

VOLUME 1 ISSUE 4
VOLUME 1 ISSUE 5

commodore PET USERS CLUB NEWSLETTER

Newsletter Contents

EDITOR NOTES
DATA EXCHANGE
COMMODORE NEWS
SOFTWARE
PERIPHERALS \& ATTACHMENTS
APPIICATIONS
PROGRAMMING
USERS' DIRECIORY \& ANNOUNCEMENTS

MEMMBERSHIP/SUBSCRIPTION

The Charter of the COMMODORE PET USER CLUB is to provide a method of sharing up to date information, applications and programs relating to the PET Computer between the many PET owners and users.

We would like to publish features from PET Users concerning specific applications, interesting discoveries or even bits worthy of sharing. If you would like to contribute to future NEWSLETTERS, please send your article, letter or comments to:

THE EDITOR
COMMODORE U.S. PET USERS' CLUB
COMMODORE BUSINESS MACHINES, INC
3330 SCOTT BLVD.
SANTA CIARA, CALIF. 95050

Editor Notes

Dear PEI' User Club Readers:

Due to a not so well known correlary to Murphy's law, we have combined Issue 4 and 5 into one JUMBO BONUS NEWSLETTER, containing over 44 pages of useful information. Because of these factors, please excuse the delay in receiving your NEWSLETIER.

In our Data Exchange Section we will continue to answer your questions as presented. COMMODORE NEWS contains product information on our new PETs and Floppy Disk peripheral. Be sure to review in detail Part 3 of the BREAK-EVEN ANALYSIS program to be found in the SOFTWARE Section. Issue 6 will contain the concluding article. The PERIPHERALS AND ATTACHMENT Section features a HAM Radio Interface which can turn your PET into a mini-communication center. Have you ever wanted to concatenate your programs or subroutines? If so, the PROGRAMMING Section contains the code you'll need (with Documentation). We have included information as provided by Len Linsay of the PET GAZETTE on quality tapes and of every programmers major concern, PROTECTING PROGRAMS!

As always, your comments are welcomed in our continuing efforts to mold this NEWSLETTER into YOUR NEWSLETMER.

The EDITOR
P.S. In Issue 3 one error should be recognized:

Page 3, Figure 1 is missing two labels:

LONG
5l0us

BY'TE
680us

Data Exchange

IN PURSUING BETTER COMMUNICATION WITH OUR USERS , THIS SECTION WILL COVER ANSWERS TO YOUR \#NQUIRIES NOT COVERED IN THIS NEWSLETTER.
\rightarrow Mr. John F. Garbarino of Mystic, Conn., has two questions for us, Q. Is there any problem attaching the Single Drive Floppy Disk to the older pets?
A. To attach either the Dual Floppy (Model 2040) or Single Floppy (Model 2040A has replaced 2041) all that is required is a "Retrofit Kit" consisting of replacement ROMs. The Dealer who supplies you with your Floppy Disk can easily install these ROMs if you bring in your PET.
Q. A small sample program, featured in one of your earliest brochures, was illustrating the per's ability to Read cassette \#l and then PRINT (copy) on cassette \#2. I have not been able to make it work. I did hear that the $S T$ should be (ST) and the 64 should be (64) in the line where it is doing a status check for read errors. I have the second cassette and would like to see a simple program to be able to copy a tape on the second cassette from the first cassette.
A. The ST, you refer to, should be a 64 (EOF) when the copy is finished. Any other value means that the tape is bad. Please see page 80 of your PET USER MANUAL for the other status. Per your request a program for a tape copy follows:

```
10 OPEN1,l,0 :PRINT"FOUND FILE"
O0 OPEN2,2,2,"TEST FILE"
90 GET#l,A$ :IF ST<<O THE l00
40 PRINT#2,A$; :PRINTA$;
50 GOTO 30
100 PRINT ST
110 CLOSE 1 :CLOSE 2
```

\rightarrow The following question comes from a User in Winter Park, Florida, Mr. Jeffery Lewis Vida.
Q. When I POKE 59411,60, it not only turns off the motor (of cassette) it shuts down the PET aompletely if I have any type of INPUT or GET afterwards. If a POKE 594ll,53 is in the program after the POKE 59411,60 and before an INPUT or GET statement, operation is normal.
A. When you PEEK (594ll) you will find a 6l. When you POKE 59411 with a 53 you change the 8 th Bit of the location. But you Poked a 60 when you were at that location. This not only changed the 8th Bit, but also the lst. The first Bit is used to set interrupts. You turned off the interrupts so the keyboard stopped working. POKE a 61 instead, this will solve the problem.

\rightarrow Our final question comes from Danny Johnson of Hampton, VA.

Q. I am using a read statement in a FOR-NEXT loop that goes from 1 to 680 with a lot of data statements that hold the 680 numbers that I am reading. There is also a POKE in the loop. The purpose of the program is a hockey game with all the surface markings. The data statements hold the character numbers of the position of the symbols in the loop, it prints it out perfectly. But, when I try to get a particular symbol out, they are all wrong. I wrote a little test at the end of the program, and I found out that only the last few hundred symbols are right. Why?
A. There is a bug in the BASIC in your PET. You cannot have an array with more than 256 (0-255) items. The wraparound is caused by the index Byte overflowing. When the Byte hits 255 then it starts back to zero (0).

The problem has been fixed in the new RoMs that you can buy in mid-Summer. If you do need more items than 255 use more than one array. (For more information on New ROMs see Newsletter No. 3)

Commodore News

2040 F'LOPPY DISK

During April, New Product deliveries continued ahead of schedule with the release of our Model 2040 Dual Drive Floppy Disk. If you have already purchased one from your local PET Dealer, please make note that the following items have been enclosed:

PRELIMINARY USERS MANUAL (53 PAGES)
BUSINESS REPLY CARD
WARRANTY FORM
TEST/DEMO DISKEITE
The final Users Manual is now being diligently constructed and will be shipped to those Floppy owners who send in their Business Reply Cards to COMMODORE. Be sure to send us your completed Wanrranty Form also. In Addition to being guaranteed your entitled warranty period, you will be kept informed of anything significant relating to this new product -bugs, attachments, and new Software.

The TEST/DEMO DISKETTE contains :
DUM 3.4
DIAGNOSTIC BOOT
COPY DISK FILES
CHECK DISK
PET DISK

The first program, DUM 3.4 (Disk Utility Maintanence) permits you to perform the 2040 Disk Commands - NEW INITIALIZE, VERIFY, DUPLICATE, COPY, RENAME, SCRATCH by simply responding to PET inquiries. This program will be extremely useful during your "START UP" period while learning the Disk Command Statement Formats.

DIAGNOSTIC BOOT loads a program into the 2040 internal devices. Different combinations of the $2040^{\prime \prime}$ s three LED's will lite to indicate a specific failure.

The BASIC Program, COPY DISK FIIES assists you in selectively copying any or all files from one drive to the other. This program features complete error handling, pattern matching and alphabetizing.

CHECK DISK can be employed to adjust a diskette with a stubborn "Hard" error. During this process, all files are verified with the DOS (Disk Operating System) VERIF'Y COMMAND. Unused blocks are tested for error and if bad, they will be allocated so that DOS will ignore them during use. The CHECK DISK PROGRAM contained in the first few 2040 's delivered had a small bug. A listing of the current version follows. If you wish to make note of the changes, please see your Preliminary Floppy Manual, page A-4.


```
    1 EEM CHECK IIEK - -. VEF 1.3
    E DH \(=\) BREM FLOPPT DEVTCE NUMEER
```



```
    00 OFENIS: DN. 15
```



```
    00 GUGUESG0
    FQ DFEHz.IH: 2 "\#"
    EG FEIMT: FRIHT\#2, HE:
    \(5 \mathrm{~S}=1: \mathrm{S}=0\)
    "G FRINT\#15, "E-F:"I*:T:S
    100 IHFUT\#IS.EN,EM, ET,ES
    116 IFEH=GTHEN1SE
    115 IFET=GTHENEOU:FEM ENI
    120 FRINT\#15: "E-H:"M*:ET:ES:T=ET:SEES
    130 FRINT\#15, "Uе:2, "IF:T:S
```



```
    135 FRINT"CHECKIHG TEACK Win
    1.40 IHFUT\# \(15 . E H\) EMt.ES.ET
    150 IF EH=QTHEHES
    \(160 T(T)=T: S G)=S: T=T+1\)
```



```
    170 GOTOES
    200 FRINT\#15."T"IF
```



```
    E12 CLOEE2
```

```
    215 IFT=ETHEHFRIHT"WHO EHD ELOCKG!":END
    "17 OFEHE.DH, 2,"抽
```



```
    2CO FORI=0TUT-1
    20 FRINT#15,"E-F:":D*:T(I):SGT)
    240 FRINT:TGI%,E(I)
    250 HEXT
```



```
    2G LLOSEZ:END
    SOU IHFUT#IE,EH,EH*,ET,ES
    916 IF EH=G THEH RETURH
```



```
    930 FRIHT#15."I"T$
FEFHI'.
```

The last program, PET DISK, displays a continuous demonstration of the 2040's key features - it may be the easiest way to explain to your friends or associates what this product is about.

In order for our Users to use the Floppy as effectively as possible, future Newsletters will contain further information on this new peripheral. Next months issue will disclose addresses of some important variables and useable subroutines. A program to concatenate BASIC programs will also be provided.

If you have developed an interesting program for the Floppy, or if you have questions concerning the 2040, please send us your thoughts. We will be more than happy to integrate them into future Newsletters.

NEW PETS

4/8K VERSUS THE 16/32K

Market response to the new GRAPHICS KEYBOARD PET (Model 2001-16N or 2001-32N) has been overwhelming. Withthe BUSINESS KEYBOARD PEIS nearing production delivery,our Newsletter will begin to include information pertinent to those new products. There are significant differences between these units and 4 K or 8 K PET. Once the obvious external differences have been noted (expanded PET keyboard or Standard Typewriter Keyboard - external cassette option) internal operating system differences are a bit more subtle.

