
COMMODORE ~ 7/ ~
DISK DRIVE

users guide

-

Important Note on COpy A DISK (page 34)

COpy A DISK function from the Main Menu of the DOS
Shell is used to backup all the files from a diskette. COPY A
DISK can be used to duplicate both formatted and
unformatted disks on a double drive, or copy information on
new (unformatted) diskettes on a single drive.

However, with a single drive and a previously-formatted disk,
COpy A DISK cannot be used. Here are two alternative
methods to copy information onto formatted disks:

(1) Use the COPY FILES function from the Main Menu of the
DOS Shell. When choosing the files that are to be copied,
select every file on the disk.

(2) The 1571 Test/Demo Disk contains a file specifically
designed to backup single sided disks. When in
C64 mode, load the program SD.BACKUP.C64. For detailed
information on how to use this program, load and run the HOW
TO USE file, also on the Test/Demo disk.

Disk Drive
User's Guide

1571

©Commodore Electronics, Ltd. 1985. All rights reserved

The infonnation in this manual has been reviewed and is believed to be entirely reliable.
No responsibility, however, is assumed for inaccuracies. The material in this manual is
for infonnation purposes only, and may be changed without notice.

© Commodore Electronics Ltd., June 1985

.. All rights reserved. "

CONTENTS

INTRODUCTION •• 1

I PART ONE: BASIC OPERATING INFORMATION I
CHAPTER 1: HOW TO UNPACK, SET UP AND BEGIN USING THE 1571 •••• 3

step-by-step instructions ••• 3
troubleshooting guide •• .' ••• 5
simple maintenance tips ••••••••••••••• ' ••••••••••••••••••••••••••• 6
inserting a diskette •• 6
diskette care ••• 7
using pre-programmed (software) diskettes ••••••••••••••••••••••••• 8
how to prepare a new diskette •••••••••••••••••••••••••••••••••••• 9
diskette directory •• 10
selective directories •••••.•••••••.••••••••••••••••••••••••••••••• 11
printing a directory •• 11
pattern matcbing ••••••••••••••••.•••••.••••••••••••••••••••.•• 11
splat files ... 12

CHAPTER 2: BASIC 2.0 COMMANDS ••••••••••••••••••••••••••••••••••• 13
error checking ••• 13
BASIC hints •• 14
save •• 15
save with replace ••• 15
verii)' •• 16
scratch ••• 17
more about scratch ••• 18
rename •••••••••••••••••••••••••••••••••• · ••••••••••••••••••••• 19
renaming and scratching troublesome files (advanced users) •••••••••• 20
copy ••• 20
validate ••• 22
initializing •• 22

CHAPTER 3: BASIC 7.0 COMMANDS ••••••••••••••••••••••••••••••••••• 24
error checking ••• U
save •••••••••••••• · •• 24
save with replace ••• 25
dverify ••• 26
copy •••••••••••••••.••• 26
concat ••• ~27
scratch ••• 27
more about scratch ••••••••••••••••••••••.•••••••••••••••••••••• 28
rename ••• 29
renaming and scratching troublesome files (advanced users) •••••••••• 29
coDect •• 30
initialize •• 31

CHAPTER 4: DOS SHELL ••• 32
language selection ••••••••••••••••••••••••••••••••••••.••••••••• 32
primary menu screen ••• 32
disk/printer setup .•••••••••••••••••••••••••.•••••••••••••••••.• 32
run a program ••• 33
format a disk ••••.••••••••••••••••••.•••.••••••••••••••.••••••• 33
cleanup a disk ••••••••••••••••••••••••••••••••••••••.•••••••••• 34
copy a disk •• 34
copy files ••.•••• 34
delete files •••.•••• 35
restore files ••••••.•••••••••••••••••••••••••••••••••••••••.••.• 35
rename files ••••••••••••••••••••••••••••••••.•••••••••••••.•••• 36
reorder directory .•••••••••••••••.••.••••••••••••••••••••••..•. 36

I PART TWO: ADVANCED OPERATION AND PROGRAMMING I
CHAPTER 5: SEQUENTIAL DATA FILES •••••••••••••••••••.•••••.••••• 37

the concept of files ••• 37
opening a file ••••••••••••••••••••••.••••••••••••••••.•••••••••• 37
adding to a sequential file ••••••••••.••.••.•.•••••••••.•••••••••• 41
writing file data: using print# ••••••••••••••••••••••••••.••••.••• 41
closing a file •••.••• 43
reading file data: using input# •••••••••••••••.••••••••••••••••••• 44
more about input# (advanced users) •••••••••••••••••••••••••••••• 45
numeric data storage on diskette ••••••••••••••••••••••.••••••••.• 46
reading file data: using get# ••••••••••••••••.••••••••••••••••••.• 47
demonstration of sequential files •••••••••••.•••••••••.••.•.•••••••• 49

CHAPTER 6: RELATIVE DATA FILES •••••••••••••••••••••••••••••••••• 51
the value of relative access. ~ •••••••••••••••••••••••••••••••••••.• 51
files, records, and fields ••••••••••••••••••••••••••••••••••••.•••• 51
file limits •••••••.••••••••••••••••••••••••••••••••••.•••••••••• 52
creating a relative file ••• 52
using relative files: record# command ••••••••••••••••••••••••••••• 53
completing relative file creation •••••••••••••.••••••••••••••.••••• 55
expanding a relative file ••••••••••••••••••••.••••••••••••••••••.• 57
writing relative file data ••• 57
designing a relative record ••••••••••••••••••••••••••••••••.••••. 57
writing the record .•••••••••••••••••.••••••••••••••••••••••••••• 58
reading a relative record •• 62
the value of index files (advanced users) ••••••••••••••••••••••••.•• 64

CHAPTER 7: DIRECT ACCESS COMMANDS •••••••••••••••• ~ ••••••••••• 65
a tool for advanced users .. 65
diskette organization ... 6S
opening a data channel for direct access ••••••.•.•••••••••••••••••• 66
block-read •• 66
block-write ••••••••••••••••.••••••••••••••••••••••••••••••••••• 67
the original block-read and block-write commands (expert users) •••••• 68
the butTer pointer •• 69
allocating blocks ••••••••••••••••••••••••••••••••••••.•••••••••• 70
freeing blocks ... 71
using random files (advanced users) ••••••••••••••••••••••••••••••• 72

CHAPTER 8: INTERNAL DISK COMMANDS •••••••••••••••••••••••••••• 73
memory-read •• 74
memory-write ... 75
memory-execute ••••.•• 76
block-execute •••••••••••••••••••••••••••••.•••••••••••••••••••• 77
user commands •• 78
utility loader .. 79

CHAPTER 9: MACHINE LANGUAGE PROGRAMS •••••••••.••••••••••••• 80
disk-related kemal subroutines •••••••••••••••••••••••••••••••••• 80

APPENDICES:
A: changing the device number •••••••••••••••••••••••••••••••••• 81
B: error messages •• 82
C: diskette formats ••• 86
D: disk command quick reference chart 93
E: specifications of the 1571 disk drive •••••••••••••••••••••••••••• 95
F: serial interface information ••••••••••••••••••••••••••••••••••• 97

INTRODUCTION

MAIN OPERATING FEATURES

The 1571 is a versatile disk drive that handles multiple disk formats and data transfer
rates. Disk formats range from single-sided, single-density to double-sided, double
density. The 1571 can be used with a variety of computers, including the Commodore
128, the Commodore 64, the Plus 4, C16, and VIC 20.

When used with the Commodore 128 Personal Computer, the 1571 offers the
following features:

• Standard and fast serial data transfer rates-The 1571 automatically selects the
proper data transfer rate (fast or slow) to match the three operating modes
available on the Commodore 128 computer (C128 mode, C64 mode, and CP/M
mode).

• Ability to read and write in double-density MFM format-This allows access to
the CP/M software libraries of other personal computers.

• Double-sided, double-density data recording-Provides up to 336K storage ca
pacity per disk (l68K per side).

When used with the Commodore 64 computer, the 1571 disk drive supports the
standard single-density GCR format disks used with the Commodore 1541, 1551,4040,
and 2031 disk drives.

NOTE

CP/M disks are included in Commodore 128
carton; CP/M operating information is pre
sented in the Commodore 128 user manuals.

HOW THIS GUIDE IS ORGANIZED

This guide is divided into two main parts and seven appendices, as described below:

PART ONE: BASIC OPERATING INFORMATION-includes all the information
needed by novices and advanced users to set up and begin using the Commodore
1571 disk drive. PART ONE is subdivided into four chapters:

• Chapte~ 1 tells you how to use disk software programs that you buy, like Perfect
Writer® and Jane®. These pre-written programs help you perform a variety of
activities in fields such as business, education, finance, science, and recreation. If
you're interested only in loading and running pre-packaged disk programs, you
need read no further than this chapter. If you are also interested in saving, loading,
and running your own programs, you will want to read the remainder of the guide.

• Chapter 2 describes the use of the BASIC 2.0 disk commands with the Commo
dore 64 and Commodore 128 computers.

• Chapter 3 describes the use of the BASIC 7.0 disk commands with the Commo
dore 128.

• Chapter 4 describes the use of the DOS Shell program, which provides you with a
convenient alternative way to execute disk drive commands. The DOS Shell is
included on the 1571 test/demo diskette supplied with your disk drive.

PART TWO: ADVANCED OPERATION AND PROGRAMMING-is primarily
intended for users familiar with computer programming. PART TWO is subdivided into
five chapters:

• Chapter 5 discusses the concept of data files, defines sequential data files, and
describes how sequential data files are created and used on disk.

• Chapter 6 defines the differences between sequential and relative data files, and
describes how relative data files are created and used on disk.

• Chapter 7 describes direct access disk commands as a tool for advanced users and
illustrates their use.

• Chapter 8 centers on internal disk commands. Before using these advanced
commands, you should know how to program a 6502 chip in machine language
and have access to a good memory map of the 1571.

• Chapter 9 provides a list of disk-related kernal ROM subroutines and gives a
practical example of their use in a program.

APPENDICES A THROUGH F-provide detailed reference information.

2

PART ONE:
BASIC OPERATING INFORMATION

CHAPTER 1
HOW TO UNPACK, SET UP AND BEGIN USING THE 1571

STEp·BY ·STEP INSTRUCTIONS

1. Inspect the shipping carton for damage.
If you find any damage to the shipping carton and suspect that the disk drive may have
been affected, contact your dealer.

2. Check the contents of the shipping carton.
Packed with the 1571 and this book, you should find the following: 3-prong electrical
power cord, interface cable, Test/Demo diskette, and a warranty card to be filled out
and returned to Commodore.

3. Remove the cardboard shipping spacer from the disk drive.
The spacer is there to protect the inside of the drive during shipping. To remove it,
rotate the lever on the front of the drive counter-clockwise (see Figure 1) and pull out
the spacer.

Figure 1. Front of 1571 Disk Drive

POWER DRIVE

LEVER FOR CLOSING DRIVE.

3

4. Connect the power cord.
Check the ON/OFF switch on the back of the drive (see Figure 2) and make sure it's
OFF. Connect the cord where indicated in Figure 2. Plug the other end into a grounded
(3-prong) outlet. Don't tum the power on yet.

Figure 2. Connection of Power Cord and Interface Cables to 1571

GROUNDED
POWER
OUTLET

SERIAL PORT
CONNECTORS

FOR
INTERFACE

CABLES

4

ON/OFF
SWITCH

DIP SWITCHES
FOR CHANGING

DEVICE
NUMBER

5. Connect the interface cable.
Make sure your computer and any other peripherals are OFF. Plug either end of the
interface cable into either interface port on the back of the drive (see Figure 2). Plug
the other end of the cable into the back of the computer. If you have another peripheral
(printer or extra drive), plug its interface cable into the remaining interface port on the
drive.

6. Tum ON the power.
With everything hooked up and the drive empty, you can tum on the power to the
peripherals in any order, but tum on the power to the computer last. When everything
is on, the drive goes through a self test. If all is well, the green light will flash once and
the red power-on light will glow continuously. If the green light continues to flash,
there may be a problem. Refer to the Troubleshooting Guide.

TROUBLESHOOTING GUIDE

Problem

Red power-on
indicator not
lit

Green drive light flashing

Programs won't load and the
computer says "DEVICE
NOT PRESENT ERROR"

Programs won't load, but
the computer and disk drive
give no error message

Possible Cause

Power not ON

Power cable not
plugged in

Power off to wall outlet

Drive failing its self test

Interface cable not well
connected or drive not ON

Another part of the system
may be interfering

5

Solution

Make sure ON/OFF switch
is ON

Check both ends of power
cable to be sure they are
fully inserted

Replace fuse or reset circuit
breaker in house

Tum the system off for a
moment then try again. If
the light still flashes, tum
the drive off and on again
with the interface cable
disconnected. If the problem
persists, contact your dealer.
If unplugging the interface
cable made a difference,
make sure the cable is
properly connected. If that
doesn't work, the problem is
probably in the cable itself
or somewhere else in the
system

Be sure the cable is properly
connected and the drive
is ON

Unplug all other machines
on the computer. If that
cures it, plug them in one at
a time. The one just added
when the trouble repeats is
most likely the problem

Trying to load a machine
language program into
BASIC space will cause this
problem

TROUBLESHOOTING GUIDE (continued)

Problem

Programs won't load and
green drive light flashes

Possible Cause

Disk error

Solution

Check the error channel to
determine the error, then
follow the advice in
Appendix B to correct it.
The error channel is
explained in Chapters 2 and 3

(Be sure to spell program names correctly and include the exact punctuation when loading the
programs)

Your programs load OK, but
commercial programs and
those from other 1571 s don't

Your programs that used to
load, won't anymore, but
programs saved on newly
formatted diskettes will

Either the diskette is faulty,
or your disk drive is
misaligned

Older diskettes have
been damaged

The disk drive has gone out
of alignment

SIMPLE MAINTENANCE TIPS

1. Keep the drive well ventilated.

Try another copy of the
program. If several
programs from several
sources fail to load, have
your dealer align your disk
drive

See the safety tips for
diskettes in the next section.
Recopy from backups

Have your dealer align
your disk drive

A couple of inches of space to allow air circulation on all sides will prevent heat from
building up inside the drive.

2. Use Commodore diskettes.
Badly-made diskettes can cause increased wear on the drive's read/write head. If
you're using a diskette that is unusually noisy, it could be causing added wear and
should be replaced.

3. The 1571 should be cleaned once a year in normal use.
Several items are likely to need attention: the two read/write heads may need cleaning
(with 91 % isopropyl alcohol on a cotton swab). The rails along which the head moves
may need lubrication (with a special molybdenum lubricant, not oil), and the write
protect sensor may need to be dusted. Since these chores require special materials or
parts, it is best to leave the work to an authorized Commodore service center. If you
want to do the work yourself, ask your dealer for the appropriate materials. IMPOR
TANT: Home repair of the 1571 will void your warranty.

INSERTING A DISKETTE

To insert a diskette, first open the drive door by rotating the door lever counter
clockwise one quarter tum until it stops, with the lever parallel to the horizontal slot in the
front of the drive.

Grasp the diskette by the side opposite the large oval access slot, and hold it with the
label up and the write-protect notch to the left (See Figure 3). Now insert the diskette by
pushing it straight into the slot, the access slot going in first and the label last. Be sure the
diskette goes in until it stops naturally. You shouldn't have to force or bend it to get it in.

6

NOTE: When the write/protect notch is covered by tape, the contents of the
diskette cannot be altered or added to. That prevents accidental erasing of infonna
tion you want to preserve. If a diskette comes without a write/protect notch, the
contents of that diskette were not meant to be altered.

Blank diskettes may not have a label on them when you purchase them.

With the diskette in position, seat it properly for use by twisting the door lever
clockwise one-quarter turn until it stops vertically over the slot. Warning: If it doesn't
move easily, stop. You may have put the diskette in the wrong way, or incompletely. If
that happens, reposition the diskette until the door lever closes easily.

= = c::J

OVAL ACCESS
SLOT

WRITE PROTECT NOTCH.
SOMETIMES COVERED WITH TAPE

Figure 3. Inserting a Diskette

DISKETTE CARE

1. Don't touch the exposed parts of a diskette.
That includes the access slot and the center hub (the hole in the middle).

2. Don't bend a diskette.
They're called floppy diskettes, but they're not supposed to be flopped.

3. Keep the diskettes (and disk drive) away from magnets.
That includes the electromagnets in telephones, televisions, desk lamps, and calculator
cords. Keep smoke, moisture, dust, and food off the diskettes. Store diskettes upright
in their paper jackets.

4. Buy diskettes with reinforced hubs.
Although the drive usually centers a diskette correctly, it would be difficult to rescue
data from a diskette recorded with its hub off-center. Reinforced hubs make it easier
for the drive to center a diskette.

S. Remove a diskette before turning the drive off.
If you don't, you might lose part or all the data on the diskette.

6. Don't remove a diskette from the drive while the green light is glowing.
That light glows when the drive is in use. If you remove the diskette then, you might
lose the infonnation currently being written to the diskette.

7

USING PRE·PROGRAMMED (SOFfW ARE) DISKETTES

Your software user's guide should list the procedure for loading the program into
your computer. Nevertheless, we've included the following procedure as a general guide.
You'll also use this procedure to load programs or files from your own diskettes. For
purposes of demonstration, use the Test/Demo diskette included with the disk drive.

1. Tum on system.
2. Insert diskette.
3. If you are using a VIC 20, Commodore 64, or a Commodore 128 computer in C64

mode, type: LOAD "HOW TO USE" ,8
If you are using a Plusl4 or Commodore 128 in C128 mode, type: DLOAD "HOW TO
USE"

4. Press the RETURN key.
5. The following will then appear on the screen:

SEARCHING FOR 0: HOW TO USE
LOADIl'IG

READY

I

6. Type: RUN
7. Press the RETURN key.

IMPORTANT NOTE

Throughout this manual, when the format for a command is given, it will
follow a particular style. Anything that is capitalized must be typed in exactly as it
is shown (these commands are listed in capital letters for style purposes, DO NOT
use the SHIFT key when entering these commands). Anything in lower case is
more or less a definition of what belongs there. Anything in brackets is optional.

For instance, in the format for the HEADER command given on the following
page, the word HEADER, the capital I in lid, the capital D in Ddrive#, and the
capital U in Udevice# must all be typed in as is (Ddrive# and Udevice# are
optional).

On the other hand, diskette name tells you that you must enter a name for the
diskette, but it is up to you to decide what that name will be. Also, the id in lid is
left to your discretion, as is the device# in Udevice#. The drive# in Ddrive# is
always 0 on the 1571, but could be 0 or 1 on a dual disk drive. Be aware, however,
that there are certain limits placed on what you can use. In each case, those limits
are explained immediately following the format (for instance, the diskette name
cannot be more than sixteen characters and the device# is usually 8).

Also be sure to type in all punctuation exactly where and how it is shown in
the format.

Finally, press the RETURN key at the end of each command.

8

To load a different program or file, simply substitute its name in place of HOW TO
USE inside the quotation marks. NOTE: The HOW TO USE program is the key to the
TestlDemo diskette. When you LOAD and RUN it, it provides instructions for using the
rest of the programs on the diskette. To find out what programs are on your Test/Demo
diskette, refer to the section entitled "DIRECfORIES" later in this chapter.

If a program doesn't load or run properly using the above method, it may be that it is
a machine language program. But unless you'll be doing advanced programming, you
need not know anything about machine language. A program's user's guide should tell
you if it is written in machine language. If it is, or if you are having trouble loading a
particular program, simply add a ,I (comma and number I) at the end of the command.

HOW TO PREPARE A NEW DISKETTE

A diskette needs a pattern of magnetic grooves in order for the drive's read/write
head to find things on it. This pattern is not on your diskettes when you buy them, but you
can use the HEADER command or the NEW command to add it to a diskette. That is
known as formatting the disk. This is the command to use with the CI28 in CI28 mode or
Plusl4:

HEADER "diskette name" lid, Ddrive# [,Udevice#]

Where:
"diskette name" is any desired name for the diskette, up to 16 characters long (including
spaces). "id" can be any two characters as long as they don't form a BASIC keyword
(such as IF or ON) either on their own or with the capital I before them. "drive#" is 0 .
"device# is 8, unless you have changed it as per instructions in Appendix A (the 1571
assumes 8 even if you don't type it in).

The command for the C64, VIC 20, or CI28 in C64 mode is this:

OPEN 15,device#, 15, "NEWdrive#:diskette name,id"
CWSE 15

The device#, drive#, diskette name, and id are the same as described above.
The OPEN command is explained in the next chapter. For now, just copy it as is.

NOTE TO ADVANCED USERS

If you want to use variables for the diskette name or id, the format is as follows:

C128, Plusl4: HEADER (A$),I(B$),DO

C64: OPEN 15,8,15:PRINT#15,"NO:"+A$+B$:CLOSE15

Where:

A$ contains the diskette name (16 character limit)
B$ contains the id (2 characters long)

9

After you format a particular diskette, you can reformat it at any time. You can
change its name and erase its files faster by omitting the id number in the HEADER
command.

DISKETTE DIRECTORY

A directory is a list of the files on a diskette. To load the directory on the C128 or
Plus/4, type the word DIRECTORY on a blank line and press the RETURN key or simply
press the F3 key on the C128. That doesn't erase anything in memory, so you can call up a
directory anytime-even from within a program. The C64 directory command, LOAD
"$" ,8 (press RETURN) LIST (press RETURN), does erase what's in memory.

If a directory doesn't all fit on the screen, it will scroll up until it reaches the last line.
If you want to pause, stop, or slow down the scrolling, refer to your particular computer's
user's manual for instructions as to which keys to use.

To get an idea of what a directory looks like, load the directory from the Test/Demo
diskette.

The 0 on the left-hand side of the top line is the drive number of the 1571 (on a dual
disk drive it could be 0 or 1). The diskette name is next, followed by the diskette id-both
of which are determined when the diskette is formatted.

The 2A at the end of the top line means the 1571 uses Version 2A of Commodore's
disk operating system (DOS).

Each of the remaining lines provides three pieces of information about the files on the
diskette. At the left end of each line is the size of the file in blocks of 254 characters. Four
blocks are equivalent to almost lK of memory inside the computer. The middle of the line
contains the name of the file enclosed in quotation marks. All characters within the
quotation marks are part of the filename. The right side of each line contains a three-letter
abbreviation of the file type. The types of files are described in later chapters.

TYPES OF FILES

PRO-Program
SEQ-Sequential
REL-Relative
USR-User
DEL-Deleted (you won't see this type)

Note: Direct Access files, also called Random files, do not automatically appear in
the directory. They are covered in Chapter 7.

The bottom line of a directory shows how many blocks are available for use. This
number ranges from 664 (in 1541 mode) and 1328 (in 1571 mode) on a newly formatted
diskette to 0 on one that is completely full.

10

SELECTIVE DIRECTORIES

By altering the directory LOAD command, you can create a kind of "sub-directory"
that lists a single selected type of file. For example, you could request a list of all
sequential data files (Chapter 5), or one of all the relative data files (Chapter 6). The
format for this command is:

LOAD"$O:pattern = filetype" ,8 (for the C64)

where pattern specifies a particular group of files, and filetype is the one-letter abbrevia
tion for the types of files listed below:

P = Program
S = Sequential
R = Relative
U = User

The command for the C128 and Plus/4 is this: DIRECTORY"pattern = filetype"

Some examples:

LOAD"$O:* = R",8 and DlRECTORY"* = R" display all relative files.

LOAD"$O:Z*=R",8 and DlRECTORY"Z*=R" display a sub-directory consist
ing of all relative files that start with the letter Z (the asterisk (*) is explained in the
section entitled "Pattern Matching."

PRINTING A DIRECTORY

To get a printout of a directory, use the following:

LOAD"$",8
OPEN4,4:CMD4:LIST
PRINT#4:CLOSE4

PATTERN MATCHING

You can use special pattern-matching characters to load a program from a partial
name or to provide the selective directories described earlier.

