' 



r 

,r 

5. 

- 99 -

TllE ROW OF CHARACTERS SHOULD CHANGE TO 

zzzZZZ 

4. Uß8 - UA7 - UA9 

a) Using a voltmeter on 5-10 volt range 
check pins on Jl to makc surc 
on1y 1 pin at a time is high. Black 
wirc to ground. Red to tcst pins 

1,2,3,4,13,14,15,16 

l'OKE 5 94 26, 1 only pin 
II 

" 

II 

2 
4 
8 
16 
32 
64 
128 

b) Type in this program: 

1~ 
2~ 
RUN 

POKE 59426, 255 
? PEEK (59424) 

ground this pin 

II 

II 

II 

GOTO 2~ 

1 
2 
3 
!+ 

13 
1-4 
15 
16 

high 
11 

II 

II 

on J1 See this nurober on 
screen 

1 254 
2 253 
3 251 
4 247 
13 239 
14 223 
15 191 
16 127 

User port test UA5 

a) Reset machine 

b) type in this program 

1~ ? PEEI{ (59471) GOTO Uf 

RUN 



- 100 -

ground this pin Sec this nurober 
an J2 an scrcen 

c 254 
I> 253 
E 251 
F 2l~7 

II 239 
J 223 
K 191 
L 127 

c) Attach b1nck 1cnd of valtmctcr to ground. Test pins 
on J2: 

C,D,E,F,II,J,K,L 

type 

POKE 59!.71 , 1 only c high ---.", 

II 2 II D II 

4 E 

8 F 

II 1.6 II ll II 

32 J 

II 64 II K II 

128 L 



/ 

"""'""' 

' 

- 101 -

commodore (K 

PET EDITD'G 

COMMODOAI BUliNISS MACHINIS, INC. 
101 CALIFOANIA AVINUI 
PALO ALTO, CALIFORNIA 14104 
TILIPHONI: (411) IH-4000 TILIX: MI-lU 
CQLI ADOAIII COMBUIIIAC PU 

~fnen you press one of the PET' s cursor control keys, you ma:.r be 

in one of two editine nodes. 

1. DIRECT CURSOR CONTROL 

The cursor is moved as soon as you press the 

cursor control ~e;r . 

2. PPO'iRAl·i'J.ED CURSCP cmrTPOL 

The ~ursor movement is executed durinr a Fro~r3~ 

run. It is part of a PRIHT statement and has been 

enc1osed ~·rithin quotation marks. 

FUNCTIOH KEY;; TO P~ESS 1ill.ill CH/,RACT:r::I\ 

CURSOR UP jsHrFTJ I CRlR I 145 EJ 
CURSOR DOWN I cir- J 17 .@J 
CURSOR LEFT I SHTFTI J!t I 157 []] 
CURSOR RIGHT Je~ J -::>O 

~- 0 
I SHIFTI CLEAR SCREEN' CLR 147 EJ IIOt·iE 

~ 

...) 



- 102 -

FUNCTION KEYS TOPRES~ ASCII CI:AßACTER 

HOME CURSOR ~ 19 0 . 

INSERT CHARACTER * ISHI?r"I~~ I 148 [] 
DELETE CHARACTER * r_;] 20 [iJ L 

P.EVERSE FIELD [;] 18 0 0 

RESET REVF...RSE E:JQ;J 146 hd RVS 

* The INSERT and DELETE ftmctions are not programmab1e. 

Use CHR$ (20) to delete during program run and CHR$ (148) to 

insert during program run. 



,.. .. 

- 103 -

PET uses the quotation mark to signal the beginning of a string 

literal, as in a DATA or PRINT Statement. When attempting to edit a 

program line, the User should be aware that if PEr sees an opening 

quote, it will consider all cursor movement instructions as part of 

the string. 

DIRECT CURSOR CONTROL 

In DIRECT mode, the User is creating program code. The cursor 

control keys allow the User to insert or delete characters at will 

unless he specifically indicates (by typing a quotation mark) that 

the cursor movement is to be a part of the created code. 

1fuen entering program code, the User can correct typographic 

errors in one of four ways. 

A) Delete all characters back to the error, then retype. 

B) If no quotation marks have been used, backspace 

(cursor left) over the intervening characters until 

the cursor is positioned over the error, retype the 

character, then .forward space (cursor right) to the 

next desired character position to be typed. 

C) If a quotation mark has been used, press lRETUR~l to 

leave the program line. Then move the cursor up and 

over to one space past the error. rress tc 

delete the error, press I SHIFTl andpn~~~ to create an 
D •: 

opening, and t~·pe in the correct character, then forwar.d 

space to the next desired character position to oe t;y-ped. 



- 104 -

Programmed cursor control is no longer in effect. 

D) Another method is to close the quotes (type the endine 

quotation mark) then backspace to the offending 

character and retype. Again, programmed cursor control 

is no longer in effect. 

There may be occasions when it is appropriate to lengthen 

a statement line. If the cursor is moved to the end of an existin~ 

line, the additional characters ~ay be typed in. The cursor will 

wrap araund to the next lower line if more than 40 positions 

are used. If the lower line contains a program statement, it can 

be over-typed. Extra characters remaining from that previously 

typed line must be deleted or they will be incorporated into the 

line being edited. 

