

VOLUME 1 ISSUE 3

Newsletter Contents

EDITOR NOTES
DATA EXCHANGE
COMMODORE NEWS
SOFTWARE
PERIPHERALS \& ATTACHMENTS
APPLICATIONS
PROGRAMMING
USERS' DIRECTORY \& ANNOUNCEMENTS COMMODORE AUTHORIZED PET DEALERS

MEMBERSHIP/SUBSCRIPTION

The Charter of the COMMODORE PET USER CLUB is to provide a method of sharing up to date information, and programs relating to the PET Computer between the many PET owners and users.

We would like to publish features from PET Users concerning specific applications interesting discoveries or even bits worthy of sharing. If you would like to contribute to future Newsletters, please send your article, letter or comments to:

```
THE EDITOR
COMMODORE U.S. PET USERS' CLUB
COMMODORE BUSINESS MACHINES, INC.
3 3 3 0 ~ S C O T T ~ B L V D . ~
SANTA CLARA, CALIF. }9505
```


Editor Notes

Dear Pet User Club Readers:
As User Club membership grows, the charter of this Newsletter-- to provide effective communication between Commodore and its equipment owners and users--becomes increasingly important.

To do this, we rely on hearing from each of you concerning all facets of usage, from intriquing problems to interesting discoveries.

The following error corrections have been noted in Issue 2:

- On Page 8, Mr. James A. Fowler is the author of "WEAVE AND DRAFT" and Mr. Mark Stewart is the author of "DYNAMIC JOB SCHEDULES".
- Page 22. Formatting Routine Program Listing Corrections:

Line 26: Delete left parenthesis preceding ABS (X).

Line l00: Delete space between X and $\$$.
Line 600: There should be a comma between the two "3s" rather than a semicolon.

Needless to say, we are always looking for ways to improve this Newsletter. Your comments and suggestions are wel comed.

Data Exchange

IN AN EFFORT TO EXPAND COMMUNICATION WITH OUR USERS, THIS SECTION WILL COVER ANSWERS TO YOUR SPECIFIC INQUIRIES NOT COVERED IN OTHER SECTIONS OF THE NEWSLETTER.

In response to Mr. Arthur B. Hunkins, we have published the requirements for high-speed duplication for the PET. Al though lengthy, this information should be something all Users could eventually benefit from.

TAPE DUPLICATION HINTS (by L. Bryant)
A. Explanation of PET recording scheme:

The PET cassette deck uses an unequalized constant current recording method to place data on magnetic tape. The encoding scheme uses three distinct full cycle pulses. (See Figure l).

Figure 1:
 Data Timing

A data zero or one is represented by a pairing (or dipole) of a short and a long pulse. If the short pulse is first, then the dipole is considered to be a zero. If the long pulse is first, the dipole is a one. The byte mark occurs once each byte and provides a reference for byte identification.
B. PET Playback Circuit

The PET cassette playback circuitry first amplifies the recorded signal then passes this through equalization and squaring circuits. Thus a logic-level signal is presented to the computer. The computer measures the time between negative edges of the signal and decodes the data from these measurements.
C. The following points are important to successful tape duplication:

1. The PET outputs data during WRITE to the cassette with the information carried by the positive transitions and accepts data during READ with the information carried by the negative going edges. See Figure 2.

Figure 2: Data in/OUT

2. Because of this encoding scheme, the data is polarity sensitive. A 180° phase reversal to proper data produce unreadable data. To check for proper data polarity with an oscilliscope, connect the scope to monitor the READ data from the PET cassette to the computer. Put the tape to be checked into the cassette and press PLAY. Set the horizontal rate to 100 micro-seconds per centimeter, and the triggering for negative going edges. Set the vertical scale to l volt per division and center the waveform on the screen. Adjust the scope trigger so that the displayed waveform is at the center of the left edge of the screen. The signal should appear as shown in Figure 3, with the negative going edges of the short and long pulses clearly visible. Depending on the scope used and the data, the byte mark negative edges may also be visible.

FIGLRE 3:

Try switching the polarity of the scope trigger to positive going edges and observe if the positive edges are closer to the proper timing than the negative edges. If the positive edges are better, then the recorded data has the wrong polarity.
3. Because of the great high frequency emphasis encountered with audio cassette recording the phase of the signal may shift as much as 90° due to this emphasis. This produces read data which is halfway toward being reversed polarity. This situation is evident when scope shows negative and positive edges to be equally far from the proper timing. A partial phase shift (much less than 90°) usually accompanies tape duplication and this is visible on the scope as a widening of the negative going edges. Generally, better duplication has been obtained with the high frequency peaking in the duplicator master deck reduced to nearly minimum.
4. The level at which a PET cassette deck records is around 500 nanowebers per meter, ($\mathrm{nWb} / \mathrm{m}$), which is just under saturation on low coercivity tapes. It has been found that duplicated tapes perform better when their level is slightly higher than the PET tape level. It is also possible to fully saturate the tape and obtain good duplication results. Generally, then, the rule on recording level is "the higher, the better", providing the duplication equipment can handle these elevated levels.
5. The PET cassette data is recorded $1 / 2$ track on $1 / 8$ inch tape. It has been found that when the data is duplicated with some stereo heads, the head skew and differing phase relationship between the 2 tracks causes a distorted signal and reduced readability. It is therefore best to use mounaural heads on duplicator slaves which are to be used for duplicating PET tapes.

For high volumn cassette tape reproduction you may wish to contact either of the following companies which currently produce Commodore Master Library Programs.

CORY SOUND
440 Brannan St.
San Francisco, Ca. 94107
ATTN: Phil Markinson
AMERICAN SOUND
OR 8120 Webb Ave.
North Hollywood, Ca. 91605
ATTN: Rick Hutchinson

Commodore News

NEW ROMS

A new set of Operating System ROMS - VERSION 2 will be available through your local authorized PET Dealer within the next 30 days. The price will be $\$ 49.95$. A description of the major differences appear in the PERIPHERAL \& ATTACHMENT section of this NEWSLETTER. When ordering, your dealer will need the serial number of your PETs' Main Logic Board Assembly (i.e. 320008,320081, 320132, or 320137).

NEW PRODUCTS

In our first NEWSLETTER we announced May production shipments for most of our new PETS and PERIPHERALS. We are pleased to report that during March, shipments commenced on the l6K and 32K Graphics Keyboard PETS.

This achievement was accomplished despite the entire relocation of our Manufacturing facility, to our Corporate Headquarters in Santa Clara. Visit your local PET DEALER (listed in this NEWSLETTER) to see the first in a series of exciting product introductions.

Software

NEW SOFTWARE

The following programs from our operation overseas are in the process of being added to our Master Library. Pricing and Ordering information will be included inour next issue.

BACKGAMMON

Plays Backgammon against you or against itself. An "aggression" level between 0-12 can be set. Complete introductory instructions included.

BOOKS

The "BOOKS" 2.0 book-keeping program has been professionally written for students of accounting, so that they may familiarise themselves with the processes of double entry book-keeping by seeing the impact of transactions upon displayed accounting statements. The program is also useful to persons preparing or simulating the accounts of small businesses, in that figures entered as a simplified trial balance may be directly displayed as accounting statements and further amended at will by the entry of transactions in the usual way.

BASIC STATISTICS PACKAGE I

Mean, median, variance, standard deviation, skewness, kurtosis, frequency distribution, linear regression, T-tests, correlation analyses. Data ishandled in DATA statements.

BASIC STATISTICS PACKAGE II

Six commonly used tests for running directly with data tapes: Paired t, Upaired t, Linear Regression, Man-Whitney, Wilcoxon, Spearman.

STRATHCLYDE BASIC COURSE

Written by Professor Andrew Collin who uses it to give newcomers to computing a very rigorous introduction to the PET and its BASIC. The package contains 12 programs and a large Workbook with many examples. The package is thoroughly reccommended.

USER PORT COOKBOOK

A manual for connecting devices to the User port. A program which lets you maintain and modify any registers you wish is included. The 6522 specification is included as an appendix.

SOFTWARE REVIEW

SOME COMMON BASIC PROGRAMS

The cassette version of SOME COMMON BASIC PROGRAMS was made specifically for the COMMODORE PET. (See PUBLICATIONS Section for review on the book version) The cassette reads closely with the book, except for afew listings, but the explanations, sample runs still apply.

The file names on the tape are the page number on which the program can be found in the book. For instance, you look in the book for LAST PAYMENT ON A LOAN and type LOAD "33". This will aid you in having less typos which can cause you to miss the program. Another convience is if you wish, you can scan the tape and find how close you are to a given program and which way to go to find it.

Below we have listed the 76 short programs contained in this well produced cassette.

```
Future Value of an Investment
Future Value of Regular Deposits (Annuity)
Regular Deposits
Regular Withdrawals from an Investment
Initial Investment
Minimum Investment of Withdrawals
Nominal Interest Rate on Investments
Effective Interest Rate on Investments
Earned Interest Table
Depreciation Rate
Depreciation Amount
Salvage Value
Discount Commercial Paper
Principal on a Loan
Regular payment on a Loan
Las Payment on a Loan
Remaining Balance on a Loan
Term of a Loan
Annual Interest Rate on a Loan
Mortgage Amortization Table
Greatest Common Denominator
Prime Factors of Integers
Area of a Polygon
Parts of a Triangel
Analysis of Two Vectors
Operations on Two Vectors
Angle Conversion: Radians to Degrees
Angle Conversion: Degrees to Radians
Coordinate Conversion
Coordinate Plot
Plot of Ploar Equation
Plot of Functions
```

```
Linear Interpolation
Curvilinear Interpolation
Integration: Simposn's Rule
Integration: Trapezoidal
Integration: Gaussian Quadrature
Derivative
Roots of Quadratic Equations
Real Roots of Polynomials: Newton
Roots of Polynomials: Half-interval Search
Trig Polynomial
Simultaneous Equations
Linear Programming
Matrix Addition, Subtraction, Scalar Multiplication
Matrix Multiplication
Matrix Inversion
Permutations and Combinations
Mann-Whitney "U" Test
Mean, Variance, Standard Deviation
Geometric Mean and Deviation
Binomial Distribution
Poisson Distribution
Normal Distribution
Chi-square Distribution
Chi-square Test
student's "t" Distribution
Student's "t" Distribution
"F" Distribution
Linear Correlation Coefficient
Linear Regression
Multiple Linear Regression
"N"th Order Regression
Geometric Regression
Exponential Regression
System Reliability
Average Growth Rate, Future Projections
Federal Withholding Taxes
Tas Depreciation Schedule
Check Writer Recipe Cost
Map Check
Day of the Week
Days Between Two Dates
Anglo to Metric
Alphabetize
```

If you would like to order this cassette please send your check for $\$ 10.00$ to:

In Volume l, Issue 2 of our Newsletter, Break-Even analysis was listed on page 10 . The program features the 'form' method of entering and displaying data; which provides a quick and easy method of entering and editing data. The program contains several modules which with slight modifications can serve many purposes. For this reason, each module will be discussed in detail as the 'printing of the form' was discussed in our last issue.

