
A free to download Magazine dedicated to Commodore computers.

Issue 80

 Commodore Free Magazine Page 2

 www.commodorefree.com

CONTENTS

EDITORIAL PAGE 3

E-TAPE PAGE 6

NEWS
 General Page 10

NEWS
 Commodore 128 and 64 Page 12

NEWS
 Commodore 64 News Page 19

NEWS
 Vic and Commodore 16 Page 18

NEWS
 Amiga News Page 20

Interview with Pixel Page 25
.Creator of Pulse for the Vic 20

Optimizing CC65 code by Joseph Rose Page 27

Interview with Dane Bills Page 30
Creator of Panicman for the Vic 20

Commodore Free interview with Page 34
C64p Creator Nic

Spaghetti code By John Fielden Page 37

Never on a Commodore By Lenard Roach Page 38

Assembly line by Bert Novilla Page 40

Editor
Nigel Parker

Spell Checking
Peter Badrick / Bert Novilla

TXT, HTML & eBooks
Paul Davis

D64 Disk Image
Al Jackson

PDF Design
Nigel Parker

Contributors
Richard Bayliss

Joseph Rose (a.k.a. Harry Potter)
John Fielden

Lenard R. Roach
Bert Novilla (satpro)

Website
www.commodorefree.com

Email Address
commodorefree@commodorefree.com

Submissions
Articles are always wanted for the magazine. Contact us
for details. We can’t pay you for your efforts but you are
safe in the knowledge that you have passed on details

that will interest other Commodore enthusiasts.

Notices
All materials in this magazine are the property of Commo-

dore Free unless otherwise stated. All copyrights, trade-
marks, trade names, internet domain names or other
similar rights are acknowledged. No part of this maga-

zine may be reproduced without permission.

The appearance of an advert in the magazine does not
necessarily mean that the goods/services advertised are
associated with or endorsed by Commodore Free Maga-

zine.

Copyright
Copyright © 2014 Commodore Free Magazine

All Rights Reserved.

 Commodore Free Magazine Page 3

 www.commodorefree.com

Editorial
This issue sees an interview with “pixel”
and don’t let the cool name put you off.
You may remember I reviewed his
game “Pulse for the Unexpanded VIC-
20” in Issue 79 of Commodore Free. I
know (thanks to the people who con-
tacted me) I made some negative com-
ments about small graphical glitches.
However, I feel if these were cleared up,
or if indeed it was possible for them to
be cleared up, then the game could be
another outstanding release for the VIC
(actually it is outstanding as it sits
now). I would especially like to see
this released as a tape version. I can
just see the loading screen and VIC mu-
sic pumping out as the game loads into
memory. The screen clears, then the
game is de-crunched, and then... the
rest of the game loads and – BOOM!
You're right in the Pulse of the action
(can you see what I did there with the
name?). Pretty cool, ehh? Anyway, I
have £10 waiting to buy the tape ver-
sion (should it ever be released). I
have emailed a couple suppliers of
Commodore releases, and I suggest you
do the same. Demand will drive the
creation of the product!

We also have an interview with Nic,
who has created, amongst other things,
the C64p. This is a portable laptop
based on a customised DTV. The price
and compatibility issues may be a sour
point for some, however, but the beauti-
fully crafted design looks like it rolled
out of the factory – not some hobbyist's
workshop or bedroom.

Lenard R. Roach shares some of his
thoughts about the Commodore 64 and
128, along with some of his program-
ming problems, and the software that
almost made him a millionaire (well, a
better line than a few quid).

Joseph Rose tells a little about optimis-
ing cc65 code, or as he says, “Some
tricks and tips on creating some lovely
looking C code on the Commodore 64.”
Then we learn a little about Spaghetti
code. (Written By John Fielden)

We then jump back to the VIC again
(jumping around here for no reason
other than to keep you on your toes).
This issue sees an interview with Dane
Bills, who, as you may know, created

panicman. Can you guess what it’s a
remake of? Not only does it look and
sound good (you may remember Issue
79 had a review of the game), the game
play is very close to the real arcade ma-
chine. Dane talks about how the game
came into being – and the tools and ex-
periences he gained from coding his
first 6502 project on the VIC.

Sadly, this month sees the last of the
E-tapes, mainly because it’s become far
too difficult for Richard to find any-
thing to put on the E-tapes. However, if
you have a program or application and
would like it distributed via Commo-
dore Free on our E-tape download, feel
free to email me (along with some in-
structions, of course!). The game or ap-
plication must be your own creation
and must be released as public domain
(or as freely-distributable with Commo-
dore Free).

Finally, we have Issue $03 of our 6502
assembler course. You guys should be
really racking up some good coding
knowledge by now, so make sure you
have enough caffeine and are ready to
learn some more new skills (heck, I
thought a Stack was like a six-pack –
turns out I am totally wrong). I have
had quite a few emails about this series
saying how they are enjoying following
the articles.

Wow, I didn’t know there was so much
cool stuff in this magazine, so…………….

Just in case it hasn’t sunk in, can some-
one please start a campaign for “Pulse”
to be released on tape for the unex-
panded VIC-20? Thanks for reading,
and as usual, please send any com-
ments and suggestions to me.

Thanks to everyone who has helped out
with this issue, and as a final reminder –
if you want to help with Commodore
Free or have an article or idea for the
magazine (or even a news item), please
get in touch with me!

I am off to read the issue as it sounds
great this month. J

Regards,
Nigel (Editor of Commodore Free)
Website www.commodorefree.com
email
commodorefree@commodorefree.com

 Commodore Free Magazine Page 6

 www.commodorefree.com

COMMODORE FREE E-COVER TAPE 13
Compiled by Richard Bayliss

Another Day – Another Zombie
(C)2014 Carl Mason
Programming: Carl Mason (Using
Sideways SEUCK)
Graphics: Carl Mason
Music: AEG/Smash Designs

This is a score/attack game in which
you must survive as long as you can
against wave after wave of the advanc-
ing un-dead. You (and a pistol) are the
only thing between a horde of flesh-eat-
ing zombies and your camp of a dozen
survivors. If any of the walking corps-
es make it into the camp, all Hell will
break loose – and its “Game Over” (if
you're dead that is). You can't afford to
let one of those zombies get past you.

You can only fire a couple of rounds
before you have to re-load, so use your
bullets sparingly, as a wasted shot can
mean certain death. The faster you cut
through the horde, the
more points you will
acquire as more dan-
gerous zombies (such
as sitters which have a
highly toxic ranged at-
tack, or boomers that
will explode) appear,
splattering corrosive
bile around its proximi-
ty. Also, a zombie com-
bo bonus is awarded
for taking out a huge
wave of zombies in suc-
cession.

How long can you hold back the creep-
ing doom?

Yet again the E-Cover Tape is here, but
sadly, this issue is the last one. This is-
sue's E-Cover tape features all of the
entries from the 2014 SEUCK Compo,
which were released between the start
of the competition through 18th April
2014. Also, there's the second install-
ment of the Loader Game Tape Master
Kit. You may have also noticed some-
thing completely different about this
issue's E-Cover tape. The tape loader

system has been changed to increase
the speed of mastering. The deadline for
the final E-cover tape was pretty close.
So R-Load by Daniel Kahlin was used. It
may be a quiet loader, but you get some
nice raster effects amongst the border.
:)

… and now for the last time I say, “It is
time to lock in and load.” :)

SEUCK COMPO 2014

To start off this issue's E-Cover tape,
we have some amazing SEUCK Compo
goodies for you. Practically all the en-
tries of the 2014 SEUCK competition,
which was entered between January
2014 and now. Closing date is of course
30th April. Due to deadline extensions,
the following featured games are as fol-
lows

Hero Time 2
(C)2014 IndySoft
Programming: Riszard Nazarewski
(IndyJR) (Using SEUCK)
Graphics: Riszard Nazarewski
Music: Richard Bayliss

This is a game for one player only, based
in the Medieval era. You are a lonely
knight who has discovered that the vil-
lage is under peril against all evil forces
of an evil king. As the lonely knight (a
true brave hero from the first Hero
Time), you must travel across the land
and defeat the dark forces that ap-
proach you. They are Skeletons, Bats,
and Deadly Spiders. Also strewn across
the land lies wooden treasure chests.

You must pick those up in a bid to boost
your score and pick up extra lives.

There are four different levels which
you must traverse
across. They are as fol-
lows:

Level 1 – The forest
Level 2 – The village
Level 3 – The cemetery
Level 4 – The old
church dungeons

Can you fight your way
to the end – or will your
lonely knight become
yet another of the

corpses in the graveyard? Best of luck
to you.

 Commodore Free Magazine Page 7

 www.commodorefree.com

Double or Nothing
(C)2014 Alf Yngve
Programming: Alf Yngve (Using SEUCK)
Graphics: Alf Yngve
Music: Richard Bayliss

Your world is at war, but as the chaos
rages around you, your mind seems to
drift – your memories grow
contradictory. You fear that you are
going mad. Are you living in two places
at once? Are you experiencing an
alternative life in a parallel reality? Are
you one man in one world – or two
identical copies sharing one mind and
two realities? You must stake
everything on finding yourself.
It's Double or Nothing

How to play:
Using any joystick, you control two
alternative versions of the protagonist.
One version (on the left-hand of the
screen) fights an alien invasion,
whereas the other version (on the right-
hand side of the screen) fights an
army of robots. Occasionally, if
losing a life, both versions of the
protagonist will enter the same
reality. Eventually both men will
enter a shared space outside
normal space-time where they
can confront the source of the
invasions.

NOXUS
(C)2014 Alf Yngve
Programming: Alf Yngve (Using
SEUCK)
Graphics: Alf Yngve
Music: Richard Bayliss

A foreign power has constructed a
massive new chemical plant with the
codename “NOXUS.” It is scheduled to
release 50 million tons of SO2 (Sulphur
Dioxide) into the Earth's atmosphere.
You fear that you are going mad. The
leader of this foreign power insists that
the SO2 infusion will reverse global
warming and save the world from rising
oceans. Reality? Our scientists
conclude that this misguided scheme
will trigger a catastrophic cooling of the
atmosphere, and may even cause a new
Ice Age. You must survive the war to

find the source. You (our top agent)
must immediately fly into enemy
territory, infiltrate NOXUS and sabotage
it – before the SO2 goes into production.
You have two hours to complete this
mission.

Game instructions:
In the flying level, guide the drone
which protects your stealth jet
from enemy fire. Failure to do so
will cause serious damage and
your mission may be aborted.
Should you manage to make it to
the drop zone (marked with a
cross-hair), you must leave your
aircraft and infiltrate the chemical
plant. Stay out of sight! Some
guards will raise the alert if they
spot you. Sneak behind the
guards and take them out with

your short-range Taser. Once your
reach the control centre, destroy the
control panels with your Taser and
make your escape.

Good luck with your mission. You'll
need it. This message will explode in 10..
9 .. 8 .. 7 .. 6 .. 5 .. 4 .. 3 .. 2 .. 1 .. BANG!

Shaken –
Tales of the Swordless Ninja
(C)2014 Roberto Dillon
Programming: Roberto Dillon
(IndyJR) (Using SEUCK)
Graphics: Roberto Dillon
Music: Richard Bayliss

An evil Shogun has murdered all your
clan and stolen your family Katana that
was passed along from generation to
generation. Now swordless, desperate,
and armed with only your lethal skills
plus a bunch of ninja stars (Shaken),
you have to infiltrate the Shogun HQ.
Take back what is rightfully yours and
get your revenge.

Instructions:
Use a joystick to move around and
advance in the game. Press Fire to
throw your Ninja Stars.

The game is divided into three
sections:

First is the countryside, which
plays like Commando and similar
games. After this you will be
entering the Shogun's town where
a more stealthy approach is
recommended to avoid evil ninjas
and guards. Finally you will meet
the Shogun himself in his garden
where you can retrieve your stolen
sword. This is if you survive first.

 Commodore Free Magazine Page 8

 www.commodorefree.com

Vampire Hunter 2
(C)2014 IndySoft
Programming: Riszard Nazarewski
(IndyJR) (Using SEUCK)
Graphics: Riszard Nazarewski
Music: Richard Bayliss

After the defeat of Mozgorioth, the evil
Transylvanian vampire in Vampire
Hunter, Astaroth, brother of the beaten
monster, is in New York in an attempt to
get his revenge on Adam for killing his

brother. He wants to kill the
entire population using an ancient
poison in the city sewage system.
Playing as Adam, you must
destroy all the evil forces in New
York and kill Astaroth, who will be
waiting for you in the theatre. You
are the fearless Vampire Hunter.

Loader Game Tape Master Kit 2
(C)2014 The New Dimension
/ Commodore Free
Programming: Richard Bayliss,
Martin Piper
Graphics: Richard Bayliss,
Wayne Womersley
Music: Richard Bayliss

To end the final E-Tape, we have a second installment of the
Loader Game Tape Master Kit. I'll bet you are surprised. This
is a simple tool with which you can master your programs to
tape, using a fast-loader system and a loader game to keep
you entertained (while loading in the program).

Select the program from the Main Menu and highlight the
game which you'd like to master your tape with. Enter the
filename properties and jump address for your game. Press
Record/Play and you are ready to master your programs to
tape with a spiffy loader.

