
BUSINESS COMPUTER

BUSINESS COMPUTER

BUSINESS COMPUTER

BUSINESS COMPUTER

CBM USER MANUAL
MODEL 2001-16, 16N, 32, 32N, 3016, 3016N, 3032, 3Q32N

LJ

0

0

L

. j

! | PET 2001-16, 16N.32, 32N

n PERSONAL COMPUTER
i t

1 ' USER MANUAL

n
FEBRUARY 1979

The information in this manual has been reviewed and is believed to be entirely reliable. However,

^ no responsibility is assumed for inaccuracies. The material in this manual is for information

•' , purposes only and is subject to change without notice.

n
first edition

© Commodore Business Machines, Inc., 1979

r7 "All rights reserved"

Commodore Business Machines

3330 Scott Blvd.

t Santa Clara, Ca. 95051

TABLE OF CONTENTS

Chapter 1. Welcometo your PETcomputer 1

Chapter2. UnpackingyourPETandturningiton 3

Chapter 3. Basic keyboard input n

PET keyboard

Screen editor

Chapter 4. Beginning BASIC 19

The PRINT statement

Variables

Direct and program statements

Literals

Functions

Chapter 5. Eiementaryprogramming 32

Unconditional and conditional looping

Data entry

Chapter6. Advancedprogrammingtechniques 38

String variables and functions

Subroutines

FOR NEXT loops

Subscrpted variables

Chapter 7. PETcommunication withtheoutsideworld 57

PET interfaces and lines

Commands and operations for

peripheral devices

IEEE-488bus

Chapter 8. Machinelanguageprogramming 91

Allocation of memory

Commands from BASIC

Machine language monitor

Chapter 9. Errorsanddiagnostics 113

Debug techniques

BASIC error messages

OS error messages

LIST OF FIGURES

2.1 Rear view of PET 2001 3

2.2 PET memory bus 4

2.3 Memory map by functional blocks 6

2.4 ASCII code in main memory 7

2.5 ASCII 6 bit code 7

2.6 PET graphic character codes 8

3.1 PET keyboard scan lines 12

6.1 Functions expressed in terms of built-in BASIC functions 43

6.2 Principal pointers into PET RAM 55

7.1 Simplified view of PET 57

7.2 Edge connectors J1 and J2 57

7.3 PET IEEE connector pinout 58

7.4 Receptacles for the IEEE interface 58

7.5 IEEE standard connectors 59

7.6 Parallel user port information 59

7.7 6522 VIA addresses in PET 61

7.8 Parallel user port example 62

7.9 Connector J3 contact identification 62

7.10 Second cassette interface port 62

7.11 PET second cassette edge connector J3 63

7.12 Edge connector J4 63

iii

LIST OF FIGURES(continued)

7.13 Memory expansion connector 63

7.14 Multiple file structure 69

7.15 OPEN for write from PET ' 73

7.16 OPEN for read to PET 74

7.17 Status word errors 80

7.18 Default parameters 82

7.19 Examples of default parameters 82

7.20 IEEE bus contact identification 83

7.21 Transfer bus handshake sequence 84

7.22 Byte transfer from talker to listener 85

7.23 Signals described by IEEE bus groups 87

7.24 Status codes for IEEE bus 88

7.25 IEEE-488 register addresses in PET 88

7.26 Code assignments for command mode operation 89

8.1 Example Floating Point Numbers 94

8.2 Machine Language Monitor Listing 100

IV

LIST OF APPENDICES

A. Detailed PET memory map

B. BASIC statements

C. BASIC commands—intrinsic functions

D. Expressions and operators

E. Space and speed hints

F. Suggested reading

1- WELCOME TO YOUR PET COMPUTER

Congratulations and welcome to the exciting new world of personal computers. By selecting

the PET 2001 you have eliminated the problems of getting a personal computer system running. Your time

is now available for learning the functions and capabilities of your PET. In fact, if you follow a few simple

procedures outlined in this manual, you should be able to achieve initial operation of your Pet 2001 within

a short period after unpacking the shipping container.

The potentials of your PET are virtually limitless. This book, by its very nature, is limited. Questions will

arise that this book has not covered or even anticipated.

Write to us at Commodore with your questions. We will answer many that you and other users will pose

with a newsletter we'll be sending out from time to time to users.

Commodore Systems Divisions:
3330 Scott Blvd.

Santa Clara, Ca. 95050

USA

360 Euston Road
London NWI 3B1

England

3370 Pharmacy Avenue
Agincourt

Ontario, M1W2k4

Canada

PET is a Personal Electronic Transactor. Everything is complete in one steel cabinet. It contains a CRT

board, keyboard, computer board, and a Commodore supplied cassette. There is a built-in black and

white television monitor, which displays characters in a format that appear to you to be forty characters

by twenty-five lines.

At the heart of your PET 2001 is an MCS 6502 microprocessor. This microprocessor totally controls

operation of the screen, keyboard, cassettes, and additional peripherals which can be added to the PET.

The product is so construed that you cannot damage the PET from the keyboard. The operating system

cannot be destroyed because the computer software, or operating instructions are contained in a fixed

memory. (Called Read-Only-Memory) This allows both the first time user and the sophisticated user to

use the PET with impunity.

In order to satisfy the needs of the serious user as well as the first time user of a computer product, we

have used three formats in this manual.

Summary discussions in this type font are designed to answer the questions of a professional

programmer. When you are first using your PET manual, read these sections lightly and spend time on the

more detailed explanations which are in the type font of.the preceding paragraph. After you have used the

PET a bit, the italicized summary sections will be useful when you want to review how a particular

instruction works.

The third type of format gives a detailed description of how the PET implements a section. These

sections are for people who use the PET at the machine level. The first time reader may find these

sections difficult to follow and we recommend he/she use them only on re-reading the material when

more familiar with the PET operating system. The language which you will use to communicate with your

PET is called BASIC, an acronym for Beginners All-purpose Symbolic Instruction Code.

It should be noted that there are other reference material written about BASIC, with different types

of usage in mind, which are available to the public. We have included a list of such suggested reading in

the appendix. Some of these manuals may be more useful to satisfy a specific need which is not covered

in this particular manual.

The ultimate teaching device for learning how the PET works is the PET itself. In some cases, we will

ask you to use the PET along with the text, rather than just continuously reading what to do. In any

case, this documentation is sufficient to allow you to get started on an example. By constructing similar

examples of your own, any questions which might arise are answered by the machine itself. Of course,

we invite comments on this material and particularly on examples which you as an individual have used

to resolve any unclear statement.

Lastly, since this manual cannot presume to provide all technical information of hardware or

programming aspects of the MCS 6502 microprocessor, we direct you to two other Commodore

publications: There is a manual available from your dealer called Hardware Manual which also includes

descriptions of the auxilliary devices which generate the control signals necessary to allow the PET to

operate. Detailed specifications of the computer and the language in which it operates are available in a

book called Programming Manual. This is available for purchase from your PET dealer or either can be

purchased from Commodore directly.

NOTES

Chapter 2. UNPACKING YOUR PET AND TURNING IT ON

Please check the carton for any special unpacking instructions and carefully examine your PET for any

concealed damage. If anything is amiss, reportly this immediately to both the place of purchase and the

shipping agent.

Remove your PET from its protective shipping carton and place it on the counter, desk, or other suitable

surface, then plug it into any standard, grounded electrical outlet. (In some countries no plug is provided.)

TV BRIGHTNESS

ADJUSTMENT

MEMORY EXPANSION

J4 CONNECTOR
2NO CASSETTE

INTERFACE J3

PARALLEL

USER PORT J2

SERIAL NUMBER

ANO

ELECTRICAL SPEC.

3-WIRE AC

POWER CORD

Figure 2.1. Rear view of PET 2001-8 showing switch,

fuse, line cord and interfacing connectors

The power switch is located in the left rear of the PET. Closing the switch to the left turns the PET on and

closing it to the right turns it off. (There is a white dot on the power switch to indicate it is in the poweron

position, or an ON/OFF label.)

Immediately, when the power switch is turned on, power is supplied to the internal circuits. There is a

time-out circuit in a special condition (reset condition) which initializes them into a known state. If the

screen has had power immediately prior to this time, you will see on the screen a variety of strange

characters which reflect the current contents of the computer memory which is controlling the screen.

The screen memory transfer to the screen is done with circuitry outside control of the main

microprocessor, and so, even when the computer is not operational, the screen always displays the

current contents of the screen memory.

At the end of the power-on cycle, the computer initializes the internal memory, blanks the screen

temporarily, and then displays on the screen a message like the following:

COMMODORE BASIC

15359/31743 BYTES FREE

READY.

□

The 15359/31743 refers to available users1 programmable memory. A byte is the fundamental data element of

the PET computer and corresponds roughly to one letter or digit of information. A16K PET will display 15359

bytes free and a 32K PET will display 31743 bytes free.

If you fail to get the power-up display the first time, try turning the power switch slowly off, then back on.

To get the display, four different types of memory are used: ROM, User Read/Write, I/O

(Input/Output), and Screen Memory.

The relationship between these memories is shown in figure 2.2.

address and data-bus

/

\

\ /

ROM

14k

/ \

RAM

16/32K

\

/

TV RAM

1k

I/O

2k

7V7v7\

keyboard user port

\/

IEEE-488

Figure 2.2. PET memory bus

ROM (READ ONLY MEMORY)

ROM causes the PET to perform most of its operations. In each PET, 14K of ROM contains a series of

programs written by Commodore which scan the keyboard, print the display, control input/output, count

the real time clock, and execute commands that the user types in. Read Only memories are not only

the lowest cost memory for storing this data, but also give the user the most protection and the fastest

operation of his machine. This is because the operating system memory is indestructible from the

keyboard, or from the user's program. Not only is the machine available to run BASIC from the moment it is

powered on, but also the user program cannot damage the BASIC operating system.

I/O MEMORY

The second type of memory is that which is devoted to Input/output operations. This memory contains I/O

devices called PIA* and VIA** which allow the PET to individually control the bits that manipulate the

computer. Except when special I/O operations are desired, the user should not allow his program to

interfere in any way with these areas. The operating system automatically handles these locations in

order to perform legitimate Input/Output operations.

USER READ-WRITE MEMORY - R.A.M.(RANDOM ACCESS MEMORY)

The third type of memory is the User Program Memory Space. (We will call this area RAM

throughout this book.) In a standard 8K PET, it is located from location $0000 to hexidecimal

$1FFF. A detailed map of all the memory is included in figure 2.3, showing where the ROM,

RAM, I/O, and Screen Memory are located from a programming standpoint. As you can see

by the map, the first 1024 bytes of memory are reserved for the operating system to use

for its various tasks, including the buffering of data from the cassettes and other I/O devices.

The message '7167 BYTES FREE" is a result of an analysis of BASIC which starts at

location 1024 and cycles through the memory to determine which locations are available, thereby,

performing a check on whether or not the Read/Write Memory is working correctly.

If the number was less than 15359/31743, you may have a hardware problem.

BASIC can automatically check up to 32K of RAM as long as the added memory is continuous to the

memory that comes furnished with the PET. This memory is really the working memory in the machine; it

is where programs are loaded and BASIC holds all of the program variables.

Later on, we will discuss some techniques to expand this memory by using tape files and

program overlays.

SCREEN MEMORY

The screen memory is physically composed of the same kind of chips that are used to

make up the PET's standard memory. It is constantly being used by the CRT control electronics,

which takes the individual bytes of memory and uses them to address a special character generator

ROM, thus displaying characters on the screen.

As mentioned during the power-up discussion, this process is totally automatic, and the programmer has

no direct control over it.

*PIA - Peripheral Interface Adaptor

**VIA - Versatile Interface Adaptor

For information about these and related chips, see 6502 Hardware Manual.

o

1024

8192

16384

32767

32768
33792

34816

35840

36864

RAM

RAM

RAM

RAM

Operating system and

BASIC working storage

User BASIC program

~UseT Variables

16K PET

32K PET

Expansion RAM area-24K

RAM TV

Images of TV RAM

Images of TV RAM

Images of TV RAM

Expansion ROM area-12K

n

49152

59392

61440

65536

ROM

I/O

ROM

BASIC

operating system

Figure 2.3. PET memory map

On every cycle of the TV screen (i/©o of a second), the hardware starts with the least address

($8000) in the screen memory and processes the screen data starting at the upper left-hand

corner of the screen. Each character in the memory is addressed into the character generator eight times,

giving us an 8 row high character on the screen. The character ROM that is used generates

8 dots each time it is addressed. These dots are serially fed to the screen, working from left to right and

top to bottom. This gives an 8 bit wide 8 bit tall character with no spaces between characters. The CRT

controller automatically changes the addressing of the character generating ROM, depending

on whether or not it is scanning the top line of a character, the second line of of a

character, etc.

There are two character sets stored in the ROM. You can change the character set on the

screen by POKEing memory address 59468 with a 14(a 12 turns it back) which turns it to

the second character set. After you have played with the screen a little bit, you may want

to try this feature to see if your PET performs this way. The second character set substitutes

lower case letters for the graphic set that is available in the first set.

To understand this, let us review how characters are represented in the PET and in the memory.

CHARACTER REPRESENTATION IN PET MEMORY

The standard ASCII code is used to represent characters in the main memory. (RAM)

In the PET, the 8th bit (bit 7) is used to signify BASIC command words or graphics characters for the PET

screen.

u

u

B

i

i

b i

t> 1

4 1 i

Id

i

u

1

i

i 1

y

i

i

1

i

i

1

tflfcii

yiii

itjdb

idbl

ikjifcj

ibil

iiwu

iiyi

iiiu

iiil

Example in the

1

1

1

1

I

I

I

1

1

1

1

I

1

l

1

1

NUL

bOH

b IX

t i ft

toi

tNti

H'vK

tftL

Bb

HI

Lh

VI

Hh

CK

bO

bl

3 PET:

A is represented

Shifted A (a spade) is

JL>Lt

L'Ci

D^tL

i;»Cb

i>lJ4

NHK

SYN

t IB

tw

bUii

Lb'w

hb

•ob

Kb

Vb

Figure 2

0100 0001

1100 0001

i

b

4

b

V

b

y

H

t

Y

'o

H

i

J

K

L

h

H

Q

k

b

i

U

V

w

K

V

L

\

J

i

bh'

a

b

c

d

e

f

h

i

J

k

i

rn

n

o

p

s

t

u

X

2

I

Figure 2.4. ASCII character set (7 bit code)

The screen memory is organized with a different representation from the main PET memory.

There are only 64 characters from the standard ASCII set that are normally printable.

Li

U

0

0

1

fcJbil

i<i

iltli

111U

ilii

tt

1

y

i

i

ft

B

c

t

h

H

1

J

K

L

M

N

0

K

b

i

U

V

X

Y

L

\

j

t

b

V

b

y

Figure 2.5. ASCII 64 character set (6 bit code)

0

LJ

U

U

LI

LJ

J

U

These are the same characters that are directly available on the PET keyboard.

The representation in screen memory is derived from the standard ASCII set by dropping bit

6; giving us a six bit code for the keyboard characters.

The graphic, or shifted characters, set is represented by a 1 in bit six of the screen memory, giving an

additional 64 dispiayable characters.

This gives the following table for PET dispiayable characters. It should be noted that all of the graphics

characters are organized so that they are just a shift from the normal keyboard character.

n

£ b!

i *s> I

1 4 1

bum* i

ki tl tl !JL

fcjtfil

tflltf

Mill

Itfiu

itfll

11MU

11M1

llltf

1111

a

w

H

c

i>

L

\-

»o

1 H

i i

i j

1 K

1 L

i M

1 N

t 0

1

Q

K

b

1

U

V

W

K

Y

^

L

\

J

V

i

u

i

11

%

be

••■

»;

*

+

-

/

y

i

i

y

i

4

b

V

b

y

;

>

y

1

id

—

—

—

i

i

*•»

'->

-•*

L.

\

/

i

l

i

1

—

1

/•

X

D

*

i

if

i

i

u

i

■i

—

I

1

1

r-

■

L

1

1

1

i

r

T

I

1

1

J

■

fa. -

J

kc

Figure 2.6. PET graphic character set (7 bit code)

Example: This gives us the following conversions:

Character In main memory In screen memory

A 0100 0001 00000001
f 1100 0001 00000001

1 00110001 00110001
_l 10110001 01110001

Note the reduction from seven bit ASCII to six bit gives the effect of changing the order

of A and 1. In screen memory, the 8th bit is used to store reverse field. The reverse

field consists of taking the dot pattern from the character generator and reversing it, replacing

a white dot with black and a black dot with a white.

If the operating system is used, it automatically translates the values from ASCII into the screen

memory representation. Both PRINT and direct input from the keyboard result in automatic

translation between the screen memory and the main memory.

8

USE OF THE SCREEN MEMORY

There are three ways to get data into the screen memory. The first of these is to POKE into

the appropriate memory address the desired translated character. This is programmed only when

normal updating of the screen is too slow.

As long as the PET directly controls the screen, there is no apparent effect from the fact that the screen

and the PET are contending for access to the memory. The routines in the PET change the screen

memory only during times when the screen memory is not being used for display. This slows

the use of the screen memory down to about 40 percent of the speed obtainable with a POKE. The POKE,

however, gives a visual effect of flashing dots, because the screen is displaying the character

that is being passed from the PET to the screen memory, rather than the character that

should be displayed at that particular position. When a program pokes to the screen, the faster

it runs the more flashing there will be.

The second way to get data onto the screen is the keyboard. During a time when keyboard input is

enabled, the character being struck on the keyboard is automatically displayed on the screen.

The third approach is by use of the PRINT command in BASIC. When

PRINT "ABC"

is typed to BASIC, it results in the next line being printed as:

ABC

This is a print of a literal field in which all characters between the quotes are printed.

The next position at which a character will be displayed if typed on the keyboard is indicated

by a flashing signal called a cursor. The cursor is a visual indication to the user of the next

print position in screen memory.

What is physically happening in the machine is that everytime the screen is recycled, about

i/6oth of a second, an interrupt to the PET is generated. This generates a real-time clock on the

computer (the PET) and steps a blinker counter/When this counter reads 37, the character referenced by

the screen memory pointer is reversed in the 8th bit. This causes the reference character to

be shown in alternating normal and reverse field, giving as visual effect of blinking.

By moving the pointer, we can print output any place on the screen. This is done by using a combination

of the keyboard and some software called the screen editor, which manipulates screen memory under

control of the keyboard.

NOTES

10

Chapter 3. BASIC KEYBOARD UNIT

Whenever the blinking cursor appears on the screen, the computer transfers data from the

keyboard to the screen memory.

Keyboard data is transferred by the interrupt routine to the screen memory each time a new

key is struck. Only after a carriage return is the keyboard data transferred to the operating

program, and then a whole line is transferred at once.

There are two exceptions to this, neither one of which causes the cursor to blink. One of them

is the use of GET, which will be discussed in a later section, and the other one is when

the keyboard data is accessed directly using machine language programs.

The PET keyboard has been optimized for use as a computer keyboard, though the organization

is similar to that of a typewriter so a touch typist does not feel totally out of place.

However, some important changes have been made:

1. Because of the high use of numbers and calculations with the computer, a calculator-like
number pad has been added to the right of the main keyboard.

2. The number pad has all of the mathematical operators in a form that is normal for BASIC.
3. The various keys for screen movement and editing are located on the numeric pad.

4. The characters which are normally the shift of the numbers on a standard keyboard no
longer require shifting. These characters are quite often used in BASIC, and it is
convenient to have them available without shifting.

5. All standard characters are unshifted, so that a complete 64-character graphics set is
available by use of the shift keys. These graphics give the PET significant line drawing ability.

PET KEYBOARD

The keyboard consists of 73 keys, including two shift keys, either one of which may be pressed to cause

the upper or shifted characters displayed on the keyboard to be operational. Lower characters

are always used unless one of the two shift keys is pressed simultaneously. Each key has

a thin, transparent plastic film covering the keytop which should be removed. This protection was

left in place to protect the keys against scratching during shipping. To remove the film, carefully

peel it off by using the sticky side of a piece of masking tape so as to avoid scratching the keytops.

There are 64 printed characters on the keyboard with 64 upper case, or shifted characters on

the same keys. The rest of the keyboard consists of function characters. Some of the functions

are obvious: like carriage return or cursor right and left. Reverse on allows all subsequent characters to

be diplayed in reverse field - black on white.

The reverse key is operational on a memory basis. From time to time the key is struck, the

function is operational until it is terminatedby a RETURN pressed or printed, or by pressing reverse-off

(the shifted reverse key). This concept of reversal of function, up and down, right and left is carried

through to the function keys, so that the complementary functions are usually combined, with one being

the shift of the other.

The keyboard is scanned using a 6520 PIA, a four line to ten line decoder and the interrupt

routine from the CRT controller. Each time the interrupt occurs from the CRT, the keyboard is scanned

using a left to right scan. The keyboard is organized on a 2 x 5 row matrix with the matrix

being repeated 8 times across the keyboard. To implement noise protection and N key roll

over, the keyboard scan routine keeps the final value of the last scan in a buffer.

Until that key is released, no other keyboard scans are acknowledged unless a later scanned key

is struck. The later scanned key is then considered to be the next key closure. The algorithm does not

11

~ 2 «^ ^ ^k a

iilljl
« o $ <Z

CD
Q.

s i

-1
1

IS S
Q. <D

CO (0

I 3

(C

o

AITT
M

a

12

give classical N key roll over but does allow for legitimate rejection of noise and trapping of the keys

in the order that they are struck.

The keyboard is left scanning the last row, which contains the stop key. This allows the routine in

BASIC, that checks for the stop key to sample the input I/O device, without having to perform any

of the normal functions of scanning. The user can take advantage of this by reading the input character

for that row.

The shift key is a special multiple key ciosure and is treated separately. If either of the two shift keys

is pressed, the software sets a special shift switch which is used to change the decode of the key.

All key closures are translated using a ROM-based look-up table for the key. The shift key is encoded into

bit 8 of the ASCII character which is then translated into the screen representation in the standard way.

Once the hardware translation is done, the encoded value is transferred into a 10 character keyboard

queue. The keyboard queue is loaded every time a new key closure is sensed and is unloaded as soon as

characters can be transferred to the screen.

This input queue is scanned by the GET routine directly to allow input without going to the screen. The

input stack may be scanned by a user program. The user program can look at the pointer at location 158

to determine whether or not it is greater than zero; if it is, that means that there is data in the keyboard

queue. The keyboard queue is located at 623-632. The first character may be taken out; all subsequent

characters moved down, and a load index pointer decremented by one.

This is a dangerous routine, unless written in a machine language with the interrupt masked, because a

new key closure could store a new value during a time that you are scanning and changing the queue.

Both the GET and keyboard input routine take care of that automatically by only operating during the

interrupt or with the interrupt masked.

Whenever the screen editor routine is operational, a special two-level operating system is in play. The

first level enables the cursor to flash and writes data from the keyboard to screen memory at the current

cursor position. The routine then moves the cursor one character further down in memory. The process is

repeated, trying to keep the keyboard queue empty.

The second level flashes the cursor and translates and stores characters from the keyboard into the

keyboard queue. Meanwhile, the first level operating system always watches the input stream for a

carriage return. After the carriage return is printed, this routine automatically transfers the entire line to

the operating system. The rest of the operating system does not see the characters until they have been

typed and a carriage return is sent. This allows for total editing of the line, prior to handing it to the

operating system.

An interesting trick for the more advanced programmer is to use the PET to write its own programs. By

printing out a line to the screen, forcing a carriage return into the keyboard queue and then returning

control to BASIC, new line numbers may be entered into the memory. Another example of the use of the

keyboard queue is the LOAD/RUN sequence which is implemented by the keyboard scan program when a

shift-run is encountered, the routine automatically forces "LOAD, CARRIAGE RETURN, RUN CARRIAGE

RETURN" into the keyboard queue. When control is returned to the input routine, the load followed by the

run is automatically transferred in the proper order.

It should be noted that this keyboard queue is only ten characters long and if it is exceeded, dramatically

bad effects can happen to your system. The only known recovery from exceeding this queue is to power

13

the system back on and start over. When fooling with the queue, remember that if the user is typing on the

keyboard and you do not have the interrupt turned off, the operating system is going to kill you.

SCREEN EDITOR

Typing on the keyboard, while the cursor is active, transfers what is typed on the keyboard directly to

the screen. This function is like a simple computer terminal which requires you to retype a whole line

until you get it right, but the PET lets you edit your mistakes before you enter a line. The editor is best

understood with a PET to illustrate it. The user should follow discussions on his own PET, as many of the

examples are much more difficult to describe than to see.

To follow these examples, two concepts are necessary. One is that when we type a ? the BASIC operating

system is goling to interpret the ? the same as PRINT.

The second concept is that when we follow a ? by a ",all characters after the", until the next " is en

countered,

are treated by BASIC as characters that you will want to have printed onto the screen.

In this section you are operating the computer in what is known as a direct mode. (i.e. rather than

programming mode). BASIC is executing each instruction like print as soon as you type it into the system

and hit carriage return. We will see in the future that this is not the way most programs are operated. It

does make the machine useful as a super calculator.

The first thing that we want to do is have the machine type a simple message. You should have already

done this with your users' guide. However, we hope by now that you understand a little better. We type

the line:

?"HI THERE"

You will see that BASIC responds by printing HI THERE. It should be noted that each time we struck

a key on the keyboard, the cursor moved automatically one place to the right, allowing us to type in the

next character, and nothing else happened until after the carriage return. When the carriage return

occurred, the HI THERE appeared almost immediately on the screen.

Let us talk about the simplest function; that is, immediately correcting a mistake. Retype the line

?HI THERE B. What we were trying to type was HI THERE PET, but we hit the character B rather than P.

For those of you who are touch typists, you may have already made this mistake with the PETs close

keys. In order to allow you to immediately correct this mistake, there is a key which allows us to erase a

previously struck character. This key is called the delete key, located in the upper right-hand side of the

keyboard.

If we strike the delete key once, you will see that the B has disappeared. Typing the P results in an

overstrike of that position. We can now finish typing ET; then hit carriage return, causing the PET to print

out HI THERE PET, a blank line, and READY.

The delete key is the fundamental editing tool which allows you to strike out as many characters as you

want from where you are and then retype. This is the simplest form of editing. It is implemented by

14

decrementing the screen pointer from where you are by one and striking a blank over where the screen

pointer is. We can go back and erase the READY that is right in front of our cursor by just continuously

striking the delete key. Notice two facts as you are striking; (1) if you strike slowly, the cursor will move

one character at a time, and (2) if you strike fast, the cursor will actually move several characters

before you see it blink. This phenomenon occurs because it takes 15 times as long to blink 2 characters

as it does to overstrike one. Also, notice that the PET wraps around the screen. The screen memory is

organized so that deleting the previous character in memory moves the pointer back over that character.

Because of the fact that the characters scan from right to left in 40-column chunks, for example deleting

the character at the beginning of the line, and then striking the delete key at the beginning of the line,

deletes the 40th character of the previous line. Just keying back 40 strokes erases the READY from the

line above, however, this is a pretty slow way of editing.

There are three cursor movement keys on your PET. One key moves the cursor right or left; the second key

moves it up and down, and the third key moves it home (upper left-hand corner) and clears the screen.

CURSOR RIGHT AND LEFT

The cursor right key moves the pointer one character to the right. If we strike it now five times, you will

see that it moves us five columns over. It accomplishes this by changing the cursor pointer in memory.

The cursor left key is on the same key as the cursor right and is evoked by shifting prior to striking. If we

type that four times, you will see that now we are back one character to the right of where we started. If

we strike it two more times, it moves us around the corner of the previous line. Cursor left, of course, just

moves the cursor pointer one character less in memory. Going to the left, it moves one character at a

time. Obviously, by doing this, we are able to edit the screen. However, faster editing can often be

achieved by use of the cursor up and down keys.

CURSOR UP AND DOWN

The cursor down moves the pointer 40 columns to the right from its current position. This gives it the

same visual effect as moving it down one line on the screen. For an example, try spacing over forty

positions with the cursor right. The cursor is now on the same position on the screen, but down one line.

To cause the cursor to move up, hold down the shift key while striking the cursor up/down key once; this

gets us back to our original position.

Cursor up moves the screen memory pointer "up" 40 characters from its current position, or rather, 40

characters less in screen memory than the current position.

SCREEN EDITING

We can now use the cursor movement characters to get up in position on the second H in the HI THERE

PET message. Once you are there, you can now delete the T by striking the delete key. You will notice that

all the characters to the right of the character being deleted are moved to the left one character. You will

now see the delete is actually a matter of moving all the characters in memory left one, rather than just

substituting a blank.

INSERT/DELETE

Before analyzing insert and delete, we should be reminded that the screen memory is organized such that

any single line may consist of 40 or 80 characters. (See section on screen memory.) Insert and delete are

concerned with the characters on a line. Whenever the delete key is struck, all of the characters,

starting from the position of the cursor, to the end of the line, are automatically shifted one character to

the left, replacing the character preceding the cursor. The cursor is then moved to the position of the

replaced character.

The last character in the line is automatically blanked. Insert is the reverse of this process. If we want to

15

fix the line that we just got through taking the T out of, we need to put a T back between the blank and the

HERE. In order to do that, we have to make a space in which to type the T. To accomplish this, we strike

the shifted insert key with a single stroke. After striking T, you will note that this now creates a screen

which says HI THERE PET, with the cursor blinking over the first character of the insert. To insert more

than one character, strike the insert key more than once; this moves all the characters on the line to the

right, and the cursor points to the first character of the insert. This then allows us to insert several

characters on the line. For example, if we hit the insert key three times, type T's until the cursor is

positioned over the H, then delete ail of the extra Ts; we will then see that the back and forth movement

in the line is automatically handled and we end up with a perfectly recomposed message. It should be

noted that in no time has the computer responded to these commands, other than making a change on

the screen. This is because we have not yet pressed carriage return to tell the PET that the line is

complete.

That is why we have been talking about a screen editor. All editing is accomplished between the keyboard

and the screen memory, without interfering in any way with the rest of the operating system. This allows

the user to compose perfect text and hand it to the computer without the programmer who is using the

data, whether it be BASIC or the user program, to worry about the intermediate steps of making

corrections. It is best symbolized by:

What You See Is What You Get.

LINES ON A PET SCREEN

Physically, a line on the screen consists of 40 columns of information. However, traditionally in the

computer business, many data inputs are organized for 80 column data cards and, of course, much more

data can be put into 80 columns than into 40. Therefore, although the PET screen can display only 40

characters per line, the user is given all the flexibility of an 80-column line. This is accomplished by

allowing the screen to define more than 40 characters as a line. If we move our cursor over to the

beginning of the line below HI THERE, and start typing NOW IS THE TIME FOR ALL GOOD MEN TO

COME TO THE AID OF THE PARTY, we will see that after typing the E, the space is automatically on the

next line. You will soon see the screen considers this to be an 80-column line although the HI THERE PET

right above is only considered to be a 40-column line.

The thing that allows the PET to accomplish this is that internally, there is a table of pointers at the

beginning of the line. Each line has a marker that indicates whether it is the beginning of a line or a

continuation line. This pointer is kept in the negative bit position of the index pointer. Whenever a cursor

up or cursor down occurs, the editor examines the status of these line pointers in order to initialize the

PET to their proper line number. At any time while the cursor is on the screen, there is a separate value

kept which is the beginning pointer for the first complete line from which the cursor operates. The screen

position is then kept as a separate pointer telling the PET whether it is greater or less than 40 characters.

Whenever scrolling occurs, the line pointers are moved up in such a way that the concept of the first line

second line is maintained until the line disappears on the screen. This line pointer table is located in

memory locations 224-248.

Now that we understand that the PET can allow 80 columns, let us see what happens when we do the

insert at the beginning. To print this line, we have to put a ?" at the beginning of the characters. We move

the cursor up and left, until the cursor blinks on the N of NOW. If we insert twice, we can then type a ?"

(it should be noted that this causes the characters on the line to all move to the right). If we now carriage

return, the PET prints NOW IS THE TIME on two consecutive lines, spaces a line and types READY. If we

16

go up and make a change in the middle of the line, we can see that it makes no difference where we hit

the carriage return in the line. If we space up to the word PARTY the first time that it is on the screen, now

even though the cursor is blinking on the P, a carriage return causes the entire line to be reprinted. The

basic rule is that when a carriage return is struck, regardless of where it occurs in the line, the entire line

is transferred, whether it be a 40-or 80-column line. Sophistication in using the editor will become more

apparent as you use it when writing programs.

SCROLLING

Now that we have a mixture of 40-and 80-column lines on the screen; let us investigate what happens

when we try to move the cursor off the bottom. To do this, we just cursor down until the cursor is at the

base of the screen. Hitting the next cursor down causes the entire screen to move up one line. Any time

we attempt to print past the thousandth character on the screen, the screen editor automatically moves

the entire screen up one line.

Lines move up on the screen by a one line or two line jump depending on the status of the top line on the

screen. This is accomplished in hardware by checking the top line pointer plus one. If an 80-column line

is to be scrolled off the top, the 81st character through to the thousanth character are moved to the top of

the screen memory, and the bottom 80 characters of memory are filled with blanks. If only a 40-column

line is to be moved off the top, the 41st character is moved to the first, etc., and 40 characters are blanked

at the bottom of memory. The cursor is positioned automatically in the same position at the bottom of the

screen as it was when you tried to move the cursor down; or in the case of a carriage return and/or

printing, the cursor is moved automatically to the left-hand side of the bottom line.