In order to understand how lines 40-90 control input from the form, it is necessary to know what each variable represents and how it is used.

Variable
\qquad Value or Description of its Function

A	field row position on screen
B	field column position on screen
C	field length
D	position of the cursor within a field
I	the number of the field
TE	the total number of fields
A\$	home plus 25 cursor downs
B\$	25 cursor lefts
C\$	40 spaces
D\$	input from keyboard
S\$	input from the screen when a field is ex ited. It equals the number printed on the screen.
W\$	```return + cursor up + cursor down + clear home + home + delete + cursor left + cursor right + space + insert```
Y\$	$1 \begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0\end{array}$

Controlling input from the form
Line Number Function
30 The screen is used as a file and open 3, 3 enables the program to access it. I is set equal to zero which is our first field, in this case FIXED COST.

Function

40
This line is only accessed when you enter a new field either by beginning the program or using cursor controls to change fields.

A, B and C take on the values of the new field's row, column and length respectively. D is set to 1 , placing the cursor at the first space in the field except when a delete or cursor left moves you out of a field into the last space of the previous field. If a delete is used D\$+ cursor left, space and cursor left sets $D \$=$ cursor left.
$B=B+C-1$ places the cursor at the end of the previous field for simulating the cursor (spacing over).
$\mathrm{D}=\mathrm{C}$ indicates that the cursor is at the end of the field to prevent input over the field length.

The subroutine starting at line 2000 simulates a cursor, gets the input from the keyboard, edits input from the keyboard for invalid da ta and resets several variables. Note that this sub-routine is only executed when the cursor is moved from one field to another. This module will be discussed in greater detail in our next issue.

K (I)=VAL (S\$) stores the numerical value of S\$ in $K(I)$ so that the first field is stored in $K(0)$, the second in $K(1)$ and etc.

Is a duplicate of 80 and should be omitted.
If the last accepted keyboard entry was a delete ($D \$=$ cursor left) then control jumps to line 84 .

The FOR NEXT loop in this line compares D\$ (the last accepted input from the keyboard with the first five characters in w\$: i.e. RETURN, cursor right, cursor left, clear home or home.

If $D \$$ matched one of the first five elements in W\$ then control is transferred as follows:

D\$	\underline{J}	GO TO
RETURN	1	90
cursor up	2	84
cursor down	3	86
clear home	4	88
home	5	89

However, should D\$ not be one of these five characters J will have a value of 6. Thus, this line will transfer control to line 86.

Accessed only when a cursor up has been typed in, or a delete or cursor back has put you in another field.

I=I-l puts you in the previous field.
If I 0 then $I=T E:$ Should you be in the first field this places you in the last field offering total wrap around.

Returns control to 40 .
Accessed only when the last accepted input was a cursor down, a field filled to capacity, or a cursor right carries you into the next field.

I is increased by one to carry you into the next field. If you are in the last field, $I=0$ places you in the first field.
returns control to line 40 .
Accessed only when a clear home has been typed.

3000-3020 clears the fields on the screen and resets the stored value of each field to zero.

Executed for both a clear home or home.
Sets I to \varnothing to place the control in the first field.
returns control to line 40 .
100-140 edits the input for incorrect data.

If data is acceptable then the calculations are performed and the answers displayed by lines 160-290.

Should the data be inadequate an error message is printed by lines 900910.

Control is returned to line 40.

Our next issue will examine the method employed to edit the input. (Lines 2000-2220)

NAME
\rightarrow CURSOR
\rightarrow THE PAPER
\rightarrow THE PET GAZETTE
\rightarrow PET USER NOTES

- SPHINX PET NEWSLETTER

FOR ORDERING INFORMATION WRITE:
Box 550
Goleta, CA 93017
P.O. BOX 43

Audubon, PA 19407
1929 Northport Dr.
Room 6
Madison, WI. 53704
Box 371
Montgmeryville, PA 18936
Lawrence Hall of Science Computer Project University of California Berkeley, CA. 94720

If we have forgotten your favorite PET Newsletter please inform us for updating our next NEWSLETTER.

PUBLICATIONS

Below is alist of books and manuals that fit into today's mode of personal computer information. Although the computer market has greatly increased, not all book stores are plentiful in this area. Therefore, we intend to release the titles and authors of quality information upon acknowledgement. They will be alphabetized, by title, for quick reference, priced and a short scholium of each book shall be included until the list becomes unmanagable. If your local PET dealer or bookstore does not carry the title you're interested in, contact the publisher directly.
$\rightarrow \frac{\text { BASIC FOR HOME COMPUTERS }}{\text { by B. Albrecht, L. Finkel }}$ and J. Brown
This is an excellent source for the PET beginner. It's format is self-instructional and makes mastery of the BASIC easy. Becuse of its completness, access to a Personal Computer is not even necessary to learn BASIC with this book. John Wiley \& Sons, Inc. \$5.95 605 Third Ave. 334 pgs.

Publisher: New York, N.Y. 10016
$\rightarrow \frac{\text { BEST OF THE PET GAZETTE }}{\text { by Len Lindsay }}$
This edition is an accumulation of the best information published by the non-profit magazine THE PET GAZETTE. It is an excellent source of available programs and is full of articles contributed from Users. This edition is a must for all PET owners.

Donation - \$10.00 Max.
95 pages
PET GAZETTE
1929 Northprot Dr.
Publisher: Room 6, Madison, WI. 53704

\rightarrow THE CHANNEL DATA BOOK

by Bill Lewis of Channel Data Systems
The CHANNEL DATA BOOK is the best reference book of Useroriented, PET related products that we've found on the market. It's directory includes EVERYTHING that PET USERS would possibly want:

```
SOFTWARE
HARDWARE & PERIPHERALS
LITERATURE AND PERIODICALS OF SPECIAL INTEREST TO PET USERS
LISTINGS OF USER GROUPS & DISTRIBUTION
CROSS REFERENCE BY PRODUCT TYPE & SUPPLIER
```

Prices and dealers are shown along with a short comment. The book includes an attractive $3-r i n g$ binder and updated supplements are sent at no additional cost. Definitly reccommended for ALL PET USERS.
$\$ 20.00 \quad$ Channel Data Systems
6\% sales tax for Calif. residents.

Publisher: Goleta, Ca 93017
\rightarrow GETTING STARTED WITH YOUR PET (\$3.95)
\rightarrow PET STRING AND ARRAY HANDLING (\$3.95)
\rightarrow PET GRAPHICS (\$4.95)
\rightarrow PET CASSETTE (\$4.95)
\rightarrow PET MISCELLANEOUS (\$3.95)
\rightarrow PET CONTROL AND LOGIC STATEMENTS (\$3.95)
by Total Information Services
This array of titles represents six manuals, designed specifically for the PET, each specializing in specific areas. These "workbooks" clearly designate proper ways of programming and how to get the most out of your PET. A definite MUST for your library.
(See titles for
individual prices) $\$ 19.95$ per set

Total Information Services P.O. Box 921

PUBLISHER: Los Al amos, NM 87544
\rightarrow HANDS-ON BASIC WITH A PET
by Herbert D. Peckham
This book is a prerequisite for all PET BASIC beginners. It gives the "student" of BASIC a straightforward, simplistic method of understanding BASIC "grammer", as implemented on the PET. Definitly reccommended for each new PET owner.
$\$ 10.95$
267 pgs.

McGraw Hill
8171 Redwood Hwy.
Publ isher: Novato, CA 94947

Impeccably an excellent genesis of microcomputer terminology. It covers everything from Logic Systems to Data Communications. It is comprised of 4,000 computer terms with clear definitions.

TAB BOOKS
\$7.95 \#l 088
P.O. Box 40

322 pgs
Publisher: Blue Ridge Summit, PA 17214
\rightarrow SOME COMMON BASIC PROGRAMS, 2ND EDITION
by Mary Borchers and Lon Poole
This book involves the description of numerovis programs written in the BASIC programming language. The ability to write programs in BASIC is not necessary, for programs are carefully described and include User examples along with the program listings. Available with this book, is a cassette, which is purchased at a separate price (\$l0.00). The cassette has also been reviewed in this issue, you can find it in SOFTWARE REVIEW. Purchased as a set or by themselves, they are a good programming source.

Osborne \& Assoc., Inc.
P.O. Box 2036
$\$ 8.50$
193 pgs.
Publisher: Berkeley, Calif. 94702
\rightarrow PROGRAMMING THE 6502
by Rodney Zaks
This book contains excellent material for learning to program the 6502. Key features and applications of this microprocesser are shown. Its contents ranges from simple to complex therefore it is a paragon to all microprocesser users.

Sybex
$\$ 10.95$
204 pgs.
Publisher: Berkeley, CA 94704
$\rightarrow 24$ TESTED, READY-TO-RUN GAME PROGRAMS IN BASIC
by Ken Tracton
23 of the Programs presented in Mr. Tracton's book, require 8 K of memory, except for 'star Warp', which needs 20 K . Program Listing and Documentation are provided for all programs. The selection of games given could be quite an addition to your recreation library.
\$5.95
251 pgs.
TAB Books
P.O. Box 40

Publisher: Blue Ridge Summit, PA 17214

If you've read a good programming book that you feel would benefit our readers and would like to share it with them, please feel free to write our Editor.

Peripherals \& Attachments

ROMS VERSION 2 OPERATING SYSTEM (by J. Feagans)

By retroffiting your existing 8 K PET with the Version 2 ROMs, you can add several new software features.

