APPLICATION		REVISION			
NEXT ASSY.	USED ON	LTR	DESCRIPTION	DATE	APPROVED
	C-65	1	ADVANCE ENGINEERING RELEASE	$i / n 1 \% 1$	IINA.

1.0 DESCRIPTION

This specification describes the requirements for a single chip 8-bit microcontroller unit fabricated in 2 U CMOS double-metal technology for high speed and low power consumption. The IC is a fully static device that contains an enhanced 6502 microprocessor (65CE02), four independent 16-bit interval timers, two 24-hour (AM/PM) time of day clocks each with programmable alarm, full-duplex serial I/O (UART) channel with programmable baud rate generator, built-in memory map function to access up to 1 megabyte of memory, two 8-bit shift registers for synchronous scrial I/O, and 27 individually programmable I/O lines.

1.1 CONFIGURATION

This IC device shall be configured in a standard, 84 -pin plastic chip carrier package. Refer to figure 3.1 for package details

1.2 SOURCES

Refer to the Approved Vendor List
1.3 APPLICABLE DOCUMENTS

Commodore Engineering Policy 1.02.007
Commmodre Enginggering Policy 1.02.008
Commodore Specification 310072 rev B.
I.C. Qualification Procedure

OEM Environmental Requirements
I.C. Branding Requirements

2.0 PIN CONFIGURATION

FIGURE 1
PIN CONFIGURATION
(refer to figure 6 for pin-name reassignment for C65 application)
2.1 BLOCK DIAGRAM
 BLOCK DIAGRAM
NOI/O

Coninilodore			TTTLE	IC, LSI, MICROPROCESSOR, 4510
SIZE	DRAWING NUMMIBER	REV.	SCALIE	SIIEET 20 OF 52
A	390490	1		

2.0 FUNCTIONAL DESCRII'TION

2.1 PIN DESCRIPTION

PIN	PIN	SIGNAL
NAME	NUMBER	IIRECTION
VSS	1	IN
VCC	2,42	
		IN
SPB,	3	I/O
SPA	5	I/O

DESCRIPTION
 This is the power ground signal (0 volts)
 This is the power supply signal (+5 volts)

The SPA and SPB signals are open-drain and bidirectional, each with a 3 K ohm (min .) passive pull-up. The SPA and SPB signals are the data lines used by the two S-bit synchronous serial port registers. In input mode, SPA and SPB are clocked into the device on the rising edge of the CNTA and CNTB clocks, respectively. In the output mode, SPA and SPB change on the falling edge of the CNTA and CNTB clocks, respectively.

The CNTA and CNTB signals are open-drain and bidirectional, cach with a 3 K ohm (min.) passive pull-up. These pins are internally synchronized to the PHO clock and then used to clock the synchronous scrial registers, in input mode. In output mode, each pin will reflect the clock signal derived from the corresponding timer.

The FLAGA/ and FLAGB/inputs are negative edge sensitive input signals. A passive pull-up (3 K ohm min) is tied on each of these pins. They are internally synchronized to the PHO clock and are used as general purpose interrupt inputs. Any negative transition on either of these signals will cause the device to start an interrupt sequence, provided that the proper bit is set in each of the interrupt mask registers; the device will drop the IRQ/ line to indicate that an interrupt sequence is underway.

```
*** When the FAST SERIAL MODE is cnabled
*** the CNTA, SPA and FLAGA/ lines will ***
*** not function as described above. Sce ***
*** section 2.5.6 for FAST SERIAL MODE ***
*** description
```

[^0]

PIN	PIN	SIGNAL	
NAME	NUMBER	DIRECTION	DESCRIPTION
A0-A19	9 thru 28	I/O	Address Bus - This is a 20 bit bi-dircctional bus with tri-state outputs. The output of each address line is TTL compatible, capable of driving two standard TTL loads and 55 pf . When the DMA/ or AEC line goes low, this bus goes tri statc. A0-A3, A8 andA9 select an internal I/O register. If AEC and DMA are high, the bus will be driven by the CPU.
PSYNC	29	OUT	This output line is provided to identify those cyeles in which the microprocessor is doing an OP CODE fetch. The PSYNC line is high throughout the OP CODE fetch a cycle.
AEC	30	IN	This input signal is the Address Enable Control line. When high, the address bus, MAP/, and R/W are valid. When low, the address bus, R/W and MAP/ are in a high impedance state. If AEC is low when PHO input falls, the CPU will halt for the current cycle.
DMA/	31	IN	This signal is connected to a 3 K passive pull- up. When this signal is low the address bus, MAP/, and R/W will be tri-stated. This will allow external DMA devices to assume control of the system bus lines.