This process is totally automatic and is caused by attempting to print carriage return or space off the

bottom of the screen. There is no other program control over the movement. As we will see when we write

a program that causes scrolling, the scrolling speed on the PET is too fast to read. If the reverse key is

held down while printing is occurring, the scrolling will be slower by a factor of 20.

HOME AND CLEAR

Striking the home key moves the cursor to the upper left-hand corner of the screen (the first location of

the screen memory). Holding the shift key down and pressing the clear key gives you a blank screen with

the cursor blinking in the upper left-hand corner. This is accomplished by moving blanks into all thousand

screen positions and again homing the cursor. Clear or home can be given at any place on the screen.

The PET basically moves data from the keyboard to the screen and then when a carriage return is struck

moves the screen data into a program. This allows the user the flexibility of making a correction on the

screen without having any effect on the program that is going to receive the corrected version. Keys are

provided to allow movement around the screen and to insert or delete, as well as type over any character

on the screen. This allows the entire screen to act as an editing place for user-controlled input.

17

NOTES

18

Chapter 4. BEGINNING BASIC

The combination of instructions to solve a particular problem cannot be taught in a text book. It is a

creative process. Someone who knows how to use the computer uses his intuition or careful planning to

figure out instruction sequences to allow solution of his problem. All that we can cover in this book and

all the PET can be - except when it is provided with pre-programmed softrware - is a tool to use for solving

problems. This book cannot teach you to solve your particular problem. It can, however, teach you how to

use the PET as an instrument.

THE PRINT STATEMENT

A computer can calculate numbers all day but it is of no value unless the computations can be displayed.

We will begin our discussion of BASIC with the PRINT statement for that reason.

When typing text, PRINT can be abbreviated as ?. A statement such as this:

PRINT "HELLO"

is an instruction to the computer telling it to display on the screen all characters between the quotes - in

this case a word of greeting. On the other hand:

PRINT 1024 *8

is an instruction to print the product of 1024 multiplied *8.

It is useful to note that BASIC allows you to print more than one value at a given time. Rather than having

it write a line, print 'A1 and on a second line print 'B', it is possible to write the line:

PRINT 1024t 2, 1024 f 3

which will print the square of 1024, a few spaces, and then the cube of 1024. Details of the exact format is

contained in the next section. The point here is that you can print as many values across a series of lines

as you can write down.

Unless the computer has been instructed otherwise by means of CMD command, all print outputs are

directed to the built-in screen. The characters are printed in the next available print position on the

screen, under the control of BASIC and an editor which is keeping track of the screen position. Although

the physical representation on the screen is 25 lines by 40 characters, the printing of up to 80 characters

is accomplished by the screen automatically folding over the 41st character onto the next line. The

computer automatically scrolls the screen up one or two full lines when it reaches the one-thousandth

character on the screen.

The command PRINT has two major forms under the control of BASIC. (1) The standard print single

character which allows for printing the field specified after the print statement has ended in the form

print variable. If the data is presented in this form, the field is printed starting at the current screen

position and followed by a carriage return. (2) Data presented in the form PRINT A, B, then BASIC

automatically tabulates printing 'A' starting at the current screen position then spacing over 10

characters, prints 'B' followed by a carriage return. In order to cause BASIC to not send the carriage

return after B, a ; (semicolon) is used. PRINT A;B; results in the 'A' being printed, then followed by no

extra spaces, variable 'B'is printed. The cursor is left at the end of the 'B' field. If the variable A is more

than seven characters, 'B' will be printed after spacing 20 characters,when using PRINT AfB.

BASIC obeys the following roles for printing characters. When the field to be printed is a string, there are

no leading or trailing characters sent. If the field to be printed is a number, BASIC first checks its size.

If the number is less than .01 or greater than or equal to 999999999.2, BASIC prints it using scientific

notation. For example, .0034 is printed as 3.4 E-03 and - 1234567890.5 is printed as -J.2345678E + 09. If

the number falls between these values, the most significant 9 digits are printed, plus a decimal point if

19

needed. Trailing zeroes after the decimal point are not printed. BASIC always prints a skip character after

a number (unless it is printed as a string).

It should be noted that in order to take full advantage of the PET's ability to compose text material on the

screen, unlike most BASICS, the apparent space between fields is always a skip (cursor right) character in

the PET, which causes the screen to advance the screen pointer by one character; it does not result in any

of the data screen being covered.

Because the PET allows the inclusion of all cursor positioning as literal characters within a string, the

programmer has full control of the screen print position. The cursor control characters available to use

as literals are clear screen, home cursor, cursor right, left, up and down. By use of these literals, one can

compose fields of any length and in any size starting in any one of the 1,000 character positions

displayable on the PET screen.

We previously discussed how the PET screen memory consists of a thousand characters of storage

located at memory location 8000 hexa-decimal. Characters are represented in screen memory in six bit

ASCII code, concatenated with two additional bits. One of these bits is a reverse field and the second one

is the upper-lower case bit.

When printing to the screen, the print subroutine in the operating system automatically translates ASCII

characters into the screen memory form. The various screen control characters are simply movement

characters for the screen printer. The home character moves the printer pointer to the beginning of the

screen. The clear character moves the printer pointer to the beginning of the screen, and inserts the

representation for blank in all of the 1000 characters on the screen.

In BASIC, numbers are represented as 5-byte binary quantities, except in the special case of integers,

which are represented in two bytes. As far as printing is concerned, BASIC prints integers the same as it

does floating point numbers. In fact, BASIC automatically converts integers to floating point and then the

floating point print routine converts the floating point numbers into printable characters.

VARIABLES

We have already seen that the PET can be used as a large calculator which performs mathematical

functions and then can print the results. However, in many cases, programming consists of developing

intermediate values or performing operations until something equals a certain value. In order to

implement programming at any level, we need to establish the use of functions which can have a variety

of values at any one time. A function that can have any value is defined in both algebra and in

programming as a variable. If you are not familiar with the concept of a variable through mathematics;

then a book on beginning algebra, or perhaps one of the very rudimentary texts on BASIC might help you.

All of our discussions after this will concern themselves with the use of variables.

In BASIC, variables are defined by two character alpha numerics. If the variable is a numeric variable then

it has no trailing character. The character A is considered to be the variable A. Characters AA is a

different variable. Characters A1 is a third variable, but all three are defined as numeric values. If the

variable contains alphanumeric data, it is defined as a string. A string variable now ends with a $. Thus,

A and A$ are numeric and string values respectively and are different variables. AA$, likewise, is different

from AA, etc. BASIC distinguishes a variable by the fact that the first character is always an

alphabetic character. The second character may be either numeric or alphabetic. An integer variable

ends with %, e.g.A%.

ARRAYS

Arrays are the fourth type of variable which can be defined in BASIC. Arrays are differentiated by the

20

parentheses which follow them. Parentheses define the particular value within an array which is to be

used in an expression.

A(0,1) refers to the first character in the second row of a two-column array and is different from A, A$ and

A%. All may be specified in the same program. Specific definitions and memory allocation techniques

for each of the types of variables follows, but first let us address some examples of how one uses

a variable.

Equal is used in two ways: If encountered in an IF-THEN type of statement, equal means the standard I '
mathematical function: the value to the left of the expression is compared and must equal the value of

the right. Otherwise, when following a variable such as in the expression A = 2 + 2, = means replace the r f

value in A with the resultant of the expression to the right. JJ

Originally BASIC required the word LET before any variable assignment, but in PET the LET is optional _

and may be omitted. A = 2 is equivalent to LET A = 2. The command CLR sets all variables in PET to zero. I |

To understand how variables operate in BASIC, try the following examples on your PET. Remember to ^
press RETURN after each command you enter.

\ I

CLR U
?A

PET prints 0. ij

Now type • (J
A = 2 + 2
?A

This time PET prints 4. |j
Now type

?B -,

PET prints 0. ^J

Now replace the value of B with twice the value in A, by typing

B = 2*A

?B {

PET prints 8. ^

Now change the value of A by typing

A = 2 + 3

?A

PET prints 5. If you now type

?B

PET prints 8, the same value as before. Until we give a new expression for B or re-execute the one which

says B = 2*A, the value of B will remain 8.-

FLOATING POINT VARIABLES

BASIC always assumes operation, or operates totally, in floating point arithmetic. Therefore, each normal

variable is assigned space in'memory for a standard floating point number.

Four bytes contain a binary representation of that precision. It gives us the capability of specifying about

9 digits precision of a decimal number. Accuracy of most calculations is limited to this representation.

Each variable is also assigned a 1-byte exponent limited to having a maximum value of +33. Exponents

less thgan -34 yield numbers too small to distinguish from zero.

STRING VARIABLES

A string variable can contain a function, whether it be a number, graphics character, or standard ASCII

character. There is a specific set of variables that allow extraction and packing of data into strings which

21

will be discussed later on. The string is limited to the 80 characters of the input buffer. There is a specific

set of functions that allow the construction of strings up to 255 characters (see later text).

INTEGERS

As we have indicated, an integer is simply a whole number. Floating point variables are stored in BASIC

with five bytes; one for the exponent and four for the mantissa, which gives an accuracy of 9 digits. In

many cases, variables can be expressed in much simpler numbers. In order to allow the user most

memory efficiency, particularly in the case of arrays which can take significant amounts of memory, the

PET has implemented the concept of storing certain numbers as two-byte integer values. Any integer

value between minus 32,767 to plus 32,767 may be stored in the form of a two-byte number with the

highest bit of the number containing the sign.

USE OF PROGRAM AND DIRECT STATEMENTS

Throughout the text, until now, we have been using the program technique which allowed us to get the

PET to respond directly to the print statement. In this case, BASIC is obeying the command we are giving

it directly, as we type it from the keyboard and hit carriage return. This is so-called direct mode. In this

mode, we can use the PET as a super calculator. For instance, if we want the PET to add two numbers and

divide the result by a third, we can ask it the question ?(2 + 8)/5. If you have typed that on the PET, you

should get the answer of 2 followed by a READY. The PET will obey any statement given it from the •

keyboard, except when it is in the process of executing a BASIC program. In addition to using it as a

super calculator and for teaching with the PET, the direct mode is quite useful for debugging of

computer programs. Variables can be assigned intermediate values and then small sections of the

program can be executed with GOTO statements to assess why any particular piece of code is not

working correctly. Break points can be put in programs and current status of variables checked with print

commands, again in direct mode, without having to modify your main program. However, except for

debugging or in the case of using the PET as a super calculator, in order to get the computer to act as a

true computing element, one has to write or load a BASIC program. The difference between execution in

direct mode and a program is that several statements can be grouped together in logical order and then

BASIC will execute all of the statements before asking the user for control.

Suppose we want BASIC to print our HI THERE message vertically as opposed to horizontally. We can

easily accomplish this in a program but not very easily in a direct statement. Rules for program entry are

very simple. Any statement you want to be treated by BASIC as a program statement must be preceded

by a line number. A line number may be any number from 0 to 63,999.

A good habit to develop when typing in lines of a program is to use increnments of 10 or 100. Instead of

1, 2, 3, etc., use 10, 20, 30. This will give you space later to add lines and make corrections in your

program. All you need to remember is that BASIC interprets each line number in order.

To print HI THERE, vertically, each line of our program will type one letter of the message, we are going

to start with line 10 and make each line a multiple of 10.

30?'T"

40?"H"

50?"E"
60?"R"

70?"E"

Whether you are typing in a program or giving direct commands like RUN, you have got to hit RETURN to

tell the PET to take a look at what you have typed and act accordingly. The lines ten through seventy

22

constitute a program which tells the PET to print out HI THERE.

The program is now resident in memory. To execute the program, type RUN. This gives us the HI THERE

printed in the vertical format:

H

I

T

H

E

R

E

You will note that we do not have a space between the I and T. One of the reasons we use the numbers in

the multiple of ten is that we can now insert a correction between lines 20 and 30. First, display the

program by typing LIST. This gives us the program printed as follows:

10? PRINT "H"

20? PRINT "I"

30? PRINT "T"

40? PRINT "H"

50? PRINT "E"

60? PRINT "R"

70? PRINT "E"

Now type:

25?""

Press return and relist the program, and we will see that line 25 is inserted between lines 20 and 30. If we
run the program now, we get:

H

I

T

H

E

R

E

This example demonstrates the use of line numbers and the ability to insert lines numbers to make a

correction in a program.

There is another way to get the same effect. First delete the space by typing 25 followed by a carriage

return. Then list the program and see that line 25 has been deleted. Now position the cursor on the space

following the I on line 20, and insert a cursor down. First by hitting the insert key, and then the cursor

down key, if you don't hit the insert key first, the cursor will move down immediately. But because you

inserted the cursor-down (it looks like a reverse field Q), the cursor will not move until instruction 20 is

executed. Do not forget to hold down shift before striking insert.

When we now run the program, you see this also gives you the effect of a space on the next line. This

would not always be true, except we had been cheating and using the automatic scrolling capability of

the PET which clears out the field. Had we programmed a home prior to printing a program, we would not

have received such a nice result. Try programming a home 5?"HOME", then try a clear 5?"CLEAR".

The screen editor will allow you to take a program and make changes on any of the lines you display on

the screen. The list command has several features to help you get the right lines to the screen to edit. List

takes programs and prints the contents of the basic program which is stored in memory. The command

L-hS-T starts at the first line number in memory and lists to the screen device all the instructions to the

23

end. The longer programs features of list which allow you to list only a single line number LIST 20 which

lists just line 20, LIST 10-50 which lists lines 10 through 50 included, LIST-50 which means list all the

numbers from the beginning of the program through line 50 included, and LIST 50- which lists all of the

lines from line 50 to the end of the program. Some combination of the above can be used to find and

correct any piece of program which is currently stored in memory. Try each of the above commands on

your PET just to see what they do with our little program.

BASIC is an interpretive language related to the direct commands we are executing. BASIC executes a

command by taking the last line typed to it and analyzing the line working from left to right looking for key

words and expressions which it recognizes. Every time it encounters a key word such as PRINT (or ?

which is the token for PRINT), it interprets this word into a command which means something to BASIC.

Command words are stored in memory with bit 8 on to tell BASIC that it is a command word, or key word.

As a program line is entered into RAM memory through the use of the carriage return, BASIC takes the

line number and searches through memory, until it finds the same number, or the number just greater. If

it is the same line number, then the entire line in memory is deleted and a new line is inserted in memory.

In the pre-interpreted state all the key words are replaced with the single character token for the key word.

This allows the interpreter to store commands in the most memory-efficient form. The only data stored

is the data typed in by the programmer such as literals, pointers to the variables, and the keywords.

PRINT, even though it takes five characters to type, only takes one character in memory.

BASIC is called an interpreter because the actual execution of the instructions is done by analyzing the

keyword that needs to be executed in the program line, then executing that keyword under the control of

a series of subroutines. This is a trade-off which results in very memory-efficient storage programs but

longer execution times than would be true of a machine language program. Because PET BASIC uses

tokens in memory and stores them on I/O devices whenever a program is loaded and saved, the actual

coding of data on tape or in memory is not transferable to other machines. It is generally not possible to

use BASIC instructions typed in from other machines.

When you create a BASIC program you are operating under two levels of editor: the screen character

editor and the BASIC line editor. The screen editor allows you to change characters within a line until the

carriage return transfers it to main memory. The BASIC line editor allows you to add new lines and modify

and delete old lines.

To delete a line, you type the line number immediately followed by a carriage return. To modify a line,

list it first on the screen and alter it then type a carriage return to re-enter it. To replace a line, enter the

same line number with new text and type carriage return.

There are two ways to execute a BASIC program. The first of these is to type RUN. The command RUN

first clears all the program variables and initializes the program pointers. Then it executes each

instruction of the program in order, starting at the lowest number. Execution continues until there are no

more instructions, and END is encountered, or the stop key is pressed. RUN may have as an argument the

number of the first instruction to be executed. For example, if you type RUN30, our sample program will

print THERE instead of HI THERE. RUN is executed in direct mode. A GOTO statement, also executed in

direct mode, operates the same as RUN except that none of the variables are re-initialized. The GOTO, of

course, must specify the line number of the first statement to be executed, e.g. GOTO 30.

LITERALS

In our HI THERE examples we have used PRINT commands with characters to be printed enclosed in

quotes. In the PET these are called literal strings. Data is also kept in the PET in binary floating-point

24

numbers. Much of the data you want to work with in programs is not numeric but alphanumeric -the way

we talk back and forth as human beings.

These characters are specified to the PET with literal strings. More specifically a literal is any value

contained within a set of quotes.

To allow the maximum composition of screen data, the PET has a special set of graphics characters and

the ability to store and execute cursor control characters which are fed to it by means of literals or other

more sophisticated techniques.

We have already discussed in a section on PET keyboard input how the PET stores its data in ASCII.

Graphics characters are stored as an extension to this set. Graphics are produced by shifting from the

original 64 character set and they are stored in memory with a special indicator to differentiate them from

the lower characters on the keys. A literal can be used to draw a line just as easily as it can be used to

print HI THERE.

Any combination of characters within the PET keyboard may be typed in as a literal and this includes all

cursor movement and the reverse field. PET has a special mode in the screen editor which assumes that

you are typing in a literal whenever a quotation mark is typed. From the time that the first quotation mark

is typed until the time that a closing quotation mark is entered, all characters are transferred directly to

the screen in a format so that the software which transfers the input line to BASIC will transfer them as

control characters if that is appropriate.

You can see the cursor movement characters flagged with reverse field within a literal. Type a single

quote and see this happen. Reverse field looks like an "R". Home is an "S" and clear is a shifted "S" or

heart. Cursor down is a "Q" and cursor up is the shifted "Q" or hole character. Cursor right is a right

bracket and cursor left is the shift of that character and looks like a vertical line through the 5th column of

dots. Insert is a shifted "T" which looks like a second vertical line.

You cannot enter a character in reverse field into a literal but you can turn on reverse field with the control

character before your character is printed. The only characters that are allowed to appear in reverse field

between quotes are those which are interpreted as control characters.

Delete is the only editing character that will still work within a literal. Once an odd number of quotes has

been typed on a line, you lose the ability to move the cursor about the screen until either a closing quote

or a carriage return is typed.

You should note at least one time while you are editing that you have fallen into the aforementioned trap

of trying to move the cursor after a quote has been typed. Either type a phoney closing quote or a carriage

return, then cursor up to edit your mistake.

Another method of inserting cursor control characters into already existing text is to use the insert

function. It has the same effect as an opening quote. For example, if you type insert three times and then

try to do a cursor movement, the control characters will be flagged with reverse field just as before. This

mode is easy to get out of because you need only enter as many new characters as the number of times

you struck the insert function. It is suggested that you make up your own examples to play with this.

Examples may also be suggested to you as you make a few editing mistakes.

The ability to readily manipulate the graphics and the cursor movement characters can allow whatever

depth of graphical capability you have the time and patience to program. The computer should be fun. We

recommend that you develop your own programming skills with the text and contionually experiment

with the use of imbedded graphics and cursor movement characters. Remember that you cannot hurt the

25

machine - the worst that can happen is that you clear the screen accidently after typing in a bunch of

stuff.

REVERSE FIELD

We have shown in the examples of quote mode and insert how once a mode has been established for a

line, the PET will continue with that function until it is either cancelled by a new control character or a

carriage return. Reverse field works in the same way. tt remains in effect until a reverse field off character

is typed or a carriage return is entered.

As described in a previous section on screen memory, reverse field characters are stored with a special

bit on to indicate the black spots in the characters coming from ROM will be all white and all the white

spots will be black. As you will see when you type an example, this gives a very desirable highlighting

effect and doubles the number of potential characters which the PET can display. This feature is so

useful that it is not only implemented on the PET display but in some of the PET hard copy printers

as well.

Here is an example of how reverse field works: Clear the screen and type HI (space). Next hit reverse

field on and type THERE .Finally type reverse field off, (shifted reverse field on), type (space), PET .

This gives us a line in which we have highlighted THERE.

Reverse field remains on from the first time the control character is typed and all characters

subsequently typed on the screen will be printed in reverse field until the mode is terminated as we

previously mentioned. This applies equally to keyboard input as weli as characters printed from a literal

string.

To get the PET to type out in reverse field we use a literal with the control character for reverse-field-on

inserted. TYPE ?"HI (reverse field on)THERE (reverse field off) PET". Note that the reverse field on and off

characters occupy a space on the screen when programming and that they appear in reverse field, but the

THERE is not in reverse field yet. The effect of the quote is to postpone the action of a control character

until the literal is interpreted. Since the reverse field is turned on by setting a bit of each character in

screen memory, a screen position is not required for reverse field on or off when the stream of characters

is received by the program which prints it on the screen. Reverse field remains on until a reverse field off

character or a carriage return is typed.

TERMS AND OPERATORS

The communication with BASIC is either with numbers or with alphanumeric literals. Numbers are always

presented in decimal form even though the microprocessor in the PET operates in binary mode. In order

to keep the two straight, PET will assume that whenever we are talking about a number, we are

representing it in decimal form. Later when we talk about hexadecimal numbers, they will always be

preceded by a $--e.g. $00 10 is equal to 16.

As BASIC recieves lines, the interpreter divides the characters it sees into several classes. Such as

commands, functions and operators. PRINT is a command to BASIC with a specific function that PET can

perform.

A function can be something like square root or a variable, or a special function. Whenever you type n on

the keyboard, you get a constant of 3.14159265, which can be used in an expression.

An operator is a character that is interpreted by BASIC as an arithmetic function which is to be performed

in evaluating an expression. The following set of operators are defined for BASIC:

Plus sign (+) causes two values to be added together using floating point representation with the results

26

being calculated in a floating point accumulator. The accuracy is limited to 9 significant digits. Minus

subtracts the value to the right of the minus from the value to the left of the minus sign.

* is the BASIC multiply. The value to the right of the multiply is multiplied by the value to the left.

/ is BASIC'S divide. All the numbers to the right of the slash are divided into the expression to the left of

the slash.

t means exponentiation. All the values to the left of t are raised to power of the value on the right.

Open and close parentheses cause values inside them to be single expressions. All expressions inside

parentheses are evaluated as a single value. Parentheses may be nested and are evaluated outward,

starting from the innermost set of parentheses. In order of precedence, the memory aid "My Dear Aunt

Sally5' will help you remember the precedence of operators Multiplication first, then Division, Addition,

Subtraction. Expressions within parentheses are evaluated first starting from the innermost set of

parentheses. The following set of examples should be tried on your PET to show the operation of the

operators and their precedence.

Addition

?2 + 2

Subtraction

?4-2

Multiplication

?6*2

Division

7 12/2

Use of Parenthesis

? 4 + 8/2

?(4 + 8)/2

Order of Operations

?(2 + 4*(8-4)/2)*3

FUNCTIONS

There are three functions which are available in BASIC which are, at the time of writing, unique to the

PET. The first of these isTT: Whenever this character is used in an expression, BASIC translates it from the

keyboard character ofTTto the value of 3.14159265 etc. It can be used anywhere in any expression and will

always be evaluated as this number. Example: ?TT

Tl$ and the value Tl are two ways to communicate with the real time clock within BASIC. As previously

indicated, every time a screen refresh occurs, (1/60th of a second), a value within the PET is updated. This

value is measured as a 24-hour real-time clock. It is available to the programmer in its binary form by the

expression Tl, which gives the value the current number that BASIC is keeping. This number is kept as a

three byte binary number whose value is stated in numbers of 60ths of a second, or so called jiffies. To

evaluate the amount of time that a particular operation has taken, Tl can be stored in a variable at the

beginning of the sequence and then the difference calculated by subtracting that variable from the Tl at

the end. This function is accurate to 1/60 of a second.

Tl$ presents and accepts data in the form of hours, minutes,and seconds. When the expression Tl$ is

used, it always' presents data in string form with two characters for hours, two characters for minutes,

and two characters for seconds. The value of time in the computer is kept in a 24-hour clock. If it is ten

27

minutes past 1 p.m. in the afternoon, Tl$ would be printed as 131000. To set the value of the real time

clock, type the expression Tl$= with the number being typed in quotes in 24-hour time. For example, to

set the clock to 2:45 and 30 seconds in the afternoon, type T!$ = "144530".

As a personal experience, you should set the value Tl$= to the right time now and after you have done

some additional reading, go back and print it. As with all the other variables, the power-on sequence to

the computer zeros the real time clock.

Care must be taken in use of the value Tl. Remember that the expression Tl automatically goes back to

zero at midnight. One of the authors wrote a loop in a program for graphics display where the program is

waited until the variable Tl is greater than a constant and the value of Tl when the display is put on the

screen. This expression never reached the computed value as Tl goes through midnight. The only way to

compensate for this is to watch for when the time might go through midnight, and readjust the stored

value when it might.

Functions are preprogrammed capabilities of BASIC which can be treated as a single value. Functions

range anywhere from tt, which is a predefined function, to sine, which is a capability of BASIC to

compute the sine of a number. When BASIC encounters the code for function, it evaluates the expression

for the function, calculates the resulting value, and uses the value in the command. The use is really quite

simple. If A equals sine of n radians, the expression would be written:

A = SIN(n)

In this statement, we are actually using two functions, n, and sine; BASIC would evaluate this expression

by expanding the value of n, evaluating the function sine and finally storing the result in the variable

space for A. In the expression:

A = 2*SIN(tt)

after the sine is computed, it is multiplied by 2 and stored in A.

The trigonometric functions, sine, cosine, tangent and arc tangent are all available in PET BASIC. The

expressions for SIN, COS, TAN all have as their only argument an angle given in radians. To convert from

degrees to radians, multiply the number of degrees by tt/180. For example:

?SIN(90*tt/180)

calculates Sin of 90 degrees. To obtain the cosine of 45 degrees:

PRINT COS (45*tt/180)

To compute the tangent of 40 degrees. For example:

?TAN (4O*tt/7SO;

Each of these functions are computed by tables. Because n is limited to 9 significant digits, in general,

values should be less than 1000 degrees or 6n.

The accuracy of BASIC functions is five parts in ten to the tenth as long as the argument is below 20

radians. Expressions which use the values in radians are a function of the value of n which is accurate

only to ten to the ninth. Arc tangent is the only inverse trigonometric function specified as a function in

BASIC. The function arc tangent computes the value in radians of the expression given on the argument.

Answers are always given between plus or minus 17. The accuracy is 5 parts in 1010. In normal use the

result is in radians.

?ATN(.5)

To convert the number to degrees use the following example:

?180/n*ATN(.5)

28

The following general expressions can be used to compute the value of arc sine and arc cosine as a

function of arc tangent.

ARC SIN (X) = ATN(X/SQR(-X*X + 1)

ARC COS (X).» - ATN(X/SQR(- X*X +1) +1.5708

Both the above expressions give the results in radians to be converted to degrees by multiplying the total

expression by 180/*. (It should be noted that in both the expressions there is a possibility of performing a

division by zero which will result in a basic error. Before using the expression, the arc cosine should be

checked for zero and before using the expression arc sine, X should be checked for it being equal to the

value of one.

MATHEMATICAL FUNCTIONS

The largest legal number that BASIC can handle is ±1.70141183 E+ 38. Any larger number gives an

?overflow error. The smallest magnitude that can be distinguished from 0 is 2.93873588 E - 39. Any

smaller

number will result in an underflow.

ABS

Absolute value is specified in the form ABS(X). The function returns the value of the expression as a

positive number. There is no inherent accuracy loss. For example:

PRINT ABS(-145).

INT

This expression basically rounds the current value of the parameter to the next lowest integer.

For example:

INT(.23) = 0

INT(-2.5)=-3

INT(1.79) = 1

Other than the inherent inaccuracy of dropping significant digits, this expression introduces no

additional inaccuracy. However, small inaccuracies in the argument could cause problems. For example,

the number four might, in fact, be stored in BASIC as 3.99999999. When this number is used in the

argument for an integer, the result is 3, not 4.

SGN

This expression returns a 1 if the sign of the number is greater than zero, a zero if the value is zero, and a

-1 if the sign is negative. For example:

?SGN(-45)

-1

?SGN(+10)

1

SQR

This function calculates the square root of any number greater than zero. If a minus number is used, the

result is an 7ILLEGAL QUANTITY ERROR. Accuracy of the expression is 5 parts in 10 to the tenth for the

entire range.

?SQR(16)

The following two functions send themselves with natural algorithms. The algorithms are base E which

is 2.71828183.

EXPONENT

The parameter defines the power to which the base E is raised. The limit of the parameter is 88.02969189.

29

A number greater than that will result in an overflow. A form of the expression is EXP(X). Although the PET

only allows the flow function for E, other functions are available by ratioing to the Log:

?EXP(1)

Basic logrithmic function is given with the parameter LOG(X) which is logged to base E.

To calculate the LOG to base 10, the expression is written:

LOG(X)/LOG(10)

RANDOM

The random functions are useful for many statistical programs and games. Three basic random functions are

provided. The random number generator uses an algorithm which develops a value between zero and one. The

argument can be either positive, zero, or negative. Positive numbers always return the next value of a random

number sequence generated by a numerical algorithm in BASIC. It always starts with the same value, or seed

from power-on. However, the seed for the random can be initialized by using the minus value. A truly random

number is obtainable by using a zero parameter. The basic program reads four unrelated interval timers which

are counting so fast relative to the occurrence of real time events, that a true random number is obtained if the

RND(O) is connected with some external event such as program initialization, or striking a key in response to

the question in Black Jack, DO YOU WANT A HIT? Either of these gives a truly random number. Repetitive

access to the random function in a program is not random because the relationship of the time is predictable

from the time that the program is initialized. So in a fixed program sequence, the only truly random number is

the first one. A solution to this is to use the RND (0) to generate a truly random seed, use the RND(-AND(0) to

theoretically pure random number for statistical analysis and definitely gives an adequate random sequence

for game play.

The RND of a minus number is not truly random at all. The parameter is passed as a seed to the random

number generation sequence. This technique can be used in debugging programs in a sense that a

predictable repeatable sequence can be obtained by RND minus for program development. As previously

discussed, it is also the way in which the RND of zero can be passed as the parameter to the random

number generator.

Another technique is to take the RND of time which is also a random number, although for gaming

purposes, it is not as desirable as the use of RND zero.

Suppose in a game program you want to simulate rolling a six-headed die. Initially, you can seed the

random number generator with the instruction

D = RND(-TI)

Subsequently, you can compute the value of the die with

D = INT(6*RND(1) + 1)

PEEK, POKE:

PEEK is a function which allows the user to look at any location in the PET memory. The parameter

contains the memory address in decimal in the PET which to want to look at the result is a decimal

number between 0 and 255. BASIC is currently constructed so that the contents of any address greater

than hexadecimal C000 is automatically returned as zero. This is a legal constraint, posed by the

company who wrote the BASIC software to protect their copyright.

Example: To look at memory location 25, the expression is written:

?PEEK(25)

POKE

POKE is not a function but is written like a command. It allows the user to deposit a number into I/O or

read/write memory. The parameters are specified in a list after the command. The first parameter is the

memory address of where to put the information. It may range from 0 to 65536. The second parameter is

the actual value to be deposited. It must be between 0 and 255. For example, if we wanted to put the

character A at the first location of the screen memory we would write

POKE 32768,1

Some locations in memory cannot be changed (ROM) and others should not be changed (BASIC and

system variable RAM or I/O). If you POKE the latter, be prepared to reset your machine.

30

u

LI
USR

The USR is a function which is designed to pass a parameter to a language program using the jump

address located at memory location one and two in the PET. See the section on machine language

programming for a detailed description and use of this function.

FRE

This function tells you how many bytes are left in memory. Although it is a true function since it can be

used in an expression, it is normally used in direct mode in the form:

?FRE(0)

FRE forces a BASIC action called garbage collection. This consolidates all unused bytes into one large

block so that they can be efficiently allocated.

Several functions exist to aid in formatting data when it is printed on the screen or hardcopy printer.

TAB

This format function places the cursor at the column specified in the argument. The argument goes

through the INT routine. The legal range is (KX<255. If the cursor is past the location specified, the tab is

ignored. Note: TAB uses skip characters, not spaces.

POS

This function returns the position of the cursor. The position is reset to zero at each carriage return.

Note: HOME and CLEAR do not affect POS even though the cursor is set to the first column.

SPC

This format function prints out the number of skips specified in the argument (which goes through INT).

Legal range is (KX<255. Note: SPC(O) put 256 skips. II

NOTES

LJ

31

Chapter S. ELEMENTARY PROGRAMMING

Use of decision logic in writing programs.

A major advance in BASIC programming is the ability to loop back and re-execute lines of a program. It

may be done in two ways - unconditionally with a GOTO and conditionally with an IF-THEN.

GOTO is written to specify a target line number where execution will always branch. GOTO may also be

written with a space between GO and TO. PET BASIC will recognize both forms.

GO TO 50

GOTO 100

IF-THEN has three forms:

IF (condition) THEN (statement)

IF (condition) GOTO (line number)

IF (condition) THEN (line number)

Conditions are written as two arithmetic expressions separated by a relational operator. PET BASIC

provides six relational operators: <,>,=,<>,< = ,> = .

Until now we have been developing programs which do single functions in serial order. You should be

familiar with the concept that says that first line 10 is executed, then line 20, and other line numbers in

ascending order.

If we wanted to take and print numbers betwenn 1 and 20, their square and square root values on the

screen, we could write the linear program as before:

10 PRINT 1,1,1

20 PRINT 2,2*2, SQR(2)

30 PRINT 3,3*3, SQR(3)

The big disadvantage of this is that we would have to keep typing in lines until the 20th line.