Original Program 

10 PRINT · " NOW IS 

20 PRINT "THE END" 

THE TIME FOR ALL" 

Move the cursor intil it is positioned over the closing 

quotes in statement 10, and type .QQQE.. MEN TO COME" 

10 PRINT "NOW IS THE TIME FOR ALL GOOD M 

EU TO COY.E" THE END" 

Now LIST 

delete THE END" by 

spacing over the characters, using 

thefSPACE)bar. 

t 



r 

~ 

- 105 -

10 PRINT 11NO\~ IS THE TIME FOR ALL GOOD ;.1 

E..~ TO COME" 

20 PRINT "THE END" 

If you wish to insert characters within a statement line 1 

position the cursor over the first character to be shifted to the 

right 1 pressi!NSTI with the lSHifTJ key. If the new spaces increase 
DEL 

line length to greater than 40 spaces 1 a space will open up 

between the line being edited and the next program line 1 and the 

characters to the right of the insertion will move into the opened 

space. This is difficult to show on paper 1 so just follow the 

instructions and watch the result on your screen. 

1. 

2. 

3. 

4. 

Type this program 

10 PRINT "rmw IS THE TIME TO COME" 

20 PR! NT "THE END" 

List the program 

J.1ove the cursor to the letter T in the word TO in statement 1 .0. 

Hold the fsnrFTl key and press the liNST( key 18 times 
DEL 

(Here's where the screen will show a space being opened 

between statement lines) 

5. Type FOR ALL GOOD MEN T 

~ Press l RETU&"'i J 

7. DIST the program again 

• 



- 106 -

Using Direct Cursor Control -v ,hile -C;eding a strin·g literal: 

To edit a .string lit~ral, such as a print message or a data 

statement, the user must press the (RETURNI key and leave the 

statement line. A literal cannot be edited (except for character 

deletion and retyping) while it is being originated, because all 

cursor controls exc·ept delete and insert are programma.ble. The 

user must leave the Statement line via a carriage return, then 

uove the cursor back to the offendinr, character and retype. Fur-

thermore, to program cursor controls within the strin~ after havinß 

left the line, the user must use the INSERT function to open 

up spaces into which he can then type the appropriate control 

character. 

The user can, of course, close the quotes, and thereb~r 

si~?al PET that he is through with the literal message. How-

~er, once the secend quote mark has been typed, PET will no longer 

recognize cursor movement as a part of created code, and the 

cursor will move according to the function represented by the ke~· 

pressed. 

P~OGRAH'1ED 

E:;)IT FUHCTIONS 

The User can control thc position of the cursor on the screen 

in order to PRINT in a specific position. For examplc: 

10 II~ II PRillT • 

20 FOR I = 1 ~ 10 

llr:::-111 
.3'0 Print ~ 

Cleer screen 

Cursor down 

\ 

,,.-



- 107 -

40 NEXT I 

50 FOR J = I TO lO 

60 "[]]" 0~ ' ·T ~ ~ .I11T J Cursor right 

70 HEXT J 

80 PRnrr "HI" 

r 'i-lill PRINT the word "HI" in column ll on LI!:E ll. Tnis prograr1 

can be more simply written. 

'' r-;;-1 '' r::1 
lO PRii~T ~ ; :FOR I = l TO 10: Print" ~":Next 

20 FOR J = l TO 10 :Print " · Ü]";: UEXT: Pr int 11 Hi 11 

OR, even simpler using a single PRiiJT statement: 

lO PRINT "W Q Q. Q. Q Q Q Q Q Q Q Q ] ] ] ] ] ] ] ] ] ] ] HI" 

l' 



- 108 -

A SHORT DESCRIPTION OF THE IEEE-488 BUEi$ FOR THF. PET 

This description covers the pin-out and signal designa-

tions for the IEEE-488 BUS as implemented on the PET. A brief 

description of the PET ß'\S\C commands for the IEEE-488 BU~ is 

also included. 

I. INTERCONNECTION 

The PC card edge on the left-rear of the PET labeled Jl has 

the IEEE-488 signals. For reasons of economy, a standard IP.F.F.-488 

connector is not included. 

A standard 12-position, 24-contact edge connector with.l56" 

spacing is attached to the PET PC card. Some typical connectors 

and part numbers are: 

EDGE CONNECTOR BRAND 

SYLVANIA 

AMP 

AMP 
.-

AMP 

CINCH 

PART # 

6AG~l-12-1Al-911 

53f/J~57-3 

530658-3 

53~654-3 

251-12-991-l~p\ 

In a pinch, a larger edge connector (such as 15 or 22 

positions) can be cut with a hacksaw to provide n temporary 

substitute. 

--) 



- 109 -

The IEEE-488 {or HP-G~/IB) connector is availab1e from: 

IEEE CONNECTOR BRAND PART # .. 

CINCH 571~24~ SOLDER PLUG 

CINCH 572v.\24~ " ._ RECEPTACLE 

AMP 5523~1-1 INSOLATION DISP PLUG 

AMP 5523~5-1 " " RECPT 

The pin designations and numbers are identica1 for both con-

nectors. A short cab1e (i.e., 15 conductor ribbon, etc. ) may 
r 

be used to join the connectors. 