A low state on either DMA/ or AEC during the falling transition of phase zero (PH H) will halt the Microprocessor with the current output address, R/W, MAP/ and data. This feature allows external bus masters access to these busses.

Commodore

PIN	PIN	SIGNAL	
NAME	NUMBER	DIRECTION	DESCRIP'TION
IO/	32	1 N	This input signal is used to select the internal registers of the device, provided MAP/ is high.
MAP/	33	I/O	This signal is passively pulled-up (3 Kohm) whenever DMA/ or AEC is pulled low. This output signal is used to indicate whether or not memory is being mapped by the device. If the CPU is addressing a mapped memory region the MAP/ line will go low and will inhibit the IO/ line from selecting an internal register. If the CPU is not mapping memory the MAP/ line will be high A16-A19 will be low for all unmapped accesses When /MAP and IO/ are both pulled low, (ncw TEST mode), the Data Bus pins will not be tri-stated when AEC or DMA/ gocs low.
DB7-DB0	34 thru 41	I/O	D0-D7 form an 8 bit bi-directional data bus for data exchanges tbetween the internal CPU, registers, and external peripheral devices and memory. The output buffers are capable of driving two standard TTL loads and 55pf.
R/W	43	I/O	This signal is generated by the CPU to control the direction of data transfers on the data bus. This line is high except when the CPU is writing to memory, an internal I/O register or an external device. When the AEC or DMA/ signal is low, the R/W becomes tri-state.
PHO	44	IN	This clock is a TTL compatible input used for internal device operation and as a timing reference for communicating with the system data bus.
PC/	53	OUT	This output line is a strobe signal and is Centronics interlace compatible. The signal goes low following a read or write access of POR' D .
PRD0-PRD7	45 thru 52	I/O	These are three 8-bit ports with each of their
PRB0-PRB7	54 thru 61	I/O	lines having a passive pull-up (min. 3 K ohm). Each individual port line may be programmed to be either input or output.
PRA0-PRA7	62 thru 69	I/O	Same as the PRD and PRB lines described above.

COTILR2OCLOT			TITLE	IC, LSI, MICROPROCESSOR, 4510
SIZE	DR^IWING NUMBER	R EV .	SCALLE	SIIEET 50 F 52
A	390490	1		

PIN	PIN	SIGNAL	
NAME	NUMBER	DIRECTION	DESCRIPTION
PRC2	70	I/O	This line corresponds to PORT C, bit 2. It has passive pull-up (min. 3 k olmm). The line can be configured as input or output. PRC2 becomes the external shift register clock when the UART is configured to operate in the synchronous mode, otherwise PRC2 operates as normal.
PRC3	71	OUT	This signal is an open drain output with a passive pull-up (1 K ohm min). It corresponds to bit 3 of PORT C. When this port bit is set as an input, the PRC3 linc is driven low; reading the port bit will give a high. If configured as an output, reading this port bit will not givethe status of the PRC3 line but the valuc previously written on the PORT C data reg. bit 3.
PRC46	72	I/O	This is an open drain bi-directional signal with a passive pull-up (1 K ohm min). Bit 6 of PORT C is alvays configured as an input; the bit will give the status of the PRC46 line anytime the port is read, regardless of what is written in the data direction register. If bit 4 of PORT C, PC4, is set as an input, the PRC46 line will be pulled low; reading the port bit will give a high. If bit 4 is configured as an output, PRC46 will he pulled low if bit 4 in the port data register is high, otherwise the PRC46 line will float to a high.
PRC57	73	I/O	This is an open drain bi-directional signal with a passive pull-up (1 K ohm min). Bit 7 of PORT C is always configured as an input; the bit will give the status of the PRC57 line anytime the port is read, regardless of what is written in the data direction register. If bit 5 of PORT C, PC5, is set as an input, the PRC57 line will be pulled low; reading the port bit will give a high. If bit 5 is configured as an output, PRC57 will be pulled low if bit 5 in the port data register is high, otherwise thePRC57 line will float to a higl.