You can choose from the following loader games:

Square Pit
First used on the Psytronik tape version of Assembloids.
Guide your square around the screen picking up small
squares, but avoid getting crushed by the other squares. You
have a limited number of lives. After successful loading,
pressing CONTROL will allow you to de-crunch and run your
game. Keep playing Square Pit until you have had enough of
playing the game.

Blitz-A-Load
This is a simple game which features a plane sprite by Wayne
Womersley. It was originally for the now-defunct game
project called Up in the Air, but I got permission to use it
anyhow. Press <spacebar> to start the game. The idea is
simple: Your plane, running low on fuel, is gradually starting
to get lower and lower and needs to land safely. Unfortunate-
ly, buildings are in your way. In an attempt to land safely, you
must drop bombs onto the buildings using the fire button on
joystick Port 2. Each tower has a different height. After one
wave is complete, the plane will be able to land safely. Then
you will move on to the next wave, where the plane will start
at a lower position before-hand. After loading, press CON-
TROL to run the game you mastered. Otherwise, just keep
playing as long as you like.

Back to the master class
So, do you want to master your programs to tape? Is there a
restricted file size? Yes, unfortunately there is a restricted
file size. The transfer/re-locator routine after the loader
game will transfer your

programs from one location (to end-point) to $0801 (BASIC
line). Squarepit is $3e00-$cfff, which means 148 blocks max
size. Blitz-A-Load is $3a00-$cfff, which means 152 blocks
max size, both of which have even BETTER results as
compared to the previous tape master kit.

THE END IS HERE

Sadly, that is it – the end of the Commodore Free E-Tape.
The next issue of Commodore Free will have no E-Tape;
however, if you would like to submit your stuff for future
issues of Commodore Free, don't hesitate to send them
over to Nigel.

I would like to take this opportunity to say a huge “Thank
you” to Commodore Free for supporting my idea. Also of
course, a huge “Thank you” to everybody who has been
supporting this feature in the past. Cheerio!

 Commodore Free Magazine Page 10

 www.commodorefree.com

General News
COMMODORE FAN GAZETTE ISSUE 3
Commodore Fan Gazette is a pdf Commodore magazine (Ital-
ian language). In this edition: Editorial, Ready…Return!, Mor-
phOS, Aegis Sonix - Amiga OCS, Assembloids, Stunt Car
Racer, Super Bread Box, M.A.C.E., Bomberland 64, Amigaro
(3), C= 64x, Cartridge games for the C64,. Top 100 and the
mail.

http://www.commodorefangazette.com/download.php

Retrogaming Times Monthly Issue 116
Retrogaming Times is all about the retro gaming computers,
and features the following articles: Apple II Incider, CoCoLi-
cious, Rejects Gaming Hall Of Fame, More 64! - Avoid The
Noid, The Simpsons, Mega Man, Shining Force II, The Pixelat-
ed Mage + More!

http://www.retrogamingtimes.com/

Borderline BBS
Borderline BBS is now the first "hybrid" C64 BBS, accepting
calls both through dial-up *and* via Telnet! So now you can
call at (951)652-1690 or at

telnet://borderlinebbs.dyndns.org:6400

RETRO ASYLUM PODCASTS
Retro Asylum is a English podcast about retro computing. In
this, the career of Ben Daglish in Issue 76.

Actually, at the time of writing the podcasts have reached
number 79, and this issue contains an interview with graph-
ic artist Stoo Cambridge. For more information head over to
http://retroasylum.com/

MKD64 RELEASED
Zirias has released Md65, a modular tool for creating .D64
images. The main program is for writing tracks and sectors,
while loadable modules do everything else, for example
writing a directory
https://github.com/Zirias/c64_tool_mkd64

 Commodore Free Magazine Page 11

 www.commodorefree.com

 Commodore Free Magazine Page 12

 www.commodorefree.com

MELON 64
As Lemon64 seems to be “offline” at this moment, another
forum has struck up, quite creatively called Melon64. It
appears to be like the Lemon forum but doesn’t give a bitter
aftertaste in your mouth, just the sweet juice of fructose. It’s
early days but seems to be attracting a number of
subscribers, who are friendly and helpful. See what you
think.

Here is the response from Melon64's admin:

Hi,
Melon64 was set up initially to provide a temporary home for
Lemon users who where left without much information when
Lemon's latest downtime spanned 3 weeks. This was the
second time in the space of six months that Lemon had
disappeared.

I made the decision to continue Melon64 as there is always
space for another Commodore 64 forum.

Over the coming months we'll be adding more content and
functionality to Melon64. A collection database? File
repositories? User galleries? Constructive feedback is always
welcome.

It takes time to grow any community, and it'll take time to
grow Melon64.
http://www.melon64.com/forum/index.php

Commodore 64 and 128 News

Emu64 V5.0.9 RELEASED
Thorsten Kattanek has released a new (beta) version of his
Commodore C64 emulator called Emu64. Some of The
recent changes are:

-Android version.
-Improvements for the SID, VIC, CIA and the CPU emulation.
-REU and GEORAM emulation is added.

https://bitbucket.org/tkattanek/emu64/wiki/Home

GAMES THAT WEREN'T 64 UPDATED
The GTW64 web page has been updated. Toki V1 and Yie Ar
Kung Fu V1. Updates: Ballfever, Bugs Bunny, Darksyde, Here
and there with the Mr Men, Lethal Xcess, Spellcast, Star
Tech Games and Your Computer Software Exchange.

http://www.gamesthatwerent.com/gtw64/

CSAM SUPER
CSAM is a Windows application for converting images and
video it into a Commodore 64 format. The program analyses
the original picture and will make a codebook (2 KByte) and
screen-data (1 KByte). With this data you can display your
image on the C64. This version uses a new algorithm for a
better end result.

http://csdb.dk/release/?id=127248

CROWD FUNDED MIDI INTERFACE
I was recently contacted by Frank Buss who wanted to plug
his new hardware project. It's a crowd-funded project to cre-
ate a new MIDI interface Cartridge, but this one will also
have an integrated flash memory chip to transfer files to
and from a PC or Mac computer. To read more head over to
this website, although it appears to be In German language.

http://www.startnext.de/kerberos

 Commodore Free Magazine Page 13

 www.commodorefree.com

C64 ENDINGS UPDATED
The web page c64endings.co.uk has added new endings of
Commodore C64 games. The most recent additions are: Har-
bour Attack (CBM Inc.), Ikari III - The Rescue (SNK), Jackal
(Konami), Kinetik (Firebird), Legend of The Amazon Wom-
en (Silvertime), Ninja Warriors (Virgin Mastertronic), Oops!
(The Big Apple), PSI-DROID (Zeppelin Games), Race Against
Time (Codemasters), Shark (Players Premier), Santa Claus'
Helper (Santa Claus' Helper), Scarper! (MC Lothlorien), Sab-
otage (Zeppelin Games), Taskforce (Players Premier), T-
Bird (Virgin Mastertronic) and Trans-Atlantic Balloon Chal-
lenge (Virgin Games).

http://www.c64endings.co.uk/

DUREXFORTH VERSION 1.3 RELEASED

This is a modern, lean C64 Forth-inspired by colorForth,
JONESFORTH and Blazin' Forth. Direct threaded for simplici-
ty. The project includes a vi clone written in Forth, a high-
resolution graphics library, plus MML music support.

http://code.google.com/p/durexfort

Petscii Editor v4.5 RELEASED
Released by: fieserWolf, of Abyss Connection
A petscii graphics editor package With new features like
joystick + 4x4 mode, two pages (buffers), adjustable keypress
speeds, loadable music, and more

http://csdb.dk/release/?id=130214

Hexmapper - C128
Raoul has a hex-mapper developed for the Commodore
C128. Using this program you can create mosaics, with a
hexagon as a unit, make maps for role-playing games, or just
cool pictures. With the program, you can adjust each hex
with a direction and a colour. You can also move or copy the
hexagons. A manual (in English) and some examples are
available.

http://raoulm.home.xs4all.nl/products/

Also while you're on the site you may like to look at some of
his other software for the VIC-20 like

Denial Scroll for unexpanded VIC-20
Poxeldemo for unexpanded VIC-20
Poxelshow for unexpanded VIC-20

The program names are self-explanatory. I quite like the
Denial scroll on the VIC.

He has some other software on the site as well a Jav
Mandelbrot generator set and some Android apps

 Commodore Free Magazine Page 14

 www.commodorefree.com

C-ONE CORE RELEASED
Peter Wendrich, after 4 years of inactivity, released a new

"preview" Chameleon core for the C-One.

http://syntiac.com/c_one.html

BMP2MC. UPDATE RELEASED
Seanser has released a new version of BMP2MC. BMP2MC a
bitmap to C64-multicolour conversion program with five
colours. The properties are: Gray or Colour (there are three
different colour tables available). Full (a file) or Split (bit-
map, colour, characters). Tables for remapping colours
(PAL1 & PAL2).

http://csdb.dk/getinternalfile.php/128119/BMP2MC1258_OK.zip

THE ACE TEAM NEEDS HELP
The Ace have been working on a new operating system for
the Commodore C128. Sadly, the “team” are now down to
only one person. So, if you are a C128 enthusiast and want
to help with the development, testing or give suggestions,
please contact Miro from The Ace team.

http://www.theace.sk/blog/index.php

C64 RELOADED: NEW C64 MAINBOARDS
Jens Schönfeld announced a replacement C64 mother-
board. Although it was seen as an April fool, it would ap-
pear after a fellow reader contacted Jens the project is real!

Jens says that with the age of the Commodore 64 and the
high costs to repair a motherboard, he will produce replace-
ment boards as close to the original Commodore schematics
as possible.

The project is called C64 Reloaded and the boards will fit in
the original Commodore 64 cases, and feature not only a
modulator, but also an S-Video and a 3.5mm audio output.
The board can also be jumper-set to output PAL or NTSC,
and comes partially assembled. Basically you will need a do-
nor machine to transplant the chips into the ZIF sockets on
the C64 Reloaded mother board.

C64 Reloaded will be available in limited quantity starting
July, 2014 for 149,90 EUR(**). We will start taking pre-or-
ders soon.

http://icomp.de/home/indexe_news.htm

The Impossible Game RELEASED FOR THE C64
a csixx and mayday! co-production
Code: steve ody(csixx)
Music: spider jerusalem
Title gfx: achim volkers
Testing: the ryk

The idea of the game is to navigate the obstacle course,
avoiding pits, spikes, and jumping on/over boxes. You do
this by pressing the Fire button on the joystick or pushing
the joystick upwards. Basically it’s a scrolling landscape and
you have to jump over things, sort of like a electronic arty-
techno version of Flappy Bird.

This is the c64 version:
http://csdb.dk/release/?id=129903
http://flukedude.com/theimpossiblegame/

The website says:
A super-addictive
and very, very hard
platform game,
synced to an awe-
some soundtrack

 Commodore Free Magazine Page 15

 www.commodorefree.com

C64 Power adaptor
MAD Scientist has created a power adaptor for the Commo-
dore C64. He uses a standard power supply from the PC
with a Molex connector that has 5 VDC and 12 VDC. His
adaptor makes 9 VAC from the 12 VDC and together with
the 5 VDC it is connected to the Commodore C64. You can
follow the progress on the Forum64.de web page.

http://www.forum64.de/wbb3/board65-neue-
hardware/board289-diverses/55283-neues-c64-netzteil-
mark-1/

CCS64 v3.9.1 RELEASED
Per Håkan Sundell released a new version of his Commo-
dore C64 emulator. Changes in this version: emulator im-
provements to support more demos such as EmuSuxx0r
from Crest. More PAL artefacts such as blurring, etc., have
been implemented. You can download this C64 emulator
from Per's web page.

http://www.ccs64.com/

SD-BOX Cartridge v1.09
The SD-BOX is a cartridge for the Commodore C64 and fea-
tures an SD card interface. The cartridge has many features,
acting as a disk drive and Datassette. Recent changes: Sup-
port for Micrus Copy program, A HEX forecast for the cas-
sette buffer, and a program to remove copy protection.
Improvements for loading / verifying of cassettes, and the
manual has also been updated.

http://c64.com.pl/index.php/sdbox109.html

Creatures Cartridge - C64
Siem Appelman has a download of the game Creatures as a
cartridge image. Also on the site is a download of a CRT for
the game Mayhem in Monsterland.

http://www.siemappelman.nl/download.html

DAVID FOX INTERVIEW
The C64.com web page has an interview with David Fox.
David started to work with computers in 1964. When home
computers became popular he started making conversions
of adventure games. He created the game Mix and Match
Muppets. You can read the whole interview on the C64.com
web page.

http://www.c64.com/

High Voltage Sid Collection (HVSC) updated
There is a update available of the High Voltage SID Collection.
There are now more then 44.000 SIDs in the collection. In
this update 825 new SIDs, 233 fixed/better rips, 910 SID
credit fixes, 120 SID model/clock infos, 8 tunes identified,
and 67 tunes moved. You can download the update from the
HVSC web page.

http://www.hvsc.de/

 Commodore Free Magazine Page 16

 www.commodorefree.com

Reproduction of the SX64 parts
Erwin van Betten has successfully reproduced the handle-
bar caps and the keyboard clips for the Commodore SX-64.
Erwin uses an CAD program to design the parts and a 3D
printer to make the parts. The parts are printed with an
LulzBot TAZ 3D printer equipped with a Budaschnozzle 2.0
w / 0.35mm nozzle.

http://c64.berrydejager.com/reproduction-of-the-sx64-
parts-by-erwin-van-betten

ACID 64 Player Pro v3.5
Wilfred Bos has released a new version of ACID 64 Player
Pro. Changes in this version: Improvements: Folder manage-
ment for the HVSC, MUS files, layout, first file played is now
always added to history list and other small improvements.

www.acid64.com/

A BOOK THAT CELEBRATES THE BEAUTY OF THE
GREATEST HOME COMPUTER EVER MADE;
THE COMMODORE 64.
With help via RGCD who have produced an exclusive of
micro hexen on Cartridge to sell to help fund the book

The Kickstarter campaign says...
Introduction
Hello! This campaign is to hopefully produce a new exciting
book about the Commodore 64. Unlike other books about
the C64, it will celebrate the visual side of the computer.
Each spread will feature a beautiful image and a few words.
This could be a few games facts, a mini review or even a
quote from the developer. This will be the first book by new
publisher Bitmap Books who specialise in high-end books
all about computer games.

https://www.kickstarter.com/projects/2146199819/com
modore-64-a-visual-commpendium-by-bitmap-
books?ref=live

Contributors
A huge thanks to everyone who has agreed to contribute to
this book. Here is a list of who is involved in various ways!