PET PC-CONNECTION 
rn 
H 
rn 

TOP rl C\J (V) -=t p tJ rn 
0 0 0 0 H > rx.. <( tJ Of :z: c:(A 
H H H H 0 <( p:: A rx.. p:: 8 ::x:::z: 
A A A A ~ A :z: :z: H rn <( tJt:l 

PIN 1 2 3 4 5 6 7 8 9 10 11 12 Po1arization (= :<: = = = ·= = =DCl= = = s lots between . 
PIN A B c D E F H J K L M N ..._ _.J 2-3 and 9-10 y 

BOTTOM II'\ \0 t-- <X) 
0 0 0 0 A A 
H H H H z IZ: 
p A A A 0 0 

/"'. -... :z: 
~ 
p:: 



- 110 -

IEEE-488 CONNECTION 

IEEE DESIGNATION r:- PIN 
IEEF..DESIGNATION 

DI01 13 DI05 

DI02 I 2 14 DIOI1 

DI03 3 15 DI07 

DI04 4 1 11 I DI08 

EOI 5 17 REN 

DAV h 111 GNDh 

NRFD 7 19 GND7 

NDA 8 
20 I GND8 

IFL 9 21 GNDO . 
SRQ 10 2 2 I GND10 

ATN I 11 2 3 I GND11 

SHIELD I 12 24 I 1 LOGIC GND 

CONNECTOR POLARIZATION 

SUGGESTION: When wirinR the edge-connector to the IF.EE 

connector, inc1ude a 111 pin DIP socket to ~umper the contro1 

1ines. This permits easy modification of the connection to 

the PET to handle some non-standard attributes of the PET's 

IEEE-488 Interface. (These are descrihed 1ater.) 

. II. SOME PHYSICAL LIMITATIONS: 

1. Maximum 1ength: 20 meters 

" 



- 111 -

II. SOME PHYSICAL LIMITATIONS: . ( cont 1 d) 

2. Maximum inter-device spacinp;: 5 meters -
I 

3. Maximum number of devices: 15 

4 • Maximum data rate: 250 KHZ \1 MHZ with tristate drivers) 

III. GENERAL CONCEPTS 

The IEEE-488 BUS is comprised of three functional groups of 

lines: 

"-.... 

D!Ol The data buss transfers data at a rate 

DI02 controlled by the slowest device on the busS. 

DI03 

\DATA 
DI04 BUSS 

The form is byte-serial/bit-parallel 

(i.e., a byte at a time). 

DI05 Also transferred on the data bussare 

DI07 peripheral addresses or control information. 

DI08 

This set of lines controls the trans-

fer of data on the data bus~. This busS -, 
NRFDI .. TRANSFER 
DAV BUSS 

NDAL 

ensures that data is valid and that all 

transfers are complete before new data is 

sent. 

ATN \ Th e man agemen t bu s~ c ont rol s the s"tat e 

SR Q I o r t h e b u s.s, , c o m man d s f o r t h e d e v i c e s , e t c • 
MANAGEMENT 

IFL f BUSS 

REN 

EOI 

-~ 



- 112 -

The bus~can support three classes of devices: 

1. TALKERS. At any given time, only one device 

may transmit data to the buss., Devices capable of 

this a re talkers. 

2. LISTENERS. As many devices as required may receive 

data from the buss. 

3. CONTROLLERS. At any moment, only one device may 

control the buss. Control can be passed to other 
~. 

devices capable of controlling the busS. 

IV. BUSS s ·IGNALS 

A. THE DATA BUSS 

Lines DIOl- DI08 are the data buss. Theseare a.ctive-low 

~ bidirectional lines. (This means a line is normally high. 

Any device can ground the line, making a signal present.) 

Data is transferred in bytes, one bit per line, with the 

MSB in DI08. The forms of data are: 
/" 

1. Data from instruments 

2. Address - primary or secondnry 

3. Control words 

B. THE TRANSFER BU SS 

The transfer of data o ver the data bus is controlled by 

these three lines. The b a ndshake sequence ensures complete 

transmission and reception hy the slowest device on the bus. 



/"'-

- 113 -

B. THE TRANSFER RUSS(cont'd) 

LINE 

NRFD 

DAV 

NDAC 

t hi s: 

NRr\) 