PIN	PIN	SIGNAL	
NAME	NUMBER	DIRECTION	DESCRIPTION
PRE0,PRE1	83, 84	I/O	This a 2-bit port with each line having a passive pull-up (min. 3 K ohm) as well as active pull-up and pull-down transistors. Each individual port line may be programmed to be cither input or output.
BAUDCLK	74	IN	This input is a 7 MHz clock used to drive the UART Baud Rate Generator, and is assumed to be synchronous with the PHO clock. This clock is also divided down to 1 MHz to drive the interval timers, and down to 10 Hz to drive the TOD timers. This clock is also used to time out the POR and RESTORE (RSTR*) circuils.
TEST	75	IN	When this input goes to a high state, the device will operate in a test mode. The test mode will allow the BAUDCLK dividers to be initialized and the TOD and interval timers to be driven directly by the BAUDCLK clock, bypassing all the dividers.
TXD	76	OUT	This is the UART transmit data output line. The LSB of the Transmit Data Register is the first data bit transmitted. The data transmission rate (bilud rate) is determined by the value written to the Baud Rate Timer latches.
1			
RXD	77	IN	This is the UART receive data input line. The first data bit received is loaded into theLSB of the Receive Data Register. The receiver data rate must be the same as that determined by the value written to the Baud Rate Timer latches
NMI/	78	I/O	The NMI/ pin is an open drain bi-directional signal. A passive pull-up (3 K ohms minimum) is ticd on this pin, allowing multiple NMI/ sources to be tied together. A negative transition on this pin requests a nonmaskable interrupt sequence to be generated by the microprocessor. The interrupt sequence will begin with the first PSYNC after a multiple-cycle opcode. NMI/ inputs cannot be masked by the processor status register I flag. The two program counter bytes PCH and PCL, and the processor status register P, are pushed onto the stack. Then the program counter bytcs PCL and PCH are loaded from memory addresses FFFA and FFFB, respectively.

NOTE: Since this interrupt is non-maskable, another NMI/ can occur before the first is finished. Care should be taken to avoid this. The NMI/ line is normally off (high impedance) and the device will activate it low as deseribed in the functional description. AEC and DMA/ must be high for any interrupt to be recognized. All interrupts (including NMI/ are inhibited following exceution of a MAP/ opcode. Interrupts are re-enabled by executing a NOP opcode.

PIN	PIN	SIGNAL
NAME	NUMBER	DIRECTION
IRQ/	79	I/O

I)ESCRIPTION

The Interrupt Request line (IRQ/) is an open drain bi-dircctional signal. A passive pull-up (3K Ω minimum) is ticd on this pin, allowing multiple IRQ/ sources to be connected together. This pin is sampled during PH2 and when a negative transition is detected an interrupt will be activated, only if the mask flag(I) in the status register is low. The interrupt sequence will begin with the first PSYNC after a multiple-cycle opcode. The two program counter bytes PCH and PCL, and the processor status register P, are stored onto the stack; the interrupt mask flag is set high so that no further IRQ/'s may occur. At the end of this cycle, the program counter low byte (PCL) will be loaded from address FFFE, and the high byte (PCH) from FFFF , thus transferring program control to the vector located at these addresses. The IRQ/ line is normally off (high impedance) and the device will activate it low as described in the functional description. AEC and DMA/must be high for any interrupt to be recognized.

NOTE: Since this interrupt is non-: :.ibable, another NMI/ can occur before the first is finished. Care should be taken to avoid this.The NMI/ line is normally off (high impedance) and the device will activate it low as described in the functional description. AEC and DMA/must be high for any interrupt to be recognized. All interrupts (including NMI/ are inhibited following execution of a MAP/ opcode. Interrupts are re-enabled by exccuting a NOP opcode.