The CASSETTE interfacing address has been reversed on the new PETS so that the external cassette plug in the back panel is for CASSEITE 1 (rather than 2 , as on the 4 K or 8 K units). If a second cassette is required on the new PETS simply open the PET and attach the Cassette Cable to the left side of the Main PCB.

CBM Model 2001-32B

Keyboard entry is summarized below:

4K/8K
GRAPHIC
$16 \mathrm{~K} / 32 \mathrm{~K}$
BUSINESS*
16K/32K
POWER ON

| UNSHIFTED | UPPER CASE | UPPER CASE |
| :--- | :--- | :--- |\quad LONER CASE

POKE 59468,12
UNSHIFTED
SHIFTED

UPPER CASE	UPPER CASE	UPPER CASE
GRAPHICS	GRAPHICS	GRAPHICS**

POKE 59468,14

UNSHIFTED	UPPER CASE	LOWER CASE	LOWER CASE
SHIFTED	LOWER CASE	UPPER CASE	UPPER CASE

*See More in our next ussue on this Business Product.
**Even though GRAPHICS keys are unlabelled, they are accessable in this mode with the exception of the following symbols:

जnoe	- oumomos
¢ח口onoo	-0000000
ए0¢¢0¢0	- omonoma
व0\%omoma	- 000000
momanama	- 00000 a
¢00\%ouma	-
¢00moun	-
-	- cmogma
164	165
0000000	
¢0¢\%\%¢00	
¢0000000	
प0¢00\%0\%	
- $\mathrm{c}^{\text {¢ }}$	0ए0
-9000	0
- ${ }^{\text {abeda }}$	-
-veora	-
168	169
00000	
¢0\%ommou	ए0mo
mmommoma	एmo
¢0mamios	एowo
mocotan	¢0एп¢\%\%
comota	एם\%¢ण000
-mer	¢0\%momo
¢п⿺	vomimo

223	255	173	172	188
	bubumoma	-0.0.	-	
$0{ }^{0}$	comamome	कumbuma	एombama	¢0m"¢0\%
	कण¢0noma	ovovoma	कompana	ए0¢000\%
00	-bicurae	Oevoren	W"\%	¢¢\%"mama
"бommoue	पण¢ण00ए0	mamenote	woxamou	-00)
mommeme	¢0\%comoa	mounouma	maupoua	900
वmonam	एलए¢पuma	000000	サmabues	एe
एomomema	ต"moumma	\%awoymo		
190 - - amma	$\stackrel{192}{\square 000 \% 0}$	$\stackrel{219}{\square 0 m o t}$	$\frac{221}{00000}$	
Wvoma	¢mmomom	mommor	एomonoma	व0wnovo
- 6 -voma	पणए¢0¢¢0	00000	0	एobum
- 0 Onoma	0¢mumbue	¢0mous	momeg (tat	- athaymu
romose	¢00mmoma	¢mmom	anomatas	ammonom
momed	¢0mommay	¢0\%\%"	¢mounom	¢om
wnmede	- creode	oumonet	пmmoum	
madte		एomou		¢
191	175	170	171	189

If required, the proper CHR (value) can be used to access these symbols. Keep in mind that this Product is aimed at the Business Application Market which will use canned programs developed on GRAPHIC KEYBOARD PETS.

Basic program compatibility between the 8 K and GRAPHIC - 16/32K PET, presents no problems unless a POKE 59468,14 (you have used lower case letters) is executed by the program. Although your program will function properly, the screen will reverse the whole of upper and lower case letters.

The following proceedure will enable you to convert your 4 K or 8 K programs to run on a 16 K or 32 K GRAPHICS PET if:

1. Only POKE 59468,14 is in your program.
2. Your program does not contain any other Machine Language commands which address memory locations that have been changed. (See revised Memory Map in the PROGRAMMING Section)

To convert your program, just follow these steps:

1. If this is your first time through this procedure, procede with step 3.
2. If you have previously performed steps 3-9, LOAD the program you saved on cassette into PET Memory in the usual manner. Instructions for loading are as follows:
A. Place the cassette tape in the cassette unit with the desired side facing up.
B. Push down the REW button on the cassette unit to rewind the tape to the beginning. When the cassette stops rewinding, push the STOP button on the cassette unit.
C. Clear the screen by holding SHIFT down while you press CTR H
D. Type: LOAD REIURN
E. Press down the PLAY button on the cassette unit.
F. After the program has loaded, READY appears on the screen along with the cursor (the winking square.)
G. Press the STOP button on the cassette unit.
H. Rewind the tape and remove it from the cassette drive.

Next, procede with step 10.
3. Type: NEW RETURN (this assures that the PET is cleared)
4. Type in the following lines of code exactly as shown below.

$$
\begin{aligned}
& 100 \text { FOR I=0TO99:READAS } \\
& 110 \text { FORE826+I,VAL (AS) :NEXT } \\
& 120 \text { SY826:STOP } \\
& 1000 \text { DATA169, } 4,133,202,169,1,133,201 \\
& 1010 \text { DATA32, } 89,3,160,0,196,202,240,13 \\
& 1020 \text { DATA177,201,170,200,177,201,134 } \\
& 1030 \text { DATA201,133,202,76,66,2,96,160,4 } \\
& 1040 \text { DATA177,201,240,44,201,34,240,4 } \\
& 1050 \text { DATA200,76,91,3,200,177,201,240 } \\
& 1060 \text { DATA31,201,34,240,23,201,65,144 } \\
& 1070 \text { DATA243,201,91,144,8,201,192,144 } \\
& \text { 1080 DATA235,201,219,176,231,73,128 } \\
& 1090 \text { DATA145,201,76,103,3,200,76,91,3 } \\
& 1100 \text { DATA96,255,255,255,255,255,255 } \\
& 1110 \text { DATA255,255,255,255,255,255,255 } \\
& \text { 1120 DATA255,255,255,255,255 }
\end{aligned}
$$

BE SURE TO PRESS THE RETURN KEY AFTER TYPING THE LAST CHARACTER IN EACH LINE!
5. Clear the screen by holding SHIFT down while you press HODE .
6. TYPE :

LIST REIURN

7. The lines you just typed in should be displayed on the screen. Check each line carefully for typographical errors. If you find an error, correct it. Refer to Chapter 3, screen editor section of your PET Users Manual Model 2001-16/32 if you require additional information.
8. Repeat steps $5-7$ until step 6 yields an exact duplicate of the listing given in step 4. This sequence guarantees that the program has been properly entered into PET Memory.
9. Save and verify this program on a blank cassette tape according to the following directions.
A. Place the cassette tape in unit with the desired blank side facing up.
B. Push down the REW button on the cassette unit to rewind the tape to the beginning. When the cassette stops rewinding, push the STOP button on the cassette unit.
C. Clear the screen by holding
D. Type:

SAVE RETURN
E. PET will display:

PRESS PLAY \& RECORD ON TAPE \#1 Do exactly that.
F. PET will then display:

OK
WRITING
As soon as the program is saved, PET will add the word READY to the display and the cursor will return. When this happens push down the STOP key on the cassette unit.
G. Rewind the tape back to beginning, and then push the STOP key on the cassette unit.
H. Clear the screen by holding SHIFT down while you press HOR AE.
I. Type:

VERIFY RETURN
J. The PET will then display

PRESS PLAY ON TAPE \#1
After you do so, PET will display
OK
SEARCHING
Then after a moment,
FOUND
VERTFYING
will be added. Shortly thereafter the screen will show:
OK
READY
and the cursor will return.
Note: Should the screen display
? VERIFY ERROR
repeat steps $B-J$ again using the same cassette.
K. Rewind the tape and remove it from the cassette deck. Label it 8 K to $16 / 32 \mathrm{~K}$ Modification Program.
10. Type:

RUN REIURN
This results in a Machine Language subroutine being stored in the second cassette buffer.

If this step causes your PET to malfunction, it most likely indicates a typographical error in one of the data statements. Turn your PET off and on. Load the program from cassette and procede with step 5 to correct the mistake.
11. After the cursor returns, type:

NEW REIURN
12. To load the program you wish to modify, follow the loading instructions A through H in step 2 of this procedure.
13. When the program has finished loading READY
will be printed on the screen and the cursor will return.
Should a LOAD ERROR be encountered reload the program to be modified as instructed in step 2 of this article.
14. After the program to be modified has been loaded successfully typed:

SYS826 REIURN

15. Instantly,

READY
will be displayed and the cursor will return.
16. In order to prevent having to repeat this process next time you want to use the modified program, save the revised program on a blank cassette, as shown in step 9. From then on, all you need to do is load the revised program from cassette and type RUN.

Note: Unless you use the second cassette, or turn your PET off, the Machine Language Modification Program will remain in the second cassette buffer. Therefore you can revise other programs by executing steps 11-16.

The revised Program is now ready to run. While the program is running, your keyboard will work like a typewriter: i.e. upper case.

BUSINESS KEYBOARD VS. GRAPHICS KEYBOARD

Upon scanning the Business Keyboard photograph,you will note the following new keys:

> TAB
> ESC
> REPEAT

TAB and ESC generate legitimate control characters according to ASCII code. These keys may be scanned with the GET command and a value processed in a string variable.

TAB (ASCII CODE 9)
ESC (ASCII CODE 28)

REPEAT has not been implemented at this time and does not correspond to any ASCII code.

The major difference between the business and graphics keyboard is in the location of numerics and punctuation. Numerics are not only located in a pad on the right hand side but in the top row of the keyboard as well. The symbols located in the top row on the graphics keyboard are accessed by shifting the top row numeric keys on the business keyboard.

Cursor and screen editing keys are grouped around the RETURN key on the main keyboard.
\leftarrow now controls scrolling speed as opposed to as on the graphics keyboard.

OFF
RVS

RVS
as Lo and Ru respectively.
SHIFT has been added. When this key is down, BASIC will ignore all commands LOCK
because it recognizes only the ASCII codes which print as lower case.