\)A~I\ 
~~~es 

~1*\\J

N'O~rc:

NOT READY FOR DATA. When this line is low, one or more

listeners ~re not ready for the next byte of data. When

all devices are ready, NRFD goes high. This informs the

talker to put the next byte on the data buss.

DATA VALID. When this line goes low, the listeners may

read the datu byte on the data buss. The ta.lker cannot

put DAV low if NRFD is low (All listeners must be ready

first).

DATA NOT ACCEP.'rED. Each listener holds this line low -

until it has finished reading the data byte. When NDAC

goes high, the talker can remove the data from the data

bu9and go to the next byte.

A sim~lified diagram of the handshake se~uence looks like

L

~
(jj

- 114 -

EVENT

1. When NRFD goes high, the talker i~ ·permitted to put data

on the data buss,

2. The data is put on the bu~ and after a settling interval

3. DAV is set low to indicate data is valid. The devices

accept data.

4. When all devices have accepted the datn, NDAC goes high,

permitting

5. The talker to remove DAV and

6. Take the data off the datn huss.

7. The listeners,note the rem oval of DAV and resetsNDAC

in preparation for the

8. Next data transfer cycle

NOTE: When PET is a listener, it expects DAV within 64
milliseconds of NRFD going low(~~ within h~ milli-
seconds) .
When PET is a talker, it expects NDAC witnin h4
milliseconds of DAV ()>--([).
Failure to ohserve these limitations may result in lass
of data.

..
DATA PROTOCOLS

1. Any series of hit patterns is valid on the buss.

2. ASCII Data transfer:

a. Numeric data is transmittable in either floating

point or scientific format, with most significant

digit first. Valid numeric characters are:

'/J - 9,E,e,+,-,

b. Strings are terminated with return or activation of

the EOI line or both.

'

r

F'

........._,

- 115 -

C. THE MANAGEMENT RUSS

Five signal · lines control the activ~ty of the bussand define

the meaning of the data bein~ transferred (data, address or control)

LINE

ATN ATTENTION . . The controller sets this line to low when it

is assigning devices ns listencrs nnd tnlkers. When ATN

is low, obly periphernl nddresses nnd control messages are

on the data buss. When ATN is high, only assi~ned devices

can transfer data.

SRQ SERVICE REQUEST .. Any device can sct SRQ J.ow to alert the

IFC

controller that a device requires service. When the con-

troller sets SRQ, it sets ATN low and does a "service pell"

to find out which device wants service. NO'l'E: This bit

is accessible in the PET. However, the PET 48R software

does not include this function, and it is up to the user

to do so.

INTERF'II.CE CLEAR.

the bus. NOTE:

or p o wered up.

The controller sets this line to initialize

PET only activates this line when it is reset

The si~nal is low for abbut 100 milliseconds.

If the user wnnts this function, it is suggested he place

a switch on this line.

REN REMOTE ENII.BLE. Some de viccs hnng the option of either

OPerating from theit front nanels or the IEEE hus. When

REN is low, control is via the bus. NOTF.: The PET has this

line set permanently low (the pin is grounded).

Put a switch in the line if REN control is desired.

- 116 -

EOI END or IDENTIFY. ~Th e n a t 11. J K c~ r i s finishe d w i t h n a t a t r ans f er,

it sets EOI low. (This is optional). The controller always

sets EOI low when it is finished. (F.OI is set low during

last byte transferveJ)

V. PET COMMANDS/BASIC STATEMENTS PERTINENT TO IF.EE-488 BUS$

It is assumed the user knows how to read and write data to the

tape casette files. See the casette tutorial bulletin for covera~e

of this area.

The IEEE-488 bussannenrs as a file to BARIC. The followin~ BASIC

items are pertinent:

OPEN 1_
.CLOSE J Open/Clase files (assiRn devices)

PRINT# 1
INPUT# Transfer data

GETII

CMD } Direct PF.T's output elsewhcres

ST } :I/0 status variable

The following descrintions are only ahout the asnects which nertain

to the busS,

0 PE N (L o p; i c a 1 A d d r e s ~ ~P h y s i c a 1 n e v i c ~, L~ e c o n d n r y A d d r es s],

''Fileno.me 11

The Loßical Address is 1-?.55 o.nd is referenced by the CLOSF.,

PRINT#, INPUT#, AND GF.T# statements.

'""

r

,_,
\

- 117 -

The Phvsica1 Device is the Primarv Device Andress, and the

range is 4-15.

The Recondary Address is ontionnl. If omitted, none is