RESTR/ 80	This input is tied to a $3 \mathrm{~K} \Omega$ (min.) passivepull-up. A bounce climinator circuit is used on this pin to remove any bounce during its falling transition, if the pin is tied to a contact closure. If the device secs a negative transition on this pin, it will immediately assert the NMI/ line to start a Non-Maskable Interrupt sequence. The device will ignore any subsequent transitions on the RESTR/ line until 4.2ms has elapsed, at which time the NMI/ line is de-asserted.	
EXTRST/ 81	OUT	This output is an open drain output with a min. $1 \mathrm{~K} \Omega$ pull-up. This pin is asserted during power-up, and will stay low until 0.9 scconds after VDD has reached its operating voltage (assuming a 7 MHz baud clock is present).

l'IN	SIGNAL	
NAME	NUMBER	DIRECTION
RESET/	82	I/O

DESCRIPTION

The Reset line (RESET/) is an open drain bidirectional signal. A passive pull-up $(1 \mathrm{~K} \Omega$ minimum) is ticd on this pin, allowing any external source to initialize the device. A low on RESET/ will instantly initialize the internal 65CE02 and all internal registers. All port pins are set as inputs and port registers to zero (a read of the ports will return all highs because of passive pull-ups); all timer control registers are set to zero and all timer latches to ones. All other registers are reset to zero (assuming a 7 MHz baud clock is present). During power-up RESET/ is held low and will go high 0.9 seconds after VDD reaches the operating voltage. If pulled low during operation, the currently executing opcode will be terminated. The B and Z registers will be cleared. The stack pointer will be set to "byte" mode, with the stack page set to page 1. The processor status bits E and I will be set. When the high transition is detected, the reset sequence begins on the CPU cycle. The first four cyeles of the reset sequence do nothing. Then the program counter bytes PCL and PCH are loaded from memory addresses FFFC and FFFD, and normal program execution begins.

2.2 REGISTER ADDRESS ALLOCATION

This device contains a lutal of 42 I/O peripheral registers which can be accessed after the following conclitions are met. In an access cycle, the device must be in a non-mai iod mode (MAP/ line is not asserted), the IO/ line must be in an active low state and the A0-A3, A8 and A9 address lines must contain the valid address of the register to be accessed. In addition, the state of the R/W line will indicate whether a read (R/W is "high") or a write (R/W is "low") cycle is under way.

A9	A8---- A3	A2	A1	A0	HEX ADD	REG SYMBOL	REGISTER NAME	
0	0	0	0	0	0	$0 X 0$	PRA	Peripheral Data Reg A
0	0	0	0	1	0	$0 X 1$	PRB	Peripheral Data Reg B
0	0	0	1	0	1	$0 X 2$	DDRA	Data Dircetion Reg A
0	0	0	0	1	1	$0 X 3$	DDRB	Data Direction Reg B
0	0	0	1	0	0	$0 X 4$	TA LO	Timer A Low Register
0	0	0	1	0	1	$0 X 5$	TA HI	Timer A High Register
0	0	0	1	1	0	$0 X 6$	TB LO	Timer B Low Register
0	0	0	1	1	1	$0 X 7$	TB HI	Timer B High Register
0	0	1	0	0	0	$0 X 8$	TODATS	TODA 10ths Sec Register
0	0	1	0	0	1	$0 X 9$	ODAS	TODA Scconcls Register
0	0	0	1	1	0	$0 X A$	TODAM	TODA Minutes Register
0	0	1	0	1	1	$0 X B$	TODAH	TODA Hours-AM/PM Reg
0	0	1	1	0	0	$0 X C$	SDRA	SERIALA Data Register
0	0	1	1	0	1	$0 X D$	ICRA	INTERRUPTA Control Reg.
0	0	1	1	1	0	$0 X E$	CRA	Control Register A
0	0	1	1	1	1	$0 X F$	CRB	Control Register B
0	1	0	0	0	0	1X0	PRC	Pcripheral Data Reg C
0	1	0	0	1	1	$1 X 1$	PRD	Peripheral Data Reg D

