
)
)

I
I

)
)

]
]

)
)

I
I

)
)

)
I

)
]

I
)

I
I

)
)

I
)

]
)

)
)

)
)

00 en

C
O
M
M
O
D
O
R
E

U
S
E
R
S

G
U
I
D
E

COMMODORE 'B' Series
ADVANCED BUSINESS

COMPUTERS

User's Guide

User's Guide Statement

"This equipment generates and uses radio frequency energy. If it is not properly

installed and used in strict accordance with the manufacturer's instructions, this

equlpmeni may interfere with radio and television reception. This machine has

been tested and found to comply With the limits for a Class B computing device in

accordance with the specifications in Subpart J ofPart 15 of FCC rules, which are

designed to provide reasonable protection against such interference In a residen

tial installation. If you suspect interference, you can test this equipment by turn

ing it off and on. Ifyou determine ihat there is interference with radio or television

reception, try one or more of the following measures to correct It:

— reorient the receiving antenna

— move the computer away from the receiver

— change the relative positions of the computer equlpmeni and the receiver

— plug the computer Into a different outlel so [hat the computer and the

receiver are on different branch circuits.

If necessary, consult your Commodore dealer or an experienced radio /television

technician for additional suggestions. You may also wish to consult the following

booklet, which was prepared by the Federal Communications Commission:

"How to Identify and Resolve Radio TV Interference Problems" This booklet is

available from the U.S. Government Priming Office. Washington. D.C. 20402. Stock
No. 004-000-00345-4."

First Edition-1983

First Printing- 1983

Copyright © 1983 by Commodore Business

Machines. Inc.

All rights reserved.

This manual is copyrighted and contains proprietary

information. No part of (his publication may be

reproduced, stored in a retrieval system, or

transmitted in any form or by any means, electronic,

mechanical, photocopying, recording, or otherwise.

without the prior written permission of

COMMODORE BUSINESS MACHINES. Inc.

Printed in (he United Slates of America

2 USERS GUIDE STATEMENT

TABLE

OF

CONTENTS

1. INTRODUCTION 7

• Features overview 8

• Organization of the Manual 10

• How to Use This Guide 11

2. SETTING UP THE COMPUTER 13

• Unpacking and Packing 14

• Installation 14

• Hookup and Configurations Available 18

• Expanding Your System with Peripherals 19

• Additional Microprocessors 20

• Trouble Shooting 22

3. USING THE KEYBOARD 25

• Format Keys 26

• Editing Keys 27

• Programmable Function Keys 28

• Calculator Pad Keys 32

TABLE OF CONTENTS 3

4. SOFTWARE 37

5. USING YOUR DISK DRIVE 41

• Connecting Your Disk Drive 42

• Loading Prepackaged Programs from Diskette 43

• Preparing New Diskettes: HEADER Command 44

• Loading Your Own Programs from Diskette 45

• Saving Programs on Diskette 46

• Copying Diskettes: BACKUP Command 47

6. EXTENDED BASIC 4.0+

COMMANDS AND STATEMENTS 49

• Conventions in Formats 50

• Using BASIC Commands 52

• Using BASIC Statements 65

APPENDICES 97

A. BASIC 4.0 FUNCTIONS 98

B. BASIC 4.0 ABBREVIATIONS HI

C. SCREEN DISPLAY CODES 114

D. CHRS CODES n6

E. SCREEN MEMORY MAP 118

F. MEMORY MAP ! 19

G. MATHEMATICAL FUNCTIONS TABLE 120

H. PINOUTS FOR INPUT/OUTPUT DEVICES 121

I. CONVERTING FROM STANDARD BASIC

TO EXTENDED BASIC 4.0 124

J. ERROR MESSAGES ! 26

K. NON-ERROR MESSAGES \\\ 133
L. 6581 (SID) CHIP REGISTER MAP !... 134

A TABLE OF CONTENTS

M. PRINTER COMMANDS 135

N. USING THE RS-232C CHANNEL 137

O. MACHINE LANGUAGE MONITOR 141

P. BIBLIOGRAPHY 145

Q. USER'S CLUBS, MAGAZINES, AND

THE COMMODORE INFORMATION NETWORK 148

INDEX 153

TABIF OF CONTFNTS 5

You can design the business computer system that best meets

your needs by choosing one of t he Advanced Business Computers

in Commodore's "B' Series:

• The B- 128-80 • The CBM- 1 28-80

• The B-256-80 • The CBM-256-80

• The BX-128-80 • The CI3MX-128-80

• The BX-256-80 • The CBMX-256-80

The computer is only one part of your business computer

system. Your system should also include a high capacity dual

floppy or hard disk drive . and a dot matrix or letter-quality prin

ter. Networking and telecommunications accessories help extend

your system to include multiple computers, even In different sites.

Your Commodore business dealer can tell you more aboul these

peripherals.

Software is also important to your business system—word

processing, electronic spread sheets, accounting, record keep

ing—these are just a few of the many practical functions good

business software can provide, expert ally if it's easy-to-use and

'friendly" like the business programs licensed and developed by

Commodore for your 'B' Series computer system.

FEATURES OVERVIEW

The computers in the B' Series have many common features,

and you can add enhancements to the lower end systems to give

them the extra capabilities that are standard on our more sophis

ticated systems. The following features are common to all B'
Series computers:

• 80 column by 25 line screen display

• Separate calculator keypad for quick computations

• 10 predefined function keys

• Total of 20easy-to-define function keys

• Extended BASIC version 4.0+

• Expandable memory

• IEEE-488bus

• RS-232C interface

• 6509 microprocessor

• Direct audio output

8 INTRODUCTION

These features distinguish the models:

• Amount of memory (128K or 256K)

• Monochrome tilt and swivel monitor built in (CHM models)

• Dual microprocessors, with Ihe 16-bil 80H8 microprocessor

buili in (indicated by the X in the name)

The following table shows which features are offered by various

'B" Series computers:

Model
Memory Standard Optional Built-in

(RAM) Microprocessors Microprocessors Monitor

B-l 28-80

B-2 56-80

BX128-80

BX-256-80

CBM-1 28-80

CBM~-2 56-80

CBMX-128-80

CBMX-256-80

Afl of these modeK

128

256

128

256

128

256

128

256

will no* necessarily be

6509

6509

6509.8088

6509,8088

6509

6509

6509, 8088

6509, 8088

offered lor sole in your

ZoU,oUoo

Z80,8088

Z80'

Z80'

Z80,8088

Z80,8088

Z80-

Z80'

a'en

NO

NO

NO

NO

YES

YES

YES

YES

NOTE: Your Commodore dealer can install a Z80 microprocessor in a

machine that has the 8088 microprocessor built in. Only one at a time of

these two microprocessors can be present in your'B' system.

You can customize your system by adding the variety of easy-to-

install peripherals and additional microprocessors that are avail

able for the B" Series computers. These peripherals include

Commodores Floppy Disk Drives and Hard Disk Drives, a variety

of printers for letter-quality printing or fast printing, modems for

telecomputing, monochrome monitors for the B and BX ma

chines, and other devices that make your computer the ideal bus

iness assistant.

The microprocessors you can add to your computer include

Commodore's Z80 microprocessor, which gives you access to

CP/M* software. Ifyour "B" Series computer doesn't have the 8088

microprocessor built-in, you can add it yourself to gain access to

MS-DOS**. CP/M-86. and Concurrent CP/M-86*** software.

■ CP/M is ci registered trademark of Digital Research, Inc.

" MS-DOS is u trademark of Microsoft, Inc.

"" CP/M-36 and Concurrent CP/M-86 are trademarks of Digittil

Research. Inc.

INTRODUCTION 9

Chapter 4. Software, explains the eapabilitics of these useful
microprocessors.

The new B' Series computers give you state-of-the-art computer
capabilities ai an affordable price. Commodore is committed to

providing you with hardware and software ihat meet your needs.
See your Commodore dealer for more information about Commo
dore's peripherals and software packages.

ORGANIZATION OP THE MANUAL,

This Users Guide introducesyou to the "B' Series of Advanced

Business Computers. The manual begins by showing you how to

set up your computer and by describing optional equipment that

expands your computer's uses. The next chapters explain how to

use the keyboard, and how to load and save programs. You'll also

find descriptions of BASIC commands, statements, and functions,

and some information about software available for the "B' Series.

Chapter 1

INTRODUCTION describes Commodore's *B" Series of Advanced

Business Computers and presents the different features of each

machine. The introduction also shows how to use this manual.

Chapter 2

SETTING UP THE COMPUTER contains the instructions you

need to unpack, conned, and install your 'B' Series computer. The

CBM / CBMX systems, which include built-in monitors, and the

B/BX systems, which do not include built-in monitors, are des

cribed in separate sections. Chapter 2 also describes the variety of

configurations and optional equipment (peripherals) available for

your computer. This chapter also contains a iew trouble shooting

and diagnostic procedures Ihat can help you make adjustments to

solve minor problems that may appear after you've installed your

computer system.

10 INTRODUCTION

Chapter 3

USING THE KEYBOARD describes how to use the keys on your

computers keyboard. Special keys. Including the programmable

function keys, are explained In detail.

Chapter 4

SOFTWARE describes how you can enhance your computer sys

tem with software systems that give you access to a variety of

business, scientific and educational software.

Chapter 5

USING YOUR DISK DRIVE tells you how to load and save both

prepackaged software and your own custom designed programs.

This chapter also explains how to prepare new disks and how to

copy old ones. For additional details on (he Disk Operating Sys

tems, consult the manuals lhal come with your Floppy Disk Drive

or the fast and powerful Commodore Hard Disk Drive.

Chapter 6

EXTENDED BASIC 4.0+ COMMANDS AND STATEMENTS arc

briefly explained. Complete formats and examples are provided.

APPENDICES Include quick reference information about the

major technical features that programmers and many users need.

For an additional in-depth presentation of technical material,

consult the Advanced Business Computers Programmers Refer

ence Guide.

HOWTO USE THIS GUIDE:

Special Considerations

1. As you look al the edge of each pageyou will notice that there

is what we call an "inset tab." The "inset tab" shows you

exactly where the seven chapters are located. Note that the

beginning of each chapter is a solid blue page. Both of these

features make it easy for you to get to the information you

need quickly.

INTRODUCTION 11

2. To help you unpack, hook up. set up, and begin operating

your computer. Chapter 2 contains many detailed illustra

tions that can make the installation ofyour equipment, with

all its opiions. a quick and easy (ask.

3. When we discuss a specific key. or wan! you lo press a par

ticular key. we show you a visual cue [Example: ■naiiin«

means press ihe RETURN key.)

4. Please note that this manual is not designed to teach the

computer language BASIC (the primary language used in all

Commodore computers). Ifyou wanl to learn BASIC language

programming techniques, or any of the other languages

available for use with your computer(s): we suggest that you

consult the "Bibliography" (Appendix P) for books that

teach programming.

12 INTRODUCTION

CHAPTER

SETTING UP

THE COMPUTER

• Unpacking and Packing

• Installation

• Hookup and Configurations Available

• Expanding Your System with Peripherals

• Additional Microprocessors

• Trouble Shooting

Unpacking/Packing

B and BX Computers

The B and BX systems are shipped In one part. The package also

contains a video cable (5-pin DIN or RCA phone-type cable) and an

AC power cord (120 volts).

CBM and CBMX Computer

The CBM and CBMX systems are shipped in two parts:

1. Base and video display screen.

2. Keyboard with attached telephone-type cable that plugs into

the base.

The package also contains an AC power cable (120 volts).

NOTE: Never try to remove or disconnect the video display screen from

the computer base. If the screen must be removed, take the entire unit
back to your dealer.

Installation

CBM and CBMX Models

1. Make sure that your computer is turned of/before starting

installation. The CBM and CBMX computers have their

power switch located in the back of the machine on the left

hand side.

2. Plug the 25 PIN CABLE attached to the keyboard into the ^

connector on the lower right hand side of (he base/video

display unit. Make sure that the Commodore Logo gl is
facing up. _

3. Plug the 3-prong AC power cord into the power cord jack

located in the back of the base/video display unit, on (he left
hand side. The power cord fits only one way.

4. Plug the 3-prong AC power cord into a standard wall outlet.

14 SETTING UP THE COMPUTER '• '

Fig. 2-1 -B' Series CBM and CBMX : Front view!

SETTING UP THE COMPUTER 15

Fig. 2-2. '8' Scries B and BX .Front

16 SETTING UP THE COMPUTFR

BRIGHTNESS

CONTROL

RESET

///ffiiiiiiiiiiMiitiiiitiiiii ii ii linn i ii unit i ii hi

CARTRIDGE

SLOT

IEEE RS232C

PORT

POWER

SWITCH

RESET

CARTRIDGE

SLOT

POWER CORD

POWER SWITCH

RS232C VIDEO AUDIO IEEE

OUTPUT PORT

Fig, 2-3 "B'Series i Rear view!

SETTING UP THE COMPUTER 17

B and BX Models

Connect the computer to your monochrome monitor as des

cribed below. See Fig. 2-3 to locate each input and output on the

back ofyour B or BX computer.

1. Make sure that your computer and your monitor are turned

q/'/'before starting installation. The B and BX computers have

their power switch located in the back of the machine on the

left hand side.

2. Attach the video cable to the computer at the connector

labeled audio/video (5 pin DIN). Line up the pins with the

corresponding holes and push the connector in. The cable

will only go in one way.

3. Attach the two RCA phone-type jacks to your video monitor

inputs. See the monitors manual for instructions.

4. Plug the computer AC power cord into a 120 volt. 60 Hz AC

outlet.

Your B or BX computer should now be connected properly. No

additional connections arc required to use the computer with

vour monitor.

NOTE: Save the packing materials that your computer came in. Then, to

pack your equipment back in the box for storage or transit, reverse the

procedures described above.

ExpandingYour System with Peripherals

Printers

A full range of printers is available, designed to match any need.

Low cost, high speed dot matrix units such as Commodore's 8023

Tractor Printer are idea] for most applications. Where letter qual

ity printing is required, the Commodore "daisy-wheel" printer

produces the best results.

18 SETTING UP THE COMPUTER

Monitor

B and Bx only

External

disk drives

Keyboard

Printers J

IEEE-488

Interface SERIES

Cartridge

slot

Program

cartridges

RS-232

Port

Printer Modem
User

application

Fig. 2-4 Hook-up and Configuration Available Accessories and peripherals conned lo the expansion porli

as shown.

External Disk Drive Units

Single or dual floppy disk units, with storage capacity from

170,000 characters (o over 2 million characters, can be easily

attached to store programs and data Commodore's dual floppy disk

drives include the 8050 and the 4040. Hard disk units with

capacities of 5 and 7.5 million characters can also be used with

equal ease. See your Commodore dealer for a complete list of

available disk drives.

RS-232C Port

Your computer comes equipped with an industry-standard RS-

232C serial interface. This interface provides you with access to a

wide variety of peripherals, such as printers, terminals, modems,

and data collection equipment.

The RS-232C interface is implemented using the fully pro

grammable 6551 Asynchronous Communications Interface Adap-

SETTING UP THE COMPUTER 19

ter. Wilh the 6551. you can program your RS-232C interface to

match exactly the requirements of the device you're connecting to
it

The Extended BASIC 4.0 interpreter includes file level software
support for the RS-232C interface channel. Open the RS-232C

channel as you would any other file and access it with slandard

BASIC input/output statements. The RS-232C Port is device #2.
See Appendix N.

CBM IEEE Port

Your advanced computer supports the full range of Commodore

CBM peripherals via the built-in IEEE-488 interface. Most disk

units are "intelligent." meaning they have their own microproces

sor and memory. You can connect up to five disk drives at one

time to your computer by "daisy chaining" them together through

the IEEE-488 connector port.

NOTE: The device numbers that are used with the IEEE port must be within the
range of 4 lo 31 inclusive.

Additional Microprocessors and
Operating Systems:

Special Options to Increase Your Computer's Power

Each computer in the 'B' Series uses the 6509 microprocessor,

which was developed by Commodore's MOS Technology subsi

diary. Commodore has designed the 'B' Series computers to be

easily expanded to dual processor computers with the addition of

the 16-bit 8088 microprocessor or the Z-80 microprocessor.

These additional microprocessors give you access to hundreds of

software packages that are independently developed for use with

the 8088 and 2-80 microprocessors.

In some 'B' series models, the 8088 microprocessor is built-in;

20 SETTING UP THE COMPUTER

in the others, it can be added. In addition, you can add the Z-80

microprocessor to any "B" Series computer.

The 16-Bit 8088 microprocessor:

MS-DOS and Concurrent CP/M-86

The 8088 microprocessor gives you access to two operating sys

tems that let you increase the software applications available for

your B1 Scries computer. These operating systems, MS-DOS and

Concurrent CP/M-86. offer a variety of business and personal

software programs.

The 8088 microprocessor is built into four models of the "B"

Series of advanced business computers. The presence of the built-

in 8088 microprocessor is indicated by the X in the "B" Series

model name (the BX-128-80. the BX-256-80. the CBMX-128-80.

and the CBMX-256-80). These machines are dual processor

computers.

You can upgrade the B-128-80. the B-256-80. the CBM-128-80.

and the CBM-256-80 by adding the 8088 microprocessor. If you

have one of these systems, your Commodore dealer can install the

8088 microprocessor for you.

_ The Z-80 Microprocessor and CP/M

Operating System

The Z-80 microprocessor and CP /M Operating System give you

access to a variety of CP/M software applications that you can use

_ on your B' Series computer. These applications include:

• widely used business programs, such as CALCSTAR

• word processing programs, such as WORDSTAR

• database programs, such as INFOSTAR

• mailing list programs, such as MAILMERGE

^ • many other specialized software programs, such as high level

computer language compilers

ry

The CP/M Operating System Users Guide that comes with the

Z-80 and CP/M package explains how to operate this system.

The Z-80 microprocessor can be installed by your Commodore

—I dealer. If your 'B' Series computer already has an 8088 micropro-

SETTING UP THE COMPUTER 21

cessor. your Commodore dealer can remove the 8088 and replace

it with the 2-80 microprocessor. This installation is reversible:
your Commodore dealer can switch the Z-80 and 8088 micropro

cessors repeatedly. This is possible for even- 'B' Series model.

including those with the 8088 microprocessor built in.

PROBLEM

TROUBLE SHOOTING

CAUSE SOLUTION

I. Power indicator Computer not on

Ughi not on

Power cable not

pugged in

Power supply not

plugged in

Bad fuse in

Computer

Make sure power

switch is in the

On position

Check power

socket for loose or

disconnected

power cable

Check connection

with wall outlet

Take system to

authorized dealer

for replacement of

fuse

2. No picture on

video screen

Incorrect hookup

Video cable not

plugged in

Computer

connects to video

and audio inputs

on video monitor.

Check monitor

output cable

connection

3. Random

pattern, on

monitor with

cartridge in

place

Cartridge not

inserted properly

TUrn. power off

and then reinsterr

the cartridge

22 SETTING UP THE COMPUTER

TROUBLE SHOOTING (cont'd.)

PROBLEM CAUSE SOLUTION

Picture with

excess audio

background

noise

Monitor volume

setting is up too

high

Lower the

monitor's audio

volume control

5. Picture is OK

but you don't

have sound

Monitor volume

setting is down too

low

Auxiliary output

not properly

connected

Adjust t he audio

volume control

Cormeci the

sound jack to the

auxiliary Input on

your amplifier

and then turn the

amp. selector

switch to the

"Aux." position

6. The picture is

too dark or too

light

Brightness level is

set incorrectly

Adjust the

brightness

control level on

your monitor or

built-in video

display screen

7. Characters on

the screen are

hard to read

Contrast ratio

between characters

and background is

too great or too

small

Adjust the

contrast control

on your monitor.

or built-in Video

Display Screen

SETTING UP IH[COMPUTER 23

The 'B' Series 96-key business-style keyboard makes a variety of

business applications easy to use. The keyboard resembles a

typewriter keyboard, bin the computer has additional keys thai

control special functions. You should be familiar with these spe

cial keys before you begin using the computer.

Format Keys

and

The liHI'lili'land IHillHil keys tell (he computer to look at what

you've keyed in and pul that information into memory. These

keys, which have i'denlical functions, also move (he cursor to the
nexl line.

When you key in a calculation in direct mode (i.e.. not in a

program), the solution is immediately displayed when you press

either EffiGM or" " '

This key lets you switch between the standard character set on

your keyboard and the GRAPHICS mode. When you enter the gra

phics mode by pressing the EEHEZEEEBH key. your keyboard's

operations undergo the following changes:

• The keys print uppercase letters only. The g-i:iia« key is not

used.

• The EHISl key lets you print the graphics characters on the
fronts of the keys.

Press the EfflOed ESEMSHSSSM key lo return to the standard

character set of upper and lower case letters. You can't use the

graphics characters in this NORMAL mode.

This key works like the E£Q9 key on a regular typewriter: it lets

you print uppercase letters or the top characters on double char

acter keys. When you are in the NORMAL mode, the standard

alphabet of lower and uppercase characters is displayed, and the

key gets the uppercase characters.

26 USING THE KEYBOARD

When you are in the GRAPHICS mode, however, the alphabet

appears in only uppercase, and the EHHO key gels the graphics

characters on the fronts of the kevs.

The M!M*J key also lets you use an extra set of ten function

keys. The EUHled function key is ten more than the function key

you press. For example. EUBBand El activate function key 13.

This key lets you display the REVERSED Image of all I he char

acters available on the keyboard. In oilier words, characters

appear on the screen as black on green rather than the usual

green on black (your monitor's characters may be a color other

than green). When you press the ■•ia«:re«key. all characters you

key in appear in reverse. Press the M*»ira.-M key and the EiillM

key to (urn off the reverse image display.

Editing Keys

The editing keys lei you correct errors easily, move informal ion

around on the screen, and place the cursor wherever you want it.

Cursor Control Keys:

The cursor is the small rectangle that marks your place on the

screen. The four cursor control keys let you move the cursor wher

ever you want it.

The arrows on the keys show how they move the cursor:

D Moves the cursor DOWN.

D Moves the cursor UP.

S Moves the cursor LEFT.

B Moves the cursor RIGI IT.

The cursor has a repeal feature that lets it continue (o move as

long as you hold down the cursor key.

The EIHete key moves the cursor a space lo the left, erasing

the previous character you typed. If you're In the middle of a line.

USING fHE KEYBOARD 27

the character to the left is deleted and the characters to the right

automatically move together to close up the space.

You can insert characters in the middle oftext by pressing both

i lie EiUOaiid I he BZEfiaiB keys. To use the insert function, use

the cursor control keys to mow I he cursor lo the character Im

mediately to the righl of where you wanl to insert. Hold down the

E21H3Hkt'ys until there is enough space to add miss

ing information.