The most important addition to the new ROMs is the Machine Language Monitor, formerly loaded into RAM from the cassette tape, P / N 321000. This monitor allows you to load and save arbitrary blocks of memory, examine and deposit values into RAM, and execute Machine Language Programs with pre-set breakpoints for debugging purposes.

The 6502 NMI (Non Maskable Interrupt) vector has been defined to point at a warm start of BASIC. This allows you to restart a machine without destroying data. Also, a warm start of the Machine Language Monitor is available if you ground the diagnostic sense line on the parallel port while simultaneously applying RESET. (For further explaination refer to Table 7.6 and Table 7.13 in the PET USER MANUAL.)

Some improvements to be noted with the new ROMs are:
\rightarrow Arrays may be dimensional as a function of available memory size. (256 element constraint was eleminated)
\rightarrow The OPEN statement has been corrected when writing cassette files thereby eliminating the following program patch:

OLD:	CASSETTE 1 POKE 243,122 POKE 244,2 OPEN $1,1,1, "$ DATA FILE"	CASSETTE 2 POKE 243,58 POKE 244,3 OPEN 1,2,1,"DATA FILE"
NEW:	CASSETTE 1 OPEN l,1,1,"DATA FILE"	CASSETTE 2 OPEN $1,2,1, " D A T A$ FILE"

\rightarrow The gap between tape records is automatically extended to the required enter-record gap. The following code is no longer required in conjunction with the PRINT statement:

CASSETTE \# 1 CASSETTE \# 2
POKE 59411,53 POKE 59456,207
\rightarrow The accuracy of the TIME \$ function has been improved.
\rightarrow THE RND (\varnothing) function becomes available and is based on a freerunning clock rather than the pseudo random number generated by RND (1).
\rightarrow When an attempt is made to open more than $1 \varnothing$ files, the following error message will PRINT rather than entering a Lock-up state:
"?TOO MANY FILES ERROR"
\rightarrow When a checksum error is encountered while loading from the cassette, the load will be terminated rather than loading potential garbage in memory reserved for the operating system.
\rightarrow When a program attemps to write data into a file which has been previously defined for input only, the message reads:
? NOT OUTPUT FILE ERROR
The previous ROMs gave the message:
? FILE NOT OPEN ERROR

Applications

In our previous NEWSLETTERS we offered $\$ 50.00$ worth of free Master Library Software to the best 'Application' program submitted. This incentive has now been DOUBLED to $\$ 100.00$!

For further competitive inspiration, we will be soliciting specific categories of Software each month.* This by no means should stop you from submitting your Application Program just because it doesn't fall within this months' category - send it in and it could be published on its own merit.

Al so, for our review staffto be as effectual as possible, please include, with your tape, complete and accurate documentation.
*Current submittals should aid the HOUSEHOLD; personel finance, record keeping, gas mileage file, recipe file, etc....Anything dealing with the efficiency of the American household. The deadline for this application will be May 25 , with the "winner" to be announced in early June Why not get some competition going internally with your local USER Group, or compete with another group in your city. Good Luck!

Programming

THIS SECTION WILL BE DEALING WITH USEFUL ROUTINES AND PRO－ GRAMMING TECHNIQUES FOR YOUR PET．SOME ARTICLES COME FROM USERS，SOME FROM OURSELVES，AND THERE IS A＇BITS AND PIECES＂ SECTION FOR SMALLER YET VALUABLE ITEMS．

LINE LISTER
（by H．S．Patterson）
LINE LISTER is a short BASIC program that can be used as an aid to BASIC programming development．It is less than lK in size and most lines are numbered above 63000．The program can be loaded and used in viewing the lines of the program being developed．

When RUN is typed and RETURN has been depressed，you are prompted for the starting line．Once the starting line has been entered，the ending line number or a range is then requested．These line numbers are POKED into the program at Line 2．（See Listing below）．Upon subsequent RUNs， the RETURN key may be entered to view the same range of BASIC program lines．

If you want to view a particular set number of lines，the letter＂R＂and a number can be entered at the second prompt． Typing only a RETURN at this point will default to 15 lines， （about one screen＇s worth of lines）．

When an ending line number has been determined，the time of day，and the size of unused memory，FRE（0），is highlighted on the top line along with the listing．The time of day must be initialized by typing in RUN 3 and completing the appropriate entry．

If you keep your program modularized and numbered between
10 and 62999，this small program core can be very convenient in the editing and development of any BASIC program．

```
1 G0T06346E
2 LISTG日G01-636175
3 GOTO6350@:REM SET TIME
4 **** LINE LISTER 米米
5 *** WRITTEN B'H. SCOTT FATTERSON ****
63600 PRINT"STARTING LINE?AME!";
630101 OPEN1,0:INPUT#1,A $
63020 IFASC(A })=160\mathrm{ THEN63060
63030 SL=V/AL(A $):G0SUB63200
63040 L=SL :M=1045:GOSUB6316e
63050 L=EL :M=M+6:GOSUB63100
63068 T%=VAL(TI$)/100:T0$=" AM":IFT%=>120@THENTO$=" PM"
63065 IFT%<190THENT%=T%+120日1
63070 IF T%=31300 THENT T = T % - 1200
63075 T1林IGHT$(" "+STR$(T%),4)
63080 PRINT"LJ= ";:FRINTLEFT$(T1事,2)":"MID$(T1$.3.2)T6%;
63085 CLR:PRINT" SPC="FRE(0)"# N
```

```
63090 60102
63160 L卉=STRक(L):LL=LEN(L%)
63110 FOFI=0TO4:FOREM-I,4S:NEXT
63120 FOFI=6TOLL-2
```



```
632EG FRINT
```



```
63216 INFUT#1,0%
63215 IFASC(O$)=16日THENHL=15:FFINT"WFANGE="NL :G0T063235
63220 EL=VAL(C$):IFELG\GTHENRETURN
```



```
63230 NL=VAL(RIGHT本(GF:LEN(Ct)-1))
63235 LK=1625:CL=SL
63240 GOSUB63300
63245 IFCL>=SLTHEN 63260
63250 GOSUB63306 IFLK<30G0T063246
63255 RETURN
63266 FORN=1 TONL- 1
63265 GOSUB6330日: IFLK=ETHENFE TURN
63270 NEXT:RETURN
63300 EL=CL:CL=FEEK(LK+2)+FEEK(LK+3) *S5E
63310 LK=FEEK(LK+1) *25E+PEEK(LK):RETURN
```



```
63510 TI事=RIGHT事("G"+T$:4)+"E日":RUN
```


WAITING FOR THE CASSETTE

（by J．Parsons）

Some Users may wish to print their own messages to direct the use of the cassettes．This can be done with the use of the BASIC command，WAIT．

The WAIT command will halt the PET Basic program until a bit is set or reset based on the format of the WAIT command．

EXAMPLE：WAIT 59411，8，8
This statement will wait until the 3rd bit（Value of 8）of location 59411 （TAPE \＃l CONTROL VECTOR）isreset（BIT＝，）．That is，the PET will wait until cassette \＃l＇s（internal cassette） motor is turned on．

WAIT 59411，8
This statement will wait until the 3rd Bit of location 59411 is reset $(B I T=1)$ ．That is，the PET will wait until cassette \＃l＇s motor is turned off．

EXAMPLE PROGRAM FOR CONTROLING TAPE \＃I：

```
    16 FRINT "REWIND TAPE ONE"
    15 WHIT 59411,8,8
    2G FRINT "THANKK YOU"
    25 PRINT "PRESS STOF KEY ON TAFE ONE
```

```
3G WHI1 5`411,`
35 FFINNT "THANKK TOU"
4G FFINT " FRESS FLAT ON IAFE #'"
45 WAIT 59411,3,8
5E FFINT "lHANK' TOU"
EG OFEN 1:1:E
GS FRINT "FOUNU A FILE ON THE IHFE"
70 FRINT "FKESS IHE SlOF ON IHFE #1"
75 WH11 59411.8
80 CLOSE1
SG FHINI "THAFKK rOU"
```

If you wish to control Tape \#2 then use "WAIT 59456,16,16" to wait for the motor to start and "WAIT 59456,16 " to wait for the motor to stop.

NOTE: The execution of the WAIT Command cannot be stopped with the RUN/STOP key. Therefore, if you instruct the PET to WAIT for a condition that will never occur, the only way to recover control is to reset the PEI (turning i.t OFF and then ON).

To find more on the WAIT command read page $B-7$ in the PET USER MANUAL. For Boolean operators check page D-2 of the PET MANUAL and page 21 of the MOS PROGRAMMING MANUAL.

PROBING PET'S MEMORY

The following article was written by Karl Hildon and appeared in "The Transactor", Bulletin \#9. Accompanying it is a copy of Jim Butterfield's memory map. We thank them for their contribution and permission to allow us to share it with you.

Although other maps have been published, I found Jim's to be the most comprehensive thus far. It lists nearly all of the sub-routines that PET has in ROM and also the areas of RAM that PET uses as registers and buffers. For those who hav en't used a memory map it's as easy as using a city road map. We'll explore this simplicity with a few examples but first a brief explanation of PET memory and the memory map.

ADDRESSING

Every memory location in your PET contains one byte of information. In order for PET to get at these bytes it must have a means of accessing them. Therefore, each and every memory location has its own individual address; all 65536 of them. The microprocessor places these addresses on the address buss which immediately enables one memory location to the data buss. Bearing that in mind, one of two operations can happen now. PET can either place a byte into that location (i.e. POKE) or "look" at what's already there (i.e. PEEK). When performing the first operation the microprocessor places a byte on the data buss and transfers it along the buss and into the enabled memory location.

In the second operation, the information or byte in the enabled location is transferred onto the data buss and along the data buss back to the microprocessor. This location is not "emptied" but rather only a duplicate or copy of the information is transferred. Once either of these operations is complete the microprocessor then places a new address on the address buss and another location is enabled. This process repeats thousands of times every second, however, these operations aren't possible on all memory locations, but I'll explain this later.