5 SIE	DRAWING NUMIBER	REV.	5 CA 5	SIIEET 9 OF 52
A	303490	•		

0	1	0	0	1	0	1X2	DDRC	Data Direction Reg C
A9		A3	A2	A1	A0	HEX ADD	REG SYMBOL	REGISTER NAME
0	1	0	0	1	1	1X3	DDRD	Data Direction Reg D
0	1	0	1	0	0	1X4	TC LO	Timer C Low Register
0	1	0	1	0	1	1X5	TC HI	Timer C High Register
0	1	0	1	1	0	1X6	TD LO	Timer D Low Register
0	1	0	1	1	1	1X7	TD HI	Timer D High Register
0	1	1	0	0	0	1X8	TODBTS	TODB 10ths of Sce Reg
0	1	1	0	0	1	1X9	TODBS	TODB Scconds Register
0	1	1	0	1	0	1XA	TODBM	TODB Minutes Register
0	1	1	0	1	1	1XB	TODBH	TODB Hours-AM/PM Reg.
0	1	1	1	0	0	1XC	SDRB	SERIALB Data Register
0	1	1	1	0	1	1XD	ICRB	INTERRUP'TB Control Reg.
0	1	1	1	1	0	1XE	CRC	Control Register C
0	1	1	1	1	1	1XF	CRD	Control Register D
1	0	0	0	0	0	2X0	DRE	Receive/Transmit Data Reg
1	0	0	0	0	1	2X1	URSR	UART Status Register
1	0	0	0	1	0	2X2	URCR	UART Control Register
1	0	0	0	1	1	2X3	BRLO	Baud Rate Timer LO Reg.
1	0	0	1	0	0	2X4	BRHI	Baud Rate Timer HI Reg.
1	0	0	1	0	1	2X5	URIENB	UART Irq Enablc Reg.
1	0	0	0	0	0	2X0	DREG	- Receive/Transmit Data Reg.
1	0	0	0	0	0	2X1	URSR	UART Status Register
1	0	0	0	1	0	2X2	URCR	UART Control Register
1	0	0	0	1	1	2X3	BRLO	Baud Rate Timer LO Reg.
1	0	0	1	0	0	2X4	BRHI	Baud Rate Timer HI Reg.
1	0	0	1	0	1	2X5	URIEN	UART IRQ Enable Reg.
1	0	0	1	1	0	2X6	URIFG	UART Irq Flag Reg.
1	0	0	1	1	1	2X7	PRE	Pcripheral Data Reg. E
1	0	1	0	0	0	2X8	DDRE	Data Direction E
1	0	1	0	0	1	2X9	FSREG	FAST SERIAL Register

READ/ WRITE	REG	NAME		D7	D6	D5	D4	D3	D2	D1	D0
R/W	0x0	PRA		PA7	PA6	PA5	PA 4	PA3	PA 2	PA1.	PA0
R/W	0×1	PRB		PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
R/W	0×2	DDRA		DPA7	DPAG	DPA5	DPA4	DPA3	DPA2	DPA1	DPAO
R/W	0×3	DDRB		DPB7	DPB6	DPB5	DPB4	DPB3	DPB2	DPB1	DPB0
READ	0×4	TA LO	$\begin{aligned} & T \\ & \mathrm{I} \\ & \mathrm{M} \\ & \mathrm{E} \\ & \mathrm{R} \end{aligned}$	TAL. 7	TAL6	TAL5	TAL4	TAL3	TAL2	TAL1	TALO
READ	0×5	TA HI		TAH7	TAH6	TAH5	TAH 4	TAH3	TAH2	TAH1	TAH0
READ	0x6	TB LO		TBL7	TBL 6	TBL5	TBL 4	TBL 3	TBL2	TBL1	TBL0
READ	0×7	TB HI		TBH7	TBH6	TBH5	TBH4	TBH3	TBH2	TBH1	TBHO
WRITE	0×4	TA LO	$\begin{aligned} & \mathrm{P} \\ & \mathrm{R} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~L} \\ & \mathrm{E} \\ & \mathrm{R} \end{aligned}$	PAL7	PAL6	PAL5	PAL4	PAL3	PAL2	PALI	PAL0
WRITE	0×5	TA HI		PAH7	PAH6	PAH5	PAH4	PAH3	PAH2	PAH 1	PAHO
WRITE	0x6	TB LO		PBL 7	PBL6	PBL 5	PBL 4	PBL3	PBL2	PBL1	PBLO
WRITE	0×7	TB HI		PBH7	PBH6	PBH5	PBH 4	PBH3	PBH2	PBH1	PBHO
READ	0x8	TODATS	$\begin{gathered} T \\ \mathrm{O} \\ \mathrm{D} \\ \\ \mathrm{~T} \\ \mathrm{I} \\ \mathrm{M} \\ \mathrm{E} \\ \mathrm{R} \end{gathered}$	0	0	0	0	TA8	TA4	TA 2	TA1
READ	0x9	TODAS		(*) 0	SAH 4	SAH2	SAH1	SAL8	SAL4	SAL 2	SALI
READ	0XA	TODAM		(*) 0	MAH4	HAH2	MAH1	MAL8	MAL4	MAL2	MALI
READ	0XB	TODAH		APM (*)	0 IN TES	0 MODE:	HAH WILL	HAL 8 AD DIV	HAL4 DER S	HAL 2 GE OU	HAL 1 JTS
WRITE	0×8	TODATS	TOD	0	0	0	0	TA8	TA4	TA2	TA1
WRITE	0x9	TODAS		0	SAH4	SAH2	SAH1	SAL8	SAL4	SAL 2	SALI
WRITE	0XA	TODAM	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~A} \end{aligned}$	0	MAH4	MAH2	MAH1	MAL8	MAL 4	MAL 2	MAL 1
WRITE	0XB	TODAH	C C H E S	IF CRB ALARM BIT=1, ALARM REGISTER IS WRITTENIF CRB ALARM BIT=0,							