Like I he cursor control keys. I he ■Kh-amw k-.-v- has a repeal fea-

(ure that lets it continue to work as long asyou hold down thekev.

■:[•],',)=■ moves, the cursor back (o the upper left corner of the

screen. This is called the HOME position.

You can move the cursor to HOME and clear the screen by

pressing EUHl and EEEEE3.

Programmable Function Keys

The ten keys on the upper left side of (he keyboard are function

keys that let you perform a variety of repetitive tasks such as

clearing the screen, printing a message, or pausing a program.

The keys EO through IAU are predefined:

Key 1, 'print" Key6, "dclose"

Key2, "list" Key 7, "copy"

Key 3, "dload" + chrS (34) Key 8, "directory"

Key4, "dsave" + chrS (34) Key9, "scratch"

Key 5, "dopen" Key 10, "chrS("

You can display this list by keying in: KEY

In addition, there are ten more function keys available that arc

not predefined. Keys 1 1 through 20 are not marked on the key

board, but you can use them by pressing I he *-i:ii*J kev while vou

28 USING THE KEYBOARD

press one of I lie function keys. The EffiOcd function key is ten

—I more than the number on the key you press. For example. jjj:im

and Q9 activate function key 15.

You can redefine ihese function keys with a simple procedure:

—■ just follow this formal:

KEY n,!]definition{ . . . +[]definition["']]["]

, 1. You must enter the word KEY.

2. n is the number for the function key you waul to program (1

through 20). He sure lo include the comma.

3. definition defines what you want the function key to do.

Here axe some examples:

— KEY 9, CHRS (142) Automatically switches to graphics

mode.

KEY 15,'CHR$(14) +

— CHR$(13) + CHRS(77)" Automatically switches (o normal mode.

advances to next line, and prints M.

KEY 1,

— ■'OPEN4,4:CMD4:UST:

CLO5E4" + CHRS(13) Lists program on printer.

Function keys retain your definition only during the current

~ session a(the computer. Once you turn the computer off. your

definitions are lost for all function keys, unless you save these

definitions in a program.

The Isiiilfl key lets you print the graphics characters on the

fronts of the noil alphabetic keys (e.g.. number keys, punctuation

keys, etc.) These graphics keys are displayed in either GI^APHICS

or NORMAL mode. The alphabetic keys" graphics are displayed by

using the JLiiLiJ key in GRAPHICS mode only.

The ■**■:<■ key lets you use special control functions. To use a

control function, hold down the EEHkey whileyou press the key

that gives you the function you want. Here are some examples:

USING THE KEYBOARD 29

SCREEN

EDITOR

FUNCTION CODE MEANING

Set

Window

Bottom

CTRL-B Set the bottom right boundary for the screen

window to the current cursor position

Delete

Line

CTRL-D Delete the current line and scroll up all lines

below the current line to replace the current line.

Blank lines are inserted at the bottom of the

screen. The cursor is positioned at the beginning

of the new line.

CTRL-GToggle the end of line bell. IF the bell rings, then

the end of line bell is enabled. If not, the end of

line bell is disabled.

CTRL-I Insert a blank line offer the line on which the

cursor is currently positioned. Place the cursor at

the beginning of the blank line.

Erase To CTRL-P Delete all text from the cursor position to the end

Line End of the line. Replace all deleted text with blank
characters (spaces).

Bell

Insert

Line

Erase

From Line

Start

CTRL-Q Delete all text from the beginning of the line to

the cursor position. Replace all deleted text with

blank characters (spaces).

Set

Window

Top

CTRL-T Set the top left boundary for the screen win

dow to the current cursor position.

This key is used In conjunction with any of the 26 alphabet keys

Q through WM to perform a variety of special functions. To per

form any function listed below, press the EEI key. release it. and
press the appropriate letter.

Automatic insert

Set bottom right corner of window

30 USING TH= KEYBOARD

Cancel automatic insert

Delete line

Nonflashing cursor

Flashing cursor

Enable (turn on) bell

O Disable (turn off) bell

H Insert line

Q Move to the start of the line

Q Move to the end of the line

D Enable scrolling

—I CS Disable scrolling

d Normal screen

151 Cancel insert, quote and reverse modes

Hi Q Erase to the start of the line

Erase to the end of the line

Reverse screen

Solid cursor

Set the top left corner of window

Underscore cursor

Scroll up

Scroll down

Q Cancel escape sequence

H Normal character set

B Alternate character set (not currently implemented)

Quote and Insert Modes

When you press the quote key (") once, you enter QUOTE MODE:

when you press the 1123 key. you enter INSERT MODE. In these

modes, control and cursor keys are displayed rather than exe

cuted. Quote mode is cancelled when you press a second quote.

Insert mode ends when the number of characters you entered

equals the number of spaces you opened up with the INS key. For

example, if you press the BE3 key six times, insert mode ends

when you have entered six characters.

In addition, ifyour machine is In quote or insert mode. thcE3

key cancels the mode and returns you to normal (text) mode.

When you are in a mode other than normal mode, you must press

ihe i=w key twice to use any of the ES3I key special functions.

USING THE KEYBOARD 31

■—■ ' Cone pi ihese two turn Nous by pressing ihe LaSiLul^'-'V i

Yon can hall a BASIC program while it is running bv pressing

the EEHIkev. You can also use this key to halt a print out.

The MiiiiiM key lets you automatically load the first program on a
diskette (drive OI.Jusi press I heEIII31 and ESJ|keys io use this
function.

The ESkey stops a program from com inning lo scroll down the
screen. This key is used most often when you arc listing a pro

gram and you want to slop 10 view part of the program. Press any

key to restart the scrolling.

Calculator Pad Keys

The calculator keypad on the right side ofyour keyboard offers all

the standard calculator functions. This keypad lets you perform

calculations quickly and conveniently. The keypad is not affected

when you enter special modes such as the graphics mode.

uestion Mark

The question mark is the standard abbreviation for the PRINT

statement in HASIC. To execute a calculation on a computer, you

must precede the calculation with a PRINT statement or a ques

tion mark. The question mark had been placed on the keypad lor

your convenience.

For example:

?23.45".O6

1.407

BO

The number keys are arranged like a regular calculator. We ha\re

included a double zero E23 for your convenience. All numbers

32 USING THE KFYBOARD

located at the top of the main keyboard section can be used in

calculations when your computer is operating In the unshifted.

— normal mode. The keypad numbers work in any mode.

■ Decimal Point

This serves as a decimal point for floating point computations.

f^ The period, located at the bottom right section of the main key

board, also works as a decimal point in the unshtfted. normal

mode.

— HSlash Key

— The slash key operates as a symbol for division. The slash key

localed at ihe bottom right section of the main keyboard also

works as a division symbol, but only when you are In the

— unshifted. normal mode.

fl Minus Sign

This key operates as a symbol for subtraction. It also operates as

the unary minus symbol, which is the minus sign preceding nega

tive numbers. The minus sign key located at the top right section

of the main keyboard also works as the symbol for subtraction

■■ and unary minus in the unshifted. normal mode.

E3 Clear/Entry

This key resembles the Clear Entry key found on most calcula-

H tors. Use this key to eliminate the last number entered. E3 clears

the last number of a computation line, back to the last arithmetic

operator. If the lasi entry is an arithmct ic operator. Iflj clears (he

*"" operator. If the entry is not numeric. E3 works like the |'1^=1H

._ key.

For example:

10 PRINT 45*96 + 9.8/52 + 31

If you press the U£M key once, the line looks like this:

10 PRINT 45*96 + 9.8/52 +

USING THE KEYBOARD 33

Press once more:

10 PRINT 45-96 + 9.8/52

Press twice more:

10 PRINT 45-96 + 9.8

Press once more:

10 PRINT 45-96 +

Press five times more:

10 PRIN

H Multiplication

This operates as a symbol for multiplication. You can't use the

conventional X because the computer can't distinguish the let

ter X from (he multiplication sign. You can also use the Hkey on

the main keyboard when you are in the unshifted. normal mode. w

□Plus Sign

This operates as a symbol for addition. It also serves as the

unary plus symbol to represent positive numbers. Unary plus is

automatically assumed by the computer, however, and is not

necessary. You can also use the plus sign key on the main key- w

board when you are in the unshifted. normal mode.

Exponentiation

Use the up arrow (a EHEffled 6) to raise a number to a power. —'

For example:

?12 t 5 —

248832

Execution Order In Calculations

The computer performs multiple calculal ions in a certain order.

Problems are solved from left to right, but within that general

34 USING THE KEYBOARD '

movement. some types of calculations lake precedence over others.

The order of precedence follows these guidelines:

First BE unary minus [minus sign for negative num

bers, not for subtraction)

Second D exponentiation, left to right

Third HD multiplication and division, left to right

Fourth EBB addition and subtraction, left to right

This means thai the computer checks the whole calculation for

~ negative numbers before doing anything else. Then it looks for
__ exponents: then it performs all multiplication and division; then it

adds and subtracts. For example:

_ ?33 + 11 /4

35.75

In this example. 11 is divided by 4and the result is added to 33.

To override the order of precedence, enclose any calculations you

want solved first in parentheses. All parenthetical calculations are

_ solved before any other calculations. When more than one calcula

tion is enclosed in parentheses, these calculations are solved left

™ to right. Within parentheses, calculations are solved according to

_ the order of precedence. If you add parentheses to the previous

example, here's what happens:

?(33 + 11)/4

11

When you have more than one calculation within parentheses.

you can further control the order by using parentheses within

— parentheses. The problem in the innermost parentheses is solved

. first. For example:

— ?30 + (15 "(2 - 3))

15

USING THE KEYBOARD 35

Commodore software available for your computer will cover a

broad range of business and personal applications. These pro

grams include word processing packages, database programs, and

a variety of financial applications, such as spread sheet programs

and accounting packages. Easy-to-use software will also be avail

able for a variety of professional fields including medicine, law.

agriculture, construction, and restaurant management.

Data processing professionals will be able to purchase develop

mental tools such as assembler software to facilitate machine lang

uage level programming. A BASIC compiler will also be available.

This program permits compilation of BASIC programs into highly

efficient machine language.

The 16-bit 8088 Microprocessor

The 8088 microprocessor gives you access to two widely-used

operating systems. MS-DOS* and Concurrent CP/M**and to the

variety of software products these systems support.

The 8088 microprocessor is built into theX Series of advanced

business machines (the BX-128-80. BX-256-80. CRMX-128-80.

and the CBMX-256-80). and it can be added to all the other "B'

Series models, so (he variety of software products the 8088 sup

ports can be available to you.

The Z-80 Microprocessor and the CP/M Operating System

The Z-80 microprocessor lets you use the popular CP/M Oper

ating System, which offers many prepackaged software programs.

These programs include widely used business applications, word

processing packages, high level language compilers, and more.

With the CP/M Operating System, you can use many popular

software packages, such as the wordprocessor WORDSTAR, the

address manager MAILMERGE, database programs such as

1NFOSTAR. and many other best-seller industry standards.

The Commodore Software Division

The Commodore Software Division is working with software

publishers to develop a high quality library of software products

that will fill your computing needs. Products not already on the

' MS - DOS is a trademark of Miaosofl, Inc.

*' Concurrent CP/M is a trademark of Digital Research, Inc.

38 SOFTWARE

market will be available soon from your local Commodore dealer.

Your dealer has more information about Commodore software.

and can keep vou informed of the arrival of new software

products.

SOFtWARl 39

CHAPTER

USING YOUR

DISK DRIVE

• Connecting Your Disk Drive

• Loading Prepackaged Programs from Diskette

• Preparing New Diskettes: HEADER Command

• Loading Your Own Programs from Diskette

• Saving Programs on Diskette

• Copying Diskettes: BACKUP Command

W-.

CONNECTING YOUR DISK DRIVE

Your computer supports the full range of Commodore CBM

peripheral devices via the built-in IEEE-488 interface. Most

Commodore disk units are intelligent, which means that they ^

have their own microprocessor and memory, so they don't take up
memory from your computer.

Your disk drive is easy to install:

1. Al (ach the PET-to-IEEE cable to t he IEEE port on the back of

the disk drive (see diagram).

2. Plug the other end of the cable into the IEEE port on the back

of the computer. The Commodore logo faces up.

3. Make sure the plugs are securely attached.

if you are also attaching a printer, plug the cables into the disk

drive first, then attach the computer and the printer. You can

connect up to five disk drive units at one time to your computer by

daisy chaining them together. When you attach more than one

cable to the disk drive, just plug the additional cables into the firsl

cable (see diagram). Make sure the plugs are secure.

Fig. 5-1 Daisy chained peripherals

42 USING YOUR DISK DRIVE
_

Turn on the machines" power; all power lights on all your dev

ices should be ON.

The manual thai comes with your disk drive contains more

Information.

NOTE: Never turn your disk drive OFF when there ore disks in any drive.

Always remove disks first. If the drive is turned off with disks in place,

remove them before turning the drive back on.

Mosl prepackaged software includes special commands that

show you how to load. save, and retrieve programs using your

disk drive.

Loading Prepackaged Programs from Diskette

1, Start by carefully inserting the preprogrammed disk into

— drive zero (0).

NOTE: The computer will always assume that you're putting your disk into

drive zero (0) and that you're using disk drive unit number eight (8). These

are known as '"default values." If you want to use another drive or unit

number you must use the optional codes shown in Chapter 6 in square

brackets |-1.].

2. Make sure that the label on the disk is facing up and is

closest to you.

3. Look for a little notch on the disk (it might be covered wilh a

small strip of tape). If you're inserting the disk properly the

notch will be on the left side.

4. Close the door on the disk drive to secure the diskette.

5. Key in:

DLOAD "program name"

USING YOUR DISK DRIVE 43

6. Press the l:l*dll:»" key.

The disk will make noise and the busy light will turn on. Your

screen will say;

SEARCHING FOR 0: program name

LOADING w

READY

7. Wait until the READY message comes on and the cursor

appeal's; then key In:

RUN

.

8. Press the ■h=wim« key and your prepackaged software is

ready (o use.

Preparing New Diskettes: HEADER Command

Before you can use a new disk for the first time, you must for

mat it with the HEADER command. This command divides the

disk into sections called blocks, and it formats a table of contents.

called a director),'or catalog, for the disk. You can also reuse a disk

by erasing all stored data with the HEADER command.

Follow these steps:

1. Insert the disk in drive 0. Remember to handle the disk care

fully. Put the disk In so the label side is up and the small

notch is on the left side as you face the drive unit. The side

with the oval exposed area should go in first.

2. Close the disk drive's protective gate to secure the disk.

3. Key in:

HEADER "diskname", Ds (,lnn) (,ON Un)

diskname is any name for the disk. For example. MYDISK.

MEMOS. PAYRECS. etc.

Ds identifies the drive number (0 or 1).

44 USING YOUR DISK DRIVE

nnisa 2 character identification number Ion he diskette. The

id number should be unique for each disk.

n identifies the drive unit If you have more than one.

4. Press the |j)=*tu;ii?i key and wait until the computer displays

this message:

ARE YOU SURE?

5. Respond by keying in: Y (for Yes), and

The disk drive makes a noise while the new diskette is being

headered. This process takes a few minutes. The computer will

display a READY message when the diskette is finished.

NOTE: The HEADER command erases any information stored on a diskette

and you will not be able to retrieve it. Use this command carefully.

Here are some examples of the HEADER command:

HEADER "LETTERS", Dl, 104 Formats a diskette named LET

TERS in drive 1 and. gives it the id

number 04.

HEADER ■NOTES", DO, 124,

ON U9 Formats a diskette names NOTES

in drive 0 of drive unit number 9

The id number is 24.

LoadingYour Own Programs From Diskette

Loading a program from diskette is simple and takes only a few

seconds. Once a program is loaded, you can RUN it. LIST it. or

make changes and save the new version. Follow these steps to load

a program:

1. Key in:

DLOAD "program name"

USING YOUR DI5K DRIVE 45

NOTE: You can load the first program on a diskette by using ' instead of the
program name. For example: DLOAD """

Youcan LOAD the first program from a diskette in drive 0 by pressinq a
EUSl.-ri iiiim-w.]:! key.

2. Press the ■sumuhjb key and wait for this message to be dis

played on your screen:

SEARCHING FOR 0: program name

LOADING

READY

NOTE: When you load a new program info the computer's memory, any

unsaved instructions and programs in memory are erased. Be sure you

SAVE any information you want to keep before you key in DLOAD.

Here are some examples of the DLOAD command:

DLOAD ■■WORDCRAFT" Loads the program named WORD-

CRAFT into memory.

DLOAD " Loads the first program on the disk
ette, regardless of its name.

Saving Programs On Diskette

Follow these simple steps to save a BASIC program on diskette:

1. Key i n:

DSAVE program name"

2. Press MSSHSSMand wait for this message:

SAVING 0: program name
OK

READY

46 USING YOUR DISK DRIVE

NOTE: When you change a saved program and want to replace the old

version, add the @ sign before the program name. For example, DSAVE

■■@OLDPROG" saves the new version of OLDPROG and erases the original

version of the program. If you want to keep both versions, use an

original name for the changed version.

Copying Diskettes: BACKUP Command

You should keep an extra copy ofyour stored programs for your

protection. Follow these simple steps to make a backup copy of a

diskette:

1. Insert a blank disk into drive 1. Insert the master disk into

drive 0. Key in:

BACKUP DsTO Dd(,ON Unj

s is the drive number of the source drive (i.e.. the diskette you

want to copy);

d is the drive number of the destination drive (i.e.. the blank

diskette you're copying on to):

n is the disk drive unit number if you have more than one drive

unit connected to your system. ON Uz is an optional pan ol

(his command. Omit it if you have only one disk drive unit

in operation.

2. Press EHDEEland wail for [his message:

READY

NOTE: Backing up takes a minute or so, but the READY message appears

before the process is complete. You can find out when the backup is com

plete and be sure that it was successful by keying in PRINT DSS. DSS is a

reserved word variable that displays a diagnostic message about disk sta

tus, including an error message if an error occurred during □ backup.

If DSS tells you the backup was successful (00,OK,00,00,0) you can list a

directory of files on the disk: CATALOG (Drl) (On Uz). Here, n is the drive

number of the disk onto which yog just copied. This part of the command is

required unless you have only a single disk drive. Otherwise, you must name

the drive. ON Uz is required when you have more than one disk drive unit.

Tile z names the drive unit where the computer can find the disk whose

contents you wish to display.

USING YOUR DISK DRIVE 47

Here are some examples of the BACKUP command:

BACKUP DO TO Dl Use when you have one dual disk

drive and you are copying from

drive 0 to drive 1.

BACKUP DO TO Dl ,ON U9 Use when you have more than one

disk drive unit and you are copying

from drive 0 to drive 1 on drive
unit 9.

—

48 USING YOUR DISK DRIVE

CHAPTER

EXTENDED

BASIC 4.O+

COMMANDS AND

STATEMENTS

Conventions in Formats

Using BASIC Commands

• Using Basic: Statements

This chapter provides formats, brief explanations and examples

of the BASIC 4.0 commands and statements. It is not intended to
teach BASIC. Appendix P lists tutorial books that help vou learn
BASIC.

This chapter lists commands and statements in separate sec

tions. Within the sections, the commands and statements are

listed in alphabetical order. In most cases, commands can be used

as statements in a program ifyou prefix them with aline number

You can use many statements as commands by issuing them in

direct mode (i.e.. without line numbers).

CONVENTIONS IN FORMATS

The following conventions are used in the formats of the BASIC

commands and statements:

in• KEYWORDS, also called RESERVED WORDS, appear

uppercase letters. YOU MUST ENTER THESE KEYWORDS

EXACTLY AS THEY APPEAR. However, many keywords have

abbreviations that you can also use (see Appendix B).

Keywords are words that are part of the BASIC language,

and (hat your computer knows. Keywords are the central part

of a command or statement. They tell the computer what

kind of action you want u to take. These words cannot be

used as part ofyour filenames or other variable names unless

they are enclosed in quotation marks. However, we recom

mend that you NOT use keywords for variable names.

• ARGUMENTS, also called parameters, appear in lowercase

letters. Arguments are the parts of a command or statement

that you select: they complement keywords by providing spe

cific information about the command or statement. For

example, a keyword tells the computer to load a program.

while an argument tells the computer which specific pro

gram to load and in which drive the disk containing the

program is located. Arguments include filenames, variables,

line numbers, etc.

50 EXTENDED BASIC 4 0- COMMANDS AND STATEMENTS

• SQUARE BRACKETS ([]) show OPTIONAL arguments. You

select any or none of the arguments listed, depending on your

requirements.

• ANGLE BRACKETS (< >) indicate that you MUST choose

one of the arguments listed.

• VERTICAL BAR (|) separates items in a list of arguments

when your choices are limited to those arguments listed, and

you can't use any other arguments. When the vertical bar

appears in a list enclosed in SQUARE BRACKETS, your choi

ces are limited to the items in the list, but you still have the

option not to use any arguments.

• ELLIPSIS (...) a sequence of three dots, means that an

option or argument can be repeated more than once.

• QUOTATION MARKS (" ") enclose character strings, file

names, and other expressions. When arguments are enclosed

in quotation marks in a format, you must include the quota-

tlon marks in your command statement. Quotation marks

are not conventions used to describe formats; they are

required parts of a command or statement.

PARENTHESES. When arguments are enclosed in paren

theses in a format, you must include the parentheses in your

command or statement. Parentheses are not conventions

used to describe formats: they are required parts of a com

mand or statement.

• VARIABLE means any valid BASIC variable name, such as

X. AS. or T%.

• EXPRESSION means any valid BASIC expression, such as

A + B + 2or.5*(X + 3).

EXTENDED BASIC 4 0- COMMANDS AND STAT&MfNTS 51

BASIC COMMANDS

BACKUP

This command copies all the files on a diskette to another

diskette. You can copy onto a new diskette without first using the

HEADER command to format the new diskette because BACKUP

also formats diskettes. You should always backup disks in case

the original is lost or damaged.

NOTE: Because the BACKUP command also headers diskettes, it destroys

any information already stored on the diskette onto which you are copying

information. Therefore, be careful when you use this command. If you're

copying onto an old diskette, be sure it doesn't contain any programs you

wish to keep. See also the COPY command.

BACKUP DsTO Dd[ONUn;

sis the number of the source drive (i.e.. the drive containing the

disk whose files you want to copy).

d is the number of the destination drive (i.e.. the drive contain

ing the disk onto which you want to copy),

n is the number of the disk drive unit. Use this argument only if

you have more than one unit connected to your system.