sen~. The range is ~-31. Bits h and 7 are set when sent to

the buss.

Tf the address was ~,

is sent as

~(l~f/irfl(l1rll

011~~~1(/1

The Secondarv Address is sent on1v on execution of the

OPEN and CLOSE statements.

A specific form of the Recondarv Address is sent if a

Filename is snecified for OP~N und CLOR~. Rit R is set in

both cases, and hit 5 set on OP~N. As hit 5 is used to snecifv

a control command,

SA 0-15 are fi1es

16-~1 are commands

CLOSE This will send the Secondary Address (if anv) to the device

specified by the open command.

PRINT# This wlll send ARrir characters to the I~~~-488 hus.

If it is desired to set the most si~nificnnt hit, use

variations of:

PRiffT// ::?, CHR~ (X) X ranr:e: Q ._ ::'55

INPUT# Receives charncters according to RARIC IN?U\ rules.

GRT# Gets a charncter or n digit.

NOT:R:

- 118 -

PRINT, INPU':r:',~GF.'T' all refer to the Lop;ical Andress

specifi ed in the ÖPEN stntement.

CMD ·LOGICAL ADDRRAS All RASIC outnut is .. now sent to the device

specified hy a prior O?~Nstatement or command.

has two useful pronerties:

'T'hi s

1. B~S~C programs can he listed to a file or device.

2. CMD leaves the IEEE bus active, permitting more than one

listener on the IEEE hus.

NOTE: Each ti~e a PRINT# statement is executed, the

followin ~ senuence hapnens:

l. The device snecified in the corresnondinp;

OPEN.statement is designnten a 1isten~r.

2. The natn is sent.

3. All devices are set to "not listen" status (U~L).

A similar senuence is used !or INPlJT#, with .d esignntion

of a ta1ker, and an untalk (TTNT) command.

If a CMD is executed first, the snecified device vill

also be able to listen when the PRIN~# is executed. Note

that CMD mus_.t be executed agai.n if more than one PRIN~#

s t a t e m e n t i s u s e d f o r m u 1 t in 1 e d e v i c e s <1. ~ \> ~ \ ~\ ~ s ..

ST STATUS WOTW. The following bits in the BI\S\(. variahle, AT,

pertain to the TlmT•: -hRR hus:

BIT AND MARK

~

1

....
6

1

2

()4

Time out on data transfer

read. error

:ROI

~

- 119 -

ST STATUS WORD. (cont'd)

BIT AND MARK

7 128 Device not present

Use the form: IF (ST) (\~b MARK \\-\~tr ~·--(1, 2, h4, or 12R\
....

to detect these conditions. The test should he done

immediately a ·fter the I/(!) oneration of interest.

TIME OUT. RIT 4 MARK: 1 The IF.F.F. nevice has not

responded within h5 milliseconds (time out interval).

READ ERROR. BIT 1 HARK: ?. The IF.F.F. nevice has not Provided

,... DAV within the time out - INPUT# or GF.T#.

EOI. This is set wh en an IEEE device finishes transmission of

data (see the manual for the instrument as some devices

won't do this). A convenience feature!

DEVICE NO'T' PRESENT. When I/O ".is \· •. :,\\'h\e<\, the nevice din not

resvond to its Ph~siCRl address. This Renerates an error

message and returns you to B~S\(command level.

VI. IEEE-488 REGISTER ADDRF.RRER

If you are bald, here nre the IF.EF.-4R8 hardware annresses for

the PET. Attemntinv, to control the hus via neek and noke will

~
probably fail ns the timeouts for the 48R devices ma~ he exceeded.

1tappy hackinp;!

* \)..-..e. w..o..c.""-\w.,«., \o.~-a(f.~ .

- 120 -

VI. IEEE-488 REGISTER ADDRERRF.R (cont'd)

NAME HEX ADDRESS DF.C IMAL AD.D R 'RI'J'S IKRF. LINER

IEEI $E82~ 50424 r/J-7 DIO 1-R (INPTJT)

IEE $E822 5042h r/J-7 DIO 1-8 (OUTPUT)

IEEIS $E821 50425 3 NDAC (OlJ'J'PUT)

IEEOS $EA2J ')04?7 ~ DAV (INPTT'J')
4 "'E:.9.~ ~-,;.

PIAL $E8lr/l 5ohnR (.. r.:nr (INPTJT)

PIA $E8lq~ 50)~ ') (.. ' 91 NDAC (INPTJT)

l NTrFi'D (OTTTPTT'J')

? A'J''N (OTT'T'PTJT)

(.. J'iRli'n (I!'iPTJ'T')

7 DAV (OTT'T'PTT'T')

~ CBl input of VIA h522 (see MORTechnologv h522 snecification).

Good luck! Let us know if you do anything interestin~.

This bulletin nrenaren by r.regory Yoh,
\ --·

Software F.rlitor, Commodore

~u">'"'~'>~ ~"'-~~

~

r

r·

- 121 -

A LIST OF IEEE-488 DEVICES TO USE WITH PET

You can get the IEEE-488 specs by sending $10.00 plus postage and
handling to:-

IEEE SERVICE CENTER
445 HOES LANE
PISCATAWAY, NJ 08854

While we list an RS232/IEEE-488 Interface, it really doesn't exist
yet. R. Bailey Associates of 31 Bassett Road, London ~NlO however
do make such an Interface and you are advised to write to them for
price and delivery.

IEC/IEEE PRODUCT INTRODUCTIONS

66(C.O.) 22, IEEE 488, ANSI MCl.l COMPATIBLE

SSOOB UNIVERSAL COUNTER TIMER BALLANTI NE