The microprocessor has control of 99.9% of the addresses being placed on the address buss. That extra 0.1% control was left for the user and can be obtained through use of the PEEK, POKE and SYS commands. When executing these commands the user must choose an address. This address will be one of the 65,536 memory locations, (i.e. 0 to 65535). This is where the memory map enters the picture. The memory map may well be your most powerful tool for choosing addresses. If you look at the map you'll see that all of the addresses are listed in ascending order down the left hand side; first in hexadecimal and then in decimal. (See section on hexadecimal and binary for explanation of this conversion), the decimal address is the one you use when executing the above 3 BASIC commands. To the right are the descriptions of what you can expect to find at the corresponding addresses. If we then PEEK these addresses we are returned the actual bytes that are in those particular memory locations. For example, let's say during a program we hit the STOP key and got:

BREAK IN 600
READY

PET gets '600' from a storage register at addresses 138 and 139. We could also PEEK these locations and find that 600 is indeed stored in 138, 139. However, it is not stored as a six, a zero and a zero. Instead it is stored as the decimal conversion of the line numbers representation in hexadecimal. All information of this type is returned in this manner. Now that we know what the memory map will help us do let's cover some of the rules.

RAM and ROM
We all go through life with basically 3 types of memory:

1. MEMORY PRESENT: This memory we use to remember things like what street we're driving on or our present location.
2. MEMORY PERMANENT: Things like our names and fire is hot we never forget.
3. MEMORY PAST: Recent occurrences and not so recent such as things we did 10 or 12 years ago.

In the PET there are only two:

1. RAM Random Access Memory: This type of storage is used for our programs and things that change such as the clock and previous line number.
2. ROM Read Only Memory: This is PET's permanent memory. In ROM are the addition routines, clock updating routines and loading routines to name a few. These functions would have to be programmed into PET on each power up if they weren't permanently 'burnt in'.

The third type, memory past, is instantly 'forgotten' on power down. The only way to recall it is to first save it on disk, tape, etc.

Recall earlier I mentioned that POKE and PEEK aren't possible on all memory locations for several reasons:
A. Not all PET memory locations actually exist. On the memory map. locations 1024 to 32767 is the 'available RAM including expansion'. If you have a PET with 8 K , simple arithmetic shows that $3 / 4$ of the available RAM space is non-existent. If you decide to expand your system, PET will 'fit' the added RAM into this area. However, POKing or PEEKing this space (i.e. 8192 to 32767) will return invalid results on 8 K PETs.
B. The same concept applies to locations 36864 to 49151 . This is the available ROM expansion area.
C. Next on the memory map is the Microsoft BASIC area; locations 49152 to 57463. This is the memory that recognizes and performs your commands. Changing the contents of these locations is impossible because it is Read Only Memory and is actually 'burnt in' at the factory. Therefore, POKing these locations will simply do nothing. Also, Microsoft requested that these locations return zeros if PEEKed (for copyright reasons).

With these 3 rules and your memory map you are now equipped to explore capabilities of your PET that you probably never thought possible. Before we try some examples let's go into one more important occurrence that may have had you scratching your head ever since that first power up.

MISSING MEMORY?
When you turn on your 8K (where K - 1024) PET, the first thing it tells you is 7167 BYTES FREE; reduction of almost 12%.
Q. Where did the missing 1024 bytes go?
A. It's still there...right below the available RAM space (notice it starts at location 1024). PET uses this memory to do some very useful operations for you which you can find and access by looking them up on the memory map.
Q. But why not do this in ROM space?
A. PET needs RAM type memory to store this data because it is always changing. The information in this "low" end of memory is actually produced by routines found in R.OM.

Take for example the built-in clock. The clock or time is stored in locations 512,513 and 514 of RAM. However, the data comes from a routine found in ROM at location F736 hex: The time is of course always changing, therefore, it must be stored in RAM. But because it is in RAM you may also change it; either by setting TI or TI\$ or you can POKE the above 3 locations. Try it.

Now let's try some examples.

1. Location 226 (OOE2 in HEX) holds the position of the cursor on the line. Try these:

POKE 226,20:?"PRINTS AT NEXT SPACE ?"123456789";:?PEEK(226)
2. Location 245 (00 F 5 in HEX) stores the line the cursor is presently on (0 to 24). POKing this location will move the cursor to the specified line after a display execution. For example try:
?"A": POKE 245,10:?"B":?"C"
POKE 245,21-1:?"cu":POKE 226,20:?"PRINTS HERE"
The above will move the cursor to line 20 (21-1), print a 'cursor up' on line 21 and display your message starting at column 21, line 20.

While experimenting with out-of-range values I obtained some rather interesting results. Try POKing location 245 with a number greater than 24, say 40 or 60 , and hit the cursor up/down key a number of times. Also, experiment with unusual numbers in location 226 such as:

POKE 226,100:?"123456789"
3. Location 526 is the reverse field flag. POKing this address with a non-zero value will execute the following same line print statements in RVS field. Once finished, PET resets 526 to zero. Try this:

POKE 526, 1:?"123":?"456"
now INST a semi-colon between 3" and the colon (i.e. ...23";:?"4...) and re-execute.
4. Notice below the RVS field flag is location 525; the number of characters in the keyboard buffer. Above the RVS flag is the buffer itself at locations 527 through 536. Although this designates 10 buffer locations, there are actually only 9. The tenth (536) is for some reason a "dead" location. During program execution, the operating system scans the keyboard every 60th of a second. If keys are typed, say, during a 'FOR NEXT' loopc, they are stored in the keyboard buffer until the program encounters a GET or an INPUT.* PET then

* or after a BREAK, READY.
'draws out' the contents of the buffer and implements them according to the command involved (GET or INPUT). However, if more than 9 keys are typed during the loop. PET erases the entire contents of the buffer and continues to fill the buffer with the 10th character as if it were the first, and so on ("modulo 10").

In the command mode (i.e. when you're operating PET directly all typed keys go first into the keyboard buffer and then into screen memory or VIDEO RAM. However, you may also load the buffer under program control by POKing the ASCII representations of the characters into sequential locations of the buffer. You must also increment by 1 the contents of 525 each time another character is POKed in, but remember--not past 9. Page 6 of "Transactor" \#2 contains a table of all the values for characters and commands. "Transactor" \#1, page 12 lists
some extras such as cursor controls and the RETURN key (13). Try the following endless loop. 145 is a cursor up

POKE 525,4:POKE527,145:POKE528,145:POKE529,145:POKE530,13
Some other interesting items are:

```
POKE59409,52 - Blanks screen
POKE59409,61 - Screen back on
POKE59411,53 - Turns cassette motor on
POKE59411,61 - Turns motor off
POKE59468,14 - Lower Case mode
POKE59468,12 - Graphics mode
POKE537,136 - Disables STOP key and clock
```

If anyone knows of or discovers and peculiarities by"POKing" around, please send them in. When I receive enough of them a handy dandy 'PETRIX' card will be included in a future "Transactor" bulletin.

THE SYStem COMMAND
On the last three pages of the memory map are listings of the subroutines stored in PET ROM that perform your commands and programs. These subroutines are stored as machine language. When a SYS command is executed PET jumps to the specified decimal address and continues from there in machine language. Take for example the Machine Language Monitor program. This is a machine language program and is initialized by a SYS command stored as a BASIC program line. LOAD and RUN your M.L.M. then type ' X ' and hit 'RETURN' to exit to BASIC. Now list. What you'll see is:

10 SYS (1039)
Location 1039 is the address to which PET will jump and also the address at which the first machine language instruction is stored. (listing of all of all of the M.L.M. instructions is in "Transactor" \#5, pages 5A and 5B). When this BASIC line is executed PET operates in machine code beginning with address 1039.

The SYS command does not require brackets around the specified address.

Since PET has its subroutines stored in machine language you can use the SYS command to access and execute them. However, you may come up with some rather peculiar if not disastrous results. When jumping into ROM you may find yourself in the middle of a subroutine or at the beginning of a subroutine belonging to a major function routine. Often PET will 'hang-up' or crash and you will be forced to power down to resume normal operation. To demonstrate jumping into the middle of a routine, try the following examples:

```
1. SYS52764 (CEIC)
2. SYS62498 (F422)
3. POKE523,1:SYS62498 (F422)
4. SYS62463 (F3FF)
5. SYS64824 (FD48)
```

The numbers on the right are the addresses of the above sub-routines in hexadecimal. Compare them to the memory map, especially for e.g. \#l. Also take a look at 523.

The following are examples of valid locations which you can use with the SYS command to access useful routines, however these routines are already accessible through BASIC.

1.	SYS62651	(F346)
2.	SYS62278	(F4BB)
3.	SYS63134	(F69E)

Example \#3 will perform a 'SAVE' but will not produce a tape header.
Experiment with your memory map. Hex to decimal conversions can be obtained using the method following this article.

SUMMARY
This has been merely 'a scratch on the surface' of the extremely complex inner workings of PET. Do not be afraid to experiment with the POKE and SYS commands. There is absolutely nothing you can do to harm PET from the keyboard that turning power off and on won't fix. Also, do some PEEKing around expecially in low end memory. One good way is to write a small monitor program:

$$
\text { 10?"c"PEEK(516):GOTO } 10
$$

The above will monitor the SHIFT' key. Try running it and depress 'SHIFT'. Compare the map.

When POKing or SYSing to random addresses, remember the address you choose. Often PET will do something which may erase the address from the screen (e.g. SYS64840).

The addresses that have been listed here are only a few of many that are already known and only a minute percentage of the ones no known. Probe around and send in any discoveries, useful, peculiar or otherwise.