$\overline{\overline{\text { PRTNTERS }}}$

In our next issue, we will preview the Model 2022 Tractor Feed Printer and the Model 2023 Friction Feed Printer. As projected in our first issue, Model 2023 deliveries will begin in May.

Software

NEW SOFTWARE

IN CONTINUING TO BRING YOU AN EXPANSIVE LINE OF SOFTWARE, WE HAVE LISTED NEW OVERSEAS PROGRAMS AND THEIR CURRENT COST. FOR THE DESCRIPTION OF THESE PROGRAMS PLEASE SEE VOLUMN 1 ISSUE 3 OF THE NEWSLETTER.

PROGRAM NAME	PROGRAM NUMBER	PRICE
BOOKS	321040	$\$ 19.95$
BACKGAMMON	321041	$\$ 9.95$
USER PORT COOKBOOK	321042	$\$ 9.95$
BASIC STATISTICS 1	321044	$\$ 24.95$
BASIC STATISTICS 2	321045	$\$ 14.95$
STRATHCLYDE BASIC COURSE	321046	$\$ 14.95$
STRATHCLYDE BASIC WORKBOOK	321047	$\$ 5.95$

OTHER OVERSEAS SOFTWARE WE OFFER ARE:
ROCKSTOCK
ARDENSTOCK
COSTING
DATA BASE UTILITY
SURVEY ANALYSIS
SNARK
DISASSEMBLER
MACHINE CODE HANDLER
HEX EDITOR AND LOADER
LEAST SQUARES

321019
321023
321024
321025
321026
321027
321028
321029
321030
321031
$\$ 29.95$
\$24.95
$\$ 19.95$
$\$ 24.95$
$\$ 14.95$
$\$ 19.95$
$\$ 24.95$
$\$ 9.95$
$\$ 9.95$
$\$ 9.95$

SOFTWARE REVIEW

SNARK, A SUMMARY by M. Pipes
The program SNARK originally comes from our overseas office, but is now available in the United States. The program SNARK allows you to write, assemble and execute programs in the language of the SNARK Machine.

It emulates a sixteen-bit computer, with two sixteen bit accumulators and a nine-bit program counter.

The Machine has sixteen instructions:

LOAD	LDA	OR	ORA
STORE	STA	AND	AND
ADD	ADD	JUMP	JMP
SUBTRACT	SUB	BRANCH ZERO	BZE
BRANCH nOt ZERO	BNZ	BRANCH POSITIVE	BPL
BRANCH NEGATIVE	BM1	RIGHT SHIFT	LRS
NEGATE	NEG	INPUT	INA
OUTPUT	OUT	END	END

There are four addressing schemes, immediate, absolute, indexed by accumulator A, and indexed by accumulator B.

When you write a program you enter an address, and an operation, For Example:

$$
\begin{array}{ll}
\varnothing & \text { INA } \\
1 & \text { OUT } \\
2 & \text { END }
\end{array}
$$

This SNARK Program will print out any number that is input to it. You may list and modify a program at any time.

When the program is assembled SNARK informs you of any errors you may have in the program, and allows you to make required changes.

One of the best features of this program is the capacity to display and single-step the program during execution.

The display is a trace which prints the address, instruction, and the contents of both accumulators.

The single-step allows you to run the program one instruction at a time; a useful debugging tool.

We have found SNARK to be a very useful program for understanding machine-language programs. It's IS (Instruction Set) represents a part of the IS of nearly every computer. A SNARK Program could easily be converted and re-assembled to run on almost any machine allowing easy development of support software. For ordering SNARK, and other overseas programs, please see our software section.

FEATURE PROGRAM

BREAK-EVEN ANALYSIS Part 3 by J. Parsons/C. Westfall

In Volume 1 , Issue 2 of our Newsletter, Break-Even Analysis was listed on page 10. The program features the "form' method of entering and displaying data; which provides a quick and easy method of entering and editing data. The programs contain several modules which with slight modifications can serve many functions. The printing of the 'form' was described in Issue 2. Issue 3 discussed the control of data from the form.

Variable
name
A

B
C

D

I
TE
A\$
B\$
C\$

Value of description of it's function

Field row position on screen
Field column position on screen
Field length
Position of the cursor within a field
The number of the field
The total number of field
Home plus 25 cursor downs
25 cursor left's
40 spaces

D\$
S\$

W\$

4\$
Edits the Input
Line Number
2000

2005

2010

2020

2030

Input from the keyboard
Input from the screen when a field is excited. It equals the number printed on the screen.

Return + cursor up + cursor down + clear home + home + delete + cursor left + cursor right + space + insert
$\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

Function

This line clears the keyboard buffer. It continues to 'GET' characters from the buffer until the GET yields a null.

LETTS(AS,A) moves the cursor down the field row position.

SPC(B) moves the cursor to the right, B spaces to the field column position.

GET\#3 stores the character in row A, column B of the screen in T\$.

The cursor is then moved back one space so it remains in row A, column B. The semicolon surpassed the carriage return for the next PRINT statement.

A- is printed in row A, column B on the screen and the cursor is again moved back to its original position.

The FOR NEXT loop scans the keyboard 50 times for input. If a character is received it is stored as D\$ and the IF THEN conditions of 2020 and 2030 are not met. In this case the program jumps to line 2040 .

However, if no input is received (from the keyboard) ; this line prints the character T\$ (taken from the screen) and a cursor back. The keyboard is again scanned 50 times for input.

If no input is received in 2010 or 2020 the program loops back to line 2010. These three lines simulate a cursor using a (-) rather than the blinking square. In lines 2010 and 2020 the GET command is executed 50 times.

50 is an arbitrary setting the flash rate of the simulated cursor.

2040	D\$ (the unput from the keyboard) is compared to each character of the string Y\$ i.e. it is check- ing to see if the input was numeric (a decimal
being numeric).	
It only executed if DS is numeric and transfers	
control to 2llo.	

This line is executed for both a delete and cursor back. It sets $\mathrm{D}=\mathrm{D}-2$ which points two spaces to the left of the cursor position BEFORE delete or cursor back was typed.

If D becomes less than zero, the cursor back or delete moved you out of the field and program control jumps to 2200 .

If the cursor remains in the same field it prints the last token taken from the screen (T\$ in line 2005), a cursor back, and D\$ (character received from keyboard).

Next it GET's T\$ from the screen and checks to see if it's at the end of the field. If it's not, control goes to 2010 to allow more input.

Should the field be filled to capacity or your command requires a field change, lines 2200-2230 are executed.

If the last token taken from the screen has been changed it is flashed on the screen.

If the cursor movement moved you out, the left end of the field D would be less than one. So it is reset to one for use in the next lines.

LEFTS (B\$,D) tabs back to the beginning of the field being excited. $\mathrm{S} \$ \mathrm{is}$ set equal to a null set.

The FOR NEXT loop contained in lines 2220 and 2230 GET'S each character from the screen in that field as $T \$$ and concatenates them in a string of $S \$$.

RETURN return control to line 50.

PUBLICATIONS

In continuing with last months PUBLICATIONS Section we have more books of personal computer information for you. If your local PET dealer or bookstore does not carry the title you're interested in, contact the publisher directly. Also, if you've read a book regarding personal computers and would like to send us your review, we'd be more than happy to look at it!

A CONSUMER'S GUIDE TO PERSONAL COMPUTING AND MICROCOMPUTERS by Stephen Freiberger and Paul Chew

Unlike most books reviewed in the past, A CONSUMER'S GUIDE TO PERSONAL COMPUTING AND MICROCOMPUTERS, involves reviews and evaluations of 64 microcomputer products from over 50 manufacturers. It also informs you of what to look for when purchasing a microcomputer and its' peripherals. As if this isn't enough to fill one book, it also expands on the fundamental principals and definitions in conjunction with the personal computer.
\$7.95
164 pages

Hayden Book Co., Inc.
Publisher:Rochelle Park, New Jersey

BASIC PROGRAMMING FOR BUSINESS
by Irvine H. Forkner
As the title denotes, BASIC PROGRAMMING FOR BUSINESS deals mostly with Business Applications. The development of this book gives the novice an understanding and appreciation of the electronic computer. It would be an excellent source for teachers, as it keys on learning BASIC and not on deciphering the problem and its solution algorithm.

Prentice-Hall, Inc.
Englewood Cliffs
$\$ 11.50$
237 pages
Publisher: New Jersey 07632
PERSONAL COMPUTING, HARDWARE AND SOFTWARE BASICS
An Electronics Book Series
If you are a serious personal computer buff, this book shows you the contemporary phenomenon now in the microcomputer field. It represents a wealth of technical details and know-how, telling you how to make use of this technology, what methods are available to perform various tasks, what other engineers are doing and just how they are doing it.
\$14.95
266 pages (Hardcover)

Mc Graw-Hill
1221 Avenue of the Americans Publisher: Suite 26-1 N.Y. N.Y. 10020

ING THE "TNSTANT REPLAY" FEATURE TO SHOW ON THE HFOR BEA LSNEES OLL TAPE? I'L
 Eest inta $4+1$

DE NEEETITC IN HUGHSON SEND ING BAUDOT

K K K CW ID

NoI DUP IHEATEAD THOSE THE BAND THAT WAS TT DISADYANTACE of THIS STHFF IS THAT YOU HAVENRKS NEYER DTE CARE FOR TYPING E THER BUH cot ored INTO DINGXXX DOITGS THAT IS THINK GET SEIS MODE YOURENTHALY'FAST, ALSO WHERE ERROS EAS NOT YOO ACCURATE.

Peripherals \& Attachments

ADDING THE PET TO A HAM SHACK

According to Ron Lodewyck, President of Macrotronics, the PET makes an ideal HAM communications terminal for several reasons. First, the compact integrated design eliminates exposed wiring cables, thereby reducing susceptibility to RF interference. Second, and most important, the metal cabinet of the PET shields the RF generated by the microprocessor and virtually eliminates any RF "HASH" from being picked up in the receiver. This factor, together with the compact size of the PET, makes it convenient to place the PET within easy reach of the station's radio equipment.