Examples:

BACKUP DO TO Dl Copies all the files from the disk in

drive 0 to the disk in drive 1.

BACKUP DO TO Dl, ON U9 Copies all files from drive 0 to drive

1 in disk drive unit 9.

CATALOG

This command displays the names of all the files on a diskette.

The catalog of files is also called the directory.

CATALOG ['filename') [Ds] [ON Un]

s is the number of the drive containing the disk whose directory

of filenames you want to display.

52 EXTENDED BASIC 4.0- COMMANDS AND STATEMENTS

n is the number of the disk drive unit. Use Ihis argument only If

you have more than one disk drive.

Examples;

CATALOG Dl

CATALOG DO, ON U9

cA"ABC*",D0

Displays a directory of all files on

the disk in drive 1.

Displays a directory of all files on

the disk in drive 0 of drive unit 9

(use when the drive unit number is

not 8).

Displays all directors' files that be

gin with ABC. cA is the abbrevia

tion for CATALOG. Appendix B lists

other BASIC keyword abbrevi

ations.

COLLECT

Use this command to search the files in your directory for

improperly closed files. COLLECT frees up space allocated to

improperly closed files and deletes their references from the

directory.

COLLECT [Ds]|ON Un]

s is the number of the drive containing the diskette whose files

you want to COLLECT

n is the number of the drive unit. Use this only when you have

more than one drive unit in operation.

Examples:

COLLECT

COLLECT Dl

COLLECT DO, ON U12

Searches files on the last drive

accessed.

Searches the files on the diskette in

drive 1.

Searches the files on the disket te in

drive 0 of drive unit 12.

EXTENDED BASIC 4.0- COMMANDS AND STATEMENTS 53

CONCAT

Merges (concatenates) two sequential data files. When you con

catenate files, the second file in your command is deleted and

replaced by a new file which is the concatenation of the two files.

The first file in your CONCAT command remains unaltered.

CONCAT [Ds] 'soureefiV TO [DcJ] ' destfiie" [ON UnJ

s is the drive number of the disk drive containing the file you

want to add to another file.

"sourcefile" is the name of that file which is appended to the

"destination file", and which remains unaltered.

d is the drive number of the disk drive containing the file to

which you want to append the "sourcefile".

"desi[file" is the name of the destination file, which receives the

sourcefile and becomes a combination of the two files.

n is the number of the drive unit. Use this only when you have

more than one disk drive unit.

Examples:

CONCAT MYFILE'TO'YOURFILE" Merges MYFILE and

YOURFILE. YOURFILE

becomes YOURFILE

+ MYFILE.

CONCAT INDEX" TO

MSFILE", ON U9 Merges INDEX and MSFILE

on disk drive unit 9.

MSFILE becomes MSFILE

+ INDEX.

CONT

This command restarts the execution of a program [hat has

been interrupted by a STOP or END statement in a program, or

when you have pressed the STOP key. Execution resumes at the

point where the break in the program occurred. If the break

occurred after a prompt from an INPUT statement, execution con

tinues by reprinting the prompt.

54 EXTENDED BASIC -1 0* COMMANDS AND STATEMENTS

CONT is generally used in conjunction with STOP for debug

ging. When you stop execution, you may examine and change the

values of variables (e.g.. B = 200} and issue commands in direct

mode, such as PRINT B. You can then resume execution with

CONT or with a direct mode GOTO, which restarts at a specified

line number. However, the changes you can make during a break

are limited: if you edit any line of your program during a break.

you can't use CONT to restart the program.

CONT

Example:

P| RUN

_ ?7.9

7.9

4

^ .0999999996

BREAK IN 10

READY

LIST

10 INPUTA

X - X -

B = 3.9

PRINT X

20

30

35

40 GOTO 10

READY

B = 3.6

READY

CONT

- 7.4

- 11.3

B

+ A

Program begins executing.

STOP key pressed.

Break in execution.

You can LIST a program

during a break and still

use CONT to resume.

You can change the value

of a variable IF you do

this in DIRECT MODE.

Key in CONT to restart

execution.

COPY

This command copies files from one diskette to another. Unlike

the BACKUP command, which erases all information on the disk

EXTENDED BASIC A 0- COMMANDS AND STATEMENTS 55

that receives the transfer, COPY does not affect what is already on

the destination disk. In addition. COPY lets you transferjust some

ofthe files on a disk while BACKUP transfers the entire contents
ofthe source disk.

COPY [Ds,] \sourcefile-) TO [Dd,] ["cf«*//•"] [ON Un]

s is the drive number of the disk whose file is being copied.

"sourcefile" is the name of the file being copied.

d is the drive number of the disk that will receive the trans
ferred file.

"destflle" is the name ofthe file that is the destination ofthe
transferred file.

n is the unit number of the disk drive. Use only when the

number is not 8 (the default value).

Examples:

COPY DO, "FILE4"TO D1, "TESTS" Copies the file named FILE4

from the disk in drive 0 to the

file named TESTS in drive 1.

Only that file is copied, and

all data stored on Dl remains

unaffected.

COPY DO TO Dl Copies all files on drive 0 to

drive 1 without deleting any

files already on drive 1.

DCLEAR

This command initializes one or more disk drives. The com

mand defaults to drive 0 if you don't name a drive number.

DCLEAR [Ds] [ON Un]

s is the number ofthe drive you want to initialize.

n is the unit number ofthe drive. Use if the number isn't 8.

Examples:

56 EXTENDED BASIC 4 □ ■ COMMANDS AND STATEMENTS

DCLEAR Initializes drive 0.

DCLEAR Dl Initializes drive I.

DELETE

This command erases from memory a line or group of lines from

the BASIC program currently in memory:

DELETE Erases the entire program current

ly in memory.

DELETE linenumber- Erases all lines from theline num

ber named to the end of the pro

gram.

DELETE -linenumber Erases all lines from the start of

the program to the line number named

DELETE iinenumber-linenumber Erases all lines between and includ

ing the line numbers named.

DELETE [linenumber] [-] [linenumber]

Examples:

DELETE -50 Erases all lines of the current pro

gram from the first line through

line 50.

DELETE 50- Erases all lines of the current pro

gram from line 50 to the last line.

DIRECTORY

This command displays the names of the files on your diskette.

If you list a filename or a prefix common to more than one file

name, only those files are displayed. For example, all sequential

files named SEQFILE can be listed, or you can list all filenames

beginning with a common prefix by placing an * after the prefix

(e.g.. "WORD*" would list files including WORDPRO. WORDCRAFT.

WORDLIST. etc.). If you use Ihe ON U argument to name a drive

unii and do not specify a disk drive number, the directories of

both drives are displayed.

FXTENDED BASIC 4 0' COMMANDS AND STATEMENTS 57

DIRECTORY [Ds] [."filename"] [ON Un]

s is the number of (he drive conlaining the disk whose contents

you want to display.

"filename" is ihe name of a file or files with the same prefix that

you wish to list.

n is the unit number of the disk drive. Use if the number is not

8. which is the default value.

Examples:

DIRECTORY Dl Displays a list of all the filenames

in drive 1.

DIRECTORY Dl ■'INTRO" Displays a list of all files named

INTRO in drive 1.

DIRECTORY ON U9 Displays a list off all (he filenames

in both drives on drive unit 9.

DIRECTORY DO, 'ABC* Displays all directory files that be

gin with "ABC" on drive 0.

DLOAD

Brings into memory a BASIC program that is stored on disk.

You follow the same procedure to load a prepackaged program and

a program you wrote and saved yourself. You can use DLOAD as a

statement in the body of a program to chain other programs on

the same diskette. This automatically runs the program in the

DLOAD statement.

DLOAD "filename" [,Ds] [ON Un]

"filename" is the name of the file you want the load.

s is the number of the drive whose disk contains the file (the

default is 0).

n is the number of the drive unit. Use only if this number is not

8. which is the default value.

Examples:

DLOAD "OLDFILE" Loads a file named OLDFILE from

drive 0 into memory.

58 EXTENDED BASIC J.0- COMMANDS AND STATEMENTS

DLOAD XFILE , Dl, ON Ul 3 Loads XFILE from drive 1 of drive

unit 13 into memory.

n dsave

This command stores a BASIC program on disk. The filename

. can be up to 16 characters long. If you use a variable or an evalu

ated expression as a filename, enclose it in parentheses.

DSAVE "f//ename"[,Ds] [ON Un]

"filename" is the name of the file you want to save.

s is the number of the drive containing the disk on which you

want to store a file. The default is 0.

n is the number of the drive unit. Use only if this number is not

8, which is the default value.

Examples:

DSAVE "BASFILE" Saves the file BASFILE to drive 0.

DSAVE 'FILET! ",D1 Saves the file FILET1 to drive 1.

— HEADER

Before you can use a new diskette for the first time, you must

^ format it with the HEADER command. This command divides the

disk into sections called blocks, and it formats a table of contents.

I—| called a directory or catalog, for the disk. You can also reuse a disk

because the HEADER command erases all stored data.

See Preparing New Diskettes: HEADER Command, in Chapter 5

— for more information.

HEADER "diskname", Ds\,\nn] [ON Un]

"diskname" is the name you give lo (he diskette.

s is the number of the drive containing the disk you want Lo

HEADER

nn is the 2 character identification number for the diskette.

n is the number for the drive unit. Use only if the unit number is

—I not 8. which is the default value.

EXTFNDFD BASIC 4 0-*- COMMANDS AND STATEMENTS 59

Examples:

HEADER "MEYERDISK ', Dl, 128

HEADER SCMFILE'\DO,I07,ON U9

Headers a disk in drive

1. giving it the name

MEYERDISK

and the id number 28

Headers a disk in drive

0. of unit 9. naming it

SCMFILE with the id

number 07.

KEY

This command displays a list of the current definitions of the

function keys and lets you define these keys. Recall that keys Fl

through F10 are predefined, but that you can redefine them. Any

definition you give is erased at the end of the current session,

whether it is a redefinition of an Fl through F10 key or a defini

tion of an Fl 1 through F20 key.

To define a function key. follow these steps:

1. Key in the word KEY and the number of the key you want to

define, followed by a comma. For example:

KEY 15,

2. Enter the definition for the key. If you want to print the

definition before you execute the function, enclose the defini

tion in quotation marks. To use the function, press the key

and then press ■:i*in:ui to execute. If you don't enclose the

definition in quotation marks, the function is executed

immediately when you press the function key. Ifyou want the

function to do more than one operation, siring the opera

tions together with plus signs. For example:

KEY 15,"PRINT + CHR$(142)"

This switches the keyboard to graphics mode.

_■

60 EXTENDED BASIC 4 0- COMMANDS AND STATEMENTS

KEY [keynumber, ' definition[+ definition ... + definition]

Examples:

KEY5,CHR$|34)

KEY 17,

PRINT CHRS(142) +

CHRS(77) + CHRS(13)

+ CHRS(65)

PRINTs a quotation mark Im

mediately when you press Key 5.

When you press Key 17. the

text of what the key does is dis

played without quotation

marks. Cursor remains at the

end of the line until you press

1 to execute the func

tion. This function does four

things:

1. switches to graphics mode

2. PRINTS an M

3. activates BSEEEI key

4. PRINTs an A

~ LIST

This command displays a listing of all or part of the program

currently in memory. After a LIST command executes. BASIC

— always returns to the direct mode, also called the command level.

LIST

LIST linenumber-

LIST-linenumber

—. LIST linenumber-linenumber

Lists the entire program.

Lists all lines from the line

number named to the end of

the program.

Lists all the lines from the

beginning of the program to

the line number named.

Lists all the lines between

and including the numbers

named.

LIST [[//nenumber] [-] [iinenumber}\

Examples:

EXTENDED BASIC 10- COMMANDS AND STATEMENTS 61

LIST Lists all the lines in Ihe cur

rent program.

LIST-50 Lists the lines from the begin

ning to line 50.

LOAD

This command brings into memory a program stored on disk

ette. LOAD closes all open files and deletes all variables and pro

gram lines currently In memory, so be sure to save anything you

want to keep before you issue the LOAD command.

You can use LOAD as a statement in a program to chain several

programs. If you execute a LOAD statement from one program, the

loaded program is RUN after it is LOADed. and all data files are

kept open. None of the variables is cleared during a chain

operation.

LOAD "{Ds:]filenome",DevU

s is the drive number containing the disk from which the pro

gram will be loaded. The default is 0.

"filename" is the name of the fileyou want to load into memory.

Dev& is the device number of the disk drive containing the file

you want to load. The disk drive device number is 8 unless you

change it.

Examples:

LOAD '",8 Loads the first file on the disk in

drive 0.

LOAD"MEYERFILE",8 Loads the file MEYERFILE from

drive 0 into memory.

LOAD"1:SCMFILE",8 Loads SCMFILE from drive 1 into

memory.

LOAD 1:MV",8 Loads first file in drive 1 that beg

ins with the letters MY.

NEW

New erases the BASIC program and data currently in memory

so that a new program can be entered. Be sure to save anything

you want to keep before you issue a NEW command.

62 EXTENDED BASIC 4.0- COMMAND5 AND STATEMENTS

You should always use the NEW command before you enter a

new program to be sure that memory is clear, otherwise unwanted

lines from the previous program could merge with your new

program.

NEW

_ RENAME

This command changes the name of a file on a diskette without

altering the file itself. You cannot execute a RENAME command

on a currently open file.

RENAME [Ds,] "oldname" TO "newname" [,ON Un]

s is the number of the disk drive containing the file vou want to

RENAME. The default is 0.

"oldname" is the current name of the file.

"newname" is the name to want to use.

n is the unit number. Use only if this number is not 8. which is

the default value.

Examples:

RENAME Dl/'HERFILE" TO "MYFILE11 Gives the new name

MYFILE to HERFILE on

drive 1.

RENAME "DRAFT" TO "BOOKFILE11 Gives the new name

BOOKFILE to DRAFT

on drive 0.

RUN

This command executes (he BASIC program currently in

memory.

RUN Executes the program currently in

memory.

RUN linenumber Executes the program beginning at

the line number named.

EXTENDED BASIC 4.0' COMMANDS AND STATEMENTS 63

RUN [linenumber]

linenumber is the number of the line at which you want to

begin execution ifyou don't want to start at the first line.

Example:

RUN 60 Executes the program from line 60.

ignoring previous lines.

SAVE

SAVE stores a program on diskette. If you include the & sign

when you SAVE a program whose name is the same as another

program you already have saved on the same diskette, the pro

gram thai is already saved is replaced by the new program, [fyou

revise a program but want to keep both copies, save them under

different names.

SAVE ■■[[@]Ds:]f;7ename' ,Devtt
"<m *

(« replaces an existing program that has the same file name.

s is the drive number containing the disk on which you want to

save the program. The default is 0.

"filename" is the name of the program you want to save.

Det'# is the device number of the disk drive that contains the

disk on which you want to store the program. The disk drive —

device number is 8 unless you change it.

Examples:

SAVE '11:MEYERFILE ',8 Stores the program MEYERFILEon

the disk in drive 1.

SAVE "SCMFILE",8 Stores the program SCMFILE on

the disk in drive 0.

SAVE "@1:MEYERFILE",8 Replaces the existing program

MEYERFILE in drive 1.

L^

SCRATCH
^—'

Use this command to delete files from a diskette. When you

issue this command, the computer displays the prompt ARE YOU

SURE? before executing the SCRATCH. You must respond with

YES or Y to begin execution.

64 EXTENDED BASIC 1.0* COMMANDS AND STATEMENTS

SCRATCH "filename" [,Ds] [ON Un]

"filename" names the file you want to delete.

s is the drive number of the file containing the file you want to

SCRATCH. The default is 0.

n is the unit number of the drive. Use only if the number is not

8. (fie default value.

Examples:

5CRATCH SCMFILE

ARE YOU SURE? YES

SCRATCH "THESIS1,Dl

ARE YOU SURE? YES

Deletes the file SCMFILE

from the disk in drive 0.

Deletes the file THESIS

from the disk in drive 1.

VERIFY

Use this command to check a program on disk against the

program currently in memory. VERIFY informs you if there are

discrepancies.

VERIFY ••{Ds:\filename\Devtt

s is the drive number containing the stored program.

The default is 0.

''filename" is the name of (he file you want to verify.

Deii# is the device number of the drive containing the stored

program you're checking against the current program.

The disk drive device number is 8 unless you change it.

Example:

VERIFY -MEYERFILE',8

VERIFY -1:MYFILE",8

Checks the program MEYERFILE

stored on drive 0 against the pro

gram currently in memory.

Checks the program MYFILE stored

on drive 1 against the program

currentlv in memory.

BASIC STATEMENTS

Statements are BASIC instructions that are issued in pro

grams. They are always preceded by a line number. Most of the

statements described here can also be used as BASIC commands

f XTENDED BASIC ■> 0 • COMMANDS AND STATEMENTS 65

in direct mode ifyou omit the line number. Similarly, most BASIC ~"

commands can be used as BASIC statements in program mode if _

you prefix them with a line number.

APPEND

This statement opens a sequential file and positions the file

pointers beyond the current end of file so that you can write addi

tional data to that file. APPEND is like the DOPEN statement,

except that APPEND applies only to sequential files.

[linenumber] APPENDSfn,"filename" [,Ds] [ON Un]

Jn is the filenumber of the file you want to reopen and add to

(this is called the logical file number).

"filename" is the name of the file you want to APPEND,

sis the number of the drive that contains the file (defaults to 0).

n is the unit number of the disk drive unit (defaults to 8).

Example:

10 APPEND#3/'MEYERFILE ' Reopens MEYERFILE. logical file

#3. on drive 0 for appending.

BANK

This statement sets the indirection bank number for use with

some BASIC commands such as PEEK. POKE. BLOAD. and

BSAVE that refer directly to memory bank locations. The BANK

statement lets you pick the memory bank into which information

will be placed. There are 16 BANKs numbered 0 through 15.

[iinenumber] BANK expression

expression is any number, variable or numeric expression that

equals any number between 0 and 15.

Examples:

66 EXTENDED BASIC 4 0- COMMANDS AND 5TATFMENTS

10 BANK 3

20 POKE 1024,20

5 FORA = 0TO5

10 BANK A

20 BLOAD TEST

30 NEXT A

Sets the bank number to 3.

Stores 20 at location 1024 in BANK

3.

Starts a loop that gives A a new

value (0 through 5) each time the

loop executes.

Sets the bank number to the value

of A. which progresses from 0

through 5.

Loads the file TEST to the bank

whose number is the value A. By

t he end of the loop. TEST is loaded

in BANKS 0 through 5.

BLOAD

This BASIC statement loads an executable machine language

program into any memory location.

[linenumber] BLOAD [fifeoptions] |,ON Un] [,Bz] [,P/]

fileoptions are the arguments that specify the file you want to

load. They can include file name, file number, drive number.

drive unit number, etc.

z is the number of the memory BANK where you want to load

the machine language program. If you don't name a bank.

BLOAD loads to the last bank named. If no bank has been

named in Ihe program. BLOAD defaults to bank 15.

/ is the location (low offset) in thebank where you want to start

loading.

Examples:

n
10 BLOAD RATES",D1,ON U9,B3

20 BLOAD' TEST', D1,B3, P1024

Loads RATES from

drive 1. drive unit 9. in

to BANK 3.

Loads TEST into BANK

3 from drive 1 starting

at location 1024.

EXTENDED BASIC t 0- COMMANDS AND STATEMENTS 67

BSAVE

This BASIC statement saves a machine language program from

any memory location you name. BSAVE defaults to the last byte in

the bank (SObFFFF. where b = bank 0 through F).

[linenumber] BSAVE "filename [jileopts] [,ON Un] [,Bz]

[,P/][TOPh]

"filename" is (he name of I he file you want to save.

fileopts include drive number, drive unit number, etc.

/. is the number ol'the BANK where the program is located.

/ is the location (low offset) in the bank where you want to start

savi ng.

/) is the local ion (high offset) in I he bank where the information

you're saving ends.

Example:

10 BSAVE "TEST,D1.B3, Saves file TEST on drive 1. from

P512TO PI 024 BANK 3. memory location 512 to

1024.

CLOSE

This statement closes a files that was opened previously with an

OPEN statement. You must use the same file number in both the

OPEN and the CLOSE statements. A CLOSE for a sequential out- _

put file writes the final buffer of output.

[linenumber] CLOSE filenumber

Example:

100 CLOSE 3 Closes file number 3.

CLR

This command clears all BASIC variables currently in memory,

but leaves the program itself Intact. The CLR command is auto

matically executed when you give a RUN command.

68 FXTENDED BA5tC J 0+ COMMANDS AND STATEMENTS

10

20

30

40

50

60

[linenumber} CLR

Example:

FORX = 1 TO 4

A = 5: B - X

C - A + B: PRINT C,X

NEXT

CLR

PRINT C,X

RUN

6

7

8

9

0

1

2

3

4

0

Loop executes 4 limes.

As X is incremented by 1.

C and X are PRINTed on (he

same line until X - 4.

CLeaRs all variables.

PRINTS the CLeaRed variables.

The values for C and X are

PRINTed as the loop executes

4 times.

The zeroes PRINTed for C and X

after the CLR statement show

that the variables are CLeaRed.

CMD

This statement lets you redirect output. For example, output

that would normally go to the screen can be redirected with CMD

to go instead to a printer or a file. You must use CMD with an

OPEN statement that uses the same file number. The device to

which output will be redirected is named in the OPEN statement.

[linenumber] CMD filenumber[rprintiist]

filenumber is the number of the file whose output you want to

redirect.

prtntlist is a list of character strings, numeric variables, or

expressions written to the device when the CMD statement is

executed.

Example:

10 OPEN5,4 OPENs file number 5 and names

the printer as the output device (4).

EXTENDED BASIC •> 0~ COMMANDS AND STAIEMfNTS 69

20 CMD5, PROGLIST" Directs PROGLIST to be written to

the printer.

30 PRINT 'TEXT" PRINT statements following a CMD

are directed to the device named in

CMD.

DATA

The DATA statement holds numeric and string constants that

are matched with variables in READ statements. The DATA con

stants are accessed consecutively by READ variables. The variable

type (numeric or string) in the READ statement must match the

constant type In the corresponding DATA statement. Constants

in DATA statements may be reread after you issue a RESTORE

statement.

The DATA statement does not have to precede the READ state

ment. When a READ statement has read all the constants in a

DATA statement, it will look for another DATA statement, so the

number of items in any DATA statement does not have to equal

the number of items in a READ statement. However, the computer

will display an OUT OF DATA error message if the total number of

DATA constants accessible in a program is fewer than the total

number of READ variables.