Send to:
PET Newsletter Editor
Commodore Business Machines, Inc.
3330 Scott Boulevard
Santa Clara, California
95050
for publication in future Newsletters.
Cassette buffer length/Taylor constant pointer
Get Basic Char: C9.CA=pointer Cassette buffer length/Taylor constant
Subrtn: Get Basic Char: C9.CA=pointer
RND storage and work area
Pointer to screen cursor line Pointer to screen cursor
position of cursor on line Position of cursor on line
Utility pointer; tape buffer, scrolling End of current program/tape and address Tape timing constants
Tape buffer character Direct/programmed cursor; Tape read/verify flag
Tape write flag Number of characters in file name
Logical file number
File command (from opEN)
Device number
Maximum line length (40 or 80)
Tape buffer address (start of buffer)
Line where cursor lives
Last key pushed (ASCII); buffer checksum
Tape start address/tape pointer
File name pointer
Number of "insert" keys pushed
Serial bit shift word
\# blocks remaining to write
Serical word buffer
Binary to ASCII conversion area
Stack area
TI and TI\$ clock - jiffies
Which key depressed: $255=n o$ key
Shift key: l if depressed
Clock (unused?)
Cassette l status switch
Cassette 2 status switch
Keyswitch BIA: STOP \& RVS flags, etc. Keyswitch BIA: STOP \& RVS flags, etc.
Load=0, Verify=1 Load=0, Verify=1
Status
\# characters in keyboard buffer Reverse flag
Hardware interrup vector
Break interrrupt vector
End-of-line-for-input pointer
End-of-line-for-input pointer
Cursor log (row, column) PBD image for tape I/O
$0=$ flashing cursor; else Cursor timing countdown Character under cursor

Line address high \& screen line wrap table

 H
号
0
1
N
H
0
0

0 | 0 | ∞ |
| :---: | :---: |
| 1 | |
| 1 | 0 |
| 1 | 1 |
| 1 | 1 |
| and | |
| 0 | 0 |
| 0 | 0 |

 $\begin{array}{r}\square \\ 5 \\ 0 \\ 0 \\ 1 \\ 1 \\ \mu \\ \hline \\ \hline\end{array}$
 ∞
2
0
0
1
1
1
0
0

∞	
w	
0	0
0	0
1	0
1	0
1	a
0	0

 \begin{tabular}{l}
1

\hline 1

\multirow{1}{4}{} \& 1

0 \& 1

-1 \& 1

0 \& 0

1 \& 1

0 \& 1

0 \& 0

-1 \& -1

0 \& 0
\end{tabular} N

 0
\circ
N
0
1
1
L
N
N
0
 $\begin{array}{ll}\infty & 0 \\ 0 & 0 \\ \text { N } \\ 0 & \\ 0 & \\ 0\end{array}$氏 M $\begin{array}{ll}U & 0 \\ \text { O } \\ \text { N N } \\ \text { N }\end{array}$

∞		
N		
0	0	
1	0	1
1	1	1

 USR Jump instruction
Current I/9 Device for prompt-suppress
Cursor position for Input \& Print
Integer address from Basic (for SYS, GOTO, etc.)
Basic input buffer; \# of array subscripts
Search character (usually ' ' or end-of-line)
Scan-between-quotes flag
Basic input buffer pointer; number of subscripts
First-character of array-name; default DIM flag
Type: FF=string; oo=numeric
Type: 80=integer; o0=floating point
'DATA' scan flag; LIST quote flag; memory flag
Subscript flag; FNx flag
0=input, 64=get, l52=read (flag)
flag for trigonometric signs/comparison evaluation flag
input flag (suppress output if negative)
variable pseudo-stack pointer
fixed-point pseudo-stack pointer
dummy value (0)
variable x pseudo-stack
pointer for number transfer
number pointer
product staging area for multiplication
start of basic pointer
end of basic/start of variables pointer
end of variables/start of arrays
start of available space pointer
bottom of strings (moving down) pointer
top of strings *moving down) pointer
limit of Basic memory pointer
current program line number
previous line number
previous line address (for conT)
line number of DATA line
memory address of DATA line
input vector (DATA, etc.)
current variable name
current variable address
variable pointer for current FoR/NEXT
Y save register; new operator save
comparison symbol accumulator:
number work area for sQR, etc.
pseudo-stack yardstick (3 or 7)
jump vector for functions
numeric store area
numeric store area
secondary accumulator
sign comparison, primary/secondary
low-order rounding byte for primary accumulator E,M,M,M,M,S

PET MEMORY LOCATIONS
⿴囗大 뼝
 꼉
0
0
1
1
1
1
M
M
∞

O

DB2A－DB2C performs ABS

DE2D－DB6C compares primary accumulator to memory | 易易 |
| :--- |
| N |
| 0 |
| 1 |
| 1 |
| 0 |
| 0 |
| |
| |
| 0 | 0

0
曻曷
0
0
1
1
1
0
0
0
0品 0
0
0
0
1
1
0
0
0
0
0

0
0
0
0
1
1
1
0
0
0
0
0
010

 $\begin{array}{ll}0_{0} & 0 \\ 0 \\ 0 \\ 0 \\ 1 & 1 \\ 1 & 1 \\ 0 \\ 0 \\ 0 \\ 0 & 0\end{array}$ g
y
0
0
1
1
1
0
0
0
0
 $\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ \\ 0 & 8\end{array}$

0
0
0
0
0
0
1
0
0
0
0
u

o
0
0
0
1
0
0
0
0
0

足

08
0
0
0
1
1
1
0
0
0
ω

0
1
1
0
0 8.8
0
0
0
0
1
1
0
0
0
0 8.8
0
0
0
1
1
0
0
0

搨团团

 peads primary accumulator from memory（\＄bo－\＄B5）
transfers primary accumulator to memory
transfers secondary accumulator to primary routines to multiply or divide by 10
performs division performs multiplication
loads secondary accumulator from memory（\＄B8 to \＄BD）
test and adjust primary／secondary accumulators performs LOG function executes WAIT statement
performs addition and subtraction
contains floating－point constants performs PEEK and POKE
executes WAIT statement gets two arguments（16－bit and 8－bit）from Basic
checks argument is in range $0-65535$
 performs CHR\＄function
performs LEFT\＄，RIGHT\＄，MID\＄functions
performs LEN，gets string length
performs ASC function does＇garbage collection＇－discards unwanted strings scans and sets up string elements checks direct／indirect command，gives＇ILLEGAL DIRECT＇
executes DEF statements and evaluation FNX
performs STR\＄function converts fixed point－to－floating
performs PCS function locates and／or creates arrays
is 32768 in floating binary әuț7noxqns xə7uṭod Kexie st creates a new Basic variable searches for a Basic variable performs comparisons perform the OR and AND functions identifies and sets up function references set up a variable name search checks for special variables TI，TIS and ST checks for comma
prints SYNTAX ERROR and exits
sets up function for future ev
 checks for various functions
evaluates expression within parentheses（）
checks for right parenthesis checks for special characters（＋，－，＂，．）at start of expression
performs NOT function
Set buffer start address
Set tape buffer start and end pointers
perform SYS command
perform SAVE
find unused secondary address
update clock
set input device
set output device
bump tape buffer counter
wait for cassette PLAY switch
test cassette switch line
wait for cassette RECORD and PLAY switches
read tape initiation routine
write tape initiation routine
complete tape read or write
wait for I/O completion
test stop key and abort if necessary
subroutine to set tape read timing
interrupt routine for tape read
save memory pointer
set ST error flag
subroutine to count 8 serial bits per byte
subroutine to write a bit to tape
interrupt l for tape write - entry at FC2l
terminate l/O and restore normal vectors
subroutine to set interrupt vector
power-on reset entry; test for diagnostic
diagnostic routine
checksum routine
pointer advance subroutine
diagnostic routines
JUMP TABLE
opEN
CLOSE
set input device
set output device
restore normal I/O devices
input character (from screen)
output character
LoAD
SAVE
vERIFY
SYS
test stop key
get character from keyboard buffer
abort all I/0 channels
update clock
turn off cassette motors
NMI vector (mangled)
reset vector
interrupt vector

DB6D-DB9D
山
U
0
0
0
1
0
0
0
0
0
0
DC54-DCAE
$\begin{array}{ll}\text { DC94-DCAE } & \text { print Basic Line number } \\ \text { DCAF-DDE2 } & \text { convert floating point to ASCII string (at } 0100 \mathrm{up} \text {) } \\ \text { DDE3-DE23 } & \text { conversion constants - decimal or clock }\end{array}$ DE24-DE2D evaluation SQR function
$\begin{array}{ll}\text { DEAO-DEF2 } & \text { perform EXP function } \\ \text { DEF3-DF3C } & \text { perform function series eval }\end{array}$
perform function series evaluation
evaluate COS function
evaluate COS function
evaluate SIN function
evaluate TAN function
evaluate ATN function
Basic scan program, transferred to 00C2-00D9
completion of power-on-reset; memory test, etc.
partial test for TI and TI\$
input/read/get director
initialize I/O registers, clear screen, reset subroutine
receive input from keyboard/screen
set up new screen line
output character to screen

interrupt entry
interrupt return
hardware interrupt routine: cursor flash, tape motor, keyboard convert keyboard matrix to ASCII
write-on-screen subroutine
write-on-screen subroutine
print canned monitor message
IEEE-488 channel open, test, close
get input character from keyboard, screen cassette, IEEE
get input character from keyboard, screen cassette, IEEE
output character to screen, cassette. IEEE
restore normal I/O, clear IEEE channels
locate logical file table entry command
transfer file table entries to Device, Command
perform file CLOSE
test stop key
test stop key
test if direct/indirect command for suppressing file advice
perform file LOAD
print "SEARCHING.."
print "LOADING .." or "VERIFYING"
perform IEEE sequences for LOAD, SAVE and OPEN pearch for specific tape header
get parameters for OPEN and CLOSE
perform OPEN perform OPEN
search for any
clear tape buffer
write tape header
write tape header get start \& end addresses from tape header

Your PET has the ability to remember what you've typed, even when it's not scanning for input. The feature is commonly called "Keyboard Buffering". If you depress a key while the PET is executing instructions other than INPUT or GET, your input (up to 10 characters) is stored in the keyboard buffer. When the next INPUT or GET is encountered, your input will then be accepted and utilized by the program. This enables you to answer a question before it is asked thereby speeding up program execution time. However, if you accidently enter a wrong key while the PET is executing instructions, this input is also stored in the buffer. For this reason, it becomes advantageous in certain situations not to accept input, except when called for by the program. This can be done by clearing the keyboard buffer. The following line of code placed immediately before a GET or INPUT will clear the buffer.

$$
1 \varnothing \text { GET X\$: IFX\$ < >""THENIø }
$$

Several articles in other publications have suggested the use of the POKE to clear this buffer. Although the POKE 525,0 usually works, it is not recommended because:

1) the routine which uses this location is interrupt driven. Changing this buffer index may yield unpredictible results.
2) it will make your program machine dependent. In order to incorporate new features in the l6K\&32K PET's some memory had to be changed; the keyboard buffer being one of them.

