
COMMODORE
n

DISK DRIVE

useris guide

v

■

USER'S MANUAL STATEMENT

WARNING: This equipment has been certified to comply with the limits for

a Class B computing device, pursuant to subpart J of Part 15 of the

Federal Communications Commission's rules, which are designed to pro

vide reasonable protection against radio and television interference in a

residential installation. If not installed properly, in strict accordance with

the manufacturer's instructions, it may cause such interference. If you

suspect interference, you can test this equipment by turning it off and on. If

this equipment does cause interference, correct it by doing any of the

following:

• Reorient the receiving antenna or AC plug.

• Change the relative positions of the computer and the receiver.

• Plug the computer into a different outlet so the computer and

receiver are on different circuits.

CAUTION: Only peripherals with shield-grounded cables (computer input-

output devices, terminals, printers, etc.), certified to comply with Class B

limits, can be attached to this computer. Operation with non-certified

peripherals is likely to result in communications interference.

Your house AC wall receptacle must be a three-pronged type (AC

ground). If not, contact an electrician to install the proper receptacle. If a

multi-connector box is used to connect the computer and peripherals to

AC, the ground must be common to all units.

If necessary, consult your Commodore dealer or an experienced radio-

television technician for additional suggestions. You may find the following

FCC booklet helpful: "How to Identify and Resolve Radio-TV Interference

Problems." The booklet is available from the U.S. Government Printing

Office, Washington, D.C. 20402, stock no. 004-000-00345-4.

1581

Disk Drive

User's Guide

Copyright © 1987 by Commodore Electronics Limited

All rights reserved

This manual contains copyrighted and proprietary information. No

part of this publication may be reproduced, stored in a retrieval

system, or transmitted in any form or by any means, electronic, me

chanical, photocopying, recording or otherwise, without the prior

written permissibn of Commodore Electronics Limited.

COMMODORE 64 is a registered trademark of Commodore Electronics Limited

COMMODORE 128, Plus 4, and VIC 20 are trademarks of Commodore Electronics Limited

CONTENTS

INTRODUCTION 1

HOW THIS GUIDE IS ORGANIZED 1

PART ONE: BASIC OPERATING INFORMATION

CHAPTER 1: UNPACKING, SETTING UPAND USING THE 1581 3

step-by-step instructions 3

troubleshooting guide 5

tips for maintenance and care 7

inserting a diskette 8

using pre-programmed (software) diskettes 8

how to prepare a new diskette 10

diskette directory 11

selective directories 12

printing a directory 13

pattern matching. 13

splat files 14

CHAPTER 2: BASIC 2.0 COMMANDS 15

error checking 16

BASIC hints 17

save 17

save with replace 18

verify 19

scratch 20

more about scratch. 21

rename 22

renaming and scratching troublesome files.... 23

copy 24

validate 25

initialize 26

CHAPTER 3: BASIC 7.0 COMMANDS 27

error checking 27

save 27

save with replace 28

verify '. 29

copy 29

concat 30

scratch 30

more about scratch 31

rename 32

renaming and scratching troublesome files 33

collect 34

dclear 35

| PART TWO: ADVANCED OPERATION AND PROGRAMMING |

CHAPTER 4: SEQUENTIAL DATA FILES 37

opening a file 38

closing a file 43

reading file data: using input# 44

more about input# 45

numeric data storage on diskette 47

reading file data: using get# 48

demonstration of sequential files 51

CHAPTER 5: RELATIVE DATA FILES 53

files, records, and fields 53

file limits 54

creating a relative file 54

using relative files: record# command 56

completing relative file creation 58

expanding a relative file 60

writing relative file data 60

designing a relative record 60

writing the record 61

reading a relative record 64

the value of index files 67

CHAPTER 6: DIRECT ACCESS COMMANDS 69

opening a data channel for direct access 69

block-read 70

block-write 71
the original block-read and block-write commands 72

the buffer pointer 74

allocating blocks 75

freeing blocks 76

partitions and sub-directories 77

using random files 79

CHAPTER 7: INTERNAL DISK COMMANDS 81

memory-read. 82

memory-write 84

memory-execute 85

block-execute 85

user commands 86

utility loader 87

auto boot loader 88

CHAPTER 8: MACHINE LANGUAGE PROGRAMS 89

disk-related kernal subroutines 89

CHAPTER 9: BURST COMMANDS 91

cmdl-read 91

cmd2-write 92

cmd3-inquire disk 92

cmd4-format 93

cmd6-query disk format 94

cmd7-inquire status 94

cmd8-dump track cache buffer 95

chgutl utility 95

fastload utility 96

status byte breakdown 96

burst transfer protocol 97

explanation of procedures 98

CHAPTER 10:1581 INTERNAL OPERATION 101

logical versus physical disk format 101

track cache buffer 101

controller job queue 102

vectored jump table 108

APPENDICES:

A: changing the device number Ill

B: dos error messages 113

C: dos diskette format 119

D: disk command quick reference chart 123

E: specifications of the 1581 disk drive 125

F: serial interface information 127

USER'S MANUAL STATEMENT inside back cover

INTRODUCTION

The Commodore 1581 is a versatile 3.5" disk drive that can be

used with a variety of computers, including the COMMODORE 128™,

the COMMODORE 64®, the Plus 4™, COMMODORE 16™, and VIC 20.™

Also, in addition to the convenience of 3.5" disks, the 1581 offers

the following features:

• Standard andfast serial data transfer rates—The 1581 auto

matically selects the proper data transfer rate (fast or slow) to

match the operating modes available on the Commodore 128

computer.

• Double-sided, double-density MFM data recording—Provides

more than 800K formatted storage capacity per disk (400K +

per side).

• Special high-speed burst commands—These commands, used

for machine language programs, transfer data several times

faster than the standard or fast serial rates.

HOW THIS GUIDE IS ORGANIZED

This guide is divided into two main parts and seven appendices,

as described below:

PART ONE: BASIC OPERATING INFORMATION—includes all the

information needed by novices and advanced users to set up and

begin using the 1581 disk drive. PART ONE is subdivided into

three chapters:

• Chapter 1, Unpacking, Setting Up and Using the 1581, tells you

how to use disk software programs that you buy. These pre

written programs help you perform a variety of activities in

fields such as business, education, finance, science, and recrea

tion. If you're interested only in loading and running pre

packaged disk programs, you need read no further than this

chapter. If you are also interested in saving, loading, and run

ning your own programs, you will want to read the remainder

of the guide.

• Chapter 2, Basic 2.0 Commands, describes the use of the

BASIC 2.0 disk commands with the Commodore 64 and Com

modore 128 computers.

• Chapter 3, Basic 7.0 Commands, describes the use of the

BASIC 7.0 disk commands with the Commodore 128.

PART TWO: ADVANCED OPERATION AND PROGRAMMING—is

primarily intended for users familiar with computer program

ming. PART TWO is subdivided into six chapters:

• Chapter 4, Sequential Data Files, discusses the concept of data

files, defines sequential data files, and describes how sequen

tial data files are created and used on disk.

• Chapter 5, Relative Data Files, defines the differences between

sequential and relative data files, and describes how relative

data files are created and used on disk.

• Chapter 6, Direct Access Commands, describes direct access

disk commands as a tool for advanced users and illustrates

their use.

• Chapter 7, Internal Disk Commands, centers on internal disk

commands. Before using these advanced commands, you

should know how to program a 6502 chip in machine lan

guage.

• Chapter 8, Machine Language Programs, provides a list of

disk-related kernal ROM subroutines and gives a practical ex

ample of their use in a program.

• Chapter 9, Burst Commands, gives information on high-speed

burst commands.

• Chapter 10,1581 Internal Operations, describes how the 1581

operates internally.

APPENDICES ATHROUGH F—provide various reference information;

for example, Appendix A tells you how to set the device number

through use of two switches on the back of the drive.

PART ONE

BASIC OPERATING INFORMATION

CHAPTER 1

HOW TO UNPACK, SET UP AND

BEGIN USING THE 1581

STEP-BY-STEP INSTRUCTIONS

1. Inspect the shipping carton for damage.

If you find any damage to the shipping carton and suspect that the

disk drive may have been affected, contact your dealer.

2. Check the contents of the shipping carton.

Packed with the 1581 and this book, you should find the following:

electrical power supply, interface cable, Test/Demo diskette, and a

warranty card to be filled out and returned to Commodore.

3. Remove the shipping spacer from the disk drive.

The spacer is there to protect the inside of the drive during

shipping. To remove it, push the button on the front of the drive

(see Figure 1) and pull out the spacer.

Figure 1. Front of 1581 Disk Drive

H
■ commodore 1581 ^H
1 FLOPPY DISK DRIVE ■

V

THE PRODUCT DOES NOT NECESSARILY RESEMBLE THE PICTURE INSIDE THE USER'S MANUAL

3

4. Connect the power cord.

Check the ON/OFF switch on the back of the drive (see Figure 2)

and make sure it's OFF. Connect the power supply where indicated

in Figure 2. Plug the other end into an electrical outlet. Don't turn

the power on yet.

Figure 2. Connection of Power Cord and Interface Cables to 1581

BACK OF

C128

SERIAL PORT

CONNECTOR

ON

C128

POWER CORD

SOCKET

BACK OF 1581

SERIAL PORT

CONNECTORS

FOR

INTERFACE

CABLES

DIP SWITCHES

FOR CHANGING

DEVICE

NUMBER

ON/OFF

SWITCH

POWER

OUTLET

5. Connect the interface cable.

Make sure your computer and any other peripherals are OFF. Plug

either end of the interface cable into either serial port on the back

of the drive (see Figure 2). Plug the other end of the cable into the

back of the computer. If you have another peripheral (printer or

extra drive), plug its interface cable into the remaining serial port

on the drive.

6. Turn ON the power.

With everything hooked up and the drive empty, you can turn on

the power to the peripherals in any order, but turn on the power to

the computer lasfe When everything is on, the drive goes through a

self test. If all is well, the green light will flash once and the red

power-on light will glow continuously. If the red light continues to

flash, there may be a problem. In that case, refer to the Trouble

shooting Guide.

TROUBLESHOOTING GUIDE

Problem

Red power-on

indicator not

lit

Red light flashing e

Possible Cause

Power not ON

Power cable not

plugged in

Power off to wall outlet

Drive failing its self test

Solution

Make sure ON/OFF

switch is ON

Check both ends of

power cable to be sure

they are fully inserted

Replace fuse or reset

circuit breaker in house

Turn the system off for a

moment then try again.

If the light still flashes,

turn the drive off and on

again with the interface

cable disconnected. If

the problem persists,

contact your dealer. If

unplugging the

interface cable made a

difference, make sure

the cable is properly

connected If that

doesn't work, the

problem is probably in

the cable itself or

somewhere else in the

system

TROUBLESHOOTING GUIDE (Cont.)

Programs won't load

and the computer says

"DEVICE NOT PRESENT

ERROR"

Programs won't load,

but the computer and

disk drive give no error

message

Interface cable not well

connected or drive not

ON

Switches on back of

drive may not be set for

correct device number

Another pan of the

system may be

interfering

Be sure the cable is

properly connected and

the drive is ON

Check Appendix A for

correct setting to match

LOAD command

Unplug all other

^machines on the

computer. If that cures

it, plug them in one at a

time. The one just

added when the trouble

repeats is most likely

the problem

Trying to load a

machine language

program into BASIC

space will cause this

problem

Programs won't load

and red light flashes

Disk error Check the error channel

to determine the error,

then follow the advice

in Appendix B to correct

it. The error channel is

explained in Chapters 2

and3
o

(Be sure to spell program names correctly and include the exact punctuation when

loading the programs)

Your programs load OK,

but commercial

programs and those

from other 1581s don't

Either the diskette is

faulty, or your disk drive

is misaligned

Try another copy of the

program. If several

programs from several

sources fail to load, have

your dealer*align your

disk drive

Your programs that

used to load, won't

anymore, but programs

saved on newly-

formatted diskettes will

Older diskettes have

been damaged

The disk drive has gone

out of alignment

Recopy from backups

Have your dealer align

your disk drive

TIPS FOR MAINTENANCE AND CARE

1. Keep the drive well ventilated.

A couple of inches of space to allow air circulation on all sides will

prevent heat from building up inside the drive.

2. The 1581 should be cleaned once a year in normal use.

Several items are likely to need attention: the two read/write heads

may need cleaning (with 91% isopropyl alcohol on a cotton swab).

Tjfcte rails along which the head moves may need lubrication (with a

special molybdenum lubricant, not oil), and the write protect sen

sor may need to be dusted. Since these chores require special

materials or parts, it is best to leave the work to an authorized

Commodore service center. If you want to do the work yourself,

ask your dealer for the appropriate materials. IMPORTANT: Home

repair of the 1581 will void your warranty.

3. Use good quality diskettes.

Badly-made diskettes can cause increased wear on the drive's read/

write head. If you're using a diskette that is unusually noisy, it could

be causing added wear and should be replaced.

4. Keep diskettes (and disk drive) away from magnets.

That includes the electromagnets in telephones, televisions, desk

lamps, and calculator cords. Keep smoke, moisture, dust, and food

off the diskettes.

5. Remove a diskette before turning the drive off.

If you don't, you might lose part or all the data on the diskette.

6. Don't remove a diskette from the drive while the green light is

glowing and the drive motor is turning.

If you remove the diskette then, you might lose the information

currently being written to the diskette.

INSERTING A DISKETTE

Grasp the diskette by the side opposite the metal shutter. Hold it

with the label up and the write-protect notch down and to the left (See

Figure 3). Insert the diskette by pushing it straight into the drive with

the access slot going in first and the label last. Be sure the diskette goes

in until it drops into place; you shouldn't have to force it.

WRITE PROTECTTAB — g[

V
INSERTTHIS

EDGE FIRST

. CENTER HUB

SHUTTER

Figure 3. Inserting a Diskette

When the write/protect notch is open, the contents of the diskette

cannot be altered or added to. That prevents accidental erasing of

information you want to preserve.

Blank diskettes may not have a label on them when you purchase

them.

USING PRE-PROGRAMMED (SOFTWARE) DISKETTES

Your software user's guide should list the procedure for loading

the program into your computer. Nevertheless, we've included the

following procedure as a general guide. You'll also use this procedure

to load programs or files from your own diskettes. For purposes of

demonstration, use the Test/Demo diskette included with the disk

drive.

1. Turn on system.

2. Insert diskette.

3. If you are using a VIC 20, Commodore 64, or a Commodore 128

computer in C64 mode, type: LOAD "HOW TO USE",8

If you are using a Plus/4 or Commodore 128 in C128 mode, type:

DLOAD "HOW TO USE"

4. Press the RETURN key.

5. The following will then appear on the screen:

SEARCHING FOR 0:HOW TO USE

LOADING

READY

I

6. Type: RUN

7. Press the RETURN key.

To load a different program or file, simply substitute its name in

place of HOWTO USE inside the quotation marks.

-NOTE

The HOW TO USE program is the key to the Test/

Demo diskette. When you LOAD and RUN it, it provides

instructions for using the rest of the programs on the dis

kette. To find out what programs are on your Test/Demo

diskette, refer to the section entitled "DIRECTORIES" later

in this chapter.

If a program doesn't load or run properly using the above meth

od, it may be that it is a machine language program. But unless you'll

be doing advanced programming, you need not know anything about

machine language. A program's user's guide should tell you if it is

written in machine language. If it is, or if you are having trouble

loading a particular program, simply add a ;1 (comma and number 1)

at the end of the command.

NOTE

Throughout this manual, when the format for a com

mand is giv^n, it will follow a particular style. Anything that

is capitalized must be typed in exactly as it is shown (these

commands are listed in capital letters for style purposes,

DO NOT use the SHIFT key when entering these com

mands). Anything in lower case is more or less a definition

of what belongs there. Anything in brackets is optional.

For instance, in the format for the HEADER command

given on the following page, the word HEADER, the capital I

in lid, the capital D in Ddrive#, and the capital U in Ude*-

vice# must all be typed in as is (Ddrive# and Udevice# are

optional).

On the other hand, diskette name tells you that you

must enter a name for the diskette, but it is up to you to

decide what that name will be. Also, the id in lid is left to

your discretion, as is the device# in Udevice#. The drive#

in Ddrive# is always 0 on the 1581, but could be 0 or 1 on a

dual disk drive. Be aware, however, that there are certain

limits placed on what you can use. In each case, those limits

are explained immediately following the format (for in

stance, the diskette name cannot be more than sixteen

characters and the device# is usually 8).

Also be sure to type in all punctuation exactly where

and how it is shown in the format.

Finally, press the RETURN key at the end of each

command.

HOW TO PREPARE A NEW DISKETTE

A diskette needs a pattern of circular magnetic tracks in order for

the drive's read/write head to find things on it. This pattern is not on

your diskettes when you buy them, but you can use the HEADER

command or the NEW command to add it to a diskette. That is known

as formatting the disk. This is the command to use with the C128 in

C128 mode or Plus/4:

HEADER "diskette name",Iid,Ddrive#[,Udevice#]

Where:

"diskette name" is any desired name for the diskette, up to 16 charac-

10

ters long (including spaces), "id" can be any two characters as long as

they don't form a BASIC keyword (such as IF or ON) either on their

own or with the capital I before them. "drive#" is 0 . "device#" is 8,

unless you have changed it as per instructions in Appendix A (the 1581

assumes 8 even if you don't type it in).

The command for the C64, VIC 20, or C128 in C64 mode is this:

OPEN 15,device#,15,"NEWdrive#:diskette name,id"

CLOSE 15

The device#, drive#, diskette name, and id are the same as

described above.

The OPEN command is explained in the next chapter. For now,

just copy it as is.

-NOTE

FOR ADVANCED USERS

If you want to use variables for the diskette name or id, the

format is as follows:

C128, Plus/4: HEADER (A$),I(B$),D0

C64: OPEN 15,8,15:PRINT#15,"N0:" +A$ + "," + B$:

CLOSE15

Where:

A$ contains the diskette name (16 character limit)

B$ contains the id (2 characters long)

After you format a particular diskette, you. can reformat it at any

time. You can change its name and erase its files faster by omitting the

id number in the HEADER command.

DISKETTE DIRECTORY

A directory is a list of the files on a diskette. To view the directory

on the C128 or Plus/4, type the word DIRECTORY on a blank line and

press the RETURN key or simply press the F3 key on the C128. That

doesn't erase anything in memory, so you can call up a directory

11

anytime—even from within a program. The C64 directory command,

LOAD "$",8 (press RETURN) LIST (press RETURN), does erase what's

in memory.

If a directory doesn't all fit on the screen, it will scroll up until it

reaches the last line. If you want to pause, stop, or slow down the

scrolling, refer to your particular computer's user's manual for

instructions as to which keys to use.

To get an idea of what a directory looks like, load the directory

from the Test/Demo diskette.

The 0 on the left-hand side of the top line is the drive number of

the 1581. The diskette name is next, followed by the diskette id—both

of which are determined when the diskette is formatted.

The 3D at the end of the top line means the 1581 uses Version 3D

of Commodore's disk operating system (DOS).

Each of the remaining lines provides three pieces of information

about the files on the diskette. At the left end of each line is the size of

the file in blocks of 254 characters. Four blocks are equivalent to

almost IK of memory inside the computer. The middle of the line

contains the name of the file enclosed in quotation marks. All charac

ters within the quotation marks are part of tfie filename. The right side

of each line contains a three-letter abbreviation of the file type. The

types of files are described in later chapters.

The bottom line of a directory shows how many blocks are

available for use. This number ranges from 3160 on a newly formatted

diskette to 0 on one that is completely full.

SELECTIVE DIRECTORIES

By altering the directory LOAD command, you can create a sub

directory that lists a single selected type of file. For example, you could

request a list of all sequential data files (Chapter 4), or one of all the

relative data files (Chapter 5). The format for this command is:

LOAD"$0:pattern = filetype",8 (for the C64)

where pattern specifies a particular group of files, and filetype is the

one-letter abbreviation for the types of files listed below:

P = Program

S = Sequential

R = Relative

U = User

12

The command for the C128 and Plus/4 is this:

DIRECTORY"pattern = filetype"

Some examples:

LOAD"$0:* = R",8 and DIRECTORY"* = R" display all relative files.

LOAD"$0:Z* = R",8 and DIRECTORY"Z* = R" display a sub-directo

ry consisting of all relative files that start with the letter Z (the

asterisk (*) is explained in the section entitled "Pattern Matching."

PRINTING A DIRECTORY

To printout a directory, use the following:

LOAD'T',8
OPEN4,4:CMD4:LIST

PRINT#4:CLOSE4

PATTERN MATCHING

You can use special pattern-matching characters to load a pro

gram from a partial name or to provide the selective directories

described earlier.

The two characters used in pattern matching are the asterisk (*)

and the question mark (?). They act something like a wild card in a

game of cards. The difference between the two is that the asterisk

makes all characters in and beyond its position wild, while the ques

tion mark makes only its own position wild. Here are some examples

and their results:

LOAD "A*",8 loads the first file on disk that begins with an A,

regardless of what follows

DLOAD"SM?TH" loads the first file that starts with SM, ends with

TH, and one other character between

DIRECTORY"Q*" loads a directory of files whose names begin

withQ

LOAD"*",8 is a special case. When an asterisk is used alone as a

name, it matches the last file used (on the C64 and C128 in C64

mode).

13

LOAD "0:*",8 loads the first file on the diskette (C64 and C128 in

C64 mode).

DLOAD "*" loads the first file on the diskette (Plus/4 and C128 in

C128 mode).

SPIAT FILES

One indicator you may occasionally notice on a directory line,

after you begin saving programs and files, is an asterisk appearing just

before the file type of a file that is 0 blocks long. This indicates the file

was not properly closed after it was created, and that it should not be

relied upon. These "splat" files normally need to be erased from the

diskette and rewritten. However, do not use the SCRATCH command

to get rid of them. They can only be safely erased by the VALIDATE or

COLLECT commands. One of these should normally be used when

ever a splat file is noticed on a diskette. All of these commands are

described in the following chapters.

There are two exceptions to the above warning: one is that

VALIDATE and COLLECT cannot be used on some diskettes that in

clude direct access (random) files (Chapter 6). The other is that if the

information in the splat file was crucial and can't be replaced, there is

a way to rescue whatever part of the file was properly written. This

option is described in the next chapter.

14

CHAPTER 2

BASIC 2.0 COMMANDS

This chapter describes the disk commands used with the VIC 20,

Commodore 64 or the Commodore 128 computer in C64 mode.

These are Basic 2.0 commands.

You send command data to the drive through something called

the command channel. The first step is to open the channel with the

following command:

OPEN15,8,15

The first 15 is a file number or channel number. Although it could

be any number from 1 to 255, we'll use 15 because it is used to match

the secondary address of 15, which is the address of the command

channel. The middle number is the primary address, better known as

the device number. It is usually 8, unless you change it (see Appendix

A).