[linenumher] DATA constant \,constan1, . . . , constant]

constant is any numeric (fixed point, floating point, or integer)

value or any string value. Numeric expressions are not allowed.

Stringconstantsdonot need to be enclosed in quotation marks

unless they contain commas, colons, or leading or trailing

spaces.

Examples:

10 DATA 1,2,3,4,5 Lists DATA constants.

20 READA,B The first READ variable

30 READ C,D acquires the first DATA

40 PRINT A;B;C;D constant, etc.

RUN

12 3 4

70 EXTENDED BASIC-SO- COMMANDS AND STATEMENTS

„ NEW

10 DATA 1,2,3,4,5

p^ 20 READ A^CD.E^F.

RUN

— ?OUTOF DATA IN 20

You can have more DATA

constants than READ variables

but not vice versa.

DCLOSE

This command can CLOSE all the files currently open on a disk,

or only the logical file specified. If you don't specify a file number,

all OPENed filed are CLOSEd.

[Hnenumber] DCLOSE \ttlf) [ON Un]

Ifis the number of the logical file you want to CLOSE,

n is the number of the drive unit.

Examples:

10 DCLOSE

10 DCLOSE#3

10 DCLOSE ON U9

Closes all files OPEN on default

device (8).

Closes the file with the logical file

number 3.

Closes all files OPEN on unit 9.

DEF FN

This statement lets you define your own functions and use

them in a program by using only the function name. This state

ment can save time and space when you want to use a complex

— formula more than once in a program. You must define the func

tion with the DEE EN statement before you can call the function

in a program.

[linenumber] DEF FNna (argument) = formula

— na is the name of the function. It must be a legal variable name.

and you must precede the name with FN when you call the

function.

EXTENDED 6A51C4.0- COMMANDS AND STATEMENTS 71

argument can be any numeric variable: it must be enclosed in

parentheses.

formula is the expression that performs the function's opera

tions. Any variable name that appears in this formula serves

only to define the function: it does not affect program variables

that have the same name.

Example:

10 DEFFNAB(X) = X/Y3 Defines the function FNAB.

20 T = FNAB (!) Calls FNAB.

DIM

The DIMension statement allocates storage for an array and

sets the maximum values for the array variable subscripts. You

MUST use the DIM statement to DIMension arrays containing

more than 10 elements. To find the number of elements in an

array, multiply the values of each subscript plus one. For example,

an array DIMensioned (3.2) has (3 + 1)*(2 + 1) elements.

The DIM statement sets the value of all elements of the array to

an initial value of zero.

Matrices can have up to 255 dimensions, but the size of each

must be less than 32767.

[Unenumber] DIM variable{subscript [,subscript]),

[variable {subscript {,subscript]} . . .]

variable is the name of the array.

subscript is the size of the dimension of the array.

Subscripts must be enclosed in parentheses.

Examples:

10 DIM A(20} DIMensions a one-dimensional

array with 21 elements.

20 DIMAS(4,4,4) DIMensions a three-dimensional

array with 125 elements (4 + 1*4 +

1*4 + 1 - 125).

72 FXTENDED BASIC ■! 0- COMMANDS AND STATEMENTS

DISPOSE

Use this statement in error trapping procedures to eliminate

unwanted FOR /NEXT loops orGOSUB /RETURN addresses with

out leaving invalid Information on the stack.

[im&numb&r] DISPOSE < FOR! GOSUB>

You must choose either FOR or GOSUB as an argument for a

DISPOSE statement.

Example:

30 FORJ = 1 TO 10 Starts a FOR/NEXT loop.

40 PRINT J

50 IFJ = 5 THEN DISPOSE Eliminates the loop when

FOR:GOTO70 J = 5. and moves to line 70.

60 NEXTJ

DOPEN

This statement declares a sequential or random access file for

read or write access. A sequential file is opened for read access

unless you include the W argument in the statement.

\linenumber] DOPEN ft7 f, ' filename" [,Ly] [,Ds] [ON Un] [, W]

I/Is the logical file number of the file you want to open.

''filename" is the name of this file.

y is the record length for a nonsequential file. You must include

this argument when you create a relative file.

s is the disk drive number. Default is 0.

n is the disk drive unit number. Default is 8.

W indicates write access to a sequential file.

Examples:

10 DOPENft5,'TEST' Opens file 5 named TEST on drive

0.

FXIENDED BASIC 4 0- COMMANDS AND STATFMFNTS 73

10 AS = ■RATES' Opens file 6 named RATES.

20 DOPEN#6,(AS) When you use a variable to stand

for a file name, you must enclose it

in parentheses.

20 DOPEN#2,@FILE1,W,D1 Replaces file 1 with file 2 and opens

file 2 on drive 1.

END

END terminates program execution and returns to direct mode.

[linenumber] EN D

FOR/TO/STEP

This compound statement starts a loop that performs a series of

instructions a set number of times, and always executes at least

once. This statement is always used with a next statement.

FOR names a variable that serves as a counter to control the

number of executions of the loop. TO sets the number of execu

tions, such as 1 TO 10. which means that the loop executes 10

times.

STEP is an optional part of the statement that you can use to

change the amount the counter is incremented from the default of

1. For example. 1 TO 10 STEP 2 makes the loop execute only 5

times, since the counter is now incremented by 2 each time the

loop executes.

You can also count backwards in a FOR loop by reversing the

order of the numbers in the TO arguments and by using a nega-

tive value as the STEP argument.

You can also nest FOR/NEXT loops, that is. a FOR/NEXT loop

can be placed inside another FOR /NEXT loop. When you do this.

the inside loop must end before the outside loop, and the loops

must have a different variable as the counter.

[iinenumber] FOR variable - expression! TO expression2

[STEP expression3]

variable is the name of the loop counter.

expressionl is the beginning value of the counter.

expression2 is the ending value of the counter.

expressions is the value of the increment of the counter.

Defaults to 1.

74 EXTENDED BASIC 4.D t COMMANDS AND STATEMENTS

Examples:

10 FORX - 1 TO 5

20 A - A + X:PRINT A

30 NEXT

10 FORG = 1 TO 105TEP2

20 PRINT G: NEXT G

10 FORR = 25 TO 5 STEP-.5

Sets X as the counter and limits

to 5 the number of executions of

the loop.

Each time the loop runs, this

statement will execute again.

Tells ihe computer to get the nexl

value of X.

Starts a loop whose counter incre

ments by 2 each time the loop exe

cutes.

Starts a loop whose counter decre

ments by -.5 each time the loop

executes.

GET

This statement provides another way to assign data values to

— variables. GET scans the keyboard buffer and reads a single char

acter. If you don't type a character, a null character is automati

cally assigned. The GET statement is often placed in a loop that

continues until you type a character that is assigned to the GET

variable.

The GET variable is usually a string variable, which can accept

either string or numeric input. A numeric variable can only accept

numeric input.

—

i—. [linenumber] GET variable

Example:

10 GETAS: IF AS - THEN 10 GET asks you to type a single

character that is assigned to

AS. The IF tells the computer to

keep checking until you enter a

character.

EXTENDED BASIC 4.0- COMMANDS AND STATEMENTS 75

GET*

GET# reads a Single character from a file. You must have

already OPENed the file with [he same logical file number before

you can use GET#.

[linenumher] GET# fiienumber, variable

Jllenumber is the logical file number of the OPENed file from

which your GET" is reading a character.

variable Is the variable lo which ihe character read by GET# is

assigned.

Example:

10 DOPENS5, -TEST' Opens logical file 5.

30 GET#5, F5 Reads a single character from file 5

and assigns it to FS.

GOSUB

The GOSUB statement lets you branch to a subroutine. The

subroutine must be terminated by a RETURN statement that

sends control back to the body of the program. You can nest

GOSUB /RETURN statements up to 23 deep.

[linenumber] GOSUB Iinenumber2

Unenumber2 is the line where the subroutine starts.

Examples:

75 GOSUB 10 Sends control to a subroutine start

ing al line 10.

95 GOSUB 125 Sends control to a subroutine at

line 125.

GOTO

GOTO unconditionally branches the program (o a specified line.

GOTO does not require any sort of return statement. If you want

76 FXTENDEC BASIC4.0- COMMANDS AND STATEMENTS

to stop a loop begun by a GOTO statement, you must break into

execution with a STOP or include another statement that ends

the loop.

[linenumber] GOTO Iinenumber2

Examples:

10 INPUT AS: PRINT AS

20 GOTO 10

10 INPUT A: PRINT A-l.06

20 IF A<100 GOTO 10

30 IF A- >100THEN END

IF/THEN/ELSE

IF/GOTO

The GOTO in line 20 causes

line 10 to execute repeatedly-

The IF statements provide a

way to end the GOTO loop in

line 20. which stops executlnj

when line 20 is false.

The IF statement is another way to control program execution.

This statement tells the computer to check IF a condition is true,

and IF it is. follow the instructions following THEN. IF that condi

tion is false, the program skips to the next line to continue. You

can use an IF statement to start a loop or to decide whether cer

tain parts of a program will execute. IF statements may be nested.

[linenumber] IF express/on THEN tciouse [:ELSE ec'ause]

expression sets the condition to be verified. The THEN clause

instructions are executed only if the expression is true.

tclause is the set of instructions to be performed when the

expression is true.

eclanseis another set of instructions to be performed when the

expression is false.

Expressions in IF statements usually include one of the follow

ing relational operators:

SYMBOL MEANING

greater than

less than

- equal to

SYMBOL MEANING

< > not equal to

equal to or greater than

equal to or less than

EXTENDED BASIC ■t.0* COMMANDS AND STATEMENTS 77

Examples:

10 IF A> BTHEN PRINT A,B

10 IF A> 100 GOTO125

10 IF A< = 99THEN A =

A'1.5:ELSE A = 2

A and B are printed only if A is

greater than 13.

If A is greater than 100. execution

goes to line 125.

If A is less than or equals 99, in

structions after THEN are executed

and the ELSE clause is not. If A is

greater than 99. THEN's argument

isn't executed, and ELSE's is.

INPUT

This statement lets you input values from the keyboard during

execution. When you execute the program, you are automatically

prompted by a question mark for INPUT. You can also write a

prompt message. Program execution does not continue until you

respond to an INPUT prompt.

The number of data items you supply in response to an INPUT

prompt must equal the number of variables in the INPUT state

ment. INPUT variables may be either string or numeric. INPUT

assumes that commas and colons signal the end of a data item.

[Unenumber] INPUT [" promptstring" ;\ variable list

"promptstring" is optional text you can add to precede the ques

tion mark prompt.

variable list is one or more variables whose values you are

INPUTting.

Example:

10 INPUT AS: PRINT "CONTINUE^As long as you don't enter

20 IF AS <> STOP" GOTO 10 STOP when you are prompted

RUN for INPUT, execution

? COMMODORE continues and you

CONTINUE are prompted again.

? B SERIES

78 EXTENDEDBASIC40- COMMANDS AND STATEMENTS

CONTINUE

?5TOP

READY

INPUT*

INPUT" is similar lo the INPUT statement, except it reads data

from an OPENed disk file. Leading spaces are ignored.

INPUT* assumes that commas, colons, and carriage returns

signal the end of a data item.

[linenumber] INPUTS filenumber, variable list

Jllenumber indicates the file from which INPUT" is reading data.

variable list is one or more variables whose values you are

INPUTting.

Example:

10 INPUT#3,AS,A Reads values for AS and A from

file 3

_ LET

LET assigns a value to a variable. The word LET. however, is

always optional. In other words. LET A = 3 is the same as A = 3.

The presence of the equal sign is sufficient when you are assign

ing an expression to a variable.

[/inenumber] [LET] variable = expression

Examples

10 LET AS = 'STRING

20 A = 32-28

30 BS - 'STRING"

NEXT

NEXT is the statement that does the following:

EXTENDED BASIC J.0- COMMANDS AND STATEMENTS 79

• indicates where a FOR/NEXT loop ends

• increments the value of the FOR value by the amount declared

In ihe STEP argument (default = 1) when the loop is not

finished

• sends execution out of Ihe FOR loop when I lie loop is finished.

NEXT only appears as the complement of a FOR loop, and every

FOR loop must have a NEXT statement. These loops may be

nested.

[//nenumberj NEXT [variable,variable]

variable is optional: when loops are nested the first NEXT is

assumed to go with the last FOR statement. When the NEXT

variable is included, it must match the FOR variable.

Example:

10 FORA = 1 TO 2: PRINT A Loop A executes twice.

20 FOR F - 99 TO 97

5TEP-1:PRINT F Loop F. executes 3 times.

30 NEXT F,A Loop F. the last named, is

RUN (he first finished.

1 Loop A runs once.

99 Loop F runs all three times

98 because it finishes before A

can execute a second lime.

2 Ix)op A runs another time.

99 Loop F runs three times again

98 because it is inside A.

97 —

ON/GOSUB

This compound statement branches the program to one of sev

eral subroutines specified by the line numbers listed as GOSUB

arguments. The destination depends on the value returned when

the ON expression is evaluated. If the value is 1. control branches

to the first subroutine: if its 2. control goes to the second, etc. If

80 EXTENDED BASIC J.0- COMMANDS AND STATEMENTS

the value of the expression is negative, you receive an error mes

sage. If tlu* expression is zero or greater than the number of items

In ilie list, control passes to the line following the ON/GOSUB

statement.

[line/iumber] ON expression GOSUB list of linenumbers

expression determines which subroutine receives control when

the expression is evaluated.

list oflinenumbers corresponds to (he subroutine to which the

program might branch.

Example:

10 FOR A - 1 TO 3 The first time the FOR loop

20 ON A GOSUB 75,95,1 15 executes, control passes to

30 NEXT the first subroutine (at line 75)

because A = 1. etc.

ON/GOTO

ON /GOTO resembles ON /GOSUB. except that ON /GOTO sends

control to one of several specified line numbers rather than to

—. subroutines. All other conditions are the same.

[linenumber] ON expression GOTO list of linenumbers

expression determines which lines receives control when the

expression is evaluated.

list of linenumbers corresponds to the line numbers to which

the program might branch.

_ Example:

50ONX-1 GOTO 125,150,200 WhenX-1 - 1. control goes to line

125: when X-1 = 2. control goes

to 150. etc.

EXTENDED BASIC 4 0- COMMANDS AND STATEMENTS 81

OPEN

This statement establishes an Input/Output (I/O) channel to

the screen or to an external device such as a disk drive, a printer.

or the IEEE bus.

[iinenumber] OPEN fiienumber [,devicenumber [,secondary

address [/filename"]]]

fiienumber of the logical number of the file you want to OPEN.

This number must be between 0 and 255.

devicenumber designates the external device to which you

want to OPEN a channel. The device numbers for external

devices are: disk = 8 through 15 (default 8): printer = 4:

screen - 3.

secondary address (0 through 15) is required in some cases.

The addresses are: 0 through 1 - commands other than

OPEN; 2 through 14 = data files: 15 = command channel.

"filename" is the name of the file referred to in the secondary

address.

Examples:

10 O P E N 1,3 OPENs the screen as a device.

20 OPEN 2,4 OPENs a channel to the printer.

30 OPEN 4,8,15 OPENs a command channel on

the disk.

PEEK

PEEK* lets you read the information at a specific memory loca

tion. PEEK returns the value (0 - 255) of a single byte.

[//nenuniber] PEEK {memorylocation)

memory location gives the memory address of the byte whose

value you want to read.

' PEEK and POKE default to the BASIC text bonk. If you wont lo

actess another bank, you must issue the BANK command first.

82 EXTENDED BASIC 4.0' COMMANDS AND STATEMENTS

Example:

10 A = PEEK(59468): PRINT A PRINTs the value of the byte

located in memory al 59468.

POKE

POKE* lets you write a byte into a specific memory location.

POKE is complemented by the function PEEK. Use PEEK and

POKE for efficient and specific data storage, and for assembly

language subroutine operations such as loading and passing
arguments.

You can only POKE to RAM {Random Access Memory), though

no error is flagged if you POKE to ROM (Read Only Memory).

[itnenumber] POKE location, value

location is the place in memory where you want to place a
value.

value is what you want to place in a specific memory location.

Example:

10 POKE 59468,14 Sets the character set to

upper/lower case mode.

20 A = PEEK(59468):PRINT A PRINTS 14 as the value for A

since you previously POKEd

14 into location 59468.

PRINT

PRINT displays on the screen any information you specify. The

punctuation you use in the PRINT statement determines the

position of PRINTed items. BASIC divides'each line into print

zones of ten spaces each. When you separate PRINT items with a

comma, each item is PRINTed in a new print zone. A semicolon

PRINTS items right next to each other (however. PRINTed num

bers are always followed by a space).

If you end a PRINT statement with either a comma or a

semicolon, the next PRINT statement begins on the same line. If

there is no punctuation at the end of the statement, a carriage

■ PEEK and POKE default to (he BASIC text bank. If you want to

access another bonk, you must issue the BANK command first.

EXTENDED BASIC AQi COMMANDS AND STATEMENTS 83

return is assumed, and the next PRINT statement begins on the

next line.

[/inenumber] PRINT [printlist]

printltsl can include any of the following:

1. Text which must always be enclosed in quotation marks.

2. Variable names: if enclosed in quotation marks, the value of

the variable PRINTs; if not enclosed, the variable name

PRINTS.

3. Functions.

4. Punctuation marks (used for formatting output.

Examples:

Statement Prints

10 A = 3*4: PRINT "A - ";A A - 12

20 PRINT''REPORT TITLE" REPORT TITLE

30 A = 3:PRINT'A - ";A,"B = ";A"2 A - 3 B = 6

40 PRINT 1,2,3 1 2 3

50 PRINT 1;2;3 1 2 3

PRINT*

PRINT" resembles PRINT, but PRINT* writes t he values listed to

the file associated with the file number in the PRINT* statement.

Recall that the file must have been previously OPENed with the

same file number.

[filenumber] PRINTtf filenumber, printlist

filenumber identifies the logical file into which you want to write

data.

printlist contains the data you want to write to the file.

Example:

84 EXTENDED BASIC4.0- COMMANDS AND STATEMENTS

10 PRINT#3/TEST DATA :'' Writes this information to file

number 3.

PRINT USING

PRINT* USING

These statements let you define the format of the string and

numeric output you want to print.

[iinenumber] PRINT [Ufilenumber,] USING "formatlist"- printlist

filenumber names the file into which you wish to write format

ted data. The file must have been previously OPENed.

"Jormatltst" defines the format of your output.

printlist is the datayou want to PRINT in the defined format.

The formal symbols are:

CHARACTER NUMERIC STRING

Pound Sign(ft) X X

Plus(+) * X
Minus (-) X

Decimal Point (.) X

Comma (,) X

Dollar Sign ($) X

FourCaretsf Mil) X

Equal Sign (=) X

Greater Than Sign (>) X

The pound sign (#) reserves room for a single char

acter in the output field. If the data item contains more

characters than you have * in your format field the

following occurs:

• For a numeric item, the entire field is filled with

asterisks (*). No numbers are printed.

For example:

EXTENDED BASIC 4 0- COMMANDS AND STATEMENTS 85

10 PRINT USING ■fififlft" ,X

For these values for x. this format displays:

A = 12.34 12

A = 567.89 568

A = 123456 **'*

• For a string item, the string data is truncated at the bounds of

the field. Only as many characters are printed as there are

pound signs (#) in the format item. Truncation occurs on the

right.

For example, if you want a field to contain a maximum of seven

characters, you can use this PRINT USING statement to print a

string variable:

PRINT USING ■■#######■' ; NAME,S

If the string NAMES contained more than seven characters, the

characters after the seventh character will be truncated when the

string is printed. For example, if NAMES = "SHABINGER". this

format will print SHABING.

The plus { + } and minus [-) signs can be used in eitherthe firsl

or last position of aformatjleld but not both. The plus sign is

printed if the number is positive. The minus sign is printed if the

number is negative.

If you use a minus sign and the number is positive, a blank is

printed in the character position indicated by the minus sign.

If you don't use either a plus or minus sign in your format field

for a numeric data item, a minus sign is printed before the first

digit or dollar symbol If the number is negative and no sign is

printed if the number is positive. This means that you can print

one character more if the number is positive. If there are too many

digits to fit into the field specified by (he # and + /- signs, then an

overflow occurs and the field is filled with asterisks (*).

A decimal point (.) symbol designates the position of the

decimal point in the number. You can only have one decimal

point in any format field. If you don't specify a decimal point in

your format field, the value is rounded to the nearest integer and

printed without any decimal places.

86 EXTENDED BASIC 4 0- COMMANDS AND STATEMENTS

When you specify a decimal point, the number of digits preced

ing the decimaJ point {including the minus sign, if the value is

negative) must not exceed the number of # before the decimal

point. If there are too many digits, an overflow occurs and the field
is filled with asterisks (*).

A comma {,) lets you place commas in numeric fields. The posi

tion of the comma in the format list indicates where the comma

appears in a printed number. Only commas within a number are

printed. Unused commas to the left of the first digit appear as the
filler character. At least one n must precede the first comma in a
field.

If you specify commas in a field and the number is negative.

then a minus sign will be printed as the first character even if the

character position is specified as a comma.

A dollar sign ($) symbol shows that a dollar sign will be printed

In the number. You must specify at least one # before the dollar

sign or else the dollar sign will notfloat Ifyou specify a dollar sign

without a leading #. the dollar sign is printed in the position

shown in theJormatfield. If you specify at least one # before the

dollar sign, [he dollar sign floats to be placed just before the

number.

If you specify commas and /or a plus or minus sign in a format

field with a dollar sign, your program will print a comma or sign

before the dollar sign.

Thefour carets [U\\) symbol is used to specify that the number

is to be printed in E + format. You must use n in addition to the

till to specify the field width. The mt can appear either before or

after the n in theformatfield.

You must specify/our carets (till) when you want to print a

number in E-format (scientific notation). Ifyou specify more than

one but fewer than four carets, you will get a syntax error. If you

specify more than four carrets. only the first four are used. The

fifth caret is interpreted as a no text symbol.

An equal sign (=) is used to center a string in the field. You

specify the field width by the number of characters (# and =) in

theformatfield. If the string contains fewer characters than the

field width, the string is centered in the field. If the string contains

more characters than can be fit into the field, the rightmost char

acters are truncated and the string fills the entire field.

A greater than sign {>) is used to rightjustify a string in afield.

You specify the field width by the number of characters ("and =]

EXTENDED BASIC 4 0 t COMMANDS AND STATEMENTS 87

in the formal field. If the siring contains fewer characters than

the field width, the string is right justified in the field. If the string

contains more characters than can be fit Into the field, the right

most characters are truncated and the siring fills the entire Held.