Users' Directory \&

Announcemente

One of the major advantages in being a member of the PET USERS' CLUB is the ability to get hold of PET related Software and ideas. Although our Master Library of programs is now growing, we get frequent Software inquires for a wide range of applications.

In this issue, we have included the current Users' Directory, containing lists of people writing software, importing literature or starting local PET Groups. If you would like to use your PET for fun and profit, why not offer personal tutoring in PET programming to new PET owners. Alternatively, if you require a program to be written for you, ask for contacts via the USERS' DIRECTORY. The possibilities are endless. Please write to the EDITOR, U.S. PET USERS' CLUB, at our NEW address below.

To include your name in the USERS' DIRECTORY, please complete the following form:

TO: THE EDITOR, U.S. PET USERS' CLUB, Commodore Business Machines Inc., 3330 Scott Blvd., Santa Clara, Calif. 95050.

NAME:
ADDRESS

SERVICES OFFERED/SPECIALIST AREA OF INTEREST:

To include as many contacts as possible, we must restrict each USER to only one line of description.

COMMODORE reserves the right to edit or withdraw any entry.

LISTED BELOW ARE PET USERS WHO HAVE RECENTLY SUBMITTED THEIR SPECIALTY OR AREA OF INTEREST TO FURTHER COMMUNICATION WITH PET OWNERS THROUGHOUT THE UNITED STATES. IF YOU WOULD LIKE TO OFFER YOUR SERVICES TO OTHERS, PLEASE FILL OUT THE "USER DIRECTORY" FORM ON THE PREVIOUS PAGE.

NAME AND ADDRESS	SERVICES OFFERED/SPECIALTIES
William Brouillet	Tutoring New PET Owners.
Rte. 2 Box 228-H	Writing Financial and Sports
Kankakee, Ill, 60901	Simulated Programs.
Len Bugel	Business/Engineering
RFD 1	Application Software Development
Stration Mtn., VT 05155	Basic and 6502 Machine Code.
Roger C. Garrett	Teaching PET.
Rogers High School	Basic Programming
Computer Cl ub	
c/o 16 Grinnell St.	
Jamestown, RI 02835	
Bob Krebs	Programs well written to Order
c/o Folklife Terminals	inexpensively
Box 155	
Bronx, N.Y. 10453	
John M. Morgan M. D.	Medical application of Microcomputers
Lankenau Hosp.	in Diagnoise,
Lancaster \& City Line Ave	Theruputic and informational processing
Phila, PA 19151	Especially in the field of Diabetes Melutos.
Kent Poulsen, Area Vocational	Computer aided instruction. Education-
Route 3 Box 75	Electronics
Astoria, Ore, 97	
Kenneth Tong	Education--application of PET in
1800 Taylor Ave., N. 102	classroom.
Seattle, WA 98109	
Tycome Associates	Custom Software, PET Basic or
68 Velma Ave.	machine language.
Pittsfield, Mass. 01201	

THE LIST OF PET USER GROUPS LISTED BELOW IS BY NO MEANS COMPLETE. PLEASE NOTIFY US IF WE OMITTED YOUR GROUP.

```
Association of Personal Computer Users
    5 0 1 4 \text { Rodman Rd. . . . . . . . Bethesda, MD 20016}
Amateur Computer Group of New Jersey
    Box 379. . . . . . South Bound Brook, NJ 08&0
Bambug
    1450 53rd St. Emeryville, CA
JAPS-JACKSONVILLE AREA PET SOCIETY
    401 Monumment Road #l77 . . . . Jax, Florida, 32211
Lawrence Hall of Science, UC Berkeley
    Computer Project, Room 254. . Berkeley, CA 94720
Las Vegas PET Users
    4884 Iron Ave . . . . . . . Las Vegas, Nev. }8911
Lincoln Computer Club
    750 E. Yosemite . . . . . . Manteca, CA 95336
Madison PET Users
    1 4 0 0 \text { East Washington Ave. Madison, WI 53703}
Northern New England Computer Society
    P.O. Box 69 . . . . . . . . Berlin, NH 03570
North Orange County Computer Club
    3 0 3 0 \text { Topaz, Apt. A . . . Fullerton, CA 92361}
Northwest PET User Group
    P.O. Box 482 . . . . . . Vashon, WA 98070
PET User Club (CAPE) . . . . . . Reston, VA 22091
PET User Group
    2235 Lakeshore Dr. . . . . .Muskegon, MI 49441
PET User Group c/o Meyer
    3 5 \text { Barker Ave. . . .White Plains, NY 10610}
PET User Group . . . . .
    Texas A & M Microcomputer Club, Tex. A & M, Tex.
PET User Group
    P.O. Box 371 . . . . Montgomeryville, PA 18936
PET User Group
    2323 Washington Blvd. . . . Ogden, Utah 84401
PUG
    7l70 S.W. llth St., West Hollywood, Fla. 33023
PUG of the Silicone Valley
    22355 Rancho Verta..........Cupertino, Calif. 95014
Sacramento PET Workshop
    P.O. Box 26314 . . . . . . Sacramento CA 95826
SCOPE
    1020 Summit Circle . . . Carrollton, Texas 75006
SPHINX
        314 lOth Ave. . . . . . . Oakl and, CA 94606
St. Louis Club
    40 Westwood Court . . . . . St. Louis, Mo. 63131
The Human Society--United PET Users
    1929 Northport Dr. #6 . . . . Madison WI 53704
Valley Computer Club
    P.O. Box 6545 . . . . . . . Burbank, CA }9151
```


C= commodore

Authorized PET Dealers

AlABAMA	BYTE SHOP OF BERKELEY
COMPUTERLAND	1514 University Ave.
3020 University Dr, N W W	Berkeley, CA 94703
Huntsville. AL 38805	(415) 845.6366
(205) 539.1200	Pete Hollenbeck
GRICE ELECTRONICS, INC. 3696A Airport Blvd. Mobile, AL 36608 (205) 434.2481	BYTE SHOP OF BURBANK
	1812 W. Burbank Blvd.
	Burbank, CA 91506 (213) 843.3633
	Tom Marti
THE LOGIC STORE	
3808 Pepperell Parkway	BYTE SHOP OF CULVER CITY
Opelika, AL 36801	6435 Green Valley Circle
(205) 7457735	Culver City, CA 90230
PLAINSMAN MICRO SYSTEMS P. 0 Box 1712 Auburn, AL 36830	Jim Roseboro
	BYTE SHOP OF DIABLO VALLEY
ARIzona	Walnut Creek, CA 94596
	(415) 933.6252
ANCRONA	Charlie Babb
4518 E Broadway Tucson, AZ 85711 (602) 3812348	
	BYTE SHOP OF HAYWARD
	1122 B Street
COMMERCIAL \& HOME SYSTEMS. INC Eastside Executive Park 7840 E Braodway. Suite 113	(415) 537.2983
	Mike Lipschutz
Tucson, AL 85710(602) 8866850	BYTE SHOP OF LAWNDALE
	16508 Hawthorne Blvd.
COMPUTERLAND	Lawndale, CA 90260
3152 E Camelback Road	Dick Moule
Phoenix. AZ 85016 (602) 9565727	
	BYTE SHOP OF LONG BEACH
MILLET'S ELECTRONIC BUS. MACHINES	Long Beach, CA 90815
621 E. Braodway	(213) 597.7771
Mesd, AZ 85204	John Kelly
(602) 9641600	BYTE SHOP OF MARINA DEL REY
ARKANSAS	c/0 G \& Y Enterprise
	4658 Admiralty Way
COMPUTER PRODUCTS UNLIMITED 2412 Broadway	Marina Del Rey. CA 90291
	(213) 822.4384
Little Rock, AR 72206 (501) 3710449	
	BYTE SHOP OF MOUNTAIN VIEW
COMPUTERLAND/LITTLE ROCKThe Market Place	Mt. View, CA 94040
	(415) 969.5465
11121 Rodney Parham Rd Little Rock, AR 72212 (501) 224.4508	Boyd Wilson
	BYTE SHOP OF NEWPORT BEACH
(501) 224.4508	BYTE SHOP OF NEWPORT BEACH 674 El Camino Real
MICRO MARKETING. INC	Tustin, CA 92680
238 Central Mall	(714) $544-4997$
Ft. Smith, AR 72903(501) 452.4948	Bud Griffin
	2233 El Camino Real
MICRO MARKETING, INC 1000 C E Main	Palo Alto, CA 94306
Van Buren, AR 70956(501) 4748891	(415) 327.8080
	Bob Moody
(501) 4524946	BYTE SHOP OF PASADENA
CALIF ORNIA	496 S. Lake Ave.
	Pasadena, CA 91101
ADVANCED COMPUTER PRODUCTS 13108 E Edinger	(213) 684.3313
	Govinda Singh
Santa Ana, CA 92705 (714) 558.8813	BYTE SHOP OF PLACENTIA 123 Yorba Linda Blvd.
AFFORDABLE COMPUTER SYSTEMS (Santa Clara Byte Shop)	Placentia, CA 92670
	(714) 524.5380
3400 EL Camino Real	John Schiff
Santa Clara. CA 95051	byte shop of sacramento 6041 Greenback Lane
ANCRONA CORPORATION11080 Jefterson Bivd.	Citrus Heights, CA 95610
	(916) 961 -2983
Culver City. CA 90230	Wes Westphal
(213) 3903595	BYTE SHOP OF SAN DIEGO
ANCRONA CORPORATION6060 Manchester Ave.	8250 Vickers H
	San Diego, CA 92111
Los Angeles, CA 90045	(714) $565 \cdot 8008$
(213) 6419322	John Perry
ANCRONA CORPORATION	BYTE SHOP OF SAN FERNANDO VALLEY
1300 E . Edinger Ave.	18424 Ventura Blvd.
Santa Ana, CA 92705(714) 5478424	Tarzana, CA 93156
	(213) 343 -3919
ANCRONA CORPORATION	Dick Tasker
1054 E El Camino Real	BYTE SHOP OF SAN FRANCISCO
Sunnyvale, CA 94087 (408) 2434121	321 Pacific Avenue San Francisco, CA 94111
	(415) 421.8686
APPLE T.V. 2606 S. Robertson Blyd.	Pete Hollenbeck
Los Angeles, CA 90034 (213) 5594261	BYTE SHOP OF SAN JOSE 2626 Union Avenue San Jose, CA 95124 (408) $377-4685$ Ray Lyn
BUSINESS ENHANCEMENT CORP. $1 / 11$ E. Valley Parkway. Suite 109 Escondido. CA 92027 (714) 741.6335	