The two characters used in pattern matching are the asterisk (*) and the question
mark (?). They act something like a wild card in a game of cards. The difference between
the two is that the asterisk makes all characters in and beyond its position wild, while the
question mark makes only its own position wild. Here are some examples and their
results:

LOAD "A*",8 loads the first file on disk that begins with an A, regardless of what
follows

II

DLOAD"SM?TH" loads the first file that starts with SM, ends with TH, and one
other character between

DIRECTORY"Q*" loads a directory of files whose names begin with Q

LOAD"*",8 is a special case. When an asterisk is used alone as a name, it matches
the last file used (on the C64 and C128 in C64 mode).

LOAD "0:*",8 loads the first file on the diskette (C64 and C128 in C64 mode).

DLOAD "*,, loads the first file on the diskette (Plus/4 and C128 in C128 mode).

SPLAT FILES

One indicator you may occasionally notice on a directory line, after you begin saving
programs and files, is an asterisk appearing just before the file type of a file that is 0
blocks long. This indicates the file was not properly closed after it was created, and that it
should not be relied upon. These "splat" files normally need to be erased from the
diskette and rewritten. However, do not use the SCRATCH command to get rid of them.
They can only be safely erased by the VALIDATE or COLLECT commands. One of
these should normally be used whenever a splat file is noticed on a diskette. All of these
commands are described in the following chapters.

There are two exceptions to the above warning: one is that VALIDATE and
COLLECT cannot be used on some diskettes that include direct access (random) files
(Chapter 7). The other is that if the information in the splat file was crucial and can't be
replaced, there is a way to rescue whatever part of the file was properly written. This
option is described in the next chapter.

12

CHAPTER 2
BASIC 2.0 COMMANDS

This chapter describes the disk commands used with the VIC 20, Commodore 64 or
the Commodore 128 computer in C64 mode. These are Basic 2.0 commands.

You send command data to the drive through something called the command
channel. The first step is to open the channel with the following command:

OPENI5,8,15

The first 15 is a file number or channel number. Although it could be any number
from 1 to 255, we'll use 15 because it is used to match the secondary address of 15, which
is the address of the command channel. The middle number is the primary address, better
known as the device number. It is usually 8, unless you change it (see Appendix A).

Once the channel has been opened, use the PRINT# command to send information
to the disk drive and the INPUT# command to receive information from the drive. You
must close the channel with the CLOSE15 command.

The following examples show the use of the command channel to NEW an unformat
ted disk:

OPENI5,8,15
PRINT# 15, "NEWdrive#:diskname,id"
CLOSE15

You can combine the first two statements and abbreviate the NEW command like
this:

OPENI5,8, 15, "Ndrive# :diskname,id"

If the command channel is already open, you must use the following format (trying to
open a channel that is already open results in a "FILE OPEN" error):

PRINT#15, "Ndrive#:diskname,id"

ERROR CHECKING

In Basic 2.0, when the green drive light flashes, you must write a small program to
find out what the error is. This causes you to lose any program variables already in
memory. The following is the error check program:

10 OPENI5,8,15
20 INPUT#15,EN,EM$,ET,ES
30 PRINT EN, EM$,ET ,ES
40 CLOSE15

This little program reads the error channel into four BASIC variables (described
below), and prints the results on the screen. A message is displayed whether there is an

13

error or not, but if there was an error, the program clears it from disk memory and turns
off the error light on the disk drive.

Once the message is on the screen, you can look it up in Appendix B to see what it
means, and what to do about it.

For those of you who are writing programs, the following is a small error-checking
subroutine you can include in your programs:

59980 REM READ ERROR CHANNEL
59990INPUT#15,EN,EM$,ET,ES
60000 IF EN> 1 THEN PRINT EN ,EM$,ET ,ES:STOP
60010 RETURN

This assumes file 15 was opened earlier in the program, and that it will be closed at
the end of the program.

The subroutine reads the error channel and puts the results into the named varia
bles-EN (Error Number), EM$ (Error Message), ET (Error Track), and ES (Error
Sector). Of the four, only EM$ has to be a string. You could choose other variable names,
although these have become traditional for this use.

Two error numbers are harmless--O means everything is OK, and 1 tells how many
files were erased by a SCRATCH command (described later in this chapter). If the error
status is anything else, line 60000 prints the error message and halts the program.

Because this is a subroutine, you access it with the BASIC GOSUB command, either
in immediate mode or from a program. The RETURN statement in line 60010 will jump
back to immediate mode or the next statement in your program, whichever is appropriate.

BASIcmNTS

Hint #1: It is best to open file 15 once at the very start of a program, and only close it at
the end of the program, after all other files have already been closed. By opening it once at
the start, the file is open whenever needed for disk commands elsewhere in the program.

Hint #2: If BASIC halts with an error when you have files open, BASIC aborts them
without closing them properly on the disk. To close them properly on the disk, you must
type:

CLOSE 15:0PEN 15,8,15,"I":CLOSE 15

This opens the command channel and immediately closes it, along with all other disk
files. Failure to close a disk file properly both in BASIC and on the disk may result in
losing the entire file.

Hint #3: One disk error message is not always an error. Error 73, "CBM DOS 3.0
1571" will appear if you read the disk error channel before sending any disk commands
when you turn on your computer. This is a handy way to check which version of DOS you
are using. However, if this message appears later, after other disk commands, it means
there is a mismatch between the DOS used to format your diskette and the DOS in your
drive. DOS is Disk Operating System.

14

Hint #4: To reset drive, type: OPEN 15,S,15, "UJ":CLOSE IS. This also applies to
sending a VI + or a UI.

SAVE

Use the SAVE command to preserve a program or file on a diskette for later use.
Before you can SAVE to diskette, the diskette must be formatted, as described

earlier.

FORMAT FOR THE SAVE COMMAND

SAVE "drive #:file name" ,device #

where "file name" is any string expression of up to 16 characters, preceded by the drive
number and a colon, and followed by the device number of the disk, normally S.

However, the SAVE command will not work in copying programs that are not in the
BASIC text area, such as "DOS 5.1" for the C64. To copy it and similar machine
language programs, you will need a machine-language monitor program.

FORMAT FOR A MONITOR SAVE

.S "drive #:file name" ,device #,starting address,ending address + 1

where "drive #:" is the drive number, 0 on the 1571; "file name" is any valid file name
up to 14 characters long (leaving two for the drive number and colon); "device #" is a
two digit device number, normally OS (the leading 0 is required); and the addresses to be
saved are given in Hexadecimal but without a leading dollar sign ($). Note the ending
address listed must be one location beyond the last location to be saved.

EXAMPLE:

Here is the required syntax to SA VE a copy of "DOS 5.1 "

.S "O:DOS 5. 1 ",08,CCOO,DOOO

SAVE WITH REPLACE OPTION

If a file already exists, it can't be saved again with the same name because the disk
drive only allows one copy of any given file name per diskette. It is possible to get around
this problem using the RENAME and SCRATCH commands described later. However, if
all you wish to do is replace a program or data file with a revised version, another
command is more convenient. Known as SAVE-WITH-REPLACE , or @SAVE, this
option tells the disk drive to replace any file it finds in the diskette directory with the same
name, substituting the new file for the old version.

15

FORMAT FOR SAVE WITH REPLACE:

SAVE "@Drive #:file name", device #

where all the parameters are as usual except for adding a leading "at" sign (@.) The
"drive #:" is required here.

EXAMPLE:

SA VE"@O:REVISED PROGRAM" ,8

The actual procedure is that the new version is saved completely, then the old version
is erased. Because it works this way, there is little danger a disaster such as having the
power going off midway through the process would destroy both the old and new copies
of the file. Nothing happens to the old copy until after the new copy is saved properly.

Caution-do not use @SAVE on an almost-full diskette. Only use it when you have
enough room on the diskette to hold a second complete copy of the program being
replaced. Due to the way @SAVE works, both the old and new versions of the file are on
disk simultaneously at one point, as a way of safeguarding against loss of the program. If
there is not enough room left on diskette to hold that second copy, only as much of the
new version will be saved as there is still room for. After the command executes, a look at
the directory will show the new version is present, but doesn't occupy enough blocks to
match the copy in memory. Unfortunately, the VERIFY command (see below) will not
detect this problem, because whatever was saved will have been saved properly.

VERIFY

Although not as necessary with a disk drive as with a cassette, BASIC's VERIFY
command can be used to make doubly certain that a program file was properly saved to
disk. It works much like the LOAD command, except that it only compares each character
in the program against the equivalent character in the computer's memory, instead of
actually being copied into memory.

If the disk copy of the program differs even a tiny bit from the copy in memory,
"VERIFY ERROR" will be displayed, to tell you that the copies differ. This doesn't
mean either copy is bad, but if they were supposed to be identical, there is a problem.

Naturally, there's no point in trying to VERIFY a disk copy of a program after the
original is no longer in memory. With nothing to compare to, an apparent error will
always be announced, even though the disk copy is always and automatically verified as it
is written to the diskette.

FORMAT FOR THE VERIFY COMMAND:

VERIFY "drive # :pattern" ,device # ,relocate flag

where "drive #:" is an optional drive number, "pattern" is any string expression that
evaluates to a file name, with or without pattern-matching characters, and "device #" is
the disk device number, normally 8. If the relocate flag is present and equals 1, the file
will be verified where originally saved, rather than relocated into the BASIC text area.

16

A useful alternate form of the command is:

VERIFY "*" ,device #

It verifies the last file used without having to type its name or drive number. However, it
won't work properly after SAVE-WITH-REPLACE, because the last file used was the
one deleted, and the drive will try to compare the deleted file to the program in memory.
No harm will result, but "VERIFY ERROR" will always be announced. To use VERIFY
after @SAVE, include at least part of the file name that is to be verified in the pattern.

One other note about VERIFY-when you VERIFY a relocated BASIC file, an error
will nearly always be announced, due to changes in the link pointers of BASIC programs
made during relocation. It is best to VERIFY files saved from the same type of machine,
and identical memory size. For example, a BASIC program saved from a Plus/4 can't be
verified easily with a C64, even when the program would work fine on both machines.
This shouldn't matter, as the only time you~ll be verifying files on machines other than the
one which wrote them is when you are comparing two disk files to see if they are the
same. This is done by loading one and verifying against the other, and can only be done
on the same machine and memory size as the one on which the files were first created.

SCRATCH

The SCRATCH command allows you to erase unwanted files and free the space they
occupied for use by other files. It can be used to erase either a single file or several files at
once via pattern-matching.

FORMAT FOR THE SCRATCH COMMAND:

PRINT#15, "SCRATCH0:pattern"

or abbreviate it as:

PRINT#15, "S0:pattern"

"pattern" can be any file name or combination of characters and wild-card characters. As
usual, it is assumed the command channel has already been opened as file 15. Although
not absolutely necessary, it is best to include the drive number in SCRATCH commands.

If you check the error channel after a SCRATCH command, the value for ET (error
track) will tell you how many files were scratched. For example, if your diskette contains
program files named "TEST;" "TRAIN," "TRUCK," and "TAIL," you may
SCRATCH all four, along with' any other files beginning with the letter' 'T , " by using the
command:

PRINT#15, 'SO:T*'

Then, to prove they are gone, you can type:

GOSUB 59990

17

to call the error checking subroutine given earlier in this chapter. If the four listed were the
only files beginning with "T", you will see:

OI,FILES SCRATCHED,04,DO

READY.

The "04" tells you 4 files were scratched.

MORE ABOUT SCRATCH

SCRATCH is a powerful command and should be used with caution to be sure you
delete only the files you really want erased. When using it with a pattern, we suggest you
first use the same pattern in a DIRECTORY command, to be sure exactly which files will
be deleted. That way you'll have no unpleasant surprises whenyou use the same pattern in
the SCRATCH command.

Recovering from a SCRATCH
If you accidentally SCRATCH a file you shouldn't have, there is still a chance of

saving it. Like BASIC's NEW command, SCRATCH doesn't really wipe out a file itself;
it merely clears the pointers to it in the diskette directory. There may be an "Unscratch"
program on your Test/Demo diskette.

NOTE: Hyou accidentally SCRATCH a file within the DOS SheD (see Chapter
4), you can unscratch it with the Shell's RESTORE FILES function.

More about Splats
Never scratch a splat file. These are files that show up in a directory listing with an

asterisk (*) just before the file type for an entry. The asterisk (or splat) means that file was
never properly closed, and thus there is no valid chain of sector links for the Scratch
command to follow in erasing the file.

If you SCRATCH such a file, odds are you will improperly free up sectors that are
still needed by other programs or files and cause permanent damage to those later when
you add more files to the diskette. If you find a splat file, or if you discover too late that
you have scratched such a file, immediately validate the diskette using the VALIDATE
command described later in this chapter. If you have added any files to the diskette since
scratching the splat file, it is best to immediately copy the entire diskette onto another
fresh diskette, but do this with a copy program rather than with a backup program.
Otherwise, the same problem will be recreated on the new diskette. When the new copy is
done, compare the number of blocks free in its directory to the number free on the original
diskette. If the numbers match, no damage has been done. If not, very likely at least one
file on the diskette has been corrupted, and all should be checked immediately.

18

Locked Files
Occasionally, a diskette will contain a locked file; one which cannot be erased with

the SCRATCH command. Such files may be recognized by the "<" character which
immediately follows the file type in their directory entry. If you wish to erase a locked
file, you will have to use a disk monitor to clear bit 6 of the file-type byte in the directory
entry on the diskette. Conversely, to lock a file, you would set bit 6 of the same byte.

RENAME

The RENAME command allows you to alter the name of a program or other file in the
diskette directory. Since only the directory is affected, RENAME works very quickly.

FORMAT FOR RENAME COMMAND:

PRINT#15,"RENAME0:new name = old name"

or it may be abbreviated as:

PRINT#15 ,"R0:new name = old name"

where "new name" is the name you want the file to have, and "old name" is the name it
has now. "new name" may be any valid file name, up to 16 characters in length. It is
assumed you have already opened file 15 to the command channel.

One caution-be sure the file you are renaming has been properly closed before you
rename it.

EXAMPLES:

Just before saving a new copy of a "calendar" program, you might type:

PRINT# 15,"R0:CALENDARIBACKUP = CALENDAR"

Or to move a program called "BOOT," currently the first program on a diskette to
someplace else in the directory, you might type:

PRINT#15, "R0:TEMP = BOOT"

followed by a COPY command (described later), which turns "TEMP" into a new copy
of "BOOT," and finishing with a SCRATCH command to get rid of the original copy of
"BOOT."

19

RENAMING AND SCRATCIllNG TROUBLESOME FILES
(ADVANCED USERS)

Eventually, you may run across a file which has an odd filename, such as a comma
by itself (.. ,") or one that includes a Shifted Space (a Shifted Space looks the same as a
regular space, but if a file with a space in its name won't load properly and all else is
correct, it's probably a Shifted Space). Or perhaps you will find one that includes
nonprinting characters. Any of these can be troublesome. Comma files, for instance, are
an exception to the rule that no two files can have the same name. Since it shouldn't be
possible to make a file whose name is only a comma, the disk never expects you to do it
again.

Files with a Shifted Space in their name can also be troublesome, because the disk
interprets the Shifted Space as signaling the end of the file name, and prints whatever
follows after the quotation mark that marks the end of a name in the directory. This
technique can be useful by allowing you to have a long file name, and making the disk
recognize a small part of it as being the same as the whole thing without using pattern
matching characters.

In any case, if you have a troublesome filename, you can use the CHR$() function to
specify troublesome characters without typing them directly. This may allow you to build
them into a RENAME command. If this fails, you may also use the pattern-matching
characters in a SCRATCH command. This gives you a way to specify the name without
using the troublesome characters at all, but also means loss of your file.

For example, if you have managed to create a file named MOVIES .. , with an
extra quotation mark at the front of the file name, you can rename it to "MOVIES" using
the CHR$O equivalent of a quotation mark in the RENAME command:

PRINT#15,"R0:MOVIES=" + CHR$(34) + "MOVIES"

The CHR$(34) forces a quotation mark into the command string without upsetting
BASIC. The procedure for a file name that includes a Shifted Space is similar, but uses
CHR$(160).

In cases where even this doesn't work, for example, if your diskette contains a
comma file, (one named", ..) you can get rid of it this way:

PRINT#15, "S0:?"

This example deletes all files with one character names.
Depending on the exact problem, you may have to be very creative in choosing

pattern-matching characters that will affect only the desired file, and may have to rename
other files first to keep them from being scratched.

In some cases, it may be easier to copy desired files to a different diskette and leave
the troublesome files behind.

COpy

The COPY command allows you to make a spare copy of any program or file on a
diskette. On a single drive like the 1571, the copy must be on the same diskette, which
means it must be given a different name from the file copied. It's also used to combine up

20

to four sequential data files (linking the files one to another, end to end in a chain). Files
are linked in the order in which they appear in the command. The source files and other
files on the diskette are not changed. Files must be closed before they are copied or linked.

FORMAT FOR THE COPY COMMAND

PRINT#IS,"COPYdrive #:new file = old file"

EXAMPLES:

PRINT# 1 S,"COPY0:BACKUP = ORIGINAL"

or abbreviated as

PRINT#IS,"Cdrive #:new file = old file"

PRINT#IS, "C0:BACKUP= ORIGINAL"

where "drive #" is the drive number "new file" is the copy and "old file" is the
original.

FORMAT FOR THE COMBINE OPTION

PRINT#IS,"Cdrive #:new file = file I ,file 2,file 3, file 4"

where "drive #" is always 0,

NOTE: The length of a command string (command and filenames) is limited to 41
characters.

EXAMPLES:

After renaming a file named "BOOT" to "TEMP" in the last section's example,
you can use the COPY command to make a spare copy of the program elsewhere on the
diskette, under the original name:

PRINT#IS, "C0:BOOT=TEMP"

After creating several small sequential files that fit easily in memory along with a
program we are using, you can use the concatenate option to combine them in a master
file, even if the result is too big to fit in memory. (Be sure it will fit in remaining space on
the diskette-it will be as big as the sum of the sizes of the files in it.)

PRINT# IS,' 'C0:A-Z = A-G,H-M,N-Z"

21

NOTE: Dual drives make fuller use of this command, copying programs from one diskette
to another in a single-disk unit. To do that on the 1571, check your TesUDemo diskette to
find the programs that you need or use the DOS Shell described in Chapter 4.

VALIDATE

The VALIDATE command recalculates the Block Availability Map (BAM) of the
current diskette, allocating only those sectors still being used by valid, properly-closed
files and programs. All other sectors (blocks) are left unallocated and free for re-use, and
all improperly closed files are automatically scratched. This brief description of its
workings doesn't indicate either the power or the danger of the VALIDATE command. Its
power is in restoring to good health many diskettes whose directories or block availability
maps have become muddled. Any time the blocks used by the files on a diskette plus the
blocks shown as free don't add up to the 664 (in 1541 mode) or 1328 (in 1571 mode)
available on a fresh diskette, VALIDATE is needed, with one exception below. Similarly,
any time a diskette contains an improperly-closed file (splat file), indicated by an asterisk
(*) next to its file type in the directory, that diskette needs to be validated. In fact, but for
the one exception, it is a good idea to VALIDATE diskettes whenever you are the least bit
concerned about their integrity.

The exception is diskettes containing Direct Access files, as described in Chapter 7.
Most direct access (random) files do not allocate their sectors in a way the VALIDATE
command can recognize. Thus, using VALIDATE on such a diskette may result in un
allocating all direct access files, with loss of all their contents when other files are added.
Unless specifically instructed otherwise, never use VALIDATE on a diskette containing
direct access files. (Note: these are not the same as the relative files described in Chapter
6. VALIDATE may be used on relative files without difficulty.)

FORMAT FOR THE VALIDATE COMMAND

PRINT#15 , "VALIDATE0"

or abbreviated as

PRINT#15,"V0"

where "0" is the drive number. As usual, it is II$sumed file IS has been opened to the
command channel and will be closed after the command has been executed.

EXAMPLE:

PRINT#15, "V0"

INITIALIZING

One command that should not often be needed on the 1571, but is still of occasional
value is INITIALIZE. On the 1571, and nearly all other Commodore drives, this function
is performed automatically, whenever a new diskette is inserted. (The optical write
protect switch is used to sense when a diskette is changed.)

22

The result of an INITIALIZE, whether forced by a command, or done automatically
by the disk, is a re-reading of the current diskette's BAM into a disk buffer. This
information must always be correct in order for the disk to store new files properly.
However, since the chore is handled automatically, the only time you'd need to use the com-

. mand is if something happened to make the information in the drive buffers unreliable.

FORMAT FOR THE INITIALIZE COMMAND EXAMPLE:

PRINT#15, "INITIALIZEdrive #" PRINT#15, "INITIALIZE 0"

or it may be abbreviated to

PRINT#15, "Idrive #" PRINT#15, "10"

where the command channel is assumed to be opened by file 15, and "drive #" is 0.

One use for Initialize is to keep a cleaning diskette spinning, if you choose to use
one. (There is no need to use such kits on any regular basis under normal conditions of
cleanliness and care.) Nonetheless, if you are using such a kit, the following short
program will keep the diskette spinning long enough for your need:

to OPEN 15,8,15
20FORI=1 TO 15
30 PRINT#15, "10"
40 NEXT I
50 CLOSE 15

It uses an Initialize loop to keep the drive motor on for about 20 seconds.

23

CHAPTER 3
BASIC 7.0 COMMANDS

This chapter describes the disk commands used with the Commodore 128 computer
(in C128 mode). This is BASIC 7.0, which includes BASIC 2.0, BASIC 3.5, and
BASIC 4.0 commands, all of which can be used.

ERROR CHECKING

When the drive light (green light) flashes, you must use the following command to
find out what the error is:

PRINT OS$

A message is displayed whether there is an error or not. If there was an error, this
command clears it from disk memory and turns off the error light on the disk drive.

Once the message is on the screen, you can look it up in Appendix B to see what it
means, and what to do about it.

For those of you who are writing programs, the following is a small error-checking
subroutine you can include in your programs:

59990 REM READ ERROR CHANNEL
60000 IF OS> 1 THEN PRINT OS$:STOP
60010 RETURN

The subroutine reads the error channel and puts the results into the reserved variables
OS and OS$. They are updated automatically by BASIC.

Two error numbers are harmless-O means everything is OK, and 1 tells how many
files were erased by a SCRATCH command (described later in this chapter). If the error
status is anything else, line 60000 prints the error message and halts the program.

Because this is a subroutine, you access it with the BASIC GOSUB command, either
in immediate mode or from a program. The RETURN statement in line 600 10 will jump
back to immediate mode or the next statement in your program, whichever is appropriate.

SAVE

This command will save a program or file so you can reuse it. The diskette must be
formatted before you can save it to that diskette.

FORMAT FOR THE SAVE COMMANO

OSAVE "file name" [,Ddrive#] [,Udevice#]

This command will not work in copying programs that are not written in BASIC. To
copy these machine language programs, you can use the BSA VE command or the built-in
Monitor S command.

24

FORMAT FOR THE BSA VE COMMAND

BSAVE "file name" [,Ddrive#] [,Udevice#] [Bbank#]
[,Pstarting address] [TO Pending address + 11

where the usual options are the same and bank# is one of the 16 banks of the C 128. The
addresses to be saved are given in decimal. Note that the ending address must be I
location beyond the last location to be saved.

To access a built-in monitor, type MONITOR. To exit a monitor, type X alone on a
line.

FORMAT FOR A MONITOR SAVE

.S"drive #:file name" ,device #,starting address,ending address + I

where "drive #:" is the drive number, 0 on the 1571; "file name" is any valid file name
up to 14 characters long (leaving 2 for the drive number and colon); "device #" is a two
digit device number, normally 08 on the 1571 (the leading 0 is required); and the
addresses to be saved are given in Hexadecimal (base 16,) but without a leading dollar
sign (for the Plusl4). On the C128, the addresses need not be in Hexidecimal. Note that
the ending address listed must be I location beyond the last location to be saved.

SAVE WITH REPLACE

If a file already exists, it can't be saved again with the same name because the disk
drive allows only one copy of any given file name per diskette. It is possible to get around
this problem using the RENAME and SCRATCH commands described later in this
chapter. If all you wish to do is replace a program or data file with a revised version,
another command is more convenient. Known as SAVE WITH REPLACE, or @SAVE
this option tells the disk drive to replace any file it finds in the diskette. directory with the
same name, substituting the new file for the old version.