Examples:

Field Expression Result Comment

+

nn.u-

+##+

+utt.u-

tttittti

nunn

tt.nu

nun.

u.u.

un.mt

u# u#

-.01

-.1

1

1

1

-100.5

-1000

-4E-03

10

1

100

10.4

0.01-

-.10

1.0

ERROR

ERROR

-101

-.00

10.

ERROR

1,00

10

#,###.## 1000.009 1,000.01

ffff,fi# -10 -10

UU=>.> 1000 1000.0

+>==,# 1 +>",1

+>=#,ff 1 + 1

«$#ff 1 SI

Fill character between sign and

number.

Leading zero added.

Leading zero suppressed by

minus sign.

Trailing zero added.

Two plus symbols.

Plus and minus symbols.

Rounded to no decimal places.

Overflow because four digits

and minus sign cannot fit in

field.

Rounded to -0

Decimal point added.

Two decimal points.

Comma suppressed and value

rounded.

Rounded.

Comma suppressed.

Minus overrules comma. No

leading digit before the comma.

> and - treated as ff since in

numeric field.

At least one # must precede the

comma. >, =, and comma are

treated as symbols to print, not

as format field items.

> and = treated as U since in

numeric field.

Leading $ sign.

88 EXTENDEDBASIC4Q- COMMANDS AND STATEMENTS

Field Expression

nuns

nttsun

UtitiS-

+#$##

+#.#mi

un.nuww

**m

ffttttm

-l

l
i

-1

1

1

-100000

1

34

Result

-SI

-SI

si-

+S -1

-si

+ 1.0E+00

-1.00E + 05

ERROR

34E+001

Comment

Sign precedes S.

Sign precedes S.

Sign in last position.

At least one # must precede S. +

and S treated as symbols to

print, not as format field items.

E format output

Only three carets.

Fifth caret seen as text char-

„ un.nn

###># cbm

=#### cbm

U,$U = + cbm

acter and is always printed,

cbm String data item, printed left

justified in nine character

field,

cbm Printed right justified in five

character field,

cbm Centered in eight character

field,

cbm Only + affects centering in six

character field. Other symbols

are translated to tf.

— FUDEF

PUDEF lets you use characters in a PRINT USING statement

that are not permitted in the PRINT USING format list. PUDEF let

you redefine up to 4 symbols in the PRINT USING statement. You

can change blanks, commas, decimals [joints, and dollar signs

into some other character by placing the new character in the

correct position in the PUDEF control string.

[iinenumber] PUDEF "controlstring"

controlstring is a list of new characters you want to place in your

PRINT USING format. The control string can contain up to four

new characters:

• Character position 1 is the filler character. The default is a

blank. Place a new character here when you want another

character to appear In place of blanks.

EXTENDED BASIC t 0- COMMANDS AND STATEMENTS B9

• Character position 2 is (he comma character. Default is a

comma.

• Character position 3 is the decimal point.

• Character position 4 is the dollar sign.

Examples:

10 PUDEF - ■ PRINTs * in the place of blanks.

20 PUDEF ■■ @" PRINTs >« in place of commas.

30 PUDEF .,' PRINTs decimal points in place of

commas, and commas in place of

decimal points.

READ

This statement assigns values from DATA statements to varia

bles listed as READ arguments. The data types must be the same

in both statements. A single READ statement may read data from

several DATA statements, and several READ statements may read

from one DATA statement. DATA lists must contain enough

values to assign one value to each READ variable, but any extra

DATA values are ignored.

You can reREAD data by using the RESTORE statement.

\imenumber) READ variable list

variable list is the list of variables whose values are assigned

from DATA statement constants.

Examples:

10 DATA 1,2,3 Assigns 1 to A. 2 to B.

20 READ A,B,C and 3 to C.

10 DATA 1,2,3,4

20 READ A,B:PRINT A;B Assigns 1 to A: 2 to B.

30 RESTORE Moves pointer reading data

40 READ C,D:PRINT C;D back to beginning, so 1 is

RUN assigned to C: 2 to D.

1 2

1 2

90 EXTENDED BASIC J.0+ COMMANDS AND STATEMENTS

RECORD

RECORD adjusts a relative file pointer to select any byte (char

acter) of any record in the relative file. The file must have been

previously OPENed.

[iinenumber] RECORDff filenumber,recordn[jmber\,byter\umber\

fiien umber is the logical number of the relative file.

record!^ it mber is the number of (he relative file record in which

the byte you want to select is located (must be between 0 and

65535). 0 and 1 both index the first relative file record.

bytenumber indicates at which byte (1 through 254} you want

to select.

Examples:

10 DOPEN£2/ RELFILE \L50

20 RECORD«2,10,50

25PRINTfi2,CHR$(255)

30 DCLOSE#2

10 FOR J - 1 TO 10

20 RECORD#2,(J),1

30 PRINTS/RECORD ;J

40 NEXT

OPENs a relative file with a record

length of 50.

Allocates space lor 10

records and moves (he

pointer to the end.

Writes ten records to

position 1 in each record.

REM

The REMark statement lets you insert explanatory remarks in

your programs. These remarks are not executable and do not

affect the program.

[Iinenumber] REM [text]

text can be any commentan- that clarifies your program.

REMarks do not need to be enclosed in parentheses.

EXTFNDED BASIC 4 0- COMMANDS AND STATEMENTS 91

Examples:

10 PRINT X: REM X IS TAXABLE TOTAL All texl following REM

20 REM REMARKS MAKE PROGRAMS does not execute.

EASY TO READ

RESTORE

RESTore lets you reREAD the values in a DATA statement from

the beginning.

[linenumber] RESTORE [Hnenumber2]

Iinenumber2 is the line number where the pointer is moved

back for DATA to be reREAD.

Examples:

10 DATA 1,2

15 DATA8,9,10

20 READ A,B,C,D:PRINT A;B;C;D Aslgns first 4 DATA values.

30 RESTORE 15 Moves pointer to start of 15.

40 READE,F,G: PRINT E;F;G Assigns data from start of 15.

50 RESTORE Moves pointer to start of first

DATA statement.

60 READ A,B,GPRINT A;B;C Assigns first 3 DATA values.

RUN

12 8 9

8 9 10

1 2 8

RESUME

This statement lets you continue with program execution after

an error has been trapped and processed by your error handling

routine. Ifyou do not name a specific line at which execution is to

RESUME, the program will attempt to re-execute the statement in

error. If you select the NEXT argument, execution resumes at the

line following the error. If you select some other line number, exe

cution continues there.

92 EXTENDED BASIC 4.0- COMMANDS AND STATEMFNT5

[linenumber] RESUME [NEXT | Hnenumber2\

_ Hncnumber2 is any line you select for execution to resume.

Example:

70 TRAP 100: REM IF AN ERROR Sends program to line 100

OCCURS GOTO LINE 100

75 PRINT VAL(L): REM THIS IS

AN ERROR BECAUSE L - 0

120 RESUME NEXT

if there is any error in

I he program.

Restarts program at line

after error.

RETURN

RETURN ends a subroutine and branches the program back to

the statement following the GOSUB statement that started the

subroutine.

{linenumber} RETURN

Example:

50 GOSUB 70

60 PRINT ■• SUBROUTINE OVER "

65 END

70 PRINT 'SUBROUTINE STARTS"

80 PRINT "MORE SUBROUTINE'

90 PRINT "ENDING SUBROUTINE'

100 RETURN

RUN

SUBROUTINE STARTS

MORE SUBROUTINE

ENDINGSUBROUTINE

* SUBROUTINE OVER "

Passes control (o subroutine

at line 70.

Subroutine begins.

Ends subroutine and passes

control back to the line

following GOSUB. line 60.

which executes only after

the subroutine is over.

STOP

This statement terminates program execution and returns con

trol to command level, also called direct mode. You can resume

EXTENDED BASIC 4.0- COMMANDS AND STATEMENTS 93

execution with the CONT statement Ifyou follow the restrictions

detailed in the description of CONT.

[linenumber] STOP

SYS

Use (his statement to call a machine language subroutine. This

subroutine is located at the jumpaddrcss named as the SYS

argument. This address is decimal, not hexidecimal.

SYS jumps to the last bank named in the program. If no bank

has been named. SYSJumps to bank 15. If SYS jumps to any bank

other than 15. RAM-loaded transfer ofexecution routines must be

present in the bank.

NOTE: All machine language programs must end with an RTS

(ReTurn from Subroutine) statement, which returns to the BASIC

program.

[Unenumher] SYS jumpaddress

jumpaddress is the decimal address of the machine language

subroutine being called by the program.

Example:

40 SYS 512 Calls the machine language sub

routine at decimal address 512.

TRAP

This statement prevents BASICs normal error handling func

tions from taking control. When an error occurs. TRAP lets your

program perform its own error handling roulines that you've writ

ten into the program. Three error-handling functions. EL. ER. and

ERRS, are explained in Appendix A.

\linenumber] TRAP [Hnenumher2]

Iinenumber2 is the line where your error handling procedures

begin.

94 EXTENDED BASiC-i 0- COMMANDS AND STATEMENTS

Example:

_ 360 INPUT B

370 IF B - 0 THEN TRAP 550

— 380 X - A/B: PRINT X

If B = 0. an error occurs because

BASIC won't divide by 0. TRAP

passes to line 550 where this error

is fixed without the program being

stopped because of the error.

WAIT

WAIT suspends program execution while monitoring the status

of data input from the specified location. The values of selected

bits at the specified location determine whether the WAIT state

ment is re-executed, or control passes to the next executable

statement.

When you use the WAIT statement, the program is on hold,

waiting until a machine address you name develops a specific bit

pattern. The data read at the address is exclusive Ored with

mask2, whose default is 0. Then (he data is ANDed with maskl. If

the result is zero. BASIC loops back to reread the data, making

execution WAIT. If the result of the OR and AND operations is not

zero, execution continues with the next executable statement.

NOTE: If you enter an indefinite loop with a WAIT statement.

you must manually reset the machine.

\Hnenumber\ WAIT location, maskl [,mask2\

maskl is the value with which the specified data is ANDed.

mask2 is the value with which the specified data is exclusive

ORed.

Example:

55 PRINT ■PROGRAM WAITS TIL ANY

KEY IS PRESSED '

Puts 0 in memory location

209.

Makes program wait until

any key is pressed before

80 PRINT 'SOME KEY WAS PRESSED" resuming.

60 POKE 209,0

70 WAIT 209,1

EXTENDED BASIC 4.0- COMMANDS AND STATEMENTS 95

L-.

APPENDICES

A. BASIC 4.0 Fund ions

B. BASIC 4.0 Abbreviations

C. Screen Display Codes

D. CHRS Codes

K. Screen Memory Map

F. Memory Map

G. Mathematical Functions Table

H. Plnouts for Inpul Ouipui Devices

I. Converting from Standard BASIC

to Extended BASIC 4.0

J. Error Messages

K. Non-error Messages

L. 6581 [SID) Chip Register Map

M. Printer Commands

\. Using the RS-232C Channel

O. Machine Language Monitor

P. Bibliography

Q. User's Clubs. Magazines, and the

Commodore Information Network

Owner's Registration Card

INDEX

APPENDIX A

BASIC 4.O -

FUNCTIONS u

ABS

ABS (expression)

Returns the absolute value of (expression).

Example.

PRINT ABS(7"(-5))

35

ASC

ASC lexpression)

Returns the numeric value that represents the ASCII code of the —

first character of (expression), which is a string value. TheCHRS

function performs ASCII-to-string conversion.

Example.

10 XS - -TEST" —

20 PRINT ASC(XS)

RUN ~

84 T Is ASCII code 84.

ATN

ATN (expression)

Returns the arctangenl of the (expression) In radians. The

result is in the range -pi II to pi II. The expression can be any l-j

98 APPENDIX A

numeric type, but the evaluation of ATN is always performed in

floating point binar\r.

'—■

Example.

10 INPUT X

20 PRINT ATN (X)

RUN

« ? 3
1.24904577

CHRS

CHRS (expression)

Returns a string containing a single character whose value is

the character with the ASCII code represented by (expression).

These codes are listed in Appendix D. The expression can be any

integer between 0 and 255.

CHRS is often used lo send a special character to the terminal.

For example. CHRS(14) switches the screen lo upper/lower case

(normal) mode.

TheASC function performs ASCII-to-numeric conversion.

Examples:

10 ES + CHRS (147) + 'ERROR MESSAGE '

20 PRINT ES: REM CLEARS SCREEN AND PRINTS MESSAGE

10 NS = CHRS(83) + CHRS(77)

20 PRINT NS

RUN

SM

COS

COS (expression)

Returns the cosine of (expression) in radians. Expression is any

valid numeric expression. The evaluation of COS is always per

formed in floatingpoint binary.

APPENDIX A 99

Example:

PRINT COS(5-1)

-.65364362

10 X = 2'COS(.4)

20 PRINT X _

RUN

1.84212199

ERRS

ERRS (expression)

Returns a character string which contains the text of the error

message represented by [expression). The value of expression

must be between 0 and 127.

When used with the TRAP statement. ERRS helps you process

error messages within your program.

Example:

35 REM IF USED WITH TRAP EL HOLDS THE ERROR LINE

WHILE ER HOLDS THE ERROR ft

50 PRINT ERRSfl):REM THIS WILL PRINT AN ERROR

MESSAGE

70 TRAP n0:REMGOTO LINE 110 IF AN ERROR OCCURS

80 PRINT VAL(K):REM THIS IS AN ERROR

90 PRINT "WE HAVE RETURNED FROM OUR TRAP

ROUTINE'

100 END

110 PRINT "ERROR IN LINE'EL: REM PRINT THE LINE WITH

THE ERROR

120 PRINT 'THE ERROR IS ERRSfER]: REM DISPLAY THE

ERROR

130 RESUME NEXLREM RESUME EXECUTION AFTER LINE

WITH ERROR IN IT

EXP

EXP (expression)

Returns the value of e (approx. 2.71828183) raised to the power-

represented by [expression). Expression must be less than or —

equal to 88.02969191.

100 APPENDIX A —

Examples:

— ?EXP(1)

2.71828183

_ ?EXP(3.5)/2

16.557726

i—|

_ ?EXP{89)

— ?OVERFLOW

FRE

FRE (expression)

Returns the number of free bytes in a memory segment or bank

indicated by (expression}. If you have a 128K machine, banks 1

and 2 contain 64K each, and the other banks are empty. If you

have a 256K machine, banks 1. 2. 3. and 4 contain 64K each, and

—i the oilier banks are empty.

Example:

?FRE(1)

— 63908

?FRE(1) + FRE(2)

— 128095

— INSTR

INSTR (expression) ,expressi'on2[,expression3])

The INSTR function performs a substring search. The text of

string [expression I) is searched, beginning al character position

[expresston3), for the occurrence of siring [expression2). Numeric

expressions must be a value between 1 and 255. The default for

_ k expression 3 is 1.

INSTR returns these values:

• [f expression 2 is NOT found in expression 1. INSTR returns

n zero (0).

APPENDIX A 101

• If expression2 is found. INSTK returns the position in siring —

expression 1 lhat contains the first character of expression2.

Example:

10 AS - TEST TEXT

20 BS - TEXT

30 PRINT BS; TEXT STARTS AT CHAR ;!NSTR(AS,BS)

RUN

TEXT STARTS AT CHAR 6

INT

INT (expression)

Returns tin- largest Integer which is less lhan or equal to the

value of [expression].

Example:

PRINT INT (99.89)

99

PRINT INT(-28.8) —

-29

LEFT$

LEFTS (expression/, expression2)

Returns a siring thai consists of a number [expression 2) of —-

characters from a string {expression 1) starling from the leftmost

character in [expression 1). Expression2 must be an integer be

tween 1 and 255.

If expression2 is greater than (he length of expression 1. then

the LEFTS function returns the entire string. Use the LEN func

tion to find the length of expression 1.

Example:

10 AS = COMMODORE COMPUTERS

20 BS - LEFTS(AS,9)

30 PRINT BS

RUN ^

COMMODORE

102 APPENDIX A ■—

LEN

^^. LEN {expression)

Returns the number ofcharacters in (expression). Non-printing

characters and blanks are counted.

_ Example:

— 10 XS = ■'COMMODORE COMPUTERS"

20 PRINT LEN(XS)

RUN

~ 18

LOG

LOG {expression}

Returns the natural logarithm of (expression). Expression must

be greater than zero.

Example:

PRINT LOG (45/7!

1.86075234

— MID$

MIDS [expression!, expression? \,expression3])

Returns a string that contains a number [expressions] of char

acters from string (expression 1). starting at the character posi-

lion, named in [expresston.2). Expression^ and expressions rnusl

be between 1 and 255.

If you do not supply a value forexpression3or if there are fewer

than expressions characters in the string expression 1. then the

MIDS function returns ail of the rightmost characters of expres

sion 1. beginning with the expression2 character.

11 you specify a value for expression2 that is greater than the

length ol the string expression 1. then the MIDS function returns

—"* a null siring.

APPENDIX * 103

Example:

10 AS - 'GOOD

20 BS = 'MORNING EVENING, FRIENDS'

30 PRINT AS;MID$(B$,9)

40 PRINT AS;MID$(B$,9,7)
RUN —

GOOD EVENING, FRIENDS _

GOOD EVENING

PEEK

PEEK (expression)

Returns the byte read from memory location (expression) in the

bank selected by a previously executed BANK instruction. Expres

sion must be between 0 and 65535.

PEEK is the complementary function to the POKE statement.

See the POKE statement for more information.

Example:

20 PRINT PEEK (36879)

RUN

46 -

POS

POS (express/on) _

Returns the column number of the current cursor position. The „,

leftmost position is 0: [he rightmost position is 80. Expression is

a dummy argument, which means that you can give it any value

because it doesn't affect Ihe function evaluation.

Example:

50 IFPOS(X] > 60 THEN PRINT CHRSil 3)

60 REM CHRS(13) IS THE RETURN KEY

RIGHTS

RIGHTS (expressionJ,expressi'on2)

Returns a string that consists of a number {expression2) of

characters from a string [expressionl] starting from the right-

104 APPENDIX A

most character in expressionl. Expression2 must bean integer

between 1 and 255.

If expression2 is greater than the length of expression 1, the

RIGHTS function will return the entire siring. You can use the

LEN function to see how long expression 1 is.

If expressIon2 is zero, then RIGHTS returns the null siring. A

null string is a string with a length of zero.

The LEFTS. MIDS, and RIGHTS string handling functions and

the INSTR function can be used to perform complicated string

handling operations.

Example:

10 TS - BEGINNING,MIDDLE, AND END OF TEXT'

20 ES = RIGHTS(TS,3):REM ES = 3 RIGHTMOST CHARS OF

TS,

30 IF ES < >"END" THEN PRINT RIGHTS(AS,8)

40 REM CHECKS IF 3 RIGHTMOST CHARS = END;

IF NOT, PRINTS 8 RIGHTMOST

RUN

OF TEXT.

RND

RND (expression)

Returns a random number between 0 and 1. Expression is the

seed value.

Example:

10 FORA = 1 to 5

20 PRINT INT(RND(X)"100)

30 NEXT A

RUN

24 30 31 51 5

SON

SGN (expression)

Returns a value that indicates whether the value of [expression]

is positive, negative, or zero. The SGN function values are:

APPENDIX A 105

• ForX > 0. SGN returns + 1

• ForX = 0. SGN returns 0

• ForX < 0. SGN returns -l

Example:

10 ON 5GN(X] + 2 GOTO 75, 125, 180

20 REM IF X < 0 GOES TO 75; IF X - 0 GOES TO 125

30 REM IF X >0 GOES TO 180

SIN

SIN {expression)

Returns the sine of [expression] in radians.

Example:

PRINTSIN(1.5)

.997494987

SPC

SPC (express/on)

Prints the number of blank spaces on the screen (or printer, if

opened) indicated by the number in {expression}. SPC can only be

used with PRINT. Expression must be between 0 and 155.

Example:

PRINT "TOTAL SALES"; SPC(15);X

TOTAL SALES 12345.67

SQR {expression)

Returns [lie square rool of [expression). Expression musl be

greater than or equal to zero.

Example:

PRINT 10,SQR(10)

10 3.16227766

106 APPENDIX A

STATUS

Status

Returns a completion STATUS for ihe last input /output opera

lion which was performed on an open file. The STATUS can be

read from any peripheral device.

The value of the status function depends on the operation and

device checked.

Use the STATUS function to:

• check for errors during the processing of a program on disk

• see if you are at ihe end ofa file during the read processing

• check on a verify operation

A table of STATUS code values for printer, disk (IEEE peripher

als) and RS 232 file operations is shown below:

ST Bit

Position

0

1

2

3

4

5

6

7

ST Numeric

Value

1

2

4

8

16

32

64

128

IEEE

Bus

lime out

write

time out

read

EOl

device not

present

RS-232C

Channel*

parity error

(receive only)

framing error

(receive only)

overrun

(receive only)

input buffer

emply

DCD error

DSR erroi

— 'Meaning when bil is set to 1.

— STR$

-^ STRS (express/on)

Returns a string representation of the value of {expression}.

Example:

—• PRINT'S'1 + STRS(2.77) Prints S2.77

APPENDIX A 107

or

PRINT"$";STRS(277) Prints S2.77

PRINT STRS[150) + ".00" Prints 150.00

TAB

TAB (expression)

Positions the cursor in the column represented by [expression).

You can only use TAB with a PRINT statement. Expression must

be between Oand 155. The first column on the screen is column 0.

Example:

PRINT "TOTAL"; TAB(29);"123456"

TOTAL 123456

TAN

TAN (expression)

Returns the tangent of (expression) in radians.

Example:

10 X = .785398163

20 Y - TAN(X)

30 PRINT Y

RUN

1

TI$

TIS

Returns the internal interval timer as a character string. The

siring contains seven characters showing hours, minutes, sec

onds, and tenths of seconds (hhmmsst). Set the timer with this

statement:

10 TIS = ■0000000"

108 APPENDIX A

USR

USR (expression)

Calls the user written machine language subroutine which has

starling address stored In locations 3 and 4 of bank 15. The

argument {expression) is stored in the floatingpoint accumulator

prior to entering the subroutine.

VAX

, VAL {expression}

Returns the numeric value of the string [expression). The STRS

function performs the complementary task, numeric to string

conversion.

Example:

30 IF VAL(ZIPS)<90000 OR VAL(ZIPS) >96699 THEN

— 40 PRINT OUT OF STATE"

RESERVED SYSTEM VARIABLES

AND Logical operator.

DSS Disk status reserved word.