TABLE 1
REGISTER BI'TALLOCATION

Commodore

TTTLE
IC, LSI, MICROPROCESSOR, 4510

STZE	DRAWING NUMBER	R15V.	SCALE	SIEET 11 OF 52
.	390419	1.		

READ/ WRITE	REG	NAME	D7	D6	D5	D4	D3	D2	D1	D0
R/W	0xC	SDRA	SRA7	SRA6	SRA5	SRA 4	SRA 3	SRA2	SRA1	SRA0
READ	OXD	$\begin{gathered} \text { ICRA } \\ \text { (INT DATA) } \end{gathered}$	IRA.	0	0	FLGA	SPA	ALRMA	TB	TA
WRITE	OXD	$\begin{gathered} \text { ICRA } \\ \text { (INT MASK) } \end{gathered}$	AS/C ${ }^{-}$	--	--	FLGA	SPA	ALRIA	TB	TA
R/W	OXE	CRA	$\begin{aligned} & \text { TODA } \\ & \text { IN } \end{aligned}$	SPA MODE	$\begin{gathered} \text { TMRA } \\ \text { INMODE } \end{gathered}$	LOADA	$\begin{aligned} & \text { RUN-A } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { OUT-A } \\ & \text { MODE } \end{aligned}$	PRB6 ON	STARTA
R / W	OXF	CRB	$\begin{aligned} & \text { ALARM } \\ & \text { (TODA) } \end{aligned}$	$\begin{gathered} \text { TIMERB } \\ \text { CRB6 } \end{gathered}$	INMODE CRB5	LOADB	$\begin{aligned} & \text { RUN-B } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { OUT-B } \\ & \text { MODE } \end{aligned}$	PRB7 ON	STARTB
READ	1×0	PRC	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PCO
R/W	1×1	PRD	PD7	PD6	PD5	PD4	PD 3	PD2	PD1	PD0
R/W	1×2	DDRC	DPC7	DPC6	DPC5	DPC4	DPC3	DPC2	DPC1	DPC0
R/W	183	DDRD	DPD7	DPD6	DPD5	DPD4	DPD3	DPD2	DPD1	DPD0
READ	184	TC LO	TCL. 7	TCL6	TCL5	TCL4	TCL 3	TCL2	TCL1	TCLO
READ	1X5		TCH7	TCH6	TCH5	TCH4	TCH3	TCH2	TCH1	TCHO
READ	1×6	TD LO E	TDL. 7	TDL6	TDL5	TDL 4	TDL 3	TDL 2	TDL1	TDLO
READ	1×7	TD HI	TDH7	TDH6	TDH5	TDH4	TDH3	TDH2	TDH 1	TDH0
WRITE	1×4	$T C \text { LO }{ }_{\mid}^{P} \begin{array}{r} \mathrm{R} \\ \mathrm{R} \end{array}$	PCL. 7	PCL6	PCL5	PCL4	PCL 3	PCL 2	PCL1	PCLO
WRITE	1X5	TC HI $\stackrel{\mathrm{S}}{\mathrm{S}}$	PCH7	PCH6	PCH5	PCH4	PCH3	PCH2	PCH1	PCH0
WRITE	1×6	TD LO A	PDL 7	PDL6	PDL 5	PDL4	PDL3	PDL2	PDL1	PDL0
WRITE	1×7	$\begin{array}{l\|l\|} \hline \text { TD } H I & \begin{array}{l} \mathrm{E} \\ \mathrm{E} \end{array} \\ \hline \end{array}$	PDH 7	PDH6	PDH5	PDH 4	PDH3	PDH2	PDH1	PDH0
READ	188	TODBTS $\left\lvert\, \begin{gathered}\text { T } \\ 0\end{gathered}\right.$	0	0	0	0	TB8	TB4	TB2	TB1
READ	1×9	TODBS	(*) 0	SBH4	SBH2	SBH1	SBL8	SBL 4	SBL 2	SBL1
READ	1XA		0	MBH4	HBH2	MBH1	MBL8	HBL4	MBL ${ }^{\text {e }}$	MBL1
READ	1 XB	TODBHE R	BPM (*)	0 IN TEST	0 MODE:		HBL8 AD DIV	HBL 4 DER STA	HBL2 GE OU	$\left.\right\|_{\text {PUT }} \text { HBL1 }$