76A

3347

AUTOMATIC CAPACITANCE BRIDGE

AUDIO FREQUENCY ANALYZER

BOONTON ELECTRONICS CORP.

BRUEL & KJAER
4426 NOISE LEVEL ANALYZER
1554 STRAIN INDICATOR

BUS CA~Le ASSEMBLY

DSM44 DIGITAL J.viULTIHETER

BUS CABLE ASSEMBLY

340 MA'f'E.tüALS TESTING FUNCTION
GENERATOR

605-145 ~-TAVEFORM GENERATOR, ASCI I
PROGRAMMER

801 FREQUENCY SYNTHESIZER
802 tt tt

55 MICROPROCESSING GPIB
(5000, 5900, 6900 DVMS)

9015 MICROPROCESSING TIME/COUNTER
9035 " " tt

7500 DIGITA~ MULTIMETER

101 UNIVERSAL TIMER/COUNTER
103 " tt "
105 " " "
111 DIGITAL FREQUENCY COUNTERS

" "
'' ''

BUNKER-R~~0 CORP.

CALIFORNIA INSTRUJ.v!ENT CO.

COMPONENT l1FG. SERVICES

DANA EXACT ELECTRONICS INC.

" " " "

DANA LABS INC.

DATA PRECISION CORP.

DATA TECHNOLOGY (RACAL)

113
115
117

4880

- 122 -

DIGITAL FREQUENCY COUNTERS
" " "
" " "

BUS INTERFACE COUPLER

3000 HF COM}IDNICATIONS RECEIVER

IEC11-A CONTROLLER (PDP-11)

1015A
1015PE
1015B

331
3510
451

296

501J

9880

FF303

1953A
6010A
6011A
8500

9 TRACK TAPE
" " "
7 TRACK TAPE

HICRm-IAVE COUNTER
COUNTER
MICROWAVE PULSE COUNTER

AUTOMATIC LRC DIGITAL HETER

PROGRAMMABLE VOLTAGE STANDARD

PROGRA}~BLE OSCILLATOR
(A.C. POWER)

INTERFACE COUPLER

ATE SYSTEM

UNIVERSAL COUNTER-TIMER
SY1ITHESIZED SIGNAL GENERATOR
SIGNAL GENERATOR
SYSTEHS MULTIBETER

DATA TECHNOLOGY (RACAL)

DATA lvORKS INSTRUNENTATION

DECCA CO~~IDNICATIONS LTD.

DIGITAL EQUIPMEtiT CORP.

DYLON CORPORATI0N
II tt

EIP EXACT

ELECTRO SCIENTIFIC INDUSTRIES ~

ELECTRONIC DEVELOPMENT CORP.

ELGAR CORPORATION

FAIRCHILD INSTRUHEl'rTATION
SYSTENS

FAULTFINDERS INC.

FLUKE MFG. CO.

- 123 -

1792 LOGIC TEST SYSTEM (I/0 PORT) GENRAD

436A POWER METER HEWLETT-PACKARD PRODUCTS
3320B FREQUENCY SYNTHESIZER (11235A) II

3330B AUTOMATIC SYNTHESIZER/SWEEPER
(11235A) II

3455 VOLTMETER II

3490A DIGITAL MULTIMETER II

3495A SCANNER II

3571A TRACKING SPECTRUM ANALYZER II

3745A SELECTIVE LEVEL MEASURING SET II

3964A INSTRUMENTATION TAPE RECORDER II

3968A INSTRUMENTATION TAPE RECORDER II

4261A LCR METER (OPT. 101) II

5150A THERMAL PRINTER II

5312A INTERFACE MODULE (5300B MEASURING
,- SYSTEM) II

5328A UNIVERSAL COUNTER II

5340A FREQUENCY COUNTER II

5341A FREQUENCY COUNTER II

5345A ELECTRONIC COUNTER II

5353A FREQUENCY COUNTERS, Cl~NNEL PLUG-IN II

5363A TIME INTERVAL PROBES II

5354A CONVERTER PLUG-IN
5942A TRANSMISSION IMPAIRMENT MEASURING SET II

8016A WORD GENERATOR "
8503A AUTOMATie RF NETWORK ANALYZER II

8505A AUTOMATIC RF NETWORK ANALYZER II

8620C MICROWAVE SWEEP OSCILLATOR II

8660A/C SYNTHESIZED SIGNAL GENERATOR II

8672A MICROWAVE SYNTHESIZER II

9871A IMPACT PRINTER II

10745A LASER TRANSOUCER SYSTEM COUPLER II

47310A A/D CONVERTER II

59301A ASCII PARALLEL CONVERTER II

r--. 59303A DIGITAL-TO-ANALOG CONVERTER II

59304A NUMERIC DISPLAY II

59306A RELAY ACTUATOR II

59307A DUAL VHF SWITCH II

59308A TIMING GENERATOR II

59309A DIGITAL CLOCK II

59310A/B 21MX COMPUTER INTERFl\CE II

59401A BUS SYSTEM ANALYZER II

59403A HP-IB COMMON CARRIER INTERFACE II

59405A 9820, 9830, CALCULATOR INTERFACE II

59500A MULTIPROGRAMMER (6940B) INTERFACE "
98034A HP-IB I/0 (9825A) II

98135A HP-IB I/0 (9815A) II

- 124 -

3050B DATA ACQUISITION SYSTEM HEWLETT-PACKARD PRODUCTS
3042A NETWORK ANALYZER SYSTEM II

3044A SPECTRUM ANALYZER SYSTEM II

3045A SPECTRUM ANALYZER SYSTEM II

8507A NETWORK ANALYZER SYSTEM II

DTS70 DIGITAL TEST SYSTEM (PORT) II

- 8580B AUTOMATED SPECTRUM ANALYZER (PORT) II

9500D AUTOMATIC TEST SYSTEM (PORT) II

RS432 MICROPROCESSOR DATA & TIMING GENERATOR II

RS648 TIMING SIMULATOR/WORD GENERATOR

IM5200 FPLA LOGIC ARRAY -

SPG-800 SIGNAL GENERATOR

395 LOCK-IN ANALYZER

7802- SYSTEM 1 (I/0 PORT)
ISB (5900.6900. DMM VIA

MICROPROCESSING GPIB)

SN-488 POWER SUPPLY

RELAY DRIVER
RS-232/IEEE-488 INTERFACE

1180 DATA ACQUISITION & PROCESSING
SYSTEM

PM2441 DIGITAL VOLTMETER
PM2460 SCANNER
PM2467 DIGITAL VOLTMETER
PM2527 PRINTER
PM6625 COUNTER
PM6650 COUNTER

S 100 to IEEE

4001 PROGRAMMAHLE LOW-PASS FILTER

488 FLEXIBLE CARTRIDGE DISC SYSTEM

FFT/S15 REAL TIME SPECTRUM ANALYZER

PCL/PCW CARD READER/CODE CONVERTER
(SMU, SMDV, DPVP)

SMPU RADIO SET TEST ASSEMBLY

INTERSIL

INTERSTATE ELECTRONICS

ITHACO

KEITHLY INSTRUMENTS INC.

KEPCO

MICROCOMPUTER ASSOC
II

NICOLET INSTRUMENT CORP.

N.V. PHILLIPS

PICKLES & TROUT

PRECISION FILTERS INC.