EL Line number last error occurred.

ER Error'1' of last error occurrence.

OR Logical operator.

NOT Logical operator.

STatus The system status for the last Input /Output

operation.

TISme The character string representation of the cur

rent time-of-day registers.

_ RESERVED SYSTEM SYMBOLS

— + Plus sign arithmetic addition or string concatenation

— - Minus sign arithmetic subtraction and unary minus

— * Asterisk: arithmetic multiplication

— /Slash: arithmetic division

I—i
APPENDIX A 109

(blank) Blank:

= Equal sign:

< Less than

>Grealer lhan:

! Up arrow:

. Comma:

. Period:

: Semicolon:

: Colon:

Quotation

mark:

separates keywords and variable names

value assignment and relationship testing

used in relationship testing

used In relationship testing

arithmetic exponentiation

used In variable lists to format output; also

separates command parameters

decimal point in floatingpoint constants

used in variable lists to format output

separates multiple BASIC statements on a pro

gram line

encloses string constants

? Question mark:abbreviation for the kevword PRINT

(I.eft

parenthesis:

) Right

parenthesis:

% Percent:

'■' Number:

8 Dollar sign:

-Pi:

expression evaluation and functions

expression evaluation and functions

declares a variable name as an integer

comes before (he logical file number in input

output statements

declares a variable name as a siring

the numeric constant 3.14 159265

110 APPENDIX A

APPENDIX B

BASIC 4.0

ABBREVIATIONS

KEYWORD ABBREVIATION TYPE

ABS

APPEND

ASC

ATN

BACKUP

BANK

BLOAD

BSAVE

CHRS

CATALOG

CLOSE

CLR

CMD

COLLECT

CONCAT

CONT

COPY

COS

DATA

DCLEAR

DCLOSE

DEFFN

DELETE

DIM

DIRECTORY

a

a

a

a

b

ba

b

b

c

c

cl

c

c

CO

con

c

CO

d

d

d

de

d

di

■cKiiaa

■-I ■ 11J m

EdUMJ

w^) il 1J fli

If-?11 l^f

K.A 'W-kM

WJ* 11jJ

EHIIIaJ

none

none

i£-i ■ 11 jb

B

p

S

T

A

N

L

S

H

A

O

L

M

L

C

O

P

A

C

E

L

I

R

function—numeric

statement

function—numeric

function—numeric

command

statement

command

command

function—string

command

statement

statement

statement

command

statement

command

command

funct ion—numeric

statement

command

statement

statement

command

statement

command

APPENDIX B 111

DISPOSE

DLOAD

DOPEN

DSAVE

END

ERRS

EXP

FOR

FRE

GET

GET*

GOSUB

GOTO

HEADER

IF...GOTO

IK.THEN~ELSE

INPUT

INPUT*

INSTR

INT

KEY

LEFTS

LEN

LET

LIST

LOAD

LOG

MIDS

NEW

NEXT

ON...GOSUB

ON...GOTO

OPEN

PEEK

POKE

POS

PRINT

PRINT*

PRINT USING

PUDEF

READ

112 APPFNDIX B

di

d

d

d

e

e

f

f

g

go

g
h

i

in

k

le

1

1

1

m

n

0

P

P

?

P

?us

r

Hi MmJ

»•] 111 i 1

none

HHIaJ

HillaJ

none

ES1 tllgl

B-1111J m

none

none

none

Hillai

■■HillaJ

none

HillaJ

■Millai

none

■ -T * 11 -» J
^^^^^^^

W^-] ill JM

none

none

■-^:ilaJ

none

none

■~T * 11 ^i M

ttJ 111^J

HSIIJJ

none

none

M-l ■ IIJ M

s

L

O

s

N

X

o

R

E

S

O

E

N

S

E

F

E

I

O

I

E

P

E

O

R

I

E

statement

command

statement

command

statement

function—string

function—numeric

statement

function—numeric

statement

statement

statement

statement

command

statement

statement

statement

statement

function—numeric

function—numeric

command

function—string

function—numeric

statement

command

command

function—numeric

function—string

command

statement

statement

statement

statement

function—numeric

statement

function—numeric

statement

statement

statement

statement

statement

RECORD

REM

RENAME

RESTORE

RESUME

RETURN

RIGHTS

RND

RUN

SAVE

SCRATCH

SGN

SIN

SPC

SQR

STATUS

STOP

STRS

SYS

TAB

TAN

TT8

TRAP

USR

VAL

VERIFY

WAIT

re

re

re

res

re

r

r

r

s

s

s

s

s

s

st

s

st

s

t

t

u

V

w

none

i-j:iuj

■:j;ilaJ

HiltdtJ

1-HilIAJ

EmSB
e-':i!jj

Emai

none

none

none

c

N

S

u

T

I

N

U

A

C

G

I

P

9

T

R

Y

A

R

S

E

A

statement

statement

command

statement

statement

statement

function—string

function—numeric

command

command

command

function—numeric

function—numeric

function—special

function—numeric

function—numeric

statement

function—string

statement

function—special

function—numeric

function—string

statement

funct ion—special

function—numeric

command

statement

NOTEiThe character printed is the same in normal (text) mode and graphics mode

unless otherwise indicated.

APPENDIX B 113

APPENDIX C

SCREEN DISPLAY

CODES

SET 1

@

A

8

C

D

E

F

G

H

1

J

K

L

M

N

O

P

Q

R

5

T

SET 2

a

b

c

d

e

f

9

h

i

I

k

1

m

n

o

P

q

r

s

t

POKE

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

SET 1

U

V

w

X

Y

Z

[

£

]

t

i

"

ft

$

%

8.

•

(

>

SET 2

U

V

W

X

y

z

n

POKE

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

SETl

+

-

/

0

1

2

3

4

5

6

7

8

9

;

<

=

>

SET 2 POKE

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

114 APPENDIX C

I
l
l

)
)

)
)

)
)

I
)

)
)

J
)

I
)

□
n
n
a
n
n

-
<
x

<
a

o
o

o
o

o
o

o
C
N

(
_
n

-
U

G
O

I
O

—
'
O

N
(
>

L
n

-
u

O
J

r
o

—
'
O

O
O

O
v
o

C
O

*
s
g

A
P
P
E
N
D
I
C
E
S

APPENDIX D

CHR$CODE

PRINTS CHRS PRINTS CHRS

PRINTS

TEXT GRAPHICS CHRS

PRINTS

TEXT GRAPHICS CHRS

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

7

@

a

b

c

d

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

m

n

o

p

q

r

s

\

u

v

w

X

y

z

F

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

w

X

Y

Z

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

NOTE: The character printed is the same in normal (text) mode and graphics mode

unless otherwise indicated.

116 APPENDIX D

CHRS PRINTS CHRS

PRINTS

TEXT GRAPHICS CHRS

PRINTS

TEXT GRAPHICS CHRS

92

93

94

95

SEE NOTE

BOTTOM

OF PAGE

~

128

129

130

131

132

133

134

135

136

137

138

139

140

n
n
—

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

PRINTS

TEXT GRAPHICS CHRS

Zl 167

KS 168

C 169

□ 170

ffl 171

v

E
E

□

E

Q
C

3

□

H
a

H

B

CD

B
□

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

H

3

Q
D

Z

r

□

g
V

3
3B

I
0

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

SEE NOTE

BOTTOM

OF PAGE

CODES 96-127

CODES 224-254

CODE 255

ARE THE SAME AS 32-63

ARE THE SAME AS 160-190

IS THE SAME AS 222

APPENDIX D 117

—

APPENDIX E

SCREEN MEMORY MAP

Your computer's memory

stores the characters currently

displayed on the screen and

automatically updates changes.

Your'13'Series computer screen

has 25 lines by 80 columns, so

it has positions for 2000 char

acters. Each of these positions

has its own screen memory

address by which you can refer

to the screen position and the

character currently located

there. You can access a specific

location by supplying the

address In PEEK and POKE

statements. PEEKs let you see

what is in a screen memory

location, and POKEs let you

put a value into a screen

memory location.

Each character position is

represented by one byte, start

ing at hexadecimal address

D000 (decimal 53248) and

ending at hexadecimal address

D7CF (decimal 55247).

118 APPENDIX E

APPENDIX F

B SERIES MEMORY MAP

sooo?

soooo

B Scfiet Memory Mop

SegmentiOl to 04

SYSTEM RAM

INDIRECT SEGMENT BANK

EXEC SEGMENT BANK

SEOOO

scorn

S8CO0

S6000

51000

SOBOO

SOOO!

JO00I

B Scnei Memory Map

Segment OF

KEBNAI BOM

i O

BASIC ROM

BASIC BOW

CARTRIDGE BOM'RAM

CaBTRIDGE HOM'BAM

CARTRIDGE ROM/BAM

*K DiSK ROM

JK E«T BUFFER Ram

3KBAM

NDiBECT SEGMENT BANK

EXfC SEGMENT BANK

SDFOO

SDCOO

• -

SD9C0

B Senei Memory Map

I/O Addred Block

657S «1BO«D

6525 F£EE-48fl

t55- ES732

65?6 lEEf t&8 U5EBPOBT

[IT PORT iO" CoprcceiiO' board:

6SBI 'SOUND GINEBATOR.

DISK UNITS

6545 CBT CONTROLLER'

7K SCREEN

RAM

NOT USED

n
APPENDIX F 119

APPENDIX G

MATHEMATICAL

FUNCTIONS TABLE

FUNCTION

secant

cosecant

coiangem

Inverse sine

inverse cosine

Inverse secani

Inverse cosecant

inverse cotangent

hyperbolic sine

hyperbolic cosine

hyperbolic langeni

hyperbolic secani

hyperbolic cosecant

hyperbolic eotangeni

inverse hyperbolic sine

inverse hyperbolic cosine

inverse hyperbolic tangent

inverse hyperbolic secani

inverse hyperbolic cosecanl

inverse hvperbolic contangenl

BASIC EQUIVALENT

sec(x) = 1 /cos(x)

csc(x) - 1 /sin(x)

coiix) = I /tan(x)

arcsinlx) = atn(x/sqr(- x*x + 1)1

arccos(x) - -aln(x /sqr(-x*x + 1]]

+ rr/2

arc-sec(xl = alnlx /sqr(x*\ 1))

arecsc(x) = atnlx/sqrfx*x]))

+ [sgn(x] II*-,2

arcollx) = alnlx) + rr/2

sinh(x) - (explx) - expl x)j 2

coslilxl = [expUI + exp(-.x])/2

tanh(x) = cxpl-x) /

[explx) * expl xll*2 + !

secfttx) = 2/(exp(x) + expl-x)]

cseh(x) = 2/(exp(x) - exp[x)l

coth(x) = expl x]

[explx) - exp(-x))*2 + 1

arcsinh(x) = log{x + sqrlx'x + 1!)

arccosh(x) = log(x + sqrlx'x - II)

aretanh(x) = loglfl + x] '{I - xll 2

arcserhlxl = log[(sqr[-x*x + 1)

arccschtx) = log(tsgn[x)'

sqr(x*x + l /x]

arccoth(x) = logttx * U/(X - 1)) ,2

120 APPENDIX G

APPENDIX H

PINOUTS FOR

INPUT/OUTPUT

DEVICES

Your computer is equipped with several specialized chips all in

BANK 15. The 6526 Complex Interface Adapter is located at 56320

($DC00). The 6551 Asynchronous Communications Interface

Adapter is located at 56576 (SDDOO). Your computer has two

6525 TrI-port Interface chips located at 56832 (SDEOO) and

57088 (SDFOO). For more information, consult your Programmer's
Reference Guide.

Connector Pin—Outs

Fin

1

3

■i

5

6

7

8

9

10

11

12

13

14

\i

Type

ho
Al

A2

A3

A4

A5

A6

A?

Afi

A9

A10

All

ai;

-5VDC

■5 VOC

Pin

A

B

C

D

E

F

H

J

K

[

M

N

P

f!

5

Type

BDO

B01

BD2

BD3

BD4

BD5

BDi

BD7

GND

GND

SR/W

S02

NOT CSBanl, 1

NOT CSBonk?

NO! C5Ban)t3

14

IS

16

17

18

19

20

1

27

24

■■■

15 "

o °

o °

o °
Q O

0

o °

o °
o

o

„ °
o

0

o

Keyboard

Pin

1

3

5

7

9

11

13

15

17

19

21

23

25

Typo

PAO

PA.1

PBO

PB2

PB4

PB6

PC5

PA3

PA7

PCI

PC3

GND

■■ i

Connector

Pin

7

i

6

8

10

12

14

16

18

20

22

7*

Type

PA2

PA6

PE1

PB3

PB5

PB7

PA1

PA5

PCO

PC2

GND

GND

RS232C Connector

Pi,

1

2

3

i

5

6

7

a

n

18

20

U

Type

swriD

T x D

R v D

BTS

CIS

DSR

GND

DCD

■5VDC

12 VDC
DTR

R ■ C

AllolliersN.C.

APPENDIX H 121

User Connector

Pin

■

]

■

■

■

13

■

17

■■■

21

.■

Type

GND

GND

NOT PC

2D7

2D5

2D3

2D1

1D7

1D5

1D3

1D1

NOTCNT

NOT IRQ

-

'.

4

6

8

10

13

14

16

IS

20

22

24

.'

Typv

pb:

■ P63

NOT FLAG

206

;ds

2D2

2D0

- ID6

- ID*

- 1D2

- 1D0

-5 VDC

SP

IEEE Connector

Pin

1

2
3

■i

5

6

7

e

9

10

11

1?

Type

Dl

02

D3

D*

EOl

DAV

NRFD

NDAC

IFC

SRQ

AIN

Pin

6

C

D

E

F

H

J

K

L

M

N

Type

■

D6

D7

DB

REN

GNO

GND

GND

GND

GND

GND

GND

Co-Processor Connector

1

3

5

"

'-

11

13

.;

17

19

21

23

25

27

29

31

33

35

37

39

o

o

o

o

o

o

o

o

□

o

o

o

o

o

o

o

o

o

o

o

Pin

3

5

7

9

1 i

13

15

17

19

21

23

25

27

29

31

33

35

37

39

Type

EXTMA3
EXTMA2

EXTMA7

EXTMA6

EXTMA5

EXTMA4

EXTMA1

EXTMAO

GND

GND

GND

GND

GND

GND

GND

GND

NC

NOT PR0CRE5

EXTBUFR/W

DRAMR'W

Pin

')

4

6

3

10

12

14

16

18

20

n

34

26

23

30

32

34

36

38

40

Typo

DRAMOO

DRAMO1

DRAMO2

DRAMO3

DRAMCM

DRAMO5

DBAMO6

DRAM07

GND

GND

NOT BUSV1

NOT P2REFREQ

NOT P2REFGRNT

BPO

BP1

BP2

BP3

NOT BUSY2

NOT ERAS

NOT ECA5

122 APPENDIX H

Expansion Connector

1

3

5

7

9

11

13

15

1?

19

2!

23

25

27

29

31

33

35

37
..,

41

&3

45

47

:■■

■

■

■

o

□

0

■

o

o

o

o

o

0

o

o

o

o

o

o

0

0

o

o

o

o

D

o

o

o

o

o

o

°

o

■

■

■

o

□

Pin

1

3

5

7

9

11

13

15

17

19

21

23

25

2?

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

Type

■5 VDC

■5 VDC

GND

GND

GND

NOT BRAS

-!? VDC

■ 12VDC

NOTSES

Sfi'W

TODClK

BOO1CLK

S02

S01

BD3

BD4

BD5

DB7

BA13

BA14

BA1

BA2

BA3

BA1?

BA9

BA8

9P0

BP1

NOT NMI

RDY

Pin

1

i

6

8

10

12

14

16

18

20

22

It

76

2B

30

32

34

36

38

40

42

f6

4B

50

52

5J

56

5a

60

Type

'5 VDC

t5 VDC

GND

GND

GND

IRO3

NOT EXTRES

NOT SO

LPEN

NOT EXTBUFCS

NOT DISKROMCS

NC

NOT BCAS

NO7 CS1

NOT EXTPRTCS

BD2

BD1

BD0

BD7

BA15

RAO

RA11

BA10

BA4

BA5

BA6

BA7

BP2

BP3

NOT IRQ

Audio Jack

Pin

1

2

3

Type

TOSPI AKI.R

N.C.

rOSPEAKER

Power Connector

Pin

l

2

3

4

5

6

Type

50/60 Hz

-12 VDC

-12 VDC

GND

GND

■S VDC

Video Connector

Pin

1

2

3

4

5

6

7

Type

VIDEO

GND

VERTICAL SYNC

GND

HORIZONTAL SYNC

KEY

GND

Reset Connector

Pin

1

2

Type

TO RESET SWITCH

TO RESET SWITCH

APPENDIX H 123

APPENDIX I

CONVERTING FROM

STANDARD BASIC TO

EXTENDED BASIC 4.0

If you have programs written in a BASIC oiher than Commodore

BASIC, souk' minor adjustments may be necessary before run

ning them with Commodore BASIC. I lere are some specific things

to look for when converting BASIC programs.

String Dimensions

Delete all statements thai are used to declare (he length of

strings. A siatement such as DIM AS(I. J). which dimensions a

siring array for J elements of length 1. should be converted to the

Commodore BASIC statement DIM ASfJ).

Some BASICs use a comma or ampersand for siring concatena

tion. Each of these must be changed lo a plus sign, which is the

Operator for Commodore BASIC siring concatenation.

In Commodore BASIC. theMIDS. RIGHTS, and LEFTS functions

are used to take substrings of strings. Forms such as AS(I) to

access the "Ith" character in AS. or ASU. Jl to take a substring of

AS from position I to position J. must be changed as follows:

Other BASIC Commodore BASIC

A$(l) - XS AS - LEFTS(AS,I - 1) + XS + MIDS(AS, I + 1)

ASflJ} = XS AS = LEFTS(A$,I - 1) + XS + MIDS(AS,J + 1)

Multiple Assignments

Some BASICs allow statements of the form:

10 LET B = C = 0

124 APPENDIX

to set B and C equal to zero. Commodore BASIC would Interpret

the second equal sign as a logical operator and set 13 equal to -1 if
C equaled 0. Instead, convert this statement to two assignment
statements:

IOC - 0:B - 0

Multiple Statements

Some BASICS use a backslash to separate multiple statements
on a line. With Commodore BASIC, be sure all statements on a line
are separated by a colon.

—. MAT Functions

Programs using the MAT functions available In some BASICs

must be rewritten using FOR . . . NEXT loops to execute properly.

Differences From Older Commodore BASIC

TI references must be changed. The current smallest unit of

time is 1 /10 sec. rather than 1 /60 sec. TIS now has seven charac
ters instead of six. The seventh character is tenths of seconds. ER

— is now a reserved variable. All references must be changed to use a

new variable name. ER returns the error number (127 is no error).

EL is now a reserved variable. All references must be changed to
use a new variable name. EL returns the line number of the last

error (65535 is no error).

APPENDIX I 125

APPENDIX J

ERROR MESSAGES

MESSAGE

0. ?stop key detected

1. ?too many files

2. ?fi!e open

3. ?file not open

4. ?file not found

EXPLANATION

Occurs when doing a KERNAL I /O

function and the STOP key is

pressed. May occur during LOAD

or SAVE (or"oPEN. CLOSE. GET*.
INPUT". PRINT#). Disk files are not

damaged.

You are trying to OPEN more than

10 files at a time. Decrease the

number of OPEN or DOPEN files by

CLOSING them.

An attempt was made to redefine

file parameter information by

repeating an OPEN command on

the same file twice.

The operating system must have

information provided by the OPEN

statement. If an attempt is made to

read or write a file without having

done this previously, then this

message appears.

The named file specified in OPEN

or LOAD was not found on the

device specified.

126 APPENDIX J

5. ?device not present

8. ?missing filename

9. ?illegal

device number

1 0. are you sure ?

11. ?baddisk

14. break

5. extra ignored

16. redo from start

No device on the IEEE was present

to handshake an attention

sequence. May happen on OPEN.

CLOSE. CMD. INPUT*. GET*.

PRINT*. If filename is not specified

with OPEN, this error will not

occur.

LOADs and SAVEs from the IEEE

port (e.g., the disk) require a file

name to be specified. Supply the

filename.

Occurs if you try to access a device

in an illegal manner. For example.

LOADing or SAVING on the key

board, screen, or RS-232.

This is a prompt for BACKUP.

SCRATCH, and HEADER. It is not

an error message and should not

occur during BASIC program

execution.

Media failure

command.

on HEADER

This occurs when the STOP key is

pressed during normal BASIC exe

cution. The CONTinue command

can be used to restart the program.

Too many items of data or separa

tors (.) were typed in response to an

INPUT statement. Only the first few

items were accepted.

Is not actually a fata] error printed

in the standard format but is a

diagnostic which is printed when

APPENDIX J 127

20. ?next without for

21 . ?syntax error

data in response to INPUT is non

numeric where a numeric quantity

is required. The INPUT continues

to function until acceptable data

has been received.

Either a NEXT is improperly nested

or (he variable in a NEXT slate-

men! corresponds to no previously

executed FOR statement.

BASIC cannot recognize the state

ment you have typed. Caused by

such things as missing parenthe

ses, illegal characters, incorrect

punctuation, misspelled keyword.

22. ?return

without gosub

23. ?out of data

24. illegal quantity

A RETURN statement was encoun

tered without a previous GOSUB

statement being executed.

A READ statement was executed

but all of the data statements in

the program have been read. The

program tried to read too much

data, or insufficient data was in

cluded in the program. Carriage

returning through a line READY

on the B Series video display yields

this error because the message is

interpreted as READ Y.

Occurs when a function is accessed

with a parameter oul of range

caused by:

1. A matrix subscript out of

range (0 < X < 32767)

128 APPENDIX J

—

2. LOG (negative or zero argu

ment)

3. SQR (negative argument)

4. AtB where A < 0 and B not

integer.

5. Call of USR before machine

language subroutine has been

patched in.

6. Use of siring functions MIDS.

LEFTS. RIGHTS, with length

parameters out of ranged <X

< 255).

7. Index ON ... GOTO out of

range.

8. Addresses specified for PEEK.

POKE. WAIT, and SYS out of

range (1 < X < 255).

9. Byte parameters of WAIT.

POKE. TAB and SPC out of

range (0 < X < 255).

25. overflow

26. ?out of memory

Numbers resulting from computa

tions or input thai are larger than

binary 1.70141184E + 38 cannot

be represented in BASIC'S number

format. Underflow is not a detecta

ble error but numbers less than

binary 2.93873587E-39 are indis

tinguishable from zero.