M650 HAM INTERFACE
The M650 is a deluxe RITY and MORSE system which converts the PET into one of the finest communications terminals ever developed for the amateur radio operator. It provides both send and receive capabilities in MORSE, BAUDOT and ASCII Modes. Let's take a look at some of its features.

RITTY SOFTWARE -- written by Wayne Reindollar

1. Three level split screen display. A "Transmit Buffer" is displayed on top 10 lines. A "Receive Buffer" is displayed on bottam 10 lines. The middle 2 lines display characters as they are being sent over the air. With this system, you can type ahead into the transmit buffer while you are simultaneously receiving an incoming message. You have full edit control of the transmit buffer while in the receive mode, allowing the composed message to be corrected or deleted before it is transmitted. When the incoming station turns it over to you, enter the send mode (one key) -- the transmit buffer will start sending and will be displayed in the center of the screen as it is sent over the air. You may continue typing ahead into the trasmit buffer which will still be displayed on the top of the screen.
2. Word Oriented Editor. The transmit buffer is sent a word at a time. The word will not be transmitted until the space character is entered. Thus, even in the send mode, you will be able to edit the last typed word before it is sent over the air.
3. "Instant Replay". You can send all or part of the received message back to the sending station at the press of a single key!
4. Message Library. This feature allows you to save incoming messages on the PET's built-in cassette and play them back at a later time or date. . Traffic handlers (especially 'MARS' operators) take note!
5. ASCII or BAUDOI. The M650 lets you select ASCII at 110 BAUD or BAUDOT at $60,67,75$, or 100 wpm . If you have a good general coverage receiver you will be able to copy both amateur and commercial RITY stations.
6. Auto CW ID. Sends 10 message (keyboard programmable) in MORSE code at the end of the transmission, then automatically transfers to the receive mode.
7. Eight message memories. You can program CQs, test messages (RY, quick brown fox, etc.) and station descriptions for instant one key recall.
8. Automatic time. Sends the present time in UIC at the press of a key.
9. Auto transmitter control. Keys push-to-talk line automatically on send, unkeys on receive. Permits full station control from the keyboard.
10. Auto 10 minute ID. Automatically inserts CW ID message every 10 minutes from start of send mode. The buffer will be preserved and automatically resumes sending where it was interrupted. Keeps you legal during those 'long-winded' QSOs!
11. Auto CR/LF. Automatically sends carriage return and line feed every 72 characters. No need to ever manually type carriage return!
12. Auto Didle. Sends "LTRS" character whenever transmit buffer is empty. May be turned off from the keyboard if destred.
13. Mark/Space Tone Reverse. If the incoming station is "Upside down", you can reverse his sitgnal from the keyboard.

MORSE SOFTWARE -- written by Ron Lodewyck

1. Speed. The speed is entered from the keyboard and can be any number in the range from 1 to 100 words per minute. This setting determines the sending speed and also initializes the receiving speed. The algorithm used on receiving automatically adjusts to incoming speed variations of approximately plus or minus 10 wpm., depending on the quality of the signal. The program will compensate for variations in the dit, dah and space ratios to permit copying most hand sent code. The translated code appears as text on the screen of your PET.
2. Message Memories. You can program any of ten messages of up to 255 characters each at any time for later replay. Cormon uses would be for CQ's station descriptions, I.D. messages and contest exchanges.
3. Code practice. A Morse code trainer is also included as part of the CW package. You select the speed and whether you want random characters or random five letter words. The PET then sends the code continuously on the built-in sidetone oscillator. The words are ham radio related and are randomly selected from a table. Examples of the words generated
include plate, final, morse, diode, Italy, tubes. Since the words appear in random order. It is not possible to memorize them (as is the case with cassette oriented code practice tapes). Furthermore, the speed is continuously adjustable, permitting fine upward adjustments as code proficiency is gradually developed.
4. Special characters. In addition to the alphabet (a-z), and standard punctuation (- ?, .) , the CW program can also transmit the following special characters: AR AS SK KN ERROR.

Hardware

The M650 is enclosed in an attractive cabinet and is easy to install with the connectors provided to the PET user port and second cassette port. AN led on the cabinet panel is synchronized with the incoming signal to provide a visual indication of proper tuning. Connection to amateur radio equipment involves simply attaching to the receiver's headphone jack or speaker terminals and the transmitter's CW jack. For RITIY, connect to FSK or AFSK keying circuits (the AFSK unit is not included), or connect in series with a local loop using the optically isolated loop module (included). An external terminal unit is recommended for optimal performance, especially on HF amateur and commercial RTITY.

A complete 20 page instruction manual is part of the package. It includes setting up, operation, adjustments, schematics, hints and kinks, trouble shooting and even a program to use the M-650/PET as an alarm clock!

M65 HAM Interface

The M65 is a lower priced version of the M650 HAM interface. It uses exactly the same Morse software, but a less sophisticated RTIT program. The hardware interface is sold "bareboard" (not enclosed in a cabinet). It is available in either kit or wired and tested.

Both the M650 and M65 HAM interfaces are available from many PET dealers or by writing direct to:

Macrotronics, Inc.
P.O. Box 747C

Keyes, CA 95328

Applications

In our previous NEWSLETTER we offered $\$ 100.00$ worth of free Master Library Software to the best "HOUSEHOLD" Application received before May 25 , 1979. Next months application, which will be due by June 26, 1979, should deal with the creation of a "DESK TOP CALENDAR".

An explanation for those of you who did not subscribe in time to receive the previous issue of the NEWSLETTER follows. Each month we will be soliciting specific categories of Software. After they have been received they will be evaluated and the "winner" will receive $\$ 100.00$ worth of free Master Library Software. Or you may wish to compete internally with your local USER Group, or compete with another group in your city.

This by no means should stop you from submitting your Application Program just because it doesn't fall within this month's category -send it in and it could be published on its own merit.

Please send all programs that are competing to:

```
THE EDITOR
COMMODORE BUSINESS MACHINES
3330 SCOTT BLVD.
SANTA CLARA, CA 95050
```


Programming

THE APPEND WEDGE (For 8Ks only)
 by B. Seiler

The APPEND WEDGE is an excellent program to append one BASIC Program to another. This special characteristic allows you to have a set of general purpose subroutines and 'tack' them onto any program. One draw-back though; the line numbers must be in order.

Because the edification of this listing is quite complete, you may wish to read through the listing first, and then commence to programming.

ENTERING THE "APPEND WEDGE"

1. First load the MACHINE LANGUAGE MONITOR Commodore Part No. 321000
2. Use the MONITOR to enter the machine code into the second cassette buffer. Hex $\varnothing 33 \mathrm{~A}$ to $\varnothing 3 \mathrm{FF}$
3. Use the "X" command to return to BASIC. Type "NEW" (return). 4. Enter the BASIC PROGRAM. Lines $1 \varnothing$ thru $23 \varnothing$ are all that are necessary to LOAD, RUN, and SAVE "APPEND WEDGE".
4. Basic Lines l løø thru $9 \varnothing \varnothing \varnothing$ are just the instructions.
5. To SAVE the original copy type RUN løø. This will save the Machine Language along with the BASIC Program.
```
10 STGEEE:NEM
```



```
3OREM 目
4Q EEM :* TU SHUE TYFE FUH 10U
50 FEM :
```



```
100 FOKEZ41.1
110 FOKE247.5B:FOKE24E,3
120 E=FEEK(124):FOKEZ2O,B
150 E=PEEKG125):FOKEZOD.E
140 FEM 涑梀 FINII SAvE HFME 楼䅴
150 #来=""
```



```
170 F=WHLCH%)
180 H%="AFFENII UEDGE"
100 E=FEEKGO :POKEZSE.E
200 E=FEEK(H+1):FOKEE49.E
210 E=FEEKOH+2):FOHEESG.E
20 5'66353
250 EHI
```



```
102G FEM :* FOE INSTRUOTIOHE FUH 10GQ *
103G EEM 鿓 棌
```



```
1050 FRINT"M":
110E FRINT" G GFFEHII WEIGE COHNFHID"
1110 FRIHT:FEINT:FEIHT
1120 FRIHT" THIS FROGNHM GIDS HN ESTRA COMNHWIN
1130 FEINT"TO FET EHSIC. THE EXTRH COMNHHII IS
```



```
1150 FRTHT"USEE TO JOMM EEFERHTE EHEIC FROGRHME.
116G FRIHT"EHPFEHDD COULI EE USED TO LIHE TESTED
117日 FRTHT"GUBROUTIHES TO A HEW NAIN FROGRHM.
11SG FRIHT" THE BFFFENDN COMWHHII IS FINED TO
1190 FRIHT"EHEIG EY FLAGIHG A MEIGE IN THE ZERO-
```



```
12IG FEIHT"THE HEDGE IS FORGEI EH LINE IG FHD THE
```



```
12SG FEIHT" THE MHOHINE COIE FOF WHFFENDE SITS
124G FRIHT"IH THE SECOHD GHGSETTE EUFFER. THIS
125G FRIHT"EUFFEE IS FFOH GSOH HES TO G4GG HEN OR
12GG FRINT"TUST EEFORE THE BHSTC SOURCE. TU SHVE
127Q FRTHT"#FFEHD| THE SECOWD CHGSETTE EUFFER
LEGO FRIHT"HUST EE SHVEI MITH THE EHSIC SOUREE.
1300 BNGUBGUE0
13eg FRTHT"mmume THE BHSTC LIHES 100 TO 2GO FERFORN
13O FRIHT"THE TOTHL SHVE. LIHE 100 SETS THE
1340 FRTHT"FIFST HDDEESS FOR GHESETTE #1. LIHE
1350 FRIHT"110 EETS THE LU MHII HI EYTES FOF THE
13GQ FETHT"STHRT GDDRESS OF THE SHVE TO GउGH HE%.
1370 FRTHT"LINES 120 AHD 130 SET THE END HIDRESS
13SQ FETHT"FOR THE SHVE TO YARTAE. UARTHE FOIMTS
13OQ FRINT"TO THE ENII OF BHSTC SUURCE.
1400 FRINT" A SFECIHL TEICK IS USEN TO MAKE THE
1416 FEINT"HHNE FOE THE SHVE. LINES 14G THRU 1TE
142G FRINT"LOGATE THE LENGTH FWD GDDERSS FOINTER
143G FRINT"USEI EY BHSTC FOR STRTHG F%:
1440 FRIHT"LIHE 1GO MHKES H* EDUHL TO THE NHNE FOR
```