- Stoo Cambridge (Sensible Software)
- Robin Hogg (Zzap!64)
- James Monkman (RGCD)
- Jason 'Kenz' Mackenzie (Psytronik)
- Paul Koller
- Matt Wilsher
- Andy Roberts (Comodore Format)
- Benjamin Wimmer (c64screenshots.com)
- Jonathan Leung (VGMaps.com)
...and not forgetting Tim Nicholls for giving up his own time
offering me some great advice and some invaluable tips.

 Commodore Free Magazine Page 17

 www.commodorefree.com

 Commodore Free Magazine Page 18

 www.commodorefree.com

Hires Color 8 plus 4 images
Erich/Unlimited has released a new picture diskette called
Hires Color 8. You will find 32 images on the two disk sides,
and all images use the hi-res graphics mode. The picture
show is made with the Magica program.

http://plus4world.powweb.com/software/Hires_Color_8

NEW VIC-20 MULTICART/DEVELOPMENT CART
On Wed., Dec 09, 2009, Robert wrote:
Kent Rittenhouse has produced a VIC-20 Multicart / Devel-
opment Cart with 32 games, games like Pac Man, Donkey
Kong, Frogger, Dig Dug, etc.. The price is $28 for the com-
plete cart (not including shipping). (Snip)

Kent Rittenhouse has now released game set 2 of the VIC-20
Multicart/Development Cart. The 32 games include such
games as Artillery Duel, Cannonball Blitz, Lunar Leeper,
Mountain King, Pharaoh's Curse, Satellites and Meteorites,
and more.
The cart price is still the same. For more information and to
see the complete list of games in game set 2, go to:

http://www.gamingenterprisesinc.com/vic20

Game set 1 is still available, too.

Truly, Robert Bernardo
Fresno Commodore User Group
http://videocam.net.au/fcug

Vic and Commodore Plus 4 News

GET THE CAT FOR THE UNEXPANDED VIC-20
Peter van der Woude has released a game called Get the Cat
for the Unexpanded VIC-20 (joystick required).The game's
description says it’s... A simple game: Step on the bricks to
save your cat.
You can download the file here:
https://drive.google.com/file/d/0Bz1hF7VZSV-
UdGx1dk1maXI4cmc/edit?usp=sharing

In the game you move left and right with the joystick. Press
Fire to place a brick under your character, provided you
have bricks left. Your character can step up one brick only.
You can let him fall from any height. The bricks seem to fall
randomly, but there is a pattern to make the game easier. If
you reach level 5,10,15,... you gain an extra life. Maximum
extra lives is only 1. It gets easier when you know every fifth
block falls directly above you. Very useful for building stairs
to the cat.

Thread: http://sleepingelephant.com/ipw-
web/bulletin/bb/viewtopic.php?f=10&t=6942

 Commodore Free Magazine Page 19

 www.commodorefree.com

TWEETING ON A VIC 20
http://www.torontosun.com/2014/02/20/tweeting-on-a-
commodore-vic-20

Unbelievable but true, the Toronto Sun newspaper looks
back at the first tweets from the VIC-20 computer. Check
out the link to read more on this story.

This is Richard Beales tweeting from the VIC-20 at the Per-
sonal Computer Museum in Brantford, Ontario, Canada.
http://www.pcmuseum.ca

FLINALE SLIDESHOW OF NEW VIC GRAPHICS MODES
tokra has released a piece of software called Flinale
The software's requirements are an NTSC VIC-20 with 32K
RAM expansion and/or PAL VIC-20 with 24K RAM expan-
sion

The program is a slide show for two newly created VIC-20
graphic modes:

For NTSC-VIC 20: IFLI88 (88 x 400 interlace with 8 x 1 colour res)
For PAL-VIC 20: FLI104 (104 x 256 with 8 x 1 colour res)

Download: http://www.tokra.de/vic/flinale/flinale.zip

NTSC YouTube
http://www.youtube.com/watch?v=LLI058aHmEg

PAL YouTube
http://www.youtube.com/watch?v=3Hch8cFJqDs

pouet.net-Entry
https://www.pouet.net/prod.php?which=62921

NTSC-Discussion HERE
http://sleepingelephant.com/ipw-
web/bulletin/bb/viewtopic.php?t=6951

PAL-Discussion HERE
http://sleepingelephant.com/ipw-
web/bulletin/bb/viewtopic.php?t=6569

 Commodore Free Magazine Page 20

 www.commodorefree.com

Amiga News
ARMIGA PROTOTYPE
I was asked to plug this again so …………………….
Here is a new IndieGoGo campaign to revive the old Amiga
500 feeling http://igg.me/at/armigaproject/x/6542614

The base Armiga aims to emulate the original Amiga 500
with 1MB of RAM as close as possible to the original one.
And for you not to get your hands dirty, a fully legal
copy of Kickstart 1.3 is provided with every Armiga! :O
Specs:

- Powerful Dual Core ARM CPU.
- 2 USB host: Joystick, mouse and keyboard support, as well
as pendrives/hdds.

- SD card slot: Save your ADFs or bring new ones!
- Ethernet connection: Connect to your network for easy
ADF management.
- HDMI: Digital AV quality on the big screen!.

Features:
We really want this to be an awesome product!. But for that
we'll need your help. Lots of functionalities are in the back-
log, waiting for the needed funds. However, your Armiga
will come with these features built in:

- Full Amiga 500 emulation: The target machine is the icon-
ic Amiga 500 and right now 90% of the disks are running!

- Boot to Android: Armiga supports Dual Boot and comes
loaded with Android 4.2.2, so when you're not playing you
can have all the power of Android!.

- Automatic disk load: Like in the original Amiga; insert the
disk and off you go!.

- Disk dump: Create ADF images of your favorite games and
keep them safe on the SD.

- ADF support: Bring your own ADF images on a pendrive
or SD card and enjoy!

- Disk swap: Just insert the disk and it will be dumped.
When time comes to change disks, just select the right ADF.
Ain't it easy?.
- FTP server: No need to take the SD off to manage the
ADFs; just do it from your computer!.
- Graphical menu: Simple and elegant, with usability as
main focus.

- Game save: Save your game and resume later.
- Autosave: Forgot to save?. We do it for you!
- Screenshot: Wanna share your joy?. Give our screenshot
feature a try

BOINGSWORLD PODCAST #50 RELEASED
The 50th Edition of Boing World has been released
Sadly, even Google Translate couldn't help me with the con-
tents. Anyway, it has been released and you now know
about it.

http://boingsworld.de/

Interview with Armin Sander (Oktalyzer)

The magazine Obligement has published an intervi with
Armin Sander, the German coder behind the famous 8-
tracks tracker Oktalyzer on Amiga
Interview in English :
http://obligement.free.fr/articles_t...wsander_en.php
Interview in French :
http://obligement.free.fr/articles/itwsander.php

DIGIBOOSTER PLUGIN FOR HOLLYWOOD

Airsoft Softwair announced a DigiBooster plugin for Holly-
wood. After installing the plugin Hollywood will automagi-
cally be able to play DigiBooster modules in 44.1khz 16-bit
stereo.
You can download the plugin from the official Hollywood
portal.
http://www.hollywood-mal.com/

Thanks to Hollywood 5's cross-platform plug-in system ver-
sions for AmigaOS3 (Classic), AmigaOS3 (FPU), AmigaOS4,
MorphOS, WarpOS, AROS (Intel), Linux (PowerPC), Linux
(Intel), Mac OS (PowerPC), Mac OS (Intel), Windows and
Google's Android platform are also provided.
For more information on DigiBooster and how to order the
software, visit the official DigiBooster site.

http://www.digibooster.de/en/index.php

Vampire 600 ACCELERATOR
The Vampire 600 FPGA Accelerator for the Amiga 600. The
Vampire 600 has been developed by Majsta and has recently
become available. On mfilos blog you can read about install-
ing and configuring the new accelerator.

http://www.mfilos.com/2014/01/a600-vampire-600-new-
toy-in-town.html

 Commodore Free Magazine Page 21

 www.commodorefree.com

THE TOASTER AND TIM'S VERMEER
The inventor of the NewTek Video Toaster was certain that
he figured out the secret behind the uncanny realism of one
of the world's greatest painters, and certain he could use the
same methods to duplicate it. Read a conversation with
NewTek founder Tim Jenison on the unexpected intersec-
tion of art, technology, obsession, and the Video Toaster in
the wonderfully provocative documentary called Tim's Ver-
meer.

Picture taken from the website creativecow.net
http://library.creativecow.net/wilson_tim/Tims-
Vermeer_documentary/1

ANTIRYAD GX 3.3 NOW FOR MORPHOS AND AROS
ARM

Antiryad Gx v3.3 was released. This version drop the
professional license price.

Here is the list of new features:
- Optimized thread management.
- Added ETC1 texture (de)compressor
- Support of Amstrad CPC SCR file format (without Amsdos
headers).

- Support of OCS and AGA shipsets in Amiga 68k driver using
new chunky to planar system.

- Support of AHI sound system in Amiga 68k driver.
- Enhanced gx_baseed, gx_dsp, gx_filevirtual, gx_interface,
gx_keyboard, gx_obj3d, gx_render, gx_scratchbuffer,
gx_soundmixer, gx_winbox objects.

- Optimized OpenGL 4 dynamic rendering.
- Optimized OpenGL 2d flush.
- Support of NACL platform.
- Support of MorphOS PowerPC platform.
- Support of Linux ARM platform (Raspberry PI).
- Support of AROS ARM platform (Raspberry PI).
- Added new keyboard virtual keys.

- Added input tester tool.
- Enhanced video codec.
- New antisector system.
- Optimized gx_math object.
- Added fixed point functions in gx_math object.
- Optimized 2d rendering (gx_screen, gx_bitmap objects).
- Support of Amiga SVX sound format.
- Enhanced bitmap MTR reader and writer, now support bi-
planes modes.

- Added high quality IFF bitmap writer and enhanced readed,
supporting PC chunky, Amiga planar, Halfbrite, HAM6 and
HAM8 modes.

- Added support of Atari ST Degas (PI1, PI2, PI3) and Neo-
chrome (NEO) bitmap formats.

- Enhanced benchmark.
- Fullscreen mode switch with F11 key instead of ALT+ENTER.
- Enhanced Winbox main menu.
- Removed music Gel module, a new music system is now em-
bedded in Antiryad Gx.

- Added http downloader.
- Added new Winbox themes.

http://www.arkham-development.com/

AROS Vision 2.4 uploaded
http://www.amiga.org/forums/showthread.php?t=66988&g
oto=newpost

Improvements:
-Reworked/Optimized Icons
-Different modes for different directories (name or icon-
mode) to improve handling

-Freeware Raytracers added
-New filetypes added (YAFA and many different module types)

-existing Filetypes improved
-special version of AppStore added (indieGO Marketplace text
client)

-big number of small improvements, f.e. a number of GUI
Toolkits added)

Planned for next future version:
improve integrated developer environments
adaptions to real hardware (like changing icon set)
make use of AREXX ports of the different applications
adding own small components

Redit – WORD PROCESSOR
Redit is a word processor for the Amiga computer. It can be
run from Kickstart 1.2 and 0,5 Mbyte upwards.
Changes in this version:

-Create documents with the CLI interface.
-The tab size and colours are configurable.
-Status bar for cursor line and column.
-Switching between documents with a hotkey.

http://www.kaiiv.de/redit/de/

 Commodore Free Magazine Page 22

 www.commodorefree.com

SysMon - Amiga Uodated
Sysmon is a system monitor for AmigaOS 4 created by Guil-
laume Boesel. Recent changes to the program include :
Tooltype to deactivate the ShortHelp.
Benchmark frames are now resizable.
Improved the Picasso function
updated the Italian translation.

http://www.os4depot.net/?function=showfile&file=utility/
workbench/sysmon.lha

DAVE HAYNIE TALKS ABOUT DEVELOPING THE
COMMODORE AMIGA

News from Fran Blanche on YouTube:

Dave Haynie talks at VCF East on April 6, 2014 about devel-
oping the various Amiga systems, up into the last days of
Commodore in April 1994. Introduction by Bill Herd. This
was a fascinating hour of must-hear stories for any serious
Commodore fan. Dave even wears his Commodore Death-
Bed Vigil shirt!

https://www.youtube.com/watch?v=Rcr2CFV0T4I

AROS VISION 2.5
A new version of Aros Vision has been released including ad-
ditional web software, games, tools, and improvements re-
garding the included development software.