200 PRINT 20,20*20, SQR(20)

UNCONDITIONAL LOOPING

However, with our concepts of variables and the addition of a loop, we can write a program that

computes values and prints them out without having to type such a long program. "

The program reads as follows:

10 PRINT "VALUE'V'SQUARE", SQUARE ROOT'

Line 10 prints a heading for the column of numbers. It is executed only once.

201 = 1 + 1

Line 20 computes the next number to use. The first time this line is executed, I has

never been referenced so it has an initial value of 0.

30 PRINT l,l*l, SQR(I)

Line 30 is like lines 10-200 of the previous program except that the constants have been replaced by a

variable.

40 GOTO 20

Line 40 contains a GOTO command which directs execution back to start again at line 20.

BASIC stores text lines so that a pointer to the next line precedes each line. Using this technique, the

interpreter can quickly examine only the line numbers, determine if a line does exist, and transfer

execution to that line.

GOTO is not limited to branching to a lesser line number but it can branch to a greater number too. You

32

will see a future example of the concept of using GOTO to skip a portion of code.

As before, we type RUN to start our program. The program will continue to print values of I until the STOP

key is pressed. Rapid scrolling of the screen memory makes the screen almost impossible to read, but

use of the reverse key slows the scrolling rate. Holding down the reverse key slows the scrolling by a

factor of 20.

To stop the loop, press the STOP key. When you want to restart a program either type CONT to cause the

program to resume where it left off or RUN to begin at the beginning.

While this program makes use of the GOTO, it does not really help us to solve the problem we tried to

address - printing just 20 numbers on the screen. However, before we address that, let us introduce a

small mistake into the program. You should see a common error and its cure. If we retype:

40 GOTO 10

and then execute, instead of printing a heading at the top of our program. We will intersperse the heading

with the computed value. Jumping to the wrong place in the program is the most common error made in

programming. Luckily it is most visible in this case. By stopping the program we can use the screen

editor to correct line 40 to go to line 20. You have now fixed the first in a long life of program bugs.

CONDITIONAL LOOPING

The IF-THEN statement allows you to specify a case to test and if the case is true, the statement after the

THEN is executed. A test is specified by putting one of six relational operators between two expressions.
= equal

<> not equal

> greater than

< less than

> = greater than or equal to

< = less than or equal to

If A<B then print "A LESS THAN B"

If the expression is true, the instructions on the same line with the IF statement are executed. If the

expression Is false, the program jumps to the next numbered line. If you are in doubt about < and > and

what they mean, remember that the arrow points to the value you would like to see less than the other.

In ourexample, we can add the statement:

40 IF l<= 20 THEN GOTO 20

The IF-THEN lets us make a variety of decisions at the time we are executing the program. This allows us

to limit the program and cause actions to happen. In this case, we execute the program from 1 to 20 and

then finally drop through the instruction.

We can also write the IF statement to skip around the unconditional GOTO. Add two new lines and

restore line 40:

35 IF I =20 GOTO 50

40 GOTO 20

50 END

The program will execute through 20 values and when I is equal to 20, go to the END statement.

Most BASIC interpreters required you to include an END statement to finish your program. This is a

vestige of when BASIC operated non-interactively from cards. END can be used optionally in PET BASIC

to force program execution to end at a specific point.

IF-THEN instructions have three forms: The first is IF expression GOTO line number. The second is

IF-THEN line number where GOTO is implied. The third form is IF expression THEN followed by a

33

statement to be executed before proceeding to the next line. Expressions in this form might change our

table to draw a line between the 10th and 11th value on the screen.

32 IF I = 10 THEN PRINT" "

If we try to execute this, you will see that a line is now drawn between the tenth and eleventh value on the

screen because of the statement at line 32. It should be noted that the logical conditions of the IF and

IF-THEN are only two; either the next line is executed, or the THEN statement is executed. Take care

when placing additional programming statements on the line. For example, in:

IF X = 5 THEN 50:Z = A

the Z would not be executed, because the line either drops through or executes statement

50. However, in

IF X = 5 THEN PRINT.X:Z = A

the PRINT X and Z = A will be executed if X = 5.

The IF-THEN lets us make a variety of decisions at the time we are executing the program. This allows us

to limit the program and cause actions to happen at various points. It is the concept of the unconditional

jump plus the concept of testing values that allows the computer to be used as both control element and

legitimate computing element. The intelligent combination of logical decisions with repetitive operations

makes a program really work.

DATA ENTRY

Before a computer program can perform useful work, it has to be able to access a data base of some sort.

The program could require only simple data such as YES or NO responses to a game or simulation. A

more complex payroll program might need rates, hours, and tax information. In PET BASIC there are two

ways to get information into variables.

READ AND DATA STATEMENTS

Only a short time ago when there were no timeshare systems, BASIC could not accept input other than

cards included with the program. Thus, DATA statements were typed and scattered throughout the

program. The command READ was designed to pull out this. DATA into variables which could be used by

the program.

When BASIC began running in an interactive environment through timeshare, verbs such as INPUT and

GET allowed direct communication with the BASIC program. READ has been relegated to inputting

parameters that change but not as often -e.g. tables, etc.

The syntax of READ is the verb followed by a list of variables into which the DATA is to be read.

READ A, B,C,D

READ processes DATA statements as they are encountered in the program. DATA statements at line 10

and 30 might be processed by a READ statement at line 20. DATA is processed sequentially and commas

and end of lines are considered terminators

10 DATA 2, -53, IE10

20 READ A,B

30 DATA 3.14, 1,06E23

Blanks and graphic characters are automatically thrown away unless they are surrounded by quotes. The

quotes are considered to be delimiters for literal characters.

String data can be typed without quotes if it does not contain literals.

50 DATA ABC, DEF

34

Commas within quotes will not be treated by BASIC as field terminators.

60 DATA ",",","

It is also possible to type mixed alphanumeric and data fields. Numeric fields may be treated as alpha.

10 DATA 123, ABC, 345

20 READ A, A$, B

It is advisable for the programmer to know how many data statements he has put Into the machine or

use some kind of a delimeter at the end of the data. If it is not done, the data is continuously read, and the

program will index its way through all of the data statements. Finally, DATA will be exhausted and when

the next READ is encountered an ?OUT OF DATA ERROR

will occur. Sometimes you may also see this error if you carriage return through READY on the screen

because the PET thinks you already told it to READ Y.

SYNTAX error results when an attempt to read alpha field into a numeric variable is made.

READ and DATA are implemented in the following manner: The first byte of text contains a zero. This is

really not part of the first line but is a dummy line consisting only of a terminator. When RUN is typed, a

data statement pointer is directed to this byte. Since it is pointing to a terminator, the first READ

command initiates a search for a DATA statement token.

There is one other command available to the programmer which allows him to reuse the stored data.

RESTORE restart the DATA search back to the beginning of memory.

The following program would correctly operate continuously re-reading DATA;

10 DATA 10, 20, 30, 40, 50, 60, 70

20 1 = 1

30 READ A: PRINT A

40 I = I + 1

50IFK8THEN 30

60 RESTORE

70 GO TO 20

INPUT

When interactive response to DATA requirements became possible, the concept of INPUT from the

keyboard was introduced. Since the classical input device to BASIC was a TTY, the format of input

statements was limited by this device.

Operation of INPUT is considerably enhanced when coupled with the powerful PET screen editor.

The form of the statement is the verb INPUT followed by a variable list. INPUT satisfies the variables in

sequence.

INPUT A, B, C

When BASIC encounters this instruction, it prints a question mark to the screen then activates the screen

editor, blinking the cursor for input. Because you are under control of the screen editor, cursor movement

characters are allowed up until the carriage return is issued as a terminator.

After carriage return is received, data is handed back to BASIC one character at a time. Data is then

interpreted by BASIC using its input buffer and rules of interpretation.

Leading blanks are supressed, so if you are inputting a string which requires blanks or literals, it is

necessary to enclose the input characters within quotes.

The editor picks up only the characters between the question mark and the current position of the cursor.
4

35

This allows input of data from a pre-constructed form on the screen.

INPUT data may be delimited by commas as with the DATA statement. When more fields are provided

than are actually required, BASIC responds with

7EXTRA IGNORED

and takes only those characters it requires to satisfy the INPUT list.

On the other hand, when not enough data is inputted, BASIC will respond with

??

and begin blinking the cursor again to get additional input.

If an alphabetic field is encountered during the interpretation of a numeric field, BASIC responds with a:

7REDO FROM START

In PET, if input is followed by only a carriage return with no other typing, it is considered by BASIC to be a

termination of the program, same as a stop key. This particular feature is a carryover from the days of

teletype BASIC when this was the most convenient way of terminating a program.

The stop key is not operative while the PET waits for input.

INPUT has a special feature which allows you to indicate to the user what input characters are desired

and in what form they are to be. A literal which follows the input command is printed prior to the time the

carriage return is typed. For example:

10 INPUT "BIRTHDAY"; A

it would print:

BIRTHDAY?

and wait for you to input your birthday in standard numeric form to value A. Here is an example of INPUT

to calculate the third leg of a right triangle:

10 INPUT "FIRST LEG"; A

20 INPUT "SECOND LEG";B

30 IF A = 0OR B = 0THEN 10

40? "THIRD IS"; SQR (A*A + B*B)

50 GOTO 10

If you run this program and put in values 3 and 4 respectively, you will get a 5.

We can change our program to se how to combine values on a single line. We delete line 20, list line 10,

and change it to:

10 INPUT "FIRST LEG, SECOND LEG"; A, B

This change, when you execute it, will accept values typed as 3, 4. You will see that either form is

acceptable, however, good programming practice protects the user from getting confused as to how

many fields go on a particular line, although it is definitely not good programming practice, it is possible

to mix alpha and numeric values.

10 INPUT "NAME, BIRTHDAY"; A$, A

GET

A major problem with INPUT is that it does not allow real-time programming. All processing comes to a

grinding halt while-the user takes his time to enter some characters and strike RETURN. PET BASIC has

been equipped with a special function which will yield one character at a time from the keyboard or tell

if a key has been pressed.

The command is GET. GET is identical in syntax to INPUT. It is possible to specify a list of variables but

36

u

generally this is not a good idea because the purpose of GET is to scan the keyboard and return with a

single key closure. When a numeric value is specified i I

GET A ^
only numeric keys will be accepted as input. All others will cause the message:

7SYNTAX ERROR |J

Use of the numeric value is confusing because if no key has been struck, the value returned is zero.

Otherwise it will have a value 1-9 for keys 1-9.

The most desireable way to use GET is with a string variable. If a key has not been pressed, the string

will have a null value (length = 0); otherwise the string will contain the character corresponding to the key

that was pressed. See the next section for a detailed explanation of how strings work.

GET calls a routine which examines the keyboard interrupt buffer. If the buffer is empty, the variable

contains a value of null or zero. If there are characters, the first is taken out of the queue and returned.

Since the length of queue is 10 characters, calling GET 10 times in a loop is a good way to insure that the

queue is empty when waiting for a response. This is particularly useful in interactive games.

The following routine will wait for a key to be pressed and exit only with the value of a key closure:

10 GET A$

20 IF A$ = ""THEN 10 I I

In this case, ""is a literal which contains no characters and is a null string. '-'

NOTES

u

u

u

37

n

n

Chapter 6. ADVANCED PROGRAMMING TECHNIQUES

We have been describing numeric functions primarily, but almost any useful program also has to deal

with alphanumeric data. BASIC has a set of functions to deal with these data. Also, all alphanumeric data

may be expressed as a continuous connection of characters which is viewed by BASIC as the value of a

single variable.

PET BASIC, has a $ notation which is used to express variables which are strings of alphanumeric data.

All of the rules which apply to normal variables apply to the string variable.

Following the naming conventions, we can create a variable A$ not equal to A% and not equal to A.

Type A$ = "NOW IS THE TIME" and PRINT A$ to show the value of the string. This technique can define a

string of a length up to about 70 characters, depending on the number of characters of the line number -

all that can be entered on a line. However, the limitation on the number of characters that can be stored

in a string is 255. You can build strings larger than can be entered. The accumulation of characters from

an I/O device and the construction of data is accomplished by the concatenation of strings. The operator

that is used is + .

We can modify the expression A$ which we have been developing by typing A$ = A$ + " FOR ALL". Print

A$ and you can see that the literal we typed in had a space at the beginning. Unlike numbers which are

formatted by BASIC, the value of the literal is taken Nterally. A string can contain all combinations of bits

including those that form control characters such as cursor down, and carriage return. This will be

illustrated soon.

BASIC allows string expressions up to 255 characters long. These can be output to the screen or to any

output device which accepts more than 79 characters. Input, however, is usually restricted to 79

characters because of the size of the input buffer. This problem can be handled by breaking strings into

substrings before they are input or by using GET to input each character individually. The substrings or

individual characters can then be recombined into the original string by concatenation.

COMPARISON OF STRINGS

The ASCII table is defined in Figure 2.6. It contains the order in which characters within the PET are

represented when two strings are compared. Characters within a set of strings are compared starting at

the leftmost character to the end of the field specified.

Using the ASCII table, we can compare a string containing an "A" to one containing a "B" in the same

position. The result is that the second string is greater than the first.

A string containing a blank is less than a "1", which is less than an "A", which is less than a "B". The

string "A" is less than the string "ABC" or any string containing "A" as the first character. All characters

are compared in sequence with the first unequal character defining the relationship between the strings.

Thus the same relational functions may be used for both strings and numbers.

< > for unequal
= for equal
< for less than
> for greater than

Immediately the string comparison feature can be applied to help you construct ordered lists such as a

check file or a telephone directory. Comparisons can also be used to search ordered lists such as a file or

a telephone directory.

38

u
Try the following program to develop a feeling for sequences and matching functions:

10 INPUT A$

20 INPUT B$

30 IF A$ = B$THEN ? "A$ = B$"iGOTO 10
40 IF A$ <$B THEN ? "A$ <B$":GOTO 10

50 PRINT "A$ >B$": GOTO 10

NUMBERS AND ASCII CODES

Two complementary pairs of operations on strings and numbers allow us to put unconventional things

into character strings.

STR$

STR$ is a function of one argument. It returns a string that is the character representation of the

numeric expression:

10X = 3.1

20 ?STR$ (X)

RUN

3.1

READY

Positive numbers are preceded by a blank in the STR$ equivalent. Negative numbers have a sign in the

corresponding position.

VAL I |

VAL is the complement of STR$. It converts a string to a number which may be used for computations. If (J

the first

non-blank character of the string is not numeric, then the value of the function is zero.

?VAL("Z")

0

READY

On the other hand, VAL will convert as many digits as it can up to an invalid character.

?VAL("3.14AB")

3.14

VAL is an excellent function to use with INPUT since it can prevent an inexperienced user from causing a

REDO from START.

CHR$

We have shown that strings may be assigned printable ASCII characters through either literals or direct

INPUT, but some devices require control characters which cannot be produced by normal means. For I
example, a PET printer uses shifted carriage return as a special terminator to indicate a carriage return

with no line feed when it performs overprinting. CHR$ allows you to specify such control characters by

giving the ASCII code number. CHR$ is a function to convert a number into internal ASCII

representation. The value of the argument must be 0<=X< = 255.

10 A$ = CH R$(65) + CH R$(66)

20 PRINT A$

RUN

AB

READY.

In the above examples, 65 is the ASCII code for "A" and 66 is a "B". We converted the codes to characters

before concatenating them and printing them out.

39

ASC

ASC turns a character into an ASCII code number which may be used in numerical calculations. The

parameter is a string.

?ASC("A")

65

If the string consists of multiple characters, then this function will return the code for the first character

of the string.

?ASC("123")

49

The ASCII code for "1" is 49.

SEGMENT OF STRINGS

In many cases it is desirable to access just part of a string in developing an ordered list. Consider the

problem where in response to an INPUT, a person's name is typed in. It might consist of their first name,

middle intitial, and last name. It is important that for sorting, however, that not all Johns be together, but

that the list be ordered by last name.

In order to be able to separate parts of strings and use them in expressions, PET BASIC provides three

functions. Most of your programming with strings will consist of using one of these three functions to

analyze pieces of a constructed string. We will present the use of the functions and define all three at

once as they are essentially the same function. Three combinations are provided mainly for programming

convenience.

LEFT$, RIGHT$, and MID$

The function specified as LEFT$(string variable, I) gives the leftmost "I" characters of the string

specified. If I

is negative, or zero, or greater than 255, then an ILLEGAL QUANTITY ERROR is printed. RIGHT$(STRING

VARIABLE, I) gives the rightmost "I" characters of the string expression. When T' Is less than zero, or greater

than 255, an ILLEGAL QUANTITY ERROR is printed.

There are two expressions for MID$. The first most general one is MID$(STRING VARIABLE, I, J). This

expression gives "J" characters from the string starting with the "P'th character. If "I" is greater than the

length of the string, then this will give a null string. If either "I" or "J" negative, or greater than 255, an

ILLEGAL QUANTITY ERROR is printed. For "J" greater than the number of characters left in the string, all

the characters from "I" to the end of the string are returned.

The second expression is MID$(STRING VARIABLE, I) which is the same as specifying a "J" greater than

the length of the string. All the characters starting in the "I" position until the end of the string are

returned. If "I" is greater than the length of the string, then a null string is returned and if "I" is negative,

or greater than 255, and ILLEGAL QUANTITY ERROR is printed.

All of these variables combined will define a new function which allows us to take either the left number

of characters, right number of characters, or a given number of characters starting at a given position of

the string.

To find the last name from our previous example, we can analyze characters starting from the rightmost

character of the string until the first blank is encountered. To implement this program we need one more

function.

LENGTH OF A STRING

The LEN function gives an exact count of the number of characters contained in a string. Non-printing

40

u
characters and blanks are all counted as part of length.

Strings are stored in BASIC with a 3-byte vector. Two bytes are a pointer to the location in memory where

the string is stored and the third byte is the length, the LEN function extracts this byte.

We can now write a general purpose program to extract the last name from a full name.

10 INPUT"NAME:FIRST, Ml, LAST",A$

20l = LEN(A$)

30 IFM/D$(A$,I,1) = " 'THEN 60

40 I = I - 1

50 IF l>0 GOTO 30

60 PRINT "LAST NAME= "; MIID$(A$, / +1)

Two variants of MID$ are used here. Line 30 uses the case where a length is specified as the first

parameter. We are using a length of 1 to search for the blank delimiting the last name. Line 60 does not

specify a length in the MID$. Everything beyond the position of the blank is taken.

STRING STORAGE

Strings are stored in the space between the end of your BASIC program and the highest RAM locations.

As each new string is added, a chain grows downward from the top of memory.

Storage is optimized by never creating a copy of a string assigned to a literal. In this case the vector for

the string points to where the literal occurs in text in memory. Likewise, if an expression AS = BS is

executed, both AS and BS will share the same copy of the string. New string is required only if a

concatenation or INPUT is executed.

A LARGER EXAMPLE OF STRING FUNCTIONS

Using the string functions described thus far we can write a routine which will shuffle a deck of cards for

us and deal them out one at a time. The following routine has applications in many games like poker or . .

bridge. Note use of the PET graphics card symbols: M

185 PRINT-"t".:REM SET UP DECK WITH *LL 52 CARDS

128 Ci=Ci + T'ii¥2¥

138 -Zi=£$ + ':ii+2.+
146 Ci=C* +MH^2^J

1SB RZH FULL H CjiRD

286 R:=2*IMT^LE;UC*>*RNDk1)/2+l)-

28i Ni=HID£\Ci ,R, i> : Vi=M ID* <X$.R

436 REH SHRINK THE DECK

432 iFR>iTHEHTi=LEF7* vl* >R-i> :£0

433 Ti-:: r

435 Ci = T£+!a; IDi s.'C'i'R *2>

^33 FEN ?F INT ii CrtRD

" ■»• •-■ i "fc— • . I.1U' v i *.• I— i- I ■•.

*±£ INFUT'^KC THER DEAL

The string C$ is initialized to contain a deck of cards. Two characters represent each card; the suit and

rank. As a card is dealt, N$ contains the rank and Y$ contains the suit. The deck string, C$, shrinks each u
time so that unique cards are always dealt.

Statement 105 clears the screen. This is done just for show so that the program can illustrate the dealing

of cards. C$ is initialized in statements 110 through 140. C$ is concatenated because the literal

assignment is too large to fit on one line. i i

41

n
Statement 200 uses RND to generate an index into C$. The random index is in the range 1 to LEN(C$) -1.

In 201 the index is used to pull N$(rank)Y$(suit) from C$ by the MID$ function.

432 through 435 removes the card from the string so that it will not be dealt again. Since the second

argument of LEFTS cannot be zero, the R>1 test in 432 prevents an ILLEGAL QUANTITY ERROR..

440 prints each card for our program as it is pulled. 450 tests for the end of the deck and 460 allows the

user to reshuffle.

USER DEFINABLE FUNCTIONS

To this point we have covered all the functions intrinsic to BASIC. Those familiar with mathematics are

used to many more functions in that realm, especially trigonometric. While one could write code to

approximate certain functions in line it becomes very tedious and from a documentation standpoint a

simple expression might become unreadable. Fortunately ,the facility exists in PET BASIC to define

functions in terms of other functions.

A function is defined in a DEF statement:

100 INPUT B

110 INPUT C

120 DEF FN A(V) = V/B + C

The name of the function is ''FN" followed by any legal variable name. Recall that a variable is either a

letter or a letter followed by a letter or digit.

Thus the following are valid function names:

FNX

FNJ7

FNKO

FNR2

The most severe limitation of user-defined functions is that they must be contained in their entirely on

one line (80-characters). String functions cannot be defined.

The variable in parentheses following the variable name is called a dummy variable. A function may be

defined to be any expression but it may have only one argument. Other variables used in the expression

are considered to be global (have the same value as in the rest of the program), and their current values

are used in the evaluation.

After the funtion definition has been executed, a user defined function can be used as in the following

example:

130Z = FNA(3)

140?Z

When the DEFFN statement is executed, a simple variable entry is made in the variable table. The first

character of the name has bit 7, the most significant bit, set to indicate it is a function name. Associated

with the name are two pointers: an address of the text where the function is stored and an address of

where the dummy variable is stored. The code to execute a function is re-entrant so that a function may

be defined in terms of other DEF FN. An out of memory error will occur in time as the available stack

space is consumed by recursion.

Figure 6.1 shows some user-defined functions which are ready to be used in PET BASIC programs.

42

FUNCTIONS EXPRESSED IN TERMS OF BUILT-IN BASIC FUNCTIONS

SECANT, SEC(X)

DEFFNA(X) = 1/COS(X)

FOR X < >n/2

COSECANT, CSC(X)

DEFFNB(X) = 1/SIN(X)

FOR X< >0

CONTANGENT, COT(X)

DEF FNC(X) = COS(X)/SIN(X)

FOR X< >0

INVERSE SINE, ARCSIN(X)

DEFFND(X) = ATN(X/SQR(-X*X + 1))

FOR ABS(X) < 1

INVERSE COSINE, ARCCOS(X)

DEF FNE(X) = - ATN (X/SQR(- X*X +1)) + nil

FOR ABS(X) < 1

INVERSE SECANT, ARCSEC(X)

DEFFNF(X) = ATN(SQR(X*X-1)) + (SGN(X)-1)*rr/2 i i

FOR ABS(X) > 1 [J

INVERSE COSECANT, ARCCSC(X) , ,

DEF FNG(X) = ATN (1/SQR(X*X - 1)) + (SGN(X) - 1)*n/2

FOR ABS(X) > 1 ■ U

INVERSE COTANGENT, ARCCOT(X)

DEF FNH(X) = - ATN(X) + it/2

FOR ANY X

HYPERBOLIC SINE, SINH(X)

DEF FNI(X) = (EXP(X) - EXP(- X))/2

FOR ANY X

HYPERBOLIC COSINE, COSH(X)

DEF FNJ(X) = (EXP(X) + EXP(- X))/2

FOR ANY X

HYPERBOLIC TANGENT, TANH(X)

DEF FNR(X) = - EXP(- X)/(EXP(X) + EXP(- X))*2 + 1

FOR ANY X

HYPERBOLIC SECANT, SECH(X)

DEF FNL(X) = 2/(EXP(X) + EXP(- X))

FOR ANY X .I

43

u

n

HYPERBOLIC COSECANT, COSH(X)

DEF FNM(X) = 2/EXP(X) - EXP(- X))

FOR X < > 0

HYPERBOLIC COTANGENT, COTH(X)

DEF FNN(X)=EXP(—X)/(EXP(X)+EXP(—X))*2+1

FOR X < > 0

INVERSE HYPERBOLIC SINE, ARCSINH(X)

DEF FNO(X) = LOG(X + SQR(X*X + 1))

FOR ANY X

INVERSE HYPERBOLIC COSINE, ARCCOSH(X)

DEF FNP(X) = LOG(X + SQR(X*X -1))

FOR X > = 1

INVERSE HYPERBOLIC TANGENT, ARCTANH(X)

DEF FNQ(X) = LOG((1 + X)/(1 - X))/2

FOR ABS(X) < 1

INVERSE HYPERBOLIC SECANT, ARCSECH(X)

DEF FNR(X) = LOG((SQR(-X*X + 1) + 1)/X)

FOR 0 < X < =1

INVERSE HYPERBOLIC COSECANT, ARCCOSH(X)

DEF FNS(X) = LOG((SGN(X)*SQR(X*X + 1) + 1)/X)

FOR X < > 0

INVERSE HYPERBOLIC COTANGENT, ARCCOTH(X)

FNT(X) = LOG((X ■

FOR ABS(X) > 1

H DEF FNT(X) = LOG((X + 1)/(X -1))/2

GOSUB-RETURN

We have seen how to use the DEF FN to create a single variable function which can be used like any

intrinsic function. The major limitation of DEF FN is that it can consist of only a single algebraic

expression and it must fit on one line.

Often several lines of code will be repeated through a program. These program lines can be collected in

one place and executed by a GOSUB command:

GOSUB 5000

The lines of code are called a subroutine. GOSUB means go to the subroutine. It differs from GOTO in

that GOSUB remembers at which line number it was executing before the GOSUB and can return

automatically to the following line after executing the subroutine code.

A subroutine is stored as a series of lines in BASIC starting at the line number specified by the GOSUB.

The last line of the subroutine must be a RETURN statement. This tells BASIC you want to resume

executing the mainline code after the GOSUB.

44

LJ

U
Example;

10 REM THIS IS THE MAINLINE CODE I]
20 GOSUB 50 LJ

30 STOP

50 REM THIS IS A SUBROUTINE

60 RETURN

If we could take a snapshot of execution, we would see the lines executed in this order

10-20-50-60-30

Five bytes are pushed onto the stack when a GOSUB is executed: a GOSUB token, and two bytes each for

the line number and text address of the GOSUB. The line number following the GOSUB is stuffed into the

currently executing line number and the GOTO routine handles the branch. RETURN restores the line

number and text address from the stack to resume mainline execution. All F O R entries in front of the

GOSUB entry are also eliminated.

The physical limitation on the number of GOSUB's in effect at one time is 23. After this many there is very

little stack space left. ,

Example of subroutines LJ

Consider the factorial function:

n! = 1 x 2x 3x...xn

You cannot define this function with the DEF FN command. On the other hand, you can use the following

simple routine to find n! for any given n (up to 34). (NF denotes n factorial)

10

100

110

120

130

140

INPUT N

I = 1:NF = 1

NF = NF*I

1 = 1 + 1

IF I < = N GOTO 110

PRINT NF

J

The routine on lines 100-140 could be used many times during a program using different values for N. For

example, suppose you want a binomial coefficient:

(7)
m!

r!(m-r)!

The program would be

10

15

20

30

40

50

60

70

100

110

120

130

140

PRINT "M ="; INPUT M

PRINT "R ="; INPUT R

N = M:GOSUB100:X = NF

N=R:GOSUB100:Y = NF

N = M - R:GOSUB100:Z = NF

BC = X / (Y*Z)

PRINT BC

END

I = 1:NF = 1

NF = NF*I

1 = 1 + 1

IF I < = N GOTO 110

RETURN

LJ

u

u

LI
45

TYPE RUN

for the values M =

RESULT IS 462

R=6.

Subroutines act like a "black box" or complex function within the program. Certain fixed variables are

used to input the data and other fixed variables (or sometimes the same variable) are used to output the

results. For example, in the subroutine on lines 100-140, the variable N is input and the variable NF is

output as shown:

N SUB100 NF

NF = N!

When we make N equal to M, R, and M-R respectively, we get NF equal to M!, R! and (M-R)!.

Of course, some subroutines do not need inputted variables as they might just perform a specified

function such as printing a special form on the screen:

SUB print form

NESTED SUBROUTINES

The subroutine on page 6-14 itself could be used as a subroutine in a program that repeatedly calculates

the binomial coefficient. Merely change line 70 to

70 RETURN

The subroutine, denoted SUB 10, beginning on line 10 and ending on line 70 has the following structure:

M

R

BC BC =

N f NF

SUB100

Subroutines that are used by other subroutines are called nested subroutines. In this case, SUB100 is

nested in SUB20. Many programs have subroutines nested in subroutines in nested subroutines...The

only limit is the amount of memory available.

Subroutines can also be nested in more than one subroutine. An input subroutine, for example, that

accepts specific characters from the keyboard, prints a winking cursor, and prints the given characters

on the screen, might be called on many times in the main program itself and also in various other

subroutines.

CAUTIONS

A common error in using subroutines is to allow a mainline execution to fall into a following subroutine

and result in a RETURN WITHOUT GOSUB ERROR. Put a STOP or EN D statement in your code to prevent

46

this

10 GOSUB 20 10 GOSUB 20

20 RETURN 15 END

20 RETURN

Sometimes, you might have a tendency to make everything into a subroutine. If a given subroutine is used

just once, then it should be incorporated into a program where it is used to save execution time and

memory space. On the other hand, subroutines are incredibly powerful programming tools and allow you

to structure your program into blocks.

FOR-NEXT LOOPS

FOR-NEXT simplifies the writing of BASIC programs by allowing one to specify complex loop structures

with a single statement.

FOR I=ATO BSTEPC

The end of the loop is specified by the statement

NEXT

Nested FOR NEXT loops are permitted as long as each loop uses a unique variable. Use of identical loop M

variable names may result in NEXT WITHOUT FOR errors.

Exiting a FOR-NEXTIoop via a branch will leave the FOR entry on the stack. The best way to handle this is I j

to assign the maximum limit to the variable then exit the loop through a NEXT. LI

We have seen how repeated operations can be performed using a counting variable such as I in the \ ;

routine. M
10 1=1

20 1 = 1 + 1 |

30 IF I < = 10 THEN GOTO 20 U

In this case, any routine appearing in lines 21-29 will be repeated 10 times. In addition, the variable I will

have values which range from 1 to 10 in increments of 1.
<_.

This looping process can be genralized in the case:

10 I=A

20 I = l+C

30 IF I < = BTHEN GOTO 20

The values of I will range from A to B in increments of size C.

Since this process is cumbersome to use, BASIC also provides you with the FOR-NEXT statement:

10 FOR I =A TO BSTEPC

20 NEXT

I is the counting variable, A is the initial value, B is the ending value, and Cis the increment.

A, B, C may not only be constants, but they can be any valid arithmetic expression

10 FOR I=A(2) + 1 TO J*2STEP-1

On the other hand, the counting variable can be any floating variable but cannot be integer (l%) or

subscripted 1(1,4). When the increments are of size 1(C = 1) you need not include the STEP in the program.

10 REM COMPUTATION OF FACTORIAL

20 NF = 1

30 FOR I = 1 TO N

47

40 NF = NF*I

50 NEXT

Note how much shorter and more clearly this-routine is written compared to the same factorial

computing program written without FOR-NEXT.

Whenever a FOR is executed, a 16-byte entry is pushed onto the stack. Before this is done, a check is

made to see if there are any entries already on the stack for the same loop variable. If so, that FOR entry

and all other FOR entries that were made after it are eliminated from the stack. This is done so that a

program which jumps out of the middle of a FOR loop again will not use up 16-bytes of stack space

each time.

NEXT matches the most recent stack entry or the variable specified as a parameter and resets the stack

to that point. If no match is found, a NEXT WITHOUT FOR error occurs.

GOSUB execution also puts a 5-byte entry on the stack. When RETURN is executed, the stack is searched

for a FOR entry that cannot be matched, When all the FOR entries on the stack have been searched, a

pointer

is left on a GOSUB entry. This assures that if you GOSUB to a section of code in which a FOR loop is

entered but never existed, the RETURN will still be able to find the most recent GOSUB entry.

RETURN eliminates the GOSUB stack entry and all FOR entries made after the GOSUB entry.

NESTED FOR-NEXT LOOPS

FOR-NEXT loops, like subroutines, can be nested, That is, a FOR-NEXT loop may be contained in another

and so on. When doing so, it is important not to use the same counting variable as this will result in

?NEXT WITHOUT FOR ERROR

10 FOR 1 = 1 TO 10

15 PRINT "I"

20 FOR J = 1 TO 10

25 PRINT "J"

30 FOR K = 1 TO 10

35 PRINT "K"

40 NEXT

50 NEXT

60 NEXT

Lines 40-60 of the above example are confusing at first glance because one cannot tell which NEXT

corresponds to which FOR. Optionally one may specify a variable following NEXT. The variable refers to

the counting variable used in the corresponding FOR but in no way is it required by BASIC to execute

the NEXT.

40 NEXT K

50 NEXT J

60 NEXT I

PET BASIC will also allow you to write one NEXT that terminates all three FORs at one time

40 NEXT K, J, I

A NEXT WITHOUT FOR error will result, however, if you are careless in specifying the order of K,J,I.