Once the channel has been opened, use the PRINT# command to

send information to the disk drive and the INPUT# command to

receive information from the drive. You must close the channel with

the CLOSE15 command.

The following examples show the use of the command channel to

NEW an unformatted disk:

OPEN15,8,15

PRINT#15,"NEWdrive#:diskname,id"

CLOSE15

You can combine the first two statements and abbreviate the NEW

command like this:

OPEN15,8,15,"Ndrive# :diskname,id"

If the command channel is already open, you must use the

following format (trying to open a channel that is already open results

in a "FILE OPEN" error):

PRINT#15,uNdrive#:diskname,id"

15

ERROR CHECKING

In Basic 2.0, when the red drive light flashes, you must write a

small program to find out what the error is. This causes you to lose any

program variables already in memory. The following is the error

check program:

10OPEN15,8,15

20 INPUT#15,EN,EM$,ET,ES

30 PRINT EN, EM$,ET,ES

40 CLOSE15

This little program reads the error channel into four BASIC

variables (described below), and prints the results on the screen. A

message is displayed whether there is an error or not, but if there was

an error, the program clears it from disk memory and stops the error

light from blinking.

Once the message is on the screen, you can look it up in Appen

dix B to see what it means, and what to do about it.

For those of you who are writing programs, the following is a

small error-checking subroutine you can include in your programs:

59980 REM READ ERROR CHANNEL

59990 INPUT#15,EN,EM$,ET,ES

60000 IF EN>1 THEN PRINT EN,EM$,ET,ES:STOP

60010 RETURN

This assumes file 15 was opened earlier in the program, and that

it will be closed at the end of the program.

The subroutine reads the error channel and puts the results into

the named variables—EN (Error Number), EM$ (Error Message), ET

(Error Track), and ES (Error Sector). Of the four, only EM$ has to be a

string. You could choose other variable names, although these have

become traditional for this use.

Two error numbers are harmless—0 means everything is OK, and

1 tells how many files were erased by a SCRATCH command (de

scribed later in this chapter). If the error status is anything else, line

60000 prints the error message and halts the program.

Because this is a subroutine, you access it with the BASIC GOSUB

command, either in immediate mode or from a program. The RETURN

statement in line 60010 will jump back to immediate mode or the next

statement in your program, whichever is appropriate.

16

BASIC HINTS

h It is best to open file 15 once at the very start of a program, and only

close it at the end of the program, after all other files have already

been closed. By opening it once at the start, the file is open whenever

needed for disk commands elsewhere in the program.

2. If BASIC halts with an error when you have files open, BASIC aborts

them without closing them properly on the disk. To close them

properly on the disk, you must type:

CLOSE 15:OPEN 15,8,15,'T':CLOSE 15

This opens the command channel and immediately closes it, along

with all other disk files. Failure to close a disk file properly both* in

BASIC and on the disk may result in losing the entire file.

3. One disk error message is not always an error. Error 73, "COPY

RIGHT CBM DOS V10 1581" will appear if you read the disk error

channel before sending any disk commands when you turn on your

computer. This is a handy way to check which version of DOS you are

using. However, if this message appears later, after other disk com

mands, it means there is a mismatch between the DOS used to format

your diskette and the DOS in your drive. DOS is Disk Operating

System.

4. To reset drive, type: OPEN 15,8,15,"UJ":CLOSE 15.

SAVE

The SAVE command preserves a program or file on a formatted

diskette for later use.

FORMAT FOR THE SAVE COMMAND

SAVE "drive #:file name",device #

where "file name" is any string expression of up to 16 characters,

preceded by the drive number and a colon, and followed by the

device number of the disk, normally 8.

However, the SAVE command will not work in copying programs

that are not in the BASIC text area, such as "DOS 5.1" for the C64. To

copy it and similar machine-language programs, you will need a

machine-language monitor program, such as the one resident in the

C128.

17

FORMAT FOR A MONITOR SAVE

S "drive #:file name",device #,starting address,ending ad

dress +1

where "drive #:" is the drive number, 0 on the 1581; "file name" is any

valid file name up to 14 characters long (leaving two for the drive

number and colon); "device #" is a two digit device number, normally

08 (the leading 0 is required); and the addresses to be saved are given

in Hexadecimal but without a leading dollar sign ($). Note the ending

address listed must be one location beyond the last location to be

saved.

EXAMPLE:

Here is the required syntax to SAVE a copy of "DOS 5.1"

S "0:DOS 5.r,08,CC00,D000

SAVE WITH REPLACE

If a file already exists, it can't be saved again with the same name

because the disk drive only allows one copy of any given file name per

diskette. It is possible to get around this problem using the RENAME

and SCRATCH commands described later. However, if all you wish to

do is replace a program or data file with a revised version, another

command is more convenient. Known as SAVE-WITH-REPLACE, or

@SAVE, this option tells the disk drive to replace any file it finds in the

diskette directory with the same name, substituting the new file for the

old version.

FORMAT FOR SAVE WITH REPLACE:

SAVE"@Drive #:file name", device #

where all the parameters are as usual except for adding a leading "at"

sign (@.) The "drive #:" is required here.

EXAMPLE:

SAVE"@0:REVISED PROGRAM",8

The actual procedure is that the new version is saved completely,

then the old version is erased. Because it works this way, there is little

18

danger a disaster such as losing power midway through the process

would destroy both the old and hew copies of the file. Nothing

happens to the old copy until after the new copy is saved properly.

VERIFY

The VERIFY command can be used to make certain that a pro

gram file was properly saved to disk. It works much like the LOAD

command, except that it only compares each character in the program

against the equivalent character in the computer's memory, instead of

actually being copied into memory.

If the disk copy of the program differs even a tiny bit from the

copy in memory, "VERIFY ERROR" will be displayed, to tell you that

the copies differ. This doesn't mean either copy is bad, but if they were

supposed to be identical, there is a problem.

Naturally, there's no point in trying to VERIFY a disk copy, of a

program after the original is no longer in memory. With nothing to

compare to, an apparent error will always be announced, even though

the disk copy is automatically verified as it is written to the diskette.

FORMAT FOR THE VERIFY COMMAND:

VERIFY "drive#:pattern",device#,relocate flag

where "drive#:" is an optional drive number, "pattern".is any string

expression that evaluates to a file name, with or without pattern-

matching characters, and "device#" is the disk device number, nor

mally 8. If the relocate flag is present and equals 1, the file will be

verified where originally saved, rather than relocated into the BASIC

text area.

A useful alternate form of the command is:

VERIFY"*",device #

It verifies the last files used without having to type its name or drive

number. However, it won't work properly after SAVE-WITH-REPLACE,

because the last file used was the one deleted, and the drive will try to

compare the deleted file to the program in memory. No harm will

result, but "VERIFY ERROR" will always be announced. To use VERIFY

after @SAVE, include at least part of the file name that is to be verified

in the pattern.

19

One other note about VERIFY—when you VERIFY a relocated

BASIC file, an error will nearly always be announced, due to changes

in the link pointers of BASIC programs made during relocation. It is

best to VERIFY files saved from the same type of machine, and identi

cal memory size. For example, a BASIC program saved from a Plus/4

can't be verified easily with a C64, even when the program would

work fine on both machines. This shouldn't matter, as the only time

you'll be verifying files on machines other than the one which wrote

them is when you are comparing two disk files to see if they are the

same. This is done by loading one and verifying against the other, and

can only be done on the same machine and memory size as the one on

which the files were first created.

SCRATCH

The SCRATCH command allows you to erase unwanted files and free

the space they occupied for use by other files. It can be used to erase

either a single file or several files at once via pattern-matching.

FORMAT FOR THE SCRATCH COMMAND:

PRINT#15,"SCRATCH0:pattern"

or abbreviate it as:

PRINT#15,"S0:pattern"

"pattern" can be any file name or combination of characters and wild

card characters. As usual, it is assumed the command channel has

already been opened as file 15. Although not absolutely necessary, it is

best to include the drive number in SCRATCH commands.

If you check the error channel after a SCRATCH command, the

value for ET (error track) will tell you how many files were scratched.

For example, if your diskette contains program ftles named "TEST,"

"TRAIN," "TRUCK," and "TAIL," you may SCRATCH all four, along with

any other files beginning with the letter "T," by using the command:

PRINT#15/S0:T*'

Then, to prove they are gone, you can type:

GOSUB 59990

20

to call the error checking subroutine given earlier in this chapter. If

the four listed were the only files beginning with "T", you will see:

01,FILES SCRATCHED,04,00

READY.

The "04" tells you 4 files were scratched.

MORE ABOUT SCRATCH

SCRATCH is a powerful command and should be used with

caution to be sure you delete only the files you really want erased.

When using it with a pattern, we suggest you first use the same pattern

in a DIRECTORY command, to be sure exactly which files will be

deleted. That way you'll have no unpleasant surprises when you use

the same pattern in the SCRATCH command.

If you accidentally SCRATCH a file you shouldn't have, there is

still a chance of saving it by using the "Unscratch" program on your

Test/Demo diskette.

More about Splats

Never scratch a splat file. These are files that show up in a

directory listing with an asterisk (*) just before the file type for an

entry. The asterisk (or splat) means that file was never, properly closed,

and thus there is no valid chain of sector links for the SCRATCH

command to follow in erasing the file.

If you SCRATCH such a file, odds are you will improperly free up

sectors that are still needed by other programs or files and cause

permanent damage to those later when you add more files to the

diskette. If you find a splat file, or if you discover too late that you have

scratched such a file, immediately validate the diskette using the

VALIDATE command described later in this chapter. If you have added

any files to the diskette since scratching the splat file, it is best .to

immediately copy the entire diskette onto another fresh diskette, but

do this with a copy program rather than with a backup programs

Otherwise, the same problem will be recreated on the new diskette.

When the new copy is done, compare the number of blocks free in its

directory to the number free on the original diskette. If the numbers

match, no damage has been done. If not, very likely at least one file on

the diskette has been corrupted, and all should be checked immedi

ately.

21

Locked Files

Occasionally, a diskette will contain a locked file; one which

cannot be erased with the SCRATCH command. Such files may be

recognized by the "<" character which immediately follows the file

type in their directory entry. If you wish to erase a locked file, you will

have to use a sector editor program to clear bit 6 of the file-type byte in

the directory entry on the diskette. Conversely, to lock a file, you

would set bit 6 of the same byte.

RENAME

The RENAME command allows you to alter the name of a program or

other file in the diskette directory. Since only the directory is affected,

RENAME works very quickly.

FORMAT FOR RENAME COMMAND:

PRINT#15,"RENAME0:new name = old name"

or it may be abbreviated as:

PRINT#15,"R0:new name = old name"

where "new name" is the name you want the file to have, and "old

name" is the name it has now. "new name" may be any valid file name,

up to 16 characters in length. It is assumed you have already opened

file 15 to the command channel.

One caution—be sure the file you are renaming has been proper

ly closed before you rename it.

EXAMPLES:

Just before saving a new copy of a "calendar" program, you might type:

PRINT#15,"R0:CALENDAR/BACKUP = CALENDAR"

Or to move a program called "BOOT," currently the first program on a

diskette to someplace else in the directory, you might type:

PRINT#15,"R0:TEMP = BOOT"

followed by a COPY command (described later), which turns "TEMP"

into a new copy of "BOOT," and finishing with a SCRATCH command

to get rid of the original copy of "BOOT."

22

RENAMING AND SCRATCHING TROUBLESOME FILES

Eventually, you may run across a file which has an odd filename,

such as a comma by itself (",") or one that includes a Shifted Space (a

Shifted Space looks the same as a regular space, but if a file with a

space in its name won't load properly and all else is correct, it's

probably a Shifted Space). Or perhaps you will find one that includes

nonprinting characters. Any of these can be troublesome. Comma

files, for instance, are an exception to the rule that no two files can

have the same name. Since it shouldn't be possible to make a file

whose name is only a comma, the disk never expects you to do it

again.

Files with a Shifted Space in their name can also be troublesome,

because the disk interprets the Shifted Space as signaling the end of

the file name, and prints whatever follows after the quotation mark

that marks the end of a name in the directory. This technique can be

useful by allowing you to have a long file name, and making the disk

recognize a small part of it as being the same as the whole thing

without using pattern-matching characters.

In any case, if you have a troublesome filename, you can use the

CHR$() function to specify troublesome characters without typing

them directly. This may allow you to build them into a RENAME

command. If this fails, you may also use the pattern-matching charac

ters in a SCRATCH command. This gives you a way to specify the name

without using the troublesome characters at all, but also means loss of

your file.

For example, if you have managed to create a file named ""MOV

IES", with an extra quotation mark at the front of the file name, you

can rename it to "MOVIES" using the CHR$() equivalent of a quotation

mark in the RENAME command:

I PRINT#15,uR0:MOVIES = " + CHR$(34) +"MOVIES"

The CHR$(34) forces a quotation mark into the command string

without upsetting BASIC. The procedure for a file name that includes a

Shifted Space is similar, but uses CHR$(l60).

In cases where even this doesn't work, for example, if your

diskette contains a comma file, (one named ",") you can get rid of it

this way:

PRINT#15,"S0:?"

This example deletes all files with one character names.

23

Depending on the exact problem, you may have to be very

creative in choosing pattern-matching characters that will affect only

the desired file, and may have to rename other files first to keep them

from being scratched.

In some cases, it may be easier to copy desired files to a different

diskette and leave the troublesome files behind.

COPY

The COPY command allows you to make a spare copy of any

program or file on a diskette. On a single drive like the 1581, the copy

must be on the same diskette, which means it must be given a different

name from the file copied. It's also used to combine up to four

sequential data files (linking the files one to another, end to end in a

chain). Files are linked in the order in which they appear in the

command. The source files and other files on the diskette are not

changed. Files must be closed before they are copied or linked.

FORMAT FOR THE COPY COMMAND

PRINT#15,"COFYdrive #:new file = old file"

EXAMPLES:

PRINT#15,uCOPY0:BACKUP = ORIGINAL"

or abbreviated as

PRINT#15,"Cdrive #:new file = old file"

PRINT#15,"C0:BACKUP = ORIGINAL"

where "drive #" is the drive number "new file" is the copy and "old

file" is the original.

FORMAT FOR THE COMBINE OPTION

PRINT#15,"Cdrive #:new file = file l,file 2,file 3, file 4"

where "drive #" is always 0,

NOTE

The length of a command string (command and filenames)

is limited to 41 characters.

24

EXAMPLES:

After renaming a file named "BOOT" to "TEMP" in the last

section's example, you can use the COPY command to make a spare

copy of the program elsewhere on the diskette, under the original

name:

PRINT#15,"C0:BOOT = TEMP"

After creating several small sequential files that fit easily in mem

ory along with a program we are using, you can use the concatenate

option to combine them in a master file, even if the result is too big to

fit in memory. (Be sure it will fit in remaining space on the diskette—it

will be as big as the sum of the sizes of the files in it.)

PRINT#15,"C0:A-Z=A-G,H-M,N-Z"

EXAMPLES:

After renaming a file named "BOOT" to "TEMP" in the last

section's example, you can use the COPY command to make a spare

copy of the program elsewhere on the diskette, under the original

name:

PRINT#15/'C0:BOOT = TEMP"

After creating several small sequential files that fit easily in mem

ory along with a program we are using, you can use the concatenate

option to combine them in a master file, even if the result is too big to

fit in memory. (Be sure it will fit in remaining space on the diskette—it

will be as big as the sum of the sizes of the files in it.)

PRINT#15,"C0:A-Z=A-G,H-M,N-Z"

VALIDATE

The VALIDATE command recalculates the Block Availability Map

(BAM) of the current diskette, allocating only those sectors still being

used by valid, properly-closed files and programs. All other sectors

(blocks) are left unallocated and free for re-use, and all improperly

closed files are automatically scratched. This brief description of its

workings doesn't indicate either the power or the danger of the

25

VALIDATE command. Its power is in restoring to good health many

diskettes whose directories or block availability maps have become

muddled. Any time the blocks used by the files on a diskette plus the

blocks shown as free don't add up to the 3160 available on a fresh

diskette, VALIDATE is needed, with one exception below. Similarly,

any time a diskette contains an improperly-closed file (splat file),

indicated by an asterisk (*) next to its file type in the directory, that

diskette needs to be validated. In fact, but for the one exception, it is a

good idea to VALIDATE diskettes whenever you are the least bit

concerned about their integrity.

The exception is diskettes containing direct access files, as de

scribed in Chapter 6. Most direct access (random) files do not allocate

their sectors in a way the VALIDATE command can recognize. Thus,

using VALIDATE on such a diskette may result in un-allocating all

direct access files, with loss of all their contents when other files are

added. Unless specifically instructed otherwise, never use VALIDATE

on a diskette containing direct access files.

FORMAT FOR THE VALIDATE COMMAND

PRINT#15,"VALIDATE0"

or.abbreviated as

PRINT#15,"V0"

where "0" is the drive number. As usual, it is assumed file 15 has been

opened to the command channel and will be closed after the com

mand has been executed.

INITIALIZE

When a diskette is inserted into the drive, its directory is auto

matically re-read into a disk buffer. You would use the command only

if that information became unreliable.

FORMAT FOR THE INITIALIZE COMMAND

PRINT#15,"INITIALIZEdrive#"

or it may be abbreviated to

PMNT#15,"Idrive#"

26

CHAPTER 3

BASIC 7.0 COMMANDS

This chapter describes the disk commands used with the Com

modore 128 computer (in C128 mode). This is BASIC 7.0, which

includes BASIC 2.0, BASIC 3.5, and BASIC 4.0 commands, all of which

can be used.

ERROR CHECKING

When the drive light (red light) flashes, you must use the follow

ing command to find out what the error is:

PRINT DS$

A message is displayed whether there is an error or not. If there

was an error, this command clears it from disk memory and turns off

the error light on the disk drive.

Once the message is on the screen, you can look it up in Appen

dix B to see what it means, and what to do about it.

For those of you who are writing programs, the following is a

small error-checking subroutine you can include in your programs:

59990 REM READ ERROR CHANNEL

60000 IF DS>1 THEN PRINT DS$:STOP

60010 RETURN

The subroutine reads the error channel and puts the results into

the reserved variables DS and DS$. They are updated automatically by

BASIC.

Two error numbers are harmless—0 means everything is OK, and

1 tells how many files were erased by a SCRATCH command (de

scribed later in this chapter). If the error status is anything else, line

60000 prints the error message and halts the program.

Because this is a subroutine, you access it with the BASIC GOSUB

command, either in immediate mode or from a program. The RETURN

statement in line 60010 will jump back to immediate mode or the next

statement in your program, whichever is appropriate.

SAVE

This command will save a program or file so you can reuse it. The

diskette must be formatted before you can save it to that diskette.

27

FORMAT FOR THE SAVE COMMAND

DSAVE "file name" [,Ddrive#] [,Udevice#]

This command will not work in copying programs that are not

written in BASIC. To copy these machine language programs, you can

use the BSAVE command or the built-in Monitor S command.

FORMAT FOR THE BSAVE COMMAND

BSAVE "file name" [,Ddrive#] [,Udevice#] [Bbank#]

[,Pstarting address] [TO Pending address +1]

where the usual options are the same and bank# is one of the 16

banks of the C128. The addresses to be saved are given in decimal.

Note that the ending address must be 1 location beyond the. last

location to be saved.

To access a built-in monitor, type MONITOR. To exit a monitor,

type X alone on a line.

FORMAT FOR A MONITOR SAVE

S"drive #:file name",device #,starting address,ending address +1

where "drive #:" is the drive number, 0 on the 1581; "file name" is any

valid file name up to 14 characters long (16 if you leave outjthe drive #

and the colon that follows it); "device #" is a two digit device number,

normally 08 on the 1581 (the leading 0 is required); and the addresses

to be saved are given in Hexadecimal (base 16,) but without a leading

dollar sign (for the Plus/4). On the C128, the addresses need not be in

Hexidecimal. Note that the ending address listed must be 1 location

beyond the last location to be saved.

SAVE WITH REPLACE

If a file already exists, it can't be saved again with the same name

because the disk drive allows only one copy of any given file name per

diskette. It is possible to get around this problem using the RENAME

and SCRATCH commands described later in this chapter. If all you

wish to do is replace a program or data file with a revised version,

another command is more convenient. Known as SAVE WITH RE

PLACE, or @SAVE this option tells the disk drive to replace any file it

finds in the diskette directory with the same name, substituting the

new file for the old version.

28

FORMAT FOR SAVE WITH REPLACE

DSAVE "@file name" [,Ddrive#] [,Udevice#]

The actual procedure is this—the new version is saved complete

ly, then the old version is scratched and its directory entry altered to

point to the new version. Because it works this way, there is little

danger a disaster such as having the power going off midway through

the process would destroy both the old and new copies of the file.

Nothing happens to the old copy until after the new copy is saved

properly.

VERIFY

This command makes a byte-by-byte comparison of the program

currently in memory against a program on diskette. This comparison

includes the BASIC line links, which may be different for different

types of memory configurations. What this means is that a program

saved to disk on a C64 and reloaded into a C128 wouldn't verify

properly because the line links point to different memory locations. If

the disk copy of the program differs at all from the copy in memory, a

"VERIFY ERROR" will be displayed. This doesn't mean either copy is

bad, but if they were supposed to be identical, there is a problem.

FORMAT FOR THE DVERIFY COMMAND

DVERIFY "file name" [,Ddrive#] [,Udevice#]

The following version of the command verifies a file that was just

saved:

DVERIFY "*"

This command won't work properly after SAVE-WITH-REPLACE,

because the last file used was the one deleted and the drive will try to

compare the deleted file to the program in memory. No harm will

result, but "VERIFY ERROR" will always be announced. To use DVER

IFY after @SAVE, include at least part of the file name that is to be

verified in the pattern.

COPY

The COPY command allows you to make a spare copy of any

program or file on a diskette. However, on a single drive like the 1581,

29

the copy must be on the same diskette, which means it must be given a

different name from the file copied. The source file and other files on

the diskette are not changed. Files must be closed before they can be

copied or concatenated.

FORMAT FOR THE COPY COMMAND

COPY [Ddrive#,] "old file name" TO [Ddrive#,] "new file name"

[,Udevice#]

Where both drive#s would be 0 if included.

CONCAT

The CONCAT command allows you to concatenate (combine)
two sequential files.

FORMAT FOR THE CONCAT COMMAND

CONCAT [Ddrive#,] "add file" TO [Ddrive#,] "master file"

[,Udevice#]

Where the optional drive# would be 0 in both cases. The old

"master file" is deleted and replaced with a new "master file" which is

the concatenation of the old "master file" and "add file".

-NOTE

The length of a command string (command and filenames)

is limited to 41 characters.

SCRATCH

The SCRATCH command allows you to erase unwanted programs

and files from your diskettes, and free up the space they occupiedJor

use by other files and programs. It can be used to erase either a single

file, or several files at once via pattern-matching.