Highlights:
-Poseidon
-ImageFX 1.5
-AmiBlitz 3.6 (new snapshot)
-Additional Amiga-E compilers
-Trog AGA
-Additional SDL-Games
-Ignition fully working
-ViewCSV
-MIDI-File support

Download Page:
http://www.aros-
platform.de/html/distribution_download.html#_blank

TAWS V0.23 (THE AMIGA WORKBENCH SIMULATION)
TAWS (The Amiga Workbench Simulation) is a JavaScript
simulation of the Amiga Workbench 1.x - 3.x for Internet Ex-
plorer, Firefox, Opera, and WebKit browsers. With TAWS
you can work with the Amiga Workbench inside your fa-
vourite web browser. Changes in this version:

-Added OS 1.0 and OS 1.1. OS 3.9: Start-up screen
-AsyncWB and Trashcan. OS 4
-More short keys and menu option
-Early startup control and startup screen

And many improvements for better emulation in IE, Firefox,
Opera, Chrome, and OWB.

http://www.taws.ch/WB.html

 Commodore Free Magazine Page 23

 www.commodorefree.com

AMIGA FOREVER AND COMMODORE 64 FOREVER
Amiga Forever

http://www.amigaforever.com
http://www.facebook.com/AmigaForever

C64 Forever
http://www.c64forever.com

http://www.facebook.com/C64Forever
RetroPlatform Project

http://www.retroplatform.com

 Commodore Free Magazine Page 25

 www.commodorefree.com

Pulse was created by pixel and is a
horizontal smooth-scrolling shoot-'em-
up, inspired by "Gradius"
The game works on an Unexpanded
VIC-20 with a Joystick. The game was
reviewed in Commodore Free
magazine (Issue 79). If you missed the
review I suggest you download and
read it. You will find the game and
source code available for free
download from here:

Program file:
https://github.com/SvenMichaelKlose/
pulse/blob/master/pulse.prg?raw=true

Source code:
https://github.com/SvenMichaelKlose
/pulse

Q. Hi pixel! Thanks for agreeing to
the interview. Please, can you
introduce yourself to the
Commodore Free readers?

Hi there! My name is Sven Michael
Klose. I'm a 39 year-old and have been
teaching myself programming since '85.
I live in Berlin Friedrichshain
(Germany) and I share an apartment
with a flatmate and his dog, which
keeps driving us nuts. I love running
around in embarrassing outfits, playing
the saxophone with bands on jam
sessions, and of course, hanging out
with my beer groups and get
hammered. I'm certainly into
entertaining people (when I'm away
from the computer).

Q. So then, what was the motivation
for creating Pulse, and especially,
why did you created the game for
the unexpanded machine?

I always wanted to do something with
a 6502 CPU, and I always wanted to
write a game. The stock VIC-20 was my
first computer. I wondered how much
one could squeeze out of the machine
with the amount of programming
experience people have nowadays. I
was depressed out of my mind after my
software business didn't take off, so
there was a serious need for quality
time in front of the computer with the
door shut – no socializing. It was a
perfect mental holiday.

Q. I criticised the game in
Commodore Free (although it did
receive a relatively high score) on
some of the graphical glitches in the
game, flickering and ghosted images,
etc. Was this purely down to the
hardware and limited resources,
and of course, the speed the game
runs at, or was it more down to not
being able to resolve the problems
with your code?

The ghost ship that occurs after the
player was hit and the sprites just
popping out on the left instead of
clipping at the border are bugs; I am
afraid I just couldn't find them. Shame
on me. I guess I spent far too much
time on it. The other glitches cannot be
removed from the unexpanded VIC, as
far as I can figure it out. The graphics
are text characters really, and that
always comes with clashes, especially if
you intend to move things smoothly.
The sprites are double-buffered to
make them bearable. When the game
runs out of its 48 characters for its 16
sprites, it just picks the last character
used, and that's when you get the
mirror images. Pulse is dancing the
Tango in a phone cell.

Q. When the game is running of
course, the small glitches fade into
obscurity, especially as the game
really rattles along. You mentioned
the VIC is absolutely flat-out
(processor-wise), so with that in
mind I presume the sections and

waves had to be very carefully
planned out so as to limit the
amount of screen graphics. My
question is, “Was this planned – or
did the game just evolve over time?”

Ha-ha! That's a good one! Me and
careful planning... Just kidding. No, that
was much easier. Since there's no way
to race the beam, Pulse doesn't wait for
the retrace. Instead, sprites aren't
really removed, but are turned into
background star sprites to keep the
speed more or less stable. Your VIC
doesn't waste a single CPU cycle while
running Pulse. There are 16 sprites all
the time. Even those behind the
background are drawn into ROM. The
game speed still varies a lot but no-one
seems to notice or at least complain
about it. The game grew in small steps,
and after each step the next became
more or less obvious. I played around
with the screws and trusted my
intuition, and of course my fond
memories of Gradius/Nemesis on the
first Nintendo Entertainment System.
In the end of the day it was supposed
to be an action game – and it's totally
O.K. for it to be a little bit stressing.
Right before I started programming
Pulse I dug through 6502 CPU
documentation and wrote a
disassembler with the tiniest CPU
description possible (in my small
universe) in Lisp. That's what probably
made me dangerous.

COMMODORE FREE INTERVIEW WITH PIXEL CREATOR OF
PULSE FOR THE UNEXPANDED VIC 20

 Commodore Free Magazine Page 26

 www.commodorefree.com

Q. Do you intend any further
developments on the game – maybe
a loading screen with music and a
high score table? Obviously the
loading screen would be do-able, but
is there any memory left for
anything else?

I'd love to see a real tape release. Of
course you simply cannot have no
loading screen on tape, or can you?
Unfortunately no retro software house
was interested. There are 50 bytes left
now scattered across memory. Maybe
it's possible to put the letters "HI" in
front of the high score, but that's all I
can picture at the moment. Or maybe a
little bit more level data. Uh!? Why
didn't I think about that earlier?

Q. As the source is available to
download, I expect people will want
to tweak it, and I presume this is
your intention for its release.
Would you consider re-working the
game if a reader could remove more
of the screen glitches?

The source code is simply a gift to the
community. The game is very hard to
tweak and I'm trying to leave my hands
off it myself because you can break
things very easily. Everything is kind of
interlocking. If somebody comes up
with fixes, I'll surely help. Don't forget –
the game is public domain. You can do
with it what you want. You can make a
tape release without asking me. You
can re-use any code for your own
project without having to slap my
name on it - you're probably running
out of memory anyway. Readers with
questions about the source code
shouldn't hesitate to ask me. My
address is pixel@hugbox.org

Q. Of course I am mentioning the
negatives of the game, and
remember the game scored a very
respectable 8.5 out of 10, so anyone
reading should not be alarmed by
the talk of glitches. Were you
pleased with the score, and do you
have any comments you would like
to mention about the values I
awarded the game?

I know next to nothing about VIC
games and I hardly play any games at
all, except the famous Midlife Crisis. I
leave it to you as the expert. I'm super
happy with your ratings! All technical
things aside, it's up to the gamer who is

supposed to spend his precious time to
rate the game. I couldn't ask for more.

Q. So this is your first VIC game?

Yes, Pulse is my very first game.

Q Do you have any other VIC games
planned?

Yes, and it's spoiling my days and
nights! I'm making an idiot out of
myself trying to create a 3D tank game
with filled polygons for the
unexpanded VIC. You can observe my
progress-in-failing on Github.

Q. Do you prefer working on the
standard hardware, or would you
consider creating games for
expanded machines?

A nice thing about programming for
unexpanded machines is the prospect
of actually getting something done, and
the technical challenges of it suit me
well. I'm afraid all I could come up with
on an expanded machine is a crap
game. I'm just not ready yet – it has to
feel right.

Q. Do you work on other
Commodore platforms, and will the
game be ported to other
Commodore hardware?

No, I never worked on other
Commodore machines. My parents
replaced my VIC by an Amstrad CPC-
464 back then, and that one by an early
IBM-PC. Grrr! Life can be cruel. Pulse is
just right for the VIC. The C64
community would probably have a
good laugh about a port, wouldn't
they? Maybe the C16 is worth a try. If
some retro software house wants a
port to another machine I'm all ears. I
know there's hardly any money in it.

Q. Some readers have asked me to
ask you how the game was created,
the tools used, and how the bug
testing and coding was worked on.
Also, did you have other people
testing the game besides yourself?

Linux Mint runs my laptop computer. I
used the VICE emulator, a 6502
assembler called 'xa', the VIM text
editor, and meditative debugging. I
made tiny changes, assembled
everything, and checked if it worked.
When it did the change went into the

Git repository. No debugger involved. A
couple of times an endless loop got
wedged in to check register contents in
the VICE monitor. Never underestimate
pen and paper! In the beginning I tried
to get my flatmate's attention. "Look! A
moving sprite! Look! Some enemies!
Look! A scroller." Well, I had to test it
myself at first, but as soon as Pulse got
sound I turned up the stereo to its max,
and everybody and their mothers
squatted the joypad for at least an hour
each. I just took care that the collision
detection was accurate or at least
forgiving. It had to be a fair game. My
flatmate scored 4271 points, by the
way.

Q. Apart from Commodore Free
have you had any other comments
about the game?

The folks at the VIC-20 Denial forum
blew my hair back with their
encouraging comments. Love you, too!
They made me continue working on it
when it had no score counters or sound.
I expected this to be another piece of
software of mine that'd get dumped
into oblivion. But then I got cartloads of
positive comments by very excited
people and that was totally unexpected
and scary. Pulse got a 100% rating on
pouet.net. The Micro Mart magazine,
which is printed in Britain, told me that
they'll publish a news piece about it
this week. I didn't read it yet but they
already let me know that they find the
game most impressive. This thing went
totally out of control and beyond
wildest dreams on special medication.
This possibly cannot happen again.
That depression I mentioned is cured
for sure, though.

Q. Imagine you could go back in
time and were given the option to
change one part of the VIC. What
would you change?

Full documentation and an assembler
shipped with it instead of just a BASIC
handbook. It would still be a great
educational toy for kids today like that.

Q. Do you have any question you
would have liked to have been
asked?

Not really. Thank you very much!

 Commodore Free Magazine Page 27

 www.commodorefree.com

Optimizing cc65 Code:
What the Author Didn't Tell You
By Joseph Rose, a.k.a. Harry Potter
[Intro]
 Welcome to my cc65 C optimization documentation!
Here, you will find some tricks and techniques to produce
the best C code under cc65. Most of the techniques here will
work for other 6502 targets, other C compilers, and even
other compilers and interpreters. I'm not yet an advanced
programmer, but I believe these optimizations to be useful.
Some of these techniques may be obvious to some, but you
may still find something useful. This document is organized
into sections; each describes one technique. The individual
techniques follow:

[Middleman]
 If your code needs to call the same function or group of
functions, in order and with some of the same parameters,
you can use a "middleman," where the middleman will ac-
cept the call, and call the base function or functions for the
callee and supply the constant parameters. This will require
some parameters to be passed only once in your code, mak-
ing for smaller code. An example follows:

 Instead of:

 extern int i[10];
 int func2 (int ramcount,
 enum machine m,
 char* language)
 {
 ...
 }

 void func (void) {
 {
 i[0]=func2 (64, machC64, "c");
 i[1]=func2 (64, machC64, "BASIC");
 i[2]=func2 (64, machC64, "assembler");
 i[3]=func2 (64, machC64, "FORTH");
 i[4]=func2 (64, machC64, "Pascal");
 }

 Try:

 extern int i[10];
 int func2 (int ramcount,
 enum machine m,
 char* language)
 {
 ...
 }
 int func2a (char* language)
 { return func2(64, machC64, language);}
 void func (void) {
 {
 i[0]=func2 ("c");
 i[1]=func2 ("BASIC");
 i[2]=func2 ("assembler");
 i[3]=func2 ("FORTH");
 i[4]=func2 ("Pascal");
 }

 Commodore Free Magazine Page 28

 www.commodorefree.com

Caching Variables]
 If you need a particular element in, for example, a multi-
subscript array of structs many times in your code, it is a
good idea to read it once, store the value in a local variable
and access that instead. If you need to access different mem-
bers of the struct, assign the struct's address to a local point-
er and use that to access the struct. This is made even
better if you use a zeropage variable.

[Minimize Function Usage]
 Don't use functions you don't need. If you don't need
the services of mprintf(), don't use it.

Examples follow:

 * My CBMSIMPIO library simplifies displaying text
and numbers on
 the screen. If you don't need the services of the
standard
 screen output library and CBMSIMPIO can do the
job, use
 CBMSIMPIO instead. This can save 2-3k in your pro-
gram.
 * If you need to copy memory from one location to
another and the
 two never overlap, don't use memmove(). mem-
move() requires
 more overhead, and memcpy() can do the job.

[System-Specific Functions]
 If you're writing code for a specific target, use functions
made for that target. This requires less overhead for conver-
sion and otherwise makes for better code in general. An ex-
ample is if you use file access with a CBM model, using the
CBM OS functions to access the OS directly.

[CBM Control Codes]
 The good thing about CBM screen output is that it can
contain control codes to perform functions such as change
color or clear screen. If you need to, for example, clear the
screen before writing some text, including a clear screen
code in the text can save from an explicit clrscr() call and
shave 4 bytes from your code.