It is interesting, however, to see how compact the notation appears and how powerful the FOR-NEXT

expressions can be when they are nested.

48

u

LI
Some hints

You may change the value of the counting variable during the looping sequence.

For example,

10 FOR 1 = 1 TO 8

20X = X + 1

30 IF I =7 THEN I =8

40 NEXT

50 PRINT X

will compute the value

Similarly, when you exit a FOR-NEXT loop using a branch, you should assign the counting variable the

end value and then exit the loop via a NEXT statement. For instance, you should use

10 FOR 1 = 1 TO 10

20IFFNA(l) = 0THEN 1 = 10

30 NEXT.'RETURN

instead of

10 FOR 1 = 1 TO 10

20 IF FNA(l) = 0THEN RETURN

30 NEXT

SUBSCRIPTED VARIABLES

Array variables need not be declared with a DIM statement if they have only one dimension and contain

less than 10 elements. The total number of elements in an array can be computed by multiplying the

(number of elements in each dimension) +1 by the other subscripts. Thus A(9,8) contains (9+1)*(8+1)

elements. Subscripts start at 0 and go up to the maximum value

A(0,0) A(0,8)

A(9,0) A(9,8)

Limits on the number of dimensions and size of a dimension are determined by size of memory available

and space available on a line following a DIM. PET BASIC restrict the total number of

array elements to 256. Each array element requires at least 5-bytes of storage.

If a single dimension array requires more than 10 elements, the DIM statement must be executed before

the first reference. Otherwise, a REDIM'ED ARRAY error will occur.

Example: List of account balances

D

U

J

1

2

3

4

5

6

7

8

9

$100

$135

$57.86

<$9 8 7>

$22

<$6 3>

$50

<$2 1 >

$2 1

L

Q

Suppose we need to write a simple program which allowed you to INPUT an account number and a

transaction and keep a running total on each account. We could refer to each account balance as A1, A2,

49

Q

U

A3, A4, A5, etc. This is acceptable but would require a lot of parallel logic to accomplish the summation

10 INPUT "ACCOUNT, CHARGE"; I, C

20 IF 1 = 1 THEN A1=A1+C

30 IF I =2 THEN A2 = A2 + C

etc.

This list can be stored in a single variable which is actually a list of variables. This list is an array of

values and an individual value is accessed by an index. The index we can use is the account number. Our

program can be reduced to:

10 INPUT "account, charge"; I,C

20A(l) = A(l) + C

30 GOTO 10

The list we have represented has 9 rows and 1 column. Thus it is a 1 dimensional array. A multiple column

table can also be represented. This is a two dimensional array.

Account #

1

2

3

4

5

6

7

8

9

Balance

$100

$135

$57.86*

<$987>

$22

<$63>

$50

<$21>

$21

#of transactions

1

1

1

1

1

1

1

1

1

Our table has 9 rows and 2 columns. To access a certain entry position, you must specify the row index

and column index of where it is contained. For example, the quantity denoted by a * is in row 3, column 1.

In order to use such a table in a BASIC program, you must provide a statement, to describe the number of

rows and columns contained in the array variable.

Such a description is a DIMension statement. For our table of 9 rows and 2 columns we could write

DIM A(9,2)

Let us rewrite our program to update the column containing the number of transactions

10 INPUT "ACCOUNT, CHARGE"; I, C

20 A(I,1) = A(I,1) + C

30 A(I,2) = A(I,2) + 1

40 GOTO 10

Now suppose that we had a table for each of 5 companies and each company had 9 accounts and each

account had a balance and each balance had a number of transactions. We can describe this as piling

sheets of paper on top of each other and refering to each sheet by number.

50

We have created by this example a multi-dimensional subscripted variable. These arrays correspond to

matrices used in mathematics.

In mathematics, a vector is an ordered collection of numbers:

v=(v1t v2,...,vn)

The above vector has n components and is called a vector of dimension n.

For example,

v=(3,9,2)

is a vector of dimension 3.

Order is imporatant here since if

w=(3,2,9)

Vectors can be stored in memory using subscripted variables. These variables are used in the same way

as the variables we have seen so far -X, l%, A$, etc. That is, they call whatever value is stored in that

variable or return a zero or null (" ") if the value has not been previously specified.

Like vectors, subscripted variables have the power to execute a large number of operations using a single

notation. Theyare especially useful when combined with FOR-NEXT loops as the next example shows.

Example: Dot Product

The dot product of two vectors v & w is a vector, denoted by v • w, whose ith component (v«w). is v. x w..

For example, in the four dimensional case, if

v = (v,, v2, v3, v4)

and w = (w1} w2, w3, w4)

Then v«w =(^ x wi} v2 x w2, v3 x w3, v4 x w4)

Suppose we had

v = (5,6,7,11,4,6,1/

w= (9,5,2,1,0,3,2)

Then a program to compute the dot product v • w might look like

FOR I = 1 TO 7:READ V(I):NEXT

FOR I = 1 TO 7:READ W(I):NEXT

FOR I = 1 TO 7:VW(I) = V(I)*W(I):N EXT

FORI = 1TO7:?VW(I):NEXT

51

DATA 5,6,7,11,4,6,1

DATA 9,5,2,1,0,3,2

SUBSCRIPTED STRING VARIABLES

It was mentioned previously that subscripted variables can be

decimal: A(l)

integer: A%(l)

string: A$(l)

Subscripted string variables are extremely useful as shown in the next program which prints a bar graph

of the U.S. GNP from 1966 through 1974.

GROSS NATIONAL PRODUCTS

(IN $ BILLIONS)

$ 936

! $ 1063

72 $ 1171

S 1307

The program listing is:

READY

10 SPACE $ = "

20 FOR I = 1 TO 7: READ A$(I):NEXT

30 FOR I =0 TO 8: READ V(I):NEXT

40 PRINT" <? SPC(8)"GROSS NATIONAL PRODUCTQ"

50 PRINTSPC(12)"(IN $BILLIONS)Q"

100 FOR l=0TO 8

110X = V(1)/45:Y = INT(X)

120 PRINT "R"LEFT$(SPACE$,Y)A$(S*(X-Y))

130 PRINT " G R"STR$(66 +1)" $"STR$(V(I))"Q"

140 NEXT

200 DATA"3" "5" "B" "5" "■" "I" "]"

210 DATA753,796,869,936,982,1063,1171,1307,1413

READY

52

The subscripted values V(0), V(1),...,V(8) are the GNP's for each of the 9 years. The subscripted strings

A$(0), A$(1),...A$(7) give accuracy to the graph by printing these graphics:

prints ASC

null(by

default)

A$(1) I 165

A$(2) ■ 180

A$(3) ■ 181

A$(4) ■ 161

A$(5) MM 182 (R)

A$(6) ■■ 170 (R)

A$(7) ■■■ 167 (R)

THE HEADING

GROSS NATIONAL PRODUCT

(IN $BILLIONS)

is printed in lines 40 and 50 and then a FOR-NEXT loop on lines 100-140 prints out the eight bars. Line 120

prints out each bar and line 130 prints a cursor up and then the associated year, STR$(66 +1) and GNP,

STR$(V(I)).

Each bar is made up of Y reverse field spaces and the string A$(8*(X-Y)). The Y is determined by the

formula

Y = INT(V(l)/45;

= INT(GNP/45)

Here, 45 is purely a scale adjustment. The proportions of the bars remain the same when values other

than 45 are used.

Fine tuning on the bar length is accomplished using the subscripted string variable

A$(8*(X-Y))

Here 8*(X-Y) will range over the decimal values 0 through 7.99...9 but A$ automatically truncates the

decimal part.

DIMENSION STATEMENTS

When using more than 10 subscripts for any variable, a dimension statement must be given. It takes the

form, DIM A$(K), where K is the largest subscript of A$ used in the program. When variables are

redimensioned without a CLR statement or when a dimension statement appears after the variable has

been used, a ?REDIM'D ARRAY ERROR occurs. When a dimension statement is made, space is reserved

in memory for the given number of variables, including the variable whose subscript is 0. It is good

programming sense, therefore, to begin subscripts at 0 and not 1.

Because the variables are divided in storage between arrays and simple variables insertion of an

additional simple variable is a bit more complicated once an array has been defined. First, the entire array

storage area must be block moved upward by seven bytes and the pointers adjusted upward + 7. Finally,

the simple variable can be inserted at the end of simple variable storage.

53

If large arrays are defined and initiaiized first before simple variabies are

assigned, much execution time can be lost moving the arrays each time a

simple variable is defined. The best strategy to follow in this case is to

assign a value to all known simple variables btfore assigning arrays. This

will optimize execution speed.

Functions of new and CLR on data pointer:

CLR

String pointer equated to top of memory

Data pointer to start of text -1

End of array table to start of variables

End of simple variables to start of variables

NEW

String pointer equated to top of memory

Data pointer to start of text -1

End of array table to start of text + 3

End of simple variables to start of text + 3

Start of variables to start of text + 3

54

<

Q.

o

tr
LU

o
Q.

Q.

O
z

tr

a.

s

m

CO

s

o

CO

CO

CM

CM
CO

O

LU LU

LU LU
Q_ Q.

CsJ

top of memory-

start of strings

end of array table 1

end of variables

start of variables

data statement <

start of text

CM

00

CO
CM
o

CM

^
^8?.
/ o

03
N

To

E

s

■>

CO

O)

"S5 oo

CO

"c

^ ° E
■> 55 2
/ < 03

55 2
< 03

CD "co

2

o

CO
o

in

CO

CO
la

CO

CO

CD

-Q

CO

van

CO

111
CM

109

oc

Q.

o

sinlinteipoi
Q.

O \

Prin
CVJ

o

CO

I

55

NOTES

56

Chapter 7. PET INTERFACES AND LINES

As indicated in Figure 7.1, there are four connectors provided, accessible through slots in the rear and

side of the PET that enable the user to interface the computer with external devices.

As outlined in Figure 7.2, edge card connectors are utilized which are, in fact, direct extensions of the

PET main logic assembly board itself. There are two contacts to each position of the connector. The

contact identification convention for J1 and J2 is also illustrated in Figure 7.2.

MEMORY EXPANSION

* CONNECTOR

PARALLEL

USER PORT J2
SERIAL NUMBER

ANO

ELECTRICAL SPEC.

3-WIRE AC

POWER CORD

Figure 7.1. Simplified view off PET showing switch,

fuse, line cord and interfacing connectors.

FROM PET MAIN LOGIC ASSEMBLY BOARD

ABCDEFHJ KLM

Rear or Edge-on View through slots in PET

N

Figure 7.2. Simplified views of edge connectors J1 and J2

to illustrate contact identification convention.

(or Pin)

IEEE-488 INTERFACES (Connector J1)

The standard IEEE-488 connector is not used on the PET. Instead, a standard 12 position, 24 contact edge

connector with .156 inch spacing between contact centers is provided. This permits it to be compatible

with all of the other connections to the PET.

Keying slots are located between pins 2-3 and 9-10.

Table 7.3 shows the PET contact identification characters, the connection fora standard IEEE connector,

57

the IEEE mnemonics and the signal definitions.

Electrical drive capability and line impedance matching is in accordance with IEEE-488 specifications.

PET Pin

Characters

Upper Pins

1

2

3

4

5

6

7

8

9

10

11

12

Lower Pins

A

B

C

D

E

F

Lower Pins

H

J

K

L

M

N

Standard

IEEE

Connector

Pin

Numbers

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

IEEE

Signal

Mnemonic

DI01

DI02

DI03

DI04

EOI

DAV

NRFD

NDAC

IFC

SRQ

ATN

GND

DI05

DI06

DI07

OI08

REN

GND

GND

GND

GND

GND

GND

GND

Signal

Definition/Label

Data input/output line #1

Data input/output line #2

Data input/output line #3

Data input/output line #4

End or identify

Data valid

Not ready for data

Data not accepted

Interface clear

Service request

Attention

Chassis ground and.IEEE

cable shield drain wire

Data input/output line #5

Data input/output line #6

Data input/output line #7

Data input/output line #8

Remote enable

DAV ground

NRFD ground

NDAC ground

IFC ground \

SRQ ground

ATN ground

Data ground (DI01-8)

Table 7.3. PET contact identification characters.

IEEE-488 identification characters,

associated labels and descriptions.

RECEPTACLES FOR THE IEEE INTERFACE

A list of frequently used 12 position, 24 contact receptacles that are suitable for connection to the PET

edge card connector J1 and J2 is shown here:

Manufacturer

Cinch

Sylvania

Amp

Amp

Amp

Part Number

251-12-90-160

6AG0M2-1A1-01

530657-3

530658-3

530654-3

Table 7.4. Receptacles recommended for PET IEEE-488

connectors or parallel user port.

58

IEEE-488 CONNECTORS

The IEEE-488 standard receptacles are not directly connectable to the PET edge connector; some of

these are shown in Table 7.5, and belong to the Cinch Series 57 or Champ Series (Amphenol). Also shown

are their matching plugs.

Connector

Manufacturer

Cinch

Cinch

Amp

Amp

identifier

5710240

5720240

552301-1

552305-1

Description

Solder-plug

Solder-receptacle

Insulation displacement plug

Insulation displacement receptacle

Table 7.5. IEEE standard connectors

Commodore has available a 1 meter long IEEE-488 dual connector-PET edge connector, cable. Please

contact your local dealer or Commodore for price and delivery.

PARALLEL USER PORT (Connector J2)

The lines for this interface are brought out from the PET main logic board to a 12 position, 24 contact

edge connector with a .156 inch spacing between contact centers. See Table 7.4 for suitable mating

connectors.

Keying slots are located between pins 1-2 and 10-11.

Table 3-1 shows the PET pin identification characters, the corresponding labels and their descriptions.

Note that the connections 1-12, the top line of contacts (see Figure 7.6), are primarily Intended for use by

the PET service department or qualified dealers. When using the incorporated ROM diagnostic, a special

connector is used; this jumpers some of the top contacts to the bottom contacts. It is strongly advised

that the top connectors 1-12 be used only with extreme caution.

Pin

Identification

Character

1

2

3

4

5

Signal

Label

Ground

T.V. Video

IEEE-SRQ

IEEE-EOI

Diagnostic

Sense

Signal

Description

Digital ground.

Video output used for external display,

used in diagnostic routine for verifying

the video circuit to the display board.

Direct connection to the SRQ signal on

the IEEE-488 port. It is used in verify

ing operation of the SRQ in the diag

nostic routine.

Direct connection to the EOI signal on

the IEEE-488 port. It is used in verify

ing operation of the EOI in the diag

nostic routine.

When this pin is held low during power

up the PET software jumps to the diag

nostic routine, rather than the BASIC

routine.

Table 7.6. Parallel user port information.

PET pin identification characters, the corresponding

signal labels and their descriptions.

Table continued on next page.

59

Table 7.6. Parallel user port information (continued).

Pin

Identification

Character

6

7

8

9

10

11, 12

A

B

C

D

E

F

H

J

K

L

M

N

Signal

Label

Tape #1

READ

Tape =2

READ

Tape Write

TV.

Vertical

TV

Horizontal

GND

GND

CA1

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

CB2

GND

Signal

Description

Used with the diagnostic routine to

verify cassette tape =1 read function.

Used with the diagnostic routine to

verify cassette tape =2 read function.

Used with the diagnostic routine to

verify operation of the WRITE func

tion of both cassette ports.

TV vertical sync signal verified in

diagnostic. May be used for external

TV display.

TV. horizontal signal verified in

diagnostic may be used for TV display.

Digital ground.

Digital ground.

Standard edge sensitive input of

6522VIA.

Input/output lines to peripherals,

and can be programmed independ

ently of each other for input

or output.

Special I/O pin of VIA.

Digital ground.

VERSATILE INTERFACE ADAPTER

The lines on the bottom side of the user port connector originate from a Versatile Interface Adapter

(VIA MOS Technology part #6522).

The signals CA1, PAO-7, and CB2, are directly connected to a standard 6522 VIA located at hexadecimal

address E840. (Decimal address 59456).

The parallel port consists of eight programmable bi-directional I/O lines PAO-7, an input handshake line

for the eight lines,CA1, which can also be used for other edge-sensative inputs and a very powerful

connection, CB2. This has most of the abilities of CA1, but can also act as the input or output of the VIA

shift register.

A detailed specification for the VIA is below. All signals on the VIA that are not connected to the user

port are utilized by the PET for Internal controls. Please note that the user should avoid interfacing these

signals in any way.

60

Table 7.7 shows the decimal and hexadecimal addresses in the PET associated with the VIA.

Decimal

59456

59457

59458

59459

59460

59461

59462

59463

59464

59465

59466

59467

59468

59469

59470

59471

Hexa-

Decimal

E840

E841

E842

E843

E844

E845

E846

E847

E848

E849

E84A

E84B

E84C

E84D

E84E

E84F

$E840+

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Addressed Location

Output register for I/O port B.

Output register for I/O port A

with handshaking.

I/O Port B Data Direction

register.

I/O Port A Data Direction

register.

Read Timer 1 Counter low order

byte Write to Timer 1 Latch

low order byte.

Read Timer 1 Counter high

order byte. Write to Timer 1

Latch high order byte and

initiate count.

Access Timer 1 Latch low order

byte.

Access Timer 1 Latch high order

byte.

Read low order byte of Timer 2

and reset Counter interrupt.

Write to low order byte of

Timer 2 but do not reset

interrupt.

Access high order byte of Timer

2; reset Counter interrupt on

write.

Serial I/O Shift register.

Auxiliary Control register.

Peripheral Control register.

Interrupt Flag register (IFR).

Interrupt Enable register.

Output register for I/O Port A,

without handshaking.

Table 7.7. VIA 6522 Decimal and Hexadecimal addresses in PET.

PROGRAMMING THE USER PORT

Data lines PAO-7 are individually programmed to function for input or output as required. This is done by

using a software POKE 59459 command to place a number into the data direction register. Table 7.8

shows a practical example of input/output selection.

The programming need only be carried out at the beginning. From then on POKE 59471 can be used to

drive the pins programmed as outputs, and PEEK(59471) will read all the inputs.

61

Command

Statement

POKE 59459,255

POKE 59459,0

POKE 59459,240

Binary

Representation

11111111

00000000

11110000

Lines

PA0-7

PA0-7

PA0-3

PA4-7

Mode

Output

Input

Input

Output

Table 7.8. Parallel user port example.

Programming of lines PAO-7 for input/output operation.

SECOND CASSETTE INTERFACE (Connector J3)

This interface is brought out from the PET main logic board to a 6 position, 12 contact edge connector

with .156 inch spacing between contact centers (See Figure 7.9).

A keying slot is located between pins 2-3.

This port is intended for use with the Commodore second cassette system only. Any other connections

are made at the risk of the user. Please note that +5 volts is not intended for use as an external power

supply.

Table 7.10 shows the PET pin identification characters,-labels and descriptions. Table 7.11 shows some

typical receptacles that are suitable for the second cassette connector.

FROM PET MAIN LOGIC ASSEMBLY BOARD

Insulation

BCD

Top

View

Upper

Contact

(or Pin)

Lower

Contact

(or Pin)

Rear or Edge-on View through slot in PET

Figure 7.9. Simplified view of edge connector J3

with contact identification.

Note A-1, B-2, etc., imply a pin A to pin1, pin B to pin 2, connection.

In some special units, pins 1 through 6 were not connected.

Pin

Identification

Characters

A-1

B-2

C-3

D-4

E-5

F-6

Label

GND

+5

Motor

Read

Write

Sense

Description

Digital ground.

Positive 5 volts to operate cassette circuitry

only.

Computer controlled positive 6 volts for

cassette motor.

Read line from cassette.

Write line to cassette.

Monitors closure of mechanical switch on

cassette when any button is pressed.

Table 7.10. Second cassette interface port.

PET pin identification characters, labels and associated descriptions.

62

u

MEMORY EXPANSION CONNECTOR (Connector J4 and J9

The memory expansion connector provides access to the buffered

and decoded input/output lines from the 6502 microprocessor. Figure

7.12 shows a simplified view of the 80-position connectors used. The

spacing between contact centers is 0.1 inch.

Note that the 40 top edge "B" connections (or pins) are ground

returns for the corresponding 40 lower edge "A" connections.

Table 7.11. A selection off suitable receptacles for connecting

with the PET second cassette edge connector J3.

DAUGHTER BOARD EXPANSION CONNECTORS (J4, J9, J10, J11)

The PET main logic board has been designed to support a daughter board which attaches to memory

expansion connectors J4 and J9, and expansion power connectors J10 and J11. Table 7.12 shows

suitable connectors which the user may attach for his own boards. All connector pins are on .1" grid.

J4 and J9 are 2x25 (row, column) configuration, and J10 and J11 are 2x7. Table 7.13A lists the

daughter board power connections and table 7.13B lists the memory expansion connections.

Manufacturer

Sylvania

Viking

Viking

Viking

Amp

Sullins

Cinch

Identifier

6AJ07-6-1A1-01

2KH6/1AB5

2KH6/9AB5

2KH6/21AB5

530692-1

ESM6-SREH

250-06-90-170

Daughter board power connections table 7.13A

12 3 4 5 6 7

pin # function p[

-5V Raw power 1

-5V Raw power 2

key 3

+12V Raw power 4

+12V Raw power 5

Ground 6

Ground 7

• o o • • • •

12 3 4 5 6 7

* function

+9 unregulated

key

key

+9 unregulated

ground

+9 unregulated

Ground

Manufacturer

Spectra-strip

Spectra-strip

Spectra-strip

Spectra-strip

Circuit-Assembly

Circuit-Assembly

contact grid

2x7

2x7

2x25

2x25

2x7

2x25

identifier

802-104

802-114

802-050

802-150

CA-14-IDSC

CA-50-IDSC

Table 7.12. A selection of suitable receptacles

for connecting with PET daughter board pin

connectors J4, J9, J10, and J11

Memory expansion bus

1 2 3

pin#

SideAl

2

3

4

5

6

7

8

9

10

11

12

13

pin #

SideAl

2

3

4

5

6

7

8

9

10

11

12

13

4 5 6 7 8 9

function

ground

BA0

BA1

BA2

BA3

BA4

BA5

BA6

BA7

BA8

BA9

BA10

BA11

function

ground

BD0

BD1

BD2

BD3

BD4

BD5

BD6

BD7

SEL2

SEL3

SEL4

SEL5

10 11 12 13 14 15

pin #

14

15

16

17

18

19

table 7.13B

16 17 18 19 20 21 22 23 24 25

function

BA12

BA13

BA14

BA15

SYNC

IRQ

20 Memory Management

21

22

23

24

25

B02

BR/W

BR/W

DMA

ground

SideB1-25 ground

(J4j

pin #

14

15

16

17

18

19

20

21

22

23

24

25

Side B1-25

function

SET6

selT

SEL"8

SEL"9

SEL A

seTb

CAS

RAS

RES

RDY

NMT

ground

ground

0

n
u

I"*
U

U

0

D
63

Table 7.13C shows the PET

Connector

Pin Numbers

J9-1

J9-2

J9-3

J9-4

J9-5

J9-6

J9-7

J9-8

J9-9

J9-25

J9-10

J9-11

J9-12

J9-13

J9-14

J9-15

J9-16

J9-17

J9-19

J9-21

J9-22

J4-10

J4-11

J4-12

J4-13

J4-14

J4-15

J4-16

J4-17

J4-18

J4-19

J4-22

J4-23

J4-24

J9-1

J4-2

J4-3

J4-4

J4-5

J4-6

J4-7

J4-8

J4-9

J4-20

J4-21

J4-25

Line

Labels

GND

BA0

BA1

BA2

BA3

BA4

BA5

BA6

BA7

GND

BA8

BA9

BA10

BA11

BA12

BA13

BA14

BA15

IRQ

B02

BR/W

SEL2

SEL3

SEL4

SEL5

SEL6

SEL7

SEL~8

SEL~9

SEL A

SELB

RES

R"DY

NMI

GND

BD0

BD1

BD2

BD3

BD4

BD5

BD6

BD7

RAS

CAS

GND

pin numbers, line labels and line descriptions.

Line Description

Logic Ground

Address bit 0, used for memory expansion. Buffered.

Address bit 1, used for memory expansion. Buffered.

Address bit 2, used for memory expansion. Buffered.

Address bit 3, used for memory expansion. Buffered.

Address bit 4, used for memory expansion. Buffered.

Address bit 5, used for memory expansion. Buffered.

Address bit 6, used for memory expansion. Buffered.

Address bit 7, used for memory expansion. Buffered.

Logic Ground.

Address bit 8, used for memory expansion. Buffered.

Address bit 9, used for memory expansion. Buffered.

Address bit 10, used for memory expansion. Buffered.

Address bit 11, used for memory expansion. Buffered.

Address bit 12, used for memory expansion. Buffered.

Address bit 13, used for memory expansion. Buffered.

Address bit 14, used for memory expansion. Buffered.

Address bit 15, used for memory expansion. Buffered.

Interrupt request line to the microprocessor.

Buffered phase 2 clock.

Buffered read/write from 6502 microprocessor.

4K byte page address select for memory locations 2000-2FFF.

4K byte page address select for memory locations 3000-3FFF.

4K byte page address select for memory locations 4000-4FFF.

4K byte page address select for memory locations 5000-5FFF.

4K byte page address select for memory locations 6000-6FFF.

4K byte page address select for memory locations 7000-7FFF.

4K byte page address select for memory locations 8000-8FFF.

4K byte page address select for memory locations 9000-9FFF.

4K byte page address select for memory locations A000-AFFF.

4K byte page address select for memory locations B000-Bfff.

Reset for 6502 microprocessor. Note: connected to 74LS00 output.

Ready line to the microprocessor.

Non maskable interrupt to microprocessor.

Logic ground.

Data bit 0. Buffered.

Data bit 1. Buffered.

Data bit 2. Buffered.

Data bit 3. Buffered.

Data bit 4. Buffered.

Data bit 5. Buffered.

Data bit 6. Buffered.

Data bit 7. Buffered.

Dynamic RAM RAS.

Dynamic RAM CAS.

Logic Ground.

64

ADDITIONAL BASIC COMMANDS

By this time, the user is probably familiar with the use of the commands INPUT and PRINT. INPUT

permits the output or display of data. These commands are common to all forms of BASIC.

To add flexibility to the PET computer system, several commands have been added to classical BASIC in

the PET, and future Commodore products will take advantage of the resulting extra capability. In general,

enhanced flexibility of data interchange between the PET and peripheral devices is possible, thanks to

the use of these extra commands.

To communicate with any device, a combination of the additional commands is used:

a) OPEN/CLOSE Open or close logical file.

b) PRINTS Write data from PET to I/O device.

c) CMD Same as PRINT* but leaves IEEE device an active

listener on bus after execution of command.

d) INPUT* Read data from I/O device to PET.

e) GET# PET accepts one character from I/O device.

INPUT/OUTPUT COMMAND PARAMETERS

In order to use the additional commands referred to in the above, four parameters must be taken into

consideration:

a) Logical file number (LF)

b) Device number (D)

c) Secondary address (SA)

d) File-name (FN)

These parameters can appear, for example, when using the OPEN# command in the form of the

statement:

OPEN#LF,D,SA,FN

LOGICAL FILES

Files are used to store and retrieve data, as for example in the case of a magnetic tape or disc file. A

convenient extension of this idea is to regard any device which can receive and/or generate data as a

logical file. To the PET operating system, data might just as well have come from, or be going to, a

storage system such as magnetic tape.

For example, imagine that an external digital voltmeter is set up so that it can transmit voltage readings

upon request to the PET via the IEEE bus. Sometime during the "voltmeter program" the programmer will

have to open a file and assign a logical file number to refer to the voltmeter. Once this has been done, The

PET can use a "read" command (INPUT#) which uses the logical file number to refer to the voltmeter.

When no further data is required from the voltmeter, the logical file can be closed.

More generally, the advantages offered by the use of logical files are:

a) Every device number secondary address combination

can be associated with its own unique logical file number

within a program.

b) Multiple files within a single dev ice can be refered to

by means of distinct logical file numbers. This approach is

to be used in the newly developed disc storage system for

the PET.

c) Once a logical'file number has been defined in an OPEN

65

statement, within a program, only this number need be used

in the following input/output statements. This eliminates the

need for further restatement of device number, secondary

address (where used) and file name (where used).

Although it is permissable to identify and use many logical files in a given program, the PET operating

system has to keep track of the files that are currently in use in the program. The greatest number of files

that can be controlled by the PET at one time is ten. A logical file number can be any integer in the

range 1 through 255.

DEVICE NUMBERS

All devices which the PET communicates with are assigned numbers. The first four of these are reserved

for the following peripherals:

Device

Number Device

0 Keyboard

Default- 1 Cassette 1 panel mounted

2 Cassette 2 add-on

3 Video screen

All other devices are automatically assumed by the PET to be IEEE devices, and control is transferred to

the device which will have been allocated a number within the range 4 through 30. Except in special

cases, a specific number would be allocated to each IEEE device to allow the PET and a particular device

to communicate using the parallel IEEE-488 bus.

On many IEEE devices, the allocation of the device number is made by means of a switch, or in the case

of less expensive products, by the connection of jumpers.

SECONDARY ADDRESSES

The concept of secondary address may be new to those people who have never worked with the IEEE bus.

The use of a secondary address permits an intelligent peripheral to function in any one of a number of

modes. For example, in a PET printer, there are six secondary addresses:

Secondary

Address Operation

Default- 0 Normal printing

1 Printing under format statement control

2 Transfer data from PET to format statement

3 Set variable lines per page

4 Use expanded diagnostic messages

5 Byte data for programmable character

In short, by changing the secondary address used to communicate with a given physical device, its

operating characteristics can be totally changed, if so desired. Many of the IEEE devices have their own

particular secondary address conventions which must be followed. Specific data on these conventions

can be obtained by consulting the manual for that particular device.

The PET tape units have a special set of secondary address rules:

Secondary
Address Operation

Default- 0 Tape is being opened for "read"

1 Tape is being opened for "write"

2 Tape is being opened for "write" with an "end of

tape" header being forced when the file is closed.

The secondary address can have values over the range 0 through 31.

FILE NAMES

In random storage devices where there is more than one file to be accessed, the use of names to identify

files is mandatory. In the case of tapes, a file name is desirable, even if there is only one file on the tape, since it

facilitates the identification of tapes.

For the two cassette tape units of the PET, a file name may be any combination of up to 128 characters.

When a file name is searched for, it is matched on an ascending character basis.

Assume that an eight character file name COUNTING was specified when writing. If desired, this could

be searched for with an abbreviated name such as COU. The first file header that is found with these

three consecutive characters will then be opened and positioned on. In principle, this could include

unwanted file names such as COUNT or COUNTRY, as well as COUNTING.

It is, therefore, advisable to specify the complete file name in order to avoid errors.

For other devices which use named files, the individual description of the device should be consulted in

order to ascertain the specific requirements for file name usage.

TAPE CASSETTE OPERATION FOR FILES

The PET devotes special attention to the two tape cassette units that can be attached to it. The tape units

are specially modified so that the PET has control over the motor movement of the cassette.

It can also sense when the PLAY, REWIND, or FAST FORWARD buttons have been pushed; this is done

by means of a single switch mounted in the tape unit.

Note that the same switch is used to sense all three buttons: if any of the three is pushed, the PET will

think that you pushed the PLAY button and will respond accordingly.

Because of the type of mechanism used in the tape unit, the user must rewind, fast forward, stop, load

and eject tapes. He must also put the unit into the write mode by pushing the record button either

simultaneously with, or before the PLAY button is pressed.

The PET has total control over the movement of the tape once the appropriate buttons have been pushed

to engage the motor.

Messages displayed throughout thfc program will tell the user when it is necessary for him to initiate the

function of play or record. Logic dictates the times when the user should rewind and fast forward.

The two tape units of the PET are handled independently, and the various control lines permit the reading

of data from cassette #1, the reading of data from cassette #2, motor control of cassette #1, motor

control for cassette #2 and a common write line.

FILE RECORDING TECHNIQUE

The data structure embodied in the tape files will ensure the maximum memory utilization and maximum

reliability of recording.

To accomplish this, the PET records data at two audio frequencies in two consecutive blocks of data. All

of the data is totally repeated and by means of error Ghecking techniques incorporated in the PET

software, it is possible for most audio dropouts to be corrected by the operating system utilizing the

redundant data stored in the second data block.

In order to correct for (a), the fact that tape units record at different speeds, and (b), the normal drag

characteristics of tapes, a speed correlation technique is used during reading. To correct for the

individual start/stop characteristics on the tape and syncronize correctly between each block on tape, a

67

single tone is written between blocks. This signal is used to syncronize both position and speed of the

tape. Varying lengths of tone are used at the beginning and between the data blocks of the tape. By

writing about ten seconds of the tone on each opening of a file, the PET automatically corrects for normal

leader. Individual tape blocks are separated by shorter tone durations.

FILE HEADERS

An important assumption underlying the tape system design was that the user would often want to

record more than one file of data on a tape. In order to facilitate this and to allow for proper label

checking, the first physical data recorded on tape for any operation is a file header. This file header looks

exactly the same as the normal data block, except that the first character of every block on tape contains

an identification character which enables the operating system to differentiate between program blocks,

data blocks, file headers and end of tape headers.

The PET allows for up to 128 characters of a file name to be stored in the file header. This is the name

which is searched for and matched on in the various OPEN/CLOSE options.