May appear while entering or edit

ing a program as the text completely

fills memory. At run time, assign

ment and creation of variables may

also fill all variable memory. Array

available declarat ions consume large

areas of memory even (hough a pro

gram may be rather short. The

maximum number of FOR loops

APPENDIX J 129

and simultaneous GOSUBs are

dependeni on each other. This con

text is stored on the microproces

sor hardware slack whose capacity

may be exceeded. To determine the

type of memory error, examine the

results of FRE. If there is a large

number of bytes available, il is most

likely a FOR-NEXTorGOSUB prob

lem. A subroutine which termin

ates in GOTO rather than RETURN

will eventually cause an out of

memory error as stack pointers

build up.

27.?undefined

statement An attempt was made to GOTO.

GOSUB. or THEN to a Statement

which does not exist.

28. ?bad subscript

29. ?redim'd array

An attempt was made to reference

a matrix element which is outside

the dimensions of the matrix. This

may happen by specifying the

wrong number of dimensions or a

subscript larger than specified In

the original dimension.

After an array was dimensioned,

another dimension statement for

lhe same array was encountered.

For example, an array variable is

defined by default when it is first

used, and later a DIM slalemenl is

encountered.

30. ?division by zero Zero as a divisor would resuil in

numeric overflow-thus it Is noi

allowed. When ihis message

appears, il is most expedient to list

130 APPFNDIX J

31. ?illegal direct

I he statement and look for division

operators.

A single buffer area is used by

BASIC to process incoming char

acters. This same buffer is used to

hold a statement that is being

interpreted in direct mode. INPUT

will not work because Incoming

characters would overwrite the var

iable list following INPUT to be pro

cessed. DEF cannot be used in

direct mode fora different but sim

ilar reason. The name of a function

is stored in the BASK" variable area

with pointers to the string of char

acters which define the function.

Since the function exists only in

the input buffer, it is wiped out the

first time a NEW command is typed

in.

32. ?type mismatch The left-hand side ofan assignment

statement was a numeric variable

and the right-hand side was a

string, or vice versa: or a function

which expected a string argument

was given a numeric one. or vice

versa

33. ?string too long

34. ?file data

Attempt by use of the concatena

tion operator to create a string

more than 255 characters long.

Occurs when an INPUT* statement

finds a string while attempting to

read a numeric value.

35. ?formula

too complex This indicates that BASIC has run

APPENDIX J 131

37. ?undefined

function

39. ?verify error

40. ?out of stack

41. ?unable to resume

42. ?unable to dispose

43. ?out of text

44. ?cannot continue

out of string temporary pointers to

keep track of substrings in evaluat

ing a string expression. Break the

string expression into two smaller

parts to cure the problem.

Reference was made to a user

defined function which had never

been defined.

The contents of memory and a

specified file do not compare.

Too many levels of FOR... NEXT or

GOSUBs have been executed. No

recovery possible.

A fatal error has occurred, such as

running out of stack.

All of the DISPOSE type items have

been disposed of or none exist.

If any LOAD or DLOAD exceeds the

end of the text bank of (64K) this

error will result. This error will not

occur when using the BLOAD

command.

The CONT command will not work

because the program was never

RUN. there has been an error, or a

line has been edited.

132 APPENDIX J

APPENDIX K

NONERROR

MESSAGES

The messages listed below are available through the ERROR

MESSAGE code numbers by using the ERRS calling codes listed

next to each message. However, these messages are not Error

Messages so they will not appear on the screen unless you specif

ically call for them In your programming or call for them as a

standard operating procedure.

MESSAGE

12. (carnage return) ready

(carriage return)

1 3. (space) in (space)

17. your last "evaluated

number

EXPLANATION

This message lets you know lhat

your system is ready to use.

This message is similar to ready.

This is the last number that has

been evaluated through the num

erical output buffer, (e.g.. print

10*10: if you use an ERS code 17.

the number on your screen will

equal the lasl evaluation—in this

case. 100.)

18. more (carriage return)

19. power on message

'COMMODORE BASIC 128. V4.0'

'COMMODORE BASIC 256. V4.01

APPENDIX K 133

APPENDIX jL

6581 (SID) CHIP

REGISTER MAP

The 6581 Sound Interface Device is located starting at location

55808 (SDA00). Below is a brief register map. For detailed infor

mation, consult the Programmer's Reference Guide.

j - i i d ^ C t — ^* i — ^
zzzzzzz zzzzzzz zzzzzzz zzzz zzzz
OCOOOOO OOOOOOC OOOOOOO 0000 OOOO

V
o
i
c
e

1 a a
D
A
T
A

D
.

D
. d d a- - -3 - -" -

c 1
P
W
, a i a. i i

O z 0 c ■:■, H
I
S
I
O
N <

Z S J! S z
S
I
N
,

V
o
n
i
>
7

z"
S
I
N
,

C □ - -I
H
I
O
H
I - -

p
w
L
O

P
W

H
I ii ii

P
W
, a. i

P
W
.

Z :< =- z i is£
N
O
I
S
I

z ■
z

rt 00 O - - -
o -
O
l

M
d i

P
W
,

P
W
, 5 .• i £ i

P
W

M
l

a.
P
W
.

2 z c
G
A
t
F ■- _■_ is

I
f
S
l

r. -~ h <■z iz
u

r.-

-
R
£
5
,

B
I
S
. &

"

o. a. i'-:~
P
X
,

a.
P
X
.

P
X
,

P
Y
,

a.

£ £ o. £ £
d

d d a d 0
-

- - - - -
!<= = =.=.--- - = =

134 APPENDIX L

APPENDIX M

PRINTER COMMANDS

6400 Word Processor Printer/

8023P CBM Bi-Directional Printer

COMMAND SYNTAX

OPEN OPEN lfn,dn,(sa]

CMD CMD Ifn

~

PR1NT# PRiNTft Ifn, data

FUNCTION

sels correspondence between

file number and physical de

vice. The Ifn or logical file

number may be any number

from 1 to 255. The dn or device

number refers to the device

you wish to send the file to.

The sa or secondary address

alerts the printers micropro

cessor system that formatting

is to occur.

transfers control from compu

ter to printer. The Ifn must be

the same as that in the OPEN

statement. When you give the

CMD command, the printer

prints READY and is awaiting

further commands. The CMD

command followed by a PRINT

or LIST command directs the

output to the printer.

PRINT* works like PRINT ex

cept that output is directed to

the printer instead of video.

Using the CMD command

opens a "listening" channel to

A=PENDIXM 135

the printer, and when followed

by a PRIiNT# command, the con

nection between the printer

and computer is shnl down or

is said to be "unlistening".

CLOSE CLOSE li'n You should always close a file

after printing from it. You may

not exceed ten open files so

you should close files when

you are finished with them.

136 APPFNDIX M

APPENDIX N

USING THE

RS-232C CHANNEL

The OPEN statement lor an RS-232C channel has some special

arguments that you must understand before you can use it. You

must match the operating parameters of the RS-232C interface to

those of the device you're connecting to the computer.

When you open the RS-232C channel, your OPEN statement
must look like this:

OPEN filenumber,2,secondary-address,openstring

Win ere:

filenumber is the logical file number to be associated with the

RS-232C channel.

secondary-address determines the direction of the KS-232C

channel. It can be input, output, or bidirectional and may or

may not convert between CBM and ASCII character codes.

openstring is &four-byte command string lhal establishes the

operating parameters for the RS-232C channel.

The secondary-address may take any of the values shown in
Table 8.1.

TABLE 8.1 RS-232C DIRECTIONAL

SECONDARYADDRESSES

VALUE MEANING

1 open an output channel

2 open an input channel

3 open an input /output channel

APPfNDIX N 137

129 open an output channel and convert CBM and ASCII

character codes

130 open an input channel and convert ASCII to CBM

character codes

131 open an input /output channel and convert between

CBM and ASCII character codes

The secondary address values 1. 2. and 3 do not perform char

acter conversions, [fyou're gettingASCII character codes through

(he RS-232C channel, they are delivered as-is in your program. If

you want CBM/ASCII conversion you musi select a secondary-

address value of 129. 130. Or 131.

NOTE: If you are transmitting or receiving non-character data through your

RS-232C interface, do NOT request CBM/ASCII character conversion. This

will completely scramble your data.

The openstiing for I he RS-232C interface is lour bytes long. The

first two bytes contain detailed control information. The lasi two

aren't used, bin you must include them.

138 APPENDIX N

STOP BITS '

0-1 STOP BIT

11 STOP BITS

8 BIT PARITY

1-1.5 STOP BITS

5 BIT NO PARITY

1-2 STOP BITS

ALL OTHER

PAGES

WORD LENGTH

B

6

0

0

!

1

T

5

0

1

0

1

DATA

WORD LENGTH

8 BITS

7 BITS

6 BITS

5 BITS

— RECEIVE CLOCK

□

0 = EXTERNAL

1 = INTERNAL

L J

0

0

0

0

0

0

0

0

1

1

1

1

1

1

L I

0

0

0

0

1

1

0

0

0

0

1

1

L J

0

0

0

0

1

0

0

1

0

0

]

L

0

0

0

0

0

0

0

0

1

JAUDRATE

1/16 EXTERNAL

50 BAUD

75

no

134.5

150

300

600

1200

(1800]

2400

3600

4800

7200

9600

19200

First Byte Open String

RS-232C

APPENDIX N 139

PARITY OPTIONS

BIT

7

-

0

0

1

]

BIT

6

-

0

]

0

1

BIT

5

0

1

1

1

1

OPERATIONS

PARITY DISABLED, NONE

GENERATED/RECEIVED

ODD PARITY

RECEIVER/TRANSMITTER

EVEN PARITY

RECEIVER/TRANSMITTER

MARK TRANSMITTED

PARITY CHECK DISABLED

SPACE TRANSMITTED

PARITY CHECK DISABLED

ECHO

NORMAL

ECHO

UNUSED

UNUSED

UNUSED

UNUSED

Second Byte Open String

_

140 APPFNDIX N

APPENDIX O

MACHINE LANGUAGE

MONITOR

TIM is (he Terminal Interface Monitor program for MOS Technol
ogy's 6500 Series microprocessors. It has been expanded and

adapted to (unction on the B Series computers. Execution is

transferred from the CBM BASIC interpreter to TIM by the SYS

command. The monitor is incorporated as part of the Kernal.

Commands typed on (he CBM keyboard can direct the TIM to

start executing a program, display or modify registers and mem

ory locations, load or save binary data, view other segments, send

disk commands or read status, set default disk unit and load and

execute programs by entering the program name (Segment 15

only). On modifying memory. TIM NO LONGER performs auto

matic read after write verification to insure (hat (he addressed

memory exists, and is R AV type.

TIM COMMANDS

M

R

G

L

S

V

U

&

X

z

Display memory

Alter memory

Display registers

Alter registers

Begin execution

Load

Save

View Segment

Set default disk unit

Send disk command or get disk stat us

Exit lo basic

Transfer to second microprocessor

<file namc> load and execute

APPfcNDIXO 141

EXAMPLES

M DISPLAY MEMORY

M 0000 0010

: 0000 Of Of 4c d9 9a 00 00 00 00 00 00 00 22 22 9e 00

: 0010 00 00 00 00 00 00 00 d4 fb 04 00 04 00 00 c4 fb

In a display memory command, the start and ending addresses

must be completely specified as 4 digit hex numbers. To alter a

memory location, move the cursor up in the display, type the cor

rection and press ■:'*'""" to enter the change. When you move

the cursor lo a line and press ■nainw the colon tells the monitor

thai you are re-entering data.

R DISPLAY REGISTERS

R

PC IRQ

;0007 FBF8

5R

B0

AC

DD

XR

71

YR

04

SP

71

The registers are saved and restored upon each entry or exit

from the TIM. They maybe modified or preloaded as in the display

memory example above. The semicolon tells the monitor you are

modifying the registers.

G BEGIN EXECUTION

G0200

The GO command may have an optional address for the target.

If none is specified, the PC from the R command is taken as the

target.

L LOAD

L "filename ,08

No defaults are allowed on a load command. The device number

and the file name must be completely specified. Operating system

prompts for operator Intervention are the same as for BASIC.

Memory addresses are loaded as specified In the file header which

is set up by the SAVE command. Machine language subroutines

may be loaded from BASIC bui care must be taken not to use

BASIC' variables as (he variable pointer is set lo the last byte loa

ded + 1. The machine language subroutine will be loaded Into

142 APPFNDlX O

the segment that you are currently in as determined by the V

command. After the load, the system will be initialized back to

—I segment 15.

S SAVE

— S ■■f(7ename",08,010200,010300

As in the load command, no defaults are allowed in the SAVE

command. The device number, file name and a six byte start and

end address must be given. The above example will save a program

to device 8 from segment * 1 starting at 0200 hex and ending at

— 0300 hex. The first two bytes are the segment number followed by

the address. Valid segment bytes may be 0 and OF depending on

your memory. After a save, the system will be initialized back to

— segment 15.

V VIEW

— V01

This will change the segment to the one that you wish to view,

save, load or change memory from. The valid segments are 00 to

OF

— U UNIT ADDRESS

U09

This command will allow you to set the disk unit default

address while you are in the monitor. When leaving, the original

address is reset. Valid unit addresses are 8 to IF. These must be

j. entered in HEX.

@ READ ERROR CHANNEL AND PROCESS DISK COMMANDS

Display error message and clear

channel

_ @ SI :fi!ename :Scratch specific file from drive 1

@ 10 initialize disk In drive 0

@ RO:newname = oldname :Rename file on drive 0

— @ Cl filename - oldname :Copy file from drive 0 to drive 1

@ VO :Validate or collect disk in drive 0

@ NJ filename,id :New or Header disk in drive 1

APPENDIX O 143

The above examples use [he same syntax as the wedge program

supplied with the disk drives. __,

<file name> LOAD AND EXECUTE FILE IN SEGMENT 15

This will load a machine language program from the disk and

execute it. Us use is restricted to segment 15.

Z TRANSFER TO SECOND MICROPROCESSOR

Z

This command will allow you to utilize the 8088 when applicable.

X EXIT TO BASIC

X —

This will cause a warm start to BASIC. In a warm start, memory

is not altered in any way and BASIC resumes operation the way it

was before ihe call to the monitor was made.

144 APPENDIX O

~

APPENDIX P

BIBLIOGRAPHY

PUBLISHER

Addison Wesley

Compute

Cowbay Computing

Creative Computing

Dilithium Press

Faulk Baker Associates

Havden Book Co.

n

TITLE /AUTHOR

BASIC and the Personal Compu

ter, Dwyer and Critchfield

Compute's First Book ojPET/CBM

Teacher's PET—Plans. Quizzes

and Answers

Feed Me. I'm Your PET Computer.

Carol Alexander

Looking Good With Your PET.

Carol Alexander

Getting Acquainted With Your

VTC-20. T. Hartnell

BASIC Basic-English Dictionary

for the Pet. Larry Noonan

MOS Programming Manual.

MOS Technology

BASIC Conversions Handbook:

Apple. TRS 80. and PET. Brain.

Oviatt. Paquin. and Stone

Librarij of PET Subroutines,

Nick Hampshire

APPENDIX P 145

PUBLISHER TITLE /AUTHOR

PET Graphics. Nick Hampshire

I Speak BASIC to my PET.

Aubrey Jones. Jr.

BASIC from the Ground Up.

David E. Simon

Howard W. Sams Mostly BASIC Applications for

Your PET. Howard Berenbon

PET Interfacing. J. Downey and S.

Rogers

Crash Course in Microcomputers.

Louise Frenzol

Liltlr. Brown and Co. Computer Games for Businesses.

Schools and Homes. J. Victor Nag-

igian and William S. Hodges

The Computer Tutor: Learning

Activities for Homes and Schools.

Gary W. Orwig and William S.

Hodges

McGraw Hill Home and Office Use ofVisiCalc.

D. Castlewitz and L. Chisauki

Hands-On BASIC with a PET.

Herberl D. Peckman

Osborne /McGraw Hill Pet/CBM Personal Computer

Guide. Carroll S. Donahue

Osborne CP/M User Guide,

Thom Hogan

146 APPENDIX P

PUBLISHER TITLE/AUTHOR

~

P.C. Publications

Prentice-Hall. Inc.

Reston Publishing Co.

PET FUNAND GAMES. R. Jeffries

and G. Fisher

PET and the IEEE, A. Osborne

and C. Donahue

Some Common Basic Programs.

Lon Poole and Mary Borchers

The 8086 Book. Russell Rector

and George Alexy

Beginning Self-Teaching Compu

ter Lessons

The PET Personal Computer for

Beginners. S. Dunn and V. Morgan

Pet and the IEEE 488 Bus {GPIB).

Eugene Fisher and C.W. Jensen

PET BASIC. Richard Huskell.

PET Games and Recreation,

Ogelsvy. Lindsey. and Kunkin

PET BASIC—Training Your PET

Computer, Zamora. Carvie,

and Albrecht

Total Information Services Understanding Your PET/CBM:

Vol. I BASIC Programming

Understanding Your VIC.

David SchulLz

AFPfNDlX P 147

APPENDIX 9

USER'S CLUBS,
MAGAZINES,

AND THE COMMODORE

INFORMATION

NETWORK

Commodore wants you to know that our support forusers is just

beginning with your purchase of a Commodore computer. That's

why we've created two publications with Commodore information

from around the world, and a "two-way" computer information

network full of valuable input by and for Commodore computer

users in the U.S. and Canada from coast to coast.

In addition, we wholeheartedly encourage and support the

growth of Commodore User's Clubs all over the globe. They are an

excellent source of information for even' Commodore computer

user, from the beginner to the most experienced.

The magazines and network, which are described below, have

the most up-to-date information on how to get involved with the

User's Club in your area.

Furthermore, your local Commodore dealer is an excellent

source of Commodore support and information. Your dealer can

always provide literature and hardware support to fill your chang

ing computing needs.

Power/Play: The Home Computer Magazine

When it comes to entertainment, learning at home, and practi

cal home applications. Power/Play is the prime source of infor

mation for Commodore computer owners. It directs you to the

User's Club nearest you and tells you about its activities. It des

cribes software, games, programming techniques, teleeommuni-

148 APPENDIX Q

cations, and new products. Power/Play is your personal connec

tion to other Commodore users, outside software and hardware

w developers, and to Commodore itself. Published quarterly. It's only

S 10.00 for a whole year of home computing excitement.

Commodore:The Microcomputer Magazine

_ Widely read by educators, business people, and students, as well

as home computerists. Commodore is our main vehicle for shar

ing exclusive information on the more technical uses of Commo-

_ dore systems. Regular departments cover the business, science,

and education fields, programming tips, technical tips, and many

other features of interest to anyone who uses, or is thinking about

purchasing. Commodore equipment. Commodore is the ideal

complement to Power/Play. It is published bi-monthly, and asub-

—I script ion costs only SI 5.00 per year.

Commodore Information Network

The magazine of the future is here today. To supplement your

— subscriptions to Power/Play and Commodore magazines, the

__ Commodore Information Network—our "paperless magazine"—is

available now. All you need is a Commodore computer, a telecom-

— munications device called a modem, and your home or business

telephone.

Join our computer club, get help with a computing problem.

— "talk" to other Commodore friends, or get up-to-the-miniile in

_ formation on new products, software, and educational resources.

Soon you will even be able to save yourself the trouble of typing in

— the program listings you find in Power/Play and Commodore by

"downloading" directly from the Information Network. The best

pan of the network is that most of the answers to your questions

— are there before you even ask them. Hows that for service?

To "call" our electronic magazine you only need a modem and

subscription lo CompuServe", one of the nation's largest tele-

— communications networks.

Just dial your local number for the CompuServe"1 data bank

nearest you and then connect your phone to the modem. When

~ the CompuServe'" video text appears on your screen, type "G

CBM" oti your keyboard. When the Commodore Information Net

work's table of contents, or ■'menu." appears on the screen, its

m your turn to choose from one of our 16 departments. So make

n
APPENDIX Q 149

yourself comfortable, and enjoy the "paperless magazine" that all

the other magazines are writing about.

For more information about the Commodore Information Net

work or about CompuSen'e". visit your local Commodore dealer

or contact CompuServe"' customer service at 1-800-848-8990 (in

Ohio. 614-457-8600).

COMMODORE INFORMATION NETWORK

Main Menu Description Commodore Dealers

Direct Access Codes Educational Resources

Special Commands User Groups

User Questions Descriptions

Public Bulletin Board Questions and Answers

Magazines and Newsletters Software Tips

New Product Announcements Technical Tips

Commodore New Direct Directors' Descriptions

-

_

150 APPENDIX O

Index

ABS function 98

APPEND 66

Arrays

Dimensioning (DIM

sta!emen!i72, 124-125

ASC function 98

Assigning data

DATA/READ statements 70-71, 90

INPUT statement 78-79

GET statement 75

LET statement 79

ATN function 98-99

B

BACKUP command 47-48, 52

Duplicating diskettes 47-48

Disk status errors 47

BANK statement 66-67

BASIC 4.0 commands (See

Extended BASIC 4.0)

BASIC 4.0 statements

(See Extended BASIC 4.0)

BLOAD67

Branching programs

GOSUB76

GOTO 76-77

ON/GOSUB 80-81

ON/GOTO 81

RETURN 93

BSAVE 68

Calculations

Arithmetic operators

32-35

Calculator keypad 32-34

Execution order in

calculations 34-35

Parentheses in

calculations 35

Calculator keypad 32-34

CATALOG 52-53

CE (clear entry) key

33-34

CHRS codes 116-1 17

CHRS function 99

Clearing the screen 28

Closing files

CLOSE command 68, 136

DCLOSE command 71

CLR statement 68-69

CMD statement 69-70, 135

COLLECT 53

Commands, BASIC

format conventions 50-51

formats 52-65

CONCAT54

Concurrent CP/M9,20-22,

38-39

CONT command 54-55

COPY statement 55-56

Copying Diskettes 47-48,

52, 55-56

INDEX 153

COS functions 99-100

CP/M Operating System

20-22,38-39

Cursor control keys 27

Daisy-chaining peripherals

42

DATA statement 70 71 , 92

DCLEAR 56-57

DCLOSE71

Debugging

CONT 54-55

DISPOSE 73

RESUME 92-93

STOP 93-94

TRAP 94-95

DEF FN statement 71 -72

Defining function in

programs 71 -72

Defining function keys

28-29,60-61

DELETE statement 57

Deleting data

DELete key 27-28

Deleting o line |ESC Di

31

Deleting files from

diskettes [SCRATCH) 64-65

Erasing current program

(NEW command) 62-63

DIM statement 72

Dimensioning arrays

72

DIRECTORY 57-58

Disk drives

Initializing (DCLEAR)

56-57

Installing 42

Models compatible with

B Series 19

Diskettes

Duplicating diskettes

47-48

Diskettes—conf.