[Assembler]
 Most programs can be created solely in C. However,
some programs may require at least some assembler. When
deciding to use assembler in your code and where, keep the
following in mind:

 * C is a medium-level and is good for calculations and
program
 flow.
 * Assembler is a low-level language and is good for
data-
 crunching, hardware-manipulation and OS calls.
 * If C can do the job immediately, you should use C.
 * If C needs to do a work-around to do the job, you
may want to
 use assembler.
 * If you want or need full control over hardware or
the computer,

 you should use assembler.

 Don't be afraid to use assembler. It can be beneficial if
used
properly.

[Assuming Parameters]
 This is similar to the Middleman optimization. If a func-
tion only needs one value for a particular parameter, re-
move the parameter and replace it with the value. Then,
remove the parameter in the declaration, definition, and
calls to the function.

[Tokenizing Calculations]
 If you need to use the same calculations over and over,
store the calculation(s) in one function each and call the
function(s) as needed.

[Optimizing Longs]
 On an 8-bit computer, longs are very slow and require a
lot of code.
Fortunately, using pointers to longs seems to produce tight-
er code. I think this is because it allows your program to
handle words, while the compiler provides the routines to
handle the longs referenced. This, however, should slow
down your code even more.

[Calculate Once]
 If you need the result of a particular calculation several
times, perform it once.

[Use Switches]
 Switches are good for many possibilities. Switches load
the value once and perform several comparisons on it, sav-
ing from the extra loads necessary with ifs. The exception
to this rule is a true/false case which works better on ifs.

[Incremental Switch Returns]
 When you use a switch to return an incremental value
where each condition returns one more (or less) than the
previous, reorganize the code by putting the highest (or low-
est if less than the previous), using an increment/decrement
instead and remove the breaks on all except the last if neces-
sary. An example follows:

 Instead of:

 char c=0, d;
 switch (c) {
 case 1: d=1; break;
 case 3: d=2; break;
 case 2: d=3; break;
 case 4: d=4; break;
 }

 Try:

 char c=0, d=0;
 switch (c) {
 case 4: ++d;
 case 2: ++d;
 case 3: ++d;

 Commodore Free Magazine Page 29

 www.commodorefree.com

 case 1: ++d; break;
 }

[Toggling Bools]
 If you know that, for example, b is a bool and either 1 or
0, toggling b using b^1 is shorter and probably also faster
than !b.

[Ifs Without Elses]
 If you have a series of ifs, all of which are mutually ex-
clusive (i.e. only one will work anyway), exclude the elses.
In this way, you avoid the extra jump over the next elses.

[Assigning]
 Assigning a value when it's first used can save an explic-
it load. Ex:

 Instead of:

 c=a*2-1; f00(c);

 Try:

 f00 (c=a*2-1);

[Ints are shorter and faster than strings]
 If you need to compare a string to a list of other strings
several times in your code, do the compare once and set an
enum to the string's number and substitute the number
compare. This also allows you to use switch() to delegate
the different tasks instead of a series of !strcmp()'s.

[Avoid Unnecessary Error-Checking]
 If a
[Footnote]

 I am glad you looked at this document. Please, tell me
what you think! If you find this document to be helpful, e-
mail me. If you have any suggestions, complaints or com-
ments, e-mail me. If you have any additions, post them on
the cc65 contribs site.

My e-mail address is
rose.joseph12@yahoo.com.

 Commodore Free Magazine Page 30

 www.commodorefree.com

INTERVIEW WITH DANE BILLS
PANICMAN VIC20 CREATOR
Name: Panicman
Authors: Dane Bills, Jeff Messner
Released: March 2, 2014
Requirements: VIC20 with +3k or +8k,
joystick (developed on NTSC)
Description: A maze game clone of a
well known 80s game written in
assembly

Video of first test:
http://www.youtube.com/watch?v=M
Knd8T4pi18

Both versions should load and you can
type 'run' from the basic prompt after
loading.
e.g.: load "panicman3k.prg",8

There is no difference between the 3k
and 8k version other than a splash
screen to show the authors on the 8k. I
just thought it might be nice to have
the 8k executable for someone to run
on the real iron if they didn't have a 3k
cartridge. The 3K has received the
most testing on real hardware.

+3k version:
https://drive.google.com/file/d/0B0V
OPYWAvrJHZjJBQW1uVWVYcDg/edit?
usp=sharing

+8k version
https://drive.google.com/file/d/0B0V
OPYWAvrJHSHhBd0hJbHg5RE0/edit?u
sp=sharing

discussion thread:
http://sleepingelephant.com/ipw-
web/bulletin/bb/viewtopic.php?f=10&
t=6870

In Commodore Free issue 79 I
reviewed a new release for the VIC 20
called Panicman, the game received a
very high score not just for the game
play and sounds but for its accuracy in
the conversion to the VIC, I took some
time out to chat to the coder, and find
out more about the games creation.

Q. Hi. Can you introduce yourself to
the Commodore Free readers?

Hello Nigel.

First, let me say I'm honoured to say a
few words on Commodore FREE about
my tiny contribution to the amazing
stuff coming out of the retro-
computing community. If it wasn't for
all the people creating projects and
content this wouldn't be near as much
fun as it is.

I'm one of the generations of kids from
the 70s and 80s whose lives were
really touched by the introduction of
the personal computer. A friend from
church had shown me an Apple II some
time around 1980. I remember looking
for a computer of my own. The KIM
and AIM65 were the only products
even remotely affordable back then.
Finally, I saw the "Wonder Computer"
at a local Hamfest. It really was a
wonder for its time. At under $300, I
was able to successfully beg the
parents for a VIC that Christmas. I
found a picture of my first original VIC.
I did a lot of programming in BASIC
during those years. I made Gorf and
Asteroids, both with custom character
sets. They were dreadfully slow of
course, being written in BASIC.

 Commodore Free Magazine Page 31

 www.commodorefree.com

Q. Noted in the Credits is Jeff. Are
your musical skills lacking? I see
Jeff helped with play testing as well
as the music. How did you go about
testing the game?

I played in elementary school band for
what that's worth – not much I reckon.
I first started out by dumping the
sounds from the arcade into a
spectrum analyzer and trying to
reverse engineer them. That wasn't a
whole lot of fun. Jeff has perfect pitch –
he hears notes like I see colour. He
took over designing sound effects and
music. After his initial distaste at the
VIC's out-of-tune scales, he got down to
the business of carefully picking notes.
He managed to hand compress the
Pacman song into an incredible small
number of bytes, as I didn't leave him
very much room – ever, to put the
sound and music in. I was too busy
eating up all the memory with beginner
6502 code.

We had some soft “defines” in the code
where you could become invincible, or
have the level end after X points, and
have a second player control one of the
ghosts to set up scenarios for the AI.
Early on most of the testing was done
in WinVICE. Later, with much
excitement, I procured some real

hardware from eBay to try the game
out on. That was its own sort of
adventure. We had to find an old
Pentium computer to run 64HDD on
for file transfer. I had to solder up
some transfer cables. That's when I
realized this was truly fun, as you could
allow the project to take you into any
sort of weird area you wanted to
wander into. The big test was a self-
imposed deadline from Jeff. We had to
complete the game in time for a retro
gaming party. We loaded the game on
a real VIC and let it run for 5 hours
alone with strangers and a joystick.

Q. The credits say “developed on
NTSC.” Now I know its PAL-
compatible as I played it on a PAL
machine. I presume testing was
conducted on PAL machines, and
apart from the speed, are there any
other differences between playing
on a PAL or NTSC machine?

Yes, I guess there shouldn't be much
difference, save for the speed. I could
tell I was new at this because it never
occurred to me to try to run the game
in PAL mode on an emulator. I was
worried when one of the UK members,
Beamrider on Denial, played the game
and it behaved strangely. I had not
bothered to lock the frame rate down.

With the extra time per frame that PAL
offers, occasionally the game loop
would finish in one frame instead of
two. This made it jerky. I made a patch
to lock to 1/2 frame rate so the speed
would be constant on PAL.

Q. I see in the forums you were
trying to make a tape version of the
game. Do you intend to distribute
this (obviously there will be some
copyright issues)?

I never did manage to get a tape made.
Jeff thought the retro game party might
be amazed to see a game load from
cassette tape. Many of them had
perhaps only been familiar with
cartridge based systems such as the
2600. That was everyone except for
his uncle, who I understand had given
Jeff some computer tapes for his C64
when he was a kid. The tapes were so
tiny in size, Jeff thought his uncle had
been unduly cheap with him. He later
realized they were data cassettes and
much more expensive than regular
audio cassettes. I can't say I ever had
any data cassettes back in the day; it
was always a re-purposed audio
cassette. The Commodore tape drive
never failed me though, unlike the
Atari.

 Commodore Free Magazine Page 32

 www.commodorefree.com

Q. Why didn’t you just release the
8k version of the game and maybe
spice it up with a splash screen?

One of the nostalgia requirements for
the project to me was that it had run on
the same hardware I had in 1982. I
was enamored with the PLOT and
DRAW statements of the Apple II back
then, so I had scraped enough pennies
together to buy a "Super Expander 3K"
memory expansion cartridge which
had the additional basic commands
built-in. This was the target; it had to
run within a 3K VIC.

Q. I did comment that the ghosts
were a bit dim in my review. You
mentioned you tried to copy the AI
as close as possible. Was this from
the original arcade game?

Yes. I was going to try to verify the
correctness of the ghost AI by
demonstrating that the same patterns
that would work on the arcade
machine would work on this version,
but that did get out of scope quickly. I
would like to point your readers to the
brilliant Pacman dossier by Jamey
Pittman:

https://home.comcast.net/~jpittman2
/pacman/pacmandossier.html .

 It contains detailed descriptions of the
arcade ghost AI I tried to copy.

When Jeff and I were getting ready to
release the game we had a bit of a
heated exchange about the game
difficulty. It seemed a bit too hard at
first and he thought we should turn it
down a bit for the party so that people
would enjoy it more. After we tweaked
the difficulty I always thought it was
too easy. Oddly, when I play the
original Pacman on MAME I get about
the same score across both versions.
One of the things that we were doing to
make the game harder was decreasing
the chase/scatter timer, such that there
was a larger period of time when the
ghosts were chasing you vs. heading
back to their “home” tiles.

I know a few areas where the ghost AI
is mismatched to the arcade. I really
want to dig back into the game and
make sure it's correct. I believe it's
possible for the vector math on Inky to
overflow and have it mess up his
targeting tile. In “frightened mode” the

random direction selection isn't
working properly. Also, the order in
which ghosts evaluate their moves
when two moves are tied for the
shortest Euclidean distance to their
target tile is different than the arcade. I
think this is causing there to be more
than one hiding spot in the maze. The
arcade has one legitimate hiding spot.

One thing that would help make the
game harder is the faster version I am
working on. When you have less time
to plan your moves things get a lot
more hectic. I have it running at the
full 50 or 60 frames now, but I need to
rework the timing constants for the
relative speeds of Pacman and ghosts
on different skill levels before I can
release it.

Q. How accurate do you think the
game is to this version?

Hmm... well, it's got to be at least 50%
correct. Clyde is supposed to return to
his home tile if he gets too close to
Pacman. I made him return to the
opposite Cartesian coordinate area of
the screen. I thought that might make
him more interesting. Pinky has a bug
in the arcade that I did not reproduce
but rather coded up his intended logic.
Inky needs some more testing to feel
100%. The game does include the two

“speed-up” modes where Blinky will
increase his speed during a level. This
is accompanied by an increase in the
siren pitch.

Q. How limited were you with the
VIC’s hardware. For example, trying
to get the maze to fit the screen and
still be faithful to the original. Was
this a challenge?

You'll notice the maze has a weird spot
in the middle. To match the
proportions of the arcade on the VIC
the whole maze would need to be
narrower. I didn't like the narrower
maze as it didn't leave enough room in
the ghost box for all ghosts to display.
The wider maze made some corridors
longer than they should have been.
They would not allow you to reach an
escape passage quickly enough. This is
why I made the middle pylons a little
larger – to reduce the longest run that
Pacman would have before he could
turn.

When playing the game on the emulator
the non-square pixels of the VIC really
seem to make the apparent speed of
Pacman change drastically when
changing directions from vertical to
horizontal. For some reason, on the
real hardware on a CRT it doesn't seem
as bad. I was pleased about that the
first time I played on a CRT. At one
point I wondered if it would be worth
altering the horizontal vs. vertical
speed to compensate for the VIC's non-
square pixels.

Memory is a brutal taskmaster on the
VIC – there is rarely enough, although,
as you pointed out in Issue 79 with the
Pulse game, miracles are possible, even
in the unexpanded 3.5K.

Q. The whole game feels very
polished. Was this your first real
programming attempt?

The VIC did lead into a programming
career. I guess the inventors of those
first machines should feel proud of
that; they inspired a lot of future
programmers. I was doing some C++
for a telecommunication company by
1991. This was the first 6502 assembly
project I had ever attempted. I must
say – oh my goodness – what a learning
experience! I have so much
appreciation for how tedious it must
have been back in the day. Those guys
worked so hard. I think they were
some really unsung pioneers of their
time.