TAPE BUFFERS

Another basic premise in the design of the tape operating system was that the user would want to write

tape independently of what is occurring on tape at a given moment. This is accomplished in the operating

system by permanently assigning a block of memory as a data buffer for each cassette. A 192 character

buffer is located at decimal address 634 for cassette #1, followed by a 192 character buffer at decimal

address 826 for cassette #2. The tape file header is written into the buffer first and then written on tape.

Data files are accumulated in the tape buffer until 192 characters are exceeded, then the contents are

either written on tape for write, or if the program is reading tape, the next block of data is read into the

buffer. Tape file headers and all data blocks are, therefore, 192 characters long.

Tape buffers are not used in the case of program files, since these are written onto the tape directly from

the memory in which the program resides. In order to accomodate the variable memory location, the file

header for a program file contains the beginning and ending address for the program. The full program is

written onto tape in the usual form of two consecutive redundant blocks.

MULTIPLE FILES

In order to have multiple files on tape, the user needs the ability to add files to a tape and also know when

a tape is at its end. It is, therefore, important that the operating system give an "end of file" and "end of

tape" indication.

In the case of data files, an "end of file" marker is appended after the last data character. This is available

to the user in a status word on reading; the "end of file" marker is automatically inserted when a write file

is closed.

In the case of program files, because all data is always contained in a single block, the end of the block

signifies the end of the program.

To signify that the end of the tape has been reached, a special separate file header is written. When this

is encountered during a search for files, the PET automatically stops the tape and indicates "file not

found" to the user. A typical multiple file tape could contain first a data file, then a program file, followed

by an "end of tape" header as illustrated in the example of figure 7.14. .

68

Data file

Program file

10 seconds of leader

192 character file header block

2 seconds of leader

192 character data block

2 seconds of leader

I

Last block of this file

10 seconds of leader

192 character file header block

I 2 seconds of leader

10 byte

32K byte

program block

2 seconds of leader

optional 192 characters

end of tape header

Figure 7.14. An example of multiple file structure.

LOGICAL FILE I/O OPERATIONS: GENERAL

These operations can be subdivided into three steps:

a) Open the file -tell the PET everything it needs to know about the file.

b) Read data from, or write data to the logical files.

c) Close the file - allow the PET to clear up the device and terminate the active file.

These steps are discussed in detail on the following pages.

OPENING FILES

In order to tell BASIC about the file you want to operate on, it is first necessary to open the file. This is

done by the following statement:

OPEN logical file, device, secondary address, file name

More specifically, the statement consists of the command OPEN followed by the logical file number,

then the device number to which the file is assigned, then the secondary address data (if any)

communicated during the interaction of BASIC with the file, and last, the name of the physical file (if any).

69

This statement, or expression, is interpreted by BASIC, and could, therefore, use computed logical file

numbers, device numbers or secondary address data. This capability is extremely useful when handling

multiple file devices such as discs.

The keyword OPEN and the logical file numbers are essential in order to open a file; that is address a

device in preparation for a "read" (INPUT #) or a "write"(PRINT #).

The device number is optional; if not entered, the default value "1" will be used.

A file name is optional, though preferred, for the tape units: however, a name would be essential for a disc

storage unit.

EXAMPLES OF OPEN STATEMENTS

The statement OPEN 1,2,1 is interpreted by the operating system as saying:

Parameter

(LF) Logical file #1 has been opened

(D) Logical file #1 has been assigned to tape unit#2

(SA) Tape unit #2 has been instructed to write on tape

(FN) A file name has not been assigned to the tape record

Similarly, OPEN 3 is interpreted as saying: (F)

Parameter

(LF) Logical file #3 has been opened

(D) Logical file#3 has been assigned to tape unit #1 (default "1")

(SA) Tape unit #1 has been instructed to read from tape (default "0")

(FN) No file name referred to

If a PET printer is assigned "4" as a device number, then OPEN 12,4,1 is interpreted as:

Parameter

(LF) Logical file #12 has been opened

(D) Logical file #12 has been assigned to device #4

(SA) Printer has been instructed to print under format statement control

(FN) File name not applicable

LOAD

A special case of the OPEN command is the LOAD of a named file: a LOAD is done with the following statement:

LOAD name, device number

The operating system automatically generates an OPEN using the appropriate secondary addresses for

"load". This OPEN causes the loading device to search for a program name. After the program is found, it is

automatically read from the device and loaded into memory starting at an address specified in the file

header. Most reading errors on the first pass through that program are automatically fixed on the second pass.

At the end of the load cycle, a checksum error, of the total program is made. If a checksum error, or if an

70

Code

4

8

16

32

Meaning

Short block

Long block

Checksum error on

Checksum ERROR

tape

on tape

SAVE

SAVE also performs an automatic open and close. The SAVE is specified by the statement:

SAVE name, device number

If the physical device is one of the two tape units, the operating system automatically initiates a tape

header and opens a tape file with the appropriate name. The file header is written with the beginning and

ending address.

If the device is an IEEE-488 device, a special open message is sent indicating that the PET is sending a

program file.

The program is then written directly from its memory locations to the tape or the IEEE-488 bus.

If the SAVE is on tape, a checksum is computed and also saved and then the whole program is written

again to give the redundant recording. At the end of the program, the tape is automatically stopped and

positioned for the next data.

IEEE-488 SPECIAL FEATURES

In the tape, the program beginning and ending address are stored in and retrieved from the tape file header.

In order to more efficiently use the IEEE-488 data, the starting address of the program is sent as the first

two bytes of data on a SAVE and retrieved from those positions oh a LOAD.

71

uncoverable read error occurred, the operating system automatically prints 7LOAD ERROR and stops

the load program.

If the program load was from direct mode, the clear function is performed at the end of the load, thereby

initializing all variables.

If the LOAD is called from a program, then the PET treats this LOAD as an overlay. The new program is

loaded into the space used by the previous program, but the values of all of the variables are maintained

from the previous program. This allows for one program to call another and pass parameters to the called

programs.

The only restriction on this is that all the called programs must fit in the same, or less space as the first program.

Because BASIC totally replaces the current program, it is not directly possible to have a single main

program and several subroutine overlays, however, by including the main program with each overlay, the p

same effect is obtained with some loss of speed. ' i I

The combination of the use of named files and overlays allows the writing of very large structured

programs of appreciable complexity. I /

VERIFY ■

This very instruction is a special case of LOAD. It should be used after every program SAVE.

The command causes BASIC to go through all the steps of a program LOAD, with the exception that the

data does not get loaded into memory, but, instead, gets compared with memory. If either first or second

pass errors occur, the PET will type out 7VERIFY ERROR which means that the program should be saved

again before it is lost. On VERIFY, the status word has the following meanings

IEEE-488 OPEN CONSIDERATIONS

If the OPEN command selects a device which has a value of 4 or more, the operating system assumes

that the device is an IEEE-488 device.

If the OPEN does not specify a file name, then nothing is communicated on the IEEE-488 bus. However, if

a file name is specified, the operating system sends a listen attention sequence to the device number

specified in the OPEN along with a secondary address which is the OR of hexadecimal "FO" and the

secondary address specified in the OPEN statement.

Commodore-supplied peripherals, such as the floppy disc storage system, will use this secondary

address and also the file name, which is then transmitted to the listening device in order to transfer data

later to the open file.

TAPE FILE OPERATION MODES

tape files can be opened for two distinct purposes:

a) In order to write from the PET onto tape.

b) In order to read from tape to the PET.

OPEN FOR WRITE ON TAPE FROM PET

The flow diagram of Figure 7.15 outlines the PET-user interaction and PET function when opening a file

for write on tape. The initial block shows that there are two ways of opening the file:

a) OPEN for write-data tape.

b) SAVE-write a program tape.

Note that if the tape file is opened directly from the keyboard, then the message WRITING NAME is

displayed. If the file is opened under program control, and the PLAY and RECORD buttons are depressed

previously, then no message appears on the screen. In this manner, any display material placed there by

the current program is not disturbed.

OPEN FOR READ FROM PET TO TAPE

The flow diagram of Figure 7.16 outlines the PET-user interaction and PET function when opening a file

for reading on tape. The initial block shows that there are two ways of opening the file:

a) OPEN for read data tape.

b) LOAD program into memory.

Note that if the file is opened directly, that is from the keyboard, then the messages PRESS PLAY,

SEARCHING FOR NAME and FOUND NAME are displayed. If LOAD was used, then the BASIC variables

of the loaded program are initialized.

If the file is opened under program control and provided that the PLAY button had been pressed

previously, no messages appear on the video screen in order to disturb material displayed by the current

program. Initialization of the BASIC variables does not occur.

72

PRESSPLAY

AND RECORD

OPEN for

Write or SAVE

Name —** Header

in Tape Buffer

PLAY

and RECORD

Buttons Down?

Wait for

Switch

Closure

Program

Direct

Message:

WRITING NAME

Header Goes

to Tape

Figure 7.15. OPEN for write from PET: PRINT#,CMD or SAVE.

OP = operating system takes over.

73

Directos. Direct
or Program

Operation

Program Message:

LOADING

NAME

1

Read in

Full Program

to Memory

Message:

SEARCHING
FOR NAME

Direct ^ Direct
or Program

Operation

Figure 7.16. OPEN for read to PET: INPUT# or LOAD

OP = Operating system takes over. B = BASIC takes over.

74

DATA INPUT: GENERAL

The use of the word "input" in this context implies input of data to the PET from any device.

INPUT#-String and Variable Input

INPUT# is the command used to initiate data transfer from I/O devices to the operating system. The

statement format is:

INPUT# logical number file, A,A$,B,B$,etc.

Where A,A$,B, and B$ are numerical and string variables to be inputted (read) from the selected logical

file to the operating system one character ata time.

Because the rules for the BASIC interpreter apply to these input statements, all carriage returns,

commas, terminate fields, nulls, preceeding blanks (except in strings), and other control characters

are automatically deleted.

It is not always possible to mix both numeric and alphabetic data on the I/O device. If a numeric field is

specified, only numeric data in the standard form expected by BASIC is accepted, otherwise a ?BAD

DATA ERROR message is displayed.

If there is any ambiguity about the data coming in, the user should input only to strings and then use the

various string manipulation commands to process the data into the appropriate variables.

Example of lnput# Statement

If X represents a series of 50 numbers stored on a tape file named VECTOR and we assume that the PLAY

button has just been depressed on the tape unit#1. Then the following program will read the 50 numbers

one at a time and display them on the video screen.

10 OPEN 1,1,0"VECTOR" Open logical file #1. Assign file to cassette 1. Open tape for

"read". Look for physical file named VECTOR.

20 FOR K = 1 to 50 Read 50 numbers at one time from cassette 1.

30INPUT#1,X

40 PRINT X Display numbers on video screen

50 NEXT K

60 CLOSE 1 When 50 numbers have been read, close logical file #1.

GET #-CHARACTER TRANSFERS

Not all devices transfer data in a form which is accceptable directly to BASIC. There is a series of binary

data and combinations which BASIC ignores and although many IEEE devices do correctly respond

with data formats which are acceptable to basic, not all do.

In addition, in some cases, it is desirable for the programmer to have immediate access to characters as

they are transfered to the system. GET- fetches from the IEEE-488, or tape device, a single character at a

time, putting a character in a field specified following the GET#. THE FORM IS:

GET# logical file, field

TAPE INPUT

When reading from the tape file, the data comes to the user I/O independent. Each time BASIC starts on

INPUT# or GET# from a logical device which was opened for read on tape 1 or 2, a special subroutine is

called, which initiates tape input.

As each character is requested from BASIC, it is fetched from the appropriate tape buffer. When the

buffer is empty, the tape input routine suspends the user program and reads the data block from tape

into the buffer and then transfers the next character to BASIC. If a read error occurs, it is noted in the

75

status word.

When the end of file mark is encountered in the buffer, the end of file position of the status word is set on

and carriage returns are forced automatically out until the command is finished.

At the end of a command, BASIC calls another routine which reinitializes the input to be the keyboard and

tells the end of file operation that a command is complete.

IEEE-488 DEVICE INPUT SEQUENCES

All INPUT#or GET# commands go through the same sequence. When the command is first encountered,

the IEEE-488 input initiation routine is called, which sends a talk attention sequence to the device and

secondary address which was specified for that logical file in the OPEN sequence. At the end of the

attention sequence, the PET establishes itself in a listener mode and attempts to wait for a DAV signal

indicating a single character has been received. If the DAV is received within 65 milliseconds, that

character is handed to BASIC and/or to the other program calling the IEEE-488 routine. Each time the

IEEE-488 routine is called, it will go through the same sequence of getting a single character while

waiting for a time out to occur. If the bus does not respond in 65 milliseconds, then the IEEE-488 routine

will automatically terminate the sequence; giving a read error in the status word to indicate that it has

terminated the sequence.

If during the course of reading the character, the IEEE-488 routine senses an EOI line, it will indicate the

end of information in the status word and will continue to return carriage returns, until the command it

has been currently operating under has been terminated. At the end of the command, BASIC calls a

termination subroutine which reinitializes the device to the keyboard and sends an untalk to the

IEEE-488 bus, thereby, freeing the bus for the next command.

INPUT BUFFER LIMITATIONS

Although data is transferred from the operating system one character at a time, in order to edit, BASIC

accumulates these characters into an 80 column input buffer. This buffer must be terminated by a

carriage return.

On the PET, should more than 80 characters be read, the operating system will malfunction, as the

operating system variables are overwritten. The PET can be made to function again by switching the line

supply off and on.

This constraint must be kept in mind when using tape and disc file systems.

This means that carriage returns must be written on tapes, discs, or other I/O devices in such a way that

not more than 80 characters per field are written without being separated by carriage returns.

If an I/O device sends more than 80 characters, the GET command can be used to build your own string

without running into the buffer limitation.

DATA OUTPUT: GENERAL

The use of the words "print" and "write" refers to data output from the PET to any device.

PRINT#

The command PRINT* must be followed by a logical file number, and then a comma to separate the data

that would follow PRINT:

PRINT* logical file number, data

Data is transferred a single character at a time to the physical device correlated with the logical file

specified in the relevant OPEN statement. Many of the file delimiters such as commas are automatically

76

deleted by BASIC; although this does not greatly effect the printing, it should be remembered that when

reading back from tape or another I/O device that file delimiters must be forced. This forcing can be done

by inserting a CHR$(44) or "," between fields or by only printing single fields in each PRINT# statement

which will force carriage returns between fields. Example:

instead of writing

PRINT#LF,A;B$;C$

which will be sent as

ABC

with no delimiters:

PR\U7#LF,A;CHR$(44)B$;CHR$(44);C$

or:

Pfl/A/r#LF,A'7';B$;'7';C$

which will output: (Note: CR means carriage return)

A,B$,C$,CR

or:

PRINT#LF,A

PRINT#LF,B$

PRINT#LF,C$

which will output:

A CR B$ CR C$ CR

Because BASIC always formats outputs to any devices as though it were outputting to the screen,

PRINT#LF,A,B has several skip characters between the values of A and B, while A;B does not have any

extra skips.

An exception to this rule is the tape where the first skip on output is supressed.

Note: Although both the INPUT# AND PRINT# commands operate in virtually the same way as their

equivalent INPUT and PRINT statements do in BASIC, the abbreviated command ? which can be used in

place of PRINT, does not apply to PRINT*. ?# and PRINT* are recognized and reduced to two different

token characters when processed by BASIC. ?# will look like PRINT* when listed but gives 7SYNTAX

ERROR when an attempt is made to execute it.

Examples of the PRINT* Statement

This program will print the series of numbers 1,2,3...5O, one at a time on a PET printer.

10OPEN 5,4,0 Open logical file #5. Assign logical file #5 to device #4 (PET

printer) in normal print mode corresponding to secondary

address "0".

20 FOR K = 1 to 50 Print the series of 50 numbers on printer.

30 PRINT#5,K

40 NEXT K

50 CLOSE 5 Close logical file #5.

To write the above series of numbers on a cassette in tape unit #2, only the OPEN line would have to be

modified, if the same logical file numbers were chosen:

10OPEN 5,2,1 Open logical file #5. Assign logical #5 to device #2 (tape unit

#2) with a write without "end of tape" designation

corresponding to secondary address T.

77

20 FOR K = 1 to 50 Record the series of 50 numbers on tape.

30 PRINT#5,K

40 NEXT K

50 CLOSE 5 Close logical file #5.

In the above cassette example, the data would be accumulated in a 192 character buffer one character at

a time. When the capacity of the buffer is exceeded, then data entry is suspended, the tape started, and

the buffer contents written to tape. The buffer is initialized to accept up to 192 characters and then the

program is allowed to proceed.

I EEE-488 BUS OUTPUT

The PRINT* command causes BASIC to call an output subroutine which initializes an I EEE-488 device for

output. The first step in the command is that the PET reassigns its normal output from the screen device

to the physical device that was chosen for the logical file in the open routine. A listen command is sent on

the IEEE bus to the physical device and a secondary addressd specified for that logical file in the OPEN.

BASIC then hands one character at a time to another subroutine which proceeds to transfer that

character over the bus with the PET acting as a talker and all addressed devices responding listeners.

When BASIC has finished the PRINT*, another subroutine in the operating system is called and the PET

sends an "unlisten" command to the entire bus and restores the primary address to the screen. This.frees

the whole bus for the next operation.

This unlisten sequence also sends an EOI signal on the bus, along with the last character sent from

BASIC. To accomplish this, each character is stored in a buffer prior to transmission by the IEEE routines

and the previous character is sent.

CMD COMMAND

Normally, each print command deals only with one logical device and at the end of the command entire

bus is unlistened. In some instances, it is advisable to have more than one device on the bus; in order to

facilitate this, the special command CMD is provided. CMD is virtually identical to PRINT*, except that at

the end of the data transfer, the unlisten routine is not called, thereby leaving the device on the bus as

a listener.

The operating system continues to treat the last device to be commanded by the CMD as the primary

output device for BASIC. PRINT or LIST commands are then directed to this primary device, rather than to

the video screen. More specifically, the CMD of the printer device, followed by LIST, results in hard copy

78

printed listing, instead of a video screen listing. However, since neither the CMD nor LIST command

terminate bus operation for the device, a PRINT# is required to terminate a CMD command.

Examples of a CMD Command

To list:

OPEN 3,4 where 4 is the printer device number

CMD 3

LIST will list just the same as the screen, except on the printer,

to print and write a disc at the same time:

*CMD 3 where logical file 3 is open to the printer.

PRINT#15,A,B,C where 15 is the floppy disc logical file number

(previously opened),

will result in A,B, and C being stored on the floppy but also being displayed on the printer.

To monitor an input device:

**CMD 3 turn on printer

INPUT#15,A,B,C read from floppy

This will result in the data from the floppy being transferred to A, B and C but also being printed as they

are being transferred.

CLOSING FILES

Any logical files which have been opened during a program should preferably be closed when no longer

required, and in the case of tape or disc files, must be closed before the program ends. The following

should be kept in mind:

a) If the total number of logical files currently exceeds ten, then loss of

PET operation will result.

b) If a logical file assigned to a tape unit is not closed, no "end of file"

mark will be recorded at the end of the physical tape file. If this tape is then

loaded into memory, the PET will have no way of knowing the file has

ended, and if the unwanted and erroneous data is present from a

previous recording, it will also be read into memory.

EXAMPLE OF A CLOSE STATEMENT

To close any file, the following simple statement is sufficient:

CLOSE logical file

If it is required to close logical file number 5, then this becomes:

CLOSE 5

TAPE FILE CLOSURE

If a file had been opened on the tape, there are two operations that occur: an "end of file" marker is

recorded in the next data character, then the tape buffer is forced out onto the cassette.

If during OPEN the "end of tape" option was chosen, an "end of tape file" header block is also

forced out on the cassette.

*Must be given each time because PRINT# unlistens the bus.

**Need not be given each time, more code can be included between instructions.

79

IEEE-488 NAMED DEVICE CLOSURE

For IEEE-4888 devices, which were opened with file names, a special listener command sequence,

with the special secondary address of thehexadecimal EOOR'ed with the secondary address from the.

OPEN is sent. This allows devices such as disc files to be closed by the peripheral controller.

ERROR DETECTION: GENERAL

The basic concept of the PET operating system is that the user will be allowed to operate in a free-form

format; reading and writing on tapes, discs, and printers, in the manner that is most comfortable for him.

Because I/O is totally free-form, it is most important that the operating system should have means of

informing the user when transmission errors or end of data conditions occur.

STATUS WORDS

In order to facilitate INPUT/OUTPUT operation error detection, the PET uses the "status word" concept in

which a byte in memory is manipulated by each of the I/O operations for the PET, and can be sampled by

the programmer at any time by calling the function ST. Each bit in the staus word has a general meaning

for all operations and a specific meaning for the individual I/O device.

Table 7.17 shows the errors as a function of the ST word value for the tape cassette units. IEEE read/write

operations, tape verify and load operations.

ST

Bit

Position

0

1

2

3

4

5

6

7

ST

Numeric

Value

1

2

4

8

16

32

64

-128

Cassette

Read

Short block

Long block

Unrecoverable

read error

Checksum

error

End of file

End of tape

IEEE R/W

Time out

on write

Time out

on read

EOI line

Device not

present

Tape

Verify

+ Load

Short block

Long block

Any

mismatch

Checksum

error

End of

tape

Table 7.17. Status Word (ST) values correlated with

tape cassette, unit and IEEE bus read/write errors.

IEEE DEVICE ERRORS

There are basically three errors that can occur during an IEEE-488 transfer. First, the entire bus does not

respond to an attention sequence. If this occurs, the IEEE-488 subroutine sets the DEVICE NOT PRESENT

bit (7 or -128). The PET also terminates the current program with 7DEVICE NOT PRESENT ERROR. If the

bus responds correctly to the attention, but when the PET goes to write the first character to the bus and

the physical device is not present as indicated by having NRFD or NDAC low, the PET, again, gives a

device not present indication.

The second error occurs during the process of transferring data to the device. The bus does not respond

80

in the appropriate times and/or if it ceases to respond by means of bringing NRFD and NDAC both high, a

write error indication is given in bit 0.

The third error occurs when during read on an IEEE-488, the IEEE device has not sent DAV in less than 65

milliseconds; bit 1 of the status word is then set. Whenever the EOI line is encountered, the subroutine

sets the bit 6 on in the status word and continues to force carriage returns.

TAPE UNIT ERRORS

The cassette only checks data on read. The errors deleted are:

1) SHORT BLOCK (4).When reading a block from tape, a spacer tone was

encountered before the expected number of bytes has been read from that

block. Possible cause: attempting to read a short load file as a data record.

2) LONG BLOCK (8).When reading a block from tape, a spacer tone was not

encountered after the expected number of bytes had been read from that

block. Possible cause: reading a long load file as data.

3) UNRECOVERABLE READ ERROR (16).Cause: more than 31 errors on the

first block of redundant blocks-or an error that could not be corrected

because it occured in the same place in both blocks.

4) CHECKSUM ERROR (32).After a LOAD or reading of data, a checksum is

computed over the bytes in RAM and compared to a byte received from the

input device. If they do not match, this bit is set.

5) END OF FILE(64).This bit is set when the end of data file mark is

encountered in a tape record.

6) END OF TAPE (-128).An EOT record was read.

EXAMPLES OF ST USE

As you can see, there is no status that the PET detects for the writing of tapes, nor errors detected for

printing to and reading from the screen. There is an error'on writing data out to the IEEE-488 and there is

also a series of errors detected on inputting from the IEEE-488 or from tape.

The normal programming technique is to follow INPUT#or a GET# by either a test or storage of the value

of status. As this is only a single byte of memory and the status changes on each new I/O command, the

status is very transient.

100 INPUT#2,A

110INPUT#5,B

120IFST = 0THEN 200

This code only checks the result of the transfer of data from logical file 5. The results of reading logical

file 2 is forever lost. Similarly:

. 100 INPUT#2,A

110 PRINT A

120IFST = 0THEN 200

In this case, the ST reflects the print status, rather than the results of reading #2.

A correct way to use ST is the folllowing:

100 INPUT#2,A,B,C

110 IF ST = 0 THEN 200 process normally

120 IF ST = 64 THEN 300 end of data processed with no errors

81

130 IF ST = 2 THEN 400 time out with no errors

Each error can now be processed with the following:

140 IF ST AND mask THEN Mask represents the bit being tested

POLLING TECHNIQUES

One technique to poll slow IEEE-488 devices such as sampling devices, which take many minutes to

respond, is to use the INPUT# from the device; then if the status indicates time out, process other

routines or loop on the INPUT # until no error occurs. If there are no errors, the correct data has been

finally read and one can process that data information.

By using this sampling technique, a whole series of slow devices can be serviced, along with running a

foreground program by use of the real time clock (TI,TI$) and the INPUT#/timeout error sequence, to

occassionally poll devices.

DEFAULT PARAMETERS

Parameter

Device ~

•

Secondary

address

Default Value

D=1

SA=0

Default Operation

Cassette ^1 selected

On tape files open for read

On IEEE-488 devices, no

secondary address is sent.

Table 7.18. Default values.

Statement

OPEN 1

OPEN 1,2

OPEN 1,2,1

OPEN 1,2,1,

"DAT"

Equivalent

(Default)

Parameter Values

OPEN 1,1,0

OPEN^1,2,0

OPEN#1,2,1

OPEN=1,2,1,

"DAT"

Operation

Open logical file =1 for cassette -1 read

no file name

Open logical file =1 for cassette ^2 read

no file name

Open logical file -1 for cassette #2 write

no file name

Open logical file =1 for cassette ~2 write

file named "DAT"

Table 7.19. Example of default parameters.

INTRODUCTION TO THE IEEE-488 BUS

This bus consists of 16 signal lines that are divided functionally into three groups, those are:

a) The data transmission bus

2) The control bus

3) The management bus

Furthermore, the IEEE bus can support three classes of device:

a) Talkers: at any given moment, only one device is permitted to transmit

data to the data bus.

b) Listeners: as many devices as required may receive data

simultaneously from the bus.

c) Controller: the PET is the only controller allowed on the IEEE bus.

82

u

BUS/DEVICE CONTROL

The line-pin connections for the 12 position, 24 contact edge card connector, emanate from the PET main

assembly board (see Table 7-19). For further information, please refer to Figure 7.2

Certain physical limitations should be noted when connecting devices to the IEEE bus:

a) The maximum advisable bus extension from the PET is 20 meters.

b) The maximum interdevice spacing is 5 meters.

c) The maximum number of devices is 15.

PET

Contact

Identifi

cation

1

2

3

4

5

6

7

8

9

10

11

12

A

B

C

D

E

F

H

J

K

L

M

N

Bus

DATA

MANAGER

TRANSFER

MANAGER

DATA

MANAGER

GROUNDS

IEEE

Label

DI01

DI02

DI03

DI04

EOI

DAV

NRFD

NDAC

IFC

SRQ

ATN

SHIELD

DI05

DI06

DI07

DI08

REN

GND6

GND7

GND8

GND9

GND10

GND11

LOGIC GND

PET

Contact

Identifi

cation

1

2

3

4

5

6

7

8

9

1*0

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Label

Description

Data INPUT/OUTPUT LINE #1

Data INPUT/OUTPUT LINE #2

Data INPUT/OUTPUT LINE *3

Data INPUT/OUTPUT LINE *4

End or identify

Data valid

Not ready for data

Data not accepted

Interface clear

Same as PET reset

Service request

Attention

Chassis ground and IEEE

cable shield

Data INPUT/OUTPUT LINE =±5

Data INPUT/OUTPUT LINE #6

Data INPUT/OUTPUT LINE *7

Data INPUT/OUTPUT LINE ~8

Remote enable (REN) always

ground in the PET

DAV ground

NFRD ground

NDAC ground

IFC ground

SRQ ground

ATN ground

Data ground (DI01-8)

0

u

0

0

D

U

D

0

U
i I

U

Table 7.20. IEEE bus group, label and contact identification number.

THE DATA BUS

This bus is comprised of 8 bi-directional lines that transmit the active low data signals D101-8. The

slowest device in use on the bus at a given time controls the rate of data transfer; the mode of transfer is

one byte at a time, bit parallel.

Peripheral addresses and control information are also transmitted on the data bus. They are

differentiated from data by ATN (true) during their transfer.

The most significant bit (MSB) is on line DI08.

For an explanation of signal abbreviations such as DI-08, see Figure 7.23.

Data Transmission Modes

All possible bit patterns are valid on the data bus when sending data to devices.

THE TRANSFER BUS

This three line bus controls the transfer of data over the data bus. The signals transmitted are used in

83

u

0

the handshake procedure outlined in 7-21,

These signals are:

a) NRFD Not ready for data

b) NDAC Data not accepted

c) DAV Data valid

Note that the talker originates the DAV signal and the listeners the NFRD and NDAC signals.

See Table 7-23 for detailed description of signals.

The Handshake Procedure

When a talker transmits a data byte to one or more listeners, this control procedure is used in order to

ensure that the operation is successful.

The essential function of the handshake is to ensure;

a) All listeners are ready to accept data.

b) That there is valid data on the data bus.

c) That the data has been accepted by all listeners.

The transfer of data occurs at a rate determined by the slowest active device on the bus; this allows the

interconnection of devices which handle data at different speeds.

The sequence of events that occur during the transfer of a data byte from the talker to the listeners is

shown in the flow diagram of figure 7-21.

Not Greater than 64 msec.

(5) (7)

NRFD

(Listener)

DAV

(Talker)

NDAC

(Listener)

Data Bus

Signals (2)'

Data Signal

Settling Interval

Figure 7.21. Transfer bus handshake sequence.

Ready for Data

Not Ready for Data

Data Not Valid

Data Valid

Data Accepted

Data Not (Being)

Accepted

Bit Value = 0

High Impedance

Bit Value = 1

84

COMMENTS TALKER
COMMENTS

Data Not

Valid

All

Listeners

are Ready

for Data

Is the

Data Valid

Not ready

for Data

Data

Accepted

Data Not

Accepted

Figure 7.22. Sequence of events during a data byte transfer from the talker to the

listners. Broken lines indicate the testing of transfer bus signal logic levels.

85

Figure 7-22 shows the relative timing of transfer bus signals during a typical handshake; the bracketed

numbers in the following sequence refer to the changes in signal logic levels in the Figure:

1) NRFD goes high (false) indicating that all listeners are ready for the

next byte of data.

2) The talker puts the next data byte on the data bus and allows the data

signals to settle. This could happen before, after or during (1).

3) The talker tests NFRD, when it is found to be too high, the talker makes

DAV low (true) to inform listeners that the bus data is now valid.

4) As soon as a single listener detects that DAV is low, that listener sets

NRFD low; data is now accepted by all the individual listeners at their own

rate, each of whom release NDAC as they accept the data.

5) NDAC goes high (false) when the slowest of the listeners have accepted

the data.

6) The talker sets DAV high (false) indicating that the bus signals are now

invalid.

7) The listeners note that DAV has gone high and sets NDAC

low (true) completing the handshake. When each listener has processed

the data, they release NFRD. This terminates the sequence for the first

data transfer. The sequence will repeat again, beginning at (a), until all

required data transfers have been completed.

PET/IEEE Bus Timing Constraints

The following limitations should be noted in order to avoid a loss of data:

a) When PET is a listener, it expects DAV to go low within 64 milliseconds

after it has set NFRD high.

b) When PET is a talker, it expects NDAC to go high within 64 milliseconds

after it has set NRFD high.

If these limitations are exceeded, the PET ceases to transfer and sets the appropriate status word (ST).

See Table 7-24.

THE MANAGEMENT BUS

This group of five signal lines controls the state of the data bus and defines its signals; these can be

concerned with data, addresses, or control information (device commands).

The five management signals are:

a) ATN Attention Assigns devices to act as listeners

or talkers.

b) EOI End or , Indicates that the last data byte is

identify being transferred.

c) IFC Interface Initializes the data bus. Talkers and
clear listeners set idle. Same signal as

reset in the PET.

d) SRQ Service Device tells controller that service is

request required. Not implemented in BASIC
but available in PET.

e) REN Remote Permanently tied to ground in the

I PET.
enable

86

IEEE SIGNALS AND DEFINITIONS

The 16 transmission lines of the IEEE-488 bus are each assigned a specific signai. Table 7-23 gives the

bus group, name, abbreviation and functional description for each of these signals.

LOGIC LEVEL CONVENTION

The "true" or logical "1"is low with common collector type outputs. This allows any device to hold the

bus in the "true" or logical "1" state.

Bus

Group

Manager

Transfer

Manager

Manager

Transfer

Transfer

Manager

Manager

Signal

Abbrev.

ATN

DAV

EOI

IFC

NDAC

NRFD

SRQ

REN

Name

Attention

Data Valid

End or

Identify

Interface

Clear

Data Not

Accepted

Not Ready

for Data

Service

Request

Remote

Enable

Functional

Description

The PET (controller) sets this

signal low while it is sending

commands on the data bus.

When ATN is low, only periph

eral addresses and control

messages are on the data bus.

When ATN is high, only pre-

veiously assigned devices can

transfer data.

When DAV is low, this signi

fies that data is valid on

data bus.

When the last byte of data is

being transferred, the talker

has the option of setting EOI

low. The PET always sets EOI

low while the last data byte is

being transferred from the

PET.

The PET sends its internal re

set signal as IFC low (true) to

initialize all devices to the idle

state. When PET is switched

on or reset, IFC goes low for

about 100 milliseconds.

This signal is held low (true)

by the listener while reading.

When the data byte has been

read, the listener sets NDAC

high. This signals the talker

that data has been accepted.

When NRFD is low (true),

one or more listeners are not

ready for the next byte of

data. When all devices are

ready, NRFD goes high.