PORMAT FOR SA VB WITH REPLACE

DSA VB "@file name" [,Ddrive#] [,Udevice#]

The actual procedure is this-the new version is saved completely, then the old
version is scratched and its directory entry altered to point to the new version. Because it
worlcs this way, there is little danger a disaster such as having the power going off midway
through the process would destroy both the old and new copies of the file. Nothing
happens to the old copy until after the new copy is saved properly.

Caution-do not use @SAVE on an almost-full diskette. Only use it when you have
enough room on the diskette to hold a second complete copy of the program being
replaced. Due to the way @SAVE works, both the old and new versions of the file are on
disk simultaneously at one point, as a way of safeguarding against loss of the program. If
there is not enough room left on diskette to hold the second copy, only as much of the new

25

version will be saved as there is still room for. After the command is completed, a look at
a directory will show the new version is present, but doesn't occupy enough blocks to
match the copy in memory.

DVERIFY

This command makes a byte-by-byte comparison of the program currently in mem
ory against a program on diskette. This comparison includes the BASIC line links, which
may be different for different types of memory configurations. What this means is that a
program saved to disk on a C64 and reloaded into a Cl28 wouldn't verify properly
because the line links point to different memory locations. If the disk copy of the program
differs at all from the copy in memory, a "VERIFY ERROR" will be displayed. This
doesn't mean either copy is bad, but if they were supposed to be identical, there is a
problem.

FORMAT FOR THE DVERIFY COMMAND

DVERIFY "file name" [,Ddrive#] [,Udevice#] [relocate flag]

The following version of the command verifies a file that was just saved:

DVERIFY "*,,

This command won't work properly after SA VE-WiTH-REPLACE, because the last
file used was the one deleted and the drive will try to compare the deleted file to the
program in memory. No harm will result, but "VERIFY ERROR" will always be
announced. To use DVERIFY after@SAVE, include at least part ofthe file name that is
to be verified in the pattern.

COpy

The COPY command allows you to make a spare copy of any program or file on a
diskette. However, on a single drive like the 1571, the copy must be on the same diskette,
which means it must be given a different name from the file copied. The source file and
other files on the diskette are not changed. Files must be closed before they can be copied
or concatenated.

FORMAT FOR THE COpy COMMAND

COPY [Ddrive#,] "old file name" TO [Ddrive#,] "new file name" [,Udevice#]

Where both drive#s would be 0 if included.

26

NOTE: If you want to copy a file from one diskette to another, you cannot use the
COPY command. Instead, use the copy program on the Test/Demo diskette or the
DOS Shell (see Chapter 4).

CONCAT

The CONCAT command allows you to concatenate (combine) two sequential files.

FORMAT FOR THE CONCAT COMMAND

CONCAT [Ddrive#.] "add file" TO [Ddrive#.] "master file" [, Udevice#]

Where the optional drive# would be 0 in both cases. The old "master file" is
deleted and replaced with a new "master file" which is the concatenation of the old
"master file" and "add file".

NOTE: The length of a command string (command and filenames) is limited to 41
characters.

SCRATCH

The SCRATCH command allows you to erase unwanted programs and files from
your diskettes, and free up the space they occupied for use by other files and programs. It
can be used to erase either a single file, or several files at once via pattern-matching.

FORMAT FOR THE SCRATCH COMMAND

SCRATCH "pattern" [,Ddrive#] [,Udevice#]

Where, "pattern" is any valid file name or pattern-matching character.

You will be asked as a precaution:

ARE YOU SURE? •

If you ARE sure, simply press Y and RETURN. If not, press RETURN alone or type any
other answer, and the command will be canceled.

27

The number of files that were scratched will be automatically displayed. For exam
ple, if your diskette contains program files named "TEST," "TRAIN," "TRUCK," and
"TAIL," you may scratch all four, along with any other files beginning with the letter
"T," by using the command:

SCRATCH "T*"

and if the four listed were the only files beginning with "T", you will see:

01 ,FILES SCRATCHED,04,00
READY

•
The "04" tells you 4 files were scratched.

You can perform a SCRATCH within a program, but there will be no prompt
message displayed.

MORE ABOUT SCRATCH

SCRATCH is a powerful command and should be used with caution to be sure you
delete only the files you really want erased. When using it with a pattern, we suggest you
first use the same pattern in a DIRECTORY command, to be sure exactly which files will
be deleted. That way you'll have no unpleasant surprises when you use the same pattern in
the SCRATCH command.

Recovering from a SCRATCH
If you accidentally SCRATCH a file you shouldn't have, there is still a chance of

saving it. Like BASIC's NEW command, SCRATCH doesn't really wipe out a file itself;
it merely clears the pointers to it in the diskette directory. There may be an "Unscratch"
program on your Test/Demo diskette.

NOTE: If you accidentally SCRATCH a file within the DOS Shell (see Chapter 4),
you can unscratch it with the Shell's RESTORE FI~ES function.

More about Splat Files
Never SCRATCH a splat file. These are files that show up in a directory listing with

an asterisk (*) just before the file type for an entry. The asterisk (or splat) means that file
was never properly closed, and thus there is no valid chain of sector links for the
SCRATCH command to follow in erasing the file. If you SCRATCH such a file, odds are
you will improperly free up sectors that are still needed by other programs or files, and
cause permanent damage to those other programs or files later when you add more files to
the diskette.

28

If you find a splat file, or if you discover too late that you have scratched such a file,
immediately validate the diskette using the COLLECT command described later in this
chapter. If you have added any files to the diskette since scratching the splat file, it is best
to immediately copy the entire diskette onto another fresh diskette, but do this with a copy
program rather than with a backup program. Otherwise, the same problem will be
recreated on the new diskette. When the new copy is done, compare the number of blocks
free in its directory to the number free on the original diskette. If the numbers match, no
damage has been done. If not, very likely at least one file on the diskette has been
corrupted, and all should be checked immediately.

Locked Files
Occasionally, a diskette will contain a locked file; one which cannot be erased with

the SCRATCH command. Such files may be recognized by the "<" character which
immediately follows the file type in their directory entry. If you wish to ~rase a locked
file, you will have to use a disk monitor to clear bit 6 of the file-type byte in the directory
entry on the diskette. Conversely, to lock a file, you would set bit 6 of the same byte.

RENAME

The RENAME command allows you to alter the name of a program or other file in
the diskette directory. Since only the directory is affected, RENAME works very quickly.
If you try to RENAME a file by using a file name already in the directory, the computer
will respond with a "FILE EXISTS" error. A file must be properly closed before it can be
renamed.

FORMAT FOR RENAME COMMAND:

RENAME [Ddrlve#,] "old name" TO [Ddrive#,] "new name" [,Udevice#]

where both drlve#s, if included, would be 0

RENAMING AND SCRATCHING TROUBLESOME
FILES (ADVANCED USERS)

Eventually, you may run across a file which has a crazy filename, such as a comma
by itself (" ,") or one that includes a Shifted Space. Or perhaps you will find one that
includes nonprinting characters. Any of these can be troublesome. Comma files, for
instance, are an exception to the rule that no two files can have the same name. Since it
shouldn't be possible to make a file whose name is only a comma, the disk never expects
you to do it again.

Files with a Shifted Space in their name can also be troublesome, because the disk
interprets the Shifted Space as signaling the end of the file name, and prints whatever
follows after the quotation mark that marks the end of a name in the directory. This
technique can be useful by allowing you to have a long file name, and making the disk
recognize a small part of it as being the same as the whole thing without using pattern
matching characters.

29

In any case, if you have a troublesome filename, you can use the CHR$O function to
specify troublesome characters without typing them directly. This may allow you to build
them into a RENAME command. If this fails, you may also use the pattern-matching
characters discussed for a SCRATCH command. This gives you a way to specify the
name without using the troublesome characters at all, but also means loss of your file.

For example, if you have managed to create. a file named" "MOVIES", with an
extra quotation mark at the front of the file name, you can rename it to "MOVIES" using
the CHR$O equivalent of a quotation mark in the RENAME command:

Example:

RENAME(CHR$(34) + "MOVIES") TO "MOVIES"

The CHR$(34) forces a quotation mark into the command string without upsetting
BASIC. The procedure for a file name that includes a SHIFT-SPACE is similar, but uses
CHR$(160).

In cases where even this doesn't work, for example, if your diskette contains a
comma file, (one named",") you can get rid of it this way:

Example:

SCRATCH"?"

This example deletes all files with one-character names.
Depending on the exact problem, you may have to be very creative in choosing

pattern-matching characters that will affect only the desired file, and may have to rename
other files first to keep them from being scratched.

In some cases, it may be easier to copy desired files to a different diskette and leave
the troublesome files behind.

COLLECT

The COLLECT command recalculates the Block Availability Map (BAM) of the
current diskette, allocating only those sectors still being used by valid, properly closed
files and programs. All other sectors (blocks) are left unallocated and free for reuse, and
all improperly closed files are automatically scratched. However, this brief description of
COLLECT doesn't indicate either the power or the danger of the command. Its power is in
restoring to good health many diskettes whose directories or Block Availability Maps
have become muddled. Any time the blocks used by the files on a diskette plus the blocks
shown as free don't add up to the 664 (in 1541 mode) or 1328 (in 1571 mode) available on
a fresh diskette, COLLECT is needed (with one exception below). Similarly, any tiMe a
diskette contains an improperly closed file (splat file), indicated by an asterisk (*) next to
its file type in the directory, that diskette needs to be collected. In fact, but for the one
exception below, it is a good idea to COLLECT diskettes whenever you are concerned
about their integrity. Just note the number of blocks free in the diskette's directory before
and after using COLLECT. If the totals differ, there was indeed a problem, and the
diskette should probably be copied onto a fresh diskette file-by-file, using the COPY

30

command described in the previous section, rather than using a backup command or
program.

The exception is diskettes containing Direct Access files, as described in Chapter 7.
Most direct access (random) files do not allocate their sectors in a way COLLECT can
recognize. Thus, collecting such a diskette may result in unallocating all Direct Access
files, with loss of all their contents when other files are added. Unless specifically
instructed otherwise, never collect a diskette containing Direct Access files. (Note: these
are not the same as the relative files described in Chapter 6. COLLECT may be used on
relative files without difficulty.)

FORMAT FOR THE COLLECT COMMAND

COLLECT [Ddrive#] [,Udevice#]

INITIALIZE

There is no BASIC 7.0 command for initializing, so refer to Chapter 2 for the BASIC
2.0 INITIALIZE command.

31

CHAPTER 4
DOS SHELL

The DOS Shell is a program that provides you with an alternate way to execute disk
drive commands. Prompting messages take you step-by-step through each operation,
making the use of the 1571 easier and more understandable.

The Shell is automatically loaded when you insert the diskette, then turn on or reset
the computer. You can enter or exit the Shell by pressing the F I key.

LANGUAGE SELECTION

The Shell displays its messages in anyone of four languages: English, French,
German, and Italian. When you enter the Shell, each language appears, in turn, on the
screen for about six seconds. To choose one, press the space bar when it appears on the
screen. You can skip to the next language without waiting the six seconds by pressing the
CRSR-down key.

NOTE: The DOS Shell can be used in 4O-column or 80-column mode. The only
difference is a change in the layout of the screen. You can switch the screen size by
pressing and holding down the ESC key while you press the X key. This must be
done before you select a function from the primary menu screen (see below).

PRIMARY MENU SCREEN

After a language is chosen, the primary menu screen appears. To choose a function,
use the CRSR keys to position the cursor on that function and press the SPACE BAR.

DISKIPRINTER SETUP

Within the Shell there are two drives: A and B. They are called logical drives because
they reside only within the Shell. You can set them to represent a single disk drive unit,
two single units, or a dual drive unit. Assuming you have a single unit, the usual settings
for A and B would show a device# of 8 and a drive# of 0. Those are the default settings
(in other words, when you first enter the Shell, the Disk Setup is such that it represents a
single unit). With two single units, you would change the device# of one of the Drives.
The drive#s can stay the same. With a dual drive unit, you would change the drive# of
one of the Drives.

To change a setting, use the CRSR keys to position the cursor over the desired value
and press the SPACE BAR. After you have changed any settings, press the F1 key to lock
them in. If you change your mind, press the STOP key instead of F1 and the previous
settings are left unchanged.

32

The printer device# is selected in the same way.
To change the device number of the actual drive (the physical drive), position the

cursor on the 'CHANGE DISK DEVICE #' line and press the SPACE BAR. A message
then appears on the screen guiding you through the steps to change the device#. If you
change your mind before completing the steps, press the STOP or F5 keys to cancel the
device# change. F5 returns you to the logical drive selections and STOP returns you to
the primary menu screen.

NOTE: Unless the Disk Setup is set for a single drive unit, when you choose any of
the following functions, a question appears on the screen asking you which drive
you want to use. In describing these functions, we'll assume that you have a single
disk. If you have more than one, then you'll have to provide the appropriate answer
to that question through the use of the CRSR keys and SPACE BAR.

RUN A PROGRAM

This function automatically loads and runs a program file that you choose from a file
list shown on the screen (for this function the file list contains only program files). Use the
CRSR keys to position the cursor over the desired file, then press the SPACE BAR to
choose that file. If you change your mind, press the F5 key to un-select the file. Press the
F7 key to load and run it. If you press the stop key before the loading is complete, the
function is canceled.

NOTE: You can print out the file list, whenever it's displayed for a function, by
pressing the F3 key. Make sure your printeris turned on and the paper is at the top
ofapage.

FORMAT A DISK

When you select this function, a message appears on the screen telling you to insert a
blank disk into the drive. After you do that, press the SPACE BAR and the Shell checks to
see if the disk has already been formatted. If it has, the disk header information is
displayed on the screen as a precaution that there may be files on the disk. To proceed
with formatting, either enter a new disk name or accept the old one and press RETURN. If
the disk was previously formatted, it retains its old ID code. If not, the Shell randomly
generates one. You can enter your own ID code by entering a comma and two-digit
number as the last three characters of the disk name.

33

CLEANUP A DISK

This function enables you to validate the Block Availability Map of a disk (see the
VALIDATE command in chapter 2 or the COLLECT command in chapter 3).

COpy A DISK

Use this function to make backups of your diskettes. The disk drive setup (drives A
and B) determines what type of copy is performed: single unit, dual drive, or two single
units.

Dual Drive or Two Unit Copy
The Shell asks you from which drive you want to copy (use CRSR keys and space bar

to select A or B). Insert the original disk into that drive and the copy disk into the other
drive and press the SPACE BAR. Press the STOP key to cancel this function. The F5 key
or SPACE BAR can be used to retry a disk operation if an error occurs.

Single Drive Copy
The Shell displays the following warning message: 'PROGRAMS IN MEMORY

WILL BE DESTROYED' . Press the STOP or F5 keys to cancel the function at this point.
Press the SPACE BAR to continue.

Throughout this function you will alternately insert the original and backup disks
according to prompts from the Shell. It takes from one to four swaps to complete the copy.
The first time you insert the backup disk, it is formatted with the same disk name as the
original disk, but a different ID code is generated. Then, each time you insert a disk, its
ID code is checked to make sure that it's the correct disk. If it's not, an error message is
displayed on the screen. If that happens, press the SPACE BAR or the F5 key to return to
the last-used disk swapping prompt.

If the STOP key is pressed, the function is canceled and the copy will be incomplete.

COPY FILES

This function makes copies of selected files, the type of copy is determined by the
Disk Drive Setup. Once you select the drive from which the files will be copied, the file
list is displayed so you can select the files using the CRSR keys and SPACE BAR. You
can "scroll" the list up or down using the CRSR keys.

Once you position the cursor next to a file you want to copy, press the SPACE BAR.
If you change your mind, press the F5 to un-select the file.

After you have chosen the file(s) to be copied, press the F7 key to proceed to the
copy function. A message is then displayed on the screen asking 'OK TO COpy FILE
LIST: N Y'. If you answer No (the default answer), the Shell returns to the file selection
process. If you answer Yes, the copy proceeds according to the type of copy being used.

Dual Drive or Two Unit Copy
After you answer the 'OK TO COPY' question, the messages 'INSERT COPY DISK

INTO DRIVE: X' and 'THEN PRESS SPACE' are displayed. After you do that, the
message 'WANT TO FORMAT THE COPY DISK: N Y' is displayed. The default
answer is No. If you answer Yes, the 'FORMAT A DISK' function begins at the point
where you are asked to enter a new disk name for formatting.

34

Whether you answer Yes or No to the fonnatting question, the Shell checks the
available space on the copy disk against the total size of the selected file(s). If the copy
disk can't hold all the files, a warning is displayed and you can press the STOP key to
cancel the function or press the SPACE BAR to continue.

NOTE: For any type of file copy, if the next file to be copied won't fit onto the
copy disk, the following message is displayed: 'COPY DISK FULL-ANOTHER
DISK: Y N'. If the answer is No (the default answer), the copy is tenninated. If
Yes, the function returns to the 'INSERT COPY DISK' message.

Single Drive Copy
After you answer the 'OK TO COPY' question, the following warning is displayed

on the screen: 'PROGRAMS IN MEMORY WILL BE DESTROYED,' along with the
instruction 'PRESS SPACE TO CONTINUE'. Press the F5 or STOP keys to cancel the
function and retain any program in memory.

You will alternately insert the original disk and the copy disk according to prompts
on the screen. It takes from one to four disk swaps to complete the copy.

The first time the copy disk is inserted, the 'WANT TO FORMAT THE COPY
DISK: N Y' message is displayed. Again, whether the answer is Yes or No, the Shell
checks the available space on the copy disk against the total size of the file(s) to be copied
and alerts you if there isn't enough room on the copy disk.

DELETE FILES

This function erases one or more files. Use the CRSR keys and SPACE BAR to
select the file(s) from the file list displayed on the screen. After you've selected the file(s),
press the F7 key and the following message is displayed: 'OK TO DELETE FILE-LIST:
N Y'. If the answer is No (the default answer), the function returns to file selection. If
the answer is Yes, the files are deleted.

Press F5 to restart the file selection process from the beginning (canceling all
previous selections). Press STOP to cancel the function.

RESTORE FILES

This function restores one or more files that have been deleted. A file list of only
deleted files is displayed op the screen and you again use the the CRSR keys and SPACE
BAR to select the file(s) to be restored. Press F5 to 'un-select' a file.

After you select a file, the Shell checks to see if it can be restored without corrupting
other files. If not, the message 'CANNOT RESTORE FILE: file name id' is displayed. If
everything's OK, the file selection continues.

As each file is seiected, you are asked to 'CHOOSE FILE-TYPE: SEQ PRG USR'.
Use the CRSR keys and SPACE BAR to choose. Relative files are automatically
identified, so you needn't specify that type.

35

Press F7 when you complete the file selection. The message 'OK TO RESTORE
FILE-LIST: N Y' is displayed. If the answer Is No (The default answer), the function
returns to file selection. If the answer is Yes, the files are restored.

RENAME FILES

The function changes the name of one or more files. Use the CRSR keys and SPACE
BAR to select a file to rename. The message 'ENTER NEW NAME:' is displayed along
with the original file name. You must now type in the new name or press F5 to return to
file selection.

Each new file name is checked to assure that it is unique. If it isn't, the message
'ERROR: FILE NAME NOT UNIQUE-RETRY' is displayed and the function returns to
the 'ENTER NEW NAME:' message.

After you complete file selection, press the F7 key and the message 'OK TO
CHANGE FILE-LIST: N Y' is displayed. If the answer is No, you are returned to the
file selection process. If the answer is Yes, the file names are changed. If you press the F5
key, the file selection process is restarted from the beginning.

REORDER DIRECTORY

This function changes the order in which the file names appear in a diskette
directory. After you select this function, you are asked if you 'WANT TO ALPHABET
IZE DIRECTORY: N Y'. The defaut answer is No. If you answer Yes, the file names
are automatically reordered alphabetically.

If you choose to manually reorder the directory, select a file with the CRSR keys and
SPACE BAR. Then use the CRSR keys to 'drag' the file name through the file list to its
new location. Press the SPACE BAR to deposit the file name.

After you press the F7 key to stop selecting files, the message 'OK TO RE-WRITE
DIRECTORY: N Y' is displayed. If the answer is Yes, the reordered file list is written
to the diskette directory. If the answer is No (the default answer), the file selection process
is restarted at the 'WANT TO ALPHABETIZE: N Y' message, with all previous
changes left intact.

If you press the F5 key, the file selection process is restarted at the 'WANT TO
ALPHABETIZE: N Y' message, with all previous changes canceled.

36

PART TWO: ADVANCED OPERATION AND PROGRAMMING

CHAPTERS
SEQUENTIAL DATA FILES

THE CONCEPT OF FILES

A file on a diskette is just like a file cabinet in your office-an organized place to put
things. Nearly everything you put on a diskette goes in one kind of file or another. So far
all you've used are program files, but there are others. In this chapter you'll learn about
sequential data files.

The primary purpose of a data file is to store the contents of program variables, so
they won't be lost when the program ends. A sequential data file is one in which the
contents of the variables are stored "in sequence," one right after another. You may
already be familiar with sequential files from using a DATASSETIE™, because sequen
tial files on diskette are just like the data files used on cassettes. Whether on cassette or
diskette, sequential files must be read from beginning to end.

When sequential files are created, information (data) is transferred byte-by-byte,
through a buffer, onto the magnetic media. Once in the disk drive, program files,
sequential data files, and user files all work sequentially. Even the directory acts like a
sequential file.

To use sequential files properly, we will learn some more BASIC words in the next
few pages. Then we'll put them together in a simple but useful program.

Note: Besides sequential data files, two other file types are recorded sequentially
on a diskette. They are program files, and user files. When you save a program on a
diskette, it is saved in order from beginning to end, just like the information in a
sequential data file. The main difference is in the commands you use to access it. .
User files can be even more similar to sequential data files. User files are almost
never used, but like program files, they could be treated as though they were
sequential data files and some can be accessed with the same commands.

For the advanced user, the similarity of the various file types offers the
possibility of reading a program file into the computer a byte (character) at a time
and rewriting it to the diskette in a modified form.

OPENING A FILE

One of the most powerful tools in Commodore BASIC is the OPEN statement. With
it, you may send data almost anywhere, much like a telephone switchboard. As you might
expect, a command that can do this much is fairly complex. You have already used OPEN
statements regularly in some of your diskette commands.

Before you study the format of the OPEN statement, let's review some of the
possible devices in a Commodore computer system:

37

Device #: Name:

o Keyboard
1 DATASSETfE™
2 RS232
3 Screen
4,5 Printer
8,9 Disk drive

Used for:

Receiving input from the computer operator
Sending and receiving infonnation from cassette
Sending and receiving information from a modem
Sending output to a video display
Sending output to a hard copy printer
Sending and receiving infonnation from diskette

Because of the flexibility of the OPEN statement, it is possible for a single program
statement to contact anyone of these devices, or even others, depending on the value of a
single character in the command. If the character is kept in a variable, the device can even
change each time that part of the program is used, sending data alternately and with equal
ease to diskette, cassette, printer and screen.

REMEMBERTOCHECKFORD~KERRORS
In the last chapter you learned how to check for disk errors after disk

commands in a program. It is equally important to check for disk errors after using
file-handling statements. Failure to detect a disk error before using another file
handling statement could cause loss of data, and failure of the BASIC program.

The easiest way to check the disk is to follow all file-handling statements with
a GOSUB statement to an error check subroutine.

EXAMPLE:

BASIC 7.0
840 DOPEN:#4, "DEGREE DAY DATA" ,D0,U8,W
850 GOSUB 59990: REM CHECK FOR DISK ERRORS

BASIC 2.0
840 OPEN 4,8,4,"0:DEGREE DAY DATA,S,W"
850 GOSUB 59990:REM CHECK FOR DISK ERRORS

FORMAT FOR THE DISK OPEN STATEMENT FOR SEQUENTIAL FILES:

BASIC 7.0
DOPEN#file:#, "file name" [,Ddrive:#] [,Udevice#] [,W]

BASIC 2.0
OPEN file :#, device :#, channel :#, "drive :#:file name,file type,direction"

38

where:
"file #" is an integer (whole number) between I and 255. Do not open a disk file

with a file number greater than 127 it will cause severe problems. After the file is open, all
other file commands will refer to it by the number given here. Only one file can use any
given file number at a time.