Q. What do you have planned next?
Will it be another port, or do you
have an original game idea you plan
to unleash?

Everyone loves a cover band – and
everyone also loves remakes of classic
80s arcade games. It's a shared
cultural experience we all have. I
would like to pick one of the “Games
We'd Like to See” from the list on the
Denial community and take a shot at it.
Maybe Wizard of Wor or Elevator
Action would be fun.

 Commodore Free Magazine Page 33

 www.commodorefree.com

Q. You mentioned the Denial
community. How important was the
VIC community to the project?
Would you have just given up
without proper support from the
community?

When I started the project I tried a
promise to not use any resources from
the internet because I wanted it to be
like 1982, where all I had was a paper-
printed book to thumb through. I was
about 80% successful staying away
from the Internet – until I needed some
help. What I love about the community
is knowing there is a gathering of
people who still use the system. That
makes all the difference. The VIC20
Denial website was a big inspiration
and Robert Hurst's amazing collection
of VIC20 games inspired me to try.

Q. So the community is an ideal
forum for tweaking and helping to
spot bugs. Do you plan any other
enhancements to the game?

I'd like to release a second version of
Panicman. I've been working on one
which runs at full speed, and as you
mentioned, uses a full 8K to have the
arcade title screen and the full
intermission and fruit complement.
The ghosts should be much closer to
arcade AI in it, too.

Q. If you could go back in time to the
point where you started coding the
game, would you have done
anything differently, or dare to say,
would you have thought “Nah, I
won’t bother?”

Oh, dear! Yes, there is so much I'd like
to do differently. I always thought that
when doing a hobby project you could
have everything the way you want it –
unlike our day jobs. Well, it's not
completely true. Once someone makes
a “deadline” for you as I did with the
self-enforced date of release, things
start to have compromises just like the
day job. I would have preferred using
an assembler with a linker because that
would have made compiling for
different VIC memory footprints easier.
I wish I could have had time to fix the
EMACS mode for DASM so that it would
indent properly. It really got
frustrating. I would have liked to try
some interlacing techniques to do
something about the colour clash.

Q. Many readers will ask about the
tools, software, etc., you used to
create the game. What tools did you
use?

One of my early goals was I was not
using the built-in debugger in the
WinVICE emulator. I made it about
75% of the way through the project
before I cried “Uncle!” on that. The tool
set was EMACS Editor, DASM
Assembler, SVN Source Code Control. I
used some Perl scripts to generate the
compressed data for the maze and
perform the bit rotations for the
different frames of Pacman. Jeff would
prototype his music directly in
Commodore BASIC, sometimes with
the assistance of an Excel spreadsheet.
I alternated between using Windows
and Linux, depending on whether I was
at home or ... Ahem, at my “day job.”

Q. With so many tools available and
cross-assembly being used, do you
think it’s easier to program the VIC
now, or do these tools just make
things faster?

That is a good question. I think it
makes things faster mostly. I jokingly
refer to the assembler as the “Quantum
Assembler.” With modern PCs it's done
assembling before you even hit the
Enter key. Certainly some things I
would have hated to do by hand with
graph paper – like rotating all the
Pacman images. On the other hand,
debugging can be a big pain, unless
there is some
source level
debugger that
single-steps
through your
original source
code that I'm
unaware of. I'm
not sure that we
really have it that
much easier now
than then in that
respect.

Q. If you could
code the VIC in
the 80s, what
would you have
done (maybe a
career change)?

Yes, that was the dream – to make a
career of programming 8-bits.
Honestly though, I wonder, “If I had
been the age I am now when the VIC20
first came out, would I have paid any
attention to it?” I say that because I
pay very little attention to the “popular”
technology that is out there right now,
like the iPhone, for example. I may
have written the VIC20 off as some fad
of "the young" while I was busy with
my IBM and COBOL programming.

Q. If you could go back in time and
change one thing about the VIC,
what would you change and why?

Wow, another killer question! Hmm... I
remember the day I unpacked my VIC,
lamenting how low the screen
resolution was compared to the Apple
II and Atari. However, there was no
way I could have afforded those. That
is the obvious complaint of a 12-year-
old in 1982, but looking with the eyes
of an adult in 1982, what would I have
changed? Hmm... I don't think I would
have changed a single thing. Anything
added would have increased the cost –
and that was the whole point back then.
Maybe they should have included the
Programmers Reference Manual as part
of the base documentation.
Commodore had great documentation.

 Commodore Free Magazine Page 34

 www.commodorefree.com

COMMODORE FREE INTERVIEW
WITH THE CREATOR OF THE C64p

Specifications of the retail C64p
 - C64DTV PAL

- 7” TFT (480×234 Pixel) 4:3/16:9 +
infra-red remote

- Mouse pad emulates a 1350 joystick-
mode mouse in port 2

- Joystick port x2
- IEC disk/printer port (rear)
- SD2IEC (left)
- Disk swap button (left)
- SD2IEC button root/reset (left)
- Speakers x2
- Volume (rear)
- Power/Charge (rear)
- C64DTV Reset (bottom)

- C64DTV firmware upgradable via Joy2
- LED – Green – Power
- LED – Orange – Charge – bright full
charge rate – dim trickle charge

- LED – Blue – SD2IEC
- 1800 mAh Battery (run-time approx.
3.5 hrs depending on system load)

- Audio/Video out (the output isn’t
switched so the display is dimmed)

- 100-250 VAC Asus Charger
- Custom firmware which supports a
number of built-in DTV games, plus
JiffyDOS, BASIC, and file browser

- Colour fix has been applied
- Keyboard Twister NG is also fitted

Notes about the Keyboard NG
This means a lot to people who know
about the DTV. If you connect a DTV to a
real keyboard the biggest issue is the lack
of F7, among other oddities (not good if
you want to play KikStart!), but the
keyboard twister fixes this. NG – Next
Generation gives extra functions. There
is a hack on the NG ROM (the standard
ROM is for German keyboards) so it runs
in US mode. The NG ROM, with a simple
add-on diode, gives a user the ability to

“CTRL-ALT-DEL”, which resets the DTV.
No need for power-off/power-on.

The Future was 8bit is a website that has grown from a fanatical Commodore owner's own need for toys into a one-stop
shop for SD2IEC, C64p, and other peripherals. “My own long-held desire for a C64p is the only reason my line of SD2IECs
exist. Something like three or four years ago I built an SD2IEC to try with a C64DTV. The left-over SD2IECs ended up on
eBay... and the rest is history.”

First, what is the C64p? Well, it is a C64DTV-based laptop measuring 21×14 cm. which Nic has customized. The laptop
starts as a new product; then all the insides are removed – even the the TFT screen is replaced. The only remaining parts
are the battery and chassis, which are then populated with an SD2IEC, keyboard interface, three custom PCBs, 7″ TFT,
1530 joystick-mode mouse, and an ASUS unit which replaces the charger/PSU. Add a dash of custom firmware flashed
onto the DTV chip (which lets you choose kernels). JiffyDOS anyone?

http://www.sd2iec.co.uk/index.html

 Commodore Free Magazine Page 35

 www.commodorefree.com

Q. Will you please introduce
yourself to our Commodore Free
readers?

Hi Commodore Free readers! I’m Nic
from Dorset in the UK. I’ve had
Commodore computers for (I hate to
say) 31 years, and still use one every
day!

Q. How did you become involved
with Commodore and computing in
general?

Christmas '82 or '83... I found a VIC20
under my tree. A few years later I
managed to get my Dad to buy me a
C128… a few years later I bought
myself an Amiga 4000. These days, of
course, I work in IT – Yay me!

Q. The C64p, although expensive, is
quite an elegant-looking device.
How long does it take to make the
unit?

Well, first – it’s expensive because it
costs an eye-watering amount to build.
I never really thought I’d sell any. After
all, I really only built it because I
wanted one, but the word got out, so I
made a few extras. It’s difficult to
guess how long one unit takes to build.
It took me about 3 years to get them to

where they are now, but if I had to
guess, I’d say 20-30 hours each.

Q. Are these items made to order –
or are they in-stock?

All of the units sold so far were sold
from stock. All of the components are
in-stock, so I don’t have to go fishing
for DTVs if I want to make more.

Q. I see you have JiffyDOS. Is this
licensed? Some forums have
suggested this is not the case. Do
you think JiffyDOS was an important
addition to the device, and does it
actually speed up loading from the
SD card? Or is it more for the
convenience of extra commands and
features?

I don’t really follow too many forums,
and I really don’t get the chance to sit
in front of my PC with nothing to do!
Anyhow, yes – technically it’s not
licensed, but it’s not the same JiffyDOS
you’d find inside a real C64. DTV-
JiffyDOS is a hybrid that is easily
available for download from the
internet. JiffyDOS, just like on a real
C64, transforms loading times.

Q. Talking about forums – have you
had any negative comments about

the unit, and do you have any
comments you would like to share
back to readers? (no swearing,
please)

 Urm, I have read interesting comments
like, “I’d pay no more than £80 for one”
or, “It’s a DTV, so it’s not 100%
compatible.” Makes me laugh, as
you’ve only got to use one for 10
minutes to know it’s something special.
I’ve loaned a couple of demo units out
and the feedback was amazing. It
seems most people`s idea of the DTV
doesn’t do it justice. Yes, some
functions are slightly non-standard, but
overall, once you turn one on, you don’t
want to turn it off. The people at CiA

http://awesome.commodore.me/articl
es/kitty/commodore-c64p-review/

gave me some wonderful feedback.
Originally (before they used one) they
thought something like this could retail
for £100-150, but after they touched
one they realised how cool these things
are and how much has gone into
making them. They agreed that you’d
never get anything like this for 100quid.

They really do look “shop bought” and
not knocked together. Everything
inside the C64p has been built with

 Commodore Free Magazine Page 36

 www.commodorefree.com

longevity in mind. Calculators were
used in the making of these units! To
give you an idea – the original donor
laptop's charging circuit could only be
described as dangerous; I tested seven
original chargers – and I kid you not –
only two worked after 24 hours, and
four of them went “pop” with sparks
jumping out of the nasty plastic so-
called CE-marked PSUs. My charge
circuit was designed by a friend that
has designed charge controllers for
Nokia/Motorola and Panasonic.

Q. I find it interesting that people
spend so much work developing
units like this, only to be thrown
abuse from the community. Yes, its
expensive, but we have already
spoken about the amount of work
involved. Also, I suspect that in
reality there is very little profit to be
made from such a unit. Would you
like to comment?

That’s why I don’t bother talking to
people in the online communities that
do not give anything positive back into
them. Some people have a real passion
for all things retro; others can only say
they could do it better, but of course
they don’t. The Internet is full of
freetards like this; hey – they're
probably still living with Mother! If I
was trying to make a living wage
making these, well, frankly – I couldn’t.
It is important to make a profit; as with
everything I sell, it has a warranty. So
you have to cost things with this in
mind. If one breaks I have to replace it.

Q. What was the motivation? Was it
just a challenge – or did you see a
real need for this?

I wanted a C64 I could use anywhere,
so I got off my backside and did it!

Q. Of course we need to talk about
compatibility and the DTV was
never 100% Commodore-
compatible. In your experience,
how compatible is the device (you
mention it runs GEOS)?

No, it’s not 100% compatible, but it
surprised me on how much stuff does
work. From what I’d read about the
DTV I wasn’t expecting much, but just
about everything I’ve personally used
seems to work peachy! Yes, I did have

a working GEOS – it was amazing! But
some idiot (me) formatted the SD card.
It’s on my to-do list to recreate the
DTV-GEOS disk images.

Q. In GEOS, can some of the DTV's
memory be used as a ramdisk?

Yes, this can be done, but the version I
ran didn’t use this. It’s something that
I’d love to spend some time on, but I’m
kinda hoping that one of the C64p
owners might do the leg work for me!
I’ve got other portables in the works,
you know, and very little time to play
with my own toys.

Q. Maybe you would like to tell our
readers about some of the other
services you can provide.

I mostly get questions regarding C64
and its repair – that’s fine by me. But I
can answer most questions on just
about any 8/16/32 bit machines, and
I’m always happy to help (no Apple
please, I’m British).

Q. Why did you select the model of
machine you did to start the
customisation?

The donor laptop is one of those OEMs
you see with different brands printed
on them. In fact, I bought so many of
these things, I even found OEM clones!

Q. One thing you have created is a
very professional looking piece of
hardware. It doesn’t look to quote
yourself like it’s a “butchered piece
of hardware.” Do you have plans for
any other hardware device?

Yep, they do look good, even if I do say
so myself. Like I’ve already said, the
feedback on the C64p has been
amazing. I always worry when you sell
things like this, and yes, I do have plans
for more hardware. Two more laptops
(original hardware) are in the works
with a possible third – probably eye-
wateringly pricey. They will need
custom plastics.

Q. Have you been contacted by Jeri
Ellsworth, the creator of the DTV? I
wonder what she makes of your
customisations. You could say the
DTV has been customised to the max
with the creation of the C64p.

I did send her a tweet. She probably
thought, “Yeah, whatever.” I didn’t
hear anything back.

Q. Of course I have to ask – why call
it the C64p?

It was gonna be called the if64 (rude)...
“P” for portable (little p, as it’s small),
and 64p is slightly humorous because
I’m British and it doesn’t cost 64 pence
(we say pee, BTW).

Q. Finally, do you have any
comments you would like to make?

Trust me, some of you might do a little
wee when you see what I’ve got in the
works

www.thefuturewas8bit.co.uk

 Commodore Free Magazine Page 37

 www.commodorefree.com

Spaghetti Code.
By John Fielden

'GOTO' BASIC (aka 8-bit or
"procedural") has often been criticised
for causing spaghetti code.