Not implemented in BASIC,

but available to the*PET user.

REN is held low by the bus

controller. The PET has a pin

grounded that keeps REN

permanently low.

Table 7.23. IEEE-488 bus signal.

Table continued on next page.

87

Table 7.23. IEEE-488 bus signal (continued).

Bus

Group

Data

General

Signal

Abbrev.

DI01-8

GND

Name

Data input/

output lines

1 through 8

Ground

Functional

Description

These signals represent the bits

of information on the data bus.

When a DIO signal is low, it

represents 1 and when high 0.

Ground connections: There

are six control and manage

ment signal ground returns,

one data signal ground return

and one chassis shield ground

lead.

STATUS WORD (ST)

ST is a BASIC variable which can be used to check the outcome of INPUT/OUTPUT operations. ST can

have certain values over the range -128 to 127. Table 7-24 shows the status code that appertains to the

IEEE-488 bus.

ST

1

2

64

-128

Error

Time

out on

listener

Time

*out on

talker

End or

identify

(EOI)

Device

not

present

Explanation

The IEEE device has not responded within the 65

milliseconds time out inverval.

The IEEE device has not provided an active "data

valid" signal (DAV low) within the 65 millisecond

time out interval.

EOI has gone low (true), on the last byte of data

being transferred on IEEE bus. Note that all devices

do not generate an EOI signal. Consult relevant

instrument manual.

Device did not respond when addressed; this gen

erates an error message and the operating system

returns the PET to BASIC command level.

Table 7.24. ST status code for IEEE-488 bus.

IEEE-488 REGISTER ADDRESSES

Table 7-24 shows the IEEE-488 hardware addresses for the PET. An attempt to control the bus by means

of the PEEK and POKE commands will fail, if the time out intervals for the 488 devices are exceeded.

Hex

Address

E820

E822

E821

E823

E810

E840

Decimal

Address

59424

59426

59425

59427

59408

59456

Bits

0-7

0-7

3

3

7

6

0

1

2

6

7

IEEE

DI01-8

0101-8

NDAC

DAV

SRQ

EOI

NDAC

NRFD

ATN

NRFD

DAV

Mode

Input

Output

Output

Input

Input

Input

Output

Output

Input

Output

Table 7.25. IEEE-488 hardware addresses and signal information.

88

O
D

<
0

-

v
b
\

b5
b
4 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

b
3 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

b
2 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

b
1 I 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

C
O
L
U
M
N

•

R
O
W

1

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

0

o

0

0

N
U
L

S
O
U

S
T
X

E
T
X

E
O
T

E
N
O

A
C
K

B
E
L

B
S

H
T

L
F

V
T

F
F

C
R

S
O

S
I

M
S
G

G
T
L

S
D
C

P
P
C
(
3
)

G
E
T

T
C
T

0

o

1

1

O
L
E

D
C
1

D
C
2

D
C
3

D
C
4

N
A
K

S
Y
N

E
T
B

C
A
N

E
M

S
U
B

E
S
C

F
S

G
S

R
S

U
S

M
S
G

L
L
O

D
C
L

P
P
U

S
P
E

S
P
D

0

1

0

2 S
P ! - S "
o

& ' () • t- -

M
S
G

i
J

o L
U

Q z5
—

5 1 1 t]

0
1

1
1

1
M
S
G

0

1
0

3
1

4

0
A

0

1
T

A
2

B

3
J,

C
4
M
H

D

5
«
M

6
p

F

7
O
U

-i
4i

-K
-

•
h

K
-

1
M

--
|
T

1
n

?
■
■

o

M
S
G

A T 1
U
J

O U
J

Q O Q ASSIGNETAbi
d\

1

5

M
S
G

1

i

0

6

P
\
I

|

Q R S T U V W X Y
'

z I \ I

L
J

!. o
l ASSIGNETAf i T

■
■

a It c cl e I

—

i k
.

1 i
n

n C
)

M
S
G

A t 1
U
J

O C
D

L
U

p
z L
U

Q o L
U

s zt
i

1

1

1

7 P C| i s 1 u V w X y L 1 i 1

D
E
L

M
S
G A f 1

U
J

O C
L

>
■

m a U
J

z U
J

Q a i U
J 1

T
A
D
D
R
E
S
S
E
D

U
N
I
V
E
R
S
A
L

C
O
M
M
A
N
D

C
O
M
M
A
N
D

G
R
O
U
P

G
R
O
U
P

(
A
C
G
)

(
U
C
G
)

I
L
I
S
T
E
N

A
D
D
R
E
S
S

G
R
O
U
P

(
L
A
G
)

J
\
_

I
T
A
L
K

A
D
D
R
E
S
S

G
R
O
U
P

(
T
A
G
)

V_
J
\
_

P
R
I
M
A
R
Y
C
O
M
M
A
N
D
G
R
O
U
P

(
P
C
G
)

N
O
T
E
S

(
P
M
S
G

I
N
T
E
R
F
A
C
E
M
E
S
S
A
G
E

(?
)

h,
D
I
0
1

l)
7

D
I
0
7

C
D
H
t
O
U
I
R
E
S
S
E
C
O
N
D
A
R
Y
C
O
M
M
A
N
D

0
D
E
N
S
E
S
U
B
S
E
T
(
C
O
L
U
M
N

2
T
H
R
O
U
G
H

b)
A
L
L
C
H
A
R
A
C
T
E
R
S
U
S
E
D

I
N
B
O
T
H
C
O
M
M
A
N
D
&
D
A
T
A
M
O
D
E
S
.

I
S
E
C
O
N
D
A
R
Y

C
O
M
M
A
N
D

G
R
O
U
P

(
S
C
G
)

T
a
b
l
e

7.
26

.
C
o
d
e
a
s
s
i
g
n
m
e
n
t
s

f
o
r
"
C
o
m
m
a
n
d
M
o
d
e
"

o
f
o
p
e
r
a
t
i
o
n
.

(
S
E
N
T
A
N
D
R
E
C
E
I
V
E
D
W
I
T
H
A
T
N
T
R
U
E
)

c
r

c
r

c
r

c
r

NOTES

90

Chapter 8. USE OF THE PET FOR MACHINE LANGUAGE PROGRAMMING

Machine language programs execute much faster than do BASIC programs which have to be interpreted

first then executed. On PET, machine language can be used to communicate with the user port, play

music, or write the screen memory with blinding speed. If you have never programmed the 6502

microprocessor, it is probably advisable that you get hold of the two books mentioned in Chapter 1

before you proceed with this chapter.

In PET there are two ways to create a machine language program in memory and execute it. The first is by

BASIC. As previously discussed, there are two BASIC commands, PEEK and POKE which give equivalent

machine language operation relative to controlling input/output instructions or influencing or sampling

individual memory locations. The second method to program is by a monitor.

A monitor essentially has only three functions: examine and deposit bytes in memory, and branch to

execute code. These functions are available as PEEK, POKE and SYS in BASIC. The chief limitation of

BASIC is that all bytes must be converted to decimal before use. A monitor available for PET allows one

to work entirely in hexadecimal notation but the 6502 does not care what base you work in because all it

sees is binary. The PET monitor does have some other useful features which we will discuss later.

MACHINE LANGUAGE PROGRAMMING FROM BASIC

It is possible to build into a string of memory locations by means of a POKE command, a set of

instructions which are a machine language subroutine which is usable by an individual program. To

implement these subroutines, there are four basic considerations: (1) what the subroutine is supposed to

do, (2) how to implement it, (3) where to put the program, and (4) how to communicate the subroutine from

BASIC. The decision on what the program is to do and how to implement it is left to the programmer and

the programming manual (6502).

To locate the co'de, you must decide whether you have a small program that is to be used only temporarily

or whether it is a program you want to have operational throughput the entire time the BASIC program is

operating in the machine.

To understand how best to keep the program in memory, we should review the memory map of the PET.

All the zero page programs address are consumed by the operating system and are usually being

changed throughout the programs. Between the normal use of stack and tape I/O corrections, all of page

1 is used. Page 2 has a series of variables which are again used throughout the program. However,

memory locations 634 through 1023 are used for the first and second cassette buffers. If a program is not

using tape I/O, then these areas will not be touched by BASIC.

If only the first cassette is used, the second cassette buffer is available. If both the cassettes are used

during the program, or if this area is not enough into which the user is to write some code, then the space

between the end of the BASIC program and where BASIC stores its variables is the space that is available

to the programmer. At any time during execution of the program, a PEEK into location 124 and 125

indicates the beginning location of the BASIC variables. Working back down these with a small safety

margin which is proportional to the amount of data space that is used in the program, is a memory area

which is not affected by BASIC during execution. These are memory locations which are counted by the

FRE statement. Once programs have been written and debugged, this space is as useful as are the

cassette locations.

The final problem is how to get'the program into the memory location. Although by use of the machine

language monitor, machine language programs are loadable, this involves a two-step process for the

user. First, the machine language program must be loaded, followed by the loading of the BASIC

91

program. Obviously, this technique does not work at all, if the program is to be loaded into the cassette

buffers. Another technique is to assemble the program, into the BASIC program, by means of putting the

machine language program into data statements. The data statements can then be read at the beginning

of the execution of the BASIC program and POKEd into the appropriate memory locations.

SYS COMMAND

When it is necessary to transfer control to the machine language program, there are two ways to do it.

The preferred approach is the SYS command which transfers control totally from BASIC until control is

returned by means of a routine from subroutine instruction. It can be used to transfer control to any other

program such as a machine language monitor or future languages when they become available. If the

following code is encountered

10 SYS (634)

at Line 10, BASIC will hand control of the computer to the program located at 634. The general format

for the SYS command is

SYS (start address)

The start address can be a computed value, in either case, it must result in a positive number not greater

than 65535. NOTE: Execution of machine language code, removes almost all protection that the ROMs

has built into it to allow the BASIC interpreter to continue functioning without regard to user error. As

soon as you transfer control from BASIC to your own program, any mistakes which occur in your program

may cause the machine to cease to function. In order to help solve this type of problem, you should use

the machine language monitor to develop anything other than the most trivial amount of code. In any

case, when control of system is lost, it can be regained by repowering the system on.

In order to return from the SYS command, the last instruction in the program, which is executed, should

be a RTS instruction. BASIC will then start interpreting the next statement after the SYS command. In

order to pass the variables of data back and forth between the user program and BASIC using the SYS

command, data has to be POKEd into temporarily undisturbed memory locations during the execution of

the BASIC routine. The results of the SYS operation would have to be PEEKed back into the program that

follows the call to SYS.

USR FUNCTION

There are some programs, particularly mathematical ones, in which it is easier to pass parameters

to/from BASIC using the USR function and to get the results directly processed in BASIC. USR is

specified with a parameter. BASIC evaluates the expression for its parameter and leaves the results of

the evaluation in a floating accumulator which BASIC uses for all of its functions. It is noted that if no

parameter is passed, the floating accumulator is not initializeable by the user or by any other techniques

as it is used by BASIC in a variety of ways prior to executing the USR function.

USR calls a routine, which executes a machine language program. A result in the floating accumulator to

be analyzed by the BASIC expression. Because USR is a function, it is possible to include the function

called user as part of a BASIC instruction as in: IF USR (A) = 1, THEN etc. In this case the parameter A

will be passed to the USR function in the floating accumulator. The resulting floating accumulator, when

the user returns to BASIC, would be compared to 1 and the logical function would be executed.

The SYS command is more useful for transferring control for machine language processing in which

variables are not being acted on. USR is more useful when one is trying to implement anew BASIC

command. This is an important consideration in using USR. USR uses preassigned variable locations:

locations 1 and 2. These locations must be initialized with the hexadecimal value of the starting address

in which the machine language program is stored. This can be done anywhere throughout the program

92

with a POKE of the decimal equivalent of the lower address to location 2 and POKE of the high order ad

dress in location 2. Example:

10POKE 1,122

20POKE 2,2

30 IF USR (A) = 1 THEN etc.

USEFUL BASIC SUBROUTINES

There are a series of subroutines in BASIC which can allow the machine language program to evaluate

values in the floating accumulator. These functions are called jump to Subroutines instruction (JSR)to

the address.

The parameter specified in the USR functon is evaluated, converted to a binary floating point equivalent

with signs, exponent, and mantissa, and placed in a series of 6 bytes which we will call the floating

accumulator

$5E

$5F

$60

$61

$62

$63

$64

sign and exponent

mantissa MSB

mantissa

mantissa

mantissa

mantissa LSB

sign of mantissa

The exponent is computed such that the mantissa 0 = 1 x 1. It is stored as a signed 8 bit binary +$80.

Negative exponents are not stored 2's complement. Maximum exponent is 1038. Minimum exponent is

10 "~39 which is stored as $00. A zero exponent is used to flag the number as zero.

Exponent

FF

A2

7F

02

00

Approximate Value

1Q38

1010

10~1

10 "M
10 ~»

Since the exponent is really a power of 2, it should best be described as the number of left shifts

(EXP>$80) or right shifts (EXP< = $80) to be performed on the normalized mantissa to create the actual

binary representation of the value.

Since the mantissa is always normalized, the high order bit of the most significant byte is always set.

This guarantees always at least 40 bits precision which is roughly equivalent to 9 significant digits plus a

few bits for rounding. If a number has a value of zero, itmay not always have zero bytes in the mantissa.

The only true fl-ag for a zero number is the exponent. See Figure 8.1 for example exponents and

mantissa's.

If the mantissa is positive, then the sign byte is zero -- $00. A negative mantissa causes this byte to be

-1--$FF.

93

j !

n

EXAMPLE FLOATING POINT NUMBERS

1E38

4E10

2E10

1E10

1

.5

.25

1E-4

1E-37

1E-38

1E-39

0

-1

-10

FF

A4

A3

A2

81

80

7F

73

06

02

00

00

81

84

96

95

95

95

80

80

80

D1

88.

D9

A0

00

80

AO

76

02

02

02

00

00

00

B7

IC

C7

00

00

00

00

99

F9

F9

F9

00

00

00

59

14

EE

00

00

00

00

issa

52

00

00

00

00

00

00

59

14

EE

00

00

00

00

issamant

00

00

00

00

00

00

00

00

00

00

00

FF

FF

issaofmantSignFigure 8.1.Example floating point numbers.

Actual floating point BASIC variables are stored in 5 bytes, rather than 6 bytes as is the floating

accumulator. Upon examination, one will note that the most significant byte of the mantissa is always

set. If we always assure the number will be in this format, we can use that bit to indicate the sign of the

mantissa -thus freeing the byte used for sign. The sixth byte is used in the floating accumulator to

simplify operations when shifting the mantissa.

The contents of the floating accumulator may be converted to a double byte integer by calling a

subroutine FLPINT which is located at $DOA7. The most significant byte of the integer is returned in $B3

and the least significant byte in $B4.

e.g

10A = USR(2)

contents of FAC after USR call
82 80 00 00 00 00

JSR FLPINT

contents of FAC after conversion

82 00 00 | 00 02 I 00 00

integer value

It is not necessary to return a value in the FAC after a USR call. The value of USR can be left as just the

current contents of FAC. An integer can be converted back to floating by loading the most significant

byte into index register Y then calling INTFLP at $D278.

94

ag. LDAMSB

LDY LSB

JSR INTFLP

USEABLE I/O ROUTINES

Read a line, pass a character

$FFCF return char in 0

no other regs changed

Print a character on screen

$FFD2 Char in A

no regs changed

Test for stop key

$FFE1 returns =, <>

only A changed

Get a character from keyboard

$FFE4

char or if none then null (00)

SUMMARY

There are two ways to communicate from BASIC to machine language program. The simplest of these is

SYS in which the control of the computer is turned over to the machine language program located at the

address specified in thesys command. For implementing your own functions in BASIC, there is a function

called USR which when memory locations of 1 and 2 are properly initialized to point in a machine

language program, evaluate a parameter specified in the user function and pass the results back to the

program using the floating accumulator. A series of useful subroutines, available in BASIC, can allow

either the USR or SYS function to perform operations on the floating accumulator without the user

running any program other than the calling routines.

In all cases, the use of the machine language program is only for the more sophisticated BASIC user.

The protection of the ROM fail safe coding is lost. Machine language programs should only be used when

BASIC is neither fast enough nor the function which is desired is implemented.

MACHINE LANGUAGE MONITOR

TIM is the Terminal Interface Monitor program for MOS Technology's 65XX microprocessors. It has been

expanded and adapted to function on the Commodore PET. PET uses a cassette tape version of this

monitor. Execution is transfered from the PET BASIC interpreter to TIM by the SYS command.

To LOAD your MONITOR, take the cassette with MONITOR and put it in the tape unit with the MONITOR

side up. Then type: LOAD "MONITOR" and, when ready, RUN.

Commands typed on the PET keyboard can direct TIM to start executing a program, display or modify

registers and memory locations, and load or save binary data. On modifying memory, TIM performs

automatic read after write verification to insure that addressed memory exists, is R/W type, and is

responding correctly.

TIM also provides several subroutines which may be called by user programs. These include reading and

writing characters on the video display, typing a byte in hexadecimal and typing a CRLF sequence.

95

TIM COMMANDS

M display memory

R display register

G begin execution

X exit to BASIC

L load

S save

EXAMPLES

M DISPLAY MEMORY

.M C000.C010

C000 1D C7 48 C6 35 CC EF C7

C008 C5 CA DF CA 70 CF 23 CB

.C010 9C C8 9C C7 74 C7 1F C8

In a Display Memory command, the start and ending addresses must be completely specified as 4 digit

hex numbers. To modify a memory location, move the cursor up in the display, type the correction and

press RETURN to enter the change. When you move the cursor to a line to do a screen edit, and press

RETURN, the colon tells the monitor that you are re-entering data.

R DISPLAY REGISTERS

.R PC SR AC XR YR SP

.: C6 ED 00 20 00 F5

Registers are saved and restored upon each entry or exit from TIM. They may be modified or preloaded as

in the display memory example above. The semicolon tells the monitor you are modifying registers.

G BEGIN EXECUTION

.G C38B

The GO command may have an optional address for the target. If none is specified, the PC from the R

command is taken as the target.

X EXIT TO BASIC

.X

READY

Causes a warm start of BASIC. In a warm start memory is not altered in any way and BASIC resumes

operation the way it was before a monitor was made.

L LOAD

.L, "PROGRAM NAME",01

No defaults are allowed on a LOAD command. The device number and the file name must be completely

specified. Operating system prompts for operator intervention are the same as for BASIC. Memory

addresses are loaded as specified in the file header which is set up by the SAVE command. Machine

language subroutines may be loaded from BASIC but care must be taken not to use BASIC variables as

the variable pointer is set to the last byte loaded +1.

S SAVE

.S, "PROGRAM NAME",01,0400,076D

96

WRITING MONITOR

Likewise, no defaults on the SAVE command. Any start and ending address may be specified.

To cancel a command either type RETURN or press STOP to cancel a Display Memory, LOAD or SAVE.

INTERRUPT AND BREAKPOINT ACTION

BRK is a software interrupt instruction which causes the CPU to interrupt execution, save PC and P

registers on the stack and then branch through a vector at locations $021B and $021C. TIM initializes this

vector to point at itself on entry by CALL. Unless the user modifies this vector, TIM will gain control when

a BRK instruction is executed, print B* indicating entry via breakpoint (instead of C* entry via call) and

the registers (as in the R command), and wait for user commands. Note that after a BRK which vectors to

TIM, the user's PC points to the byte following the BRK: however, users who choose to handle BRK

instructions themselves should note that BRK acts as a two-byte instruction, leaving the PC (on return

via RTI)fwo bytes past the BRK instruction.

IRQ is vectored normally in PET to an ISR which updates the clock and scans the keyboard every 60th of a

second. If the vector is altered and the machine language subroutine does not restore it, a power-on reset

must be performed.

NMI is not provided for in the PET. The processor line corresponding to this interrupt is permanently

pulled UP.

REST vectors to a cold-start of BASIC. Memory is cleared. Reload and re-enter TIM via SYS command.

TiM MONITORS CALLS AND SPECIAL LOCATIONS

JSR

JSR

JSR

JSR

JSR

JSR

JSR

JSR

MEMORY USAGE

WRT

RDT

GET

CRLF

SPACE

WROB

RDOB

HEXIT

$0A-$22

$400-$76A

$FFD2

$FFCF

$FFE4

$FDD0

$FDCD

$E775

$E7B6

$E7E0

zero page

type a character

input a character

Get a character

type a CR

type a space

type a byte

read a byte

Ascii to hex in A

absolute RAM

$23-$5A are zero page locations in the BASIC input buffer which may be used when BASIC is not using

these locations. The second cassette buffer $33A-$3FF is a well protected location if that device is not

used. Other memory locations may be used with considerable risk, depending upon which piece of PET

software wants to use it also.

MONITOR CHECKOUT PROCEDURE

1) Power up your PET normally into BASIC command mode. Type SYS 1024. You should see a display

something like:

B* PC SRAC XR YR SP INV

.; 29 00 88 89 FE FF E68A

Exact values may vary, although the first and last values should be as shown.

2) The display of registers is the standard entry display message. It consists of C* to identify entry by

call, followed by the CPU register contents: program counter, processor status, accumulator, X index,

Y index, and stack pointer. Note that all TIM inputs and outputs are in base 16 which is referred to as

97

hexadecimal, or just hex. In hexadecimal, the digits are 0,1,2,3,4,5,6,7,8,9,A,B;C,D,E,F. After printing the

CPU registers, TIM is ready to receive commands from you. TIM indicates this "ready" status by typing

the prompting character "." on a new line.

3) The user's CPU register may also be displayed with the R command. Type an R and press RETURN.

The monitor should respond as above, but without the asterisk.

4) Displayed values may be monitored by screen edit and re-entry of the line via return. Remember to type

spaces to delimit fields and type 4 digit hex numbers for addresses and 2 digits for byte contents.

5) Memory may be displayed and modified using the M command. Type:

.M 0100 0107

You will see a display something like:

0 13 4 5 6 7 v

. : 0 1 0 0 20 00 30 30 30 30 30

Now use the screen edit to modify in place on the screen, type RETURN and display again.

6) Use M and ; to enter the following test program called CHSET because it prints the ASCII 64 character

set on the terminal. The M command is used to display memory locations on the PET screen and it is then

possible to use the screen edit on each line and type RETURN to alter memory.

33A

33D

33F

340

343

344

346

348

349

20

A2

8A

20

E8

E0

DO

00

4C

F2 04 ;

20

D2 FF

60

F7

3A 03

*=$33A

CRLF=$4F2 FDDO

WRT = $FFD2

CHSET JSR

LDX

LOOP TXA

JSR

INX

CPX

BNE

BRK

JMP

CRLF

#$20

WRT

#$60

LOOP

CHSET

M 033A.034B

033A 20 F2 04 A2 20 8A 20 D2

0342 FF E8 E0 60 DO F7 00 4C

034A 3A 03

7) CHSET was assembled to reside in the 2nd cassette buffer. Type:

. G 033A

to execute the program.

The listing should look like this:

!"#$%'()*,-./0123456789:; = ?@ABCDEFG
HIJKLMNOPQRSTUVWXYZ[/]

B * PC SR AC XR YR SP INV

0349 3B 5F 60 8D FE E68A

Note the address contained in the PC. It is possible to type G execute the program again without

specifying an address.

8) Next we will link CHSET with BASIC. First replace the BRK instruction in location $348 with an RTS

(return subroutine) (change $348 from 00 to 60).

9) Change the USR function vector in locations 1 and 2 to point at the subroutine $33A.

98

.: 0000 4C 3A 03

10) Exit from the monitor and re-enter BASIC.

.X

READY

11) Prove that the linkage is established by using both SYS and USR.

A = USR(0)

SYS (3*256 + 3*16 +10) (Enter these as direct commands.)

99

PET RESIDF.HT MONITOR PAGE 8881

LINE I IOC

2514 FDU

2515 FDll

CODE LINE

;COPYRIGHT 19P8 BY

>COMMODORE INTERNATIONAL UNITED

-

-

MM

2517

^112518

, 2519

I 2528
2521

2522

2523

2524

2525

; 2526

i 2 52 7

2528

, 2529

, 2538

2531

2532

2533

2534

2535

2536

253?

2538

2539

2548

2541

2542

2543

2544

2545

Jp/fC, 2 54 6

2547

2548

si f-lGjj

2558

2551

2554

2555

2556

2557

2558

2559

^(Cj 2568

2 56 1

2562

k ty^C2 56 3

2564

FDI 1

FDI 1

FD13

FD15

FD17

FD19

FDIB

FD1C

FD1D

FD1E

FD21

FD2 2

FD25

FD26

FD29

FD2A

FD2D

FD2E

FD38

FD33

FD34

FD36

FD39

FD3B

FD3E

FD48

FD43

FD44

FD47

FD48

FD4B

FD4D

FD4F

FD32

FD54

FD56

FD58

FD5A

FD5C

FD5E

FD68

FD62

FD65

FD68

FD6A

FD6C

FD6E

A9

85

08

A9

85

08

4A

68

80

68

8D

68

80

68

80

68

69

80

68

69

8D

A5

8D

A5

8D

BA

8E

58

28

A6

A9

20

A9

08

A9

85

A9

85

A2

A9

28

28

C9

F8

C9

F8

43

85

16

42

85

85

84

83

82

FF

81

FF

88

98

88

91

87

86

08

B5

2A

84

52

1A

82

77

88

DE

8D

2E

84

EB

2E

F9

28

F5

82

82

82

82

82

82

62

82

82

F D 6<l<j

E7

E7

NCMDS

CALLE

BRKE

B3

B5

3/ '

STRT

ST1

= 8

LDA

STA

BNE

LDA

STA

CLD

LSR

PLA

STA

PLA

STA

PLA

STA

PLA

STA

PLA

ADC

, STA

PLA

ADC

STA

LDA

STA

LDA

STA

TSX

STX

CLI

JSR

LDX

LDA

JSR

LDA

BNE

LDA

STA

LDA

STA

LDX

LDA

JSR

JSR

CMP

BEQ

CHP

BEQ

I'C

TMPC

83

#'8

THPC

A

YR

XR

ACC

FLGS

I$FF

PCL

#$FF

PCH

CINV

INVL

CINV+1

INVH

SP

CRLF

THPC

#'♦

URTUO

f ' R
58

#2

TXTPTR

#6

yRAP

• CR

#' .

WRTUO

RDOC

1' .

ST1

#$2B

ST1

;CALL ENTRY

,BREAK ENTRY

;C SET FOR PC CORRECTION

;SAVE Y

;SAVE X

;SAVE ACCUMULATOR

;SAVE FLAGS

;PC-1 FOR BREAK

;SAVE CUURENT IRQ VECTOR

;SAVE CURRENT STACK POINTER

;CLEAR INTERRUPT DISABLE

;PRTNT ENTRY DATA

;TYPE OF ENTRY (B OR C)

; yRTTE ' *C OR ' *B'

;DISPLAY REGISTERS COMMAND

;SKIP TO INTERPRET COM HAND

;USER COMMAND INPUT

;CO«ING FROM TEXT BUFFER

;ADDR WRAP AROUND FLAG

;START PROMPT VITH CRLF

;A PROMPTING ' '

i INPUT COMMAND LINE

;IGNORE PROMPTING ' '

;SPAN BLANKS

100

PET RESIDENT MONITOR PAGE 8832

u
LINE

2566

256?

2568

2569

2578

2571

2572

257 3

2574

2575

2576

257?

2578

2579

2581

• LOC

FD78

FD72

FD75

FD?7

FD?9

FD79

FD79

FD79

FD7C

FD?D

FD88

FD81

FD82

FD83

FD85

A2

DD

D8

86

jl>D

48

BD

48

68

CA

18

6C

CO

87

E8

8B

84

E8

F8

ED

FA

583

2584

2585

2586

2587

2589

2598

2591

2592

2593

2594

2595

2596

2597

2598

2599

2688

2681

2682

2683

2685

2686

2687

2688

2 68 9

2618

261 1

2612

2613

2614

2615

cU^2616

FD88

FD8A

FD8D

FD8F

FD92

FD93

FD93

FD93

FD93

FD93

FD95

FD97

FD9A

FD9C

FD9F

FDA2

FDA4

FDA6

FDA7

FDA7

FDA7

FDAA

FDAC

FDAE

FDB9

FDB2

FDB4

FDB5

FD86

FDB9

FDBC

FDBE

A5

80

A5

8D

68

85

A0

28

61

20

20

C6

D0

60

20

90

A2

81

Cl

F0

63

68

4C

29

C6

60

FB

81

FC

80

B5

80

CD

FB

75

D5

85

Fl

es

BD

80

FB

FB

05

F7

D5

85

;LOOKUP COMMAND

IE LINE

S8 LDX SNCMDS-1

FD SI CMP CHDS,X

BHE S2

STX SAVX ; INDEX OF COMMAND IN TABLE

.INDIRECT JMP FROM TABLE BY

; PUSHING TARGET ADDRESS-1

; THEN RTS

fH LDA ADRH.X

PHA

FD LDA ADRL.X

PHA

RTS

S2 DEX

BPL SI ;LOOP FOR ALL COMMANDS

L)

L)

JMP (USRCMD) ;ALLOU USER COMMANDS

PUTP

82

82

LDA TMP8

STA PCL

LDA TMP8+:

STA PCH

RTS

;DISPLAY MEM SUBR. SET AR=NUMBER

;0F MEMORY BYTES DISPLAYED

;TMP8=ADR OF HEM DISPLAYED

DM

FD DM1 WR N BYTES

(TMP8> =ADR

STA TMPC

LDY #8

JSR SPACE-

LDA ' (TttP8>, Y

JSR UR08

JSR INCTMP

DEC TMPC

BNE DM1

RTS

;READ AND STOKE BYTE.

;N0 STORE IF SPACE OR TMPC = 8.

Li

u

u

u

E7

FD

BYTE JSR RDOB

BCC BY3

LDX #8

STA < .HP8. X:

CMP (THP8, X:

BEQ BY3

PLA

PLA

JMP ERROPR

BY3 JSR INCTMP

DEC TMPC

RTS

101

;SPACE

;STORE BYTE

;VERIFY WRITE

; ERROR.- CLEAR STACK

; INC TMP8 ADR

LI

LI

Li

■LJ

PET RESIDENT hOHITOR PAGE 8B83

LINE I LOC

261 8

2 613

2628

2621

2622

2625

1^3/2626

2627

2528

2629

2631

2632

2633

2634

2635

2636

yZGZ?

FDBF

FDC1

FDC3

FDC5

FDC7

FDC9

FOCA

FDCD

FDCF

FDD9

FDD2

FDD5

FDD5

FDD7

FDD9

FDDB

FDDD

FDDF

A9

8 5

A9

85

A9

68

28

A9

2C

A9

4C

££

D0

E6

D8

E6

60

CODE

82

FB

82

FC

85

LINE

CD

28

0D

D2

FD

FF

SETR

SPAC2

SPACE

CRLF

LDA

STA

LDA

STA

LDA

RTS

#<FLGS

THPB

i>FLGS

THP0+1

#5

JSR SPACE

LDA *$28

. BYT $2C

LDA i*D

JHP $FFD2

SET TO ACCESS REGS

FB

86

FC

82

DE

; TNCREHENT

INCTMP 1NC

BNE

INC

BNE

INC

SETUR RTS

<THP8,TMP8+1)

THP0 ;

SETUR

TWP8M

SETWR

WRAP

BY 1

BYTE

HIGH BYTE

2639

264 1

] 2642

2643

2 64 4

2645

2646

2647

2648

| 2S<9

1 2 S 5 3
2 6 5 1

, 2 5 5 2

. ?'^2

2654

Z655

2 6 5 6

1 2S57
2658

r 2 5 5 9

2 b B 9

26b i

2 S S 2

Z S :> 3

1 2S64

FDE9

FDE9

FDE1

FDE2

r DE3

FDE4

FDE5

FDE6

FDE7

FDE8

FDE9

FDEA

FDE3

FD EC

FDED

FOEE

FDEF

F9F0

FDF1

FDF2

PDF 3

FDF4

FDF5

FD? 6

FDF7

3A

38

52

4D

47

58

4C

53

FE

r E

FE

FE

FE

FF

FF

FF

88

96

22

5?