REGITER BIT ALLOCATION

Commodore

IC, LSI, MICROPROCESSOR, 4510

| SIZE | DRAWING NUMIBEK
 1 | SCALE | SIIEET 12 QF 52 |
| :---: | :---: | :---: | :---: | :---: |

READ/ WRITE	REG	NAME	D7	D6	D5	D4	D3	D2	D1	D0
WRITE	188	TODBTS ${ }^{\text {P }}$	0	0	0	0	TB8	TB4	TB'2	TB1
WRITE	1×9	TODBS	0	SBH 4	SBH2	SBH1	SBL 8	SBL 4	SBL2	SBL 1
WRITE	1XA	TODBM A	0	MBH4	MBH2	MBH1	MBL 8	MBL 4	MBL2	MBL 1
WRITE	1XB	TODBH C H E S	$\begin{gathered} \text { BPM } \\ \text { IF C } \\ \text { IF } \end{gathered}$	0 ALAR	$\begin{array}{\|c\|c\|} \hline & 0 \\ 1 & B I^{\prime \prime}=1 \\ 1 & B I I^{\prime}=0 \end{array}$	$\begin{aligned} & \text { HBH } \\ & , ~ A L A R N \\ & , ~ T O D ~ \end{aligned}$	HBL 8 REGIST EGISTER	HBL 4 TER IS R IS WR	HBL 2 RITTEN TTEN	HBL 1
R/W ${ }^{\prime}$	1 XC	SDRB	SRB7	SRB6	SRB5	SRB4	SRB3	SRB2	SRB1	SRB0
READ	1XD	$\begin{gathered} \text { ICRB } \\ \text { (INT DATA) } \end{gathered}$	IRB	0	0	FLGB	SPB	ALRMB	TD	TC
WRITE	1XD	$\begin{gathered} \text { ICRB } \\ (\text { INT MASK) } \end{gathered}$	$B S / C^{-}$	--	--	FLGB	SPB	ALRMB	TD	TC
R/W	1XE	CRC	$\begin{aligned} & \text { TODB } \\ & \text { IN } \end{aligned}$	$\begin{aligned} & \text { SPB } \\ & \text { MODE } \end{aligned}$	TMRC INMODE	LOADC	$\begin{aligned} & \text { RUN-C } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { OUT-C } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { PRDG } \\ & \text { ON } \end{aligned}$	STARTC
R/W	1 XF	CRD	ALARM (TODB)	TIMERD CRD6	INMODE CRD5	LOADD	$\begin{aligned} & \text { RUN-D } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { OUT-D } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \text { PRD7 } \\ & \text { ON } \end{aligned}$	STARTD
$\begin{gathered} \text { READ } \\ \text { (RECE } \end{gathered}$	$\begin{aligned} & 2 \times 0 \mid \\ & \text { IVE } \end{aligned}$	$\begin{aligned} & \text { DREG } \\ & \text { DATA REG) } \end{aligned}$	RCV7	RCV6	RCV5	RCV4	RCV3	RCV2	RCV1.	RCV0
WRITE (TRANS	$\begin{array}{\|l\|} \hline 2 \times 0 \\ \text { SMIT } \end{array}$	$\begin{gathered} \text { DREG } \\ \text { DATA REG) } \end{gathered}$	XMT 7	XMT6	XMT5	XMT4	XMT 3	XHT2	XMT1	XMT0
READ	2×1	URSR	TDONE	TEMPTY	ENDT	IDLE	FRME	PRTY	OVR	RFULL
WRITE	2×1	URSR	--	--	ENDT	IDLE	--	--	--	--
R/W	2×2	URCR	XMI TR EN	RCVER EN	UART UM1	$\begin{aligned} & \text { HODE } \\ & \text { UMO } \end{aligned}$	$\begin{array}{r} \text { CHAR } \\ \text { CH1 } \end{array}$	LENGTH CHO	$\begin{gathered} \text { PARITY } \\ \text { EN } \end{gathered}$	PARITY EVEN
R / W	2×3	BRLO	BRL. 7	BRL6	BRL5	BRL 4	BRL 3	BRL2	BRLI	BRLO
R/W	2×4	BRHI	BRH7	BRH6	BRH5	BRH4	BRH3	BRH2	BRH 1	BRH0
R/W	2×5	URIEN	XMTR IRQEN	$\begin{gathered} \text { RCVR } \\ \text { IRQEN } \end{gathered}$	XMTR NMIEN	RCVR NMIEN	--	--	--	--
READ	2×6	URIFG	XMTFLG	RCVFLG	--	--	--	--	--	--
R/W	2×7	PRE	--	--	--	--	--	--	PEI	PE0
R/W	2×8	DDRE	--	--	--	---	--	--	DPEI	DPE0
R/W	2×9	FSREG	DMODE*	FSDIR *		$1 \begin{gathered} -- \\ \mathrm{LOEAH} \end{gathered}$	N	--	--	--