Sorry... No! Programmers (I use the
term quite loosely!) are responsible for
getting their work in a mess! Look at it
this way: When you have to clean your
room, you don't say, "Oh, it's that new
wardrobe from MFI. We should have
gone to Argos!" You just don't, do you?
You get the missus to do it!

Joking aside, “Good programmers have
a pen & paper handy,” as the saying
goes. However, in my case I seem to
use the technique backwards. When
something I've started becomes too big
to check through on-screen, or there's
something I can't figure what I've done
wrong simply by looking, that's usually
when the pen & paper come out of the
drawer. It's a great way to tidy up the
mess.

Believing the common trend that
blames procedural rather than a
person's logic, planning capabilities,
etc., the VB.Net company have pretty
much destroyed that which was the
beauty of BASIC and basic
programming. Now, as I look through
the walk-through guide of the Visual
Studio 2003 Edition, there's very little
difference between VB, VC, VC++, VC#,
and so on. What is the point when the
only real difference is in the syntax
(grammar, loosely speaking)?
Sometimes it's merely a case of
throwing extra symbols in!

I mean, what is the point?

Anyone interested may as well invest in
learning its common (intermediary)
language. The rest. On the face of it, at
least. Seems pretty much surplus to
requirements! A waste of the
company's time and money investing
in the other languages (which more
and more seem a mere split off from
BASIC anyway - not withstanding
OOPs).

OOP, on the other hand, is much more
likely to cause SPAGHETTI CODE than
any amount of GOTO statements. First,

you've got to decide how to band
together the groups of events. For
instance, do you put the Click events
together, the items being clicked
together, or instructions to let this
monster which is actually being
clicked? (ie. left or right mouse button,
or whether it is hovering, moving, etc.)
When you've figured that little lot out,
we're back to the problem of variables
and how they just get discarded when
you clear the page for a new one
(effectively starting a new form). Note:
a new form is not the same as a new
project (called a Solution in VS.). Glue
is a Solution! At least with glue people
stick to it!

VS (even BASIC) have become so
convoluted, and people aren't
bothering to keep up with it. In spite of
the claimed statistics, which are
actually well-worked propaganda,
BASIC is claimed to be the most
commonly used language. Maybe so
generally, but the DotNet books claim
this of VB.Net.

Now, I have issues with this (having
looked beyond the wording) and have
seen what it is trying to lead us to
believe!

1. Is VB.net the most commonly used
.Net language?

2. Is it most commonly purchased in
recent times, bearing in mind people
will have long ago bought other
versions, languages, etc.? Most will still
have them, and if not, these are usually
available free, though being for the
purist, are rarely updated to become
usable mainstream. Ironically, the only
one I know of that did try ended up as
an OOP version that this writer is
complaining as to the complexity of!

3. There are probably several versions
vying for attention, and they may
concentrate only on specific things.
Does adding these (as one) change the
stats?

4. How many start with it – only to
give up on it? I am quite near doing
this, having gotten nowhere beyond

pretty front ends in my ten long years –
with this and dialysis!

There are probably more reasons in
unravelling the propaganda when you
look at it. The marketing and
advertising capabilities (and prowess)
of the richest company the world has
ever known – and perhaps its owner,
the richest man since Solomon (from
the Old Testament, some 4000 years
B.C., who graced the people of that
ancient time with wisdom – at least he
brought that for all his riches!).

I was shocked when I heard Roy, the
DER technician who helped me with
random numbers. I wrote about it in a
prior Nostalgia issue. I learned he had
ditched it for DarkBASIC. I'm into apps
rather than games, and it sounds like
modern-day consumers won't take
such things seriously.

So, the last nail is in the coffin; the last
straw is drawn. None of the fifty or so
books, nor any of the Googled items,
tells me in simple, non drawn-out
terms how to keep variables in
memory across multiple forms (though
you shouldn't have to do anything until
you wish to free memory by clearing
the variables).

The latest is keeping a Boolean, caused
via a button click, on a form. I have
tried to follow everything I've read
though, but can't find anything specific
to this. I have even tried creatively
with variations and my own ideas – so
much so, that the only thing left to do is
to wave two fingers in the air – and
walk away.

Here's to unhappy prog'ing...
May you all have better luck in your
endeavours.

 Commodore Free Magazine Page 38

 www.commodorefree.com

Never On A Commodore
by Lenard R. Roach

I used to do everything from surfing the
Net (not the Internet) to budgeting to
writing – and Heaven knows what else –
on a Commodore. I used to spend
several hours a day on the Commodore
just doing whatever I wanted. My
biggest fun was creating programs in 64
mode on my 128. I enjoyed the fact that,
with each subroutine written in BASIC, I
added to a larger compilation of
separate subroutines that would
eventually conglomerate together to
become a functioning program by tying
each subroutine with either a GOTO or
GOSUB command. But, even in
programming it was frustrating to look
for those little gremlins called bugs,
which were little BASIC commands
worded incorrectly or placed in the
wrong subroutine.

I remember working on the program
Check It Out recently, trying to make the
program more compatible with its sister
program, Check Mate. For those who are

not aware, Check It Out made it into the
very last issue of RUN magazine as one
of the featured works of the month.
RUN magazine gave me $150 for the
work, and like a fool, upon signing the
contract, I lost all the rights to make
improvements to the program unless I
received permission from RUN. Now,
here in the 21st century, the programs
once owned by RUN have passed from
company to company and from hand to
hand so that only God knows exactly
who owns them now.

If any of you have read my book
Run/Stop-Restore: 10th Anniversary
Edition, I talk about dealing with one of
the companies that I found back in the
early 2000s that had my program. At
first the company wanted me to publish
any upgrades in their own magazine
which they started to replace RUN, but I
couldn't see myself once again signing a
work-for-hire contract and losing a
second work to the legal nonsense

created by my
failure to use
foresight. Thus, the
program upgrades
never saw the light
of publication.

What did I do with
the upgrades? Right
now they just sit in
my collection of
Commodore
programs waiting
for the day of
rebirth.
Occasionally, I break
these programs out
and run them
through their paces
to see if there are
any more changes I
can make to them,
but so far they seem
to fit the bill as they
were designed, and
the Spirit of
Creation hasn't
lighted upon me to
make any more
changes. It is
getting time to pull
them down again,

clear off the dust, and check, just one
more time, to see if there is anything I
can do with them. Maybe, just maybe,
the light will come on and I will begin to
work on them again.

Well, like an old man, I get into a cul-de-
sac and forget what I was writing about.
This article was suppose to be about the
wrestling match in getting Check It Out
and Check Mate to talk to each other.
Maybe a run-down of what each
program is supposed to do may bring
some light to what I'm saying.

Check It Out was designed to allow a
user to type in all the information
needed on a wallet size check. Then the
program would print off that inputted
information onto a check inserted into a
standard Commodore 9-pin printer. In
the age where the Internet and
hardware has made it easy to pay bills
instantly and on-line, this program
seems a little moot, but if there are any
users out there like me who still like to
make out checks, and create for
themselves a paper trail to look back
upon, then this program is for them. At
first, I wrote this program because my
hands have developed carpal tunnel and
writing checks week after week had
become a painful experience. Check It
Out alleviated some of that pain and
made the check writing experience a
little less awkward. When I started
making out checks ahead of time for gas
from my local convenience store, the
clerks were impressed by how it was
done – and how neat it was to read a
check that didn't look like it was written
by a three-year-old, since most people in
my neighborhood apparently had bad
hand writing.

This is when I got the idea to try and go
public with the program. First I
contacted RUN magazine by mail,
thinking they had hundreds of programs
to go through, and something as simple
as a check-writing program would never
fare against some of the works they
have published in the past. RUN
responded to the positive and sent me a
copy of RUN Script (their response to
COMPUTE'S Speedscript) and told me to
send the program in with a

 Commodore Free Magazine Page 39

 www.commodorefree.com

corresponding article written in RUN
Script format. It took me several months
to learn how to manipulate Speedscript
and I wasn't about to take several more
months to learn another word
processing program just to write one
article, so I cheated. I took the article
that was written on how to work RUN
Script, erased the text, and wrote my
article in its place, thus having all the
margins and spacing’s pre-formatted for
me – and it worked. Upon having
program and article done, I mailed the
two disks in, and waited.

It didn't take RUN very long to get back
to me with a letter stating they were
very interested in publishing my
program code and to start talking
contract. I called the number they listed
in the letter and talked directly with
their front desk, who also happened to
be working with Check It Out on her
computer when I called, and she had a
few issues with the program. I thought I
alpha-tested all the bugs out of the
program before I mailed it, but I went
ahead and listened to her complaints. It
seemed at the time when she went to hit
RETURN to print the check, the program
would print two question marks at the
top of the check before making the
check out. At first I thought there was
something I was missing in one of the
subroutines that I wrote, so while on the
phone, I booted my master copy of Check
It Out (the one I made the copy from that
I sent to RUN magazine), and went with
her, step by step, through the check set-
up process. My version ran just fine
with no question marks popping up;
when she ran hers the question marks
again appeared.

A mystery.
Well, with any mystery, as Sherlock
Holmes says, you eliminate the obvious,
and whatever remains, no matter how
improbable, must be the truth. Software
was eliminated, so now it was down to
hardware. I asked the front desk person
what hardware she was using. She told
me she was on a Commodore 128D with
special hookups to talk to the remaining
computers in the building. Problem? As
Charlie Chan would say to Number One
Son, "Is possible," but such a hookup
shouldn’t be interfering with the print
status of the program, but I would ask to
be sure. She stated that each computer
had its own free-standing printer. With
that eliminated, there was only one item
left, and that was the printer itself. I

wrote Check It Out to work with the
Commodore MPS 802 and MPS 803
printers, with modifications to each
subroutine to work with each
prescribed printer. I figured this
program should work with all
Commodore related printers, provided
the user knew which line number it was
where modifications needed to be made.
I asked her which Commodore printer
she was using, and she responded that
she was not using a Commodore printer,
but a specialized electric typewriter that
was modified to take Commodore
commands.
Aha!
Without knowing exactly what those
command channels were, my program
would not be able to function properly
under those conditions. In order for the
program to print on the proper lines of
the inserted check, the Commodore had
to execute an OPEN 10,4,10 command,
which basically told the printer to re-
boot and start over from where it left off.
Without this command, the printer
would print all the information below
the line on the check – not a pretty sight.
I quickly related this information to the
front desk person, who decided to
change my article which read, "works
with all Commodore and related
printers" to "will work
with virtually all
Commodore and related
printers." A smart move
on the part of RUN and
they helped me save face
at the same time.

What the ...?
How did I get here in this
cul-de-sac? Apparently, I
don't want to write about
making Check It Out and
Check Mate work with
each other's data. I'm so
busy writing nostalgia
that I forget what it was
that this old man is
supposed to be doing.
Now this article is almost
written and there's very
little room left for me to
get into the details of all
the trials and hassles I
had to go through to
even get each program to
work. Needless to say,
when I finally did get
each program's data to
cooperate with each
other, problems

remained. Also, let me mention to those
who may still be using Check It Out in its
original published form, they will not be
able to use the data formed by Check
Mate unless serious modifications are
made to Check It Out. Hence the reason I
was looking for the owner of the
program in the first place – so I can get
permission to release the updated
version of Check It Out to the public
without causing a copyright
infringement upset with anyone
involved.

Perhaps, with the editor's indulgence, I
can compose a second article pertaining
to the combat and hardships related to
making two seemingly unrelated and
uncooperative programs begin to get
along. It sounds like a Mideast peace
talk conference, and believe me, for the
most part, it was. In between articles, I
will boot up both Check It Out and Check
Mate and see if they are still getting
along, or if more negotiations will be
necessary.

In the meantime, the "manhunt" for the
new owners of Check It Out will
continue...

 Commodore Free Magazine Page 40

 www.commodorefree.com

 The Assembly Line

“The Place Where Art Meets Science”
$03: The Stack-Part One

By Bert Novilla (satpro)

Hello again! Last time out we
refreshed ourselves with a treatment
of binary numbers. Today we will
discuss a very important component in
assembly language programming – the
Stack. Just from talking to other
programmers through the years (even
guys who know what they are doing!) I
have come to the opinion that the Stack
may be the single most confusing topic
in all of assembly language
programming. It is without doubt the
barrier to entry for many people who
explore assembly language. Why is
this? Well, I have some ideas, so today
we address the facts (and myths)
concerning this small 256-byte piece of
memory located in your Commodore
computer just after Zero Page. Today
we will look at the 6502's
implementation of the Stack, and next
time (in Part Two) we will expand on
today and tackle how the 65816
implements the Stack. I will show you
how to use the Stack effectively
(regardless of CPU) in the programs
you write. Plus, we're going to get
funky and explain some advanced
Stack manipulation techniques. If the
Stack is confusing or you want to know
more about how it works, then please,
read on.

What is a Stack?
Many times you need quick, temporary
storage for data and the A, X, and Y
registers are all busy doing something.
Or perhaps you want to pass several
parameters to a function somewhere.
For times like these there is a
mechanism called the Stack. So what is
the Stack, where is it – and what does it
do?