FORMAT FOR THE SCRATCH COMMAND

SCRATCH "pattern" [,Ddrive#] [,Udevice#]

Where, "pattern" is any valid file name or pattern-matching

character.

30

You will be asked as a precaution:

ARE YOU SURE?"

If you ARE sure, simply press Y and RETURN. If not, press RETURN

alone or type any other answer, and the command will be canceled.

The number of files that were scratched will be automatically

displayed. For example, if your diskette contains program files named

"TEST," "TRAIN," "TRUCK," and "TAIL," you may scratch all four,

along with any other files beginning with the letter "T," by using the

command:

SCRATCH "T*"

and if the four listed were the only files beginning with "T", you will

see:

01,FILES SCRATCHED,04,00

READY

The "04" tells you 4 files were scratched.

You can perform a SCRATCH within a program, but there will be

no prompt message displayed.

MORE ABOUT SCRATCH

SCRATCH is a powerful command and should be used with

caution to be sure you delete only the files you really want erased.

When using it with a pattern, we suggest you first use the same pattern

in a DIRECTORY command, to be sure exactly which files will be

deleted. That way you'll have no unpleasant surprises when you use

the same pattern in the SCRATCH command.

If you accidentally SCRATCH a file you shouldn't have, there is

still a chance of saving it by using the "Unscratch" program on your

Test/Demo diskette.

More about Splat Files

Never SCRATCH a splat file. These are files that show up in a

directory listing with an asterisk (*) just before the file type for an

entry. The asterisk (or splat) means that file was never properly closed,

and thus there is no valid chain of sector links for the SCRATCH

command to follow in erasing the file. If you SCRATCH such a file,

31

odds are you will improperly free up sectors that are still needed by

other programs or files, and cause permanent damage to those other

programs or files later when you add more files to the diskette.

If you find a splat file, or if you discover too late that you have

scratched such a file, immediately validate the diskette using the

COLLECT command described later in this chapter. If you have added

any files to the diskette since scratching the splat file, it is best to

immediately copy the entire diskette onto another fresh diskette, but

do this with a copy program rather than with a backup program.

Otherwise, the same problem will be recreated on the new diskette.

When the new copy is done, compare the number of blocks free in its

directory to the number free on the original diskette. If the numbers

match, no damage has been done. If not, very likely at least one file on

the diskette has been corrupted, and all should be checked immedi

ately.

Locked Files

Occasionally, a diskette will contain a locked file; one which

cannot be erased with the SCRATCH command. Such files may be

recognized by the "<" character which immediately follows the file

type in their directory entry. If you wish to erase a locked file, you will

have to use a disk monitor to clear bit 6 of the file-type byte in the

directory entry on the diskette. Conversely, to lock a file, you would

set bit 6 of the same byte.

RENAME

The RENAME command allows you to alter the name of a pro

gram or other file in the diskette directory. Since only the directory is

affected, RENAME works very quickly. If you try to RENAME a file by

using a file name already in the directory, the computer will respond

with a "FILE EXISTS" error. A file must be properly closed before it

can be renamed.

FORMAT FOR RENAME COMMAND:

RENAME [Ddrive#,] "old name" TO [Ddrive#,] "new name"

[,Udevice#]

where both drive#s, if included, would be 0

32

RENAMING AND SCRATCHING TROUBLESOME FILES

Eventually, you may run across a file which has a crazy filename,

such as a comma by itself (",") or one that includes a Shifted Space. Or

perhaps you will find one that includes nonprinting characters. Any of

these can be troublesome. Comma files, for instance, are an exception

to the rule that no two files can have the same name. Since it shouldn't

be possible to make a file whose name is only a comma, the disk never

expects you to do it again.

Files with a Shifted Space in their name can also be troublesome,

because the disk interprets the Shifted Space as signaling the end of

the file name, and prints whatever follows after the quotation mark

that marks the end of a name in the directory. This technique can be

useful by allowing you to have a long file name, and making the disk

recognize a small part of it as being the same as the whole thing

without using pattern-matching characters.

In any case, if you have a troublesome filename, you can use the

CHR$() function to specify troublesome characters without typing

them directly. This may allow you to build them into a RENAME

command. If this fails, you may also use the pattern-matching charac

ters discussed for a SCRATCH command. This gives you a way to

specify the name without using the troublesome characters at all, but

also means loss of your file.

For example, if you have managed to create a file named " "MOV

IES", with an extra quotation mark at the front of the file name, you

can rename it to "MOVIES" using the CHR$() equivalent of a quotation

mark in the RENAME command:

EXAMPLE:

RENAME(CHR$(34) + "MOVIES") TO "MOVIES"

The CHR$(34) forces a quotation mark into the command string

without upsetting BASIC. The procedure for a file name that includes a

Shifted Space is similar, but uses CHR$(l60).

In cases where even this doesn't work, for example, if your

diskette contains a comma file, (one named ",") you can get rid of it

this way:

SCRATCH"?"

33

This example deletes all files with one-character names.

Depending on the exact problem, you may have to be very

creative in choosing pattern-matching characters that will affect only

the desired file, and may have to rename other files first to keep them

from being scratched.

In some cases, it may be easier to copy desired files to a different

diskette and leave the troublesome files behind.

COLLECT

The COLLECT command recalculates the Block Availability Map

(BAM) of the current diskette, allocating only those sectors still being

used by valid, properly closed files and programs. All other sectors

(blocks) are left unallocated and free for reuse, and all improperly

closed files are automatically scratched. However, this brief descrip

tion of COLLECT doesn't indicate either the power or the danger of

the command. Its power is in restoring to good health many diskettes

whose directories or Block Availability Maps have become muddled.

Any time the blocks used by the files on a diskette plus the blocks

shown as free don't add up to the 3160 available on a fresh diskette,

COLLECT is needed (with one exception below). Similarly, any time a

diskette contains an improperly closed file (splat file), indicated by an

asterisk (*) next to its file type in the directory, that diskette needs to

be collected. In fact, but for the one exception below, it is a good idea

to COLLECT diskettes whenever you are concerned about their integ

rity. Just note the number of blocks free in the diskette's directory

before and after using COLLECT. If the totals differ, there was indeed a

problem, and the diskette should probably be copied onto a fresh

diskette file-by-file, using the COPY command described in the pre

vious section, rather than using a backup command or program.

The exception is diskettes containing direct access files, as de

scribed in Chapter 6. Most direct access (random) files do not allocate

their sectors in a way COLLECT can recognize. Thus, collecting such a

diskette may result in unallocating all direct access files, with loss of all

their contents when other files are added. Unless specifically instruct

ed otherwise, never collect a diskette containing direct access files.

(Note: these are not the same as the relative files described in Chapter

5. COLLECT may be used on relative files without difficulty.)

FORMAT FOR THE COLLECT COMMAND

COLLECT [Ddrive#] [,Udevice#]

34

DCLEAR

One command that should not often be needed on the 1581, but

is still of occasional value is DCLEAR. On the 1581, and nearly all other

Commodore drives, this function is performed automatically, when

ever a new diskette is inserted.

The result of an DCLEAR, whether forced by a command, or done

automatically by the disk, is a re-reading of the current diskette's BAM

into a disk buffer. This information must always be correct in order for

the disk to store new files properly. However, since the chore is

handled automatically, the only time you'd need to use the command

is if something happened to make the information in the drive buffers

unreliable.

FORMAT FOR THE DCLEAR COMMAND

PRINT#15,uDCLEARdrive #"

EXAMPLE:

PRINT#15,"DCLEAR 0"

or it may be abbreviated to

PRINT#15,"Idrive #"

PRINT#15,"I0"

where the command channel is assumed to be opened by file 15, and

"drive #" is 0.

35

PART TWO

ADVANCED OPERATION AND PROGRAMMING

CHAPTER 4

SEQUENTIAL DATA FILES

A file on a diskette is just like a file cabinet in your office^—an

organized place to put things. Nearly everything you put on a diskette

goes in one kind of file or another. So far all you've used are program

files, but there are others. In this chapter you'll learn about sequential

data files.

The primary purpose of a data file is to store the contents of

program variables, so they won't be lost when the program ends. A

sequential data file is one in which the contents of the variables are

stored "in sequence," one right after another. You may already be

familiar with sequential files from using a DATASSETTE™, because

sequential files on diskette are just like the data files used on cassettes.

Whether on cassette or diskette, sequential files must be read from

beginning to end.

When sequential files are created, information (data) is trans

ferred byte-by-byte, through a buffer, onto the magnetic media. Once

in the disk drive, program files, sequential data files, and user files all

work sequentially. Even the directory acts like a sequential file.

To use sequential files properly, we will learn some more BASIC

words in the next few pages. Then we'll put them together in a simple

but useful program.

37

NOTE

Besides sequential data files, two other file types are

recorded sequentially on a diskette. They are program files,

and user files. When you save a program on a diskette, it is

saved in order from beginning to end, just like the informa

tion in a sequential data file. The main difference is in the

commands you use to access it. User files can be even more

similar to sequential data files. User files are almost never

used, but like program files, they could be treated as though

they were sequential data files and some can be accessed

with the same commands.

For the advanced user, the similarity of the various file

types offers the possibility of reading a program file into the

computer a byte (character) at a time and rewriting it to the

diskette in a modified form.

OPENING A FILE

One of the most powerful tools in Commodore BASIC is the

OPEN statement. With it, you may send data almost anywhere, much

like a telephone switchboard. As you might expect, a command that

can do this much is fairly complex. You have already used OPEN

statements regularly in some of your diskette commands.

Before you study the format of the OPEN statement, let's review

some of the possible devices in a Commodore computer system:

Device#: Name; Used for;

0 Keyboard Receiving input from the computer operator

1 DATASSETTE™ Sending and receiving information from cassette

2 RS232 Sending and receiving information from a modem

3 Screen Sending output to a video display

4,5 Printer Sending output to a hard copy printer

8,9,10,11 Diskdrive Sending and receiving information from diskette

Because of the flexibility of the OPEN statement, it is possible for

a single program statement to contact any one of these devices, or

even others, depending on the value of a single character in the

command. If the character is kept in a variable, the device can even

change each time that part of the program is used, sending data

alternately and with equal ease to diskette, cassette, printer and screen.

38

NOTE

In the last chapter you learned how to check for disk

errors after disk commands in a program. It is equally

important to check for disk errors after using file-handling

statements. Failure to detect a disk error before using an

other file-handling statement could cause loss of data, and

failure of the BASIC program.

The easiest way to check the disk is to follow all file-

handling statements with a GOSUB statement to an error

check subroutine.

EXAMPLE:

BASIC 7.0

840 DOPEN#4,"DEGREE DAY DATA",D0,U8,W

850 GOSUB 59990: REM CHECK FOR DISK ERRORS

BASIC 2.0

840 OPEN 4,8,4,"0:DEGREE DAY DATA,S,W"

850 GOSUB 59990:REM CHECK FOR DISK ERRORS

FORMAT FOR THE DISK OPEN STATEMENT FOR SEQUENTIAL FILES:

BASIC 7.0

DOPEN#file#, "file name" [,Ddrive#] [,Udevice#] [,W]

BASIC 2.0

OPEN file #, device #, channel #,"drive #:file name,file type,-

direction"

where:

"file #" is an integer (whole number) between 1 and 255. Do not

open a disk file with a file number greater than 127 it will cause severe

problems. After the file is open, all other file commands will refer to it

by the number given here. Only one file can use any given file number

at a time.

"device #" is the number, or primary address, of the device to be

used. This number is an integer in the range 8-11, and is normally 8 on

the 1581.

"channel #" is a secondary address, giving further instructions to

the selected device about how further commands are to be obeyed. In

disk files, the channel number selects a particular channel along which

39

communications for this file can take place. The possible range of disk

channel numbers is 0-15, but 0 is reserved for program loads, 1 for

program saves, and 15 for the disk command channel. Also be sure

that no two disk files have the same channel number unless they will

never be open at the same time. (One way to do this is to make the

channel number for each file the same as its file number.)

"drive #" is the drive number, always 0 on the 1581. Do not omit

it, or you will only be able to use two channels at the same time

instead of the normal maximum of three. If any pre-existing file of the

same name is to be replaced, precede the drive number with the "at"

sign (@) to request OPEN-WITH-REPLACE.

"file name'1 is the file name, maximum length 16 characters.

Pattern matching characters are allowed in the name when accessing

existing files, but not when creating new ones.

"file type" is the file type desired: S = sequential, P = program,

U = user, A=append and L = length of a relative file.

"direction" is the type of access desired. There are three possi

bilities: R=read, W=write, and M = modify. When creating a file, use

"W" to write the data to diskette. When vie\^ing a completed file, use

"R" to read the data from diskette. Only use the "M" (modify) option

as a last ditch way of reading back data from an improperly closed

(Splat) file. If you try this, check every byte as it is read to be sure the

data is still valid, as such files always include some erroneous data, and

have no proper end.

"file type" and "direction" don't have to be abbreviated. They can

be spelled out in full for clarity in printed listings.

"file #", "device #" and "channel #" must be valid numeric

constants, variables or expressions. The rest of the command must be

a valid string literal, variable or expression.

"w" is an option that must be specified to write the sequential file,

or the file will be opened to read.

The maximum number of files that may be open simultaneously

is 10, including all files to all devices. The maximum number of

sequential disk files that can be open at once is three (or two if you

neglect to include the drive number in your OPEN statement), plus the

command channel.

EXAMPLES OF OPENING SEQUENTIAL FILES:

To create a sequential file of phone numbers, you could use:

BASIC 7.0: DOPEN#2,"PHONES",D0,U8,W

BASIC 2.0: OPEN 2,8,2,"0:PHONES,SEQUENTIAL,WRITE"

or

OPEN 2,8,2,"0:PHONES,S,W"

40

On the chance youVe already got a "PHONES" file on our diskette, you

can avoid a "FILE EXISTS" error message by doing an @OPEN

BASIC 7.0: DOPEN#2, "©PHONES", D0,U8,W

BASIC 2.0: OPEN 2,8,2,"@0:PHONES,S,W"

This erases all your old phone numbers, so make sure that any

information that may be deleted is of no importance. After writing our

phone file, remove the diskette and turn off the system. To recall the

data in the file, reopen it with something like:

BASIC 7.0: DOPEN#8,"PHONES",D0,U8

BASIC 2.0: OPEN 8,8,8,"0:PHONES,S,R"

It doesn't matter whether the file and channel numbers match the

ones we used before, but the file name does have to match. It's

possible to use an abbreviation form of the file name, if there are no

other files that would have the same abbreviation:

BASIC 7.0: DOPEN#10,"PH*",D0,U8

BASIC 2.0: OPEN 10,8,6,"0:PH*,S,R"

If you have too many phone numbers, they might not fit in one

file. In that case, use several similar file names and let a program

choose the correct file.

BASIC 7.0:

100 INPUT "WHICH PHONE FILE (1-3)";PH

110 IF PHO1 AND PHO2 AND PH<>3 THEN 100

120 DOPEN#4,"PHONE" + STR$(PH),D0,U8

BASIC 2.0:

100 INPUT "WHICH PHONE FILE (1-3)";PH

110 IF PHO1 AND PHO2 AND PH<>3 THEN 100

120 OPEN 4,8,2,"PHONE" + STR$(PH) + ",S,R"

You can omit the drive number on an OPEN command to read a file.

Doing so allows those with dual drives to search both diskettes for the

file.

FORMAT FOR THE PRINT# COMMAND:

PRINT#file #,data list

41

where "file #" is the same file number given in the desired file's

current OPEN statement. During any given access of a particular file,

the file number must remain constant because it serves as a shorthand

way of relating all other file-handling commands back to the correct

OPEN statement. Given a file number, the computer can look up

everything else about a file that matters.

The "data list" is the same as for a PRINT statement - a list of

constants, variables and/or expressions, including numbers, strings or

both. However, it's better if each PRINT# statement to disk include

only one data item. If you wish to include more items, they should be

separated by a carriage return character, not a comma. Semicolons are

permitted, but not recorded in the file, and do not result in any added

spaces in the file. Use them to separate items in the list that might

otherwise be confused, such as a string variable immediately following

a numeric variable.

-NOTE

Do not leave a space between PRINT and #, and do not

abbreviate the command as ?#. The correct abbreviation for

PRINT# is pR.

EXAMPLES:

To record a few grades forJohn Paul Jones, using a sequential disk file

#1 previously opened for writing, use:

200 FOR CLASS = 1 TO COURSES

210 PRINT#1,GRADE$(CLASS)

220 GOSUB 59990:REM CHECK FOR DISK ERRORS

320 NEXT CLASS

assuming your program includes an error check subroutine like the

one in the last chapter.

In using PRINT#, there is an exception to the requirement to

check for disk errors after every file-handling statement. When using

PRINT#, a single check after an entire set of data has been written will

still detect the error, so long as the check is made before any other

file-handling statement or disk command is used. You may be familiar

with PRINT statements in which several items follow each other:

400 PRINT NAME$,STREET$,CITY$

42

To get those same variables onto sequential disk file number 5 instead

of the screen, the best approach would be to use three separate

PRINT# statements, as follows:

400 PRINT#5,NAME$

410 PRINT#5,STREET$

420 PRINT#5,CITY$

If you need to combine them, here is a safe way to do it:

400PRINT#5,NAME$;CHR$(13);STREET$;CHR$(13);CITY$

CHR$(13) is the carriage return character, and has the same effect as

putting the print items in separate lines. If you do this often, some

space and time may be saved by previously defining a variable as equal

to CHR$(13):

10CR$ = CHR$(13)
400PRINT#5,NAME$;CR$;STREET$;CR$;CITY$

The basic idea is that a proper sequential disk-file write, if redir

ected to the screen, will display only one data item per line, with each

succeeding item on the next line.

CLOSING A FILE

After you finish using a data file, it is extremely important that you

CLOSE it. During the process of writing a file, data is accumulated in a

memory buffer, and only written out to the diskette when the buffer

fills.

Working this way, there is almost always a small amount of data in

the buffer that has not been written to diskette yet, and which would

simply be lost if the computer system were turned off. Similarly, there

are diskette housekeeping matters, such as updating the BAM (Block

Availability Map) of sectors used by the current file, which are not per

formed during the ordinary course of writing a file. This is the reason

for having a CLOSE statement. When you are done with a file, the

CLOSE statement will write the rest of the data buffer out to diskette,

update the BAM, and complete the file's entry in the directory. Always

close a data file when you are done using it. Failure to do so may cause

loss of the entire file.

However, do not close the disk command channel until all other

files have been closed. The command channel should be the first file

opened, and the last file closed in any program.

43

FORMAT FORTHE CLOSE STATEMENT

BASIC 7.0: DCLOSE#file# [,Udevice#]

BASIC 2.0: CLOSE file #

where "file #" is the same file number given in the desired file's cur

rent OPEN statement.

EXAMPLES:

To close the data file #5 used as an example on the previous page, use:

BASIC 7.0: DCLOSE#5

BASIC 2.0: CLOSE 5

In BASIC 7.0, when the DCLOSE statement is used alone (no# or

file# parameters), it closes all disk files at once. With a bit of planning,

the same can be done via a program loop. Since there is no harm in

closing a file that wasn't open, close every file you even think might be

open before ending a program. If you always gave your files numbers

between 1 and 5, you could close them all with

9950 FOR 1 = 1 TO 5

9960 CLOSE I

9970 GOSUB 59990:REM CHECK FOR DISK ERRORS

9980 NEXT I

assuming your program includes an error check subroutine like the

one in the last chapter.

READING FILE DATA: USING INPUT#

Once information has been written properly to a diskette file, it

may be read back into the computer with an INPUT# statement. Just as

the PRINT# statement is much like the PRINT statement, INPUT# is

nearly identical to INPUT, except that the list of items following the

command word comes from a particular file instead of the keyboard.

Both statements are subject to the same limitations—halting input after

a comma or colon, not accepting data items too large to fit in BASIC'S

input buffer, and not accepting non-numeric data into a numeric vari

able.

44

FORMAT FOR THE INPUT# STATEMENT

INPUT#file #,variable list

where "file #" is the same file number given in the desired file's cur

rent OPEN statement, and "variable list" is one or more valid BASIC

variable names. If more than one data element is to be input by a par

ticular INPUT# statement, each variable name must be separated from

others by a comma.

EXAMPLES:

To read back in the grades written with the PRINT# example, use:

300 FOR CLASS = 1 TO COURSES

310 INPUT#1,GRADE$(CLASS)

320 GOSUB 59990:REM CHECK FOR DISK ERRORS

330 NEXT CLASS

assuming your program includes an error check subroutine like the

onein the last chapter.

To read back in the address data written by another PRINT# ex

ample, it is safest to use:

800 INPUT#5,NAME$

810 GOSUB 59990:REM CHECK FOR DISK ERRORS

820 INPUT#5,STREET$

830 GOSUB 59990:REM CHECK FOR DISK ERRORS

840 INPUT#5,CITY$

850 GOSUB 59990:REM CHECK FOR DISK ERRORS

but many programs cheat on safety a bit and use

800 INPUT#5,NAME$,STREET$,CITY$

810 GOSUB 59990:REM CHECK FOR DISK ERRORS

This is done primarily when top speed in the program is essential, and

there is little risk of reading improper data from the file.

MORE ABOUT INPUT#

After you begin using data files regularly, you may encounter two

BASIC error messages. They are "STRING TOO LONG ERROR" and

"FILE DATA ERROR". Both are likely to halt your program at an

45

INPUT# statement, but may also have been caused by errors in a

PRINT# statement when the file was written.

"String Too Long" Error

A BASIC string may be up to 255 characters long, although the

longest string you can enter via a single Input statement is just under

two lines of text. This lower limitation is due to the size of the input

buffer in Commodore's serial bus computers. The same limit applies

to INPUT# statements. If a single data element (string or number)

being read from a disk file into an INPUT# statement contains more

than 88 (BASIC 2) and 160 (BASIC 7) characters, BASIC will halt with a

"STRING TOO LONG ERROR."

"File Data" Error

The other error message "FILE DATA ERROR" is caused by at

tempting to read a non-numeric character into a numeric variable. To

a computer, a number is the characters 0 through 9, the " + " and " - "

signs, the decimal point (.), the SPACE character, and the letter "E"

used in scientific notation. If any other character appears in an IN-

PUT# to a numeric variable, "FILE DATA ERROR" will be displayed

and die program will halt. The usual causes of this error are a mis

match between the order in which variables are written to and read

from a file, a missing carriage return within a PRINT# statement that

writes more than one data item, or a data item that includes either a

comma or a colon without a preceding quotation mark. Once a file

data error has occurred, you should correct it by reading the data item

into a string variable, and converting it back to a number with the

BASIC VAL() statement after removing non-numeric characters with

the string functions described in your computer user's manual.

Commas (,) and Colons (:)

As suggested before, commas and colons can cause trouble in a

file, because they delimit (end) the data element in which they appear

and cause any remaining characters in the data element to be read into

the next INPUT# variable. They have the same effect in an INPUT

statement, causing the common "EXTRA IGNORED" error message.