Headering diskettes

44-45

Listing directory/catalog

52-53,57-58

Loading programs 43-44.

45-46,58-59,62,67

Saving programs 46-47,

59,64,68

DISPOSE statement 73

DLOAD 58-59

DOPEN 73-74

DSAVE 59

DSS47, 109

Dual microprocessor 9,

20-22,38-39. 122

Duplicating Diskettes

47-48,52,55-56

Editing keys 27-28

8088 microprocessor 9, 20-22. 38-39, 122

END statement 74

ERRS function 94, 100

Error messages 1 26-1 32

Error trapping

CONT 54-55

DISPOSE 73

EL 94,109

ER94, 109

ERRS 94,100

RESUME 92-93

STOP 93-94

TRAP 94-95

ESCape functions 30-31

EXP function 100-101

Extended BASIC 4,0

Abbreviations 111-113

Commands 52-65

Conventions in formats

50-51

Converting from

standard BASIC 124-125

Functions 98-109

Statements 65-95

154 INDEX

FOR/TO/STEP 74-75

Formal keys 26-27

Formatting diskettes

(See HEADER command)

Formatting output

PRINT U5ING statement

85-89

PUDEF statement 89-90

Punctuation marks 110

FRE function 101

Function keys 28-29,

60-61

Functions in programs

71-72

Installation

additional

microprocessors 21 -22

"B" Series computers

14-18

INSTR function 101-102

INT function 102

KEY statement 28-29,

60-61

Key defining 28-29, 60-61

Keyboard, 26-34, 121

Keypad 32-34

GET statement 75

GET# statement 76

GOSUB76

GOTO 76-77

Graphics mode 26-27

H

HEADER command 44-45,

59-60

!

IEEE port, 20, 122

IF/GOTO 77-78

IF/THEN/ELSE 77-78

Improperly closed files

138

INPUT 78-79

INPUTS 79

Insert mode 31

Inserting data

INSert key 27-28

Inserting a line (ESC I)

31

LEFT function 102

LEN function 103

LET statement 79

LIST command 61 -62

Loading programs

BLOAD67

DLOAD 58-59

LOAD 62

Prepackaged software 43-44

Programs 43-44,45-46

LOG function 103

Loops

FOR/TO/STEP/NEXT 74-75,

79-80

GOTO 76-77

IF/GOTO 77-78

IF/THEN/ELSE 77-78

ON/GOTO 81

M

Machine language monilor

141-144

Machine language programs

Loading (BLOAD) 67

Saving (BSAVE) 68

SYS command 94 1
INDEX 155

Mathematical functions

table 120

Memory maps

B Series memory map

119

Screen memory map 118

Merging files 54

MIDS function 103-104

MS-DOS 9, 20-22, 38-39

N

NEW command 62-63

NEXT statement 79-80

Nonenor messages 133

Normal (text] mode

26-27

ON/GOSUB statement 80-81

ON/GOTO statement 81

OPEN command 82, 138

PEEK 82-83, 104

Peripherals 18-21

Pinouts for Input/Output

devices 121-123

POKE 83

POS function 104

PRINT statement!? on

calc keypad) 32, 83-84

PRINT USING statement

85-89

PRINTS statement 84-85, 135-136

Printers 18

Programmable function

keys 28-29, 60-61

PUDEF statement 89-90

Quote mode 31

READ statement 90

RECORD statement 91

Redirecting output (CMD

statement) 69-70, 135

REM statement 91-92

Renaming programs

(RENAME command) 63

Reserved system symbols

109-110

Reserved system

variables 109

Restarting program

execution 54-55

RESTORE statement 92

RESUME statement 92-93

RETURN statement 93

Reverse mode 27, 31

RIGHTS function

104-105

RND function 105

RS-232 port 19-20, 121,

137-140

RUN command 32, 63-64

Saving programs

BSAVE command 68

DSAVE command 59

Replacing programs 47

SAVE command 46-47, 64

SCRATCH command 64-65

Screen display

Disabling Scroll (ESC M)31

LIST command 61 -62

PRINT statement 83-84

Screen display codes

114-115

Screen memory map 1 1 8

Scrolling 30-32

Scrolling (ESC and

C3 30-31, 32
SGN function 105-106

156 INDEX

SID chip register map

134

SIN function 106

Software 9, 38-39

5PC function 106

SQR function 106

STATUS function

107

STOP statement 93-94

Storing programs (see

Saving programs)

STRS function 107-108

Subroutines 76-77,

80-81

SYS Statement 94

TRAP statement 94-95

U

USR function 109

V

VAL function 109

Variables (See Assigning

data)

VERIFY command 65

W

WAIT statement 95

TAB function 108

TAN function 108

TIS function 108, 125

Z-80 microprocessor 9,

20-22,38-39,122

INDEX 157

"B" SERIES QUICK REFERENCE CARD

SkMPLE VARIABLES SPQX) PRINTs X blanks on line

lJP* Nome Rons, pOS|X | Reium, C(J™,. curse, position

Real XY i I 70UII83E - 38 CLB/HOMF Pmmoni curso< to lefi corner ol

- I 9387358SE - 29 "'«"
tnieqe' XY% ■ 37767 iMIFT CLB'mOmE Ceors screen ond places cunoi in

String XYS 0 Io255 cha.acien Honw PolltI°"
X it e latter (A.Z).Yuolaiiirer number |0-9] Vonobla SHIFT INS'Dfl Intartt space oi tu-rp^' cu.ior

nomes ctj" be moif Elton 3 criorocters bul only The tirst

touni/ed rNS'Dll Deletes criorncter ol current cursor

ARRAY VARIABLES cm tZZTgtapkkt on non-olphobet*

Single Dmeowin XY<5: C^SR Ke» Movm cu-»r up, down. left, right

Two D.nwnv.oi XY|5.S| onKtean

Ihnc Oinvmion XY|S S.5| Commodore tcr Sinpj Ihe program 'ism icrolNng

Arioysol up lo eleven clemenliitubicripltO 10) ton b* Prr«on. key lornluif

rCnd.,"?.'d £btW^^d"1 "" AJtltAYS AND STItlNGS
AIG£BRA)C OPERATORS DIM A,*. Y. 2] Sen mexnum ubiopn lo. A. ,e-

sc.ei spots Id; [X t lpY ■ 11

- Auigm vqluelo -uriobie [Z - I | elcmenH ilarling or A

- Negol.on (0,0,0)

■ E>poi»nliot,or. LEN(XSl RelurninumbtrQlchuimlenmXS

- Moll.plicotkw SIBSi*. Rerurm nomoix >olue of X. can

I DrnlrO" .tried loo siring

' Addition VALlXS) flelurm numeric value of AS. up to

- Subiiuclion lull nonnumrnc churotlrr

REIATIONAI AND IOGICAI OPERATORS CHBS.X: Eeiu.n, ASCII cho.ocle. what*
code ••. X

Equcl -.;-.; .; Reiorns ASCII code'or f.rilcnococ-

O NoiEyuolTo tc.ofXS

Le« rhan LEFrSiAS.Xj Reiumi leftmoii K sho'oder* ol AS

Grtotfi Trio" BIGHH.AS S| Relurni rightmott) choradlcrl ol

< - Leu Thoti o. Equul lo AS

Greater Irian or Equal To MlDS(ASX,Y, Rlhjmi V charncren nl AS uarling

NO! lagital Nol ol choraclir X

AND logical And

OC LoeKol Ot INPUT/OUTPUT COMMANDS

E.oresiien eauah I il 'rue 0 .f (alie
INIUI AS UK A PRINT) i on icnen ond woHl lor

SYSTEM COMMANDS uier to enter a ilrmB of »olut

INPUT ABC A PPINIi meuoar a.\d woili fo^ usur
D1OAD NAWE Lood,U program iron.** 9 ,N A;

fnZ1 nC 8 f°7 ° °'°9""" ?" d k G[T *» =' A Wo'"'°' ^ "> "« - "™<LOAD NAME .8 Lood,op.oo.0m(™md,* ,e, ,alue no BHUBN r^d.d
SAV(NAME E Save! o program to d.il< nnr31 a r .,11 .h_
VERIFY NAMf V«rf«, .hot p,OB».n. -o. SAVEd "*'** fl C '"■>■" •™">«'ol>«l«»*».tonb.

used by KtAD ^mirrntnf

SEAD AS or A A»<gns next DATA value AS Q' A

RUN E«cUleS o orog.om RESTORE Re«K dato pooler To ilon BEAD
RUN.,. hMim^Mi,^ U ..g^DATA,,^^,.

stop ^ pbini a a "«»«•»' ^:'rIA
END End, e.ecuhor. ^ST"I0Ot" '
CONJ1 ConiNnuei progrom eietuiian irom

PEEKiXi RaTurtu eonlenli ol memory loco PROGSAM FLOW
lion X GOTO X Blanches to line X

POKE X.Y Changes conienn ol locoiion X lo IF A * 3 THEN 10 IF osseriion is Irw THEN execute

value Y following perl o< slalemenl IF

guoge program, ilarling ot '"<>" FOR A - 1 TO 10 Eiecu'ei oil sialementi belween

WAII X.Y.Z Progrom v.aill until contenli ol FOR

lotat.anX.-rlirr.EORed-vill'Znrid STEP? NEXT and coiieipeiidnin, NEXT, wilh A

ANDed-ithY <snon:ero going from 1 lo 10 b, 1 SltpltKIl

USRjXj Posses value ol X to o nvochinc Ion I unl«I wet.l.fd

guoge subroutine NEXT A Delinei end of loop A n aoiioi«:l

GO5LIB 2000 Branches to lubrouline slcirlmu ol
EDITING AND FORMATTING COMMANDS |ine ;|M0

LIST lull entire orogrom RETURN rVtoril end ot subtoulme. Returns lo

IISTAB Lull from line A 10 Ime B stalemeni Follow ng most recent

REM Mi-imqe Common message <a« be listed bui GOSUB

ii ignored du-ir>3 progrom c-ccu- ON X GOTO A.B BtonedeHoXth line number on lill

,,or, HX- I bronchnloA. etc

TAftX] Uitd.nPRINT uniemenrj SpocesX ONXGOSU8A.B Branches io subroutine oi Xlh l.w

positnans on screen numbe' in Lsl

_

OWNER'S REGISTRATION CARD

Please mail this card to Commodore to register

your computer with us.

Name:

Address:

City:

—I , Zip Code:

1. What-is your family's

present income bracket?

□ less than $14,999

□ $15,000 -$24,999

□ $25,000 - $39,999

□ $40,000 - $59,999

□ $60,000 and above

3. Are you male or female?

D Male □ Female

5. Number of Children?

2. Purchaser's age?

□ Under 18

□ 18-24

□ 25-34

□ 35-49

D over 50

4. Are you married?

□ Yes □ No

— i 6. What's your educational background?

□ Did not finish high school
, □ High School graduate

—•> i □ Some College

□ College Graduate

□ Some Graduate School

, □ Graduate Degree

I 7. What is your primary area of computing interest?

□ Self teaching

~ D Education

[□ Recreation and Hobby

I i □ Small business

_ □ Telecommunications/Timesharing

\ □ Engineering
I—| i □ Productivity

□ Other

w

.—I

G
e
t
t
h
e
m
o
s
t
o
u
t
o
f
y
o
u
r
C
o
m
m
o
d
o
r
e
c
o
m
p
u
t
e
r
w
i
t
h
a
s
u
b
s
c
r
i
p
t
i
o
n
t
o

C
o
m
m
o
d
o
r
e
'
s

u
s
e
r
m
a
g
a
z
i
n
e
s

P
O
W
E
R
l
P
i
y
\
Y

C=
c
o
m
m
o
d
o
r
e

F
u
n
,
G
a
m
e
s
a
n
d
B
e
y
o
n
d

w
i
t
h
C
o
m
m
o
d
o
r
e

H
o
m
e
C
o
m
p
u
t
e
r
s

P
u
b
l
i
s
h
e
d
q
u
a
r
t
e
r
l
y

in
M
a
r
c
h
.

J
u
n
e
,
S
e
p
t
e
m
b
e
r
a
n
d
D
e
c
e
m
b
e
r
.
C
O
W
E
R
'

P
L
A
Y

is
d
e
v
o
t
e
d

s
o
l
e
l
y
t
o
t
h
e
e
x
c
i
t
i
n
g
a
n
d

r
a
p
i
d
l
v
e
x
p
a
n
d
i
n
g
w
o
r
l
d

o
t

C
o
m
m
o
d
o
r
e
h
o
m
e
c
o
m
p
u
t
i
n
g

ll
p
r
o
v
i
d
e
s
v
a
l
u
a
b
l
e
i
n
f
o
r
m
a
t
i
o
n
o
n
n
e
w

p
r
o
d
u
c
t
s
,
applications,

g
a
m
e
s
,
p
r
o
g
r
a
m
m
i
n
g
t
«
h
n
i
q
u
e
s
,

taarning-ai-

h
c
j
m
e
,
i
e
l
o
c
o
m
m
u
n
i
c
a
t
i
o
n
s
a
n
d

jusl
a
b
o
u
t
a
n
y
t
h
i
n
g

f
lse

C
o
m
m
o
d
o
r
e
h
o
m
e

c
o
m
p
u
t
e
r

u
s
e
r
s
n
e
e
d

l
o
k
n
o
w

to
j>er

m
a
x
i
m
u
m

e
n
j
o
y
m
e
n
t
o
u
t

ot
their

h
o
m
e
c
o
m
p
u
t
i
n
g
experience,

Subscription
price

JHUXI/year.

T
h
e
M
i
c
r
o
c
o
m
p
u
t
e
r
M
a
g
a
z
i
n
e

W
i
d
e
l
y
r
e
a
d
b
y
e
d
u
c
a
t
o
r
s
,
b
u
s
i
n
e
s
s
m
e
n
,

s
t
u
d
e
n
t
s
a
n
d
h
o
m
e

c
o
m
p
u
t
e
r
i
s
t
s
.

this
b
i
-
m
o
n
l
h
r
v

p
u
b
l
i
c
a
t
i
o
n

p
r
o
v
i
d
e
s

,1
v
e
h
i
c
l
e

for
s
h
a
r
i
n
g

e
x
c
l
u
s
i
v
e

p
r
o
d
u
c
t

i
n
f
o
r
m
a
t
i
o
n
o
n
C
o
m
m
o
d
o
r
e

s
y
s
t
e
m
s
,
p
r
o
g
r
a
m
m
i
n
g
t
e
c
h
n
i
q
u
e
s
,
h
a
r
d
w
a
r
e

i
n
t
e
r
l
a
c
i
n
g
,
a
n
d

a
p
p
l
i
c
a
t
i
o
n
s

f
o
r
i
h
e
w
i
d
e
r
a
n
g
e

o
i
C
o
m
m
o
d
o
r
e
s

p
r
o
d
u
c
t
s
.

E
a
c
h

i
s
s
u
e
c
o
n
t
a
i
n
s
l
e
a
t
u
r
e
s
o
i

i
n
t
e
r
e
s
t

t
o
a
n
y
o
n
e

t
h
a
t
u
s
e
s
,
o
r

is
t
h
i
n
k
i
n
g

a
b
o
u
t
p
u
r
c
h
a
s
i
n
g
C
o
m
m
o
d
o
r
e

e
q
u
i
p
m
e
n
t
.
G
e
!

t
h
e
m
o
s
t
o
u
t

o
t
y
o
u
r
m
i
c
r
o

c
o
m
p
u
t
e
r
w
i
t
h
C
o
m
m
o
d
o
r
e

M
a
g
a
z
i
n
e
.

S
u
b
s
c
r
i
p
t
i
o
n

p
r
i
c
e
:

S
t
S
.
I
X
l
/
y
e
a
r
.

F
I
L
L
O
U
T
A
N
D
M
A
I
L
T
O
D
A
Y

N
a
m
e

P
h
o
n
e

A
d
d
r
e
s
s

C
i
t
y

S
t
a
t
e

Z
i
p

C
o
m
p
u
t
e
r
m
o
d
e
l
:

□
A
d
d
r
e
s
s
C
h
a
n
g
e
.

E
n
t
e
r
n
e
w
a
d
d
r
e
s
s
a
b
o
v
e
&
e
n
c
l
o
s
e

p
r
e
s
e
n
t
m
a
i
l
i
n
g

l
a
b
e
l

D
R
e
n
e
w
a
l

s
u
b
s
c
r
i
p
t
i
o
n

□
N
e
w

s
u
b
s
c
r
i
p
t
i
o
n

G
E
T
M
O
R
E
I
N
F
O
R
M
A
T
I
O
N
F
O
R
Y
O
U
R
M
O
N
E
Y

P
l
e
a
s
e

s
i
g
n
m
e

u
p

for:

y
e
a
r
(
s
)
o
f
P
O
W
E
R
/
P
l
^
Y

at
$
1
0
.
0
0
/
y
e
a
r

y
e
a
r
(
s
)
o
f
C
O
M
M
O
D
O
R
E

at
$
1
5
.
0
0
/
y
e
a
r

C
a
n
a
d
i
a
n
a
n
d

F
o
r
e
i
g
n
:
P
O
W
E
R
/
P
L
A
Y

$
1
5
.
0
0
/
y
e
a
r
;
C
O
M

M
O
D
O
R
E

5
2
5
.
0
0
/
y
e
a
r

E
n
c
l
o
s
e
d

is
m
y
c
h
e
c
k
o
r
m
o
n
e
y
o
r
d
e
r

f
o
r
S

M
a
k
e
c
h
e
c
k
o
r
m
o
n
e
y

o
r
d
e
r
p
a
y
a
b
l
e

to:

C
O
M
M
O
D
O
R
E

B
U
S
I
N
E
S
S
M
A
C
H
I
N
E
S
,
I
N
C
.

T
h
e
M
e
a
d
o
w
s
,

4
8
7
D
e
v
o
n

P
a
r
k
D
r
i
v
e
,
W
a
y
n
e
,
P
A

1
9
0
8
7

(
(
(
(
(

f
f
[
(
(
(
(
(
(
(

LIMITED 90-DAY WARRANTY

COMMODORE PERSONAL COMPUTER SYSTEMS

Commodore Business Machines. Inc. ("Commodore") warrants lo the original consumer

purchaser that its Personal computer products ("UNIT")(') (Not including computer programs

on cassettes or disks) shall be free from any defeci in material and workmanship for a period of

90 days from ihe date of purchase. If a defect covered by this warranty occurs during this 90

day warranty period, you should return [he UNIT within such 90 days to:

Your original dealer or any Full Service Commodore dealer together with a

copy of your sales slip or similar proof-of-purchase. The dealer will repair the

deleclive UNIT under this warranty.

In the unlikely event that your dealer is unable to repair UNIT or you need assistance in

locating a Full Service Dealer you may, if necessary, contact ihe Commodore Customer

Supporl Group ai (215) 436-4200

This warranty does not cover damage or malfunctions resulting from improper handling,

accident. misuSe. abuse, failure of electrical power, use with other products not manufac

tured or approved by Commodore, damage while in transit for repairs, repairs attempted by

any unauthorized person or agency, or any other reason not due to defects in materials or

workmanship. This warranty is also void if ihe serial number has been altered, defaced, or

removed

ANY IMPLIED WARRANTIES ARISING OUT OF THE SALE OF THIS UNIT INCLUDING BUT

NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. ARE LIMITED IN DURATION TO THE ABOVE NINETY (90) DAY

PERIOD. COMMODORES LIABILITY IS LIMITED SOLELY TO THE REPAIR OR REPLACE

MENT OF THE DEFECTIVE UNIT IN ITS SOLE DISCRETION. AND IN NO EVENT SHALL

INCLUDE DAMAGES FOR LOSS OF USE OR OTHER INCIDENTAL OR CONSEQUENTIAL

COSTS. EXPENSES, OR DAMAGES INCURRED BYTHE PURCHASER. INCLUDING WITHOUT

LIMITATION ANY DATA OR INFORMATION WHICH MAY BE LOST OR RENDERED INACCU

RATE, EVEN IF COMMODORE HAS SEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

All computer programs, whether sold by Commodore or others, are distributed on an "AS

IS" basis without warranty of any kind. The entire risk as to the performance and suitability of

such programs is with the purchaser.

Should the programs jon cassettes or disks) prove defective following iheir purchase, the

purchaser and not the manufacturer, distributor, or retailer assumes the full responsibility for

service or replacement.

Commodore shall have no liability or responsibility to a purchaser, customer, or any other

person or entity with respect to any liability, loss or damage caused or alleged to be caused

directly or indirectly by any computer programs (on any media) sold by Commodore or others.

This includes but is not limited to any interruption of service, loss of business or anticipatory

profits or consequential damages resulting from the use or operation of such computer

programs.

Commodore shall have no obligation lo enhance or update any UNIT once manufactured.

Some states do not allow limiiations on how long any implied warranty lasts or exclustion of

consequential damages, so the above limitation or exclustion may not apply to you. This

warranty gives you specific legal rights, and you may also have other rights which vary from

state to state

C) UNITS COVERED UNDER THIS WARRANTY ARE:

ALL SERIES- 2000. 4000. 8000. 9000 UNITS Peripherals and their Accessories.

ALL SERIES -C\ 'P\ 'B\ 'BX' UNITS Peripherals and their Accessories

commodore

COMPUTER

COMMODORE *BJ SERIES ~

ADVANCED BUSINESS
MACHINES ~

THE PRACTICAL, VERSATILE BUSINESS SYSTEM

Commodore's versatile 'B' Series business microcomputers provide

powerful computing systems for your most important business needs: word

processing, record keeping, accounting, database management, and a variety

of other applications. The microcomputers in this series offer state-of-the-art

technology and superior features:

• 128Kor256KRAM

• 8-bit or 16-bit microprocessor

• Optional tilt and swivel monitor

• 94-key keyboard

• 20 programmable function keys

• Separate 19-key calculator keypad

• Expandable memory

• 80 column by 25 line screen display

• Extended BASIC version 4.0 + (66 commands]

• Compatible with Commodore business peripherals

This manual describes 'B' Series system features, software applications,

technical and BASIC programming information. Your Commodore dealer can

provide additional up-to-date information on "B' Series compatible peripherals

and software.

E commodore

COMPUTERS
Commodore Business Machines, Inc.

1200 Wilson Drive • West Chester, PA 19380

Commodore Business Machines, Limited

3370 Pharmacy Avenue • Aghcourt, Ontario. M1W 2K4