1450	FRIHT"THE SHVE. LIHE 190 SETS THE LENGTH OF		
1460	FEINT"FS FGE THE SHVE, LIHES 206 HHI 210 SET		
1470	FRIMT"THE GDDRESS OF Ho FOR THE SAVE HFME.		
1480			
1490	FRINT"STSTEM FOUITINE TO DII THE SHVE.		
1500	Gugubegede		
1600			
1610	FRINT"TrFE ERUHV.		
1620			
1630			
1640			
1650	FRINT"g THE \#FPEHDE COMMFND DOES HOT FI\%		
1660	FRINT"LINE HUMEERS! AFFENDING FROGRAMS HITH		
1678	FEINT"LIWE HUMEEES OUT OF ORIEE MILL HAvE		
1680	FRINT"STRFNGE RESULTS WHEN RUH.		
1690	FRTHT" USE FET RENUMBEE TO FTX SEGdEHTS		
1700	FRINT"EEFORE HFFEHIITNG.		
1960	G0¢UE9060		
2000			
2010	FRINT		
2020			
2030	FEINT" $\dagger ~ \dagger \quad \dagger$		
2040	PRINT"		
2050	FRIMT" 1 - 4 HFME OF FROGEAm OH TAFE		
2060	FRIMT"\|		\# TOU HISH TO APFENI
2070	FRIMT" \| 1.	TO THE FRESENT FROGRAM	
2080	FRINT" \|	IN FET MEMOET	
2090	FRINT" \|		
2100	FREINT" \|	IF OMITTEI THE HEXT	
2110	FRINT"\| 1	FROGRAM OH TAFE \#1 HILL	
2120	FRINT"\|		EE FPFEHDEII
2130	FRIMT"\|		
2140	FRINT"		
2150	FRINT"\| 1		
2160	FRINT" 4 COMMFNII NHME - A FORE SHORT I		
2170	FRINT"		
2160	FRINT"1		
2190	FRINT" 4 FROMFT CHARACTEE MUST EE		
2200	FRINT" I IN FIEET COLUMH OF LINE		
2210	FRINT"		
2900	605ubgoud		
5060	G0TO1600		
9000			
9010	FEINT" HIT FHy KEt TO COHTINUE 뷸:		
9020	GETH*: IFA $=$ " ${ }^{\text {THEWSU20 }}$		
9030	RETUEW		
EAITY.			

00130000
00140000
00150000
00160000

00150000
00170000
00200000
00210000

00230000
00240000
00250000
00260000
00270000
00280000
00290000
00300000
00310000
00320000
00330000
00340000
00350000

0037	0000
0038	0000
0039	0000
0040	0000
0041	0000
0042	0000
0043	0000
0044	0000
0045	0000
0046	0000
0047	0000
0048	0000

BEASIC ROUTINES
CHRGET= $=00 \mathrm{~L} 2$
CHRGOT $=$ कOOS
FTNI $=\$ \mathrm{C} 430$

OF SYETEM VARABLES

TEMF1=\$50
EAL=\$ES
EAH=\$E6
FNLEN=中EE
FA=和 1
ETAL= $=$ F7 7
STAH=\$FE
FNADR $=\$$ F\%
VERCK=\$020B
EATUS=\$020C
TAFE1 $=\$ 027 \mathrm{~A}$
TAFE $=0033 \mathrm{~A}$

OF SYSTEM FOUITINES
FAH=\$F5AE
LDADC= FF 64 I
SAVE=कF6E1
FRT=\$FFI2
LD410=कF42B
TRLI=\$FEEA
TWAIT=\$F913
LEFR $=$ कF 3 HB
LD210=\$F3ES
$Z Z Z=\$ F 667$
CSTE1=\$FESB

ITNC TXTFTF ANG GETE CHAF :GETS LAST CHAF :FIXES LINKS
:END ADR FOR EAVE
: LENGTH OF FTLE NAME
: START ADF FOR EAVE
ADDFESS OF FILE NAME

LTNE	\# LOE
004%	0000
0050	0000
0051	0000

COME
$004 \% \quad 0000$ 00510000

LINE
$L \mathrm{LOO}=\mathrm{wFSF}$
$\mathrm{FAF}=\$ \mathrm{~F} 4 \% \mathrm{~F}$ QF'160=\$F579
:FFINTE FTLE NAME
SEAFCHE FOF FTLE EY NAME
"FFT "FILE NUT FOUND EFFOF:

0058	0000	
0054	633A	
005	633A	
005	033A	A\% 4\%
0057	03 CL	E5EE
O¢¢	O.3E	A\% 47
005%	0 ± 40	\% ¢
0060	0342	A\% 0\%
001	0344	5 Em
006	0 ± 46	60

0064	0347		
006	0347		
0066	0.347	$1 . \%$	$3 E$
0067	0347	Lio	08
06	034E	$4 E$	
0069	O54\%	9	C\%
0070	OJ4E	¢\%	OA
0071	050	FO	08

AFFENII WETUE CMI $!$
WELGE LMF \#*? :A WELUE EMD?
ENE WG\%OO NO
FHA
LIMA TXTFTF
GMF \#CEUF
EEO WIMII

WGIOO	FLA
WG2OO	EMF \#':
	ELE ETFTE
	JMF EHFGOT +7

:FINISH EHFGOT
$0074 \quad 0353 \quad 6 \% \quad 3 \mathrm{~A}$
$0075 \quad 0555 \mathrm{EO} \mathrm{EF}$

0078	05 5	20	1200	WEMIL	.35F	CHFGET	:AN AFFEND EMD:
0079	05 D	4	41		CMF'	\# ${ }^{\text {a }}$ A	
0080	635F	$\underline{10}$	FI		ENE	WG100	NO
os玉	0361	A\%	01		LIX	\#1	$\because Y E S-S E T$ FOR CASEETTE \ddagger
008	0663	86	F1		STX	FA	
0084	0365	EA			UEX		$\because \mathrm{X}=\mathrm{\$} 00$
6085	0366	$E 6$			STX	FNLEN	OEFOU LENGTH OF FILE NAME
0086	0565	86			STX	FNALIFI 1	YFOTNT INTO Z-FAGE
0087	$0 \pm 6 A$	EE	OE O玉		STX	VEFOKK	: EET FGF A LUAD

LINE	\# Lam:		COLE
0087	$0 \pm 6 \mathrm{~L}$	20	1200
60\%	0.570	AA	
0071	0.371	FO	17
0092	0.373	$\underline{4}$	22
$00 \% 3$	0.375	110	F6
0094	0.577	A	5\%
0075	0379	EE	
$00 \% 6$	$0.37 A$	86	$F \%$

LINE

```
WO100 JSF EHFGET
TAX
BEE WC210
CMF #क22
ENE WL100
LIIX TXTFTF:
INX
ETX FNALIFi
```

00\%	0570	20	C200	W0200	ISFi	CHFGET
00%	O37F	AA			TAX	
0100	0380	FO	08		EED	$W C 210$
0101	0.82	E\%	22		CMF	\#कこ2
0102	0384	FO	04		BEQ	WC210
0103	0.56	E6	EE		TNE:	FNLEN
0104	0.58	110	F2		ENE	WO200

0106	OJEA	20	67	$F 6$
0107	OSEL	20	3 B	$F \%$
0108	0.390	20	FF	$F 3$
010%	0385	A5	$E E$	
0110	0395	FO	08	
0111	0397	20	75	F4
0112	0.69	[10)	68	
0113	03\%	4 C	79	F 5
0114	039F	20	$A E$	F5
0115	03 Az	FO	FS	

0117	03 A 4			
0118	03 A 4			
011%	$0 \% A 4$	AII	71	02
0120	03 A 7	35		
0121	OJAE	ELI	7B	02
0122	OBAB	AA		
0123	OBAC	ALI	7E	02
0124	O. AF	EII	75	02
0125	O3E2	AE		
0126	03E3	A	75	
0127	0385	\%		
0128	08 ES	E\%	04	
0129	O3ES	8 L	7E	02
0130	0.8 BE	A	711	
0131	OBED	E'7	00	
0132	0.3 BF	EII	7 L	02
0133	0302	EA		
0134	0303	18		
0135	0.504	6 II	7E	02
0136	0307	ELI	7L1	02
0137	6\%	9%		

WL210	95Fi	ZZZ
	95Fi	CSTE1
	JSF	LIZOO
	LIIA	FNLEN
	EEO	WC250
	. 5 SR	FAF
	ENE	WL270
W020	.JMF'	OF160
WC\%S0	, 5 FF	FAH
	EEO	WC22

: GET NEXT EHAF IS THIE THE END Y YES-LDAII ANYTHING : A (")?
NO-LOMF STAFT FILE NAME INE+

```
#FIND END OF THE NAME
THIS THE ENLG
YES
AN ENM MUUBLE OUOTE?
:YES
NWI-KEEF CHAFAOTEF
BEFANOH ALWAYE
```

\because SET TEUFF FTFE : TSELIE TAFE MSIG :FFT FILE NAME :LOADING ANY FILE : YES
NOL-SEAFUH FOF IT $\because S K I F$ IF FOUNL :FILE NOT FOUINII MSE :FEAII ANY FILE :EFFOFF IF NOT FOUNM