However, sometimes you really need a comma or colon within a data

element, such as a name written as "Last, First." The cure is to precede

such data elements with a quotation mark. After a quotation mark, in

either an INPUT or INPUT# statement, all other characters except a

carriage return or another quotation mark are accepted as part of the

current data element.

46

EXAMPLES:

To force a quotation mark into a data element going to a file,

append a CHR$(34) to the start of the data element. For example:

PRINT#2,CHR$(34) + "DOE, JOHN"

or

PRINT#2,CHR$(34);"DOE, JOHN"

If you do this often, some space and time may be saved by previously

defining a variable as equal to CHR$(34) as we did earlier with

CHR$(13):

20QT$ = CHR$(34)

400 PRINT#5,QT$ + NAME$

In each case, the added quotation mark will be stripped from the data

by the INPUT or INPUT# statement, but the comma or colon^vill

remain part of the data.

NUMERIC DATA STORAGE ON DISKETTE

Up to this point we have discussed string data storage, now let's

look at numeric storage.

Inside the computer, the space occupied by a numeric variable

depends only on its type. Simple numeric variables use seven bytes

(character locations) of memory. Real array variables use five bytes per

array element, and integer array elements use two bytes each. In

contrast, when a numeric variable or any type is written to a file, the

space it occupies depends entirely on its length, not its type. This is

because numeric data is written to a file in the form of a string, as if the

STR$() function had been performed on it. The first character will be a

blank space if the number is positive, and a minus sign (-) if the

number is negative. Then comes the number, digit-by-digit. The last

character is a cursor right character.

This format allows the disk data to be read back into a string or

numeric variable later. It is, however, wasteful of disk space, and it can

be difficult to anticipate the space required by numbers of unknown

length. For this reason, some programs convert all numeric variables

into strings before writing them to diskette, and use string functions to

remove any unneeded characters in advance. Doing so still allows

47

those data elements to be read back into a numeric variable by

INPUT# later, although file data errors may be avoided by reading all

data in as strings, and converting to numbers using the VAL () function

after the information is inside the computer.

For example, "N$ = RIGHT$(STR$(N)J£N(STR$(N))-1)" will

convert a positive number N into a string N$ without the usual leading

space for its numeric sign. Then instead of writing PRINT#5,N, you

would use PRINT#5,N$.

READING FILE DATA: USING GET#

The GET# statement retrieves data from the disk drive, one

character at a time. Like the similar keyboard GET statement in BASIC,

it only accepts a single character into a specified variable. However,

unlike the GET statement, it doesn't just fall through to the next

statement if there is no data to be gotten. The primary use of GET# is

to retrieve from diskette any data that cannot be read into an INPUT#

statement, either because it is too long to fit in the input buffer or

because it includes troublesome characters.

FORMAT FOR THE GET# STATEMENT:

GET#file#,variable list

where "file #" is the same file number given in the desired file's

current OPEN statement, and 'Variable list" is one or more valid BASIC

variable names. If more than one data element is to be input by a

particular GET# statement, each variable name must be separated

from others by a comma.

In practice, you will almost never see a GET or GET# statement

containing more than one variable name. If more than one character is

needed, a loop is used rather than additional variables. Also as in the

INPUT# statement, it is safer to use string variables when the file to be

read might contain a non-numeric character.

Data in a GET# statement comes in byte-by-byte, including such

normally invisible characters as the Carriage Return, and the various

cursor controls. All but one will be read properly. The exception is

CHR$(0), the ASCII Null character. It is different from an empty string

(one of the form A$ = ""), even though empty strings are often re

ferred to as null strings. Unfortunately, in a GET# statement, CHR$(0)

is converted into an empty string. The cure is to test for an empty

string after a GET#, and replace any that are found with CHR$(0)

instead. The first example below illustrates the method.

48

EXAMPLES:

To read a file that may contain a CHR$(0), such as a machine

language program file, you could correct any CHR$(0) bytes with

1100 GET#3,G$:IF G$ = "" THEN G$ = CHR$(0)

If an overlong string has managed to be recorded in a file, it may

be read back safely into the computer with GET#, using a loop such as

this

3300 B$ = "" ,

3310 GET#1A$

3320 IF A$OCHR$(13) THEN B$ = B$+A$:GOTO 3310

The limit for such a technique is 255 characters. It will ignore CHR$(0),

but that may be an advantage in building a text string. If CHR$ (0) is

required in the file, then add the following line:

3315 If A$ = "" THEN A$ = CHR$(0T

GET# may be useful in recovering damaged files, or files with

unknown contents. The BASIC reserved variable ST (the file STatus

variable) can be used to indicate when all of a properly closed file has

been read.

500 GET#2,S$

510 SU = ST:REM REMEMBER FILE STATUS

520 PRINT S$;

530 IF SU = 0 THEN 500.REM IF THERE'S MORE TO BE READ

540 IF SUO64 THEN PRINT "STATUS ERROR: ST = ";SU

Copying ST into SU is often an unneccessary precaution, but must be

done if any other file-handling statement appears between the one

which read from the file and the one that loops back to read again. For

example, it would be required if line 520 was changed to

520 PRINT#1,S$;

Otherwise, the file status checked in line 530 would be that of the

write file, not the read file.

The following table applies to single errors or a combination oftwo or

more errors.

49

POSSIBLE VALUES OF THE FILE STATUS VARIABLE

IFST =

0

1

2

4

8

16

32

64

128

"ST," AND THEIR MEANINGS

THEN

All is OK

Receiving device was not available

(time out on talker)

Transmitting device was not available

(time out on listener)

Cassette data file block was too short

Cassette data file block was too long

Unrecoverable read error from cassette, verify error

Cassette checksum error—one or more faulty

characters were read

End of file reached (EOI detected)

Device not present, or end of tape mark found

on cassette

50

DEMONSTRATION OF SEQUENTIAL FILES

(BASIC 7.0)

Use the following program for your first experiments with sequen

tial files. Comments have been added to help you better understand it.

150CR$ = CHR$(13)
170 PRINT CHR$(147):REM CLEAR

SCREEN

190 PRINT "** WRITE A FILE **"

210 PRINT

220 DOPEN #2,"@SEQ FILE",W

230 GOSUB 500

240 PRINT'ENTER A WORD,

THEN A NUMBER"

250 PRINT'OR 'END,0' TO STOP"

260 PRINT

270 INPUT A$,B

280 PRINT#2A$;CR$;B

290 GOSUB 500

300 IF A$O"END" THEN 270

310 PRINT

320 DCLOSE #2

340 PRINT "** READ SAME FILE

BACK **"

360 PRINT

370 DOPEN #2,"SEQ FILE"

380 GOSUB 500

390 INPUT#2A$3

400RS = ST

410 GOSUB 500

420 PRINT A$,B

430 IF RS = 0 THEN 390

440 IF RSO64 THEN

PRINT"STATUS = ";RS

450 DCLOSE #2

460 END

480 REM ** ERROR CHECK S/R **

500 IF DS>0 THEN PRINT DS$:STOP

510 RETURN

Make a carriage return variable

Open demo file with replace

Check for disk errors

Accept a string & number

from keyboard

Write them to the disk file

Until finished

Tidy up

Reopen same file for reading

Read next string & number

from file

Remember file status

Display file contents

until done,

unless there's an error

Then quit

51

CHAPTERS
RELATIVE DATA FILES

Sequential files are very useful when you're just working with a

continuous stream of data — i.e., information that can be fead or

written all at once. However, sequential files are not useful in some

situations. For example, after writing a large list of mail labels, you

wouldn't want to have to reread the entire list each time you need a

person's record. Instead, you need some kind of random access, a way

to get to a particular label in your file without having to read through

all those preceding it.

As an example, compare a record turntable with a cassette re

corder. You have to listen to a cassette from beginning to end, but a

turntable needle can be picked up at any time, and instantly moved to

any spot on the record. Your disk drive works like a turntable in that

respect. In this chapter you will learn about a type of file that reflects

this flexibility.

Actually, two different types of random access files may be used

on Commodore disk drives: relative files and random files. Relative

files are much more convenient for most data handling operations, but

true random access file commands are also available to advanced

users, and will be discussed in the next chapter.

FILES, RECORDS, AND FIELDS

When learning about sequential files, you did not worry about the

organization of data within a file, so long as the variables used to write

the file matched up properly with those which read it back into the

computer. But in order for relative access to work, you need a more

structured and predictable environment for our data.

The structure you will use is similar to that used in the traditional

filing cabinet. In a traditional office, all customer records might be

kept in a single file cabinet. Within this file, each customer has a

personal record in a file folder with their name on it, that contains

everything the office knows about that person. Likewise, within each

file folder, there may be many small slips of paper, each containing

one bit of information about that customer, such as a home phone

number or the date of the most recent purchase.

In a computerized office, the file cabinet is gone, but the concept

of a file containing all the information about a group or topic remains.

The file folders are gone too, but the notion ofsubdividing the file into

individual records remains. The slips of paper within the personal

53

records are gone too, replaced by subdivisions within the records,

called fields. Each field is large enough to hold one piece of informa

tion about one record in the file. Thus, within each file there are many

records, and within each record there are typically many fields.

A relative file takes care of organizing the records for you, num

bering them from 1 to the highest record number, by ones, but the

fields are up to you to organize. Each record will be of the same size,

but the 1581 won't insist that they all be divided the same way. On the

other hand, they normally will be subdivided the same way, and if it

can be known in advance exactly where each field starts within each

record, there are even fast ways to access a desired field within a

record without reading through the other fields. As all of this implies,

access speed is a primary reason for putting information into a relative

disk file. Some well-written relative file programs are able to find and

read the record of one desired person out of a thousand in under 15

seconds, a feat no sequential file program could match.

FILE LIMITS

With relative files, you don't have to worry about exactly where

on the diskette's surface a given record will be stored, or whether it

will fit properly within the current disk sector, or need to be extended

onto the next available sector. DOS takes care of all that for you. All

you need to do is specify how long each record is, in bytes, and how

many records you will need. DOS will do the rest, and organize things

in such a way that it can quickly find any record in the file, as soon as it

is given the record number (ordinal position within the file).

The only limit that will concern you is that each record must be

the same size, and the record length you choose must be between 2

and 254 characters. Naturally the entire file also has to fit on your

diskette, along with any other existing file(s).

CREATING A RELATIVE FILE

When a relative file is to be used for the first time, its Open

statement will create the file; after that, the Open statement is used to

reopen the file for both reading and writing.

FORMAT STATEMENT TO OPEN A RELATIVE FILE:

BASIC 7.0: DOPEN # file #, "file name", L record length

[JDdrive #] [,Udevice #]

BASIC 2.0: OPEN file #, device #, channel #, "drive #: file name,

L," + CHR$ (record length)

54

where "file #" is the file number, normally an integer between 1 and

127; "device #" is the device number to be used, normally 8 on the

1581; "channel #" selects a particular channel along which communi

cations for this file can take place, normally between 2 and 14; "drive

#" is the drive number, always 0 on the 1581; and "file name" is the

name of the file, with a maximum length of 16 characters. Pattern

matching characters are allowed in the name when accessing an

existing file, but not when creating a new one. The record length is the
size of each record within the file in bytes used, including carriage
returns, quotation marks and other special characters.

-NOTE

• Do not precede the file name (in BASIC 7.0) or the

drive number (in BASIC 2.0) with the "at" sign (@); there is

no reason to replace a relative file.

• L record length (in BASIC 7.0) or, L ," + CHR$(rec-

ord length) (in BASIC 2.0) is only required when a relative

file is first created, though it may be used later, so long as

the record length is the same as when the file was first

created. Since relative files may be read from or written to

alternately and with equal ease, there is no need to specify

Read or Write mode when opening a relative file.

• "file #", "device #" and "channel #" must be valid

numeric constants, variables or expressions. The rest of the

command must be a valid string literal, variable or expres

sion. In BASIC 7.0 DOPEN, whenever a variable or expres

sion is used as a file name it must be surrounded by

parentheses.

EXAMPLES:

To create or reopen a relative file named "GRADES", of record

length 100, use: N

BASIC 7.0: DOPEN#2,"GRADES",L100,D0,U8

BASIC 2.0: OPEN 2,8,2,"GRADES,L," + CHR$(100)

To reopen an unknown relative file of the user's choice that has

already been created, use:

BASIC 7.0: 200 INPUT"WHICH FILE";FI$

210 DOPEN#5,(FI$),D0,U8

55

BASIC 2.0: 200 INPUT'WHICH FILE";FI$

210 OPEN 5,8,5,FI$

USING RELATIVE FILES: RECORD# COMMAND

When a relative file is opened for the first time, it is not quite

ready for use. Both to save time when using the file later, and to assure

that the file will work reliably, it is necessary to create several records

before closing the file for the first time. At a minimum, enough

records to fill more than two disk sectors (512 bytes) should be

written. In practice, most programs go ahead and create as many

records as the program is eventually expected to use. That approach

has the additional benefit of avoiding such problems as running out of

room on the diskette before the entire file is completed.

If you simply begin writing data to a just-opened relative file, it

will act much like a sequential file, putting the data elements written

by the first PRINT# statement in Record #1, those written by the

second PRINT# statement in record #2 and so on. This means each

record must be written by a single PRINT# statement, using embed

ded carriage returns within the data to separate fields that will be read

in via one or more INPUT# statements later. However, it is far better

to explicitly specify which record number is desired via a RECORD#

command to the disk. This allows you to access records in any desired

order, hopping anywhere in a file with equal ease.

FORMAT FOR THE RECORD# COMMAND:

BASIC 7.0: RECORD # file #, record number [,offset]

BASIC 2.0: PRINT#15, "P" + CHR$ (channel # + 96) + CHR$

(<record #) + CHR$(>record #) + CHR$(offset)

where "file #" is the file # specified in the current DOPEN statement

for the specified file, "record number" is the desired record number,

"channel #" is the channel number specified in the current OPEN

statement for the specified file, "<record #" is the low byte of the

desired record number, expressed as a two-byte integer, ">record #"

is the high byte of the desired record number, and an optional "offset"

value, if present, is the byte within the record at which a following

Read or Write should begin.

To fully understand this command, you must understand how

most integers are stored in computers based on the 6502 and related

microprocessors. In the binary arithmetic used by the microprocessor,

it is possible to express any unsigned integer from 0-255 in a single

56

byte. It is also possible to store any unsigned integer from 0-65535 in

two bytes, with one byte holding the part of the number that is evenly

divisible by 256, and any remainder in the other byte. In machine

language, such numbers are written backwards, with the low-order

byte (the remainder) first, followed by the high-order byte. In assem

bly language programs written with the Commodore Assembler, the

low part of a two-byte number is indicated by preceding its label with

the less-than character (<). Similarly, the high part of the number is

indicated by greater-than (>).

-NOTE

To avoid the remote possibility of corrupting relative

file data, it is necessary to give RECORD# command once

before the Read or Write access and once after the access.

Although this is not necessary for the 1581, other Com

modore drives require it. To make your programs compati

ble with those other drives, it's a good idea to use it.

EXAMPLES:

In BASIC 7.0, to position the record pointer for file #2 to record

number 3, type:

RECORD#2,3

In BASIC 2.0, to position the recQrd pointer for channel #2 to

record number 3, type:

PRINT #15, "P" +CHR$(98) +CHR$(3) + CHR$(0)

The CHR$(98) comes from adding the constant (96) to the desired

channel number (2). (96 + 2 = 98) Although the command appears to

work even when 96 is not added to the channel number, the constant

is normally added to maintain compatibility with the way RECORD#

works in BASIC 7.0.

Since 3 is less than 256, the high byte of its binary representation

is 0, and the entire value fits into the low byte. Since you want to read

or write from the beginning of the record, no offset value is needed.

Since these calculations quickly become tedious, most programs

are written to do them for you. Here is an example of a program which

57

inputs a record number and converts it into the required low-byte/

high-byte form:

450 INPUTRECORD NUMBER DESIRED";RE

460 IF RE<1 OR RE>65535 THEN 450

470RH = INT(RE/256)

480RL = RE-256*RH

490 PRINT#15, "P" +CHR$(98) + CHR$(RL) + CHR$(RH)

Assuming RH and RL are calculated as in the previous example,

programs may also use variables for the channel, record, and offset

required:

570 INPUT "CHANNEL, RECORD, & OFFSET DESIRED";CH,RE,OF

630 PRINT#15, "P" + CHR$

(CH + 96) + CHR$(RL) + CHR$(RH) + CHR$(OF)

COMPLETING RELATIVE FILE CREATION

Now that you have learned how to use both the Open and Re-

cord# commands, you are almost ready to properly create a relative

file. The only additional fact you need to know is that CHR$(255) is a

special character in a relative file. It is the character used by the DOS to

fill relative records as they are created, before a program fills them

with other information. Thus, if you want to write the last record, you

expect to need in your file with dummy data that will not interfere with

your later work, CHR$(255) is the obvious choice. Here is how it works

in an actual program which you may copy for use in your own relative

file programs.

BASIC 2.0:

1020 OPEN 15,8,15 Open command channel

1380 INPUT'ENTER RELATIVE FILE NAME";FI$ Select file parameters

1390 INPUT'ENTER MAX. # OF RECORDS";NR

1400 INPUT'ENTER RECORD LENGTH";RL

1410 OPEN l,8,2,"0:" + FI$ + "JL," + CHR$(RL) Begin to create desired

file

1420 GOSUB 59990 Check for disk errors

1430 RH = INT(NR/256) Calculate length values

144ORL = NR-256*RH

1450 PRINT#15,"P" + CHR$(96 + 2) +

CHR$(RL) + CHR$(RH) Position to last record

number

1455 PRINT#15,"P" + CHR$(96 + 2) + Re-position for safety

CHR$(RL) + CHR$(RH)

1460 GOSUB 59990

1470 PRINT#1 ,CHR$(255); Send default character to

it

58

1480 GOSUB 59990

1500 GOSUB 59990

1510 CLOSE 1

1520 GOSUB 59990

9980 CLOSE 15

9990 END

59980 REM CHECK DISK SUBROUTINE

59990 INPUT#15,EN,EM$,ET,ES

60000 IF EN>1 AND EN<>50 THEN PRINT

EN,EM$,ET,ES:STOP

60010 RETURN

BASIC 7.0:

1380 INPUT'ENTER RELATIVE FILE NAME";FI$

1390 INPUT'ENTER MAX. # OF RECORDS";NR

1400 INPUT'ENTER RECORD LENGTH";RL

1410 DOPEN#1,(FI$),L(RL)

1420 GOSUB 60000

1450 RECORD#1,(NR)

1455 RECORD#1,(NR)

1460 GOSUB 60000

1470 PRINT#1,CHR$(255);

1480 GOSUB 60000

1500 GOSUB 60000

1510 CLOSE 1

1520 GOSUB 60000

9980 CLOSE 15

9990 END

59980 REM CHECK DISK SUBROUTINE

60000 IF DS>1 AND DSO50 THEN PRINT

DS,DS$:STOP

60010 RETURN

Now the file can be safely

closed

And the command chan

nel closed

Before we end the pro

gram

Error check subroutine

Ignore "RECORD NOT

PRESENT11

Select file parameters

Begin to create desired

file

Check for disk errors

Calculate length values

Position to last record

number

Send default character to

it

Now the file can be safely

closed

And the command chan

nel closed

Before we end the pro

gram

Error check subroutine

Ignore "RECORD NOT

PRESENT'1

Two lines require additional explanation. When line 1470 executes, the

disk drive will operate for up to several minutes, creating all the re

cords in the file, up to the maximum record number you selected in

line 1390. This is normal, and only needs to be done once. During the

process you may hear the drive motor turning and an occasional slight

click as the head steps from track to track. Second, line 60000 above is

59

different from the equivalent line in the error check subroutine given

earlier. Here disk error number 50 is specifically ignored, because it

will be generated when the error channel is checked in line 1460. Ig

nore it because not having a requested record would only be an error

if that record had been created previously.

EXPANDING A RELATIVE FILE

If you underestimate your needs and want to expand a relative

file later, simply request the record number you need, even if it

doesn't currently exist in the file. If there is no such record yet, DOS

will create it as soon as you try to write information in it, and also

automatically create any other missing records below it in number.

When the first record beyond the current end record is written, the

DOS returns "50, RECORD NOT PRESENT" error. This is expected and

correct.

WRITING RELATIVE FILE DATA

The commands used to read and write relative file data are the

same PRINT#, INPUT#, and GET# commands used in the preceding

chapter on Sequential files. Each command is used as described there.

However, some aspects of relative file access do differ from sequential

file programming, and we will cover those differences here.

DESIGNING A RELATIVE RECORD

As stated earlier in this chapter, each relative record has a fixed

length, including all special characters. Within that fixed length, there

are two popular ways to organize various individual fields of informa

tion. One is free-format, with individual fields varying in length from

record to record, and each field separated from the next by a carriage

return character (each of which does take up one character space in

the record). The other approach is to use fixed-length fields, that may

or may not be separated by carriage returns. If fixed length fields are

not all separated by carriage returns, you will either need to be sure a

carriage return is included within each 88-character portion of the

record (88 is for BASIC 2,160 is for BASIC 7). If this is not done, you

will have to use the GET# command to read the record, at a significant

cost in speed.

Since each relative record is most easily written by a single

PRINT# statement, the recommended approach is to build a copy of

the current record in memory before writing it to disk. It can be

collected into a single string variable with the help of BASIC'S many

60

string-handling functions, and then all written out at once from that

variable.

Here is an example. If we are writing a 4-line mail label, consist

ing of 4 fields named "NAME," "STREET," "CITY & STATE," and "ZIP

CODE," and have a total record size of 87 characters, we can organize

it in either of two ways:

WITH FIXED LENGTH FIELDS

Field Name

NAME

STREET

CITY & STATE

ZIP CODE

Total length

Length

27 characters

27 characters

23 characters

10 characters

87 characters

WITH VARIABLE LENGTH FIELDS

Field Name

NAME

STREET

CITY & STATE

ZIP CODE

Potential length

Edited length

Length

31 characters

31 characters

26 characters

11 characters

99 characters

87 characters

With fixed length records, the field lengths add up to exactly the

record length. Since the total length is just within the Input buffer size

limitation, no carriage return characters are needed. With variable

length records, you can take advantage of the variability of actual

address lengths. While one name contains 27 letters, another may have

only 15, and the same variability exists in street and city lengths.

Although variable length records lose one character per field for

carriage returns, they can take advantage of the difference between

maximum field length and average field length. A program that uses

variable record lengths must calculate the total length of each record

as it is entered, to be sure the total of all fields doesn't exceed the

space available.

WRITING THE RECORD

Here is an example of program lines to enter variable length

fields for the above file design, build them into a single string, and

send them to record number RE in file number 3 (assumed to be a

relative file that uses channel number 3).