Well, the Stack is located in an area of
RAM immediately following Zero Page
in all 6502-based computers. Zero
Page, of course, is a 256-byte range of
memory, the very first 256 bytes of
your computer's address space, or
$0000-$00FF. For the 6502 this range
of memory holds a special distinction.
Many instructions include a special
Zero Page addressing mode which
executes faster and produces less code.
Is the memory itself faster? No. The
increased efficiency is due to all
addresses in this region of memory
having an implied high byte of $00,
which means the computer can assume
the $00 high byte and do things here
using one less byte and one less cycle,
and at roughly one million CPU cycles
per second, the possibility exists for
much more efficient execution because
saved (or wasted) cycles can really add
up. The Zero Page addressing modes

assume a high byte of $00; these
addresses are viewed by the 6502 as
residing in the range $00-$FF. It is a
very heavily used section of memory,
and all Commodore operating systems
make extensive use of Zero Page
memory.

Immediately following Zero Page in
memory is the Stack at $0100-$01FF.
The Stack is somewhat similar to Zero
Page in that the 6502 assumes an
implied high byte (of $01), so memory
within this 256-byte range can be
accessed rather quickly and efficiently,
but in a different way – as an offset
from $0100. Before we go further, it
should be stressed that both Zero Page
and the Stack can be utilized using
standard 6502 instructions in the same
way as any other part of memory, but
we don't generally try to program for
less efficiency, do we? We usually want
one of the special instructions designed
specifically for the Stack.

Stack Layout and the Stack Pointer
Stack memory is just like any other
memory. Each byte is made up of eight
bits like any other byte, but we can use
special instructions to read from or
write to the Stack. The Stack is also the
place the CPU places your return
address when you jump to a

 Commodore Free Magazine Page 41

 www.commodorefree.com

subroutine with the JSR instruction.
The CPU-addressable position within
the Stack is automatically maintained
by a special register called the Stack
Pointer. We call the position in
memory that the Stack Pointer refers
to as the top of the Stack, but it's not
exactly the top you might envision. It's
actually the bottom address-wise, and
the position is equal to the value of the
Stack Pointer as an offset from address
$0100. To put it simply, the Stack
Pointer, or S Register, often times
abbreviated SP, is an 8-bit register
whose sole job is to keep track of the
next position within the Stack where
data will be written with a special type
of instruction known as a push. The
Stack Pointer works in a way that
might seem backwards at first, and
that's only because it does work
backwards! Stated more correctly, the
Stack grows downward in memory.
You may remember how the great
Commodore pioneer Jim Butterfield
described the Stack as a stack of plates
in the cafeteria (if you have ever had
the opportunity to read any of his
excellent books or countless magazine
articles). Butterfield taught us that
when we placed a plate on the stack it
would also be the first plate we pulled
from the stack, a system often referred
to as LIFO – last in, first out. Well, of
course he was correct as usual, but...

Huh?
For me this never made sense – only
because when I picture the stack of
plates I imagine this pile on which we
place and remove plates – from the top.
The imaginary stack of plates grows
upwards, so intuitively we would
expect the next push to be to the next
higher address. But as many things
computer, it's exactly the opposite, so I
prefer to view it this way: the top of the
Stack is the next position at which the
data we “push” will go, and each
successive push is made to the next
lower address within the range $0100-
$01FF. The value of the S Register (the
Stack Pointer) keeps track of this
position. Conversely, each pull, which
targets data already placed on the
Stack, will read from the next position
in an upward direction (in memory).
We will discuss pulls in a moment
because they are handled slightly
differently, but for right now let's
picture the push.

If you have the chance, take a look at a
disassembly of the Commodore 64
ROM, specifically the RESET routine at
$FCE2. The very first thing the ROM
does (after disabling interrupts) is to
set the Stack Pointer to the value $FF,
which means the position in memory
the next pushed byte will be placed at
is $0100+$FF, or $01FF. Recall that the
Stack Pointer is actually an offset from
$0100. Once we push a byte onto the
Stack, the Stack Pointer automatically
decrements to $FE, so our next push
will be to $0100+$FE, or $01FE. With
another push the Stack Pointer
decrements once more to $FD, which
means the next byte pushed will be
placed at $0100+$FD, or $01FD. This
process continues indefinitely, right?
Well, not exactly.

What happens when we start with a
Stack Pointer value of $FF and push
256 bytes on the stack? The Stack
Pointer is an 8-bit register with an
implied high byte of $01, so it
decrements until it reaches $00 and, if
once again decremented, it actually
wraps back to $FF (keeping in mind an
implied high byte of $01). But what
about the first push we made to $01FF?
The truth is that the data we placed
with that first push is still in memory at
$01FF, and we can assume the data is
important to us, or we wouldn't have
put it there in the first place. So what
happens if we inadvertently “wrap” the
Stack, causing the Stack Pointer to once
again have a value of $FF, meaning we
placed data to all 256 locations in the

range $0100-$01FF? Generally
speaking, when this happens we can
sum it up with just one word – crash!
You can imagine the scenario. But I'll
explain it now because it gives us the
opportunity to discuss what a Stack
pull is.

The Stack Pull
By now we have an idea what happens
when we place data on the Stack, and
we know the function of the Stack
Pointer. Armed with this knowledge it
is logical to assume we should match
every push with a pull in order to
maintain Stack equilibrium. This
assumption is correct and the tell-tale
sign you have not achieved equilibrium
is the crash. Before getting into
retrieving Stack data, it should be
mentioned again that any data you do
place on the Stack is never actually
removed. Data in any given location
may be over-written, but the Stack is,
after all, just regular memory with a
very special hardware pointer keeping
track of the relative position of our
next push. It is the Stack Pointer
register value which changes through
all of this activity, so as a programmer
utilizing the Stack you address data in
relative terms as opposed to absolute
or indirect addressing as with normal
instructions.

To recap, after pushing data on the
Stack the Stack Pointer is automatically
decremented. Pulling data from the
Stack is handled in the reverse order.
The Stack Pointer is first incremented,

 Commodore Free Magazine Page 42

 www.commodorefree.com

then the data is retrieved. The data is
not physically removed; it is merely

“read” from the memory at the address
pointed to by the Stack Pointer relative
to $0100. It is this concept which can
be difficult for the novice to
understand. In fact, if you push data to
the Stack and do not over-write that
data with something else it remains
right where it is, unaltered, and could,
in theory, be retrieved anytime during
the life of a program – and even after a
program has finished its execution.

The Subroutine
We have established that the Stack
Pointer is incremented by the CPU
before a pull occurs, and that for
subroutine calls the CPU places the
return address onto the Stack (so that
the CPU can later find its way back).
The CPU places the address of the last
byte of the JSR instruction onto the
Stack, not the actual return address
itself, which would be one byte later in
the code stream. So, for the instruction
JSR $1234 (stored in memory as $20,
$34, $12) the address placed onto the
Stack is that which contains the $12
byte. 65x family processors always
store multi-byte data with the low byte
in the lower address, the high byte in
the next higher address, so the address
$C002 would be placed onto the Stack
in reverse order as $02, $C0. In plain
language this means the CPU pushes
the high byte of the return address first,

then the low byte. So now the question
becomes, “If we come back (return via
RTS) to the $12 byte, how do we get to
the next instruction that follows?”
The answer lies with the RTS
instruction, which first increments the
multi-byte value it retrieves from the
Stack (hopefully it is the return
address!). When the return address is
pulled (lower addressed byte first) one
is added to the value before it is sent to
the Program Counter (it is pre-
incremented). An internal carry flag
(not the one we use) is cleared or set
based on the result of this first addition.
Then the value of the internal carry flag
(which is either 0 or 1) is added to the
next retrieved byte, or high byte of the
return address. So that's it. One is
added to the two-byte return address
before it is sent to the Program Counter
in the exact same way we add multi-
byte numbers with the ADC instruction.
Now the Program Counter contains the
correct address to continue execution –
the address directly after the jump to
subroutine instruction.

Stack Instructions
As mentioned, special instructions are
used to access the Stack, and the 6502
has a very simple, limited lineup.
Pushing data on the Stack is
accomplished with the PHA instruction,
which reads PusH A Register. This
instruction pushes the contents of the A
Register, or Accumulator, onto the

Stack, and decrements the Stack
Pointer. Pulling (retrieving) data
requires the PLA instruction, or PulL A
Register. In this case the Stack Pointer
is first incremented; then the retrieved
data is placed into the Accumulator. As
with all data transfers, certain Status
Register flags (in this case Z and N) are
cleared or set based on the effect the
transfer has on the destination register.
The same is not true of push
instructions as no destination register
is involved.

Another type of Stack instruction
involves getting or setting the value of
the Stack Pointer itself. We will see in
Part Two just how valuable these next
two instructions can be when setting
up what is known as a Stack Frame,
which is just a fancy name for a place
we can store temporary local data. The
first instruction is TSX, or Transfer
Stack Pointer to X Register, and it does
exactly what it sounds like it does. Its
complementary sibling, TXS, does
exactly the opposite. If you managed
earlier to pull out your copy of the
Kernal RESET routine you saw this one
in action. It Transfers the contents of
the X Register to the Stack Pointer.
A final Stack instruction pair is
PHP/PLP. These instruction push or
pull the Status, or S Register,
respectively. PHP pushes the values of
all status flags, while PLP fills the
Status Register with the value it pulls
from the Stack. Both instructions,
while not used frequently, are
invaluable because they allow you to
preserve the Status Register flags,
which is extremely important during
interrupt handling.

In Conclusion
Today was all about the 6502
Hardware Stack, but there is so much
more to tell, so we'll pick this up again
next time when I will show you how to
get tricky with some nifty techniques.
Did you know advanced programmers
sometimes place certain data on the
stack to make programs auto-run? Or
that the Stack is actually a very good
way to pass parameters to
subroutines? Or that the 65816 has
advanced instructions that permit
direct access to the Stack? Or even that
Commodore users can very easily
create and use local variables with
stack frames just like programmers do
on the PC? Here's one for you: I have

 Commodore Free Magazine Page 43

 www.commodorefree.com

written programs which did not use a
single byte of regular RAM for data!
Well, I would like to show you how this
is done. I would also like to show how
to call a subroutine and then later
return to a different, custom address,
and how to return from a subroutine
that was never called. And as an added
bonus I'm going to tell you an
undocumented secret about the 6502
that very few people know about.
Here's a hint: internally the 6502
processes BRK, IRQ, NMI, and RESET in
exactly the same way! I'm going to
show you how the 6502 does this – it's
information you won't find in any book.
We will get to all of this and more next
time out with Part Two of this primer
about the Stack. So, until our next
meeting, take 'er easy, and I'll see you
next time right here... at the
intersection where Art meets Science.

Tip of the Day
Experienced programmers smartly
divide code sections up into separate
files that usually concern themslves
with accomplishing one specific task.
Programs written in assembly
language can easily run into thousands
of lines of code. A side-effect of all the
gained speed and efficiency is that each
instruction by itself does very little in
the grand scheme of things. Lengthy
programs limited to one large file
suffer from being hard to read,
maintain, and understand. Ever hear
the phrase spaghetti code? It is
probably the worst criticism in all of
programming and usually refers to
excessive jumps and branches,
meandering code paths, incoherence,
and of course sloppy programming in
general. It is a sign of inexperience, to
say the least. Programmers who

produce spaghetti code very seldom
work well in a team setting, and hardly
ever produce optimum code. The tip
today is to not fall into the single-file
source code trap. It leads directly to
spaghetti code. You don't want your
friends (or non-friends) leveling this
criticism on your code; it is very
embarrassing to hear. A corollary to
this tip is to split up your code and data
sections. It's not mandatory like on the
PC, but it is definitely advisable. If you
do this you will always know where to
find everything and what it all means,
even after you forget. And you will
forget.

Correction: Last month (Assembly Line $02) I made an error that was pointed out to me by my eagle-eyed friend, Arthur
Jordison, the author of the excellent IDE named CBM Prg Studio. The last table (right before the Conclusion) was originally

written as ...(0*26)... and should read:

(0*215)+(0*214)+(0*213)+(0*212)+(1*211)+(1*210)+(1*29)+(1*28)+(1*27)+(1*26)+(0*25)+(1*24)+(1*23)+(1*22)+(1*21)+(0*
20)

I apologize for the error, and thanks -- that was some good catch, Art. I am truly amazed. Now, don't you have a program to
write?

Please send errors, omissions, or suggestions to bert@winc64.com or on Lemon64, username satpro, or at
www.melon64.com, username satpro.

Commodore Free Magazine
www.commodorefree.com

Editor
Nigel Parker

Spell Checking
Peter Badrick and Alex Leonardi

Text , HTML & Ebook Conversion
Paul Davis

D64 Disk Image
Al Jackson

ISSUU formatting
Alessandro Di Nepi

PDF Design /Editor /webhost /text collector
Nigel Parker

Website
www.commodorefree.com

Email Address
commodorefree@commodorefree.com

Submissions
Articles are always wanted for the magazine. Contact

us for details .We can’t pay you for your efforts but you are safe in the knowledge that you have passed on details that will interest
other Commodore enthusiasts.

Notices
All materials in this magazine are the property of Commodore Free unless otherwise stated. All copyrights, trademarks, trade names,

internet domain
names or other similar rights are acknowledged. No part of this magazine may

be reproduced without permission.

The appearance of an advert in the magazine does not necessarily mean that the goods/services advertised are associated with or
endorsed by Commodore Free Magazine.

Copyright
Copyright © 2014 Commodore Free Magazine

All Rights Reserved.