LINE	Loc:		cone	LINE		
0138	0.308	6 L	70.02		ALI	TAFE1+2
0139	OBCE	80	7E O2		STA	

0141	0301	20	40	F6
0142	0304	A2	00	
0143	0306	EE	OB	02
0144	0309	EII	FS	03
0145	0305	Fo	06	
0146	O3DE	20	L 2	FF
0147	OSE1	ES		
0145	OSE2	Do		

0150	$03 E 4$	20	$2 E$	F4
0151	03 E 7	20	EA	FE
0152	OSEA	20	13	Fs
0153	OBED	AII	oc	\%2
0154	03 FO	Fo	03	
0155	OSF2	40	LIE	F3

WC400 | | $J S R$ |
| :--- | :--- |
| | JER TRI $10+3$ |
| | ISR TWAIT |
| | LDA SATUS |
| | BEQ WCSOO |
| | JMF LERF |

```
:FRTNT "ING" MEG
:REAL DATA FROM TAFE
:WAIT FOR KEY IRQ RESTORE
:gODG Lgad?
```

BEG WCSOO :YES
JMF LEFF: NO LIOAL ERFOR

0157	$03 F 5$	$4 C E 5 F 3$
0158	$03 F 8$	$0 W$
0158	$03 F 7$	4150
0158	$03 F F$	00
0159	6400	
0160	0460	

WWSOO JMF LTE1O :GO FIX BASTC LINKS MBG1 EEYTE CD: "AFFENL": 0

AAAA
"ENLI

```
ERRORS = 0000
```

SYMEOL TABLE
EYMBOL VALUE

AAAA	0400	EUF	000A	CHFGET	0002	CHRGOT	0008
CSTE 1	FS3B	EAH	OOEE	EAL	OOES	FA	OOF 1
FAF	F495	FAH	F5AE	FINI	C.430	FNALR	00F9
FNLEN	OOEE	LE210	F3ES	LIS300	FSFF	LT1410	F42B
LIADE	F64II	LEFFR	F3DE	MSE1	03FS	OF160	F57\%
FFT	FFIL	Satus	0200	SAVE	F6B1	SETW	033A
STAH	OOFE	ETAL	00F7	STFTS	0346	TAFE1	027A
TAFE2	033 A	TEMF1	0050	TRED	FESA	TWAIT	F913
TXTFTF'	0008	VAFiTAE	0075	VEFCK	O208	WC100	0365
WC200	0370	WC210	036A	WC220	0390	WC250	039F
WC270	03 A 4	WC300	0309	WC.400	OSE4	WC500	0375
WCMII	035A	WEDIGE	0347	WG100	0352	WG200	0353
ZZZ	F667						

IN LAST MONTHS ISSUE WE FEATURED MR. BUTTERFIELD'S MEMORY MAP. (PG.27) TO FOLLOW IS A CONTINUATION OF THAT MAP, WH $\overline{I C H}$ INCLUDES THE ADDRESSES OF C2AC THRU CDCO.

C2AC-C2D9
C2AD-C31C
C31D-C329
C32A-C356
C357-C388
C389-C391
C394-C3A9
C3AC-C42E
C430-C460
C462-C476
C479-C48C C48D-C521

C522-C550
C551-C599
C59A-C5A7
C5A8-C647
C649-C647
C692-C6B4
C6B5-C6EF
C6F2-C70A
C70D-C71B
C71C-C742
C745-C75E
C75F-C76D
C770-C772
C775-C77D
C780-C79A
C79D-C7C9
C7CA-C7FD
C7FE-C81E
C820-C840
C843-C862
C863-C89A
C89D-C91B
C91C-C97E
C97F-C982
C985-C996
C999-CA24
CA27-CA41
CA44-CA76
CA77-CA9E
CA9F-CAC5
CAC6-CADF
CAEO-CB14
CB17-CB21
CB24-CC11
CCl2-CC35
CC36-CC8F
CC92-CCB5
CCB8-CD38
CD3A-Cd9C
CD9D-CDB9
CDBC-CDCO
peeks at the stack for an active FOR loop
'opens up' a space in Basic for insertion of a new line. tests for stack-too-deep and aborts if found.
sends a canned error message from Cl90 area, then drops into:
Signals 'ready'
gets a line of input, analyzes it, executes it handles a new line of Basic from keyboard; deletes old line, etc.
corrects the chaining between Basic lines after insert/ delete
receives a line from the keyboard into the Basic buffer gets each character from keyboard
looks up the keywords in an input lines and changes to
"tokens"
searches for the location of a Basic line from number
in 8, 9
implements NEW command - clears everything
sets the Basic pointer to start-of-programs
performs LIST command
executes a FOR statement
continues to build FOR vectors
reads and executes the next Basic statement, finds next line, etc.
executes the Basic Command as a subroutine
performs RESTORE
handles STOP, END, and BREAK procedures.
performs CONT
performs CLR
performs RUN
performs GOSUB
performs GOTO
performs RETURN
scans for start of next Basic Line
performs IF
performs ON
gets a fixed-point number from Basic and stores in 8, 9
performs LET
check numeric digit/move string pointer
performs PRINT\#
performs CMD
performs PRINT
prints string from address in Y, A
prints a character
handles bad input data
performs GET
performs INPUT\#
performs INPUT
prompts and receives the input
performs READ
canned messages: EXTRA IGNORED; REDO FROM START
performs NEXT
checks Basic format, data type, flags TYPE MISMATCH
inputs and evaluates any expression (numeric or string)
pushes a partially-evaluated argument to the stack
evalues a numeric, variable, or pi, or identifies
other symbol
value of pi in floating binary

Appendix A.

Detailed CBM Memory Map

CBM Memory Allocation By 4K Blocks			
BLOCK \#	TYPE	START ADDRESS	FUNCTION
*0	RAM	\$0000	Working, text, variable storage.
1	RAM	\$1000	Test variable storage (8 K only)
2	---	\$2000	Expansion RAM
3	---	\$3000	Expansion RAM
4	---	\$4000	Expansion RAM
5	---	\$5000	Expansion RAM
6	---	\$6000	Expansion RAM
7	---	\$7000	Expansion RAM
8	RAM	\$8000	Screen memory (1K)
9	---	\$9000	Expansion ROM
10	---	\$A000	Expansion ROM
11	---	\$B000	Expansion ROM
12	ROM	\$C000	BASIC (principally statement interpreter).
13	ROM	\$D000	BASIC (principally math package).
*14	$\begin{gathered} \text { ROM } \\ \text { I/O } \end{gathered}$	$\begin{aligned} & \text { \$E000 } \\ & \text { \$E800 } \end{aligned}$	Screen editor. All internal CBM I/O.
15	ROM	\$F000	OS diagnostics

Block 14 By 2K Segment
START

PAGE	TYPE	ADDRESS	FUNCTION
0	ROM	$\$ E 000$	Screen editor
1	I/O	$\$ E 800$	CBM I/O

START

PAGE	TYPE	ADDRESS	FUNCTION
0	PIA	$\$ E 810$	Keyboard
1	PIA	$\$ E 820$	IEEE-488
2	VIA	$\$ E 840$	USR PORT cassette

CBM PAGE ZERO MEMORY MAP		
FROM	TO	DESCRIPTION
000	\cdots	\$4C constant (6502 JMP instruction).
001	002	USR function address lo, hi.
3	.-	Starting delimiter
4	.-	Ending delimiter
5	.-	General counter for BASIC.
Evaluation of variables		
6	..	Flag to remember dimensioned variables.
7	.-	Flag for variable type; 0\#numeric; $1 \div$ string.
8	.-	Flag for integer tape.
9	.-	Flag to crunch reserved words (protects '\& remark).
10	.-	Flag which allows subscripts in syntax.
11	.-	Flags INPUT or READ.
12	.-	Flag sign of TAN.
13	.-	Flag to suppress OUTPUT (+ normal; - suppressed).
14	--	Active I/O channel \#.
15	.-	Terminal width (unused).
16	\cdots	Limit for scanning source columns (unused).
17	18	Line number storage
13	--	Flag to suppress OUTPUT (+ normal: - suppressed).
19	--	Index to next available descriptor.
20	21	Pointer to last string temporary lo; hi.
22	29	Table of double byte descriptors which point to vaiables.
30	31	Indirect index \#1 lo; hi.
32	33	Indirect index \#2 lo; hi.
34	39	Pseudo register for function operands.
Data storage maintenance		
40	41	Pointer to start of BASIC text area lo; hi byte.
42	43	Pointer to start of variables lo; hi byte.
44	45	Pointer to array table lo; hi byte.
46	47	Pointer to end of variables lo; hi byte.
48	49	Pointer to start of strings lo; hi byte.
50	51	Pointer to top string space lo; hi byte.
52	53	Highest RAM adr lo; hi byte.
54	55	Current line being executed. A two in 54 means statement executed in a direct command.
56	57	Line \# for continue command lo; hi.
58	59	Pointer to next STMNT to execute lo; hi.
60	61 63	Data line \# for errors lo; hi. Data statement pointer lo: hi.

192		Index to addresses for tape error correction
193	--	Multiply defined
194	--	Flag for cassette read..tolls*
195	--	Count of second of shorts to write before data
196	197	Pointer to cursor position
197	198	Multiply defined
199	200	Load start address
201	202	Load end address
203	--	
204	--	
205	--	Quote mode flag
206	--	Multiply defined
209	--	;Length current file name Str
210	-	;Current file logical addr
211	-	;Current file 2nd addr
212	217	Murrent file primary addr
213	219	MAddrly current file name str
218	221	Multiply defined
220	-	;Cassette read block count
222	--	Multiply defined
223	--	Table of LBB of start addr of video display lines
224	-	
249	-	
250	-	
251	254	
252		

Page 1

62 byte on bottom are used for error correction in tape reads. Also, buffer for ASCII when BASIC is expanding the FAC into a printable number. The rest of page 1 is used for storage of BASIC GOSUB and FOR NEXT context and hardware stack for the machine.