BASIC 7.0:

100 INPUT'ENTER RECORD NUMBER";RE

110:

120 DOPEN#3,"MYRELFILE",L88

130CR$ = CHR$(13)
140 INPUTNAME"; NA$

150 IF LEN(A$)>30 THEN 140

160 INPUT'STREET";SA$

170 IF LEN(SA$)>30 THEN 160

61

180 INPUTCITY & STATE"; CS$

190 IF LEN(CS$)>25 THEN 180

200 INPIITZIP CODE";ZP$

210 IF LEN(ZP$)>10 THEN 200

220 DA$ = NA$ + CR$ + SA$ + CR$ + CS$ + CR$;ZP$

230 IF LEN(DA$)<88 THEN 260

240 PRINT'RECORD TOO LONG"

250 GOTO 140

260:

270:

280 RECORD#3,(RE),1

290 IFDS = 50THENPRINT#3,CHR$(255):GOSUB1000:GOTO280

300 GOSUB1000

310 PRINT#3,DA$

320 GOSUB1000

330 RECORD#3,(RE),1

340 GOSUB1000

350 DaOSE3:END

1000 IFDS<20 THEN RETURN

1002:

1010 PRINTDS$:DCLOSE3:END

BASIC 2.0:

100 INPUT'ENTER RECORD NUMBER";RE

110 OPEN 15,8,15

120 OPEN3,8,3,UMYRELFILE,L," + CHR$(88)

130CR$ = CHR$(13)
140 INPUT'NAME"; NA$

150 IF LEN(A$)>30 THEN 140

160 INPUrSTREET";SA$

170 IF LEN(SA$)>30 THEN 160

180 INPUT"CITY & STATE"; CS$

190 IF LEN(CS$)>25 THEN 180

200 INPUT"ZIP CODE";ZP$

210 IF LEN(ZP$)>10 THEN 200

220 DA$ = NA$ + CR$ + SA$ + CR$ + CS$ + CR$;ZP$

230 IF LEN(DA$)<88 THEN 260

240 PRINT"RECORD TOO LONG"

250 GOTO 140

260RH = INT(RE/256)

270RL=RE-256*RH

280 PRINT#15,"P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(1)
290 GOSUB1000:IF EN = 50THENPRINT#3,CHR$(255):GOSUB1000:GOTO280

300 GOSUB1000

310 PRINT#3,DA$

320 GOSUB1000

330 PRINT#15,<<P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(1)

340 GOSUB1000

350 CLOSE3:CLOSE15:END

1000 INPUT#15,EN,EM$,ET,ES

1002 IF EN<20 THEN RETURN

1010 PRINTEM$:CLOSE3:CLOSE15:END

62

To use the above program lines for the version with fixed length

fields, we would alter a few lines as follows:

BASIC 7.0:

100 INPUT'ENTER RECORD NUMBER";RE

110:

120 DOPEN#3,"MYRELFILE",L88

130 BL$ = "(27 shifted space chars)"

140 INPUT'NAME"; NA$

145LN=LEN(NA$)

150 IF LEN>27 THEN 140

155 NA$ = NA$ + LEFT$(BL$,27 -IN)

160 INPUT"STREET";SA$

165LN=LEN(SA$)

170 IF LEN>27 THEN 160

175 SA$ = SA$ + LEFT$(BL$,27 - LN)

180 INPUrCITY & STATE"; CS$

185LN = LEN(CS$)

190 IF LEN>23 THEN 180

195 CS$ = CS$ + LEFT$(BL$,23 - LN)

200 INPUTZIP CODE";ZP$

205LN=LEN(ZP$)

210IFLN>10THEN200

215 ZP$ = ZP$ + LEFT$(BL$,10-LN)

220 DA$ = NA$ + SA$ + CS$ + ZP$

260:

270:

280 RECORD#3,(RE),1

290 IFDS = 50THENPRINT#3,CHR$(255):GOSUB1000:GOTO280

300 GOSUB1000

310 PRINT#3,DA$

320 GOSUB1000

330 RECORD#3,(RE),1

340 GOSUB1000

350 DCLOSE#3:END

1000 IFDS<20 THEN RETURN

1002:

1010 PRINT'ERROR:"DS$:DCLOSE#):END

BASIC 2.0:

100 INPUT'ENTER RECORD NUMBER";RE

110 OPEN 15,8,15

120 OPEN#3,8,3,"MYRELFILE>L," + CHR$(88)

130 BL$ = "(27 shifted space chars)"

140 INPUT"NAME"; NA$

145LN = LEN(NA$)

15OIFLEN>27THEN14O

155 NA$ = NA$ + LEFT$(BL$,27 - LN)

160 INPUT"STREET";SA$

165LN=LEN(SA$)

63

170 IF LEN>27 THEN 160

175 SA$ = SA$ + LEFT$(BL$,27 - LN)

180 INPUT'CITY & STATE"; CS$

185LN=LEN(CS$)

190IFLN>23THEN180

195 CS$ = CS$ + LEFT$(BL$,23 - LN)

200 INPtTTZIP CODE";ZP$

205LN=LEN(ZP$)

210IFLN>10THEN200

215 ZP$ = ZP$+LEFT$(BL$,10 - LN)

220 DA$ = NA$ + SA$ + CS$ + ZP$

260RH = INT(RE/256)

270RL=RE-256*RH

280 PRINT#15,"P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(1)
290 GOSUB1000:IF EN = 50THENPRINT#3)CHR$(255):GOSUB1000:GOTO280

300 GOSUB1000

310 PRINT#3,DA$

320 GOSUB1000

330 PRINT#15,"P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(1)

340 GOSUB1000

350 GOSUB1000:aOSE3:aOSE15:END

1000 INPUT#15,EN,EM$,ET,E

1002 IF EN<20 THEN RETURN

1010PRINT"ERROR;"EM$:aOSE3:aOSE15:END

If field contents vary in length, variable field lengths are often

preferable. On the other hand, if the field lengths are stable, fixed field

lengths are preferable. Fixed length fields are also required if you

want to use die optional offset parameter of the RECORD# command

to point at a particular byte within a record. However, when any part of

a record is written, DOS overwrites any remaining spaces in the

record. Thus, if you must use the offset option, never update any field

in a record other than the last one unless all succeeding fields will also

be updated from memory later.

The above programs are careful to match record lengths exactly

to the space available. Programs that don't do so will discover that

DOS pads short records out to full size with fill characters, and

truncates overlong records to fill only their allotted space. When a

record is truncated, DOS will indicate error 51, "RECORD OVER

FLOW," but short records will be accepted without a DOS error

message.

READING A RELATIVE RECORD

Once a relative record has been written properly to diskette,

reading it back into computer memory is fairly simple, but the proce

dure again varies, depending on whether it uses fixed or variable

length fields. Here are the program lines needed to read back the

64

variable fields created above from record number RE in file and

channel 3:

BASIC 7.0:

10:

20 DOPEN#3,"MYRELFILE",L88

30 INPUT'ENTER RECORD NUMBERM;RE

40:

50:

60 RECORD#3,(RE),1

70 GOSUB1000

80 INPUT#3,NA$,SA$,CS$,ZP$

90 GOSUB1000

100 RECORD#3,(RE),1

110GOSUB1000

120 PRINTNA$:PRINTSA$

130 PRINTCS$:PRINTZP$

140 DCLOSE#3:END

1000 IFDS<20 THEN RETURN

1002:

1010 PRINTUERROR:"DS$:DCLOSE#3:END

BASIC 2.0:

10 OPEN 15,8,15

20 OPEN3,8,3,ttMYRELFILE,L;' + CI IR$(88)

30 INPUT ENTER RECORD NUMBER";RE

40RH= INT(RE/256)

50RL= RE-256*RH

60 PRINT#15,4<P" + CI IR$(96 + 3) + CI IR$(RL) + CI IR$(RI I) + CI IR$(1)

70 GOSUB1000

80 INPUT#3,NA$,SAJ,CS$,ZPS

90 GOSUB1000

110GOSUB1000

120 PRINTNA$:PRINTSA$

130 PRINTCS$:PRINTZP$

140 CLOSE3:CLOSE15:END

1000 INPUT#15,EN,EM$,ET,ES

1002 IF EN<20 THEN RETURN

1002 PRINTI4ERROR:1'EM$:CLOSE3:CLOSE15:END

READY.

65

Here are the lines needed to read back the version with fixed

length fields:

BASIC 7.0:

10:

20 DOPEN#3,"MYRELFBLE'%88

30 INPUT'ENTER RECORD NUMBER";RE

40:

50:

60 RECORD#3,(RE),1

70 GOSUB1000

80 INPUT#3,DA$

90 GOSUB1000

100 RECORD#3,(RE),1

110GOSUB1000

112NA$ = LEFT$(DA$,27)

114 SA$ = MID$(DA$,28,27)

116 CS$ = MID$(DA$,55,23)
118 ZP$ = RIGHT$(DA$,10)

120 PRINTNA$:PRINTSA$

130 PRINTCS$:PRINTZP$

140 DCLOSE#3:END

1000 IFDS<20 THEN RETURN

1002:

1010 PRINT"ERROR:"DS$:DCLOSE#3:END

BASIC 2.0:

10 OPEN 15,8,15

20 OPEN3,8,3,"MYRELFILE,L" 4- CHR$(88)

30 INPUT'ENTER RECORD NUMBER";RE

40RH= INT(RE/256)

50RL= RE-256*RH

60 PRINT#15/lP" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(1)

70 GOSUB1000

80 INPUT#3,DA$

90 GOSUB1000

100 PRINT# 15,"?" + CHR$(96 + 3) + CHR$(RL) + CHR$(RI I) 4- CI IR$(1)

110GOSUB1000

112 NA$ = LEFT$(DA$,27)

114 SA$ = MID$(DA$,28,27)

116CS$ = MID$(DA$,55,23)

118 ZP$ = RIGHT$(DA$,10)

120 PRINTNA$:PRINTSA$

130 PRINTCS$:PRINTZP$

140 CLOSE3:CLOSE15:END

1000 INPUT#15,EN,EM$,ET,ES

1002 IF EN<20 THEN RETURN

1002 PRINTltERROR:"EM$:CLOSE3:CLOSE15:END

READY.

66

THE VALUE OF INDEX FILES

In the last two chapters you have learned how to use sequential

and relative files separately. But they are often used together, with the

sequential file used to keep brief records ofwhich name in the relative

file is stored in each record number. That way the contents of the

sequential file can be read into a string array and sorted alphabetically.

After sorting, a technique known as a binary search can be used to

quickly find an entered name in the array, and read in or write the

associated record in the relative file. Advanced programs can maintain

two or more such index files, sorted in differing ways simultaneously.

67

CHAPTER 6

DIRECT ACCESS COMMANDS

Direct access commands specify individual sectors on the dis

kette, reading and writing information entirely under your direction.

This gives them almost complete flexibility in data-handling programs,

but imposes tremendous responsibilities on the programmer. As a

result, they are normally used only in complex commercial programs

able to properly organize data without help from the disk drive itself.

A far more common use of direct access commands is in utility

programs used to view and alter parts of the diskette that are not

normally seen directly. For instance, such commands can be used to

change the name of a diskette without erasing all of its programs, to

lock a program so it can't be erased, or hide your name in a location

where it won't be expected.

OPENING A DATA CHANNEL FOR DIRECT ACCESS

When working with direct access data, you need two channels

open to the disk: the command channel we've used throughout the

book, and another for data. The command channel is opened with the

usual OPEN 15,8,15 or equivalent. A direct access data channel is

opened much like other files, except that the pound sign (#), option

ally followed by a memory buffer number, is used as a file name.

FORMAT FOR DIRECTACCESS FILE OPEN STATEMENTS:

OPEN file #,device #, channel #, "#buffer #"

where "file #" is the file number, "device #" is the disk's device num

ber, normally 8; "channel #" is the channel number, a number be

tween 2 and 14 not used by other files open at the same time; and

"buffer #," if present, is a 0,1, 2, 3, 4, 5, or 6, specifying the memory

buffer within the 1581 to use for this file's data.

EXAMPLES:

To specify which disk buffer to use:

OPEN 4,8,4,"#2" -

If you don't specify which to use (OPEN 5,8,5,"#"), the 1581 selects

one.

69

BLOCK-READ

The purpose of a BLOCK-READ is to load the contents of a speci

fied sector into a file buffer. Although the BLOCK-READ command (B-

R) is still part of the DOS command set, it is nearly always replaced by

the Ul command (See Chapter 6).

FORMAT FOR THE BLOCK-READ COMMAND:

PRINT#15, "Ul"; channel #; drive #; track #; sector #

where "channel #" is the channel number specified when the file into

which the block will be read was opened, "drive #" is the drive num

ber, and "track #" and "sector #" are respectively the track and sector

numbers containing the desired block of data to be read into the file

buffer.

ALTERNATE FORMATS:

PRINT#15,"Ul:"channel #;drive #;track #;sector #

PRINT#15,"UA:"channel #;drive #;track #;sector #

PRINT#15,"Ul:channel #,drive #,track #,sector #"

EXAMPLE:

Here is a complete program to read a sector into disk memory us

ing Ul, and from there into computer memory via GET#. (If a carriage

return will appear at least once in every 88 characters of data, INPUT#

may be used in place of GET#).

110 MB = 7936:REM $1FOO Define a memory buffer.

120 INPUT"TRACK TO READ";T Select a track

130 INPUrSECTORTO READ";S and sector.

140 OPEN 15,8,15 Open command channel.

150 OPEN 5,8,5,"#" Open direct access channel.

160 PRINT#15,"Ul";5;0;T;S Read sector into disk buffer.

170 FOR I =MB TO MB + 255 Use a loop to

180 GET#5AWFA$ = " " copy disk buffer.

THEN A$ = CHR$(0) into computer memory.

190 POKE IASC(A$) Tidy up after.

200 NEXT

210 CLOSE 5:CLOSE 15

220 END

70

As the loop progresses, the contents of the specified track and sector

are copied into computer memory, beginning at the address set by

variable MB in line 160, and may be examined and altered there.

The DOS always checks that the track and sector parameters of the

BLOCK-READ command are within the proper range. If they're not, a

"66 ILLEGAL TRACKAND SECTOR" error occurs. In certain instances it

might be necessary to access a track and sector that are not within what

the DOS considers the proper bounds. This is a special case and, un

less absolutely necessary, should be avoided. Nonetheless, there is a

command identical in function to "Ul" that doesn't check to see if the

track and sector parameters are. within bounds before attempting to

read it. Its format is:

PRINT#15,"B-_";channel #;track #;sector #

(The character following the B- is a shifted R.)

or

PRINT#15,"B-";CHR$(210);channel #;track #;sector #

BLOCK-WRITE

The purpose of a BLOCK-WRITE is to save the contents of a file

buffer into a specified sector. It is thus the reverse of the BLOCK-READ

command. Although the BLOCK-WRITE command (B-W) is still part of

the DOS command set, it is nearly always replaced by the U2 com

mand.

FORMAT FOR THE BLOCK-WRITE COMMAND:

PRINT#15,"U2";channel #;drive #;track #;sector #

where "channel #" is the channel number specified when the file into

which the block will be read was opened; "drive #" is the drive

number; and "track #" and "sector #" are respectively the track and

sector numbers that should receive the block of data being saved from

the file buffer.

ALTERNATE FORMATS:

PRINT#15,"U2:"channel #;drive #;track #;sector #

PRINT#15,"UB:"channel #;drive #;track #;sector #

PRINT#15,"U2:channel #,drive #,track #,sector #"

71

EXAMPLES:

To restore track 40, sector 3 of the directory from the disk buffer

filled by a BLOCK-READ, use:

PRINT#15,"U2";5;0;40;3

You'll return to this example on the next page, after you learn to alter

the directory in a useful way.

You can also use a BLOCK-WRITE to write a name in Track 1,

Sector 1, a rarely-used sector. This can be used as a way of marking a

diskette as belonging to you. Here is a program to do it, using the

alternate form of the BLOCK-WRITE command:

110 INPUT"YOUR NAME";NA$ Enter a name.

120 OPEN 15,8,15 Open command channel.

130 OPEN 4,8,4,"#" Open direct access channel

140 PRINT#4,NA$ Write name to buffer.

150 PRINT#15,"U2";4;0;l;l Write buffer to Track 1,

160 CLOSE 4 Sector 1 of diskette.

170 CLOSE 15 Tidy up after.

180 END

As with the BLOCK-READ command, there is a BLOCK-WRITE com

mand identical in function to "U2" that does not check the track and

sector parameters for valid bounds before attempting to write the

sector. Its format is:

PRINT#15,"B-on;channel #;drive #;track #;sector #

(The character after the B- is a shifted W.)

or

PRINT#15,uB-";CHR$(215);channel #;track #;sector #

THE ORIGINAL BLOCK-READ AND BLOCK-WRITE COMMANDS

Although the BLOCK-READ and BLOCK-WRITE commands are

nearly always replaced by the Ul and U2 commands respectively, the

original commands can still be used, as long as you fully understand

their effects. Unlike Ul and U2, B-R and B-W allow you to read or write

less than a full sector. In the case of B-R, the first byte of the selected

sector is used to set the buffer pointer (see next section), and deter-

72

mines how many bytes of that sector are read into a disk memory

buffer. A program may check to be sure it doesn't attempt to read past

the end of data actually loaded into the buffer, by watching for the

value of the file status variable ST to change from 0 to 64. When the

buffer is written back to diskette by B-W, the first byte written is the

current value of the buffer pointer. Only that many bytes are written

into the specified sector. B-R and B-W may thus be useful in working

with custom-designed file structures.

FORMAT FOR THE ORIGINAL BLOCK-READ AND BLOCK-WRITE

COMMANDS:

PRINT#15,"BLOCK-READ";channel #;drive #;track #;sector #

abbreviated as: PRINT#15,UB-R";channel #;drive #;track #;sector #

and

PRINT#15,uBLOCK-WRITE";channel #;drive #;track #;sector #

abbreviated as: PWNT#15,"B-W";channel #;drive #;track #;sector #

where "channel #" is the channel number specified when the file into

which the block will be read was opened, "drive #" is the drive

number, and "track #" and "sector #" are the track and sector

numbers containing the desired block of data to be partially read into

or written from the file buffer.

-NOTE

In a true BLOCK-READ, the first byte of the selected

sector is used to determine how many bytes of that sector to

read into the disk memory buffer. It thus cannot be used to

read an entire sector into the buffer, as the first data byte is

always interpreted as being the number of characters to

read, rather than part of the data.

Similarly, in a true BLOCK-WRITE, when the buffer is

written back to diskette, the first byte written is the current

value of the buffer pointer. Only that many bytes are written

into the specified sector. It cannot be used to rewrite an

entire sector onto diskette unchanged, because the first data

byte is overwritten by the buffer pointer.

73

THE BUFFER POINTER

The buffer pointer points to where the next READ or WRITE will

begin within a disk memory buffer. By moving the buffer pointer, you

can access individual bytes within a block in any order. This allows you

to edit any portion of a sector, or organize it into fields, like a relative

record.

FORMAT FOR THE BUFFER-POINTER COMMAND:

PRINT#15,uBUFFER-POINTERn;channel#;byte

usually abbreviated as: PRINT#15,"B-P";channel #;byte

where "channel #" is the channel number specified when the file

reserving the buffer was opened, and ubyte" is the character number

within the buffer at which to point (from 0 through 255).

ALTERNATE FORMATS:

PRINT#15,"B-P:"channel #;byte

PRINT#15,"B-P:channel #;byte"

EXAMPLE:

Here is a program that locks the first program or file on a diskette.

It works by reading the start of the directory (Track 40, Sector 3) into

disk memory, setting the buffer pointer to the first file type byte (see

Appendix C for details of directory organization), locking it by setting

bit 6 and rewriting it.

110 OPEN 15,8,15 Open command channel.

120 OPEN 5,8,5,"#" Open direct access channel.

130 PRINT#15/'Ul";5;0;40;3 Read Track 40, Sector 3.

140 PRINT#15,"B-P";5;2 Point to Byte 2 of the buffer.

15OGET#5A$:IFA$ = ""

THEN A$ = CHR$(0) Read it into memory.

160 A=ASC(A$) OR 64 Turn on bit 6 to lock.

170 PRINT#15,"B-P";5;2 Point to Byte 2 again.

180 PRINT#5,CHR$(A); Overwrite it in buffer.

190 PRINT#15,uU2";5;0;40;3 Rewrite buffer to diskette.

200 CLOSE 5 Tidy up after.

210 CLOSE 15

220 END

74

After the above program is run, the first file on that diskette can no

longer be erased. If you later need to erase that file, rerun the same

program, but substitute the revised line 160 below to unlock the file

again:

160 A=ASC(A$) AND 191 Turn off bit 6 to unlock

ALLOCATING BLOCKS

Once you have written something in a particular sector on a

diskette with the help of direct access commands, you may wish to

mark that sector as "already used", to keep other files from being

written there. Blocks thus allocated will be safe until the diskette is

validated.

FORMAT FOR BLOCK-ALLOCATE COMMAND:

PRINT#15,uBLOCK-ALLOCATE";drive #; track #;sector #

usually abbreviated as: PRINT#15,"B-A";drive #; track #;sector #

where "drive #" is the drive number, and "track #" and "sector #"

are the track and sector containing the block of data to be read into the

file buffer.

ALTERNATE FORMAT:

PRINT#15,"B-A:";drive #; track #;sector #

EXAMPLE:

If you try to allocate a block that isn't available, the DOS will set

the error message to number 65, NO BLOCK, and set the track and

block numbers in the error message to the next available track and

block number. Therefore, before selecting a «block to write, try to

allocate that block. If the block isn't available, read the next available

block from the error channel and allocate it instead. However, do not

allocate data blocks in the directory track. If the track number re

turned is 0, the diskette is full.

Here is a program that allocates a place to store a message on a

diskette.

100 OPEN15,8,15 Open command channel.

110 OPEN5,8,5,"#" " direct access "

75

120 PRINT#5,"I THINK

THEREFORE I AM" Write a message to buffer.

130 T= 1 :S = 1 Start at first track & sector.

140 PRINT#15,"B-A";0;T;S Try allocating it.

150 INPUT#15,EN,EM$,ET,ES See if it worked.

160 IF EN=0 THEN 210 If so, we're almost done.

170 IF ENO65 THEN PRINT "NO BLOCK"

EN,EM$,ET,ES:STOP means already allocated.

180 IF ET=0 THEN PRINT

"DISK FULL":STOP If next track is 0, we're out of room.

190 IF ET=40 THEN ET=4l:ES = 0 Don't allocate the directory.

200 T=ET:S = ES:GOTO 140 Try suggested track & sector next.

210 PRINT#15,"U2";5;0;T;S Write buffer to allocated sector.

220 PRINT "STORED AT:",T,S Say where message went

230 CLOSE 5:CLOSE 15 and tidy up.

240 END

FREEING BLOCKS

The BLOCK-FREE command is the opposite ofBLOCK-ALLOCATE.