"device #" is the number, or primary address, of the device to be used. This
number is an integer in the range 8-11, and is normally 8 on the 1571.

"channel #" is a secondary address, giving further instructions to the selected
device about how further commands are to be obeyed. In disk files, the channel number
selects a particular channel along which communications for this file can take place. The
possible range of disk channel numbers is 0-15, but 0 is reserved for program loads, I for
program saves, and 15 for the disk command channel. Also be sure that no two disk files
have the same channel number unless they will never be open at the same time. (One way
to do this is to make the channel number for each file the same as its file number.)

"drive #" is the drive number, always 0 on the 1571. Do not omit it, or you will
only be able to use two channels at the same time instead of the normal maximum of three.
If any pre-existing file of the same name is to be replaced, precede the drive number with
the "at" sign (@) to request OPEN-WITH-REPLACE.

"file name" is the file name, maximum length 16 characters. Pattern matching
characters are allowed in the name when accessing existing files, but not when creating
new ones.

"file type" is the file type desired: S = sequential, P = program, U = user, A = ap
pend and L = length of a relative file.

"direction" is the type of access desired. There are three possibilities: R=read,
W=write, and M=modify. When creating a file, use "W" to write the data to diskette.
When viewing a completed file, use "R" to read the data from diskette. Only use the
"M" (modify) option as a last ditch way of reading back data from an improperly closed
(Splat) file. If you try this, check every byte as it is read to be sure the data is still valid, as
such files always include some erroneous data, and have no proper end.

"file type" and "direction" don't have to be abbreviated. They can be spelled out
in full for clarity in printed listings.

"file #", "device #" and "channel #" must be valid numeric constants, variables
or expressions. The rest of the command must be a valid string literal, variable or
expression.

"w" is an option that must be specified to write the sequential file, or the file will be
opened to read.

The maximum number of files that may be open simultaneously is 10, including all
files to all devices. The maximum number of sequential disk files that can be open at once
is three (or two if you neglect to include the drive number in your OPEN statement), plus
the command channel.

39

EXAMPLES OF OPENING SEQUENTIAL FILES:

To create a sequential file of phone numbers, you could use:

BASIC 7.0: DOPEN#2,"PHONES",D0,U8,W
BASIC 2.0: OPEN 2,8,2, "0:PHONES,SEQUENTIAL, WRITE"
or
OPEN 2,8,2, "0:PHONES,S,W"

On the chance you've already got a "PHONES" file on our diskette, you can avoid a
"FILE EXISTS" error message by doing an @OPEN

BASIC 7.0: DOPEN#2, "@PHONES", D0,U8,W
BASIC 2.0: OPEN 2,8,2, "@0:PHONES,S,W"

This erases all your old phone numbers, so make sure that any information that may be
deleted is of no importance. After writing our phone file, remove the diskette and tum off
the system. To recall the data in the file, reopen it with something like:

BASIC 7.0: DOPEN#8, "PHONES" ,D0,U8
BASIC 2.0: OPEN 8,8,8, "0:PHONES,S,R"

It doesn't matter whether the file and channel numbers match the ones we used before, but
the file name does have to match. It's possible to use an abbreviation form of the file
name, if there are no other files that would have the same abbreviation:

BASIC 7.0: DOPEN#lO, "PH*" ,D0,U8
BASIC 2.0: OPEN 10,8,6, "0:PH* ,S,R"

If you have too many phone numbers, they might not fit in one file. In that case, use
several similar file names and let a program choose the correct file.

BASIC 7.0:
100 INPUT "WHICH PHONE FILE (l-3)";PH
110 IF PH<> 1 AND PH<>2 AND PH<>3 THEN 100
120 DOPEN#4, "PHONE" + STR$(PH),D0,U8

BASIC 2.0:
100 INPUT "WHICH PHONE FILE (l-3)";PH
110 IF PH<> 1 AND PH<>2 AND PH<>3 THEN 100
120 OPEN 4,8,2, "PHONE" + STR$(PH) + .. ,S,R"

You can omit the drive number on an OPEN command to read a file. Doing so allows
those with dual drives to search both diskettes for the file.

40

ADDING TO A SEQUENTIAL FILE

The APPEND command allows you to reopen an existing sequential file and add
more information to the end of it. In place of the "type" and "direction" parameters in
your OPEN statement, substitute" ,A" for Append. This will reopen your file, and
position the disk head at the end of the existing data in your file, ready to add to it.

FORMAT FOR THE APPEND OPTION

BASIC 7.0: APPEND#file#,"file name"[,Ddrive#] [,Udevice#]
BASIC 2.0: OPEN file #,device #,channel #,"drive #:file name,A"

where everything is as on the previous page except for the ending" A" replacing the
"type" and "direction" parameters.

EXAMPLE:

If you are writing a grading program, it would be convenient to simply tack on each
student's new grades to the end of their existing grade files. To add data to the "JOHN
PAUL JONES" file, type:

BASIC 7.0: APPEND#l,"JOHN PAUL JONES",D0,U8
BASIC 2.0: OPEN 1 ,8,3, "0:JOHN PAUL JONES,A"

In this case, the Disk Operating System (DOS) will allocate at least one more sector
(block) to the file the first time you append to it, even if you only add one character of
information. You may also notice that using the COLLECT or VALIDATE command
didn't correct the file size. If the wasted space becomes a problem, you can easily correct
it by copying the file to the same diskette or a different one, and scratching the original
file. Here's a sequence of commands that will copy such files to the original diskette under
the original name:

RENAME "JOHN PAUL JONES" TO "TEMP"
COPY "TEMP" TO "JOHN PAUL JONES"
SCRATCH "TEMP"

WRITING FILE DATA: USING PRINT#

After a sequential file has been opened to write (with a type and direction of
",S,W"), we use the PRINT# command to send data to it for storage on diskette. If you
are familiar with BASIC's PRINT statement, you will find PRINT# works exactly the
same way, except that the list of items following the command word is sent to a particular
file, instead of automatically appearing on the screen. Even the formatting options such as
punctuation work in much the same way as in PRINT statements. This means you have to
be sure the items sent make sense to the particular file and device used.

41

For instance, a comma between variables in a PRINT statement acts as a separator in
screen displays, making each successive item appear in the next preset display field
(typically at the next column whose number is evenly divisible by 10). If the same comma
is included between variables going to a disk file, it will again act as a separator, again
inserting extra spaces into the data. This time, however, it is inappropriate, as the extra
spaces are wasted on the diskette, and may create more problems when reading the file
back into the computer. Therefore, follow the following format precisely when sending
data to a disk file.

FORMAT FOR THE PRINT# COMMAND:

PRINT#file# ,data list

where "file #" is the same file number given in the desired file's current OPEN
statement. During any given access of a particular file, the file number must remain
constant because it serves as a shorthand way of relating all other file-handling commands
back to the correct OPEN statement. Given a file number, the computer can look up
everything else about a file that matters.

The "data list" is the same as for a PRINT statement - a list of constants, variables
and/or expressions, including numbers, strings or both. However, it's better if each
PRINT# statement to disk include only one data item. If you wish to include more items,
they should be separated by a carriage return character, not a comma. Semicolons are
permitted, but not recorded in the file, and do not result in any added spaces in the file.
Use them to separate items in the list that might otherwise be confused, such as a string
variable immediately following a numeric variable.

Note: Do not leave a space between PRINT and #, and do not abbreviate the
command as ?#. The correct abbreviation for PRINT# is pRo

EXAMPLES:

To record a few grades for John Paul Jones, using a sequential disk file #1 previously
opened for writing, use:

200 FOR CLASS = I TO COURSES
210 PRINT#I,GRADE$(CLASS)
220 GOSUB 59990:REM CHECK FOR DISK ERRORS
320 NEXT CLASS

assuming your program includes an error check subroutine like the one in the last chapter.
In using PRINT#, there is an exception to the requirement to check for disk errors

after every file-handling statement. When using PRINT#, a single check after an entire
set of data has been written will still detect the error, so long as the check is made before
any other file-handling statement or disk command is used. You may be familiar with
PRINT statements in which several items follow each other:

42

400 PRINT NAME$,STREET$,CITY$

To get those same variables onto sequential disk file number 5 instead of the screen, the
best approach would be to use three separate PRINT# statements, as follows:

400 PRINT#5,NAME$
410 PRINT#5,STREET$
420 PRINT#5,CITY$

If you need to combine them, here is a safe way to do it:

400 PRINT#5,NAME$;CHR$(13);STREET$;CHR$(13);CITY$

CHR$(13) is the carriage retum character, and has the same effect as putting the print
items in separate lines. If you do this often, some space and time may be saved by
previously defining a variable as equal to CHR$(13):

10 CR$=CHR$(13)
400 PRINT#5,NAME$;CR$;STREET$;CR$;CITY$

The basic idea is that a proper sequential disk-file write, if redirected to the screen,
will display only one data item per line, with each succeeding item on the next line.

CLOSING A FILE

After you finish using a data file, it is extremely important that you CLOSE it.
During the process of writing a file, data is accumulated in a memory buffer, and only
written out to the diskette when the buffer fills.

Working this way, there is almost always a small amount of data in the buffer that
has not been written to diskette yet, and which would simply be lost if the computer
system were turned off. Similarly, there are diskette housekeeping matters, such as
updating the BAM (Block Availability Map) of sectors used by the current file, which are
not performed during the ordinary course of writing a file. This is the reason for having a
CLOSE statement. When you are done with a file, the CLOSE statement will write the
rest of the data buffer out to diskette, update the BAM, and complete the file's entry in the
directory. Always close a data file when you are .done using it. Failure to do so may cause
loss of the entire file.

However, do not close the disk command channel until all other files have been
closed. The command channel should be the first file opened, and the last file closed in
any program.

FORMAT FOR THE CLOSE STATEMENT

BASIC 7.0: DCLOSE#file# [,Udevice#]
BASIC 2.0: CLOSE file #

where "file #" is the same file number given in the desired file's current OPEN
statement.

43

EXAMPLES:

To close the data file #5 used as an example on the previous page, use:

BASIC 7.0: DCLOSE#5
BASIC 2.0: CLOSE 5

In BASIC 7.0, when the DCLOSE statement is u~ed alone (no# or file# param
eters), it closes all disk files at once. With a bit of planning, the same can be done via a
program loop. Since there is no harm in closing a file that wasn't open, close every file
you even think might be open before ending a program. If you always gave your files
numbers between 1 and 5, you could close them all with

9950 FOR 1= 1 TO 5
9960 CLOSE I
9970 GOSUB 59990:REM CHECK FOR DISK ERRORS
9980 NEXT I

assuming your program includes an error check subroutine like the one in the last chapter.

READING FILE DATA: USING INPUT#

Once information has been written properly to a diskette file, it may be read back into
the computer with an INPUT# statement. Just as the PRINT# statement is much like the
PRINT statement, INPUT# is nearly identical to INPUT, except that the list of items
following the command word comes from a particular file instead of the keyboard. Both
statements are subject to the same limitations-halting input after a comma or colon, not
accepting data items too large to fit in BASIC's Input buffer, and not accepting non
numeric data into a numeric variable.

FORMAT FOR THE INPUT# STATEMENT

INPUT#file #, variable list

where "file #" is the same file number given in the desired file's current OPEN
statement, and "variable list" is one or more valid BASIC variable names. If more than
one data element is to be input by a particular INPUT# statement, each variable name
must be separated from others by a comma.

EXAMPLES:

To read back in the grades written with the PRINT# example, use:

300 FOR CLASS = 1 TO COURSES
310 INPUT#1 ,GRADE$(CLASS)
320 GOSUB 59990:REM CHECK FOR DISK ERRORS
330 NEXT CLASS

44

assuming your program includes an error check subroutine like the one in the last chapter.

use:
To read back in the address data written by another PRINT# example, it is safest to

800 INPUT#5,NAME$
810 GOSUB 59990:REM CHECK FOR DISK ERRORS
820 INPUT#5,STREET$
830 GOSUB 59990:REM CHECK FOR DISK ERRORS
840 INPUT#5,CITY$
850 GOSUB 59990:REM CHECK FOR DISK ERRORS

but many programs cheat on safety a bit and use

800 INPUT#5,NAME$,STREET$,CITY$
810 GOSUB 59990:REM CHECK FOR DISK ERRORS

This is done primarily when top speed in the program is essential, and there is little risk of
reading improper data from the file.

MORE ABOUT INPUT# (ADVANCED USERS)

Troublesome Characters
After you begin using data files regularly, you may encounter two BASIC error

messages. They are "STRING TOO LONG ERROR" and "FILE DATA ERROR".
Both are likely to halt your program at an INPUT# statement, but may also have been
caused by errors in a PRINT# statement when the file was written.

"STRING TOO LONG" ERRORS
A BASIC string may be up to 255 characters long, although the longest string you

can enter via a single Input statement is just under two lines of text. This lower limitation
is due to the size of the input buffer in Commodore's serial bus computers. The same limit
applies to INPUT# statements. If a single data element (string or number) being read
from a disk file into an INPUT# statement contains more than 88 (BASIC 2) and 160
(BASIC 7) characters, BASIC will halt with a "STRING TOO LONG ERROR. "

"FILE DATA" ERRORS
The other error message "FILE DATA ERROR" is caused by attempting to read a

non-numeric character into a numeric variable. To a computer, a number is the characters
o through 9, the "+" and "-" signs, the decimal point C.), the SPACE character, and
the letter "E" used in scientific notation. If any other character appears in an INPUT# to
a numeric variable, "FILE DATA ERROR" will be displayed and the program will halt.
The usual causes of this error are a mismatch between the order in which variables are
written to and read from a file, a missing carriage return within a PRINT# statement that
writes more than one data item, or a data item that includes either a comma or a colon
without a preceding quotation mark. Once a file data error has occurred, you should
correct it by reading the data item into a string variable, and converting it back to a
number with the BASIC V ALO statement after removing non-numeric characters with the
string functions described in your computer user's manual.

45

COMMAS (,) AND COLONS (:)
As suggested before, commas and colons can cause trouble in a file, because they

delimit (end) the data element in which they appear and cause any remaining characters in
the data element to be read into the next INPUT# variable. They have the same effect in
an INPUT statement, causing the common "EXTRA IGNORED" error message. How
ever, sometimes you really need a comma or colon within a data element, such as a name
written as "Last, First." The cure is to precede such data elements with a quotation mark.
After a quotation mark, in either an INPUT or INPUT# statement, all other characters
except a carriage return or another quotation mark are accepted as part of the current data
element.

EXAMPLES:

To force a quotation mark into a data element going to a file, append a CHR$(34) to
the start of the data element. For example:

PRINT#2,CHR$(34)+ "DOE, JOHN"

or

PRINT#2,CHR$(34);"DOE, JOHN"

If you do this often, some space and time may be saved by previously defining a variable
as equal to CHR$(34) as we did earlier with CHR$(l3):

20 QT$=CHR$(34)

400 PRINT#5,QT$ + NAME$

In each case, the added quotation mark will be stripped from the data by the Input or
INPUT# statement, but the comma or colon will remain part of the data.

NUMERIC DATA STORAGE ON DISKETTE

Up to this point we have discussed string data storage, now let's look at numeric
storage.

Inside the computer, the space occupied by a numeric variable depends only on its
type. Simple numeric variables use seven bytes (character locations) of memory. Real
array variables use five bytes per array element, and integer array elements use two bytes
each. In contrast, when a numeric variable or any type is written to a file, the space it
occupies depends entirely on its length, not its type. This is because numeric data is
written to a file in the form of a string, as if the STR$O function had been performed on it.
The first character will be a blank space if the number is positive, and a minus sign (-) if
the number is negative. Then comes the number, digit-by-digit. The last character is a
cursor right character.

This format allows the disk data to be read back into a string or numeric variable
later. It is, however, wasteful of disk space, and it can be difficult to anticipate the space
required by numbers of unknown length. For this reason, some programs convert all

46

numeric variables into strings before writing them to diskette, and use string functions to
remove any unneeded characters in advance. Doing so still allows those data elements to
be read back into a numeric variable by INPUT# later, although file data errors may be
avoided by reading all data in as strings, and converting to numbers using the VAL 0
function after the information is inside the computer.

For example, "N$=RIGHT$(STR$(N),LEN(STR$(N»-l)" will convert a posi
tive number N into a string N$ without the usual leading space for its numeric sign. Then
instead of writing PRINT#5,N, you would use PRINT#5,N$.

READING FILE DATA: USING GET#

The GET# statement retrieves data from the disk drive, one character at a time. Like
the similar keyboard GET statement in BASIC, it only accepts a single character into a
specified variable. However, unlike the GET statement, it doesn't just fall through to the
next statement if there is no data to be gotten. The primary use of GET# is to retrieve
from diskette any data that cannot be read into an INPUT# statement, either because it is
too long to fit in the input buffer or because it includes troublesome characters.

FORMAT FOR THE GET# STATEMENT:

GET#file#, variable list

where "file #" is the same file number given in the desired file's current OPEN
statement, and "variable list" is one or more valid BASIC variable names. If more than
one data element is to be input by a particular GET# statement, each variable name must
be separated from others by a comma.

In practice, you will almost never see a GET or GET# statement containing more
than one variable name. If more than one character is needed, a loop is used rather than
additional variables. Also as in the INPUT# statement, it is safer to use string variables
when the file to be read might contain a non-numeric character.

Data in a GET# statement comes in byte-by-byte, including such normally invisible
characters as the Carriage Return, and the various cursor controls. All but one will be read
properly. The exception is CHR$(0), the ASCII Null character. It is different from an
empty string (one of the form A$ = ""), even though empty strings are often referred to as
null strings. Unfortunately, in a GET# statement, CHR$(0) is converted into an empty
string. The cure is to test for an empty string after a GET#, and replace any that are found
with CHR$(0) instead. The first example below illustrates the method.

EXAMPLES:

To read a file that may contain a CHR$(0), such as a machine language program
file,_ you could correct any CHR$(0) bytes with

1100 GET#3,G$:IF G$= "" THEN G$=CHR$(0)

47

If an overlong string has managed to be recorded in a file, it may be read back safely
into the computer with GET#, using a loop such as this

3300 B$= ""
3310 GET#I,A$
3320 IF A$<>CHR$(13) THEN B$ = B$ + A$:GOTO 3310

The limit for such a technique is 255 characters. It wiJI ignore CHR$(0), but that may be
an advantage in building a text string. If CHR$ (0) is required in the file, then use the
following alternate line:

3320 If A$<>CHR$(13) THEN B$=B$+(A$ + CHR$(0): GOTO 3310

GET# may be useful in recovering damaged files, or files with unknown contents.
The BASIC reserved variable ST (the file STatus variable) can be used to indicate when
all of a properly closed file has been read.

500 GET#2,S$
510 SU=ST:REM REMEMBER FILE STATUS
520 PRINT S$;
530 IF SU = 0 THEN 500:REM IF THERE'S MORE TO BE READ
540 IF SU<>64 THEN PRINT "STATUS ERROR: ST =~';SU

Copying ST into SU is often an unneccessary precaution, but must be done if any other
file-handling statement appears between the one which read from the file and the one that
loops back to read again. For example, it would be required if line 520 was changed to

520 PRINT#I,S$;

Otherwise, the file status checked in line 530 would be that of the write file, not the read
file.

The following table applies to single errors or a combination of two or more errors.

POSSIBLE VALUES OF THE FILE STATUS VARIABLE "ST,"
AND THEIR MEANINGS

IFST=
o
1
2
4
8

16
32
64

128

THEN
All is OK
Receiving device was not available (time out on talker)
Transmitting device was not available (time out on listener)
Cassette data file block was too short
Cassette data file block was too long
Unrecoverable read error from cassette, verify error
Cassette checksum error--one or more faulty characters were read
End of file reached (EOI detected)
Device not present, or end of tape mark found on cassette

48

DEMONSTRATION OF SEQUENTIAL FILES (BASIC 2.0)

Use the following program for your first experiments with sequential files.
Comments have been added to help you better understand it.

150 CR$=CHR$(13)
160 OPEN 15,8,15
170 PRINT CHR$(l47):REM CLEAR

SCREEN
190 PRINT "** WRITE A FILE **"
210PRINT
220 OPEN 2,8,2, "@O:SEQ FILE,S,W"
230 GOSUB 500
240 PRINT"ENTER A WORD,

THEN A NUMBER"
250 PRINT"OR 'END,O' TO STOP"
260 PRINT
270 INPUT A$,B

280 PRINT#2,A$;CR$;B
290 GOSUB 500
300 IF A$<>"END" THEN 270
310PRINT
320 CLOSE 2
340 PRINT "** READ SAME FILE

BACK **"
360PRINT
370 OPEN 2,8,2, "O:SEQ FILE,S,R"
380 GOSUB 500
390 INPUT#2,A$,B
400 RS=ST
410 GOSUB 500
420 PRINT A$,B
430 IF RS = 0 THEN 390
440 IF RS<>64 THEN

PRINT" STATUS = ";RS
450 CLOSE 2
455 CLOSE 15
460 END
480 REM ** ERROR CHECK SIR **
500 INPUT#15,EN,EM$,ET,ES
510 IF EN>O THEN PRINT

EN,EM$,ET,ES:STOP

520RETURN

49

Make a carriage return variable

Open demo file with replace
Check for disk errors

Accept a string & number
from keyboard
Write them to the disk file

Until finished

Tidy up

Reopen same file for reading

Read next string & number from file
Remember file status

Display file contents
until done,

unless there's an error
Then quit

A Basic 3.5-only version could
replace line 500 with
500 IF DS>O THEN PRINT

DS$:STOP
and delete line 510

DEMONSTRATION OF SEQUENTIAL FD..ES (BASIC 7.0)

Use the following program for your first experiments with sequential files.
Comments have been added to help you better understand it.

150 CR$=CHR$(13)
170 PRINT CHR$(147):REM CLEAR

SCREEN
190 PRINT "** WRITE A FILE **"
210PRINT
220 DOPEN #2, "@SEQ FILE" , W
230 GOSUB 500
240 PRINT"ENTER A WORD,

THEN A NUMBER"
250 PRINT"OR 'END,O' TO STOP"
260PRINT
270 INPUT A$,B

280 PRINT#2,A$;CR$;B
290 GOSUB 500
300 IF A$<> "END" THEN 270
310PRINT
320 DCLOSE #2
340 PRINT "** READ SAME FILE

BACK **"
360PRINT
370 DOPEN #2, "SEQ FILE"
380 GOSUB 500
390 INPUT#2,A$,B
400 RS=ST
410 GOSUB 500
420 PRINT A$,B
430 IF RS = 0 THEN 390
440 IF RS<>64 THEN

PRINT"STATUS = ";RS
450 DCLOSE #2
460 END
480 REM ** ERROR CHECK SIR **
500 IF DS>O THEN PRINT DS$:STOP
510RETURN

50

Make a carriage return variable

Open demo file with replace
Check for disk errors

Accept a string & number
from keyboard
Write them to the disk file

Until finished

Tidy up

Reopen same file for reading

Read next string & number from file
Remember file status

Display file contents
until done,

unless there's an error
Then quit

CHAPTER 6
RELATIVE FILES

THE VALUE OF RELATIVE ACCESS

Sequential files are very useful when you're just working with a continuous stream of
data- i.e., information that can be read or written all at once. However, sequential files
are not useful in some situations. For example, after writing a large list of mail labels, you
wouldn't want to have to reread the entire list each time you need a person's record.
Instead, you need some kind of random access, a way to get to a particular label in your
file without having to read through all those preceding it.

As an example, compare a record turntable with a cassette recorder. You have to
listen to a cassette from beginning to end, but a turntable needle can be picked up at any
time, and instantly moved to any spot on the record. Your disk drive works like a turntable
in that respect. In this chapter you will learn about a type of file that reflects this
flexibility .

Actually, two different types of random access files may be used on Commodore
disk drives: relative files and random files. Relative files are much more convenient for
most data handling operations, but true random access file commands are also available to
advanced users, and will be discussed in the next chapter.