COMPUTERLAND/SAN FRANCISCO 117 Fremont St. San Francisco, CA 94105 (415) 546.1592	MR. CALCULATOR 55 Third St. San Francisco, CA 94108 (415) 543.1541
COMPUTERLAND/SAN JOSE 1077 Saratoga-Sunnyvale Road San Jose, CA 95129 (408) 253-8080	MR. CALCULATOR 318 Town \& Country Village San Jose, CA 95128 (408) 246.5710
COMPUTERLAND/SANTA ROSA 611 Fifth Street Santa Rosa, CA 95405 (707) $528-1775$	OLSON ELECTRONICS 11332 E. South St. Cerritos, CA 90701 (213) 860-0060
COMPUTERLAND/SOUTH BAY 16720 S. Hawthorne Blvd. Lawndale, CA 90260 (213) 371.7144	OLSON ELECTRONICS 401 Parkway Plaza Fletcher Parkway EI Cajon, CA 92020 (714) 440.0233
COMPUTERLAND/THOUSAND OAKS 171 E. Thousand Oaks Blvd. Thousand Oaks, CA 91360 (805) 495-3554	OLSON ELECTRONICS 4642 W. Century Blvd. Inglewood, CA 90304 (213) 674.5740
COMPUTERLAND/TUSTIN 104 W. First St. Tustin, CA 92680 (714) 544.0542	OLSON ELECTRONICS 30 North Lake Ave. Pasadena, CA 91101 (213) 796.3134
COMPUTERLAND/WALNUT CREEK 1815 Ygnacio Valley Road Walnut Creek, CA 94598 (415) 935-6502	OLSON ELECTRONICS 680 W. Holt Ave. Pomona, CA 91768 (714) 623 -0210
COMPUTERLAND/W. LOS ANGELES 6840 LaCienega Blvd. Inglewood, CA 90302 (213) 776 -8080	OLSON ELECTRONICS Kearny Mesa, 4840 Convoy St. San Diego, CA 92111 (714) 292-1100
COMPUTER PLACE 2539 W. Sepulveda Blvd. Torrance, CA 90505 (213) 3254754	OLSON ELECTRONICS 2519 El Cajon Blvd. San Diego, CA 92104 (714) 297.2946
THE COMPUTER STORE 820 Broadway Santa Monica, CA 90401 (213) 451.0713	OLSON ELECTRONICS 1329 S. Main St. Santa Ana, CA 92707 (714) 541 -6673
COMPUTER TIMESHARING CORP. 3055 Rosecrans Place San Diego, CA 92110 (714) $565 \cdot 0505$	OLSON ELECTRONICS 2125 El Camino Real Santa Clara, CA 95051 (408) 248-4886
COMPUTERS UNLIMITED 6840 La Cienega Blvd. Inglewood, CA 90302 (213) 776-8080	PC COMPUTERS 10166 San Pablo Ave. El Cerrito, CA 94530 (415) 527.6657
DATA EQUIPMENT SUPPLY 4810 E. Firestone Blvd. Southgate, CA 90280 (213) 564.2481	PROGRAMMABLE ELECTRONIC CALCULATORS 1748 W. Chapman Ave. Orange, CA 92668
GRASS VALLEY COMPUTER SYSTEMS 18430 Jayhawk Dr. Smartville, CA 95977 (916) 272-2793	(714) 997-2280 RADIO MART 1075 Cypress Avenue Redding, CA 96001
JAY-KERN ELECTRONICS 1013 Columbus	(916) 241-3000
Bakersfield, CA 93305 (805) 834.6714 (805) 871 -5800	colorado AMPTEC
K-SMITH ASSOCIATES 11 Mast Court Sacramento, CA 95831	2310 Providence Circle Colorado Springs, CO 80909 (303) 597.5384
(916) 392.0317	AMPTEC 5975 N. Broadway
KAROL MUSIC 1515 So. Broadway Santa Maria, CA 93454	$\text { Denver, CO } 80216$ $\text { (303) } 571 \cdot 0833$
(805) 922.8265 MATTHEWS TV \& STEREO CITY 6400 Mission Street, Daly City, CA 94014 (415) 992.5400	BYTE SHOP OF BOULDER 3101 Walnut Street Boulder, CO 80301 (303) 444.6550 Herman Axelrod
MATTHEWS TV AND STEREO CITY 214 California Street San Francisco, CA 94104 (415) 781.0200	BYTE SHOP OF COLORADO SPRINGS 1845 N. Circle Drive Colorado Springs, CO 80909 (303) 633.7075 Ralph Pullman
MR. CALCULATOR 2521 E. Durant Street Berkeley, CA 94704 (415) 848.5629	BYTE SHOP OF DENVER Cherry Creek Shopping Ctr. 1st Ave. \& University Denver, CO 80206
MR. CALCULATOR 120 Strawberry	(303) $399-8995$ Herman Axelrod
Town \& Country Village Mill Valley, CA 94941 (415) $388-8051$ MR. CALCULATOR	COMPUTERLAND/COLORADO SPRINGS 4543 Templeton Gap Road Colorado Springs, CO 80909 (303) 5744150
39 Town \& Country Village Palo Alto, CA 94301 (415) 328.0740	COMPUTERLAND/DENVER 2422 S. Colorado Blvd. Denver, CO 80222 (303) 759.4685

Authorized PET Dealers

GATEWAY ELECTRONICS 2839 West 44th Ave. (303) $458-5440$

MICRO COMPUTER INDUSTRIES
1532 E. Mulberry
(303) 221.1955

MICRO COMPUTER MANAGEMENT
200 West Prospect Rd.
Ft. Collins, C0 80
MICRO WORLD ELECTRONIX
6340 West Mississippi
Lakewood, CO 80226
(303) $936-4407$

CONNECTICUT
COMPUTERLAND/FAIRFIELD
2475 Black Rock Turnpike
Fairfield, CT 0643
(203) 374-2227

COMPUTER WORKS, INC.
1439 Post Road East
Westport, CT 068
(203) 255.9096
MULTI BUSINESS COMPUTER SYSTEMS
Portland Professional Center
28 Marlborough St.
Portland, CT 0648
(203) $342-2747$
(203) $247-5937$
delaware
COMPUTERLAND/NEW CASTLE COUNTY
Astro Shopping Center
Kirkwood Highway
Newark, DE 1977
(302) 738.9656
FLORIDA
BYTE SHOP OF COCOA
P.O. Box 443

Cocoa Beach, FL 32931
(305) $784-1881$

John Dalton
BYTE SHOP OF FT. LAUDERDALE
1044 E. Oakland Pk.
Ft. Lauderdale, FL 33334
(305) $784-1881$
Dalton/Feigh

BYTE SHOP OF MIAMI
7825 Sird Road
(305) $264-2983$

Dalton/Feigh
COMPUTERLAND/BOCA RATON
500 E. Spanish River Blvg
(305) 368 -1122

COMPUTERLAND/FT. LAUDERDALE
3993 North Federal Highway
Ft. Lauderdale, FL 33308
Ft. Lauderdale, FL 33308
(305) 566-076
(305) 566.0805

COMPUTERS FOR YOU
3608 West Broward Blvd
Ft. Lauderdale, FL 33312
(305) 5818945

FLORIDA BOOK STORE
1614 West University Ave
Gainesville, FL 32604
(904) 376 -6066

FOCUS SCIENTIFIC ENTERPRISES
1601 Biscayne Blvd
Miami, FL 33132
(305) $358-3948$
GRICE ELECTRONICS, INC.
417A Mary Esther Cutoff
Ft. Walton Beach, FL 32548
(904) 244-3168
(904) 244.3168

GRICE ELECTRONICS, INC.
725 E. 23rd St.
Panama City, FL 32405
(904) 769 -2151
(904) $769-2151$

GRICE ELECTRONICS, INC.
7171 N. Davis Hwy.
Pensacola, FL 32504
(904) 476-0042

GRICE ELECTRONICS, INC.
266 Brent Lane
P. O. Box 1911
Pensacola, FL 32589
(904) 477-8100

OLSON ELECTRONICS
5833 Ponce de Leon Blvd.
Coral Gables, FL
(305) $666-3327$
OLSON ELECTRONICS
2808 N. Federal Highway
(305) $566-7819$
Ft. Lauderdale,

OLSON ELECTRONICS
West 49th St.
(305) 823.1600

OLSON ELECTRONICS
2318 Hollywood Blvd
(305) 925.7272
olson ELECTRONICS
1644 N.E. Second Ave.
Miami, FL 33132
(305) $374-4121$
OLSON ELECTRONICS
6901 22nd Ave., N. Tyrone Square Mall
St. Petersburg, FL 33710
(813) 345.9119

OLSON ELECTRONICS
1215 S. Dale Mabry Highway
Tampa, FL 33609
(813) 253.3129
GEORGIA

ANCRONA

3330 Peidmont Rd
(404) $261 \cdot 7100$

ATLANTA COMPUTER MART
5091-B Buford Highway
Allanta, GA 3034
(404) 455-0647
COMPUTERLAND/MARIETTA
Cumberland Square North
Smyrna, GA 30080
(404) 953-0406

THE LOGIC STORE
3050 Macon Road
Columbus, GA 31906
(404) $568-0197$
OLSON ELECTRONICS
2571 North Decatur Road
Decatur, GA 30033
(404) 378-4201
hawall
COMPUTERLAND/HAWAII
567 South King St.
Honolulu, HI 96813
(808) 5218002
daho
CIMCO DISTRIBUTORS, INC
1016 Park Lane
Pocatello, ID 83201
(208) 237.2448
WORLD TOY \& HOBBYCRAFT, INC.
7820 Fairview Ave.
Boise, 1083704
(208) $376-3561$
(208) $376-2438$

ILL!NOIS
BYTE SHOP OF LA GRANGE
5 S. La Grange Road
La Grange, IL 60525
(312) 579-0920