It frees a block that you don't need any more, for re-use by the DOS.

BLOCK-FREE updates the BAM to show a particular sector is not in use,

rather than actually erasing any data.

FORMAT FOR BLOCK-FREE COMMAND:

PRINT#15,uBLOCK-FREE";drive #;track #;sector #

abbreviated as: PRINT#15,"B-F";drive #;track #;sector #

where "drive #" is the drive number, and "track #" and "sector #"

are respectively the track and sector numbers containing the desired

block of data to be read into the file buffer.

ALTERNATE FORMAT:

PRINT#15,"B-F:'';drive #;track #;sector #

EXAMPLE:

To free the sector in which we wrote our name in the BLOCK

WRITE example, and allocated in the first BLOCK-ALLOCATE example,

we could use the following command:

PRINT#15/'B-F";0;l;l

76

PARTITIONS and SUB-DIRECTORIES

The 1581 allows the user to create partition areas on the disk.

Partitions were originally implemented to provide a mechanism for

easily protecting a particular section of the disk. That is useful for

permanently allocating part of the disk for things such as BOOT

sectors, CP/M work area, or reserving space for user defined random

files.

Normally, sectors on the disk can be marked as used by setting

the appropriate bit in the BAM (most easily done with the BLOCK-

ALLOCATE command). That prevents them from being overwritten. A

VALIDATE command, however, will de-allocate this area. To protect

these special blocks from being de-allocated during a VALIDATE, place

them in a user defined partition area. The VALIDATE command in the

1581 automatically skips over file entries that are partition files (file

type = CBM), which guarantees the intended area is, and remains,

allocated.

Partition areas are given names by the user when first created.

They appear in the main directory as file type CBM.

A partition area is created by the following command (file#

should be opened to the command channel):

PRINT#file#,"/0:partition name," + CHR$(starting track) + CHR-

$(starting sector) + CHR$(< # of sectors) + CHR$(> # of sec

tors) + ",C"

Large enough partitions can also be used as sub-directories.

There are, however, certain limitations if a partition area is to be used

as a sub-directory area:

1) The partition area must be at least 120 sectors in size.

2) The starting sector must be 0.

3) The ending sector must be a multiple of 40.

4) The area to be allocated cannot contain track 40 (the original

system track).

Partitions can also be created with a partition. This means that

sub-sub-directories can be created if their partitions meet the above

rules. Graphically, it looks like this:

77

ROOT (/)

/O:PART1 /0:PART2 /0:PART3 /0:PARTn

/0:PART2 /0:PART2

/0:PART21 /0:PART22

Partition areas which meet the qualifications of being a subdirec

tory can then be selected by the following command.

PRINT#file#;70:partition name"

Once selected, the partition area cannot be used as a sub-directo

ry until it is formatted. The HEADER or NEW commands are used to

format this sub-disk area. Make sure that you have successfully select

ed this partition area before formatting. If not, the wrong directory

area will be reformatted. You can check if the area was successfully

selected by checking the error channel. If everything went OK, the

error channel would read:

02, SELECTED PARTITION,first track #,last track #

If the area you attempt to select does not meet the qualifications

of a sub-directory, then the error channel would return:

77, SELECTED PARTITION ILLEGAL,00,00

Only one level of subdirectory can be selected at a time. To get

from the ROOT to PART21 you would have to execute the command

twice.

PRINT#file#,70:PART2"

PRINT#file#,70:PART21"

Directories can only be traversed in the forward direction. To get

to a sub-directory which is on a node above the presently selected

node of the tree, you must select the ROOT directory and work your

way down the tree, selecting a branch at a time. To get to the ROOT

directory directly from any node type:

PRINT#file#,7"

78

When the user selects a particular sub-directory area, it then

becomes the default working area. Accesses to the disk for directories,

loading files, saving files, etc., will all be done within this area. Files

outside of the selected area are effectively invisible.

File and local BAM information for sub-directories are stored

within the sub-directory areas themselves. The information is stored

on the first allocated track of the partition area, and has the same

format as track 40. When creating partitions and sub-directories within

sub-directories it is the responsibility of the user to make sure that he

doesn't overwrite this information! The DOS only checks to make sure

that you don't attempt to overwrite this information for the ROOT

directory (track 40). It is up to the user to make sure that this

information isn't corrupted in the sub-directories.

Partitioned areas can be freed up simply by SCRATCHING the

partition file entry in the appropriate directory. If the partition was

being used as a sub-directory, all of the files in that sub-directory will

be lost.

USING RANDOM FILES

By combining the commands in this chapter, it is possible to

develop a file-handling program that uses random files. What you

need to know now is how to keep track of which blocks on the disk

such a file has used. (Even though you know a sector has not been

allocated by your random file, you must also be sure it wasn't allocated

by another unrelated file on the diskette.)

The most common way of recording which sectors have been

used by a random file is in a sequential file. The sequential file stores a

list of record numbers, with the track, sector, and byte location of each

record. This means three channels are needed by a random file: one

for the command channel, one for the random data, and the last for

the sequential data.

79

CHAPTER 7

INTERNAL DISK COMMANDS

Expert programmers can give commands that directly alter the

workings of the 1581, much as skilled programmers can alter the

workings of BASIC inside the computer with Peeks, Pokes and Sys

calls. It is also possible to write machine language programs that load

and run entirely within the 1581, either by writing them into disk

memory from the computer, or by loading them directly from diskette

into the desired disk memory buffer. This is similar to loading and

running machine language programs in your computer.

As when learning to use Peek, Poke and Sys in your computer,

extreme caution is advised in using the commands in this chapter.

They are essentially machine language commands, and lack all of

BASIC'S safeguards. If anything goes wrong, you may have to turn the

disk drive off and on again (after removing the diskette) to regain

control. Do not practice these commands on any important diskette.

Rather, make a spare copy and work with that. Knowing how to

program a 6502 in machine language will help greatly, and you will

also need a good memory map of the 1581. A brief 1581 map appears

below.

Location

1581 MEMORY MAP

Purpose

0000-OOFF

0100-01FF

0200-02FF

0300-09FF

0A00-0AFF

0B00-0BFF

0C00-1FFF

4000-5FFF

6000-7FFF

8000-FEFF

FFOO-FFFF

Zero page work area, job queue, variables

Stack, variables, vectors

Command buffer, tables, variables

Data buffers (0-6)

BAM for tracks 0-39

BAM for tracks 40-79

Track cache buffer

8520A CIA

WD177XFDC

32K byte ROM, DOS and controller routines

Jump table, vectors

81

NOTE

The 1581, as well as other Commodore peripherals, is

designed to support interfacing via software command

structures. The software commands provided in the 1581

allow for a smooth and controllable interface between the

peripheral and CPU. Although Commodore has provided

the mechanism enabling users to load and execute their

own machine language programs within the 1581 system,

please keep in mind that Commodore reserves the right to

change ROM, RAM, I/O and hardware structure at any time.

Consequently, if the defined software interface is bypassed,

future compatibility of the user's machine language soft

ware within the 1581 may be in question. The 1581 was not

designed primarily as a user programmable device, but

Commodore recognizes that certain operations (such as

copy protection) cannot be easily achieved without this

ability.

If you find it necessary to use machine language within

the 1581, use the jump table listed in this chapter and

Chapter 10. That will lessen the possibility of incompatibil

ity if a future version of the 1581 changes internally. Also, let

the controller work for you on the physical level by request

ing its help via the JOB QUEUE. That too will greatly in

crease the likelihood of future compatibility.

MEMORY-READ

The 6502 has an address space from $0000 — $FFFF. You can get

direct access to any location within this by using memory commands.

MEMORY-READ allows you to select which byte or bytes to read from

disk memory into the computer. The MEMORY-READ command is the

equivalent of the BASIC Peek() function, but reads the disk's memory

instead of the computer's memory.

-NOTE

Unlike other disk commands, those in this chapter

cannot be spelled out in full. Thus, M-R is correct, but

MEMORY-READ is not a permitted alternate wording.

82

FORMAT FOR THE MEMORY-READ COMMAND:

PRINT#15,uM-R"CHR$(<addfess)CHR$(>address)CHR$(# of

bytes)

where "<address" is the low order part, and u>address" is the high

order part of the address in disk memory to be read. If the optional "#

of bytes" is specified, it selects how many memory locations will be

read in, from 1-256 (# of bytes = 0 for 256). Otherwise, 1 character

will be read.

The next byte read using the GET# statement through channel

#15 (the error channel), will be from that address in the disk control

ler's memory, and successive bytes will be from successive memory

locations.

Any INPUT# from the error channel will give peculiar results

when you're using this command. This can be cleared up by sending

any other command to the disk, except another memory command.

EXAMPLES:

To see how many tries the disk will make to read a particular

sector, and whether "bumps" to track one and back will be attempted

before declaring the sector unreadable, you can use the following

lines. They will read a special variable in the zero page of disk

memory, called REVCNT. It is located at $30 hexadecimal.

110 OPEN 15,8,15 Open command channel.

120 PRINT#15/'M-ira IR$(48)CI IR$(0) Same as G = PEEK(106).

130 GET#15,G$:IF G$ = "" THEN G$ = CIIR$(0)

14OG=ASC(G$)

150 B =G AND 128:B$ = "ON":IF B TIIEN B$ = "OFF" Check bit 7.

170 T=G AND 31:PRINT "# OF TRIES IS";T Check bits 0-5

180 PRINT "BUMPS ARE";B$ and give results.

200 CLOSE 15 Tidy up after.

210 END

83

Here's a more general purpose program that reads one or more

locations anywhere in disk memory:

110 OPEN15,8,15

120 INPUT"# OF BYTES TO READ (0 = END)";NL

130 IF NL<1 THEN CLOSE 15:END

140 IF NL>255 THEN 120

150 INPUT'STARTING AT ADDRESS";AD

160 AH = INT(AD/256)AL=AD-AH*256

170 PRINT#15,"M-R"CHR$(AL)CHR$(AH)

CHR$(NL)

180 FOR 1=1 TO NL

190 GET#15A$:IF A$ = "" THEN A$ = CHR$(0)

200 PRINT ASC(A$);

210 NEXT I

220 PRINT

230 GOTO 120

Open command channel.

Enter number of bytes want

ed

unless done,

or way out of line.

Enter starting address.

Convert it into disk form.

Actual Memory-Read.

Loop until have all the data,

printing it as we go,

forever.

MEMORY-WRITE

The MEMORY-WRITE command is the equivalent of the BASIC

Poke command, but has its effect in disk memory instead of within the

computer. M-W allows you to write up to 35 bytes at a time into disk

memory. The MEMORY-EXECUTE and some User commands can be

used to run any programs written this way.

FORMAT FOR THE MEMORY-WRITE COMMAND:

PRINT#15,"M-W"CHR$(<address)CHR$(>address)CHR$

(# of bytes)CHR$(data byte(s))

where "<address" is the low order part, and ">address" is the high or

der part of the address in disk memory to begin writing, "# of bytes" is

the number of memory locations that will be written (from 1-35), and

"data byte" is 1 or more byte values to be written into disk memory,

each as a CHR$() value.

EXAMPLES:

We can use this line to turn off the "bumps" when loading DOS-pro

tected programs (i.e., programs that have been protected against being

copied by creating and checking for specific disk errors).

PRINT#15,"M-W"CHR$(48)CHR$(0)CHR$(1)CHR$(133)

84

The following line can be used to recover bad sectors, such as

when an important file has been damaged and cannot be read normally.

PRINT#15,"M-W"CHR$(48)CHR$(0)CHR$(1)CHR$(31)

These two examples may be very useful under some circum

stances. They are the equivalent of POKE 48,133 and POKE 48,31 re

spectively, but in disk memory, not inside the computer. As mentioned

in the previous section's first example, location 48 in the 1581 disk

drive signifies two separate activities to the drive, all related to error

recovery. Bit 7 (the high bit), if set means no "bumps" (don't move the

read head to track 1). The bottom six bits are the count of how many

times the disk will try to read each sector before and after trying seeks

and bumps before giving up. Since 31 is the largest number that can be

expressed in six bits, that is the maximum number of tries allowed.

From this example, you can see the value of knowing something

about Peeks, Pokes, and machine-language before using direct-access

disk commands, as well as their potential power.

MEMOFY-EXECUTE

Any routine in disk memory, either in RAM or ROM, can be ex

ecuted with the MEMORY-EXECUTE command. It is the equivalent of

the BASIC Sys call to a machine language program or subroutine, but

works in disk memory instead of within the computer.

FORMAT FOR THE MEMORY-EXECUTE COMMAND:

PRINT#15,"M-E"CHR$(<address)CHR$(>address)

where "<address" is the low order part, and ">address" is the high or

der part of the address in disk memory at which execution is to begin.

Most uses require intimate knowledge of the inner workings of

the DOS, and preliminary setup with other commands, such as

MEMORY-WRITE.

The routine should end with an RTS to return control to the 1581.

BLOCK-EXECUTE

This rarely-used command will load a sector containing a machine

language routine intxra memory buffer from diskette, and execute it

85

from the first location within the buffer, until a RETURN from Subrou

tine (RTS) instruction ends the command.

FORMAT FOR THE BLOCK-EXECUTE COMMAND:

PRINT#15,"B-E:";channel #;drive #;track #;sector #

where "channel #" is the channel number specified when the file into

which the block will be loaded was opened, "drive #" is the drive

number, and "track #" and "sector #" are respectively the track and

sector numbers containing the desired block of data to be loaded into

the file buffer and executed there.

ALTERNATE FORMATS:

PRINT#15,"B-E:";channel #;drive #;track #;sector #

PRINT#15,"B-E.channel #,drive #,track #,sector #"

EXAMPLES:

Assuming youVe written a machine language program onto Track

1, Sector 8 of a diskette, and would like to run it in buffer number 1 in

disk memory (starting at $0400 hexadecimal, you could do so as fol

lows:

110 OPEN 15,8,15 Open command channel.

120 OPEN 2,8,2,"#1" Open direct access channel to buffer 1.

130 PRINT#15,"B-E:";2;0;l;8 Load Track 1, Sector 8 in it & execute.

140 CLOSE 2 Tidy up after.

150 CLOSE 15

160 END •

USER COMMANDS

Most User commands are intended to be used as machine lan

guage JMP or BASIC SYS commands to machine language programs^

that reside inside the disk memory. However, some of them have

other uses as well. The Userl and User2 commands are used to

replace the BLOCK-READ and BLOCK-WRITE commands, UI re-starts

the 1581 without changing many variables, UJ cold-starts the 1581

almost as if it had been turned off and on again.

86

User Command

U0

u0 + (cmd)

ul or ua

u2 or ub

u3 or uc

u4 or ud

u5 or ue

u6 or uf

u7 or ug

u8 or uh

u9 or ui

u: or uj

Function

restores default user jump table

burst utility command

(see Chapter 9 Burst Commands)

block read replacement

block write replacement

jump to $0500

jump to $0503 .

jump to $0506

jump to $0509

jump to $050c

jump to $050f

jump to ($fffa) reset tables

power up vector

By loading these memory locations with another machine lan

guage JMP command, such as JMP $0520, you can create longer rou

tines that operate in the disk's memory along with an easy-to-use jump

table.

FORMAT FOR USER COMMANDS:

PRINT#15,"Ucharacter";

where "character" defines one of the preset user commands listed

above.

EXAMPLES:

PRINT#15,"U:"; Form of DOS RESET command

PRINT#15,"U3"; Execute program at start of buffer 2

UTILITY LOADER

This command loads a user-type (USR) file into the drive RAM.

The first two bytes of the file must contain the low and high addresses

respectively. The third byte is the amount of characters to follow. In

addition, a trailing checksum byte must be included. The load address

is the starting address.

FORMAT FOR THE UTILITY LOADER COMMAND

PRINT#15,u&0:filename"

To return from this routine, the program should end with an RTS.

87

AUTO BOOT LOADER

During some operations (power-up reset, burst INQURE, burst

QUERY, an initialize command) the 1581 will automatically look for a

file or the disk named 'COPYRIGHT CBM 86' that is a USR type-file.

The format of the file is the same as that described previously for the

utility loader. If it is present, the file is automatically loaded and

executed.

The automatic loading of this file can be disabled by either

renaming it, setting the appropriate flag in the BAM sectors (see

Appendix C), or by setting a flag variable in RAM to disable further

autoboots (see JDEJAVU jump table vector in Chapter 10).

At the end of the autobooted program it should return control to

the 1581 via theJCBMBOOTRTN jump table vector.

88

CHAPTER 8

MACHINE LANGUAGE PROGRAMS

Here is a list of host computer disk-related Kernal ROM subrou

tines and a practical example of their use in a program that reads a

sequential file into memory from disk. Most require advance setup of

one or more processor registers or memory locations and all are

calledwith the assembly language JSR command.

For a more complete description as to what each routine does

and how parameters are set for each routine, see the Programmer's

Reference Guide for your specific computer.

Label

DISK-RELATED KERNAL SUBROUTINES

Address Function

SETLFS = $FFBA ;SET LOGICAL, FIRST & SECOND ADDRESSES

SETNAM = $FFBD ;SET LENGTH & ADDRESS OF FILENAME

OPEN = $FFC0 ;OPEN LOGICAL FILE

CLOSE = $FFC3 ;CLOSE LOGICAL FILE

CHKIN = $FFC6 ;SELECT CHANNEL FOR INPUT

CHKOUT = $FFC9 ;SELECT CHANNEL FOR OUTPUT

ORCHN = $FFCC ;OEAR ALL CHANNELS & RESTORE

DEFAULT I/O

CHRIN = $FFCF ;GET BYTE FROM CURRENT INPUT DEVICE

CHROUT = $FFD2 ;OUTPUT BYTE TO CURRENT OUTPUT

DEVICE

START LDA #4 ;SET LENGTH & ADDRESS

LDX #<FNADR ;OF FILE NAME, LOW

LDY #>FNADR ;& HIGH BYTES

JSR SETNAM ;FOR NAME SETTER

LDA #3 ;SET FILE NUMBER

LDX #8 ;DISK DEVICE NUMBER

LDY #0 ;AND SECONDARY ADDRESS

JSR SETLFS ;AND SET THEM

JSR OPEN ;OPEN 3,8,0,"TEST"

LDX #3

JSR CHKIN ;SELECT FILE 3 FOR INPUT

NEXT JSR CHRIN ;GET NEXT BYTE FROM FILE

BEQ END jUNTEL FINISH OR FAIL

JSR CHROUT ;OUTPUT BYTE TO SCREEN

JMP NEXT AND LOOP BACK FOR MORE

END LDA #3 ;WHENDONE

JSR CLOSE ;CLOSE FILE

JSR CLRCHN ;RESTORE DEFAULT I/O

RTS ;BACK TO BASIC

FNADR .BYT "TEST" ;STORE FILE NAME HERE

89

CHAPTER 9
BURST COMMANDS

The Burst Command Instruction Set (BCIS) is a series of power

ful, versatile, and complex commands that enables the user to format,

read, and write in numerous formats. Burst commands are sent via

kernal calls, but the handshaking of data is done by the user for

maximum performance. There is no parameter checking, so exercise

care when using the BCIS. For instance, if a burst read with an illegal

track address is sent to a 1581, the drive will keep trying to find the

invalid track. Reading and writing in other formats is automatic if the

commands are given in proper sequence. Please become thoroughly

familiar with all the commands and follow the examples given in this

chapter. It's important to follow the handshake conventions exactly for

maximum performance.

With the exception of READ and WRITE, burst commands do not

translate from logical to physical track and sector. All track and sector

parameters refer to physical locations (see Chapter 10). Burst sector

READ and WRITE commands provide a flag to enable logical to phys

ical translation. If the flag is set, the drive does the translation and the

default logical number of bytes per sector (256) is transferred instead

of the physical number of bytes per sector (512).

CMDl—READ

BYTE

00

01

02

03

04

05

06

BIT 7

0

0

L

6

1

0

E

5 4 3

0 1 0

1 1 0

X S 0

DESTINATION TRACK

DESTINATION SECTOR

NUMBER OF SECTORS

NEXT TRACK (OPTIONAL)

2

1

0

0

1

0

0

0

0

1

0

N

RANGE: All values are determined by the particular disk format and format of transla

tion table.

SWITCHES: L—logical flag (1 = do logical to physical translation)

E—ignore error (1 = ignore)

S—side select

N—drive number

PROTOCOL: Burst handshake

CONVENTIONS: Before you can READ or WRITE to a diskette, it must be logged-in

using either the INQUIRE DISK or QUERY DISK FORMAT command

(both are described later). This must be done once each time you

change diskettes.

91

OUTPUT: One burst status byte, followed by burst data, is sent for each sector trans-

fered. An error prevents data from being sent unless the E bit is set.

CMD 2—WRITE

BYTE

00

01

02

03

04

05

06

BIT 7

0

0

L

6

1

0

E

5 4 3

0 1 0

1 1 0

X S 0

DESTINATION TRACK

DESTINATION SECTOR

NUMBER OF SECTORS

NEXT TRACK (OPTIONAL)

2

1

0

0

1

0

0

1

0

1

0

N

RANGE: All values are determined by the particular disk format and format of transla

tion table.

SWITCHES: L—logical flag (1 = do logical to physical translation)

E—ignore error (1 = ignore)

S—side select

N—drive number

PROTOCOL: Burst data to the drive, then host must perform the following: fast serial

input, pull the clock low and wait for the burst status byte, pull clock

high, go output for multi-sector transfers and continue.

CONVENTIONS: Before you can READ or WRITE to a diskette, it must be logged-in

using either the INQUIRE DISK or QUERY DISK FORMAT command

(both are described later). This must be done once each time you

change diskettes.

INPUT: Host must transfer burst data.

OUTPUT: One burst status byte following each WRITE operation.

CMD 5—INQUIRE DISK

BYTE

00

01

02

BIT 7

0

0

X

6

1

0

X

5

0

1

X

4

1

1

S

3

0

0

0

2

1

0

1

1

0

0

0

0

1

0

N

SWITCHES: N—drive number

PROTOCOL: Burst handshake

OUTPUT: One burst status byte following each INQUIRE DISK operation.

92

CMD 4—FORMAT

BYTE

00

01

02

03

04

05

06

07

08

BIT 7 6 5

0 1 0

0 0 1

M X X

SECTOR SIZE

LAST TRACK NUMBER

NUMBER OF SECTORS

STARTING TRACK

FILL BYTE

STARTING SECTOR

4 3 2 10

10 10 1

10 0 0 0

X 0 1 1 N

♦(OPTIONAL, DEF-02,512 BYTE SECTORS)

(OPTIONAL, DEF-79)

♦♦(OPTIONAL, DEF DEPENDS ON BYTE 03)

(OPTIONAL, DEF-0)

(OPTIONAL, DEF-SE5)

(OPTIONAL, DEF-1)

♦01—256 BYTE SECTORS

02—512 BYTE SECTORS

03—1024 BYTE SECTORS

♦16—256 BYTE SECTORS

10—512 BYTE SECTORS

5—1024 BYTE SECTORS

SWITCHES: M—MODE (1 =will accept BYTES 03 - 08,0=will format, create directory

and BAM)

N—drive number

PROTOCOL: Conventional

CONVENTIONS: CMD 4 must be followed with CMD 3 or CMD 6 once to log the disk

in.