CBM PAGE TWO MEMORY MAP

FROM	TO	DESCRIPTION
512	592	;Basic input buffer
512	513	program counter
514	--	processor status
515		accumulator
516		X index
517		Y index
518	Stack pointer	
519	520	;User modifiable IRQ
593	602	;Logical file numbers
603	612	;Primary device numbers
613	622	;Secondary addresses
623	633	Keyboard Buffer
634	825	Tape buffer \#1
826	1017	Tape buffer \#2
1018	1019	Unused

(PASSWORD ROUTINE \quad by F.L. Peters

```
    5 PRINT" ":Y=0
10 POKE 525,0:WAIT 525,4
20 GET A$,B$,C$,D$
30 IF A$+B$+C$+D$="TEST" GOTO 60
40 Y=Y+1:IF Y=2 GOTO 999
50 GOTO 10
60 REM***PROTECTED PROGRAM STARTS HERE***
999 END
```

This short password routine can be modified for any password, and is very useful to stop unauthorized access to programs or files, and the password will not be printed. Here is what each step does:

LINE 5: Clears the screen and sets the value of variable Y to zero. Y is the variable used to count the number of attempts at inputing the password.

LINE 10: Location 525 is the keyboard counter and keeps track of the number of keys that has been typed since the keyboard was last strobed. By POKING zero into location 525 the PET is fooled into thinking no keys have been typed. The WAIT statement makes the PET wait until a set number of keys has been typed. Example: WAIT $525, \mathrm{X}$ where X is the number of keys to be typed before the input is used by the PET. The value is the number of letters in the password.

LINE 20: This is the use of the GET command to input characters from the keyboard. The number of GET variables will be the number of letters in the password with each variable corresponding to each letter of the password.

LINE 30: Here the GET variables are assembled into a word to be tested against the password. If the input word matches the password the program goes to line 60 where the protected program starts. The password is contained in the " " marks in this statement.

LINE 40: Here the Y variable is incremented by one each try and then tested to see if the limit of attempts has been reached. In the following example the "X" indicates the number of tries at inputing the password and if exceeded the program goes to line 999 and stops. An example: IF $\mathrm{Y}=\mathrm{XX}$ " GOTO 999

LINE 50: Loops back to line 10 for another try if the number of attempts is below the number allowed in line 40.

LINE 999:Contains the END command to stop the program.

SWITCHING FROM THE PRINTER TO THE SCREEN

The following program illustrates a technique for switching a CMD mode from the Printer to the screen and back. This avoids the necessity of saying 'PRINT\#:CLOSE' every time you wish to exit a CMD mode.

100 REM**THIS IS A METHOD OF SWITCHING FROM THE PRINTER TO THE SCREEN 110 REM***WITHOUT REVERTING TO A ISYNTAX ERROR' OR SOME OTHEK ABNORMAL
120 REM***END OF THE PRINT COMMAND.
138 REM***GLENN HOELSCHER
140 REM***5773 DEXTER CIRCLE
150 REM***ROHNERT PARK•CA. 94928
160 REM***707*542-6773
170 PRINT:PRINT
200 OPEN 4.4:CMD 4:REM***OPENS PRINTER IN NORMAL WAY
210 PRINT "THIS SHOULD COME OUT ON THE PRINTER":REM***THIS IS THE MESSAGE
220 CLOSE $4: R E M * * * N O R M A L ~ C L O S E ~ O F ~ A B O V E ~ C O M M A N D ~$
230 REM***NOTICE. NO PRINT \# WAS NEEDED AND '?' IS A VALID PRINT COMMAND
30ℓ OPEN 4.3:CMD 4:REM***NOW WE DIRECT OUR PRINT TO THE SCREEN***
310 PRINT "THIS SHOULD COME OUT ON THE SCREEN"
320 REM***AGAIN, NO NEED FOR A PRINT AND '?' IS A VALID COMMAND
330 REM* ASINCE WE WANT TO GO back to PRINTER. WE MUST Close the SCREEN
34% CLOSE 4:GOTO 200
READY.

PROTECTING PROGRAMS

For those of you concerned about unauthorized copying of your programs, Len Lindsay of the PET GAZETTE has fowarded to us the name of a vendor who may be able to solve your problem. Mr. Lindsay visited. BC COMPUTING and was fortunate enough to spend an hour with the main PET programmer. He was very impressed by their system and is pleased to announce that it works!

According to Mr. Lindsay, you can load a protected program by typing L-O-A-D, (RETURN). You will then be amazed to see the program LOAD and immediately RUN! If for some reason you manage to break out of the program (the stop key does not work) the program will not LIST correctly and you lose control of your PET and have to turn it off and on again. A SAVE will not work, neither will the SYS equivalent.

Adding this protection is very complex so BC COMPUTING charges a nominal fee for the service of protecting your program.

For further information please write to;
BC COMPUTING
2124 Colorado Ave.
Sun Prairie, WI 53590

Users" Directory \&

Announcements

One of the major advantages in being a member of the PET USERS' CLUB is the ability to get hold of PET related Software and ideas. Although our Master Library of programs is now growing, we get frequent Software inquires for a wide range of applications.

In this issue, we have included the current Users' Directory, containing lists of people writing software, importing literature or starting local PET Groups. If you would like to use your PET for fun and profit, why not offer personal tutoring in PET programming to new PET owners. Alternatively, if you require a program to be written for you, ask for contacts via the USERS' DIRECTORY. The possibilities are endless. Please write to the EDITOR, U.S. PET USERS' CLUB, at our NEW address below.

To include your name in the USERS' DIRECTORY, please complete the following form:

TO: THE EDITOR, U.S. PET USERS' CLUB, Commodore Business Machines Inc., 3330 Scott Blvd., Santa Clara, Calif. 95050.

NAME:
ADDRESS

SERVICES OFFERED/SPECIALIST AREA OF INTEREST: \qquad

To include as many contacts as possible, we must restrict each USER to only one line of description.

COMMODORE reserves the right to edit or withdraw any entry .
**

LISTED BELOW ARE PET USERS WHO HAVE RECENTLY SUBMITTED THEIR SPECIALTY OR AREA OF INTEREST TO FURTHER COMMUNICATION WITH PET OWNERS THROUGHOUT THE UNITED STATES. IF YOU WOULD LIKE TO OFFER YOUR SERVICES TO OTHERS, PLEASE FILL OUT THE "USER DIRECTORY" FORM ON THE PREVIOUS PAGE.

NAME AND ADDRESS

Charles \& Robert Ames 1717 Penn
Joplin, MO 64801
Nilan R. Beardall
Brigham Young Univ.
175 TMCB
Provo, Ut. 84602
Charles Branson
Box 3061 University Station
Moscow, ID 83843
Dave Caulkins
The PCNOT Committe
340 E. Middlefield Rd.
Mtn. View, CA

Russell Grokett
PET Library
401 Monument Rd. Apt 177
Jacksonville, FL

Innovision
P.O. Box 1317

Los Altos, CA 94022

Marvin Mallon
6914 Berquist Ave.
Canoga Park, CA 91307
Microsette Co.
777 Palomar Ave.
Sunnyvale, Ca 94086
Bob Nathanson
Kings Park High School
Route 25A
Kings Park, NY 11754

Carl C. Peck, M.D.
56 Hillcrest
Larkspur, CA 94939

SERVICES OFFERED/SPECIALTIES

Programming in BASIC, FORTRAN, ASSEMBLY ASSEMBLY LANGUAGE on all systems.

General purpose, Games

EDUCATION/GAMES/etc.

ELECTRONIC MAIL SYSTEMS VIA PETs with MODEMS.

JAPS-Jax Area PET Society offers PET Software. $\$ 1.50$ per program SASE for list to PET LIBRARY

Innovision offers both Software and Hardware (such as low cost device to allow handwritten character input to the PET).

Business and Engineering Applications.

```
Duplication of cassette programs. 100 quantity minumum.
```

Using PETS for both high school students and Adult Education classes in computer literacy.

Math modeling ad, simulation, pharmacokinetics, biostatistics.

Princeton Energy Group
729 Alexander Rd.
Princeton, NJ 08540

Thomas B. Simpson
5557 Coddington, Apt. lC Kalamazoo, MI 49009

Rev: James Strasma 120 W. King st.
Decatur, IL 62521
Ed Zwieback
175 Cordova Walk
Long Beach, CA 90803

Passive solar heating and
cooling, building design

Home Applications Programming

Church related programs and programming service.
(Central Illinois PET Users)
Real Estate Fianance, Acoustics

$\overline{\overline{\text { TAPES }}}$

If you have found your blank cassettes of inferior quality for creating programs you may wish to try AGFA's. These were recommended to us by Len Lindsay of the PET GAZETTE. He feels they produce one tape which is far superior to ALL others which can be used with the PET. These cassettes use "AGFA Premium" tape. You should be careful of companies advertising AGFA tapes for there are severaı different grades. "AFGA Premium" tape in the highest quality cassette housing are available from COMPUTER WAY. Their prices on AGFA Premium C-l0 cassettes are lower than others advertised.

```
25 at $1.00 each (total $25)
50 at $0.96 each (total $48)
100 at $0.85 each (total $85)
200 at $0.80 each (total $160)
400 at $0.75 each (total $300)
```

Approved Computer Clubs receive a 10% discount on orders of 200 or more. Shipping and quick delivery anywhere in the USA is included but boxes are extra. Order directly from:

Madison, WI 53707

```
Association of Personal Computer Users
    5014 Rodman Rd. . . . . . . . Bethesda, MD 20016
Amateur Computer Group of New Jersey
    Box 379 . . . . . . South Bound Brook, NJ 07076
Bambug}1450 53rd st. Emeryville, CA 94608
JAPS-JACKSONVILLE AREA PET SOCIETY
    401 Monưment Road #177 . . . . Jax, Florida, 32211
Lawrence Hall of Science, UC Berkeley
    Computer Project, Room 254. . Berkeley, CA 94720
Las Vegas PET Users
    484 Iron Ave . . . . . . . Las Vegas, Nev. 89110
Lincoln Computer Club
    750 E. Yosemite . . . . . . Manteca, CA 95336
Madison PET Users
    1400 East Washington Ave. Madison, WI 53703
Northern New England Computer Society
    P.O. Box 69 . . . . . . . . Berlin, NH 03570
North Orange County Computer Club
    3 0 3 0 ~ T o p a z , ~ A p t . ~ A ~ . ~ . ~ . ~ F u l l e r t o n , ~ C A ~ 9 2 3 6 1 ~
Northwest PET User Group
    P.O. Box 482 . . . . . . Vashon, WA 98070
PET User Club (CAPE)
    2 0 5 4 ~ E a k i n s ~ C 7 ~ . ~ . ~ . ~ . ~ . ~ . ~ . ~ R e s t o n , ~ V A ~ 2 2 0 9 1 ~
PET User Group
    2235 Lakeshore Dr. . . . . .Muskegon, MI 49441
PET User Group c/o Meyer
    3 5 \text { Barker Ave. . . .White Plains, NY . 10610}
PET User Group
    Texas A & M Microcomputer Club, Tex. A & M, Tex.
PET User Group
    P.O. Box 371 . . . . Montgomeryville, PA 18936
PET User Group
    2323 Washington Blvd. . . . Ogden, Utah 84401
PUG
    7170 S.W. llth St., West Hollywood, Fla. 33023
PUG of the silicone Valley
    22355 Rancho Verta...........Cupertino, Calif. 95014
Sacramento PET Workshop
    P.O. Box 26314 . . . . . . Sacramento CA 95826
SCOPE
    1020 Summit Circle . . . Carrollton, Texas 75006
SPHINX
    314 l0th Ave. . . . . . . Oakl and, CA 94606
St. Louis Club
    40 Westwood Court . . . . . St. Louis, Mo. 63131
The Human Society--United PET Users
    1929 Northport Dr. #6 . . . . Madison WI 53704
Valley Computer Club
        P.O. BOx 6545
            Burbank, CA
                                    91510
```


NEW DEALERS

IN LAST MONTH'S ISSUE WE PUBLISHED A 4 PAGE LIST OF OUR CURRENT DEALERS. SINCE THAT DATE WE HAVE ACQUIRED SEVERAL MORE DEALERS AND ARE PASS ING THEM ONTO YOU. PLEASE NOTE THOUGH THAT A FEW ARE SIMPLY A CHANGE OF ADDRESS.

ALASKA

Klopf Words
SR 51367
Fairbanks 99701
907-452-8502

CALIFORNIA

Active Business Forms	Computerland/Marin	Computer World, Inc.
1148 Alpine Rd., Suite A	1930-4th St.	3808 W. Verdugo Ave.
Walnut Creek 94596	San Rafael 94901	Burbank 91505
415-938-1230	415-459-1767	213-848-5521
The Base Station	Computerland/Pasadena	Computer World, Inc.
2101 Pacheco St.	81 N. Lake St.	5848 Sepulveda Blvd.
Concord 94520	Pasadena 91101	Van Nuys 91411
415-685-7388	213-449-3205	213-786-7411

Computer Age, Inc. Computerland/San Diego East Computer World, Inc. 4688 Convoy St., Suite 105
San Siego 92111
714-565-4042

Computerland/Belmont
1625 El Camino Real
Belmont 94002
415-595-4232

COLORADO

The Neighborhood Store 13045 W. Alameda Pky. Lakewood 80215

IL工INOIS

Appletree Stereo, Inc.	Appletree Stereo, Inc.	Appletree Stereo, Inc
1022 W. Lincoln Hwy.	1645 N. Alpine	117 E. Beaufort St.
DeKalb 60115	Rockford 61107	Normal 61761
815-758-2442	815-226-9826	309-452-4215
Computerland/Arlington Hgt.	Computerland/Mundelein	
50 E. Rand Rd.	1500 S. Lake St.	
Arlington Heights 60004	Mundelein 60060	
312-255-6488	312-949-1300	
Computerland/Downers Grove	Orcutt Business Machines	
136 W. Ogden Ave	431 First St.	
Downers Grove 60515	LaSalle 61301	
312-964-7762	815-224-2774	

Mundelein 60060
312-949-1300

Orcutt Business Machines

LaSalle 61301
815-224-2774

Computerland/Arlington Hgt. Computerland/Mundelein 50 E. Rand Rd.
Arlington Heights 60004 312-255-6488

312-964-7762

1645 N. Alpine

815-226-9826

GEORGIA

Olson Electronics 3131 Campbellton Rd. Atlanta 30311 404-349-3628
$\begin{array}{ll}2992 \text { Navajo Rd. } & 6789 \text { Westminster Ave. } \\ \text { El Cajon } 92020 & \text { Westminster } 92683\end{array}$
$\begin{array}{ll}2992 \text { Navajo Rd. } & 6789 \text { Westminster } \\ \text { El Cajon } 92020 & \text { Westminster } 92683\end{array}$
714-464-5656 714-898-8330

Computerland/Santa Maria 223 S. Broadway
Santa Maria 93454
805-928-1919

FLORIDA

Computerland/Jacksonville 2777-6 University Blvd. Jacksonville 32217
904-731-2471
904-731 241

Appletree Stereo, Inc. 117 E. Beaufort St. Normal 61761
309-452-4215

Stewart Business Nachines
4778 Broadway
Gary 46408
219-884-9474

KANSAS

Personal Computer Center 3819 W. 95th St. Overland Park 66026
913-649-5942

MARYLAND

Your Own Computer, LTD. 10678 Campus Way South Upper Marlboro, 20870 301-350-3500

MASSACHUSETTS

New England Electronics Co.
679 Highland Ave.
Needham 02192
617-449-1760

MICHIGAN

Computermart of Royal Oak
560 W. 14 Mile Rd.
Clawson 48017
313-288-0040
Lafayette Radio Elec.
34208 Van Dyke
Sterling Heights 48077
313-268-8550

MINNESOTA
Johnsons RIC Sales
1325-97th Ave. N.W.
Coon Rapids 55433
612-755-7037

NEW JERSEY
Cardiotronics
639 Ridge Rd.
Lyndhurst 07071
201-935-6677
S.S. Computer Enterprises 224 E. Madison Ave.
Cresskill 07626
.201-567-8076
NEW YORK
Computerland/Nassau Cnty 79 Westbury Ave.
Carle Place, L.I. 11514
516-742-2262

NY Astrology Ctr. Book Store 127 Madison Ave.
NY City 10016
212-679-5676

Lafayette Radio Elec.
3127 W. Huron
Pontiac 48054
313-681-7400

Main System, Inc.
$116 I$ N. Ballenger Hwy, S. 8
Flint 48504
313-232-3130

Zim Computers
5717 Xeres Ave
Brooklyn Center 55429
612-560-0336

Saturn Management, Inc.
600 Washington Ave.
Carlstadt 07072
201-939-4800

Thor Electronics Corp. 321 Pennsylvania Ave.
Linden 07036
201-486-3300

Olson Electronics
711 Main St.
Buffalo 14203
716-856-2504

Olson Electronics
3259 Sheridan Dr.
Buffalo 14226
716-837-6300

NEW YORK
United Photocopy Co., Inc.
41 Union Square
NY. NY 10003
212-929-4826

Olson Electronics
4401 Transit Rd.
Buffalo 14221
716-633-6644

Olson Electronics
3768 Seneca St.
West Seneca 14224
716-675-4330

Computerland/Columbus	Olson Electronics	Olson Electronics
6429 Busch Rd.	414 Northfield Rd.	36212 Euclid Ave.
Columbus 43229	Bedford 44146	Willoughby 44094
614-888-2215	216-663-5970	216-946-5457
Inductive Components	Olson Electronics	
1200 Ferris Rd.	1193 W. Pleasant Valley Rd.	
Amelia 45102	Parma 44134	
513-752-4731	216-888-6366	
OKL.AHOMA		
-		
Audio Horizons	Bradford Brothers	
3707 E. Frank Phillips	507 S. Main	
Bartlesville 74003	Tulsa 74103	
918-333-7748	918-584-4558	
OREGON	PENNSYLVANIA	
Computerland/Portland	The Computer House	
12020 S.W. Main St.	1000 Greentree Rd.	
Tigard 97223	Pittsburgh 15220	
503-620-6170	412-343-1339	
TEXAS		UTAH
Foleys	Computerland/Houston Bay A.	The Computer Works
2103 Ernestine	17647 El Camino Real	740 S. State St.
Houston 77023	Houston 77058	Provo 84601
713-651-6070	713-488-8153	801-374-0204

WASHINGTON

Omega Computers	Omega Computers
$839-106$ th Ave. NE	$5421-196$ th SW
Bellevue 98004	Lynwood 98036
$206-455-1138$	$206-775-7585$

```
COMMODORE BUSINESS MACHINES, INC.
3 3 3 0 ~ S C O T T ~ B L V D . ~
SANTA CLARA, CA }9505
COMMODORE/MOS
VALLEY FORGE CORPORATE CENTER
950 RITTENHOUSE ROAD
NORRISTOWN, PENN 19401, USA
COMMODORE SYSTEMS DIVISION
360 EUSTON RD.
LONDON NWI 3BL, ENGLAND
COMMODORE BUROMASHNINEN GMbH
FRANKFURTER STRASSE 171-175
6 0 7 8 \text { NEW ISENBURG WEST GERMANY}
COMMODORE JAPAN LIMITED
TAISEI-DENSHI BUILDING
8-14 lkue 1-CHOMEASAHI-KU, OSAKA 535 JAPAN
COMMODORE ELECTRONICS (HONG KONG) LTD.
WATSONS ESTATES
BLOCK C, llth FLOOR
HONG KONG, HONG KONG
```

Commodore Business Machines, Inc. 3330 Scott Road
Santa Clara, California 95050