C£

96

18

19

jCOHHAND AND ADDRESS TABLE

CUDS

ADRH

ADRL

BYT

8YT

8YT

BYT

BYT

BYT

BYT

BYT

SYT

BYT

SYT

BYT

BYT

BYT

3YT

BYT

SYT

BYT

8YT

SYT

BYT

BYT

SYT

SYT

t 4

i

'R

' H

'G

'X

'L

'S

>Z

>z

>z

>z

>z

>z

>z

>z

<z

<z

<z

<z

<z

<z

<z

<z

r

*

Zl

Z2

Z3

Z4

Z5

Z6

17

28

Zl

Z2

Z3

Z4

Z5

Z6

Z7

Z8

; MOD

; ALT

; DIS

; DIS

; STA

; yAR

; LOA

; SAV

IFY

ER

PLA

PLA

RT

M S

D tt

E H

HEH

REG I

Y RE

Y ME

EXEC

TART

EHQR

EHOR

ORY

STE

GS

HOR

UTI

BA

Y

Y

RS

Y

ON

SIC

102

PET RE

LINE t

2666

2666

2667

(#192 66 9

2670

2671

2672

2673

2674

i5§u|267 5

2677

2678

2679

2689

2681

2682

2683

!•«, 2S8 4

268 5

2 68 6

2687

2688

2689

2696

2691

2692

2693

2694

2695

2696

2 69 8

2S99

2788

2781

2732

279 3

2794

2 79 5

2 78 7

1^2798

2 73 9

2718

271 1

2712

2 713

2714

2715

2 716

2717

271 3

/v,^ 2 719

SIDEHT

IOC

FDF8

FDF9

FDFD

FE15

FE16

FE17

FE1A

FE18

FE1D

FE28

FE23

FE25

FE28

FE28

FE2C

FE2E

FE38

FE32

FE35

FE38

FE3B

FE3E

FE41

FE44

FE47

FE4A

FE4D

FS38

Ft 53

FE56

FE33

FF.5B

FE5E

FE60

?Ef 3

FE 6 6

FE69

FE6B

FESE

?Z7l

FE7 3

FE75

FE77

F t 7 8

FE?A

FE7C

FE7E

FE3b

FE32

FE34

Ff.37

MOHIT

8D

28

28

98

48

29

68

A2

28

4C

A2

80

29

E8

E8

09

A8

28

AD

29

AD

29

29

AO

28

AD

28

23

29

F3

29

28

98

20

2 0

28

93

28

29

F3

Ab

D3

38

A3

£5

A 5

E5

9 9

AS

23

OR

CODE

28

58

08

2E

84

CA

88

F8

02

10

F5

38

15

88

75

91

75

CD

87

75

88

75

3F

93

39

E8

A7

34

97

►3

A 7

29

97

81

IE

DS

iA

F3

F8

FE

FO

9F

Z>\

15

6 A

FD

E7

FD

FD

FF

FE

82

E7

82

E7

FD

82

E7

82

E7

FD

FD

£7

E7

E7

E7

E7

E7

F3

FE

E7

... PAGE

LINE

REGK

ALTRIT

- 6111

DSPLYR

D2

-

DSPLYH

67SH

tin

000V %J V

. 3Y

4

T CR, '

.8YT ' PC

TYA

PKA

JSR

PLA

LDX

JSR

JMP

LDX

LDA

JSR

I NX

CPX

BHE

LDY

JSR

LDA

JSR

LDA

JSR

JSR

L 0 A

JSR

LDA

JSR

JSR

JSR

B£Q

JSR

J3R

BCC

J S R

JSix

JSK

3CC

JSR

JSR

BEQ

LDK

3HE

SEC

LDA

SBC

LD^

sac

BCC

LDY

JSR

JSR

CRLF

yRTWO

SPAC2

REGK,

*FFD2

*29

D2

ALTRI

PCH

MROB

PCL

UROB

SPACE

IHVH

«R0 8

INVL

yROB

SETR

an

8 E Q S 1

RDOC

RDOA

ERRS1

T2T2

ZWC

RDOA

ERRS1

T2T2

ST0P1

fi E 9 S 1

y r a p

0EQS1

THP2

THP0

r h p 2 ♦

THP8*

^F.QSl

1 ":

ALTRI

yROA

103

IRQ

X

T

1

i

T

SR

; R

; E

; S

; S

; R

; E

; S

; T

; D

; E

AC

EAD

RR I

A TO

KIP

EAD

RR I

A TO

EST

QUBL

A LE

XR YR

START

F HO

TF1P2

DEL in

END A

F HO

TMP8

FOR S

E BYT

SS TH

S

I

D

E

'

T

E

A

SP

AD

A

TE

R

A

E

OP

C

N

R

R

A TO T nP2

KEY

0I1PARE

SA.

u

u

L

n
PET RESIDENT MONITOR PAGE 3335

n

n

n

n

n

n

n

LINE • L 0 C CODE LINE

2728 FE8A A9 88

2721 FE8C 28 93

2722 FE8F F8 DD

2724

2738

273 1

2732

2733

2734

2735

2736

2737

2 739

2748

2 74 I

n

p

H

n

H

1

2746

2747

2 74 8

2749

d6 2,12758
2751

2752

2753

2754

2755

2756

2758

2-7 5 9

2768

2 76 1

2762

2763

2765

2766

2767

2768

2 76 3

E7?9

27? i

2772

2773

2774

FE91

FE94

2728 FF.97

FE97

FE9A

FE9D

FE9F

FEA2

FEA5

FEA8

FEAA

FEAC

FEtiF

FtBl

FEB4

2744 FEB9

FEB9

FEBC

FE8F

fez 3

FEC5

FEC8

F£CB

FECF

Fr,24

FEUS

FED8

F£DB

rEZF

FEH2

FEES

FEE6

FEE?

FEEA

FEEC

FEEF

FEFi

FEF4

FEF5

FEF8

FEF9

28

26

98

28

28

28

98

A5

8D

A5

8D

28

D8

4C 56 FD^^BEQSl

4C F7 E 7^7/iY ER RS 1

86

A7

83

88

CF

A7

8A

FB

88

FC

87

BF

9A

28

28

98

A 9

3 5

28

28

D8

F8

28

C9

F9

C3

D0

23

38

29

AE

78

AD

85

AD

85

AD

48

AD

48

AD

E7

FD

FF

E7

82

82

B6

A7

D3

38

B5

EB

A?

F8

C2

CF

3D

9C

28

BA

a 7

83

88

86

87

91

88

98

99

E7

E7

E7

FF

81 82

82 82

ALTER

ALTR

E7

82

82

82

82 -

LDA

JSR

BEQ

JHP

JHP

REG

JSR

JSR

BCC

JSR

JSR

JSR

8CC

LDA

STA

LDA

STA

JSR

8HE

§8

DM

DSP

STR

ERR

ISTE

RBO

RBO

AL2

PUT

$ FF

RBO

AL3

TMP

1

T

OPR

RS

B

A

P

CF

A

8

INVL

TMP

INV

SET

A4

9 + 1

H

R

;DISPLAY 8> INCR TMP8

SKIP 2 SPACES

CY=:8 IF SP

SPACE

ALTER PC

SET TO ALTER R'S

;ALTER MEMORY - READ ADR AND DATA

ALTM

A4

A5

A9

GO

Gl

JSR

JSR

BCC

LDA

sra

JSR

JSR

BNE

BEQ

JSR

CUP

BEQ

zn?

SHE

JSR

BCC

JSR

LDX

TXS

SEI

LDA

STA

LDA

STA

LDA

PHA

LDA

PHA

LDA

RBGB

RDOA

ERRS!

TMPC

RBOC

BYTE

A5

8EQS1

SFFCF

#$8D

Gl

#$2 9

ERRS1

RBOA

Gl

PUTP

SP

INVH

CINV+i

INVL

CINV

PCH

?CL

FLGS

104

SKIP 2 SPACES

READ MEM ALTER

CY=8, IF SPACE,

SET CNT = 8

ADR

ERR

IF CR, EXIT

IF NOT SPACE> ERR

OR1G QR NEW SP VALUE TO SP

PET RESIDENT rtOhiTOR PAGE tit'l

LIME • L 0 C CODE LI HE

2

2

2

2

2

7

/

?

7

7 5

7 6

/ 7

73

79

FE

Ft

FF

FF

FF

F

F

9

8

c

9

3

6

4

A

A

A

4

8

D

E

C

8

8

8

8

3

4

5

32

82

02

PHA

LDA

LDX

LDY

RT I

XR

YR

u

u

2 7 3 1 FF87 AE86 82 EXIT

2732 FFQA 9A

^2733 FF9B 4C 8,9 C3^}ff

2785 FF8E 4C F7 E7<J?#c/ ERRL

2737 FF1i

2789 FF i i

JW

ZZZ1

LDX SP

TXS

JHP REhDY

J H P E R R 0 P R

= S U F * 7

; E X I T TO 2 .a :• I C ij A R ;1 SFfiRT

firtvHlNE LANGUAGE L U A D k 0 U T I H E

' 279
279

27 3

279

-279

2 79

279

279

2 38

230

230

239

233

288

288

7 238

288

238

281

231

231

■231

231

281

28!

281

281

231

-282

282

282

282

2 02

282

282

282

232

282

1

2

3

4

5

s

?

8

9

0

1

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

8

1

2

3

4

5

6

7

3

9

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

1 1

13

15

i 6

18

1 A

1C

IE

20

22

25

27

29

2B

2D

2F

31

34

36

38

3A

3C

3E

40

41

43

45

4 ?

49

4B

4D

58

53

55

57

59

5C

5F

61

A0

84

88

34

84

A9

85

A9

85

28

C9

F8

C9

F8

C9

00

20

C9

F0

C9

F0

91

E6

C8

C8

F0

D0

A5

C9

08

20

20

A5

23

D0

4C

20

C9

F8

01

04

01

90

02

DB

87

DA

CF

28

F9

00

1 A

22

DO

CF

22

24

00

8B

DA

Di

18

C9

EA

84

86'

E2

22

E6

96

19

F2

56

CF

00

E4

F

F

F

F

F

F

F-

F

3 f
8 f

o <U
F

LD

•

LI

L2

L3

L4

L5

L6

L7

L8

LDY

STY

DEY

STY

STY

LDA

STA

LDA

STA

JSR

CrtP

BEQ

CHP

3EQ

C«P

BHE

JSR

CMP

BEQ

CflP

1 BEQ

STA

IHC

IHY

CPY

BEQ

BHE

LDA

C«P

BHE

JSR

JSR

LDA

AMD

BHE

JHP

JSR

cnp

BEQ

#1

FA

FHL

VER

* >Z

FHA

#<Z

FNA

SFF

#'

LI

#CR

L5

ERR

%FF

' *

L8

#CR

L5

(FH

FHL

#16

ERR

L3

SAV

#6

L2

LD1

TWA

SAT

*$?

LS

STR

SFF

#CR

L5

105

EH

CK

ZZ1

DR+i

ZZ1

OR

CF

L

CF

AOR)Y

EH

L

X

5

IT

US

ERR

T

CF

;DEFAULT DEVICE #1

;PLACE TO STORE HAKE

u

u

;SPAN BLANKS

;DEFAULT TO LOhO

;FILE N A H E MUST BE UEY.

i END OF HAHE

;DEFAULT A LOAD

u

FILE H A M E TOO L 0 H G

;NOT A LOAD

;LOAD ERROR

;DEFUALT LOAD
u

PET RESIDENT MONITOR PACE 8887

' LINE

j^2830
2831

2832

2333

2834

2335

2336

2837

, 2838

2839

2840

2841

v2 84 2

X Id 6j 2 8 4 3
2844

2845

2846

2847

2348

2343

2359

2851

2852

2854

2355

2856

2857

2858

2859

2360

2861

2862

J7^2863

2365

2866

2867

2368

2869

2870

2371

2872

L

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

OC

63

65

67

6A

6C

6E

70

72

74

77

?S

7B

7D

7F

82

85

88

8A

8C

8F

91

93

95

97

9A

9D

9F

Al

A3

A5

A7

A9

AB

AE

Bi

Bi

Bl

81

Bl

Bl

Bi

Bl

C9

D0

20

29

F8

C9

F0

85

20

C9

F0

C9

D0

20

20

20

C9

D0

20

A5

85

A5

85

28

20

C9

F8

C9

D0

A5

C9

D0

20

4C

CODE

2C

F0

66

8F

D5

0 3

FA

D4

CF

0D

CC

2C

E6

A7

97

CF

2C

Fl

A7

FB

C9

FC

CA

97

CF

20

F9

80

E5

B4

87

F8

A4

56

E7 '

FF

E7

E7<i

FF

E7

E7

FF

F6 P

FD 6t

L9

LI

LI

LI

Li

L2

LI

<teA

zz

zz

zz

zz

LI

0

1

2

3

0

4

1 =

2 =

3 =

4 =

ZZ5 =

zz

zz

zz

6 =

7 =

3 =

N E

CHP

BN

JS

AN

BE

CH

BE

ST

JS

CH

BE

CH

E

R

D

Q

P

Q

A

R

P

Q

P

BNE

JS

JS

JS

CH

BN

JS

LD

ST

LD

ST

JS

JS

CH

9E

CH

R

R

R

P

E

R

A

A

A

A

R

R

P

Q

P

BNE

LD

CH

A

P

BNE

JS R

JHP

ALTH-

ALTR-

DSPLY

D

G

E

L

L

SPLY

0-1

XIT-

D-l

D-l

1

1

R

H

1

I

L

R

1

L

tt

L

F

7

DO

IF

4

3

10

A

$FF

#

L

1

L

R

T

%

#

L

R

T

E

T

E

T

$

I

L

1

L

S

#

L

CR

5

i

9

B

C

DOA

2T

FF
/

I

12

DO

HP

AL

HP

AN

2T

FF

$2

28

CR

13

AV

7

14

SV5

S

-1

-1

TR

2

C

A

0

0

2

C

0

X

T

F

F

+ 1

F

BAD SYNTAX

DEVICE 8

DEVICE 3

DEFAULT LOAD

BAD SYNTAX

HISSING END ADDR

HISSING CR AT END

106

NOTES

u

u

u

u
107

Chapter 9. ERRORS AND DIAGNOSTICS

One of the advantages of the highly interactive way in which you are able to use your PET is that errors

are easily correctable, due to the fact that the languages that are used within the machine have specific

rules under which the not so smart computer can operate. These rules are necessary to allow the

language to be able to understand what you are trying to tell it. Whenever BASIC cannot perform a

function, it will tell you about it in the form of an error message. A total list of the error messages and

some examples of what causes them follows.

The advantage of having this immediate response on the screen is that you can use the screen editor to

immediately fix the problem as it occurs. In most cases, the problem is going to be obvious to you. The

most common error is the syntax error problem, which means that you have typed the line to BASIC that it

doesn't understand. The correction for this type of problem is to list the line that is being complained

about and compare the typed data to what you thought you were going to type. About 90 percent of the

time, you will discover the mistake by superficial inspection. If not, you may have to make reference to

the appendix which defines the form for all the BASIC statements and if that does not clarify it for you, go

to the individual write-up to understand what you are doing wrong.

The common problems are, having a comma in the wrong place, or you used a variable that cannot be

used In this particular kind of format. The basic premise to remember when correcting errors is that

although the language is forgiving of exact requirements for spaces verses no spaces etc., that the rules

are explicit. If you violate the rules, the computer is going to continue to complain about an error until

you give it a problem it understands. Sometimes, the error is not as easy to understand, although in

almost all cases while executing a problem, if an error is encountered, the line number will be indicated.

Sometimes a problem is the result of a programming mistake that you have made in a previous

computation. For instance, if you get a divide by zero in line 75 and you know you shouldn't be dividing by

zero because, in your opinion, the value that is in the divisor should never be zero. The error is probably

not on line 75, but somewhere further up your program where you define the variable. In order to attack

this kind of problem, the use of temporary print statements is the common technique. In other words, if

the variable is zero on line 75 and you don't think it should be, then you should list the portion that defines

the variable. More often than not, an inspection of this area will show the problem to you immediately. If

not, insert lines at appropriate places where the variable is computed to see when the variable acquires a

value that you don't expect. This technique will usually allow you to figure out the problem in your

programming.

The error messages in PET BASIC have been expanded over those of other BASICS to give you an

understandable format of the message. However, other than using the techniques which we have just

described, the computer cannot fix a problem for you, it is in this area that programmers are made or

broken. Just remember that nobody is looking over your shoulder and use the machine to help you

understand the problem. If necessary, write little test routines which do only a piece of your program,

until you understand what is causing your problem.

ERROR MESSAGES

On encountering an error in interpretation of a statement, whether in direct or program

execution, BASIC displays a diagnostic message then returns to direct mode.

7MESSAGE ERROR IN LINE NUMBER

READY.

108

Resumption of execution is not permitted with a CONT command. Variables within the statement or

program retain their values so they may be scrutinized to determine a cause of error, if I I

necessary. GOSUB and FOR entries on the stack at the time of error are cleared so resumption of ^
execution is not possible by RETURN or NEXT.

u
POSSIBLE BASIC MESSAGES AND MEANINGS

Bad subscript- An attempt was made to reference a matrix element which is outside the dimensions of

the matrix. This may happen by specifying the wrong number of dimensions or a subscript larger than

specified in the original dimension.

DIM A(2,2)

?BAD SUBSCRIPT ERROR

READY. I I

A(10,10) = 2

?BAD SUBSCRIPT ERROR u
READY.

Can't continue-Program execution cannot be resumed via a CONT command in four cases: j_J
1) no program exists.

2) a new line was just typed in. , :

3) the program has not recently been run.

4) an error just ocurred. >—'

10A$ ='HELLO'

CONT

'CAN'T CONTINUE ERROR'

READY.

Division by zero-Zero as a divisor would result in numeric overflow-thus it is not allowed. When this

message appears, it is most expedient to list the statement and look for division operators.

7DIVISION BY ZERO ERROR IN 10

LIST 10

10A = B/C

?C

0
u

Formula too complex-Th\s message concerns only string expressions when BASIC runs out of string Q

temporary pointers to keep track of substrings in evaluating a string expression.

7FORMULA TOO COMPLEX ERROR

READY. ^

Break the string expression into two smaller parts to cure the problem.

Illegal direct-A single 80 column buffer area is used by BASIC to process incoming characters. This same i 7

buffer is used to hold a statement that is being interpreted.in direct mode. INPUT will not work because LJ
incoming characters would overwrite the variable list following INPUT to be processed.

DEF cannot be used in direct mode for a different but similar reason. The name of a function is stored in ■/

the BASIC variable area with pointers to the string of caharacters which define the function. Since the

function exists only in the input buffer, it would be wiped out the first time a new command is typed-in. i

109

INPUT A

7ILLEGAL DIRECT ERROR

READY.

Illegal quantity-Occurs when a function is accessed with a parameter out of range. This error may be

caused by:

1. A matrix subscript out of range (K X < 32767

X(-1) = Y

7ILLEGAL QUANTITY ERROR

2. LOG (negative or zero argument)

3. SQR (negative argument)

4. A ^ B where A = 0 and B not integer.

?(F is Ml' dal because it would give a complex result.

5. Call of USR before machine language subroutine has been patched in.

6. Use of string functions MID$, LEFTS, RIGHTS, with length parameters out of

range(1< X < 255).

7. Index onGOTO out of range.

8. addresses specified for PEEK, POKE, WAIT and SYS out of range.

(0 < X <65535).

9. Byte parameters of WAIT, POKE, TAB and SPC out of range

(<K X<255).

POKE 32768,1000

7ILLEGAL QUANTITY ERROR

READY.

Next without for-Either a NEXT is improperly nested or the variable in a NEXT statement corresponds to

no previously executed FOR statement.

FOR I = 1 TO 10:NEXT:NEXT

7NEXT WITHOUT FOR ERROR

READY.

FOR 1 = 1 TO 10:NEXT J

7NEXT WITHOUT FOR ERROR

READY.

OUT OF DATA-A READ statement was executed but ail of the data statements in the program have been

read. The program tried to read too much data, or insufficient data, was included in the program. Carriage

returning through a line READY on the PET TV display, sometimes yields this error because the message

is interpreted as READ Y.

READY.

7OUT OF DATA ERROR

READY.

OUT OF MEMORY-May appear while entering or editing a program as the text completely fills memory.

At run time, assignment and creation of variables may also fill all variable memory. Array available

declarations consume large areas of memory even though a program may be rather short. The maximum

number of FOR loops and simultaneous GOSUBs are dependent on each other. This context is stored on

the 6502 hardware stack whose capacity may be exceeded. To determine the type of memory error, print

FRE (0). If there are a large number of bytes variables, it is most likely a FOR-NEXT or GOSUB problem.

110

11
10GOSUB10
RUN

?OUT OF MEMORY ERROR IN 10
READY.

?FRE(0)

7156

OVERFLOW--N umbers resulting from computations or input that are largerthan 1.70141184 E + 38 cannot

be represented in BASIC'S number format. Underflow is not a detectable error but less than 2.93873587
E-39 are indistinguishable from zero.

?1E40

7OVERFLOW ERROR
READY.

REDIM'D ARRAY-After a matrix was dimensioned, another dimension statement for the same matrix was

encountered. For example, an array variable is defined by default when it is first used, and later a DIM
statement is encountered.

A(5) = 6

DIM A(10,10)

?REDIM'D ARRAY ERROR

READY.

REDO FROM START-ls not actually a fatal error printed in the standard format but is a diagnostic printed

when data in response to INPUT is alpha when a numeric quantity is required.

10 INPUT A

RUN

?ABC

?REDO FROM START
?

INPUT continues to function until acceptable data has been received. The complement to this diagnostic

on files is BAD DATA ERROR which is fatal.When not enough data has been typed in response to INPUT, i j
a double ? is printed until enough data is received. ' M

10 INPUT A,B,C

RUN

READY.

RETURN WITHOUT GOSUB-A RETURN statement was encountered without a previous GOSUB

statement being executed.

CLR

RETURN

7RETURN WITHOUT GOSUB ERROR

STRING TOO LONG-Attempt by use of the concatenation operator to create a string more than 255
characters long.

= 'A"A$ = 'A" I I

FOR I = 1 TO 10:A$ = A$ + A$:NEXT I
7STRING TOO LONG ERROR
READY.

SYNTAX-BASIC cannot recognize the statement you have typed. Caused by such things as missing

parenthesis, illegal characters, incorrect punctuation, mispelled keyword. I j

111

RUIN

7SYNTAX ERROR

READY.

TYPE MISMATCH-The left-handed side of an assignment statement was a numeric variable and the

right-hand side was a string, or vice versa; or a function which expected a string argument was given a

numeric one, or vice versa.

A$ = 5

7TYPE MISMATCH ERROR

READY.

UNDEF'D STATEMENT-An attempt was made to GOTO, GOSUB, or THEN to a statement which does not

exist.

GOTO A

7UNDEFD STATEMENT ERROR

READY.

UNDEF'D FUNCTION-Reference was made to a user defined function which had never been defined.

X = FNA(3)

7UNDEFD FUNCTION ERROR

READY.

Operating System Messages and Meanings

BAD DATA-Numeric data was expected but alpha data was received when inputing from a special

device.

DEVICE NOT PRESENT- No device on the IEEE was present to handshake an

attention sequence. Status will have a value of 2 which corresponds to a time out. May happen on OPEN,

CLOSE, CMD, INPUT*, GET#, PRINT*

OPEN 5,4,3, 'FILE'

7DEVICE NOT PRESENT ERROR
READY.

FILE NOT FOUND-The named files specified in OPEN or LOAD was not found on the device specified. In

the case of tape I/O, an end of tape mark was encountered. In disk I/O, the disk timed out when

attempting to open the file, thus producing this message:

LOAD 'FILE', 15

7FILE NOT FOUND ERROR

READY.

FILE NOT OPEN-The operating system must have device number and command information provided by

the OPEN statement. If an attempt is made to read or write a file without having done this previously, then

this message appears:

CLR

INPUT#10,A

7FILE NOT OPEN ERROR

READY.

FILE OPEN-An attempt to redefine file parameter information by repeating an OPEN command on the

same file twice.

OPEN 1,4,1

OPEN 1,4,1

7FILE OPEN ERROR

READY.

LOAD—Only occurs when loading a program from cassette tape. This means that there were more than 31

errors in the first tape block or that there were errors in exactly the same corresponding positions of both

112

u
blocks.

• i . -•

NOT INPUT FILE -Tape files, once opened for writing, cannot be read without first CLOSE rewinding tape

and OPEN for INPUT. This message appears when an attempt is made to read on output file:

10 OPEN 1,1,1 , ,

20 INPUT #1,A

?NOT INPUT FILE ERROR U
READY.

NOT OUTPUT FILE-Tape files cannot be read and updated in place. Device 0 is the keyboard and it I
cannot be written to: ;.

10 OPEN 1,0 ^'
20 PRINT #1

?NOT OUTPUT FILE ERROR

READY.

VERIFY-The contents of memory and a specified file do not compare.

NOTES

li

LI

U

U

U

u

L
113

Appendix A.

Detailed PET Memory Map

1 O

BLOCK#

*0

1

2

3

4

5

6

7

8 .

9

10

11

12

13

•14

15

TYPE

RAM

RAM

—

■-

...

...

...

—

RAM

...

...

...

ROM

ROM

ROM

I/O

ROM

PET

START

ADDRESS

$0000

$1000

$2000

$3000

$4000

$5000

$6000

$7000

$8000

$9000

$A000

$B000

$C000

$D000

$E000

$E800

$F000

*see expanded

Memory Allocation By 4K Blocks

FUNCTION

Working, text, variable storage.

Test variable storage (8K only)

Expansion RAM

Expansion RAM

Expansion RAM

Expansion RAM

Expansion RAM

Expansion RAM

Screen memory (1K)

Expansion ROM

Expansion ROM

Expansion ROM

BASIC (principally statement interpreter)

BASIC (principally math package).

Screen editor.

All internal PET I/O.

OS diagnostics

description

PAGE

**0

**1

**2

**3

4-15

TYPE

RAM

RAM

RAM

RAM

RAM

START

ADDRESS

0000

0100

0200

0300

0400

Block 0 By 256 Byte Pages

FUNCTION

BASIC OS working storage

Stack

O S working storage

Cassette buffers.

BASIC text area

see expanded description by page

PAGE

0

1

TYPE

ROM

I/O

START

ADDRESS

SE000

SE800

Block 14 By 2K Segment

FUNCTION

Screen editor

PET I/O

A-1

Q

U
I/O Device Base Addresses

PAGE

0

1

2

TYPE

PIA

PIA

VIA

START

ADDRESS

$E810

$E820

$E840

FUNCTION

Keyboard

IEEE-488

USR PORT cassette

Locations not specified are used but have no clear one function definition.

FROM

000

001

14

PET PAGE ZERO MEMORY MAP
TO DESCRIPTION

002

15

16

17

3

4

5

Evaluation of

6

7

8

9

10

11

12

13

19

20

22

30

32

34

Data storage

40

42

44

46

48

50

52

54

56

58

60

62

-

-

18

089

..

..

variables
..

—

..

..

—

..

21

29

31

33

39

maintenance

41

43

45

47

49

51

53

55

57

59

61

63

LJ

u
$4C constant (6502 JMP instruction).

USR function address lo, hi.

Active I/O channel #.

Terminal width (unused).

Limit for scanning source columns (unused).
Line number storage

BASIC INPUT buffer (80 bytes).
Starting delimeter

Ending delimeter

General counter for BASIC.

Flag to remember dimensioned variables.

Flag for variable type; 0#numeric; 1 + string.
Flag for integer tape.

Flag to crunch reserved words (protects '& remark).
Flag which allows subscripts in syntax.

Flags INPUT or READ.

Flag sign of TAN.

Flag to suppress OUTPUT (+ normal; - suppressed).
Index to next available descriptor.

Pointer to last string temporary lo; hi.

Table of double byte descriptors which point to vaiables.
Indirect index #1 lo; hi.

Indirect index #2 lo; hi.

Pseudo register for function operands.

Pointer to start of BASIC text area lo; hi byte.

Pointer to start of variables lo; hi byte.

Pointer to array table lo; hi byte.

Pointer to end of variables lo; hi byte.

Pointer to start of strings lo; hi byte.

Pointer to top string space lo; hi byte.

Highest RAM adr lo; hi byte.

Current line being executed. A two in 54 means statement
executed in a direct command.

Line # for continue command lo; hi.

Pointer to next STMNT to execute lo; hi.

Data line # for errors lo; hi.

Data statement pointer lo; hi.

A.O

U

\1

n

1

f—7

4
H1 1

1
1

r

n ^X/
i

n

n

n

n

n

n

rr

>

Expression evaluation

64

66

68

70

72

74

75

77

79

80

81

82

84

90

92

94

100

101

102

108

109

110

RAM subroutines

112

118

119

136

OS page zero storage

141

144

146

148

150

151

152

153

157

158 .

159

160

167

168

169

170

171

174

175

176

177

178

186

187

189

190

191

65

67

69

71

73

~

76

78
—

—

—

83

89

91

93

99

—

—

107

—

—

111

—

—

120

140

143

145

147

149

154
—

166

——

—

173

—

185

188
—

Source of INPUT lo; hi.

Current variable name.

Pointer to variable in memory lo; hi.

Pointer to variable referred to in current FOR-NEXT.

Pointer to current operator in table lo, hi.

Special mask for current operator.

Pointer to function definition lo; hi.

Pointer to a string description lo; hi.

Length of a string of above string.

Constant used by garbage collect routine.

$4C constant (6502 JMP inst).

Vector for function dispatch lo; hi.

Floating accumulator #3.

Block transfer pointer #1 lo; hi.

Block transfer pointer #2 lo; hi.

Floating accumulator #1. (USR function evaluated here).

Duplicate copy of sign of mantissa of FAC #1.

Counter for # of bits fo shift to normalize FAC # 1.

Floating accumulator #2.

Overflow byte for floating argument.

Duplicate copy of sign of mantissa.

Pointer to ASCII rep of FAC in conversion routine lo; hi.

CHRGOT RAM code. Gets next character from BASIC text.

CHRGOT RAM code regets current characters.

Pointer to source text lo; hi.

Next random number in storage.

;24 Hr clock in 1/60 sec.

;IRQ RAM vector

:BRK Inst ram vector

;NMI RAM vector

;I/O operation status byte

;last key index

correction factor for clock

Verify flag

Index to keyboard queue

Reverse field on

Unused

Cursor on flag

Count of jiffies to blink cursor
Unused

Character saved during blink
Unused

;Pointer into logical file table

;Default input device #

;Default output device #

;Vertica! parity for tape

Unused

SYNC on tape header count

Pointer to active cassette
Unused

Bit/byte tape error

Reading shorts

/

n
A-3

192

193

194

195

196

197

199

201

203

204

205

206

209

210

211

212

213

218

220

222

223

224

249

250

251

252

253

—

—

197

198

200

202
—

—

208

—

—

—

—

217

219

221

—

—

248

—

254

Index to addresses for tape error correction
Unused

Flag for cassette read..tolls*

Count of second of shorts to write before data
Pointer to cursor position
Unused

Load start address

Load end address

Quote mode flag

Unused

;Length current file name Str

;Current file logical addr

;Current file 2nd addr

;Current file primary addr

Unused

;Addr current file name str

Unused

;Cassette read block count
Unused

Table of LBB of start addr of video display lines

JJ

u

■ u

Page 1 Mj

62 byte on bottom are used for error correction in tape reads. Also, buffer for ASCII when BASIC is I I
expanding the FAC into a printable number. The rest of page 1 is used for storage of BASIC GOSUB and M
for NEXT context and hardware stack for the machine.

u
PET PAGE TWO MEMORY MAP

3OM

512

512

514

515

516

517

518

519

593

603

613

623

634

826

1018

TO

592

513

~

520

602

612

622

633

825

1017

1019

DESCRIPTION

;Basic input buffer

program counter

processor status

accumulator

X index

Y index

Stack pointer

;User modifiable IRQ

;Logical file numbers

;Primary device numbers

;Secondary addresses

Unused

Tape buffer #1

Tape buffer #2

Unused

u

u

u

X'-'1."*1"

n

n

VARIABLE ALLOCATION

Space is allocated for variables only as they are encountered. It is not possible to allocate an array on

the basis of 2 single elements, hence the reason to execute DIM statement before array references.

Seven bytes are allocated for each simple variable whether it is a string, number, or user defined

function.

The first two bytes give the name of the variable:

bytel byte2

INTEGER first chr +

128

first chr

first chr

Second chr +128

or 128

second chr

orO

second chr +128

or 128

FLOATING

STRING

The last five bytes give the value of a variable, or a descriptor to the rest of the data:

INTEGER

FLOATING

STRING

actual value

256 * HI LO 0 0 0 .

actual value in binary floating point

-

chr

count

pointer

LO HI 0 0

The simple string variable points to a location in high memory, where the actual characters are stored.

Examples of declaration and storage

15% = 90

201 181 0 90 0 0 0

CS = "HELLO"

67 128 5 .. 0 0

H E | L
i

L 0

A-5

Locations 124 and 125 contain the first address of memory where a simple variable name will be

found.By incrementig the address by 7 each time the ext simple variable name in the table is

encountered.The end of the variables is defined-by the address in 126 and 127.

Locations 126 and 127 also define the start of array storage. The first two bytes of array descriptors

are the same as simple variables but the next five bytes are special as follows:

byte 3 byte 4 byte 5 byte 6 byte 7

7 + (size + 1)*

(dim)*A 0 1 0 size +1

VECTOR

ARRAYS

where A = 2 for integer, = 3 for string, or = 5 for floating.

By incrementing the search address by the current byte #3 of the descriptor each time, the n< <t array

variable is reached. Locations 128 and 129 contain the ending address of this table.

BASIC TEXT

(42,43)

(44,45)

(46,47)

simple variable

storage

array variable

storage

pointers involved in BASIC

variable storage.

high

memory

A-6

n

r.

o

Because the variables are divided in storage between arrays and simple variables insertion of an

additional simple variable is a bit more complicated once an array has been defined. First, the entire array

storage area must be block moved upward by seven bytes and the pointers adjusted upward + 7.

Finally, the simple variable can be inserted at the end of simple variable storage.

If large arrays are defined and initialized first before simple variables are

assigned, much execution time can be lost moving the arrays each time a

simple variable is defined. The best strategy to followin this case is to

assign a value to all known simple variables before assigning arrays.

This will optimize execution speed.

Functions of NEW and CLR on data pointer:

C LR

String pointer equated to top of memory data pointer to

start of text - 1 end of array table to start of variables end

of simple variables to start of variables.

N EW

String pointer equated to top of memory data pointer to

start of text - 1 end of array table to start of text +3

end of simple variables to start of text + start of variables
to start of text +3.