FILES, RECORDS, AND FIELDS

When learning about sequential files, you did not worry about the organization of
data within a file, so long as the variables used to write the file matched up properly with
those which read it back into the computer. But in order for relative access to work, you
need a more structured and predictable environment for our data.

The structure you will use is similar to that used in the traditional filing cabinet. In a
traditional office, all customer records might be kept in a single file cabinet. Within this
file, each customer has a personal record in a file folder with their name on it, that
contains everything the office knows about that person. Likewise, within each file folder,
there may be many small slips of paper, each containing one bit of information about that
customer, such as a home phone number or the date of the most recent purchase.

In a computerized office, the file cabinet is gone, but the concept of a file containing
all the information about a group or topic remains. The file folders are gone too, but the
notion of subdividing the file into individual records remains. The slips of paper within
the personal records are gone too, replaced by subdivisions within the records, .called
fields. Each field is large enough to hold one piece of information about one record in the
file. Thus, within each file there are many records, and within each record there are
typically many fields.

A relative file takes care of organizing the records for you, numbering them from 1 to
the highest record number, by ones, but the fields are up to you to organize. Each record
will be of the same size, but the 1571 won't insist that they all be divided the same way.
On the other hand, they normally will be subdivided the same way, and if it can be known
in advance exactly where each field starts within each record, there are even fast ways to
access a desired field within a record without reading through the other fields. As all of
this implies, access speed is a primary reason for putting information into a relative disk

51

file. Some well-written relative file programs are able to find and read the record of one
desired person out of a thousand in under 15 seconds, a feat no sequential file program
could match.

FILE LIMITS

With relative files, you don't have to worry about exactly where on the diskette's
surface a given record will be stored, or whether it will fit properly within the current disk
sector, or need to be extended onto the next available sector. DOS takes care of all that for
you. All you need to do is specify how long each record is, in bytes, and how many
records you will need. DOS will do the rest, and organize things in such a way that it can
quickly find any record in the file, as soon as it is given the record number (ordinal
position within the file).

The only limit that will concern you is that each record must be the same size, and the
record length you choose must be between 2 and 254 characters. Naturally the entire file
also has to fit on your diskette too, which means that the more records you need, the
shorter each record must be.

CREATING A RELATIVE FILE

When a relative file is to be used for the first time, its Open statement will create the
file; after that, the Open statement is used to reopen the file for both reading and writing.

FORMAT STATEMENT TO OPEN A RELATIVE FILE:

BASIC 7.0: DOPEN # file #, "file name", L record length [,Ddrive #]
[,Udevice #]

BASIC 2.0: OPEN file #, device #, channel #, "drive #: file name, L," + CHR$
(record length)

where "file #" is the file number, normally an integer between 1 and 127; "device #" is
the device number to be used, normally 8 on the 1571; "channel #" selects a particular
channel along which communications for this file can take place, normally between 2 and
14; "drive #" is the drive number, always 0 on the 1571; and "file name" is the name of
the file, with a maximum length of 16 characters. Pattern matching characters are allowed
in the name when accessing an existing file, but not when creating a new one. The record
length is the size of each record within the file in bytes used, including carriage returns,
quotation marks and other special characters.

52

Notes:
1. Do not precede the file name (in BASIC 7.0) or the drive number (in

BASIC 2.0) with the "at" sign (@); there is no reason to replace a relative file.
2. L record length (in BASIC 7.0) or, L ," + CHR$(record length) (in BASIC

2.0) is only required when a relative file is first created, though it may used later, so
long as the record length is the same as when the file was first created. Since
relative files may be read from or written to alternately and with equal ease, there is
no need to specify Read or Write mode when opening a relative file.

3. "file #", "device #" and "channel #" must be valid numeric constants,
variables or expressions. The rest of the command must be a valid string literal,
variable or expression. In BASIC 7.0 DOPEN, whenever a variable or expression
is used as a file name it must be surrounded by parentheses.

4. Only 1 relative file can be open at a time on the 1571, although a sequential
file and the command channel may also be open at the same time. However, if you
have a sequential and relative file open at the same time, you can't request a
directory.

EXAMPLES:

To create or reopen a relative file named "GRADES", of record length 100, use

BASIC 7 .0: DOPEN#2, "GRADES" ,L100,D0,U8
BASIC 2.0: OPEN 2,8,2, "GRADES,L," + CHR$(100)

To reopen an unknown relative file of the user's choice that has already been created,
use:

BASIC 7.0: 200 INPUT"WHICH FILE";FI$
210 DOPEN#5,(FI$),D0,U8

BASIC 2.0: 200 INPUT"WHICH FILE";FI$
210 OPEN 5,8,5,FI$

USING RELATIVE FILES: RECORD# COMMAND

When a relative file is opened for the first time, it is not quite ready for use. Both to
save time when using the file later, and to assure that the file will work reliably, it is
necessary to create several records before closing the file for the first time. At a minimum,
enough records to fill more than two disk sectors (512 bytes) should be written. In
practice, most programs go ahead and create as many records as the program is eventually
expected to use. That approach has the additional benefit of avoiding such problems as
running out of room on the diskette before the entire file is completed.

53

If you simply begin writing data to a just-opened relative file, it will act much like a
sequential file, putting the data elements written by the first PRINT# statement in Record
#1, those written by the second PRINT# statement in record #2 and so on. This means
each record must be written by a single PRINT# statement, using embedded carriage
returns within the data to separate fields that will be read in via one or more INPUT#
statements later. However, it is far better to explicitly specify which record number is
desired via a RECORD# command to the disk. This allows you to access records in any
desired order, hopping anywhere in a file with equal ease.

FORMAT FOR THE RECORD# COMMAND:

BASIC 7.0: RECORD # file #, record number [,offset]
BASIC 2.0: PRINT#15, "P"+CHR$ (channel #+96)+CHR$

«record #)+CHR$ (>record #)+CHR$ (offset)

where "file #" is the file # specified in the current DOPEN statement for the specified
file, "record number" is the desired record number, "channel #" is the channel number
specified in the current OPEN statement for the specified file, "<record #" is the low
byte of the desired record number, expressed as a two-byte integer, ">record #" is the
high byte of the desired record number, and an optional "offset" value, if present, is the
byte within the record at which a following Read or Write should begin.

. To fully understand this command, you must understand how most integers are
stored in computers based on the 6502 and related microprocessors. In the binary
arithmetic used by the microprocessor, it is possible to express any unsigned integer from
0-255 in a single byte. It is also possible to store any unsigned integer from 0-65535 in
two bytes, with one byte holding the part of the number that is evenly divisible by 256,
and any remainder in the other byte. In machine language, such numbers are written
backwards, with the low-order byte (the remainder) first, followed by the high-order byte.
In assembly language programs written with the Commodore Assembler, the low part of a
two-byte number is indicated by preceding its label with the less-than character «).
Similarly, the high part of the number is indicated by greater-than (».

SAFETY NOTE: GIVE EACH RECORD# COMMAND TWICE

To avoid the remote possibility of corrupting relative file data, it is necessary to
give RECORD# commands twice before a record is read.

EXAMPLES:

In BASIC 7.0, to position the record pointer for file #2 to record number 3, type:

RECORD#2,3

54

In BASIC 2.0, to position the record pointer for channel #2 to record number 3, type:

PRINT #15, "P" +CHR$ (98) +CHR$ (3) +CHR$ (0)

The CHR$(98) comes from adding the constant (96) to the desired channel number (2).
(96 + 2 = 98) Although the command appears to work even when 96 is not added to the
channel number, the constant is normally added to maintain compatibility with the way
RECORD# works in BASIC 7.0.

Since 3 is less than 256, the high byte of its binary representation is 0, and the entire
value fits into the low byte. Since you want to read or write from the beginning of the
record, no offset value is needed.

Since these calculations quickly become tedious, most programs are written to do
them for you. Here is an example of a program which inputs a record number and converts
it into the required low-bytelhigh-byte form:

450 INPUT"RECORD NUMBER DESIRED";RE
460 IF RE<1 OR RE>65535 THEN 450
470 RH = INT(RFJ256)
480 RL=RE-256*RH
490 PRINT#15, "P" +CHR$ (98) +CHR$ (RL) +CHR$ (RH)

Assuming RH and RL are calculated as in the previous example, programs may also use
variables for the channel, record, and offset required:

570 INPUT "CHANNEL, RECORD, & OFFSET DESIRED";CH,RE,OF
630PRINT#15, "P" +CHR$ (CH +96) +CHR$ (RL)+ CHR$ (RH)+CHR$ (OF)

COMPLETING RELATIVE FILE CREATION

Now that you have learned how to use both the Open and Record# commands, you
are almost ready to properly create a relative file. The only additional fact you need to
know is that CHR$(255) is a special character in a relative file. It is the character used by
the DOS to fill relative records as they are created, before a program fills them with other
information. Thus, if you want to write the last record, you expect to need in your file
with dummy data that will not interfere with your later work, CHR$(255) is the obvious
choice. Here is how it works in an actual program which you may copy for use in your
own relative file programs.

BASIC 2.0:

1020 OPEN 15,8,15
1380 INPUT"ENTER RELATIVE FILE NAME";FI$
-1390 INPUT"ENTER MAX. # OF RECORDS";NR
1400 INPUT"ENTER RECORD LENOTH";RL

(continued)

55

Open command channel
Select file parameters

1410 OPEN 1,8,2, "0:" + FlS+" ,L," +CHRS(RL)
1420 GOSUB 59990
1430 RH=INT(NRl256)
1440 RL=NR-256*RH
1450 PRINT#15, "P" + CHRS(96 + 2) +

CHRS(RL) + CHR$(RH)

1455 PRINT#15,"P" +CHRS(96+2)+
CHRS(RL) + CHRS(RH)

1460 GOSUB 59990
1470 PRINT#I,CHRS(255);
1480 GOSUB 59990
1500 GOSUB 59990
1510 CLOSE 1

1520 GOSUB 59990
9980 CLOSE 15

9990 END

59980 REM CHECK DISK SUBROUTINE
59990 INPUT#15,EN,EMS,ET,ES
60000 IF EN> 1 AND EN<>50 THEN PRINT

EN,EMS,ET,ES:STOP

60010 RETURN

BASIC 7.0:

1380 INPUT"ENTER RELATIVE FILE NAME";FIS
1390 INPUT"ENTER MAX. # OF RECORDS";NR
1400 INPUT "ENTER RECORD LENOTH";RL
1410 OOPEN#I,(FI$),L(RL)
1420 GOSUB 60000

1450 RECORD#I, (NR)

1455 RECORD#I, (NR)
1460 GOSUB 60000
1470 PRINT#I,CHRS(255);
1480 GOSUB 60000
1500 GOSUB 60000
1510 CLOSE 1

(continued)

56

Begin to create desired file
Check for disk errors
Calculate length values

Position to last record
number
Re-position for safety

Send default character to it

Now the file can be safely
closed

And the command channel
closed
Before we end the pro
gram

Error check subroutine
Ignore "RECORD NOT
PRESENT"

Select file parameters

Begin to create desired file
Check for disk errors
Calculate length values
Position to last record
number

Send default character to it

Now the file can be safely
closed

1520 GOSUB 60000
9980 CLOSE 15

9990END

59980 REM CHECK DISK SUBROUTINE
60000 IF DS> 1 AND DS<>50 THEN PRINT

DS,DS$:STOP

60010 RETURN

And the command channel
closed
Before we end the pro
gram

Error check subroutine
Ignore "RECORD NOT
PRESENT"

Two lines require additional explanation. When line 1470 executes, the disk drive will
operate for up to several minutes, creating all the records in the file, up to the maximum
record number you selected in line 1390. This is normal, and only needs to be done once.
During the process you may hear the drive motor turning and an occasional slight click as
the head steps from track to track. Second, line 60000 above is different from. the
equivalent line in the error check subroutine given earlier. Here disk error number 50 is
specifically ignored, because it will be generated when the error channel is checked in line
1460. Ignore it because not having a requested record would only be an error if that record
had been created previously.

EXPANDING A RELATIVE FILE

What if you underestimate your needs and need to expand a relative file later? No
problem. Simply request the record number you need, even if it doesn't currently exist in
the file. If there is no such record yet, DOS will create it as soon as you t1"l' to write
information in it, and also automatically create any other missing records below it in
number. When the first record beyond the current end record is written, the DOS returns
"50, Record Not Present" error. This is expected and correct.

WRITING RELATIVE FILE DATA

The commands used to read and write relative file data are the same PRINT#,
INPUT#, and OET# commands used in the preceding chapter on Sequential files. Each
command is used as described there. However, some aspects of relative file access do
differ from sequential file programming, and we will cover those differences here.

DESIGNING A RELATIVE RECORD

As stated earlier in this chapter, each relative record has a fixed length, including all
special characters. Within that fixed length, there are two popular ways to organize
various individual fields of information. One is free-format, with individual fields varying
in length from record to record, and each field separated from the next by a carriage return
character (each of which does take up one character space in the record). The other
approach is to use fixed-length fields, that mayor may not be separated by carriage
returns. If fixed length fields are not all separated by carriage returns, you will either need

57

to be sure a carriage return is included within each 88-character portion of the record (88 is
for BASIC 2, 160 is for BASIC 7). If this is not done, you will have to use the GET#
command to read the record, at a significant cost in speed.

Since each relative record is most easily written by a single PRINT# statement, the
recommended approach is to build a copy of the current record in memory before writing
it to disk. It can be collected into a single string variable with the help of BASIC's many
string-handling functions, and then all written out at once from that variable.

Here is an example. If we are writing a 4-line mail label, consisting of 4 fields named
"NAME," "STREET," "CITY & STATE," and "ZIP CODE," and have a total record
size of 87 characters, we can organize it in either of two ways:

WITH FIXED LENGTH FIELDS WITH VARIABLE LENGTH FIELDS

Field Name Length Field Name Length

NAME 27 characters NAME 31 characters
STREET 27 characters STREET 31 characters
CITY & STATE 23 characters CITY & STATE 26 characters
ZIP CODE 10 characters ZIP CODE 11 characters

Total length 87 characters Potential length 99 characters
Edited length 87 characters

With fixed length records, the field lengths add up to exactly the record length. Since
the total length is just within the Input buffer size limitation, no carriage retum characters
are needed. With variable length records, you can take advantage of the variability of
actual address lengths. While one name contains 27 letters, another may have only 15,
and the same variability exists in street and city lengths. Although variable length records
lose one character per field for carriage returns, they can take advantage of the difference
between maximum field length and average field length. A program that uses variable
record lengths must calculate the total length of each record as it is entered, to be sure the
total of all fields doesn't exceed the space available.

WRITING THE RECORD

Here is an example of program lines to enter variable length fields for the above file
design, build them into a single string, and send them to record number RE in file number
3 (assumed to be a relative file that uses channel number 3).

BASIC 7.0:

100 INPUT"ENTER RECORD NUMBER";RE
110 :
120 DOPEN#3, "MYRELFILE"L88
130 CR$ = CHR$(13)
140 INPUT"NAME"; NA$
150 IF LEN(A$»30 THEN 140
160 INPUT"STREET";SA$
170 IF LEN(SA$»30 THEN 160

(continued)

58

180 INPUT"CITY & STATE"; CS$
190 IF LEN(CS$»25 THEN 180
200 INPUT"ZJP CODE";ZP$
210 IF LEN(ZP$)> 10 THEN 200
220 DA$ = NA$ + CR$ + SA$ + CR$ + CS$ + CR$;ZP$
230 IF LEN(DA$)<88 THEN 260
240 PRINT"RECORD TOO LONG"
250GOTO 140
260 :
270 :
280 RECORD#3,(RE),1
290 IFDS = 5OTHENPRINT#3,CHR$(255):GOSUB l000:GOT0280
300 GOSUBl000
310 PRINT#3,DA$
320 GOSUBl000
330 RECORD#3,(RE),1
340 GOSUB 1 000
350 DCLOSE3:END
1000 IFDS<20 THEN RETURN
1002 :
1010 PRINTDS$:DCLOSE3:END

BASIC 2.0:

100 INPUT"ENTER RECORD NUMBER";RE
110 OPEN 15,8,15
120 OPEN3,8,3, "MYRELFlLE,L," + CHR$(88)
130 CR$= CHR$(13)
140 INPUT"NAME"; NA$
150 IF LEN(A$»30 THEN 140
160 INPUT"STREET";SA$
170 IF LEN(SA$»30 THEN 160
180 INPUT"CITY & STATE"; CS$
190 IF LEN(CS$»25 THEN 180
200 INPUT"ZIP CODE";ZP$
210 IF LEN(ZP$)> 10 THEN 200
220 DA$ = NA$ +CR$ + SA$+ CR$ +CS$ + CR$;ZP$
230 IF LEN(DA$)<88 THEN 260
240 PRINT"RECORD TOO LONG"
250GOTO 140
260 RH = INT(RFJ256)
270 RL = RE - 256*RH
280 PRINT# 15, "P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(I)
290 GOSUB l000:IF EN = 5OTHENPRlNT#3,CHR$(255):GOSUB l000:GOT0280
300 GOSUBl000
310 PRINT#3,DA$
320 GOSUBl000
330 PRINT# 15, "P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(1)

(continued)
59

340 GOSUBl000
350 CLOSE3:CLOSEI5:END
1000 INPUT#15,EN ,EM$,ET ,ES
1002 IF EN<20 THEN RETURN
1010 PRINTEM$:CLOSE3:CLOSEI5:END

To use the above program lines for the version with fixed length fields, we would
alter a few lines as follows:

BASIC 7.0:

100 INPUT"ENTER RECORD NUMBER";RE
110 :
120 DOPEN#3, "MYRELFlLE" ,L88
130 BL$= "(27 shited space chars)"
140 INPUT"NAME"; NA$
145 LN=LEN(NA$)
150 IF LEN>27 THEN 140
155 NA$ = NA$ + LEFf$(BL$,27 - LN)
160 INPUT"STREET";SA$
165 LN=LEN(SA$)
170 IF LEN>27 THEN 160
175 SA$ = SA$ + LEFf$(BL$,27 - LN)
180 INPUT"CITY & STATE"; CS$
185 LN = LEN(CS$)
190 IF LEN>23 THEN 180
195 CS$ = CS$ + LEFf$(BL$,23 - LN)
200 INPUT"ZIP CODE";ZP$
205 LN = LEN(ZP$)
210 IF LN> 10 THEN 200
215 ZP$ = ZP$ + LEFf$(BL$, 10 - LN)
220 DA$ = NA$ + SA$ + CS$ + ZP$
260:
270:
280 RECORD#3,(RE),1
290 IFDS = 50THENPRINT#3,CHR$(255):GOSUB looo:GOT0280
300 GOSUB1000
310 PRINT#3,DA$
320 GOSUBlooo
330 RECORD#3,(RE), 1
340 GOSUBlooo
350 DCLOSE#3:END
1000 IFDS<20 THEN RETURN
1002 :
1010 PRINT"ERROR:"DS$:DCLOSE#):END

60

BASIC 2.0:

100 INPUT"ENTER RECORD NUMBER";RE
110 OPEN 15,8,15
120 OPEN#3 ,8,3, "MYRELFILE,L," + CHR$(88)
130 BL$= "(27 shited space chars)"
140 INPUT"NAME"; NA$
145 LN = LEN(NA$)
150 IF LEN>27 THEN 140
155 NA$ = NA$ + LEFf$(BL$,27 - LN)
160 INPUT"STREET";SA$
165 LN=LEN(SA$)
170 IF LEN>27 THEN 160
175 SA$ = SA$ + LEFf$(BL$,27 - LN)
180 INPUT"CITY & STATE"; CS$
185 LN=LEN(CS$)
190 IF LN>23 THEN 180
195 CS$ = CS$ + LEFf$(BL$,23 - LN)
200 INPUT"ZIP CODE";ZP$
205 LN = LEN(ZP$)
210 IF LN> 10 THEN 200
215 ZP$=ZP$+LEFf$(BL$,IO-LN)
220 DA$ = NA$ + SA$ + CS$ + ZP$
260 RH = INT(REl256)
270 RL = RE - 256*RH
280 PRINT#15, "P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(1)
290 GOSUB lOOO:IF EN = 5OTHENPRINT#3)CHR$(255):GOSUB 1000:GOT0280
300 GOSUBlooo
310 PRINT#3,DA$
320 GOSUBlOOO
330 PRINT#15,"P" + CHR$(96 + 3) +CHR$(RL) +CHR$(RH) +CHR$(1)
340 GOSUBlOOO
350 GOSUBlOOO:CLOSE3:CLOSEI5:END
1000 INPUT#15,EN,EM$,ET,E
1002 IF EN<20 THEN RETURN
1010 PRINT"ERROR:"EM$:CLOSE3:CLOSEI5:END

If field contents vary in length, variable field lengths are often preferable. On the
other hand, if the field lengths are stable, fixed field lengths are preferable. Fixed length
fields are also required if you want to use the optional offset parameter of the Record#
command to point at a particular byte within a record. However, one warning must be
made about using the offset this way. When any part of a record is written, DOS
overwrites any remaining spaces in the record. Thus, if you must use the offset option,
never update any field in a record other than the last one uDIess all succeeding fields will
also be updated from memory later.

61

The above programs are careful to match record lengths exactly to the space
available. Programs that don't do so will discover that DOS pads short records out to full
size with fill characters, and truncates overlong records to fill only their allotted space.
When a record is truncated, DOS will indicate error 51, "RECORD OVERFLOW," but
short records will be accepted without a DOS error message.

READING A RELATIVE RECORD

Once a relative record has been written properly to diskette, reading it back into
computer memory is fairly simple, but the procedure again varies, depending on whether
it uses fixed or variable length fields. Here are the program lines needed to read back the
variable fields created above from record number RE in file and channel 3:

BASIC 7.0:

10:
20 DOPEN#3, "MYRELFILE" ,LSS
30 INPUT"ENTER RECORD NUMBER";RE
40 :
50 :
60 RECORD#3,(RE),1
70 GOSUBloo0
SO INPUT#3,NA$,SA$,CS$,ZP$
90 GOSUBloo0
100 RECORD#3,(RE),1
110 GOSUBl000
120 PRINTNA$:PRINTSA$
130 PRINTCS$:PRINTZP$
140 DCLOSE#3:END
1000 IFDS<20 THEN RETURN
1002 :
1010 PRINT' 'ERROR:' 'DS$:DCLOSE#3:END

BASIC 2.0:

10 OPEN 15,S,15
20 OPEN3,S,3,' 'MYRELFILE,L," + CHR$(SS)
30 INPUT"ENTER RECORD NUMBER";RE
40 RH = INT(RE/256)
50 RL = RE - 256*RH
60 PRINT# 15, "P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(l)
70 GOSUB 1000
SO INPUT#3,NA$,SA$,CS$,ZP$
90 GOSUB 1000
100 PRINT# IS, "P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(I)
110 GOSUB 1000
120 PRINTNA$:PRINTSA$

(continued)

62

130 PRINTCS$:PRINTZP$
140 CLOSE3:CLOSEI5:END
1000 INPUT#15,EN,EM$,ET,ES
1002 IF EN<20 THEN RETURN
1002 PRINT"ERROR:"EM$:CLOSE3:CLOSEI5:END

Here are the lines needed to read back the version with fixed length fields:

BASIC 7.0:

10:
20 DOPEN#3, "MYRELFILE" ,L88
30 INPUT"ENTER RECORD NUMBER";RE
40:
50 :
60 RECORD#3,(RE), I
70 GOSUB 1000
80INPUT#3,DA$
90 GOSUB 1000
100 RECORD#3,(RE),1
110 GOSUBlOoo
112 NA$ = LEFT$(DA$,27)
114 SA$=MID$(DA$,28,27)
116 CS$ = MID$(DA$,55,23)
118 ZP$ = RIGHT$(DA$, 10)
120 PRINTNA$:PRINTSA$
130 PRINTCS$:PRINTZP$
140 DCLOSE#3:END
1000 IFDS<20 THEN RETURN
1002 :
1010 PRINT"ERROR:"DS$:DCLOSE#3:END

BASIC 2.0:

10 OPEN 15,8,15
20 OPEN3,8,3, "MYRELFILE,L" +CHR$(88)
30 INPUT"ENTER RECORD NUMBER";RE
40 RH = INT(RE/256)
50 RL = RE - 256*RH
60 PRINT# 15, "P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(l)
70 GOSUBloo0
80INPUT#3,DA$
90 GOSUB1ooo
100 PRINT# 15, "P" + CHR$(96 + 3) + CHR$(RL) + CHR$(RH) + CHR$(1)
110 GOSUB 1000
112 NA$ = LEFT$(DA$,27)
114 SA$=MID$(DA$,28,27)

(continued)

63

116 CS$ = MID$(DA$,55,23)
118 ZP$= RIGHT$(DA$,IO)
120 PRINTNA$:PRINTSA$
130 PRINTCS$:PRINTZP$
140 CLOSE3:CLOSEI5:END
1000INPUT#15,EN,EM$,ET,ES
1002 IF EN <20 THEN RETURN
1002 PRINT"ERROR:"EM$:CLOSE3:CLOSEI5:END

READY.