PROCESS DYNAMICS INC.

ROCKLAND SYSTEMS CORP.

RHODE & SCHWARZ

-

r--.

2017
2711

UNIVERSAL COUNTER
UNIVERSAL COUNTER

.. 125 -

6054B/C MICROWAVE COUNTERS
6063 AUTOMATIC COUNTER
7115 DIGITAL MULTIMETER
DPSD-50 DIGITAL POWER SOURCE
1600 MICROWAVE SYNTHESIZER

4051
4662
4924

1625

2254

152
158
159
172

GRAPHIC COMPUTING SYSTEM
DIGITAL PLOTTER
MAGNETIC TAPE UNIT

LOGIC ANALYZER

COMPUTER BASED CONTROLLER
(2200)

FUNCTION GENERATOR
WAVEFORM GENERATOR
WAVEFORM GENERATOR
PROGRAMKABLE SIGNAL SOURCE

4311B FREQUENCY/PHASE-LOCK MEAS.
SYSTEM

SCHLUMBERGER

SYSTRON-DONNER

TEKTRONIX

VECTOR ASSOC. INC.

WANG

WAVETEK

WEINSCHf:L ENGR.

cammadare

- 126 -

(K COIIIIODORE BUltNEU IIACMMI. INC.
101 CALIFORNIA AVINUI
PALO ALTO, CALIFORNIA MS04
TILEPHONI!: (411) 321-4000 TILIX: MS-111
CABLI AODRI!IS COIIBUSIIAC PU

ERP.OR lAESSAGES

i·Then an error occurs, PET returns to Coi!li1'land level and dis:plays

READY on its TV screen. Variable values and the program text

remain intact, but the pro,~Sra.rn cannot be continued usinp: the

CONT command. GOSUB and all FOR ••• NEXT context is lost, insofar

as the current run is concerned.

When an error occurs in a program stateroent, the error messa.o:e

displa~r will indicate .the line nurober in which the error occurred.

ivhen the error occurs in a direct, or command level, statement, no

line nurober is displa..ved >Ti th the error nessap;e.

Error Message What caused the error and hm> to fix i t

Attempt to continue a prop:ram 1fhen none
CAN'T CONTINUE

aists, an error occurred, after a new

line was typed into the rroo:ra.rn, or

a correction was made to an existing

line.

Cerreet the error, then use a directed

GOTO to P,et back into the program, or

type RUN and start over.

-.....

,.--

Error r~essage

DIVISION BY ~ERO

ILLEGAL DIRECT

...-

ILLEGAL QUANTITY

,--.....

- 127 -

\fuat caused the error end how to fix i t

Dividing by zero is an error •

Check the expression used for the

denominator in the offendinp, arith

metic statement, then correct it so

i t can never be evaluated as ~.

Use of an INPUT, GET, or DEF statement

as a direct commend •

Avoid using these statements as direct

connnands.

The parameter passeu to a nath or

string function was out of range.

"ILLEGAL QUAI~TITY" errors can occur

due to:

a.

b.

a negative matrix subscript, such

LET A (-1) = 0

an unreasonably large matrix sub

script:) 65535

c. LOG-negative or zero argument , as

LOG(-X)

· d. SQ.R-negative argurnent, as

SQ_R(-4)

- 128 -

Error MesSage vihat caused the error and how to fix i t

ILLEGAL QUANTITY (cont'd) e. A1 B if A is a neeative variable and

]EXT WITHOUT FOR

B is not an integer. (It works if a

constant is used instead of a variable;

i. e. -4 f B, because exponentiation is

performed before unary minus.)

f. A call to USR before the addre~s of the

machine lanP.Ua~e subroutine has been

patched in.

3e sure the argument is wic.hin the range of

the function being used.

a. subscripts must be equal to or greater

than 0, and less than or equal to 256.

b. LOG requires a non-negative argument.

The variable in a l'TEXT statement corres-

ponds to no previousl~r executed FOn stn.te

ment.

The FOR part of a :con ••• :~EXT loop must

lE inserted or the offendinrr ~-TEXT part

.of the loo:r must be deleted. Be sure

the index variables are the sa:ne at ooth

ends of the loop.

,,---.....

Error Hessages

:mXT WITHOUT FOR (cont' d)

OUT OF DATA

I

"\

OVERFL0\·1

- 129 -

lolhat caused the error and how to fix i t

r.xarnple: FOR I= 1 TO 10

•

7IT.XT I

A READ statement was executed but all of

the DATA statemcnts in the program have

alrea1y been read. ~~e program tried to

read too Much data or insufficient ~ata

was included in the progra~.

Use the ~ESTOR'S str1tement to restore

the data so PET can ren.a. l. t aL:nin, ur

restriet the nurober ~ .. 3E.tills to the correct

n~~bcr of DATA elements, or add more DATA

elements. or use a flag at end of. data

list - check for it be~ore reading.

The reaul t of a calculaticn 1-ras t.oo lar~e

to be represented in BASIC' s nu.'Tlber fornat.

(If an under.flo..- occurs, zero is g;_ ven as

the result and execution continues with

out any error messa~e beinc: printecl.)

Error ~-!ess8fieS

OVERFLOW (cont' d)

REDH1ENSIONED ARRAY

- 130 -

~·!hat caused the error and how to fix i t