A-7

PRINCIPAL POINTERS INTO PET RAM

256 * PEEK(

+ PEEK(

41

40

63

62

43

42

45

44

47

46

49

48

51

50

at initialization

000

1024 1025 1028

typical program \/

BASIC

statements

1025

C/3

03

o

<
03

CD

Q.

<

CO

i

CD

Q.

O

03

03

\/

u

u

variables

1092

arrays

1113 1175

strings

8184

u

U

u

HOW BASIC STATEMENTS ARE STORED

n Q

1024

0

1025

Link

Link

1027

Line #

Line#

1029

compressed BASIC text

compressed BASIC text

end of

statement

is flagged

—I [/ by zero byte

c

'end of text is

stored as zero

link bytes

A-9

S '

NOTES

Appendix B.

BASIC STATEMENTS

DEF FN

DIM

END

FOR-TO-STEP-NEXT

GET

GOSUB-RETURN

GOTO

IF-THEN

INPUT

LET

ON-(GOSUB-GOTO)

| POKE-PEEK
PRINT

1 . READ-DATA-RESTORE

I REM

STOP-CONT

WAIT

n

In the following description of statements, an argument of V or W denotes a numeric variable. X denotes

a numeric expression, X$ denotes a string expression and an I or J denotes an expression that is

truncated to an integer begore the statement is executed. Truncation means that any fractional part of

the number is lost, e.g. 3.9 becomes 3, 4.01 becomes 4.

DEF 100 DEF FNA (V) = V/B + C The user can define functions like the

built-in functions (SQR, SGN, ABS, etc)

through the use of the DEF statement. The

name of the function is 'FN' followed by

any legal variable name, for example: FNX,

FNJ7, FNKO, FNR2. User-furnished

functions are restructed to one line.

A function may be defined to be any

expression, but may only have one

argument. In the example, B & C are

variables that are used in the program.

Executing the DEF statement defines the

function. User-defined functions can be

(redefined by executing another DEF
statement for the same function.

User-defined string functions are not

allowed. 'V1 is called the dummy variable.

B-1

DIM

110Z = FNA(3)

200 DEFFNA(V) = FNB(V)

113 DIM A(3),B(10)

114 DIM R3(5,5), D$(2,2,2)

115 DIM Q1(N),Z(2*1)

117 A(8) = 4

END 999 END

FOR 300 FOR V = 1 TO 9.3 STEP .6

310 FOR V = 1 TO 9.3

Execution of this statement.following the

above would cause Z to be set to 3/B + C,

but the value of V would be unchanged.

A function definition may be recursive.

A DEF statement may be written in terms

of other functions, however.

Allocates space for matrices. All matrix

examples are set to zero by the DIM

statement.

Matrices can have more than one

dimension. Up to 255 elements

Matrices can be dimensioned dynamically

during program execution. If a matrix is

not explicitly dimensioned with a DIM

statement, it is assumed to have as many

subscripts as implied in its first use and

whose subscripts may range from Oto 10

(eleven elements).

If this statement was encountered before

a DIM statement for A was found in the

program, it would be as if a DIM A(10) had

been executed previous to the execution of

line 117. All subscripts start at zero (0),

which means that DIM x(100) really

allocates 101 matrix elements.

Terminates program execution without

printing a BREAK message. (See STOP)

CONT after an END statement causes

execution to resume at the statement

after the END statement. END can be used

anywhere in the program, and is optional.

V is set equal to the value of the

expression following the equal sign, in this

case 1. This value is called the initial value.

Then the statements between FOR and

NEXT are executed. The final value is the

value of the expression following the TO.

The step is the value for the expression

following STEP. When the NEXT

statement is encountered, the step is

added to the variable.

If no STEP was specified, it is assumed to

be one. If the step is positive and the new

value of the variable is < =to the final

value (9.3 in this example), or the step value

c

Ci

B-2

n

n

315 FOR V = 10*N TO 3.4/Q STEP

SQR(R)

GET

340 NEXT V

345 NEXT

350 NEXT V,W

GET A

GET A$

n

n

n

n

GOSUB

10 GET A$: 1FA$ = " "THEN 10

10 GOSUB 910

is negative and the new value of the

variable is =>the final value, then the first

statement following the FOR statement is

executed. Otherwise, the statement

following the NEXT statement is executed.

All FOR loops execute the statements

between the FOR and the NEXT at least

once, even in the case like FOR V = 1 TO 0.

Note that expressions (formulas) may be

used for the initial, final and step values in

the FOR loop. The variables of the

expressions are computed only once,

before the body of the FOR...NEXT loop to

terminate. The statement between the FOR

and its corresponding NEXT in both

example above (310) would be

executed 9 times.

Marks the end of a FOR loop.

If no variable is given, matches the most

recent FOR loop.

A single NEXT may be used to match

multiple FOR statements. Equivalent to

NEXT V: NEXT W. Specification the former

way saves 1 byte of BASIC text storage.

Works like INPUT or INPUT# on a single

character basis. Unlike INPUT though, this

function scans the keyboard and does not

wait for carriage return to be pressed. If no

key has been pressed, A$ = " "(null string)

and A = 0 after executing this statement.

This example stays in a loop until a key

has been

pressed.

Branches to the specified statement (910)

until a RETURN is encountered; when a

branch is then made to the statement after

the GOSUB. GOSUB nesting is limited to

23 levels.

Subroutines line numbers are searched for

from the beginning of text. To increase

execution speed, define subroutines first

with low line numbers. Fewer digits in line

numbers will also save storage space.

B-3

GOTO

IF...GOTO

IF...THEN

50 RETURN

50 GOTO 100

32 IF x< = Y + 23x4 GOTO 92

15IFx<0THEN 5

25 IF X = 5 THEN 50:Z = A

26 IF X<0 THEN PRINT "ERROR X NEGATIVE": GOTO 350

INPUT

3 INPUT V,W,W2

Causes a subroutine to return to the

statement after the most recently executed

GOSUB.

Branches to the statement specified.

Keeping line numbers low will save space

on GOSUB statements.

Equivalent to IF...THEN, except that IF...

GOTO must be followed by a line number,

while IF...THEN can be followed by either a

line number or another statement.

Branches to specified statement if the

relation is True.

WARNING. The "Z = A" will never be

executed because if the relation is true,

BASIC will branch to line 50. If the relation

is a false, BASIC will proceed to the line

after line 25.

I

In this example, if X is less than 0, the

PRINT statement will be executed and then

the GOTO statement will branch to line

350. If the X was 0 or positive, BASIC will

proceed to execute the lines after line 26.

Binary floating point representations of

decimal fractions may not always be exact,

sometimes a comparison will fail because

of this. In this case, compare the number to

a ± range.

Request information character by character

until carriage return from the keyboard,

turning the characters into numbers or

strings of a maximum length of 79

characters.

Requests data from the terminal (to be

typed in). Each value must be separated

from the preceeding value by a comma (,).

The last value typed should be followed by

a carriage return. A "?" is typed as a

prompt character. However, only constants

may be typed in as a response to an

INPUT statement, such as 4.5E-3 or "CAT".

If more data was requested in an INPUT

statement than was typed in, a "??" is

printed (if INPUT is from terminal) and the

rest of the data should be typed in. If more

Ci

L

B-4

fi

n- c

n
5INPUT"VALUE";V

LET

ON...GOTO

C

300 LET W = X

310 V = 5.1

100 ON I GOTO 10,20,30,40

ON...GOSUB

105 ON SGN (X) + 2GOTO

40,50,60

110 ON 1 GOSUB 50,60

POKE 357 POKE I,J

data was typed in than requested, the extra

data will be ignored and a warning "EXTRA

IGNORED" will be printed when this

happens. String must be input in the same

format as they are specified in DATA

statements.

Optionally types a prompt string ("VALUE")

before requesting data from the terminal.

Typing CONT after an INPUT command

has been interrupted will cause execution

to resume at the INPUT statement.

An INPUT command is interrupted if a

carriage return is the only character

entered.

Assigns a value to a variable.

"LET" is optional. The type of variable

(numeric or string) must be the same as the

evaluated expression.

Branches to the line indicated by the I'th

number after the GOTO.

That is :

If 1 = 1, THEN GOTO LINE 10

If I = 2, THEN GOTO LINE 20

If I =3, THEN GOTO LINE 30

If I =4, THEN GOTO LINE 40.

If I =0 or I attempts to select a nonexistent

line (> =) in this case, the statement after

the ON statement is executed. However,

if I is <255 or >0, an "ILLEGAL QUANTITY"

error message will result. As many line

numbers as will fit on a 79-byte line can

follow an ON...GOTO.

This statement will branch to line 40 if the

expression X is less than zero, to line 50 if .-

it equals zero, and to line 60 if it is equal

to one.

Identical to "ON...GOTO", except that a

subroutine called (GOSUB), is executed

instead of a GOTO. RETURN from the

GOSUB branches to the statement after the

ON...GOSUB.

The POKE statement stores the byte

specified by its second argument (J) into

the location given by its first argument (I).

B-5

PEEK 1OA = PEEK(I)

PRINT

360 PRINT X,Y,Z

370 PRINT

380 PRINT X,Y

390 PRINT "VALUE" IS";A

400 PRINT A2,B,

READ

410 PRINT MlD$(A$,2);

490 READ V,W

The byte to be stored must be =>0 and

< = 255, or an "ILLEGAL QUANTITY" error

will occur. The address (I) must be =>0

and < = 65535, or an "ILLEGAL QUANTITY"

error will result. POKE works only on RAM

and I/O POKEing. Certain locations will

disturb normal PET operation unless reset.

It is not possible to POKE the PEEK of a

location into a location inPET ROM.

PEEK is a function of an address and

returns a byte value contained in that

location. BASIC cannot be PEEKed and

PEEK of locations $C000 to $E1D9 yields a

value of zero.

Sends the data to PET TV display. BASIC

software calls a subroutine in the system

software and loads the character in the

accumulator.

Prints the value of expressions on the

terminal. If the list of values to be printed

out does not end with a comma (,) or a

semicolon (;), then a carriage return/line

feed is executed after all the values have

been printed. Strings enclosed in quotes

(") may also be printed. If a semicolon

separates two expressions in the list,

their values are printed next to each other.

If a comma appears after an expression in

the list, then spaces are printed until the

carriage is at the beginning of the next N

column field (until the carriage is at column

N,2N,3N,4N...). If there is no list of

expressions to be printed, then a carriage

return is executed.

String expressions may be printed. A

semicolon is not needed between string

expressions such as PRINT AB "HELLO"

that are to be concatenated.

Reads data into specified variable from a

DATA statement. The first piece of data

read will be the first piece of data listed in

the first data statement of the program.

The second piece of data read will be the

second piece listed in the first DATA

statement, and so on. When all of the data

B-6

(■

n

n

DATA 1ODATA1,3,-1E3,.O4

20 DATA "CBM.INC"

30 DATA PET, "2001"

c
RESTORE 510 RESTORE

n REM 500 REM NOW SET V = 0

n

n STOP

505REM SET V = 0: V = 0

506 V = 0: REM SET V = 0

9000 STOP

CONT

n
WAIT WAIT IJ.K

have been read from the first DATA

statement, the next piece of data to be

read will be the first piece listed in the

second DATA statement of the program.

Attempting to read more data then there is

in all the DATA statements in a program

will cause an "O.UT OF DATA" error. The

line number given in the "SYNTAX ERROR"

will refer to the line number where the error

actually is located.

Specifies data, read from left to right.

Information appears in data statements in

the same order as it will be read in the

program.

Strings may be read from DATA

statements. If you want the string to

contain a colon (:) or commas (,), or leading

blanks, you must enclose the string in

double quotes. It is impossible to have a

double quote within string data or a string

literal. (" "ANYTHING" ") is illegal.

Allows the rereading of DATA statements.

After a RESTORE, the next piece of data

read will be the first piecfe listed in the

first DATA statement, and so on as in a

normal READ operation.

Allows the programmer to put comments

in his program. REM statements are not

executed, but can be branched to. A REM

statement is terminated by end of line, but

not by a ":".

In this case, the V =0 will never be

executed by BASIC.

In this case V = 0 will be executed.

Causes a program to stop execution and to

enter command mode. Prints BREAK IN

LINE 9000 (as per this example). CONT

after a STOP branches to the statement

following the STOP.

A command that can be executed only in

direct mode. Resumes program execution

after STOP, END, or use of STOP key.

A program cannot be resumed after error

condition, editing, CLR, or NEW.

This statement reads the status of memory

B-7

location I, exclusive OR's K with status,

then AND's the result with J until a non

zero result is obtained. Execution of the

program continues at the statement

following the WAIT.

If the WAIT statement only has two

arguments, K is assumed to be zero. If you

are waiting for a bit to become zero, there

should be a one in the corresponding

position of K. 0< = I < =65536 J,K must be

<=0and > = 255.

The STOP key cannot interrupt a WAIT.

B-8

n

n-

n

n

Appendix C

BASIC COMMANDS

CLR

LIST

LOAD

NEW

RUN

SAVE

VERIFY

A command is usually given after BASIC has typed READY. This is called the "Command Level".

Commands may be used as program statements. Certain commands, such as LIST and NEW will

terminate program execution when they finish.

CLR

LIST

C

0

n

LISTX

LIST or LIST-

LIST X-

LIST -X

LIST Y-X

LOAD

n

LOAD

LOAD "HURKLE"

LOAD "HURKLE", 2

10 LOAD "HURKLE"

n

n

Deletes all stored references to variables,

arrays, functions, GOSUB and FOR-NEXT

context.

Lists line "X" if there is one.

Lists the entire program.

Lists all lines in a program with a line

number equal to, or greater than, UX".

Lists all of the lines in a program

with a line number less than, or

equal to, "X".

Lists all of the lines within a program with

line numbers equal to, or greater than, "Y",

and less than or equal to "X".

If LIST is used as a program statement, the

program will terminate after it is executed.

Load first program found on cassette #1

into memory.

Search for named file on cassette #1 and

then load it into memory.

Same as previous, except from device #2.

When LOAD is specified as a program

statement, execution of the current

program in memory stops at this point.

A normal load of program proceeds. The

new program begins execution from its

lowest line number. Variables and their

values are passed from the load to the new

program. Strings and function definitions

cannot be relied upon because BASIC

maintains pointers into the old text

C-1

NEW

RUN RUN

SAVE

VERIFY

RUN 200

SAVE

SAVE"HURKLE"

SAVE "HURKLE", 2

SAVE "HURKLE", 2,1

VERIFY "HURKLE"

where they used to be. Strings can be

forced to exist in permanent string

variable storage by performing an operation

on them prior to LOAD, e.g. A$ = A$ + " ".

WARNING: On an overlay LOAD, the

overlaying program must have a text

storage requirement less than or equal to

the previous program. If this is not true,

then the variables will be overwritten

because they are stored immediately after

text in memory.

Deletes current program and all variables.

Starts execution of the program currently

in memory at the lowest numbered

statementment. RUN deletes all variables

(like CLR) and restores DATA. If you have

stopped your program and wish to continue

execution at some point in the program,

use a direct GOTO statement to start

execution of your program at the desired

line.

Optionally starts RUN at the specified line

number.

Save BASIC text on cassette #1.

Save and name the file on cassette #1.

Save on 2nd cassette unit.

Save and write end of tape block.

Same parameters as LOAD. Compares

contents of memory with file and reports

success/failure of compare.

C-2

n

r

n

FUNCTION

ASC

CHRS

LEFTS

LEN

MIDS

RIGHTS

STRS

VAL

String Functions

EXAMPLE PURPOSE

10 A=ASC("XYZ")

10 A$=CHR$(N)

10 ?LEFT$(X$,A)

10 ?LEN(X$)

10 ?MID$(X$tA,B)

10 ?RIGHT$(X$,A)

10 A$=STR$(A)

10 A=VAL(A$)

20 A=VAL("A")

Returns integer value corresponding to
ASCII code of first character in string.

Returns character corresponding to
ASCII code number

Returns leftmost A characters from
string.

Returns length of string.

Returns B characters from string,
starting with the Ath character.

Returns rightmost A characters from
string.

Returns string representation of
number.

Returns numeric representation of
string.

If string not numeric, returns "0".
ASC, LEN and VAL functions return numerical results. They may be used as part of an expression
Assignment statements are used here for examples only; other statement types may be used

n

FUNCTION

ABS

ATN

COS

DEFFN

Arithmetic Functions
EXAMPLE PURPOSE

10 C=ABS(A)

10 C=ATN(A)

10C=COS(A)

10 DEF FNA(B)=C*D

Returns magnitude of argument without
regard to sign.

Returns arctangent of argument. C will
be expressed in radians.

Returns cosine of argument. A must be
expressed in radians.

Allows user to define a function.
Function label A must be a single letter;
argument B is a dummy.

Arithmetic Functions

n

n

n

SYMBOL

EXP

INT

LOG

RND

EXAMPLE

10 C=EXP(A)

10 C=INT(A)

10 C=LOG(A)

10 C=RND(A)

n

n.

n

c.

SGN

SIN

SQR

TAN

10 C=SGN(A)

10 C=SIN(A)

10 C=SQR(A)

10 C=TAN(A)

PURPOSE

Returns constant 'e' raised to power of
the argument. In this example, eA.

Returns largest integer less than or
equal to argument.

Returns natural logarithm of argument.
Argument must be greater than or equal
to zero.

Generates a random number between

zero and one. If A is less than 0, the

same random number is produced in

each call to RND. If A=0, the same

sequence of random numbers is

generated each time RND is called. If A

is greater than 0, a new sequence is

produced for each call to RND.

Returns -1 if argument is negative,

returns 0 if argument is zero, and

returns +1 if argument is positive.

Returns sine or argument. A must be

expressed in radians.

Returns square root of argument.

Returns tangent of argument. A must be

expressed in radians.

C-3

Appendix D

EXPRESSIONS AND OPERATORS

RELATIONAL OPERATORS

=

<

>

< =

> =

<>

equal

less than

greater than

LE.

G.E.

not equal

BOOLEAN OPERATORS

AND

OR

NOT

ARITHMETIC OPERATORS

add

subtract

multiply

divide

exponentiation

(negation)

STRING OPERATOR

(concatenation)

ARITHMETIC OPERATORS

SYMBOL SAMPLE STATEMENT PURPOSE/USE

A = 100

. LETZ = 2.5

B= -A

130 PRINT Xt3

140 X = R*(B*D)

150 PRINT x/1.3

16O.Z = R+T + Q

170 J = 100-1

Assigns a value to a variable,

the LET is optional.

Negation. Note that Q-A is subtraction,

while -A is negation.

Exponentation (equal to X*X*X

in the sample statement). OtO = 1. 0 to any

other power = O.AtB, with A negative and

B not an integer gives an FC error.

Multiplication.

Division.

Addition.

Subtraction.

c

RELATIONAL OPERATORS

Relational operators can be used as part of any expression.

Relational operator expressions will always have a value of True (- 1) or a value of False (0).

Therefore, (5 = 4) = 0, (5 = 5) = -1 , etc.

The THEN clause of an IF statement is executed whenever the formula after the IF is not equal to 0. That

is to say, IF X THEN.Js equivalent to IF X <> 0 THEN....

SYMBOL

< = , =<

> = ,=>

SAMPLE STATEMENT

10 IF A = 15 THEN 40

70 IF AO0THEN 5

30 IF B>100THEN 8

160 IF B<2 THEN 10

180 IF 100< = B + CTHEN 10

190IFQ> = RTHEN 50

PURPOSE/USE

Expression Equals Expression.

Expression Does Not Equal Expression.

Expression Greater Than Expression.

Expression Less Than Expression.

Expression Less Than Or Equal To

Expression.

Expression Greater Than Or Equal To

Expression.

BOOLEAN OPERATORS

AND

OR

NOT

2 IF A<5 AND B<2THEN 7 If expression 1 (A<5) AND expression 2

(B <2) are both true, then branch to line 7.

If either expression 1 (A<1) OR expression

2 (B <2) is true, then branch to line 2.

If expression "NOT Q3" is true (because

Q3 is false), then branch to line 4.

NOT -1=0 (NOT true = false).

AND, OR and NOT can be used for bit manipulation, and for performing boolean operations.

These three operators convert their arguments to sixteen bit, signed two's, complement integers in the

IF A<1 OR B<2THEN 2

IF NOT Q3THEN 4

D-2

u

range - 32768 to + 32767. They then perform the specified logical operation on them and return a result

within the same range. If the arguments are not in this range, an 7ILLEGAL QUANTITY ERROR results.

The operations are performed in bitwise fashion, this means that each bit of the result is obtained by

examining the bit in the same position for each argument.

The following truth table shows the logical relationship between bits:

OPERATOR

AND

OR

NOT

ARG. 1

1

0

1

0

1

1

0

0

1

0

ARG. 2

1

1

0

0

1

0

1

0

-

RESI

1

0

0

0

1

1

1

0

0

1

'U

u

EXAMPLES OF BOOLEAN EXPRESSIONS

u

63 AND 16 = 16 Since 63 equals binary 111111 and 16 equals binary 10000, the result of the AND

is binary 10000 or 16.

15 AND 14 = 14 15 equals binary 1111 and 14 equals binary 1110, so 15 and 14 equals binary 1110

or 14.

-1 AND 8 = 8 -1 equals binary 1111111111111111 and 8 equals binary 1000, so the result is) I
binary 1000 or 8 decimal. '

4 AND 2 = 0 4 equals binary 100 and 2 equals binary 10, so the result is binary 0 because none

of the bits in either argument match to give a 1 bit in the result.

10 OR 10 = 10 Binary 1010 OR'd with binary 1010, or 10 decimal.

-1 OR -2= -1 Binary 1111111111111111 (-1)OR'd with binary 1111111111111110 (-2) equals

binary 1111111111111111, or -1.

NOT 0= -1 The bit complement of binary 0 to 16 places is sixteen ones (111111.1111111111)

or -1. Also NOT -1=0.

N0T x NOT X is equal to - (X + 1). This is because to form the sixteen bit two's

complement of the binary, you take the bit (one's) complement and add one.

NOT1 = -2 The sixteen bit complement of 1 is 1111111111111110, which is equal to -(1 + 1) | I
or -2.

LI

D-3

n

"~ RULES FOR EVALUATING EXPRESSIONS

Rules for Evaluating Expressions:

1. Operations of higher precedence are performed before operations of lower precedence. This means the

multiplications and divisions are performed before additions and subtracions. As an example,

2 + 10/5 equals 4, not 2.4. When operations of equal precedence are found in a formula, the left-hand one

is executed first: 6 - 3 + 5 = 8, not -2.

2. The order in which operations are performed can always be specified explicitly through the use of

parentheses. For instance, to add 5 to 3 and then divide that by 4, we would use (5 + 3)/4, which eqals 2.

If, instead, we had used 5 + 3/4, we would get 5.75 as a result (5 plus 3/4).

The precedence of operators used in evaluating expressions is as follows, in order beginning with the

highest precedence: (Note: Operators listed on the same line have the same precedence).

1) FORMULAS ENCLOSED IN PARENTHESIS ARE ALWAYS EVALUATED FIRST

2)t EXPONENTATION

3) NEGATION -X WHERE X MAY BE A FORMULA

4) * / MULTIPLICATION AND DIVISION

5) + - ADDITION AND SUBTRACTION

6) RELATIONAL OPERATORS: = EQUAL

<> NOT EQUAL

(equal precedence < LESS THAN

for all six). > GREATER THAN

< = LESS THAN OR EQUAL

> = GREATER THAN OR EQUAL

7) NOT LOGICAL AND BITWISE "NOT" LIKE NEGATION, NOT TAKES ONLY THE FORMULA TO

ITS RIGHT AS AN ARGUMENT

8) AND LOGICAL AND BITWISE "AND"

9) OR LOGICAL AND BITWISE "OR"

i D-4

Appendix E C

SPACE HINTS ^ '
In order to make your program smaller and save space, the following hints may be useful. . i.

1) Use multiple statements per line. There is a small amount of overhead. (5 bytes) associated with each

line in the program. Two of these five bytes contain the line number of the line in binary. This means that i
no matter how many digits you have in your line number (minimum line number is 0, maximum is 63999), it

takes the same number of bytes. Putting as many statements as possible in a line will cut down on the]

number of bytes used by your program. \

2) Delete all unnecessary spaces from your program. For instance:

10 PRINT X, Y, Z I

uses three more bytes than

10 PRINTX,Y,Z

Note: All spaces between the line number and the first non-blank character are ignored.

3) Delete all REM statements. Each REM statement uses at least one byte plus the number of bytes in the

text. For instance, the statement 130 REM THIS IS A COMMENT uses up 24 bytes of memory.

In the statement 140X = X + Y:REM UPDATE SUM, the REM uses 14 bytes of memory including the colon

before the REM.

4) Use variables instead of constants. Suppose you use the constant 1.02369 ten times in your program.

If you insert a statement

10Q = 1.02369

in the program, and use Q instead of 1.02369 each time it is needed, you will save 40 bytes. This will also

result in a speed improvement.

5) A program need not end with an END; so, an END statement at the end of a program may be deleted.

6) Re-use the same variables. If you have a variable T which is used to hold a temporary result in one part

of the program and you need a temporary variable later in your program, use it again. Or, if you are asking

the terminal user to give a YES or NO answer to two different questions at two different times during the

execution of the program, use the same temporary variable A$ to store the reply.

7) Use GOSUB's to execute sections of program statemnts that perform identical actions.

8) Use the zero elements of matrices; for instance, A(O), B(O,X)

SPEED HINTS

The hints below should improve the execution time of your BASIC program. Note that some of these hints

are the same as those used to decrease the space used by your programs. This means that in many cases

you can increase the efficiency of both the speed and size of your programs at the same time.

1) Delete all unnecessary spaces and REM's from the program. This may cause a small decrease in

execution time because BASIC would otherwise have to ignore or skip over spaces and REM statements.

2) THIS IS PROBABLY THE MOST IMPORTANT SPEED HINT BY A FACTOR OF 10. Use variables instead

of constants. It takes more time to convert a constant to its floating point representation than it does to

fetch the value of a simple or matrix variable. This is especially important within FOR...NEXT loops or

other code that is executed repeatedly.

E-1

n.

n

n

n

v 3) Order your definitions.of variables carefully. Variables which are encountered first during the execution

of a BASIC program are allocated at the start of the variable table. This means that a statement such as

5 A = O:B = A:C = A, will place A first, B second, and C third in the symbol table (assuming line 5 is the

first statement executed in the program). Later in the program, when BASIC finds a reference to the

variable A, it will search only one entry in the symbol table to find A, two entries to find B and three entries

to find C, etc.

4) Use NEXT statements without the index variable. NEXT is somewhat faster than NEXT I because no

check is made to see if the variable specified in the NEXT is the same variable in the most recent FOR

statement.

n

n c

n

n

n

n
E-2

Appendix F

SUGGESTED READING <usaproduced)

Entering BASIC. J.Sack and J. Meadows. Science Research Associates, 1973

BAS1C:A Computer Programming Language. C. Pegels, Holden-Day,lnc. 1973

BASIC Programming. J. Kemeny and T. Kurtz, Peoples Computer Co., 1010 Doyle(P.O.Box 3100),

Menlo Park, Ca 94025, 1967

BASIC. Albrecht, Finkle and Brown. Peoples Computer Co., 1010 Doyle(P.O.Box 3100), Menlo Park,

Ca 94025, 1973

A Guided Tour of Computer Programming in BASIC. T. Dwyer, Houghton Mifflin Co., 1973

Programming Time Shared Computer in BASIC. Eugene H. Barnett. Wiley-lnterscience L/C 72-175789

($12.00)

Programming Language #2. Digital Equipment Corp., Maynard, MA 01754

101 BASIC Computer Games. Software Distribution Center. Digital Equipment Corp., Maynard,

MA01754 ($7.50)

What to Do After You Hit Return. Peoples Computer Co., 1010 Doyle(P.O.Box 310),

Menlo Park, Ca 94025 ($6.95)

Basic BASIC. James S. Coan, Hyden Book Co., Rochelle Park, NJ

WORKBOOKS 1-5. T. I. S., P.O.Box 921, Los Almos, NM 87544

F-1

D & R CREATIVE SYSTEMS
P. O. BOX 402 • ST. CLAIR SHORES, MICHIGAN 48080

INSTRUCTIONS FOR THE

D & R SECOND CASSETTE SYSTEM

& M2545

1) Label the cables using Figure I.

2) Plug in the computer and make sure the power is turned off.

3) Plug in the interface module into the second cassette port.

4) Unpack the Sanyo recorder and read the operating manual to
familiarize yourself with its operation.

5) Insert the demo tape into the Sanyo recorder.

6) Plug Int 1. Remote cable into the remote jack.

2. Sense cable into the jack provided in the battery

compartment.

3. Earphone cable into the earphone jack.

k. DO NOT plug in the microphone cable at this time.

7) Turn volume (VOL) and tone to the right (maximum).

8) Turn on the computer.

9) Type» LOAD "DEMO",2

You will seai

(10) *PRESS PLAY ON TAPE #2

SEARCHING FOR DEMO

FOUND DEMO

LOADING

READY

11) Type RUN

NOTSi Unit will not operate with microphone and earphone cable

plugged in at the same time.

* If module is purchased separately, switch toggle to on
position.

n

n

n

n

r

r

n

n

NOTE* Use the microphone plug when writing to tapes with
the second cassette.

Use the earphone plug when reading from tapes with
the second cassette0

WARRANTY

The D & R Creative Systems Second Cassette module is
warranted against manufacturing defects in materials
and workmanship for a period of 90 days.

The Sanyo recorder is warranted by the manufacturer
Please consult their user manual for information.

IN CASE OF DIFFICULTY

Check all procedures outlined in the operating instructionso
If you still cannot remedy the difficulty, contact D & R
Creative Systems before returning the Second Cassette System.

FIGURE I

Fast forward Cueing

One of the best features of the D & R 2nd-cassette
system is the Fast Forward Cueing (FFC). HC
allows the user to hear the program while the
tape is moving at Fast Forward speed.

How do you use this feature? Easy, For an exampje,
let's say you have a tape with four programs on it
and you want to load the last program on the tape.
Depending on the length of the programs, it could
take more than ten minutes to. load the desired
program. In FFC mode you can have the program
located and loading in ^0 seconds. You can do

this by«

1. Disconnecting the the "EAR" plug from
the recorder, and leaving the the volume
control all the way up.

2. Press the play button and then the FFC
button. First you will hear the sound
of the program header as it is passing
the tape head of the recorder. This
will be very short (about 5 seconds),
then you will hear the program.

3. While holding the FFC button down count
away the number of headers and programs

necessary to find the desired program.

k. Back up to just before the header of the
desired program (you will notice that

cueing also works in Rewind) and proceed
as you normally would for loading a

program.

A Note On Cassette Compatibility.

The D & R 2nd-cassette system will be able to
exchange tapes with the on board cassette providing
the head alignment of the two systems are the same.

If you have trouble with compatibility between units,
you can refer to three articles written on this subject.
Copies of these articles can be sent to you upon

request. Please enclose a self addressed stamped

envelope.

Commodore has changed their cassette unit three times
since the PET«s introduction. D & R Creative Systems

can not be responsible for the head alignments of the

PET computer.

1. May 1979 "Microcomputing" Pg. 7 "PET Pourri"
by Len Lindsay, program by Jim Butterfield.

2. July 1979 "Microcomputing11 pg. 129 "PET
Pourri" by Len Lindsay, program mod. by

Harvey Herman.
3. Volume 1, issue 6 pg. 2, "Head alignment by G. Paul

PET User Notes.

MODULE

Connect a SPST toggle switch to the sense line.
Refer to the full system instructions, items 1»2,3,6,7,8, and
9 for the operating information.

After item #9 throw the toggle switch to the on position.
After loading is completed, return the sense switch to the
original off position.

D & R CREATIVE SYSTEMS
P. O. BOX 402 • ST. CLAIR SHORES, MICHIGAN 48080

INTRODUCING THE D & R SECOND CASSETTE SYSTEM

System Includes:

Sanyo cassette recorder Model

Interface Module

All cables and connectors

Features

Counter

Cueing*

Review*

Can be used as

a standard recorder

Cassette Sense

Price

COMMODORE

No

No

No

No

Yes

$99*95

R

u

u

u

Yes

Yes ' U

Yes ' [J

Yes

¥79.95

*Allows user quick location of desired program (Audio Location;

Sanyo recorder is specially modified to sense when the
play button is depressed.

Send check or money order for $79.95 + $3.00 P/K Canada $6.00 P/r
Allow 2-3 weeks for personal checks,

Michigan Residents add k% Sales Tax.

LJ

u

Li

a

D & R CREATIVE SYSTEMS
P. O. BOX 402 • ST. CLAIR SHORES, MICHIGAN 48080

INTERFACE MODULE

Features*

Module plugs directly into the Pets second

cassette port.

No external power supply neededo

Any good quality cassette recorder may be used.

If module does not operate with your cassette recorder

return it in original condition for a $29*95 refund, or

a credit of $31«95 can be applied to the purchase of the
total system which includes a Sanyo cassette recorder.

IMPORTANT

If module is purchased separately, the automatic

sense feature is not available, but can be added by the user.

ORDERING INFORMATION

Interface Module - $29*95 + $2.00 P/H Canada $4.00 P/ri
Second Cassette System $79.95 + $3.00 P/H Canada $6.00 P/H

Send Check or Money Order.

Allow 2-3 weeks additional for personal checks.

Mchi.gan Residents add kfi Sales Tax.

LJ

0

0

L

	2009_06_28_16_05_27
	2009_06_28_16_05_27-01