THE VALUE OF INDEX FILES (ADVANCED USERS)

In the last two chapters you have learned how to use sequential and relative files
separately. But they are often used together, with the sequential file used to keep brief
records of which name in the relative file is stored in each record number. That way the
contents of the sequential file can be read into a string array and sorted alphabetically.
After sorting, a technique known as a binary search can be used to quickly find an entered
narne in the array, and read in or write the associated record in the relative file. Advanced
programs can maintain two or more such index files, sorted in differing ways simulta
neously.

64

CHAPTER 7
DIRECT ACCESS COMMANDS

A TOOL FOR ADVANCED USERS

Direct access commands specify individual sectors on the diskette, reading and
writing information entirely under your direction. This gives them almost complete
flexibility in data-handling programs, but imposes tremendous responsibilities on the
programmer, to be sure nothing goes awry. As a result, they are normally used only in
complex commercial programs able to properly organize data without help from the disk
drive itself.

A far more common use of direct access commands is in utility programs used to
view and alter parts of the diskette that are not normally seen directly. For instance, such
commands can be used to change the name of a diskette without erasing all of its
programs, to lock a program so it can't be erased, or hide your name in a location where it
won't be expected.

DISKETTE ORGANIZATION

There are a total of 683 blocks on a diskette (1541 mode) and 1366 (1571 mode), of
which 664 (1328) are available for use, with the rest reserved for the BAM (Block
Availability Map) and the Directory.

The diskette's surface is divided into tracks, which are laid out as concentric circles
on the surface of the diskette. There are 35 different tracks per side, starting with track I at
the outside ofthediskette to track 35 at the center. Track 18 is used for the directory and
BAM. The DOS fills the diskette from the center outward, alternately in both directions.

Each track is subdivided into sectors (also called blocks). Because there is more
room on the outer tracks, there are more sectors per track there. The outermost tracks
contain 21 sectors each, while the innermost ones only have 17 sectors each. The table
below shows the number of sectors per track.

Table 6.1: Track and Sector Format
TRACK NUMBER SECTOR NUMBERS TOTAL SECTORS

1 to 17 o through 20

21 ! 18 to 24 o through 18 19 1541

25 to 30 o through 17 18 mode

31 to 35 o through 16 17 1571
36 to 52 o through 20 21
53 to 59 o through 18 19
60 to 65 o through 17 18
66 to 70 o through 16 17

In this chapter we will describe the DOS commands for directly reading and writing
any track and block on the diskette, as well as the commands used to mark blocks as used
or unused.

65

OPENING A DATA CHANNEL FOR DIRECT ACCESS

When working with direct access data, you need two channels open to the disk: the
command channel we've used throughout the book, and another for data. The command
channel is opened with the usual OPEN 15,8,15 or equivalent. A direct access data
channel is opened much like other files, except that the pound sign (#), optionally
followed by a memory buffer number, is used as a file name.

FORMAT FOR DIRECT ACCESS FILE OPEN STATEMENTS:

OPEN file #,device #, channel #, "#buffer #"

where "file #" is the file number, "device #" is the disk's device number, normally 8;
"channel #" is the channel number, a number between 2 and 14 that is not used by other
files open at the same time; and "buffer #," if present, is a 0, I, 2, or 3, specifying the
memory buffer within the 1571 to use for this file's data.

EXAMPLES:

If we don't specify which disk buffer to use, the 1571 will select one:

OPEN 5,8,5,"#"

Or we can make the choice ourselves:

OPEN 4,8,4, "#2"

BLOCK-READ

The purpose of a BLOCK-READ is to load the contents of a specified sector into a
file buffer. Although the BLOCK-READ command (B-R) is still part of the DOS
command set, it is nearly always replaced by the UI command (See Chapter 8).

FORMAT FOR THE BLOCK-READ COMMAND:

PRINT#15, "UI"; channel #; drive #; track #; sector #

where "channel #" is the channel number specified when the file into which the block
will be read was opened, "drive #" is the drive number, and "track #" and "sector #"
are respectively the track and sector numbers containing the desired block of data to be
read into the file buffer.

ALTERNATE FORMATS:

PRINT#15, "UI:"channel #;drive #;track #;sector #
PRINT#15,"UA:"channel #;drive #;track #;sector #
PRINT#15, "UI :channel # ,drive # ,track # ,sector #"

66

EXAMPLE:

Here is a complete program to read a sector into disk memory using Ul, and from
there into computer memory via GET#. (If a carriage return will appear at least once in
every 88 characters of data, Input# may be used in place of GET#).

110 MB=7936:REM $IFOO
120 INPUT"TRACK TO READ";T
130 INPUT"SECTOR TO READ";S
140 OPEN 15,8,15
150 OPEN 5,8,5, "#"
160 PRINT#15, "Ul ";5;0;T;S
170 FOR I=MB TO MB+255
180 GET#5,A$:IF A$=" "

THEN A$ = CHR$(O)
190 POKE I,ASC(A$)
200NEXT
210 CLOSE 5:CLOSE 15
220 END

Define a memory buffer.
Select a track
and sector.
Open command channel.
Open direct access channel.
Read sector into disk buffer.
Use a loop to
copy disk buffer.
into computer memory.
Tidy up after.

As the loop progresses, the contents of the specified track and sector are copied into
computer memory, beginning at the address set by variable MB in line 160, and may be
examined and altered there.

BLOCK·WRITE

The purpose of a BLOCK-WRITE is to save the contents of a file buffer into a
specified sector. It is thus the reverse of the BLOCK-READ command. Although the
BLOCK-WRITE command (B-W) is still part of the DOS command set, it is nearly
always replaced by the U2 command.

FORMAT FOR THE BLOCK-WRITE COMMAND:

PRINT#15,"U2";channel #;drive #;track #;sector #

where "channel #" is the channel number specified when the file into which the block
will be read was opened; "drive #" is the drive number; and "track #" and "sector #"
are respectively the track and sector numbers that should receive the block of data being
saved from the file buffer.

ALTERNATE FORMATS:

PRINT#15, "U2:"channel #;drive #;track #;sector #
PRINT#15, "UB:"channel #;drive #;track #;sector #
PRINT#15, "U2:channel #,drive #,track #,sector #"

67

EXAMPLES:

To restore track 18, sector 1 of the directory from the disk buffer filled by a BLOCK
READ, use:

PRINT#15, "U2";5;0;18;1

You'll return to this example on the next page, after you learn to alter the directory in a
useful way.

You can also use a BLOCK-WRITE to write a name in Track 1, Sector 1, a rarely
used sector. This can be used as a way of marking a diskette as belonging to you. Here is a
program to do it, using the alternate form of the BLOCK-WRITE command:

110 INPUT"YOUR NAME";NA$
120 OPEN 15,8,15
130 OPEN 4,8,4, "#"
140 PRINT#4,NA$
150 PRINT#15, "U2";4;0;1;1
160 CLOSE 4
170 CLOSE 15
180 END

Enter a name.
Open command channel.
Open direct access channel.
Write name to buffer.
Write buffer to Track 1,
Sector I of diskette.
Tidy up after.

THE ORIGINAL BLOCK·READ AND BLOCK·WRITE COMMANDS (EXPERT
USERS)

Although the BLOCK-READ and BLOCK-WRITE commands are nearly always
replaced by the Ul and U2 commands respectively, the original commands can still be
used, as long as you fully understand their effects. Unlike U1 and U2, B-R and B-Wallow
you to read or write less than a full sector. In the case of B-R, the first byte of the selected
sector is used to set the buffer pointer (see next section), and determines how many bytes
of that sector are read into a disk memory buffer. A program may check to be sure it
doesn't attempt to read past the end of data actually loaded into the buffer, by watching for
the value of the file status variable ST to change from 0 to 64. When the buffer is written
back to diskette by B-W, the first byte written is the current value of the buffer pointer.
Only that many bytes are written into the specified sector. B-R and B-W may thus be
useful in working with custom-designed file structures.

FO~MAT FOR THE ORIGINAL BLOCK-READ AND BLOCK-WRITE COM
MANDS:

PRINT#15,"BLOCK-READ";channel #;drive #;track #;sector #

abbreviated as: PRINT#15, "B-R";channel #;drive #;track #;sector #

and

PRINT#15, "BLOCK-WRITE";channel #;drive #;track #;sector #

68

abbreviated as: PRINT#15, "B-W";channel #;drive #;track #;sector #

where "channel #" is the channel number specified when the file into which the block
will be read was opened, "drive #" is the drive number, and "track #" and "sector #"
are the track and sector numbers containing the desired block of data to be partially read
into or written from the file buffer.

IMPORTANT NOTES:

1. In a true BLOCK-READ, the first byte of the selected sector is used to
determine how many bytes of that sector to read into the disk memory buffer. It
thus cannot be used to read an entire sector into the buffer, as the first data byte is
always interpreted as being the number of characters to read, rather than part of the
data.

2. Similarly, in a true BLOCK-WRITE, when the buffer is written back to
diskette, the first byte written is the current value of the buffer pointer. Only that
many bytes are written into the specified sector. It cannot be used to rewrite an
entire sector onto diskette unchanged, because the first data byte is overwritten by
the buffer pointer.

THE BUFFER POINTER

The buffer pointer points to where the next READ or WRITE will begin within a disk
memory buffer. By moving the buffer pointer, you can access individual bytes within a
block in any order. This allows you to edit any portion of a sector, or organize it into
fields, like a relative record.

FORMAT FOR THE BUFFER-POINTER COMMAND:

PRINT#15, "BUFFER-POINTER";channel #;byte

usually abbreviated as: PRlNT#15, "B-P";channel #;byte

where "channel #" is the channel number specified when the file reserving the buffer
was opened, and "byte" is the character number within the buffer at which to point.

ALTERNATE FORMATS:

PRINT#15 , "B-P:"channel #;byte
PRINT#15, "B-P:channel #;byte"

69

EXAMPLE:

Here is a program that locks the first program or file on a diskette. It works by
reading the start of the directory (Track IS, Sector 1) into disk memory, setting the buffer
pointer to the first file type byte (see Appendix C for details of directory organization),
locking it by setting bit 6 and rewriting it.

110 OPEN 15,S,15
120 OPEN 5,S,5, "#"
130 PRINT#15, "U1 ";5;0;lS;1
140 PRINT#15, "B-P";5;2
150 GET#5,A$:IF A$=" " THEN A$=CHR$(O)
160 A=ASC(A$) OR 64
170 PRINT#15 , "B-P";5;2
ISO PRINT#5,CHR$(A);
190 PRINT#15, "U2";5;0;lS;1
200 CLOSE 5
210 CLOSE 15
220 END

Open command channel.
Open direct access channel.
Read Track IS, Sector 1.
Point to Byte 2 of the buffer.
Read it into memory.
Tum on bit 6 to lock.
Point to Byte 2 again.
Overwrite it in buffer.
Rewrite buffer to diskette.
Tidy up after.

After the above program is run, the first file on that diskette can no longer be erased. If
you later need to erase that file, rerun the same program, but substitute the revised line
160 below to unlock the file again:

160 A=ASC(A$) AND 191

ALLOCATING BLOCKS

Tum off bit 6 to unlock

Once you have written something in a particular sector on a diskette with the help of
direct access commands, you may wish to mark that sector as "already used", to keep
other files from being written there. Blocks thus allocated will be safe until the diskette is
validated.

FORMAT FOR BLOCK-ALLOCATE COMMAND:

PRINT#15,"BLOCK-ALLOCATE";drive #; track #;sector #

usually abbreviated as: PRINT#15, "B-A";drive #; track #;sector #

where "drive #" is the drive number, and "track #" and "sector #" are the track and
sector containing the block of data to be read into the file buffer.

ALTERNATE FORMAT:

PRINT#15, "B-A:";drive #; track #;sector #

70

EXAMPLE:

If you try to allocate a block that isn't available, the DOS will set the error message
to number 65, NO BLOCK, and set the track and block numbers in the error message to
the next available track and block number. Therefore, before selecting a block to write,
try to allocate that block. If the block isn't available, read the next available block from
the error channel and allocate it instead. However, do not allocate data blocks in the
directory track. If the track number returned is 0, the diskette is full.

Here is a program that allocates a place to store a message on a diskette.

100 OPENI5,8,15
1100PEN5,8,5,"#"
120 PRINT#5, "I THINK

THEREFORE I AM"
130T=I:S=1
140 PRINT#15 , "B-A";O;T;S
150 INPUT#15,EN,EM$,ET,ES
160 IF EN=O THEN 210
170 IF EN<>65 THEN PRINT

EN,EM$,ET,ES:STOP
180 IF ET = 0 THEN PRINT

"DISK FULL":STOP
190 IF ET= 18 THEN ET= 19:ES=0
200T=ET:S=ES:GOTO 140
210 PRINT#15, "U2";5;0;T;S
220 PRINT "STORED AT:" ,T,S
230 CLOSE 5:CLOSE 15
240END

FREEING BLOCKS

Open command channel.
" direct access "

Write a message to buffer.
Start at first track & sector.
Try allocating it.
See if it worked.
If so, we're almost done.

"NO BLOCK" means already allocated.

If next track is 0, we're out of room.
Don't allocate the directory.
Try suggested track & sector next.
Write buffer to allocated sector.
Say where message went
and tidy up.

The BLOCK-FREE command is the opposite of BLOCK-ALLOCATE. It frees a
block that you don't need any more, for re-use by the DOS. BLOCK-FREE updates the
BAM to show a particular sector is not in use, rather than actually erasing any data.

FORMAT FOR BLOCK-FREE COMMAND:

PRINT#15, "BLOCK-FREE";drive #;track #;sector #

abbreviated as: PRINT#15, "B-F";drive #;track #;sector #

where "drive #" is the drive number, and "track #" and "sector #" are respectively
the track and sector numbers containing the desired block of data to be read into the file
buffer.

71

ALTERNATE FORMAT:

PRINT#15, "B-F:";drive #;track #;sector #

EXAMPLE:

To free the sector in which we wrote our name in the BLOCK WRITE example, and
allocated in the first BLOCK-ALLOCATE example, we could use the following com
mand:

PRINT#15 , "B-F";O;l;l

USING RANDOM FILES (ADVANCED USERS)

By combining the commands in this chapter, it is possible to develop a file-handling
program that uses random files. What you need to know now is how to keep track of
which blocks on the disk such a file has used. (Even though you know a sector has not
been allocated by your random file, you must also be sure it wasn't allocated by another
unrelated file on the diskette.)

The most common way of recording which sectors have been used by a random file is
in a sequential file. The sequential file stores a list of record numbers, with the track,
sector, and byte location of each record. This means three channels are needed by a
random file: one for the command channel, one for the random data, and the last for the
sequential data.

72

CHAPTERS
INTERNAL DISK COMMANDS

Expert programmers can give commands that directly alter the workings of the 1571,
much as skilled programmers can alter the workings of BASIC inside the computer with
Peeks, Pokes and Sys calls. It is also possible to write machine language programs that
load and run entirely within the 1571, either by writing them into disk memory from the
computer, or by loading them directly from diskette into the desired disk memory buffer.
This is similar to loading and running machine language programs in your computer.

As when learning to use Peek, Poke and Sys in your computer, extreme caution is
advised in using the commands in this chapter. They are essentially machine language
commands, and lack all of BASIC'S safeguards. If anything goes wrong, you may have to
turn the disk drive off and on again (after removing the diskette) to regain control. Do not
practice these commands on any important diskette. Rather, make a spare copy and work
with that. Knowing how to program a 6502 in machine language will help greatly, and
you will also need a good memory map of the 1571. A brief 1571 map appears below.

Location

OOOO-OOFF
OlOO-OIFF
0200-02FF
0300-07FF
1800-65C22A
lCOO-65C22A
8000-FFES
FFE6-FFFF

1571 MEMORY MAP

Purpose

Zero page work area, job queue, variables
OCR overflow area and stack (1571 mode BAM side one)
Command buffer, parser, tables, variables
5 data buffers, 0-4 - one of which is used for BAM
Serial, controller ports
Controller ports
32K byte ROM, DOS and controller routines
JMP table, user command vectors

Other Resources:
More detailed information about Commodore disk drives can be found in these

books:
Inside Commodore DOS, by Immers & Neufeld (Datamost, cI984)
The Anatomy of the 1541 Disk Drive, by Englisch & Szczepanowski

(Abacus, c1984)
Programming the PET/CBM, by West (Level Limited, c1982)
The PET Personal Computer Guide, by Osborne & Strasmas

(Osborne/McGraw-Hill, c 1982)

73

MEMORY·READ

The disk contains 32K of ROM (Read-Only Memory), as well as 4K of RAM (Read
Write Memory) of which only 2K is used. You can get direct access to any location within
these, or to the buffers that the DOS has set up in RAM, by using memory commands.
MEMORY-READ allows you to select which byte or bytes to read from disk memory into
the computer. The MEMORY-READ command is the equivalent of the BASIC PeekO
function, but reads the disk's memory instead of the computer's memory.

Note: Unlike other disk commands, those in this chapter cannot be spelled out in
full. Thus, M-R is correct, but MEMORY-READ is not a permitted alternate
wording.

FORMAT FOR THE MEMORY-READ COMMAND:

PRINT#15, "M-R:"CHR$(<address)CHR$(>address)CHR$(# of bytes)

where "<address" is the low order part, and ">address" is the high order part of the
address in disk memory to be read. If the optional "# of bytes" is specified, it selects
how many memory locations will be read in, from 1-255. Otherwise, 1 character will be
read. If desired, a colon (:) may follow M-R inside the quotation marks.

ALTERNATE FORMAT:

PRINT# 15, "M-R:' 'CHR$(<address)CHR$(>address)CHR$(# of bytes)

The next byte read using the GET# statement through channel #15 (the error
channel), will be from that address in the disk controller's memory, and successive bytes
will be from successive memory locations.

Any INPUT# from the error channel will give peculiar results when you're using
.this command. This can be cleared up by sending any other command to the disk, except
another memory command.

EXAMPLES:

To see how many tries the disk will make to read a particular sector, and whether
"seeks" one-half track to each side will be attempted if a read fails, and whether
"bumps" to track one and back will be attempted before declaring the sector unreadable,
you can use the following lines. They will read a special variable in the zero page of disk
memory, called REVCNT. It is located at $6A hexadecimal.

74

110 OPEN 15,8,15
120 PRINT#15, "M-R:"CHR$(l06)CHR$(0)
130 GET#15,G$:IF G$= "" THEN G$=CHR$(0)
140 G=ASC(G$)

Open command channel.
Same as G=PEEK(l06).

150 B=G AND 128:B$= "ON":IF B THEN B$="OFF" Check bit 7.
160 S=G AND 64:S$="ON":IF S THEN S$= "OFF" Check bit 6.
170 T=G AND 31:PRINT "# OF TRIES IS";T Check bits 0-5
180 PRINT "BUMPS ARE";B$ and give results.
190 PRINT "SEEKS ARE";S$
200 CLOSE 15 Tidy up after.
210 END

Here's a more general purpose program that reads one or more locations anywhere in disk
memory:

1100PENI5,8,15
120 INPUT"# OF BYTES TO READ (0=END)";NL
130 IF NL<I THEN CLOSE l5:END
140 IF NL>255 THEN 120
150 INPUT"STARTING AT ADDRESS";AD
160 AH=INT(AD/256):AL=AD-AH*256
170 PRINT#I 5,"M-R"CHR$(AL)CHR$(AH)

CHR$(NL)
180 FOR 1= I TO NL
190 GET#15,A$:IF A$= '''' THEN A$=CHR$(0)
200 PRINT ASC(A$);
210 NEXT I
220 PRINT
230 GOTO 120

MEMORY-WRITE

Open command channel.
Enter number of bytes wanted
unless done.
or way out of line.
Enter starting address.
Convert it into disk form.
Actual Memory-Read.
Loop until have all the data,

printing it as we go,

forever.

The MEMORY-WRITE command is the equivalent of the BASIC Poke command,
but has its effect in disk memory instead of within the computer. M -Wallows you to write
up to 34 bytes at a time into disk memory. The MEMORY-EXECUTE and some User
commands can be used to run any programs written this way.

FORMAT FOR THE MEMORY-WRITE COMMAND:

PRINT# 15, "M-W:' 'CHR$(<address)CHR$(>address)CHR$
(# of bytes)CHR$(data byte(s»

where "<address" is the low order part, and ">address" is the high order part of the
address in disk memory to begin writing, "# of bytes" is the number of memory
locations that will be written (from 1-34), and "data byte" is I or more byte values to be
written into disk memory, each as a CHR$O value. If desired, a colon (:) may follow M
W within the quotation marks.

75

ALTERNATE FORMAT:

PRINT#15,"M-W:"CHR$«address)CHR$(>address)CHR$
(# of bytes)CHR$(data byte(s»

EXAMPLES:

We can use this line to turn off the "bumps" when loading DOS-protected programs (i.e.,
programs that have been protected against being copied by creating and checking for
specific disk errors).

PRINT#15, "M-W:"CHR$(l06)CHR$(0)CHR$(l)CHR$(133)

The following line can be used to recover bad sectors, such as when an important file has
been damaged and cannot be read nonnally.

PRINT#15, "M-W:"CHR$(106)CHR$(0)CHR$(l)CHR$(31)

These two examples may be very useful under some circumstances. They are the
equivalent of POKE 106,133 and POKE 106,31 respectively, but in disk memory, not
inside the computer. As mentioned in the previous section's first example, location 106 in
the 1571 disk drive signifies three separate activities to the drive, all related to error
recovery. Bit 7 (the high bit), if set means no bumps (don't thump the drive back to track
1). Bit 6, if set, means no seeks. In that case, the drive won't attempt to read the half-track
above and below the assigned track to see if it can read the data that way. The bottom six
bits are the count of how many times the disk will try to read each sector before and after
trying seeks and bumps before giving up. Since 31 is the largest number that can be
expressed in six bits, that is the maximum number of tries allowed.

From this example, you can see the value of knowing something about Peeks, Pokes,
and machine-language before using direct-access disk commands, as well as their poten
tial power.

MEMORY·EXECUTE

Any routine in disk memory, either in RAM or ROM, can be executed with the
MEMORY-EXECUTE command. It is the equivalent of the BASIC Sys call to a machine
language program or subroutine, but works in disk memory instead of within the comput
er.

FORMAT FOR THE MEMORY -EXECUTE COMMAND:

PRINT#15, "M-E:' 'CHR$(<address)CHR$(>address)

where "<address" is the low order part, and ">address" is the high order part of the
address in disk memory at which execution is to begin.

76

ALTERNATE FORMAT:

PRINT#15,"M-E:"CHR$«address)CHR$(>address)

EXAMPLE:

Here is a MEMORY-EXECUTE command that does absolutely nothing. The first
instruction it executes is an RTS, which ends the command:

PRINT#15,"M-E:"CHR$(179)CHR$(242)

A more plausible use for this command would be to artificially trigger an error message.
Don't forget to check the error channel, or you'll miss the message:

PRINT#15, "M-E:"CHR$(201)CHR$(239)

However, most uses require intimate knowledge of the inner workings of the DOS, and
preliminary setup with other commands, such as MEMORY-WRITE.