Bill Rose
BYTE SHOP OF URBANA
1602 S. Neil Street
Champaign, IL 61820
(217) $352-2323$
Dave Peters
COMPUTERLAND/NILES
9511 N. Milwaukee
Niles, IL 60648
Niles, IL 60648
(312) $967-1714$
computerland/0ak lawn
10935 S. Cicero Ave.
(312) 422,8080

COMPUTERLAND/PEORIA
4507 N. Sterling
Peoria, IL 61614
(309) $688-6252$

1305 N. Hariem
Oak Park, IL 60302
(312) 848-7500

KAPPEL'S COMPUTER STORE
125 E. Main St.
Belleville, IL. 62220
(618) 277-2354

LILLIPUTE COMPUTER MART, INC.
Skokie, IL 60076
(312) 674-1383

MR. CALCULATOR
1038 Northbrook Court
Northbrook, IL 60062
(312) 272-2520

OLSON ELECTRONICS
4101 N. Milwaukee Ave.
Chicago, IL 60641
(312) 545.7336
OLSON ELECTRONICS
123 North Western Ave.
(312) $421 \cdot 3533$

OLSON ELECTRONICS
2641 West 95th St.
(312) 425.6192

OLSON ELECTRONICS
1734 Ogden Ave.
Downers Grove, IL 60515
(312) 852.9650

721 W. Golf Road
Hoffman Estates, IL 60194
(312) 882.7330

OLSON ELECTRONICS
1354 Winston Plaza
Melrose Park, IL
(312) 344.6200
OLSON ELECTRONICS
6231 Dempster St.
(312) 966-6700

PERSONAL COMPUTER OF CHICAGO
100 East Ohio St.
Chicago, IL 6061
PRESCRIPTION LEARNING
5240 South Sixth Street Rd.
Springfield, IL 62705
(217) 786-2500

STEREOTRONIC INDUSTRIES
Wion, IL 60099
(312) 336.2222

INDIANA
AUDIO SPECIALISTS
415 N . Michigan
South Bend. IN 4660
(219) 234-5001

BYTE SHOP OF INDIANAPOLIS
8077 Bramwood Court
(317) 842-2983

Bruce Barker
COMMUNICATIONS ELECTRONICS, INC
2204 Grand Ave.
Connersville, IN 4
THE COMPUTER CENTER
19819 Orchard St.
South Bend, IN 466
(219) 272-0252

GRAHAM ELECTRONIC SUPPLY
G101 N. Keystone
Indianapolis, IN 46220
Indianapolis, IN 462
(317) 2634261
GRAHAM ELECTRONIC SUPPLY
133 S. Pennsylvania St.
(317) 634-8202

OLSON ELECTRONICS
5353 N. Keystone
(317) 253-1584

IOWA
THE COMPUTER CENTER
302 Commercial
(319) 232-9504

THE COMPUTER STORE OF DAVENPORT
4128 Brady St.
Davenport, 105280
KANSAS
BYTE SHOP OF MISSION
5815 Johnson Drive
Mission, KS 66202
(913) 432-29

COMPUTERLAND/OVERLAND PARK
10049 Santa Fe Drive
Overland Park, KS 66212
(913) $492-8882$

THE COMPUTER ROOM
7105 W. 105th St
Overland Park, KS 66212
(913) 648.7105

COMPUTER SYSTEMS DESIGN
906 North Main
Wichita, KS 6721
(316) 265-1120

MAIN
225 Ida
Wichita, KS 67211
$(316) 267.3581$
KENTUCKY
BARNEY MILLER'S, INC.
232 E . Main St.
232 E. Main St.
Lexington, KY 40507
(606) 252-2216

COMPUTERLAND/LOUISVILLE
813 E. Lyndon Lane
Louisvile, KY 4022) $425-8308$
MICROTECH, INC.
1127 So. 6th St.
Louisville, KY 40203
(502) 5878099
(502) 5878099

OLSON ELECTRONICS
117 Southland Dr.
Lexington, KY 4050
Lexington, KY 40503
OLSON ELECTRONICS
4137 Shelbyville Rd.
Louisville, KY 402
(502) $893-2562$
LOUISIANA
COMPUTER PLACE
3340 Highland
P.O. Box 1413
Baton Rouge, LA 70821
(504) 387-0072

COMPUTER SHOPPE, INC.
3225 Danny Park
(504) $454-6600$

FREEMAN ELECTRONICS
708 No . 7 th St .
West Monroe, LA 71291
(318) $388-2312$
VIDEO SPECTRUM
6601 Veterans' Memorial Blvd.
Metairie, LA 70003
(504) $885-6527$

MARYLAND
COMPUTERLAND/GAITHERSBURG
16065 Frederick Road
Route 355
Rockville, MD 20855
(301) 948-7676

COMPUTERS, ETC
13A Allegheny Ave.
Towson, MD 21204
(301) 296-0520

DELMARVA COMPUTER
19 No. Harrison St.
(301) 822-6613

MAC'S MERCHANDISE MART
7140 Fairbrook Road
(301) 298.0473

THE MATH BOX, INC.
2621 University Blvd. Wes Wheaton, MD 209

YOUR OWN COMPUTER, LTD
Kettering Plaza Shopping Cntr.
10678 Campus Way South
Upper Marlboro, MD 20870
(202) 783.0390

MASSACHUSETTS
COMPUTER SHOP 11000011
288 Norfolk St.-Cor. Hampshire
Cambridge, MA 02139
(617) 661.2670

MARKLINE
411 Waverly Oaks Road
Waltham, MA 02154
(617) 891.6250

NEW ENGLAND ELECTRONICS CO.
248 Bridge St.
248 Bridge St.
Springfield, MA
01103
(413) 739.9626

OLSON ELECTRONICS
Boston MA 02116
Boston, MA 021
(617) 2674700
OLSON ELECTRONICS
Hanover Mall
Hanover, MA 02339
(617) $826-5196$
(617) $826-5196$

OLSON ELECTRONICS
North Shore Shopping Center
Peabody, MA 01960
(617) 532-0800

RETAIL COMPUTER CENTER, INC
455 Center St.
Ludlow, MA 01056

MICHIGAN
COMMUNICATIONS ELECTRONICS
854 Phoenix
Ann Arbor, M1 48106
(313) 9944444

COMPUTER HOUSE
1407 Clinton Road
Jackson, MI 49202
(517) 783.5343

COMPUTERLAND/GRAND RAPIDS
2927 28th Street, S.E.
COMPUTERLAND/SOUTHFIELD
29763 Northwestern Highway
(313) 356.8111

COMPUTERMART OF ROYAL OAK
560 W. 14 Mile Rd.
Royal Oak, MI 480
(313) $288-0040$
COMPUTRONIX CORP
423 Saginaw Road
Midland, MI 48640
(517) 631.8060

ERIC ELECTRONICS
10721 W. Ten Mile Road
Oak Park, MI 48237
(313) 547-0203

LAFAYETTE RADIO ELECTRONICS
ASSOC. STORE
Eric Electronics
3430 Washtenaw
Ann Arbor, MI 48104
(313) 971.5420

LAFAYETTE RADIO ELECTRONICS
ASSOC. STORE
Eric Electronics
1326 Broadway
Detroit, MI 48226
(313) 961 -2955

LAFAYETTE RADIO ELECTRONICS
ASSOC. STORE
1375 E. Grand River Ave.
East Lansing, MI 48823
(517) 332-8676

LAFAYETTE RADIO ELECTRONICS
ASSOC. STORE
29400 Orchard Lake Road
Farmington, M1 48024
(313) 6264594

LAFAYETTE RADIO ELECTRONICS
ASSOC. STORE
Eric Electronics
Grand Rapids, MI 49508
(616) 949-8590

LAFAYETTE RADIO ELECTRONICS
ASSOC. STORE
Eric Electronics
214 N Rose St.
Kalamazoo, MI 49006
(616) 381-5164

LAFAYETTE RADIO ELECTRONICS
ASSOC. STORE

Authorized PET Dealers

Authorized PET Dealers

COMPUTERLAND/SO. KING COUNTY 1500 So. 336th St.
Parkway Center, Suite 12
Federal Way, WA 98003
Federal Way, WA 98003
(206) 838-9363

COMPUTERLAND/TACOMA
8791 S. Tacoma Way
B791 S. Tacoma Way
Tacoma, WA 98449
(206) 581 -0388

MICRO COMPUTER CENTER
11822 NE 8th St.
Bellevue, WA 980
(206) 455-3710

OMEGO COMPUTERS
1032 N.E. 65th
Seattle, WA 98004
(206) 522.0220

PERSONAL COMPUTERS, INC.
South 104 Freya
Spokane, WA 99202
(509) 534 -3955

WEST VIRGINIA
WISCONSIN
BYTE SHOP OF MILWAUKEE 6019 W. Layton Ave 6019 W. Layton Ave. (414) 281-7004

COLORTRON
2111 Lathrop Ave
Racine, WI 33405
(414) 637.2020
COMPUTERLAND/MADISON
690 So. Whitney Way
Madison, WI 53711
(608) 273-2020

COMPUTERLAND/MILWAUKEE
10111 West Capitol Dr.
Milwaukee, WI 53222
(414) 466 -8990

MADISON COMPUTER STORE
1825 Monroe St.
Madison, WI 53711
(608) 255.5552

OLSON ELECTRONICS
3125 S. 108th St. West Allis, WI 53227 (414) 541-1406

WYOMING

COMMODORE INTERNATIONAL OFFICES

COMMODORE BUSINESS MACHINES, INC.
3330 Scott Blvd.
Santa Clara, CA 95050
COMMODORE/MOS
Valley Forge Corporate Center
950 Rittenhouse Road
Norristown, PA 19401, USA
COMMODORE BUSINESS MACHINES LIMITED
3370 Pharmacy Avenue
Agincourt, Ontario, Canada M1W2K4
COMMODORE SYSTEMS DIVISION
360 Euston Rd.
London NW1 3BI, England

COMMODORE BUROMASCHINEN GmbH
Frankfurter Strasse 171-175
6078 New Isenburg
West Germany
COMMODORE JAPAN LIMITED
Taisei-Denshi Building
8-14 1kue 1-Chomeasahi-Ku, Osaka 535, Japan
COMMODORE ELECTRONICS
(HONG KONG) LTD.
Watsons Estates
Block C, 11th Floor
Hong Kong, Hong Kong