You · requested a nwnber greater than even

PET can remember. Try asking for a

smaller number. The lar,;est possible

n~~ber is 1.70l41183E+38. Change the

order of your calculations.

After a matrix was dimensioned, another

dimension statement for the same matrix

was encountered. TI1is error often occurs

if a matrix has been given the default

dimension 10 because a statement like

A{I)=3 is .encountered and then later in

the program, a DU~ A(lOO) is found.

ilieck to see if you have used a GOTO to

branch back to a statement preceding

the DD1 statement, or see i f the DI!< state

ment is inside a FOR •••• ~EXT loop or a

subroutine that will be executed more

than once, or if you have used an array

element before using the DU~ statement.

i•!ake DIH one of the first lines in your

pro gram.

--....
l

,---..

~

....---..,

Error Message

RETURN WITHOUT GOSUB

STRING FOa~ TOO

CO HP LEX

STRING TOO LONG

Su~SCRIPT OUT OF illUlGE

- 131 -

What caused the error and how to fix it

A RETURN statement was encountered with

wt a previous GOSUB statement beinp

executed.

Either insert a r~SL~ or delete the

IETURN. t-1aybe you fell throup:h the

program and should enter an END state

ment before the first subroutine statement

to prevent fallinp. throu~h.

A string expression l.ras too complex.

Break up the string into two or more

shorter strings.

Attempt was made by use of the conca

tenation operator to create a strinr,

more than 255 characters lonß. A number

is printed as SPACE-NUNBER-CURSOR RIGHT

Break up the string into two or more

shorter strin~s.

An attempt was made to reference a

matrix element which is outside the

dimensions of the matrix.

Error Message

SUBSCRIPT OUT OF

RANGE (cont' d)

SYNTAX ERROR

TYPE KISMATCH

- 132 -

lfuat caused the error and how to fix i t

This error can occur if the wrong nurober

of dimensions are used in a rnatrix

reference; for instance, LET A(l,l,l)=Z

Wien A has been dimens ioned DP'! A(2 ,2) •

You must either increase the space you

requested for the array (change a

fi!M A(lO) to a DIM A(20), for example)

or alter the number of dimensions you

asked for (change from DIM /1.(10,10) to

DI!-1 A(lO,lO,lO) or from DU,~ B(lO,lO,lO)

to DIM B(lO,lO) for example).

Hissing parenthesis in an expression,

illeeal character in a line, incorrect

punctuation, etc.

This one is hard to find, but easy to

fix. Examine the offending statement

carefully and insert or delete whatever

is necessary.

The left- hand side of an assip:nrnent

statement l.ras a numeric variable a.nd the

right-hand side w~s a strin~, or vice

versa; or a function which expected a

string argument l.ras p;iven a numeric one

or vice versa.

,

')

- 133 -

Error Message What caused the error and how to fix it

TYPE MISMATCH (cont'd) Can't mix statement types, so change

UNDEFINED STATEMENT

UNDEFINED USER
FUNCTION

FILE OPEN

one side of the assignment statement

so it agrees with the other side (sides

meet at the = sign). Check the function

argument types and use the correct type

(numeric or string).

An attempt was made to GOTO, GOSUB or

THEN to a statement which does not exist.

Insert the necessary statement number or

branch to another statement number.

Reference was made to a user-defined

function which had never been defined.

Define the function.

You have attempted to open a previously

open~d file.

Check logical file numbers (1st parameter

in the OPEN statement) and be sure you use

unique numbers for each file.

Error Message

FILE NOT OPEN

NOT INPUT FILE

NOT OUTPUT FILE

DEVICE NOT PRESENT

- 134 -

What caused the error and how to fix it

You have attempted to read fro~ write to,

or close a file not previously opened.

Open the file.

You tried to INPUT# from a file opened

for writing.

Reading requires a 0 as the 3rd parameter

of the OPEN statement. Read (0) is the

default o:ption.

You tried to PRINT# to a file opened for

reading.

Wr i t in g t o a f i 1 e r e q u i r es . a 1 (o r a 2 i f

you want an EOT at the end of the file) as

the 3rd parameter in the OPEN statement.

You have attempted to open a file on a

device which is 'invisible' to PET.

Check device numbers (2nd parameter in the

OPEN statement) and be sure the device is

assigned and connected properly and turned

on.

"\

(