BLOCK·EXECUTE

This rarely-used command will load a sector containing a machine language routine
into a memory buffer from diskette, and execute it from the first location within the
buffer, until a: RETURN from Subroutine (RTS) instruction ends the command.

FORMAT FOR THE BLOCK-EXECUTE COMMAND:

PRINT#15, "B-E:";channel #;drive #;track #;sector #

where "channel #" is the channel number specified when the file into which the block
will be loaded was opened, "drive #" is the drive number, and "track #" and "sector
#" are respectively the track and sector numbers containing the desired block of data to
be loaded into the file buffer and executed there.

ALTERNATE FORMATS:

PRINT#15, "B-E:";channel #;drive #;track #;sector #
PRINT#15,"B-E:channel #,drive #,track #,sector #"

77

EXAMPLES:

Assuming you've written a machine language program onto Track I, Sector 8 of a
diskette, and would like to run it in buffer number 1 in disk memory (starting at $0400
hexadecimal, you could do so as follows:

110 OPEN 15,8,15
120 OPEN 2,8,2, "#1"
130 PRINT#15,"B-E:";2;0;1;8
140 CLOSE 2
150 CLOSE 15
160 END

USER COMMANDS

Open command channel.
Open direct access channel to buffer 1.
Load Tmck 1, Sector 8 in it & execute.
Tidy up after.

Most User commands are intended to be used as machine language JMP or BASIC
SYS commands to machine language programs that reside inside the disk memory.
However, some of them have other uses as well. The Userl and User2 commands are used
to replace the BLOCK-READ and BLOCK-WRITE commands, UI re-starts the 1571
without changing its variables, UJ cold-starts the 1571 almost as if it had been turned off
and on again.

User Command

uO
ul or ua
u2 or ub
u3 or uc
u40rud
u5 or ue
u6 or uf
u7 or ug
u8 or uh
u9 or ui
u: or uj

Function

restores default user jump table
block read replacement
block write replacement
jump to $0500
jump to $0503
jump to $0506
jump to $0509
jump to $050c
jump to $050f
jump to ($fffa) reset tables
power up vector

By loading these memory locations with another machine language JMP command,
such as JMP $0520, you can create longer routines that operate in the disk's memory
along with an easy-to-use jump table.

FORMAT FOR USER COMMANDS:

PRINT# 15, "Ucharacter"

where "character" defines one of the preset user commands listed above.

78

EXAMPLES:

PRINT#15, "U:"
PRINT#15, "U3"

UTILITY LOADER

Fonn of DOS RESET command
Execute program at start of buffer 2

This command loads a user-type file into the drive RAM. The first two bytes of the
file must contain the low and high addresses respectively. The third byte is the amount of
characters to follow. In addition, a trailing checksum byte must be included. The load
address is the starting address.

FORMAT FOR THE UTILITY LOADER COMMAND

PRINT#" &O:filename"

79

CHAPTER 9
MACHINE LANGUAGE PROGRAMS.

Here is a list of disk-related Kemal ROM subroutines and a practical example of their
use in a program which reads a sequential file into memory from disk. Note that most
require advance setup of one or more processor registers or memory locations and all are
called with the assembly language JSR command.

For a more complete description as to what each routine does and how parameters are
set for each routine, see the Programmer's Reference Guide for your specific computer.

DISK-RELATED KERNAL SUBROUTINES

Label Address Function

SETLFS $FFBA ;SET LOGICAL, FIRST & SECOND ADDRESSES
SETNAM = $FFBD ;SET LENGTH & ADDRESS OF FILENAME
OPEN $FFCO ;OPEN LOGICAL FILE
CLOSE $FFC3 ;CLOSE LOGICAL FILE
CHKIN $FFC6 ;SELECT CHANNEL FOR INPUT
CHKOUT $FFC9 ;SELECT CHANNEL FOR OUTPUT
CLRCHN $FFCC ;CLEAR ALL CHANNELS & RESTORE

DEFAULT I/O
CHRIN = $FFCF ;GET BYTE FROM CURRENT INPUT DEVICE
CHROUT = $FFD2 ;OUTPUT BYTE TO CURRENT OUTPUT

DEVICE

START LDA #4 ;SET LENGTH & ADDRESS
LOX #<FNADR ;OF FILE NAME, LOW
LOY #>FNADR ;& HIGH BYTES
JSR SETNAM ;FOR NAME SETTER
LOA #3 ;SET FILE NUMBER
LOX #8 ;DlSK DEVICE NUMBER
LOY #0 ;AND SECONDARY ADDRESS
JSR SETLFS ;AND SET THEM
JSR OPEN ;OPEN 3,8,0, "TEST"
LDX #3
JSR CHKIN ;SELECT FILE 3 FOR INPUT

NEXT JSR CHRIN ;GET NEXT BYTE FROM FILE
BEQ END ;UNTIL FINISH OR FAIL
JSR CHROUT ;OUTPUT BYTE TO SCREEN
JMP NEXT ;AND LOOP BACK FOR MORE

END LOA #3 ;WHENOONE
JSR CLOSE ;CLOSEFILE
JSR CLRCHN ;RESTORE DEFAULT I/O
RTS ;BACK TO BASIC

FNADR .BYT "TEST" ;STORE FILE NAME HERE

80

APPENDIX A: CHANGING THE DEVICE NUMBER

HARDWARE METHOD

Two switches on the back of the 1571 enable you to change the device # of the drive.
You can use a screwdriver, pen, or any other small tool to set the switches. The following
table shows the settings required for each device number:

Left Right Device #

UP UP 8
DOWN UP 9

UP DOWN 10
DOWN DOWN II

SOFTWARE METHOD

One way to temporarily change the device number of a disk drive is via a program.
When power is first turned on, the drive reads an 110 location whose value is controlled by
a jumper on its circuit board, and writes the device number it reads there into memory
locations 119 and 120. Any time thereafter, you may write over that device number with a
new one, which will be effective until it is changed again, or the 1571 is reset.

FORMATS FOR TEMPORARILY CHANGING TIlE DISK DEVICE NUMBER:

PRINT#15, "UO>"+ CHR$(n) Where n = 8 to 30
or
PRINT#15,"M-W"CHR$(119)CHR$(0)CHR$(2)CHR$

(device # + 32)CHR$(device # + 64)

EXAMPLES:

5 INPUT "OLD DEVICE NUMBER"; ODV
10 INPUT "NEW DEVICE NUMBER"; DV
20 IF DV<8 or DV>30 then 10
30 OPEN 15,ODV,15, "UO>" + CHR$(DV): CLOSEI5

or
10 INPUT'NEW DEVICE NUMBER'; DV
20 IF DV <8 OR DV> II THEN 10
30 OPEN 15,8,15
40 PRINT #15, "M-W"CHR$(119)CHR$(0)CHR$(2)CHR$(DV + 32)CHR$(DV + 64)
50 CLOSE 15

Note: If you will be using two disk drives, and want to temporarily change the
device number of one, you will need to run the above program with the disk drive
whose device number is not to be changed turned off. After the program has been
run, you may turn that drive back on. If you need to connect more than two drives
at once, you will need to use the hardware method of changing device numbers.

81

APPENDIX B: DOS ERROR MESSAGES AND LIKELY CAUSES

Note: Many commercial program diskettes are intentionally created with one or
more of the following errors, to keep programs from being improperly duplicated.
If a disk error occurs while you are making a security copy of a commercial
program diskette, check the program's manual. If its copyright statement does not
permit purchasers to copy the program for their own use, you may not be able to
duplicate the diskette. In some such cases, a safety spare copy of the program
diskette is available from your dealer or directly from the company for a reasonable
fee.

00: OK (not an error)
This is the message that usually appears when the error channel is checked. It
means there is no current error in the disk unit.

01: FILES SCRATCHED (not an error)
This is the message that appears when the error channel is checked after using the
SCRATCH command. The track number tells how many files were erased.

NOTE: If any other error message numbers less than 20 ever appear, they may be
ignored. All true errors have numbers of 20 or more.

20: READ ERROR (block header not found)
The disk controller is unable to locate the header of the requested data block.
Caused by an illegal block or a header that has been destroyed. Usually unrecovera
ble.

21: READ ERROR (no sync character)
The disk controller is unable to detect a sync mark on the desired track. Caused by
misalignment, or a diskette that is absent, unformatted or improperly seated. Can
also indicate hardware failure. Unless caused by one of the above simple causes,
this error is usually unrecoverable.

22: READ ERROR (data block not present)
The disk controller has been requested to read or verify a data block that was not
properly written. Occurs in conjunction with BLOCK commands and indicates an
illegal track and/or sector request.

23: READ ERROR (checksum error in data block)
There is an error in the data. The sector has been read into disk memory, but its
checksum is wrong. May indicate grounding problems. This fairly minor error is

. often repairable by reading simply and rewriting the sector with direct access
commands.

82

24: READ ERROR (byte decoding error)
The data or header has been read into disk memory, but a hardware error has been
created by an invalid bit pattern in the data byte. May indicate grounding problems.

25: WRITE ERROR (write-verify error)
The controller has detected a mismatch between the data written to diskette and the
same data in disk memory. May mean the diskette is faulty. If so, try another. Use
only high-quality diskettes from reputable makers.

26: WRITE PROTECT ON
The controller has been requested to write a data block while the write-protect
sensor is covered. Usually caused by writing to a diskette whose write protect notch
is covered over with tape to prevent changing the diskette's contents.

27: READ ERROR (checksum error in header)
The controller detected an error in the header bytes of the requested data block. The
block was not read into disk memory. May indicate grounding problems. Usually
unrecoverable.

28: WRITE ERROR (long data block)
The controller attempts to detect the sync mark of the next header after writing a
data block. If the sync mark does not appear on time, this error message is
generated. It is caused by a bad diskette format (the data extends into the next
block) or by a hardware failure.

29: DISK ID MISMATCH
The disk controller has been requested to access a diskette which has not been
initialized. Can also occur if a diskette has a bad header.

30: SYNTAX ERROR (general syntax)
The DOS cannot interpret the command sent to the command channel. Typically,
this is caused by an illegal number of file names or an illegal pattern. Check your
typing and try again.

31: SYNTAX ERROR (invalid command)
The DOS does not recognize the command. It must begin with the first character
sent. Check your typing and try again.

32: SYNTAX ERROR (long line)
The command sent is longer than 58 characters. Use abbreviated disk commands.

33: SYNTAX ERROR (invalid file name)
Pattern matching characters cannot be used in the SA VB command or when
Opening files for the purpose of Writing new data. Spell out the file name.

34: SYNTAX ERROR (no file given)
The file name was left out of a command or the DOS does not recognize it as such.
Typically, a colon (:) has been omitted. Try again.

83

39: SYNTAX ERROR (invalid command)
The DOS does not recognize a command sent to the command channel (secondary
address 15). Check your typing and try again.

50: RECORD NOT PRESENT
The requested record number has not been created yet. This is not an error in a new
relative file or one that is being intentionally expanded. It results from reading past
the last existing record, or positioning to a non-existent record number with the
Record# command.

51: OVERFLOW IN RECORD
The data to be written in the current record exceeds the record size. The excess has
been truncated (cut oft). Be sure to include all special characters (such as carriage
returns) in calculating record sizes.

52: FILE TOO LARGE
There isn't room left on the diskette to create the requested relative record. To
avoid this error, create the last record number that will be needed as you first create
the file. If the file is too large for the diskette, either split it into two files on two
diskettes, or use abbreviations in the data to allow shorter records.

60: WRITE FILE OPEN
A write file that has not been closed is being reopened for reading. This file must be
immediately rescued, as described in BASIC Hint #2 in Chapter 2, or it will
become a splat (improperly closed) file and probably be lost.

61: FILE NOT OPEN
A file is being accessed that has not been opened by the DOS. In some such cases
no error message is generated. Rather the request is simply ignored.

62: FILE NOT FOUND
The requested file does not exist on the indicated drive. Check your spelling and try
again.

63: FILE EXISTS
A file with the same name as has been requested for a new file already exists on the
diskette. Duplicate file names are not 8Ilowed. Select another name.

64: FILE TYPE MISMATCH
The requested file access is not possible using files of the type named. Reread the
chapter covering that file type.

65: NOBLOCK
Occurs in conjunction with B-A. The sector you tried to allocate is already
allocated. The track and sector numbers returned are the next higher track and
sector available. If the track number returned is 0, all remaining sectors are full. If
the diskette is not full yet, try a lower track and sector.

84

66: ILLEGAL TRACK AND SECfOR
The DOS has attempted to access attack or sector which does not exist. May
indicate a faulty link pointer in a data block.

67: ILLEGAL SYSTEM T OR S
This special error message indicates an illegal system track or block.

70: NO CHANNEL (available)
The requested channel is not available or all channels are in use. A maximum of
three sequential files or one relative file plus one sequential file may be opened at
one time, plus the command channel. Do not omit the drive number in a sequential
OPEN command, or only two sequential files can be used. Close all files as soon as
you no longer need them.

71: DIRECTORY ERROR
The BAM (Block Availability Map) on the diskette does not match the copy in disk
memory. To correct, Initialize the diskette.

72: DISK FULL
Either the diskette or its directory is full. DISK FULL is sent when two blocks are
still available, allowing the current file to be closed. If you get this message and the
directory shows any blocks left, you have too many separate files in your directory,
and will need to combine some, delete any that are no longer needed, or copy some
to another diskette.

73: DOS MISMATCH (CBM DOS V3.0 1571)
If the disk-error status is checked when the drive is first turned on, before a
directory or other command has been given, this message will appear. In that use, it
is not an error, but rather an easy way to see which version of DOS is in use. If the
message appears at other times, an attempt has been made to write to a diskette with
an incompatible format, such as the former DOS 1 on the Commodore 2040 disk
drive. Use one of the copy programs on the Test/Demo diskette to copy the desired
file(s) to a 1571 diskette.

74: DRIVE NOT READY
An attempt has been made to access the 1571 single disk without a formatted
diskette in place. Blank diskettes cannot be used until they have been formatted.

85

APPENDIX C: DISKETTE FORMATS

/
/

/

/
/

/
/

/

Note: Tracks 36 to 70 refer to double-sided disks readable in 1571 mode.

Figure C-l. GCR-Formatted Diskette

86

"
"-

NOTE
Not to scale

"-"-,

SYNC I
08
CHECKSUM
SECTOR
TRACK
IDI,ID2

GAP I
SYNC 2
07
BYTEO, BYTEI
DATA
CHECKSUM 2
GAP 2

- 40 bits of ones (alii's is the highest write frequency).
- Disk I.D. field identification mark.
- ChecksumofIDI, ID2, SECTOR, TRACK.
- The number of this sector
- Track which this sector resides on.
- 2 bytes (20 bits) indicating the diskette I.D. (the I.D. is

specified by the user when the diskette is formatted).
- 72 bits of GCRO or 010 10 10 I (8 bit byte x 9)
- 40 bits of ones.
- Disk data field identification mark.
- Track and sector of next related block.
- 254 bytes (2540 bits) of data.
- Checksum of BYTEO, BYTEI, and DATA.
- Variable gap of GCR O. This gap is variable depending on the

speed of the disk during format. GAP 2 will be constant for all
sectors except for the tail gap (the gap between first and the
last sectors).

1571 BLOCK DISTRmUTION BY TRACK

Track Dumber Range of Sectors Total # of Sectors

I to 17 o to 20 2l} 18 to 24 o to 18 19 single
25 to 30 o to 17 18 sided
31 to 35 Oto 16 17
36 to 52 Oto 20 21
53 to 59 o to 18 19
60 to 65 o to 17 18
66 to 70 o to 16 17

87

double
sided

1571 BAM FORMAT/DIRECTORY HEADER (1541 MODE)

BYTE CONTENTS DEFINITION

0 18 Track of next directory block (always 18)
1 1 Sector of next directory block (always 1)
2 65 AScn character A indicating 154111551/157114040 format
3 Double-sided Flag (ignored 1541 mode)
4 Number of sector available on track 1
5 Track 1, sector 0-7 availability map*
6 Track 1, sector 8-16 availability map*
7 Track 1, sector 17-23 availability map*
8 Number of sector available on track 2
9 Track 2, sector 0-7 availability map*
10 Track 2, sector 8-16 availability map*
11 Track 2, sector 17-23 availability map* ...
140 Number of sector available on track 35
141 Track 35, sector 0-7 availability map*
142 Track 35, sector 8-16 availability map*
143 Track 35, sector 17-23 availability map*

144-159 Diskette name padded with shifted spaces [CHR$(16O)]
160-161 160 Shifted space [CHR$(160)]
162-163 Diskette ID
164 160 Shifted space [CHR$(16O)]
165-166 ASCn representation of 2A, which are respectively,

the DOS version (2) and format type (1540/1541115511
1571/4040/2030).

167-170 Shifted spaces [CHR$(160)]
171-255 Nulls [CHR$(O)], not used

88

1571 BAM FORMATIDIRECTORY HEADER (1571 MODE)

BYTE CONTENTS DEFINITION

0 18 Track of next directory block (always 18)
1 1 Sector of next directory block (always I)
2 65 ASCn character A indicating 1541115511157114040 fonnat
3 Double-sided Flag: $80 = double-sided; $00 = single-sided
4 Number of sector available on track 1
5 Track 1, sector 0-7 availability map* .
6 Track 1, sector 8-16 availability map*
7 Track 1, sector 17-23 availability map*
8 Number of sector available on track 2
9 Track 2, sector 0-7 availability map*
10 Track 2, sector 8-16 availability map*
11 Track 2, sector 17-23 availability map* ...
140 Number of sector available on track 35
141 Track 35, sector 0-7 availability map*
142 Track 35, sector 8-16 availability map*
143 Track 35, sector 17-23 availability map*

144-159 Diskette name padded with shifted spaces [CHR$(l60)]
160-161 160 Shifted space [CHR$(l60)]
162-163 Diskette ill
164 160 Shifted space [CHR$(160)]
165-166 ASCII representation of 2A, which are respectively,

the DOS version (2) and fonnat type (1540/1541115511
157114040/2030).

167-170 Shifted spaces [CHR$(I60)]
171-220 Nulls [CHR$(O)], not used

221-237 Number of sector available on track 36 - 52
(each sector by each byte)

238 0 Number of sector available on track 53
(always 0, but actually all tracks are free,
although DOS does not support this track)

239-244 Number of sector available on track 54 - 59
(each track by each byte)

245-250 Number of sector available on track 60 - 65
(each track by each byte)

251-255 Number of sector available on track 66 - 70
(each track by each byte)

*%1 = available sector (% means binary)
%0 = sector not available (each bit represent one block)

89

Track 53, Sector 0

BYTE CONTENTS DEFINITION

1 Track 36, sector 0-7 availability map
2 Track 36, sector 8-16 availability map
3 Track 36, sector 17-23 availability map ...
102 Track 70, sector 0-7 availability map
103 Track 70, sector 8-16 availability map
104 Track 70, sector 17-23 availability map
105-255 0 Nulls ($00) not used

% 1 = available block (% means binary)
%0 = block not available (each bit represent one block)

PROGRAM FILE FORMAT

BYTE DEFINITION

FIRST SECTOR

0,1 Track and sector of next block in program file 1.
2,3 Load address of the program.
4-255 Next 252 bytes of program information stored as in computer.

memory(with key words tokenized).

REMAINING FULL SECTORS

0,1 Track and sector of next block in program file 1.
2-255 Next 254 bytes of program information stored as in computer memory

(with key words tokenized).

FINAL SECTOR

0,1 Null ($00), followed by number of valid data bytes in sector.
2-??? Last bytes of the program information, stored as in complJter

memory (with key words tokenized). The end of a BASIC file is
marked by three zero bytes in a row. Any remaining bytes in the
sector are garbage and may be ignored.

90

SEQUENTIAL FILE FORMAT

BYTE DEFINITION

ALL BUT FINAL SECTOR

0-1 Track and sector of next sequential data block.
2-255 254 bytes of data.

FINAL SECTOR

0,1 Null ($00), followed by number of valid data bytes in sector.
2-??? Last bytes of data. Any remaining bytes are garbage and may be ignored.

1571 RELATIVE FILE FORMAT

BYTE DEFINITION

DATA BLOCK

0,1 Track and sector of next data block.
2-255 254 bytes of data. Empty records contain $FF

(all binary ones) in the first byte followed by $00
(binary all zeros) to the end of the record. Partially
filled records are padded with nulls ($00).

SIDE SECTOR BLOCK

0-1 Track and sector of next side sector block.
2 Side sector number (0-5)
3 Record length
4-5 Track and sector of first side sector (number 0)
6-7 Track and sector of second side sector (number 1)
8-9 Track and sector of third side sector (number 2)
10-11 Track and sector of fourth side sector (number 3)
12-13 Track and sector of fifth side sector (number 4)
14-15 Track and sector of sixth side sector (number 5)
16-255 Track and sector pointers to 120 data blocks.

91

BYTE

0,1
2-31
34-63
66-95
98-127
130-159
162-191
194-223
226-255

1571 DIRECTORY FILE FORMAT
Track 18, Sectors 1·19

DEFINITION

Track and sector of next directory block.
File entry 1 * ..
File entry 2*
File entry 3*
File entry 4*
File entry 5*
File entry 6*
File entry 7*
File entry 8 *

*STRUCTURE OF EACH INDIVIDUAL DIRECTORY ENTRY

BYTE CONTENTS DEFINITION

0 128 File type OR'ed with $80 to indicate properly closed file.

+ (if OR'ed with $CO instead, file is locked.)
type TYPES: 0 = DELeted

1 = SEQuential
2 = PROGram
3 = USER
4 = RELative

1-2 Track and sector of first data block.
3-18 File name padded with shifted spaces.
19-20 Relative file only: track and sector of first side

sector block.
21 Relative file only: record length.
22-25 Unused.
26-27 Track and sector of replacement file during an

@SAVE or @OPEN.
28-29 Number of blocks in file: stored as a two-byte integer,

in low-byte, high-byte order.

92

APPENDIX D: DISK COMMAND QUICK REFERENCE CHART

Gen9raI Format: OPEN 15,8,15:PRINT#15,command:CLOSE 15 (Basic 2)

HQUSEKEEPING COMMANDS

BASIC 2.0 NEW "NO: diskette name, id"
COpy "CO:new file = O:old file"
RENAME "RO:new name = old name"
SCRATCH "SO:file name"
VALIDATE "VO"

BASIC 7.0 NEW
(BASIC 3.5) COPY

RENAME
SCRATCH
VALIDATE

BOTH INITIALIZE

FILE COMMANDS

BASIC 2.0 LOAD
SAVE
VERIFY

BASIC 7 .01 LOAD
3.5 SAVE

VERIFY

Binary File BLOAD
(BASIC 7.0. BSAVE
only BOOT

BOTH

OPEN
CLOSE
RECORD#

OPEN

CLOSE
RECORD#

PRINT#
GET#
INPUT#

HEADER "diskette name,Iid",DO
COPY "old file" TO "new file"
RENAME "old name" TO "new file"
SCRATCH "file name"
COLLECT

"10"

LOAD"file name" ,8
SA VE"file name",8
VERIFY"file name",8

DLOAD"file name"
SA VE"file name"
DVERIFY"file name" (BASIC 7.0 only)

BLOAD"filename" ,Bbank#,Pstart address
BSAVE"filename" ,Bbank#,Pst.add To Pen.add
BOOT' 'filename"

OOPEN#file#,"filename" [.Lrecord length] [,W]
DCLOSE#file#
RECORD#file#,record number [,offset]

OPENfile# ,8,channel#, "O:file name,file
type, direction"
CLOSEfile#
"P" + CHR$(channel#) + CHR$(<record#)
+ CHR$(>record#) + CHR$(offset)
PRINT#file# ,data list
GET#file#, variable list
INPUT#file# , variable list

93

DIRECT ACCESS COMMANDS

BLOCK-ALLOCATE
BLOCK-EXECUTE
BLOCK-FREE
BUFFER-POINTER
BLOCK-READ
BLOCK-WRITE
MEMORY-EXECUTE
MEMORY-READ
MEMORY-WRITE

USER
UTILITY LOADER

"B-A";O;track#;sector#
"B-E";channel#;O;track#;sector#
"B-F";O;track#;sector#
"B-P";channel#;byte
"U I ";channel #;O;track;sector#
"U2";channel#;O;track#;sector#
"M- E "CHR$«address)CHR$(>address)
"M-R "CHR$(<address)CHR$(> address)CHR$(# of bytes)
"M-W"CHR$(<address)CHR$(>address)CHR$(# of bytes)
CHR$(data byte) ...
"Ucharacter" (See user command Jump Table)
"&O:file name"

94

APPENDIX E: SPECIFICATIONS OF THE 1571 DISK DRIVE

STORAGE
GCRformat

single sided double sided
Total unfonnatted capacity 252019 bytes 252019*2 bytes
Total fonnatted capacity 174848 bytes 349696 bytes
Maximum Sequential file size 168656 bytes 337312 bytes
Maximum Relative file size 167132 bytes 167132 bytes
Record per file 65535 65535
Files per diskette 144 144
Tracks per diskette 35 70
Sectors per track 17-21 17-21
Sectors per diskette 683 total 1366 total

664 free 1328 free
Bytes per sector 256 256

MFMformat
Total unfonnatted capacity 500000 bytes per side
Total fonnatted capacity

Sector Size 128 133120 bytes per side
Sector Size 256 163840 bytes per side
Sector Size 512 184320 bytes per side
Sector Size 1024 204800 bytes per side

Maximum tracks per disk 40 x 2 sides
Sectors per track

Sector Size 128 26
Sector Size 256 16
Sector Size 512 9
Sector Size 1024 5

INTEGRATED CIRCUIT CHIPS USED
6502A microprocessor
(2) 65C22A 1/0
23256 32K bytes ROM
4016 2K bytes RAM
64HI56164HI57 Gate Array
RIW Hybrid IC Analog Circuit IC (MFM, GCR)

PHYSICAL DIMENSIONS
Height
Width
Depth
Weight

76rnm
216 rnm
346 rnm
3.5kg .