OUTPUT: None. Status will be updated within the drive.

93

CMD 6—QUERY DISK FORMAT

BYTE

00

01

02

03

BIT 7

0

0

F

6

1

0

X

5

0

1

T

4

1

1

S

OFFSET

3

0

0

1

2

1

0

0

1

0

0

1

(OPTIONAL F-BIT SET)

0

1

0

N

SWITCHES: F—force flag (F = 1 steps the head with the offset specified in byte 03)

T—sector table (T= 1, send sector table)

N—drive number

X—don't care

S—side select

PROTOCOL: Burst handshake

CONVENTIONS: Determines the diskette format on any particular track. Also logs non-

standard diskettes (i.e. minimum sector addresses other than one).

OUTPUT: *burst status byte (no bytes will follow if there is an error)

**burst status byte (no bytes will follow if there was an error in compiling

MFM format information)

number of sectors (the number of sectors on a particular track)

logical track (the logical track number found in the disk header)

minimum sector (the logical sector with the lowest value address)

maximum sector (the logical sector with the highest value address)

interleave (always returns 1)

sector table (with T bit set, sector table is sent)

*status from track offset zero

**if F bit is set, status is from offset track

CMD 7—INQUIRE STATUS

BYTE

00

01

02

03

04

05

BIT 7

0

0

w

6

1

0

c

5 4 3

0 1 0

1 10

M 0 1

NEW STATUS (W-BIT CLEAR)

NEW ORA MASK (M-BIT SET)

NEW AND MASK (M-BIT SET)

2

1

0

1

1

0

0

0

0

1

0

N

SWITCHES: W—write switch (0 = write)

M—write AND/OR mask (04 new OR mask (M-bit set), 05 new AND mask

(M-bit set))

C—change (C = 1 and W = 0—log in disk C = 1 and W = 1—return

whether disk was logged, i.e. $B error or old status)

N—drive number

X—don't care

94

PROTOCOL: Burst handshake (W= 1), conventional (W=0)

CONVENTIONS: This is a method of reading or writing current status, and changing

the status mask value.

OUTPUT: None (W = 0), Burst status byte (W = 1)

CMD 8—DUMP TRACK CACHE BUFFER

BYTE BIT 7 6 5 4 3 2 1 0

00

01

02

03

0

0

F

1

0

s

PIIYSICAI

0

1

X

-TRACK

1

1

1

0

0

1

1

0

1

0

0

0

1

0

1

SWITCHES: X—don't care

S—side select

F—(1 = write even if not "dirty")

CHGUTL UTILITY

BYTE BIT 7 6 5 4

00

01

02

03

04

0

0

X

1

0

X

0

1

X

1

1

1

UTILITY COMMANDS: 'B\

COMMAND PARAMETER

0

0

1

\S\ §R\ T,

1

0

1

V, #DEV,

0

0

1

"MR",

1

0

0

"MW"

SWITCHES: X—don't care

UTILITY COMMANDS: lB'—serial bus mode

'S1—DOS sector interleave

§R—DOS retries

T—ROM signature analysis

V—verify select

#DEV—device #

Note: Byte 02 is equivalent to '>'.

EXAMPLES: "U0>Bl" = Fast Serial, "U0>B0" = Slow Serial

"U0>S" + CHR$ (SECTOR INTERLEAVE)

"U0>R" + CHR$ (RETRIES)

"U0>T" (If the ROM signature failed, the activity LED blinks 4 times)

"U0>V0" = Disk Verify ON, "U0>Vl" = Disk Verify OFF

"U0>" + CHR$(#DEV), where #DEV = 4-30

"U0>MR" + CHR$ (>memory address) + (# of pages)*

"U0>MW" + CHR$ (>memory address) + (# of pages)*

*Burst memory read and memory write use standard burst protocol (without status

byte).

95

FASTLOAD UTILITY

BYTE BIT 7 6 5 4 3 2 1 0

0001010 101

01 0 0 1 10 0 0 0

02 P X X 1 1 1.1 1

03 FILENAME

SWITCHES: P—sequential file bit (P = 1, does not have to be a program file)

X—don't care

PROTOCOL: Burst handshake

OUTPUT: Burst status byte preceding each sector transfered.

STATUS IS AS FOLLOWS: 0000000X—OK

* 00000010—file not found

** 00011111—EOI

"Values between 3 and 15 should be considered a file read error.

**The byte following the EOI status byte is the number of data bytes to follow.

STATUS BYTE BREAKDOWN

BIT 7 6 5 4 3 2 1 0

MODE DN SECTOR SIZE [CONTROLLER STATUS]

*MODE—1=Alien Disk Format (non-default physical format, or default physical

format without Directory and BAM information)

0=Resident Disk Format (default physical format with Directory and BAM

information)

DN—DRIVE NUMBER

*Resident Disk Format is based on whether required information is present in BAM/

DIRECTORY track.

SECTOR SIZE

00 128 BYTE SECTORS (NOT SUPPORTED)

01 256 BYTE SECTORS

10 512 BYTE SECTORS (DEFAULT)

11 1024 BYTE SECTORS

CONTROLLER STATUS

000X OK

0010 CAN'T FIND HEADER BLOCK

0011 NO ADDRESS MARK

0100 DATA BLOCK NOT PRESENT

0101 DATA CRC ERROR

0110 FORMAT ERROR

0111 VERIFYERROR

1000 WRITE PROTECT ERROR

1001 HEADER BLOCK CRC ERROR

1010 WRITE PROTECTED

96

1011 DISK CHANGE

1100 DISK FORMAT NOT LOGICAL

1101 RESERVED

1110...... SYNTAX ERROR

1111 NO DRIVE PRESENT

BURST TRANSFER PROTOCOL

Before using the following burst transfer routines, you must deter

mine whether or not the peripheral is a fast device. The Fast Serial

(byte mode) protocol makes that determination internally when you

include a query routine (send-cmd-string;). This routine addresses the

peripheral as a listener and thereby determines its speed.

BURST READ

send-cmd-string;

if device-fast then

serial-in;

repeat

read-error;

toggle clock;

repeat

wait-byte;

if status = ok then

toggle-clock;

repeat

wait-byte;

toggle-clock;

store-byte;

until end-of-sector;

until no-more-sectors;

set-clock-high;
ekeCloC

read-1541;

BURST WRITE

send-cmd-string;

if device-fast then

repeat

serial-out;

repeat

send-byte;

until last-byte;

serial-in;

clock-low;

read-err;

clock-high;

until last-sector;

else

write-1581;

(*determine speed*)

(*turn 8520 to input*)

(*repeat for all sectors*)

(*retrieve error byte*)

(*wait for status*)

(Vait for byte*)

(*start double buffer*)

(*get data*)

(* start next*)

(*save data*)

(*release clock line*)

(*send unit read*)

(*determine speed*)

(*repeat for multi-sector*)

(*serial port out*)

(*repeat for sector-size*)

(*sendbyte*)

(*last byte ?*)

(*serial port in*)

(*ready for status*)

(*controller error ?*)

(*restore clock*)

(*until last sector*)

(*unit write*)

97

EXPLANATION OF PROCEDURES

send-cmd-string sends one byte of the command to determine

whether the drive is fast or slow.

toggle-clock changes the state of the clock line,

clock-hi changes the state of the clock to logic 1.

clock-lo changes the state of the clock to logic 0.

wait-byte polls the 8520 for a byte ready.

read-error calls toggle-clock and wait-byte, then returns to the

main if there are no errors.

store-data stores the data in a particular memory location.

last-byte depending on sector size, will increment and com

pare value to sector size.

last-sector decrements the number of sector transfers re

quested and stops when done.

serial-in sets the 8520 serial port and driver circuit to input

mode.

read-err calls wait-byte and evaluates the status of the pre

vious controller job.

serial-out sets the 8520 serial port and driver circuit to out

put mode.

send-byte sends a byte of data to the 1581.

read-1581 sends a typical unit read to a 1581.

write-1581 sends a typical unit write to a 1581.

98

HANDSHAKE

The figure below shows the burst transfer protocol. It is a stat-depen-

dent protocol (simple and fast). As the clock line is toggled, a byte of

data is sent. Burst protocol is divided into three parts:

1. Send Command: send string using existing kernal routines.

2. Query: determine whether the peripheral is fast.

3. Handshake Code: follow handshake conventions.

DATA

CLK

SRQ

(Acknowledge and Ready For Data)

RFD (Ready For Data)

-NOTE

An example of using the burst routines is on the test/

demo diskette. Print those files and use th^m as references

for creating your own programs that use biirst protocol.

99

CHAPTER 10

1581 INTERNAL OPERATION

This chapter describes some of the internal operations of the

1581—how things work on the 'other side of the fence' of the host

computer. Experienced programmers may find this information use

ful. The information learned in previous chapters (especially Chapter

7) combined with that presented in this chapter provides a wide realm

of possibilities for the creative and persistent programmer. Please be

reminded, however, of the NOTE presented at the beginning of Chap

ter 7 regarding future compatibility.

Logical versus Physical Disk Format

All DOS operations of the 1581 are done in 256 byte blocks. These

blocks appear as individually numbered! sectors on the disk. By going

through the DOS interface via the cofrimands outlined in this manual,

the logical disk format is as follows:

single sided

80 tracks (track 1 through track 80)

40 256 byte sectors per track (sector 0 through sector 39)

Internally, however, the 1581 has a different view of things. The

disk is actually formatted as follows:

double sided (side 0 and side 1)

80 tracks per side (track 0 through track 79)

10 512 byte sectors per track (sector 1 through sector 10)

That is the physical disk format created whenever a HEADER

(NEW) command is sent to the 1581 from the host computer. The phys

ical format is different from the logical so that more data can be

squeezed onto each disk.

All commands sent from the host computer are parsed through

the DOS (except the BURSTcommands) and refer to the logical format.

Software inside the 1581 automatically takes care of the logical to phys

ical translations necessary to retrieve the data properly from the disk.

Track Cache Buffer

One of the improvements in the 1581 design over previous Com

modore disk drives which makes the device more efficient is the Track

101 \

Cache Buffer. This buffer is located from $0C00 through $1FFF. All disk

accesses involve an entire physical track at a time. If a single sector is

needed from a particular track, the entire track is read into RAM. Con

sequently, any more requests for sectors from the same track require

only a RAM data transfer, rather than a search of the track on the disk

again. Sector writes are also speeded up considerably, since each con

secutive write to sectors on the same track requires only a RAM to RAM

data transfer. After data is written into the Track Cache Buffer, it is not

written to the disk until one of the following occurs: 1) a request is

made for access of a sector on a different track, 2) a 'dump track buffer'

command is issued, or 3) after 250 milliseconds of no serial bus activity.

ControllerJob Queue

The software in the 1581's ROM can be broken down into two

major components—the DOS and the Controller. The DOS (Disk

Operating System) is the software interface between the host comput

er and the 1581 system. The DOS keeps track of the file management

details necessary to create, modify and delete files. It monitors the

amount of free space left on a disk, and keeps track ofthe file names in

the directory. It remembers where each file starts, and ensures that

none of them overlap. When the host sends commands, the DOS

checks to make sure that the syntax and the parameters are valid. The

DOS is very complex, and its code occupies the majority of the ROM.

The Controller, on the other hand, knows nothing about the

concept of files. The Controller deals only in the physical world of the

disk itself. It is responsible for reading and writing each of the individ

ual sectors on the disk.

The DOS and Controller communicate to each other primarily

through a 'mailbox,' known as the Job Queue. Because the DOS deals

more in the abstract, or logical, world, it does not access the physical

disk itself. If the DOS requires access to the disk, it must ask the

controller to do it. The DOS places a Controller Command Code into

the Job Queue and then waits for the requested operation to be

completed. The Controller polls the Job Queue every 10 milliseconds

(the polling rate is determined by timer B of the 8520) looking for

something to do. If there is a job in the queue, the Controller executes

the job and returns a status byte to the DOS. To speed things up, the

polling of the job queue can be bypassed by a direct jump toJSTROBE

CONTROLLER at $FF54 (refer to the section describing the Vectored

Jump Table). A call to JSTROBECONTROLLER requires the command

in the accumulator and the job queue offset in the x register,

102

Most of the tasks that the Controller can be asked to perform

require parameters. The parameters are also placed in a 'mailbox'

location for the Controller to access (prior to placing the command

byte into the queue, of course). These parameters can be either the

physical or the logical parameters, depending on what the command

expects to see. Logical parameters are placed in HDRS as two consecu

tive bytes of track, sector. Physical parameters are also placed in HDRS,

but in addition the side must be specified (in SIDS). Commands that

require logical parameters must translate them into physical param

eters at some point in their execution. The logical parameters are

translated into physical parameters by a vectored routine called

TRANSTS, and are written into HDRS2 and SIDS. The DOS will always

pass logical parameters, and uses only the Controller commands that

expect to see logical parameters. However, the Controller is also

allowed to put jobs in its own queue, so it needs to pass physical

parameters as well as logical.

Mailbox Locations ofthe Controller

name

JOBS

HDRS

HDRS2

SIDS

CACHE

CACHEOFF

BUFFCACHE

address

$0002

ftOOOA

$000B

$001C

$01BC

$01CD

$01CE

$01D6

$008B

$Q09F

S0QA7

$0C00

purpose

JOB queue for Controller commands (JOBS 0-8).

EachJOB uses 1 byte. The last 2 locatioas

($09,$0A) are reserved for BAM jobs only!

Logical or physical track, sector for each of

the jobs in theJOB queue (2 bytes per job).

Translated (physical) track, sector for each

of the jobs in theJOB queue (2 bytes per job).

Physical side for each of the jobs

in the job queue (1 byte per job).

Pointer to BUFFCACHE below.

Offset into the track cache buffer.

(1 byte per job).

20 pages for track cache.

Associated with each of the nine Job Queue locations (Jobs 0

through 8) are nine 256 byte buffers (buffers 0-8), beginning at

location $0300. Data passed from/to a particular Job during its execu-

103

tion is located in the buffer which corresponds to the position of the

Controller Job Code in the Job Queue. For example, if the Controller

code in Job Queue position 2 (at location $0004) requests that a

logical sector of data be read, the data is put into Buffer 2 (at location

$0500).

Table 1 is a list of Controller Job Codes that can be put into the

Job Queue. Table 2 is a list of the codes that are returned by the

Controller once the job has been executed. The return code is placed

into the Job Queue in the same memory location that contained the

ControllerJob Code. Consequently, the procedure to use the Control

ler is the following:

1) Write any parameters needed by the Job into the parameter

variables (HDSRS, HDRS2, SIDS).

2) Write the Controller Code into the Job Queue (JOBS).

3) Wait for the job to be completed by simply polling the loca

tion in JOBS where the Job code was put, and waiting for it to

change (bit 7 will be reset to 0).

TABLE 1: ControllerJOB Command Codes

name code description

READ_DV $80 Reads a particular logical sector into the job

queue buffer (only if the disk has not been

changed). If the desired sector is already in the

track cache buffer, then no disk activity is re

quired (the data is merely transferred from the

track cache memory to the job queue buffer

memory). If the desired sector is not in the

track cache, then the current track cache is

dumped to disk (only if it has been modified),

the desired track is read into the track cache,

and finally the particular sector's data is trans

ferred from the track cache memory to the job

queue buffer.

104

WRTSDDV $90

WRTVER.DV

SEEKHD_DV

SEEKPHD_DV

RESTOREJW

JUMPC_DV

EXBUF_DV

RESET_DV

MOTONDV

MOTOFF_DV

MOTONI DV

MOTOFFI DV

SEEKJDV

FORMAT_DV

DISKINJDV

LEDACTON DV

LEDACTOFF DV

ERRLEDON DV

ERRLEDOFF DV

SIDEDV

SAO

$B0

$B8

$C0

$D0

$E0

$82

$84

$86

$88

$8A

$8C

$8E

$92

$94

$96

$98

$9A

$9C

Writes the job queue's buffer data to a particu

lar logical track, sector. If the same track is

already in the track cache, then this involves

only transferring the job queue buffer data to

the track cache buffer. If a different track's data

is in the track cache, then it must first be

dumped to the disk (only if it was modified),

the desired track read into the track cache buff

er, and finally the job queue buffer's data trans

ferred to the track cache.

Verifies the track cache buffer's data against the

specified logical track's data.

Logs in a disk by reading information from the

first header encountered on the disk into RAM

so that it can be used by the DOS. The track

cache buffer is not updated.

Seeks to a particular logical track, sector. The

track cache is not updated.

Restores the read/write head to track 0

('bump').

Executes the code in the corresponding job

queue buffer.

Executes the code in the corresponding job

queue buffer after the motor is up to speed and

the head is on track.

Resets the disk controller and associated varia

bles.

Turns on the spindle motor (overlays a $01 in

the Job Queue after the spin-up sequence is

complete).

Turns the spindle motor off after the spin-

down sequence is complete.

Turns the spindle motor on immediately.

Turns the spindle motor off immediately.

Seeks to a particular physical track (cylinder).

The current physical track position should be

put in the track parameter of HDRS.

Formats one physical track (one half of a cylin

der). The head must be placed physically over

the proper cylinder, and the head electronics

must be selected for the side desired.

Determines if there is a disk inserted in the

drive.

Turns on the activity LED.

Turns off the activity LED.

Enables error LED blinking.

Disables error LED blinking.

Sets up the side select electronics to the value

specified (in SIDS). "*

105

BUFMOVE DV $9E

TRKWRTDV

SPREAD

$A2

SP_WRITE

PSEEK DV

TREAD_DV

TWRTJDV

TPREAD_DV

TPWRTJDV

DETWP_DV

FORMATDK DV

$A6

$A8

$AA

$AC

$B2

$B4

$B6

$F0

Moves data between the job queue buffer and

the track cache buffer. The track parameter in

the job queue denotes the position in the track

cache buffer to transfer to/from. The sector

parameter denotes the following:

Bit 7 : Direction (1 = to track cache

buffer)

Bit 6 : Mark Flag (set/clear the 'track

cache modified' flag)

Bit 5 : Transfer (1 = do the transfer)

Bits 4-0 : # of 256 byte blocks to transfer

With bit 7 set, the corresponding physical track

position in the job queue (HDRS2) must be

updated for the purpose of telling the control

ler what physical track the track cache buffer

belongs to. In addition the side var (SIDS) must

also be updated.

Dumps the track cache buffer to the disk (only

if the track cache modified flag is set).

Reads the specified physical sector directly into

RAM starting at #0 ($0300). It does not use the

track cache buffer. The sector is always read

from the disk regardless of the current con

tents of the track cache.

Writes to the specified physical sector directly.

It does not use the track cache. Data to be

written starts at buffer #0 ($0300).

Seeks to the specified physical track.

Reads logical address without transferring to

the job queue buffer.

Writes,a logical address without transferring

from the job queue buffer.

Reads a physical address without transferring

to the job queue buffer.

Writes a physical address without transferring

from the job queue buffer.

Checks if the disk inserted is write protected.

Returns $00 if disk is not protected, else $08.

Formats the disk with the default physical for

mat.

106

TABLE 2:

name

OKDV

MISHD DV ER

NOADAM DV ER

MISDBLK DV ER

CRCDBLK DV ER

FMTJDV_ER

VERERR_DV_ER

WRTPR DV ER

CRCHD_DV_ER

DSKCHGJDV_W

DSKNTLOG_DV_EF

CONTROLLER ER

SYNTAX DV-ER

NODSKPRSDVER

code

$0x

$02

$03

$04

$05

$06

$07

$08

$09
$0A

$0B

l$0C

$0D

$0E

$0F

ControllerJOB Return Codes

description

No error.

Can't find header block.

No address mark detected.

Data block not present.

CRC error encountered in data block.

Format error.

Verify error.

Attempt to write to a write protected disk.

CRC error encountered in header block.

Reserved.

Disk was changed / disk ID mismatch.

Disk format not logical.

Floppy disk controller IC error.

Syntax error. Invalid job number.

No disk is present in the drive.

Here is an example BASIC program which will display the data on

any sector of the 1581 disk. It puts a READ SECTOR job directly into

the Controller Job Queue using MEMORY-WRITE, and then reads the

sector data directly from the Job Queue Buffer using MEMORY-READ.

0010 OPEN 1,8,15 : REM OPEN COMMAND CHANNEL TO 1581

0020 OPEN 2,8,2,"#" : REM OPEN BUFFER #0 OF THE 1581 (AT $0300

OF 1581)

0030 INPUT "TRACK, SECTOR TO READ";T,S

0040 REM WRITE TRACK, SECTOR PARAMETERS TO HDRS IN 1581 RAM

(AT $000B)

0050 PRINT#1,"M-W" + CHR$(11) + CHR$(0) + CHR$(2) + CHR$(T)

+ CHR$(S)

0060 REM PUT THE READ SECTOR ($80) COMMAND INTO THEJOB

QUEUE

0070 PRINT#1, "M-W" + CHR$#(2) + CHR$(0) + CHR$(l) + CHR$(128)

0080 REM READ BACK THEJOB QUEUE WHERE THE COMMAND WAS

JUST WRITTEN,

0090 REM WAITING FOR THE STATUS TO BE WRITTEN INTO IT.

0100 PRINT#1,"M-R" + CHR$(2) + CHR$(0) + CHR$(l)

0110 GET#1, A$: IF ASC(A$) > 127 THEN 100

0120 PRINT "STATUS RETURNED = ";ASC(A$)

0130 REM READ THE TRANSLATED TRACK, SECTOR VALUES FROM

HDRS2

0130 PRINT#1, "M-R" + CHR$(188) + CHR$(01) + CHR$(02)

0140 GET#1,A$: PT=ASC(A$)

0150 GET#1,A$: PS=ASC(A$)

107

0160 REM READ THE TRANSLATED SIDE VALUE

0170 PRINT#1, "M-R" + CHR$(239) + CHR$(0) + CHR$(l)

0180 GET#1,A$: SIDE=ASC(A$)

0190 PRINT "TRANSLATED TRACK= ";PT;" SECTOR= ";PS;" SIDE = ";SIDE

0200 PRINT

0210 REM READ THE 256 BYTES OF DATA FROM 1581 JOB QUEUE

BUFFER INTO CPU RAM

0220 PRINT#1, "M-R" + CHR$(0) + CHR$(3) + CHR$(0)

0230 REM LIST THE SECTOR DATA

0240 PRINT" ";

0245 PRINT"0 123456789ABCDEF"

0250 PRINT" ";

02SS PRTNT" "\J£*JJ X IVllN J. ————————————————————

0260 FORX= 0TO15

0270 PRINT RIGHT$(HEX$(X),1);TAB(6);

0280 FORY=1TO16

0290 GET#1,A$

0300 PRINTUSING "####";RIGHT$(HEX$(ASC(A$)),2);

0310 NEXTY

0320 PRINT

0330 NEXTX

VectoredJump Table

Each of the DOS commands that can be sent to the 1581 via the

serial bus are vectored through indirect jumps in the ROM. The

indirect veaors are located in RAM, so the user can change these

veaors for the purpose of providing a different routine, or massaging

data before passing control to the original routine. Each of these

vectors and their locations are listed in the table 3 :

TABLE 3: Indirect VectorJump Table

name location description

JIDLE $FF00 Main idle loop. When a Controller command is

completed the IDLE routine is executed. It first

checks to see if there are any more jobs pend

ing in theJob Queue. If so, it executes them. If

not, it sits in the idle loop waiting for some

thing to happen, such as another job being put

into the queue, ATN line going low, disk insert

ed or removed, etc.