95

ELECTRICAL REQUIREMENTS
Voltage North America

Europe! Australia
Frequency North America

Europe! Australia
Power used

MEDIA

lOO-120VAC
220--240 V AC

60Hz
50Hz
25 Watts

Any good quality 5V.linch diskette may be used (Commodore diskettes are recom
mended).

96

APPENDIX F: SERIAL INTERFACE INFORMATION

The Serial Interface consists of two 6-pin DIN Female Connectors on each drive. The
second connector is for daisy chaining to other drives and/or peripherals. The voltage
interface is a serial interface at TTL levels.

There are three types of operation over a serial bus-Control, Talk, and Listen. The
host is the controller and initiates all protocol on the serial bus. The host requests the
peripheral to listen or talk (if the peripheral is capable of talking as disk drive). All devices
connected to the serial bus receive data transmitted over the bus. To allow the host to route
its data to an intended destination, each device has a bus address (known as device
number). Disk drive's device addresses are 8-11 (8 is normal).

Data and control signals as follows:

Pin No. Signal Direction Description

Pin I SRQ in/out Used by fast serial bus as a bi-
(Service direction fast clock line. Unused by
Request) the slow serial bus.

Pin 2 GND Logic ground
(Ground)

Pin 3 ATN in The host brings this signal low
(Attension) which then generates an interrupt on

the controller board. The attension
sequence is followed by a device ad-
dress. If the device does not respond
within a preset time the host will as-
sume the device addressed is not on
the bus.

Pin 4 eLK in/out This signal is used for timing the
(Clock) data sent on slow serial bus (soft-

ware clocked).

PinS DATA in/out Data on the serial bus is transmitted
one bit at a time (software toggled).

Pin 6 RESET This line will reset the peripheral
upon host reset.

97

The 6-pin DIN connector (from outside):

In detail, the 1571 serial bus supports the new FAST serial communication as well as
standard (SLOW) serial communication.

The important difference between the FAST serial bus and the SLOW serial bus is
the incorporation of the hardware controlled lines for the CLOCK and OAT A lines. The
shift registers resident in the 6526 are used to accomplish this. Fast serial communication
is transparent to any peripheral connected to the serial bus that does not contain the ~eces
sary hardware of software to talk at fast speed.

To remain compatible with the SLOW serial bus all bytes sent under attension are
sent slow. The drive will power up in the SLOW mode. The host (CI28) has to initiate the
drive into FAST mode. The drive will remain in the fast mode until the termination of a
particular command.

98

APPENDIXG
BURST COMMANDS

All burst commands are sent via kernallJO calls.

READ

BYTE BIT 7 6 5 4 3

00 0 0 0

01 0 0 0

02 T E B S 0

03 DESTINATION TRACK

04 DESTINATION SECTOR

05 NUMBER OF SECTORS

2

0

0

06 NEXT TRACK (OPTIONAL)

RANGE: All values are detennined by the particular disk format.

SWITCHES: T-transfer data (l = no transfer)
E-ignore error (I = ignore)
B-buffer transfer only (l = buffer transfer only)
S-side select (MFM only)
N--drive number

PROTOCOL: Burst handshake

0

0

0 0

0 N

CONVENTIONS: Before you can READ or WRITE to a diskette, it must be logged-in
using either the INQUIRE DISK or QUERY DISK FORMAT com
mand (both are described later). This must be done once each time
you change diskettes.

OUTPUT: One burst status byte, followed by burst data, is sent for each sector trans
fered. An error prevents data from being sent unless the E bit is set.

99

WRITE

BYTE BIT 7 6 5 4 3 2

00 0 0 0

01 0 0 0 0

02 T E B S 0 0

03 DESTINATION TRACK

04' DESTINATION SECTOR

05 NUMBER OF SECTORS

06 NEXT TRACK (OPTIONAL)

RANGE: All values are determined by the particular disk format.

SWITCHES: T-transfer data (l = no transfer)
E-ignore error (l = ignore)
B-buffer transfer only (I = buffer transfer only)
S-side select (MFM only)
N---drive number

0

0

0 0

N

PROTOCOL: Go output (spout), send data, go input (spin), pull clock low,
wait for status, release clock (for muiti-sector start over ie: Go
output, etc.).

CONVENTIONS: Before you can READ or WRITE to a diskette, it must be logged-in
using either the INQUIRE DISK or QUERY DISK FORMAT com
mand (both are described later). This must be done once each time
you change diskettes.

INPUT: Host must transfer burst data.

OUTPUT: One burst status byte following each WRITE operation.

INQUIRE DISK

BYTE BJT7 6 5

00 0 0

01 0 0

02 X X X

SWITCHES: S-side select (MFM only)
N---drive number

PROTOCOL: Burst handshake

4 3 2

0

1 0 0

S 0

0

0

0

OUTPUT: One burst status byte following each INQUIRE DISK operation.

100

0

0

N

FORMATMFM

BYTE BIT 7 6 5 4 3 2 o
00 0 0 o o
01 0 0 o o o o
02 P D S o N

M=I T 03 LOGICAL STARTING SECTOR

INTERLEAVE 04 (OPTIONAL DEF-O)

SECTOR SIZE 05 *(OPTIONAL DEF-OI,256 BYTE SECTORS)

LAST TRACK NUMBER 06 (OPTIONAL DEF-39)

07 NUMBER OF SECTORS **(OPTIONAL DEPENDS ON BYTE 05)

08 LOGICAL STARTING TRACK (OPTIONAL DEF-O)

09 STARTING TRACK OFFSET (OPTIONAL DEF-O)

OA FILL BYTE (OPTIONAL DEF-$E5)

OB-?? SECTOR TABLE

*00-128 BYTE SECTORS
01-256 BYTE SECTORS
02-512 BYTE SECTORS
03-1024 BYTE SECTORS

(OPTIONAL T-BIT SET)

**DEF 26-128 BYTE SECTORS
16-256 BYTE SECTORS
9-512 BYTE SECTORS
5-1024 BYTE SECTORS

SWITCHES: P-partial fonnat (I = partial)
I-index address mark written (I = written)
D-double sided flag (I = fonnat double sided)
S-side select
T-sector table included (I = included, all other parameters must be

included)
N-drive number

PROTOCOL: Conventional

CONVENTIONS: This command must be followed by the INQUIRE DISK or QUERY
DISK FORMAT command to log in the diskette.

OUTPUT: None. The status is updated within the drive.

101

FORMAT GCR (NO DIRECTORY)

BYTE BIT 7 6 5

00 0 0

01 0 0 1

02 X X X

03 M=O

04 IDLOW

05 IDHIGH

SWITCHES: N-drive number
X---don't care

PROTOCOL: Conventional

4 3 2 o
o o
o o o o

X o N

CONVENTIONS: This command must be preceded by the INQUIRE DISK or QUERY
DISK FORMAT command to log in the diskette.

OUTPUT: None. The status is updated within the drive.

SECTOR INTERLEAVE

BYTE BIT 7 6 5 4

00 0 0

01 0 0

02 W X X 0

04 INTERLEAVE

SWITCHES: W-write switch «(& = write)
N-drive number
X---don't care

PROTOCOL: Burst handshake (W = 1)

3

0

0

2 1 0

0

0 0 0

0 0 N

CONVENTIONS: This is a soft interleave used for multi-sector burst READ and
WRITE.

OUTPUT: None (W = 0), Interleave burst byte (W = 1)

102

QUERY DISK FORMAT

BYTE BIT 7 6 5 4 3 2 0

00 0 0 0 0

01 0 0 0 0 0 0

02 F X X S 0 N

03 OFFSET (OPTIONAL F-BIT SET)

SWITCHES: F-force flag (F = 1 steps the head with the offset specified in byte 03)
N--drive number
X-don't care

PROTOCOL: Burst handshake

CONVENTIONS: Determines the diskette format on any particular track. Also logs non
standard diskettes (Le. minimum sector addresses other than zero).

OUTPUT; *burst status byte (no bytes will follow if there as an error or if the format is
GCR)

**burst status byte (no bytes will follow if there was an error in compiling
MFM format information)
number of sectors (the number of sectors on a particular track)
logical track (the logical track number found in the disk header)
minimum sector (the logical sector with the lowest value address)
maximum sector (the logical sector with the highest value address)
CP/M interleave (the hard interleave found on a particular track)

*status from track offset zero
**if F bit is set, status is from offset track

INQUIRE STATUS

BYTE BIT 7 6 5 4 3 2 0

00 0 0 0 0

01 0 0 I 0 0 0 0

02 W C X 0 0 N

03 NEW STATUS (W-BIT CLEAR)

SWITCHES: W-write switch (9) = write)
C-change (C = I and W = ~log in disk)
(C = I and W = I-return whether disk was logged, i.e. $B error or old
status)
N--drive number
X-don't care

103

PROTOCOL: Burst handshake (W = 1)

CONVENTIONS: This is a method of reading or writing current status.

OUTPUT: None (W = 0), Burst status byte (W = 1)

BACKUP DISK

BYTE BIT 7 6 5 4 3 2

00 0 0 0 1 0

01 0 0 0 0 0

02 ? ? ? ?

SWITCHES: Unknown

CHGUTL UTILITY

BYTE BIT 7 6 5 4 3 2

00 0 0 0 0

01 0 0 0 0 0

02 X X X 1

03 UTILITY COMMANDS: 'S', 'R', 'T', 'M', 'H', #DEV

04 COMMAND PARAMETER

SWITCHES: X~on't care

UTILITY COMMANDS: 'S'-DOS sector interleave
'R' -DOS retries
'T'-ROM signature analysis
'M'-mode select.
'H'-head select
#DEV~evice #

Note: Byte 02 is equivalent to '>'.

EXAMPLES: "U0>S" + CHR$ (SECTOR INTERLEAVE)
"U0>R" +CHR$ (RETRIES)

0

0

?

0

0

0

"UI}»T" (If the ROM signature failed, the active LED blinks 4 times)
"U0>Ml" = 1571 MODE "U0>M0" = 1541 MODE

*"U0>H0"=SIDE ZERO "U0>Hl"=SIDE ONE (1541 mode
only)

"UI}»" +CHR$ (#DEV), where #DEV = 4 - 31})

104

FASTLOAD UTILITY

BYTE BIT 7 6 5 4 3 2 0

00 0 0 0 0

01 0 0 O' 0 0 0

02 P X X

03-11 FILENAME

SWITCHES: P-sequential file bit (P = 1, does not have to be a program me)
X-don't care

PROTOCOL: Burst handshake
OUTPUT: Burst status byte preceding each sector transfered. Track and sector

for link are automatically treated. In a program file, the loading
address should be handled correctly.

STATUS IS AS FOLLOWS: 0000000X-OK
00000010-file not found
000111 I I-EOI

Any other status byte should be considered a file read error.

STATUS BYTE BREAKDOWN

BIT 7 6 5 4 3 2 0

MODE DN SECTOR SIZE CONTROLLER STATUS

MODE--l =MFM, O=GCR
DN-DRIVE NUMBER

SECTOR SIZE--{MFM ONLy)
00 128 BYTE SECTORS
01 256 BYTE SECTORS
10 512 BYTE SECTORS
II 1024 BYTE SECTORS

CONTROLLER STATUS (GCR)
OOOX .••.. OK
0010 SECTOR NOT FOUND
001l NO SYNC
0100 DATA BLOCK NOT FOUND
0101 DATA BLOCK CHECKSUM ERROR
OlIO FORMAT ERROR
Olll VERlFYERROR
1000 WRITE PROTECT ERROR
1001 HEADER BLOCK CHECKSUM ERROR

105

1010 DATA EXTENDS INTO NEXT BLOCK
1011 DISK ID MISMATCH/DISK CHANGE
1100 RESERVED
1101 RESERVED
1110 SYNTAX ERROR
1111 NO DRIVE PRESENT

CONTROLLER STATUS (MFM)
OOOX OK
0010 SECTOR NOT FOUND
0011 NO ADDRESS MARK
0100 RESERVED
0101 DATA CRC ERROR
0110 FORMAT ERROR
0111 VERIFY ERROR
1000 WRITE PROTECT ERROR
1001 HEADER BLOCK CHECKSUM ERROR
1010 RESERVED
1011 DISK CHANGE
1100 RESERVED
1101 RESERVED
1110 SYNTAX ERROR
1111 NO DRIVE PRESENT

BURST TRANSFER PROTOCOL

Before using the following burst transfer routines, you must determine whether or not the
peripheral is a fast device. The Fast Serial (byte mode) protocol makes that determination
internally when you include a query routine (send-cmd-string;). This routine addresses the
peripheral as a listener and thereby determines its speed.

BURST READ

send-cmd-string;
if device-fast then

serial-in;

else

repeat
read-error;
toggle-clock;

repeat
wait-byte;
toggle-clock;
store-data;

until last -byte;
until last-sector;
set-clock-high;

read-1541;

(*determine speed*)

(*turn 6526 to input*)
(*repeat for all sectors*)
(*retrieve error byte*)
(*no error*)
(*repeat for all sectors*)
(*poll 6526 for byte*)
(*toggle clock*)
(*save data*)
(*last byte 1*)
(*any more sectors 1*)
(*release clock line*)

(*send unit read*)

106

BURSTWRITE

send-cmd-string; (*detennine speed*)
if device-fast then

repeat
serial-out;

repeat
check-clock;
send-byte;

(*repeat for multi-sector*)
(* serial port out*)
(*repeat for sector-size*)
(*clock toggle ?*)
(*send byte*)

until last-byte;
serial-in;
clock-low;
read-err;
clock-high;

(*last byte ?*)
(*serial port in*)
(*ready for status*)
(*controller error ?*)
(*restore clock*)
(*untillast sector*) until last-sector;

else
write-1541 ; (*unit write*)

EXPLANATION OF PROCEDURES

send-cmd-string sends one byte of the command to detennine whether the drive is fast
or slow.

toggle-clock changes the state of the clock line.

clock-hi changes the state of the clock to logic 1.

clock-Io changes the state of the clock to logic 0.

wait-byte polls the 6526 for a byte ready.

read-error calls toggle-clock and wait-byte, then returns to the main if there are
no errors.

store-data

last-byte

last-sector

serial-in

read-err

serial-out

check-clock

send-byte

read-1541

write-I541

stores the data in a particular memory location.

depending on sector size, will increment and compare value to sector
size.

decrements the number of sector transfers requested and stops when
done.

sets the 6526 serial port and driver circuit to input mode.

calls wait-byte and evaluates the status of the previous controller job.

sets the 6526 serial port and driver circuit to output mode.

checks the status of the clock line and returns upon toggling of the
clock line.

sends a byte of data to the 1571.

sends a typical unit read to a 1541.

sends a typical unit write to a 1541.

107

HANDSHAKE

The figure below shows the burst transfer protocol. It is a stat-dependent protocol (simple
and fast). As the clock line is toggled, a byte of data is sent. Burst protocol is divided into
three parts:

1. Send Command: send string using existing kemal routines.

2. Query: determine whether the peripheral is fast.

3. Handshake Code: follow handShake conventions.

DATA

eLK ' ___ ... 1 ARFD

SRQ

(Acknowledge and Ready For Data)
RFD (Ready For Data)

EXAMPLE BURST ROunNES

*=$1800

ROUTINE TO READ N-BLOCKS OF DATA
COMMAND CHANNEL MUST BE OPEN ON DRIVE
OPEN 15,8,15

,. BUFFER AND CMD-BUF, AND CMD-LENGTH MUST BE SETUP
PRIOR TO CALLING THIS COMMAND.

serial
d2pra
clkout
dlicr
dlsdr
stat
buffer

= $Oalc
= $ddOO
= $10
= $dcOd
= $dcOc
= $fa
= $fb

; fast serial flag

; $fb & $fc

108

Ida #15 ; logical file number
Idx #8 ; device number
Idy #15 ; secondary address
jsr setlfs ; setup logical file

Ida #0 ; noname
jsr setnam ; setup file name

jsr open ; open logical channel

; after the command channel is open subsequent calls should be from 'read'

read Ida #$00
sta stat ; clear status
Ida serial
and #%10111111 ; clear bit 6 fast serial flag
sta serial
Idx #15
jsr chkout ; open channel for output
Idx #0
Idy cmd.Jength ; length of the command

sendit Ida cmcLbuf,x ; get command
jsr bsout ; send the command
inx
dey
bne sendit

jsr clrchn ; send eoi
bit serial ; check speed of drive
bvc error ; slow serial drive

sei
bit dlicr ; clear interrupt control reg
Idx cmcLbuf+5 ; get # of sectors
Ida d2pra ; read serial port
eor #clkout ; change state of clock
sta d2pra ; store back

reacLit Ida #8
waitl bit dlicr ; wait for byte

beq wait 1

Ida d2pra ; read serial port
eor #clkout ; change state of clock
8ta d2pra ; store back

109

Code to check status byte.

1) This code will check for mode
whether GCR or MFM.

2) Verify sector size.
3) Check for error, if ok then continue.

On error, check error switch if set continue
otherwise abort.

4) Verify switches

Ida dlsdr ; get data from serial data reg
sta stat ; save status
and #15
cmp #2 ; just check for (3)
bcs error

Idy #0 ; even page
top_rd Ida #8
wait 2 bit dlicr ; wait for byte

beq wait 2

Ida d2pra ; toggle clock
eor #c1kout
sta .d2pra

Ida dlsdr ; get data
sta (buffer),y ; save data
iny
bne tOPJd ; continue for buffer size

dex
beq doneJead ; done?

inc buffer + 1 ; next buffer
jmp reacLit

donuead
c1c
. byte $24

error sec
rts ; return to sender

cmd..buf . byte 'UO' ,0,0,0,0,0

110

*=$1800

ROUTINE TO WRITE N-BLOCKS OF DATA
COMMAND CHANNEL MUST BE OPEN ON DRIVE
OPEN 15,8,15
BUFFER AND CMD-BUF, AND CMD-LENGTH MUST BE SETUP
PRIOR TO CALLING THIS COMMAND.

serial
d2pra
clkout
old-clk
clkin
dlicr
dlsdr
stat
buffer
mmureg
dltimh
dltiml
dlcra

= $Oalc
= $ddOO
=$10
= $fd
=$40
= $dcOd
= $dcOc
= $fa
= $fb
= $d505
= $dc05
= $dc04
= $dcOe

Ida #15
ldx #8
ldy #15
jsr setlfs
jsr setnam

jsr open

; fast serial flag

; $fb & $fc

; timer a high
; timer a low
; control reg a

; logical file number
; device number
; secondary address
; setup logical file
; setup file name

; open logical channel

; after the command channel is open subsequent calls should be from 'write'

write Ida #$00
sta stat
Ida serial
and #%10111111 ; clear bit 6 fast serial flag
sta serial
ldx #15
jsr chkout ; open channel for output

ldx #0
ldy cmd..length ; length of the command

sendit Ida cmd..buf,x ; get command
jsr bsout ; send the command
inx
dey
bne sendit

111

jsr clrchn ; send eoi

bit serial ; check speed of drive
bvc error
sei
Ida #clkin
sta olcLclk ; clock starts high

Idy #0 ; even page
Idx cmcLbuf+5 ; get # of sectors

wriLit jsr spout ; serial port out
topwr Ida d2pra ; check clock

cmp d2pra ; debounce
bne topwr

eor olcLclk
and #clkin
beq topwr

Ida olcLclk ; change status of old clock
eor #clkin
sta olcLclk

Ida (buffer),y ; send data
sta dlsdr

OPTIONAL ; put code here or before spinp

Ida #8
wait 1 bit dlicr ; wait for transmission time

beq wait 1

iny
bne topwr ; continue for buffer size

; talker tum around

jsr spinp ; serial port input
bit dlicr ; clear pending
jsr clklo ; set clk low, tell him we are ready

Ida #8
wait 2 bit dlicr ; wait for status byte

beq wait 2

Ida dlsdr ; get data from serial data reg
sta stat ; save status
jsr clkhi ; set clock high

112

Code to check status byte.

1) This code will check for mode
whether GCR or MFM.

2) Verify sector size.
3) Check for error, if ok then continue.

On error, check error switch if set continue
otherwise abort.

4) Verify switches

Ida stat ; retrieve status
and #15
cmp #2 ; just chk for error only (3)
bes error ; finish

dex
beq done_wr ; done?

inc buffer + 1 ; next buffer
jmp wrLit

done_wr
cli
.byte $24

error sec
rts

cmd buf . byte 'UO' ,2,0,0,0,0

; subroutines (refer to C128 User's Guide for SPINP and SPOUT vectors)

spout Ida
ora
sta
Ida
sta
Ida
sta
Ida
sta
Ida
and
ora
sta
bit
rts

mmureg
#$08
mmureg
#$7f
dlicr
#$00
dItimh
#$03
ditiml
dlcra
#$80
#$55
dlcra
dlicr

; change serial direction to output

; no irq's

; low 6 us bit (fastest)

; keepTOD

; setup CRA for output
; elr pending

113

spinp Ida dlcra ; input, 6526
and #$80
ora #$08
sta dlcra
Ida mmureg
and #$fl
sta mmureg ; mmu serial direction in
rts

clklo Ida d2pra ; set clock low
ora #clkout
sta d2pra
rts

clkhi Ida d2pra ; set clock high
and #$ff-clkout
sta d2pra
rts

114

BESCHEINIGUNG DES HERSTELLERS

Hiermit wird bestiitigt, dass die Floppy Disk

COMMODORE 1571

in Obereinstimmung mit den Bestimmungen der

Amtsb1attverfUgung Nr. 1046/1984

funk-entstort ist.

Der Deutschen Bundespost wurde das Inverkehrbringen dieses Geriites angezeigt
und die Bereichtigung zur OberprUfung der Serie auf Einhaltung der Bestim
mungen eingeriiumt.

COMMODORE BtJROMASCHINEN GMBH

CERTIFICATE OF THE MANUFACTURER

Herewith we certify that our device Floppy Disk

COMMODORE 1571

complies to the regulations

Amtsb1attverfiigung Nr. 1046/1984

concerning radio interference.

The German Bundespost has been informed that this unit is on the market
and it has the right to check on the mass production limits are kept.

COMMODORE BUSINESS MACHINES LIMITED

	Title Page 1st Printing 252095-01 1985 Jun
	Addendum for page 34