108

JIRQ

JNMI

JBLOCK

$FF03

$FF06

JVERDIR

JINTDRV

JPART

JMEM

$FF09

$FF0C

$FF0F

$FF12

$FF15

JUSER

JRECORD

JUTLODR

JDSKCPY

JRENAME

JSCRTCH

JNEW

ERROR

JATNSRV

JTALK

JLISTEN

JLCC

JTRANSTS

CMDERR

JSTROBE

CONTROLLER

JCBMBOOT

JCBMBOOTRTN

JSIGNATURE

JDEJAVU

JSPINOUT

JALLOCBUFF

$FF18

$FF1B

$FF1E

$FF21

$FF24

$FF27

$FF2A

$FF2D

$FF30

$FF33
$FF36

$FF39

IFF3C

$EF3F

$FF54

$FF57

$FF5A

$FF5D

$FF60

$FF63

$FF66

Interrupt routine. Interrupts normally occur

from the following sources — ATN line going

low, Fast Serial Byte is shifted in, timer time

out, execution of a BRK instruction.

Does a 'soft' reset (UI command). Default vec

tors and variables are restored. Searches for

"COPYRIGHT CBM 86" USR type file to boot.

No RAM check or ROM checksum is done. De

vice # switches are read.

VALIDATE command (collect).

INITIALIZE command.

Routine to create or switch partitions.

Memory Read/Memory Write (M-R,M-W) com

mands.

Performs all BLOCK commands, such as ALLO

CATE, FREE, READ, WRITE, EXECUTE, POINT

ER

USER command.

RECORD command for relative file positioning.

Utility loader command (&).

Copy command.

Rename command.

Scratch command.

New/Format command.

Controller error handler routine.

Serial Bus attention (ATN) server.

Serial Bus talk routine.

Serial Bus listen routine.

Controller routine.

Logical to physical sector translation routine.

DOS error handler routine.

Direct Controller call.

CBM autoloader routine.

Return from CBM autoloader with autoloader

disabled.

Signature analysis routine.

Switch for autoloader boot on INITIALIZE or

BURST INQUIRE/QUERY. Enter with carry, set

to enable autoloader, carry to clear disable it.

SPIN, SPOUT. Sets up.fast serial direction as

input or output. Carry set to do SPOUT, cleared

to do SPINP.

Allocates RAM buffers. Call with buffer # in reg

A(l = buffer 0,2 = buffer 1...).

109

APPENDIXA

CHANGING THE DEVICE NUMBER

Two switches on the back of the 1581 enable you to change the

device # of the drive. You can use a screwdriver, pen, or any other

small tool to set the switches. The following table shows the settings

required for each device number:

Left

UP

DOWN

UP

DOWN

Right

UP

UP

DOWN

DOWN

Device #

8

9

10

11

Another way to temporarily change the device number of a disk

drive is via a program. When power is first turned on, the drive reads

an I/O location whose value is controlled by the two switches on its

circuit board, and writes the device number it reads there into mem

ory locations 119 and 120. Any time thereafter, you may write over that

device number with a new one, which will be effective until it is

changed again, or the 1581 is reset.

FORMAT FOR TEMPORARILY CHANGING THE DISK DEVICE NUMBER:

PRINT#15,"U0>" + CHR$(n)

Where n = 8 to 30

EXAMPLE:

Here is a program that sets any device number:

5 INPUT "OLD DEVICE NUMBER"; ODV

10 INPUT "NEW DEVICE NUMBER"; DV

20 IF DV<8 or DV>30 then 10

30 OPEN 15,ODV,15, "U0>" + CHR$(DV): CLOSE 15

-NOTE

If you will be using two disk drives, and want to tempo

rarily change the device number of one, you will need to

run the above program with the disk drive whose device

number is not to be changed turned off. After the program

has been run, you may turn that drive back on. If you need

to connect more than two drives at once, you will need to

use the hardware method of changing device numbers.

Ill

APPENDIX B

DOS ERROR MESSAGES

Many commercial program diskettes are intentionally created with

one or more of the following errors, to keep programs from being

improperly duplicated. If a disk error occurs while you are making a

security copy of a commercial program diskette, check the program's

manual. If its copyright statement does not permit purchasers to copy

the program for their own use, you may not be able to duplicate the

diskette. In some such cases, a safety spare copy of the program

diskette is available from your dealer or directly from the company for

a reasonable fee.

00: OK (not an error)

This is the message that usually appears when the error channel

is checked. It means there is no current error in the disk unit.

01: FILES SCRATCHED (not an error)

This is the message that appears when the error channel is

checked after using the SCRATCH command. The track number

tells how many files were erased.

02: PARTITION SELECTED (not an error)

The disk partition requested has been selected.

-NOTE

If any other error message numbers less than 20 ever

appear, they may be ignored. All true errors have numbers

of 20 or more.

20: READ ERROR (block header not found)

The disk controller is unable to locate the header of the request

ed data block. Caused by an illegal block or a header that has

been destroyed. Usually unrecoverable.

21: READ ERROR (drive not ready)

The disk controller is unable to detect a sync mark on the desired

track. Caused by misalignment, or a diskette that is absent, unfor

matted or improperly seated. Can also indicate hardware failure.

Unless caused by one of the above simple causes, this error is

usually unrecoverable.

113

22: READ ERROR (data block not found)

The disk controller has been requested to read or verify a data

block that was not properly written. Occurs in conjunction with

BLOCK commands and indicates an illegal track and/or sector

request.

23: READ ERROR (CRC error in data block)

There is an error in the data. The sector has been read into disk

memory, but its CRC is wrong.

24: READ ERROR (bad sector header)

The data or header has been read into disk memory, but a

hardware error has been created by an invalid bit pattern in the

data byte.

25: WRITE ERROR (write-verify error)

The controller has detected a mismatch between the data written

to diskette and the same data in disk memory. May mean the

diskette is faulty. If so, try another. Use only high-quality diskettes

from reputable makers.

26: WRITE PROTECT ON

The controller has been requested to write a data block while the

write-protect sensor is uncovered. Usually caused by writing to a

diskette whose write protect notch is pushed back to expose the

hole to prevent changing the diskette's contents.

27: READ ERROR (CRC error in header)

The controller detected an error in the header bytes of the

requested data block. The block was not read into disk memory.

30: SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command

channel. Typically, this is caused by an illegal number of file

names or an illegal pattern. Check your typing and try again.

31: SYNTAX ERROR (invalid command)

The DOS does not recognize the command. It must begin with

the first-character sent. Check your typing and try again.

32: SYNTAX ERROR (long line)

The command sent is longer than 58 characters. Use abbreviated

disk commands.

114

33: SYNTAX ERROR (invalid file name)

Pattern matching characters cannot be used in the SAVE com

mand or when Opening files for the purpose of Writing new

data. Spell out the file name.

34: SYNTAX ERROR (no file given)

The file name was left out of a command or the DOS does not

recognize it as such. Typically, a colon (:) has been omitted. Try

again.

39: SYNTAX ERROR (invalid command)

The DOS does not recognize a\ command sent to the command

channel (secondary address 15). Check your typing and try again.

50: RECORD NOT PRESENT

The requested record number has not been created yet. This is

not an error in a new relative file or one that is being intentional

ly expanded. It results from reading past the last existing record,

. or positioning to a non-existent record number with the Re

cord command.

51: OVERFLOW IN RECORD

The data to be written in the current record exceeds the record

size. The excess has been truncated (cut off). Be sure to include

all special characters (such as carriage returns) in calculating

record sizes.

52: FILE TOO LARGE

There isn't room left on the diskette to create the requested

relative record. To avoid this error, create the last record number

that will be needed as you first create the file. If the file is too

large for the diskette, either split it into two files on two diskettes,

or use abbreviations in the data to allow shorter records.

60: WRITE FILE OPEN

A write file that has not been closed is being reopened for

reading. This file musit be immediately rescued, as described in

BASIC Hint #2 in Chapter 2, or it will become a splat (improper

ly closed) file and probably be lost.

61: FILE NOT OPEN

A file is being accessed that has not been opened by the DOS. In

some such cases no error message is generated. Rather the

request is simply ignored.

115

62: FILE NOT FOUND

The requested file does not exist on the indicated drive. Check

your spelling and try again.

63: FILE EXISTS

A file with the same name as has been requested for a new file

already exists on the diskette. Duplicate file names are not al

lowed. Select another name.

64: FILE TYPE MISMATCH

The requested file access is not possible using files of the type

named. Reread the chapter covering that file type.

65: NO BLOCK

Occurs in conjunction with B-A. The sector you tried to allocate is

already allocated. The track and sector numbers returned are the

next higher track and sector available. If the track number re

turned is 0, all remaining sectors are full. If the diskette is not

full yet, try a lower track and sector.

66: ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or sector which does

not exist. May indicate a faulty link pointer in a data block.

61: ILLEGAL SYSTEM TORS

This special error message indicates an illegal system track or

block.

70: NO CHANNEL (available)

The requested channel is not available or all channels are in use.

A maximum of three sequential files or one relative file plus one

sequential file may be opened at one time, plus the command

channel. Do not omit the drive number in a sequential OPEN

command, or only two sequential files can be used. Close all files

as soon as you no longer need them.

71: DIRECTORY ERROR

The BAM (Block Availability Map) on the diskette does not match

the copy in disk memory. To correct, Initialize the diskette.

72: DISK FULL

Either the diskette or its directory is full. DISK FULL is sent when

two blocks are still available, allowing the current file to be

closed. If you get this message and the directory shows any

116

blocks left, you have too many separate files in your directory,

and will need to combine some, delete any that are no longer

needed, or copy some to another diskette.

74: DRIVE NOT READY

An attempt has been made to access the 1581 single disk without

a formatted diskette in place. Blank diskettes cannot be used until

they have been formatted.

75: FORMAT ERROR

76: CONTROLLER ERROR

The floppy disk controller IC (WD177x) is not functioning prop

erly.

77: SELECTED PARTITION ILLEGAL

An attempt has been made to select a partition that does not meet

the criteria of a directory partition.

117

APPENDIX C

DOS DISKETTE FORMAT

The DIRECTORY and BAM are located on logical track 40. The following is the

structure:

DIRECTORY HEADER (Track 40 sector 0)

BYTE

00-01

02

03

04-21

22-23

24

25

26

27-28

29-255

DEFINITION

Track and Sector of first DIRECTORY block.

Disk Version Number

$00

Disk Name*

Disk Id

SAO

DOS Version Number

Disk Version Number

AOh

$00

BAM for Logical Tracks 1-40 — BAM1 (Track 40 Sector 1)

BYTE

00-01

02

03

04-05

06

07

08-15

16-255

DEFINITION

Track and Sector of next BAM block

Version Number

Compliment Version Number

Disk Id

I/O-Byte (bit7-verify on/off, bit6-check header CRC on/off)

Auto Loader Flag*

Reserved for future use

BAM image for logical tracks 1-40 (6 bytes per track**)

*When the drive is reset it will hold off the serial bus and look for a file called

"COPYRIGHT CBM 86" of file type USSR. It will load and execute this file. The file must

have the following structure: The first two bytes of the file must contain the low and

high load addresses respectively. The third byte is the amount of characters to follow.

In addition a trailing checksum byte must be included. The load address is the

execution address. The BAM contains a flag byte which will allow auto execution with

an Initialize, Burst, Inquire, and Burst Query commands.

119

BAM for Logical Tracks 41-80 — BAM2 (Track 40 Sector 2)

BYTE

00

01

02

03

04-05

06

07

08-15

16-255

DEFINITION

00

$FF

Version Number (copy)

Compliment Version Number (copy)

Disk Id (copy)

I/O byte (copy)

Auto Loader Flag (copy)

Reserved for future use

BAM image for logical tracks 41-80 (6 bytes per track**)

•Format of6 BAM bytes for each track

BYTE

OFFSET

0

1

2

3

4

5

DEFINITION

Number of free sectors on track

MSB — flag for sector 7, LSB — flag for sector 0

MSB— flag for sector 15, LSB — flag for sector 8

MSB — flag for sector 23, LSB — flag for sector 16

MSB — flag for sector 31, LSB — flag for sector 24

MSB — flag for sector 39, LSB — flag for sector 32

DIRECTORY FILE FORMAT

Track 40, Sectors 3-39

BYTE

0,1

2-31

34-63

66-95

98-127

130-159

162-191

194-223

226-255

DEFINITION

Track and seaor of next direaory block.

File entry 1*

File entry 2*

File entry 3*

File entry 4*

File entry 5*

File entry 6*

File entry 7*

File entry 8*

120

•STRUCTURE OF EACH INDIVIDUAL DIRECTORY ENTRY

BYTE

OFFSET

0

1-2

3-18

19-20

21

22-25

26-27

28-29

CONTENTS

128

+

type

DEFINITION

File type OR'ed with $80 to indicate properly closed file.

(if OR'ed with $C0 instead, file is locked.)

TYPES: 0 = DELeted

1 = SEQuential

2 = PROGram

3 = USER

4 = RELative

5 = CBM

Track and sector of first data block.

File name padded with shifted spaces.

Relative file only: track and sector of the super side

sector block.

Relative file only: record length.

Unused.

Track and sector of replacement file during an

©SAVE or ©OPEN.

Number of blocks in file: stored as a two-byte integer,

in low-byte, high-byte order.

PROGRAM FILE FORMAT

BYTE DEFINITION

FIRST SECTOR

0,1 Track and sector of next block in program file 1.

2,3 Load address of the program.

4-255 Next 252 bytes of program information stored as in computer,

memory (with key words tokenized).

REMAINING FULL SECTORS

0,1 Track and sector of next block in program file 1.

2-255 Next 254 bytes of program information stored as in computer memory

(with key words tokenized).

FINAL SECTOR

0,1 Null ($00), followed by number of valid data bytes in sector.

2-??? Last bytes of the program information, stored as in computer

memory (with key words tokenized). The end of a BASIC file is

marked by three zero bytes in a row. Any remaining bytes in the

sector are garbajge and may be ignored.

121

SEQUENTIAL FILE FORMAT

BYTE DEFINITION

ALL BUT FINAL SECTOR

0-1 Track and sector of next sequential data block.

2-255 254 bytes of data.

FINAL SECTOR

0,1 Null ($00), followed by number of valid data bytes in sector.

2-??? Last bytes of data. Any remaining bytes are garbage and may be

ignored.

RELATIVE FILE FORMAT

BYTE DEFINITION

DATA BLOCK

0,1

2-255

Track and sector of next data block.

254 bytes of data. Empty records contain $FF

(all binary ones) in the first byte followed by $00

(binary all zeros) to the end of the record. Partially

filled records are padded with nulls ($00).

SIDE SECTOR BLOCK

0-1

2

3

4-5

6-7

8-9

10-11

12-13

14-15

16-255

Track and sector of next side sector block in this group

Side sector number (0-5)

Record length

Track and sector of first side sector (number 0)

Track and sector of second side sector (number 1)

Track and sector of third side sector (number 2)

Track and sector of fourth side sector (number 3)

Track and sector of fifth side sector (number 4)

Track and sector of sixth side sector (number 5)

Track and sector pointers to 120 data blocks.

SUPER SIDE SECTOR BLOCK

0-1

2

3-4

5-6

253-254

Track and sector of first side sector in group 0

$FE

Track and sector of first side sector in group 0

Track and sector of first side sector in group 1

Track and sector of first side sector in group 125

The super side sector has pointers to 126 groups of side sectors.

Each of these groups contains 6 side sectors. Each side sector points to

120 data blocks, containing 254 bytes each. 126 x 6 x 120 x 254 =

23,042,880 bytes (maximum relative file size)

122

APPENDIX D
DISK COMMAND QUICK REFERENCE CHART

General Format: OPEN 15,8,15:PRINT#15,command:aOSE 15 (Basic 2)

HOUSEKEEPING COMMANDS

BASIC 2.0

BASIC 7.0/

3.5

BOTH

NEW

COPY

RENAME

SCRATCH

VALIDATE

INITIALIZE

NEW

COPY

RENAME

SCRATCH

VALIDATE

INITIALIZE

SELECT PARTITION

CREATE PARTITION

"NO:diskette name,id"

"C0:new file = 0:old file"

"R0:new name=old name"

"SOifile name"

"V0"

"IO"

HEADER"diskette name",Iid,D0

COPY "old file" TO "new file"

RENAME "old name" TO "new file"

SCRATCH "file name"

COLLECT

DCLEAR

"/O:partition name"

70:partition," CHR$ (starting track)

CHR$ (starting sector) CHR$ (<# of

blocks) CHR$ (># of blocks) ",C

FILE COMMANDS

BASIC 2.0

BASIC 7.0/

3.5

BASIC 7.0

only

BOTH

LOAD

SAVE

VERIFY

LOAD

SAVE

VERIFY

BLOAD

BSAVE

BOOT

OPEN

CLOSE

RECORD#

OPEN

CLOSE

RECORD#

PRINT#

GET#

INPUT#

LOAD"file name",8

SAVE"file name",8

VERIFV'file name",8

DLOAD"file name"

DSAVE"file name"

DVERIFY"file name" (BASIC 7.0 only)

BLOAD"filename",Bbank#,Pstart address

BSAVE"filename",Bbank#,Pst.add To Pen.add

BOOT"filename"

DOPEN#file#,"filename" [.Lrecord length] [,W]

DCLOSE#file#

RECORD#file#,record number [,offset]

OPENfile#,8,channel#,"0:filename,file

type, direction"

aOSEfile#

"P" + CHR$(channel#) + CHR$(<record#)

+ CHR$(>record#) + CHR$(offset)

PRINT#file#,data list

GET#file#,variable list

INPUT#file#,variable list

123

DIRECT ACCESS COMMANDS

BLOCK-ALLOCATE

BLOCK-EXECUTE

BLOCK-FREE

BUFFER-POINTER

BLOCK-READ

BLOCK-WRITE

MEMORY-EXECUTE

MEMORY-READ

MEMORY-WRITE

USER

UTILITY LOADER

"B-A";0;track#;sector#

"B-E";channel#;0;track#;sector#

"B-F";0;track#;sector#

"B-P";channel#;byte

"Ul";channel#;0;track;sector#

"U2";channel#;0;track#;sector#

"M-E"CHR$(<address)CHR$(>address)

uM-R"CHR$(<address)CHR$(>address)CHR$(# of bytes)

"M-W"CHR$(<address)CHR$(>address)CHR$(# of bytes)

CHR$(databyte)...

"Ucharacter"

"&0:file name"

FOR MORE DETAILED DESCRIPTIONS OF THESE COMMANDS,

CONSULT YOUR COMPUTER'S USER'S GUIDE.

124

APPENDIX E

SPECIFICATIONS OF THE 1581 DISK DRIVE

STORAGE

Total unformatted capacity 1 Megabyte

Total formatted capacity 808,960 bytes

Maximum Sequential file size 802,640 bytes

Maximum Relative file size ~ 800K

Records per file 65535

Files per diskette 296

Cylinders per diskette 80

Logical sectors per cylinder 40 (0-39)

Physical sectors per cylinder 20 (1-20)

Free blocks per disk 3160

Logical bytes per sector 256

Physical bytes per sector 512

INTEGRATED CIRCUIT CHIPS USED

6502A microprocessor
8520A I/O

23256 32K bytes ROM

4364 8K bytes RAM

WD177X Floppy Disk Controller

PHYSICAL DIMENSIONS

Height

Width

Depth

Weight

ELECTRICAL REQUIREMENTS

Voltage

Frequency

Power used

North America

Europe/Australia

North America

Europe/Australia

63 mm

140 mm

230 mm

14 kg

100-120 VAC

220-240 VAC

60 Hz

50 Hz

10 Watts

MEDIA

Any good quality 3.5 inch double-sided diskette may be used.

125

APPENDIX F

SERIAL INTERFACE INFORMATION

The Serial Interface consists of two 6-pin DIN Female Connectors

on each drive. The second connector is for daisy chaining to other

drives and/or peripherals. The voltage interface is a serial interface at

TIL levels.

There are three types of operation over a serial bus—Control,

Talk, and Listen. The host is the controller and initiates all protocol on

the serial bus. The host requests the peripheral to listen or talk (if the

peripheral is capable of talking as disk drive). All devices connected to

the serial bus receive data transmitted over the bus. To allow the host

to route its data to an intended destination, each device has a bus

address (known as device number). Disk drive's device addresses are

normally 8-11.

Data and control signals as follows:

Pin No.

Pinl

Pin 2

Pin 3

Pin 4

Pin 5

Pin 6

Signal Direction

SRQ in/out

(Service

Request)

GND

(Ground)

ATN in

(Attention)

CLK in/out

(Clock)

DATA in/out

RESET

Description

Used by fast serial bus as a bi-

direction fast clock line. Unused by

the slow serial bus.

Logic ground

The host brings this signal low

which then generates an interrupt

on the controller board. The atten

tion sequence is followed by a de

vice address. If the device does not

respond within a preset time the

host will assume the device ad

dressed is not on the bus.

This signal is used for timing the

data sent on slow serial bus (soft

ware clocked).

Data on the serial bus is transmit

ted one bit at a time (software tog

gled in slow mode, hardware tog

gled in fast mode).

This line will reset the peripheral

upon host reset.

127

The 6-pin DIN connector looks like (from outside):

In detail, the 1581 serial bus supports the newer FAST serial com

munication as well as standard (SLOW) serial communication.

The important difference between the FAST serial bus and the

SLOW serial bus is the incorporation of the hardware controlled lines

for the CLOCK and DATA lines. Fast serial communication is transpar

ent to any peripheral connected to the serial bus that does not contain

the necessary hardware or software to talk at fast speed.

To remain compatible with the SLOW serial bus all bytes sent un

der attention are sent slow.

128

COMMODORE:
Commodore Business Machines, Inc.

1200 Wilson Drive. Wes! Chester. PA 19380

Commodore Business Machines. Lid.

3470 Pharmacy Avenue • Agmcouri, Oniano. M1W3G3

Pnnled m Taiwan

P N:319928-0l 41A048001