2.4 CPU OPERATION

2.4.1 65CE02 Registers

The 65CE02 has the following 8 user registers.

A	accumulator
X	index-X
Y	index-Y
Z	index-Z
B	Base-page
P	Processor status
SP	Stack pointer
PC	Program counter

Accumulator

The accumulator is the only general purpose computational register. It can be used for arithmetic functions add, subtract, shift, rotate, negate, and for Boolcan functions and, or, exclusive-or, and bit operations. It cannot, however, be used as an index register.

Index X

The index register X has the largest number of opcodes pertaining to, or using it. It can be incremented, decremented, or compared, but not used for arithmetic or logical (Boolean) operations. It differs from other index registers in that it is the only register that can be used in indexed-indirect or (bp,X) operations. It cannot be used in indirect-indexed or (bp), X mode.

Index Y

The index register Y has the same computational constraints as the X register, but finds itself in a lot less of the opcodes, making it less generally used. But the index Y has one advantage over index X, in that it can be used in in-direct-indexed operations or (bp), Y mode.

Index Z

The index register Z is the most unique, in that it is used in the smallest number of opeodes. It also has the same computation limitations as the X and Y registers, but has an extra feature. Upon reset, the Z register is cleared so that the STZ (store zero) opcodes and non-indexed indirect opcodes from previous 65 C 02 designs are emulatecl. The Z register can also be used in indirect-indexed or (bp),Z operations.

Base page B register

Early versions of 6502 microprocessors had a special subset of instructions that required less code and less time to execute. These were referred to as the "zero page" instructions. Since the addressing page was always known, and known to be zero, addresses could be specified as a single byte, instead of two bytes.

The 65CE02 core also implements this same "zero page" set of instructions, but gocs one step further by allowing the programmer to specify which page is to be the "zero page". Now that the programmer can program this page, it is now, not necessarily page zero, but insteal, the "selected page". The term "base page" is used, however.

The B register selects which page will be the "base page", and the user sets it by transferring the contents of the accumulator to it. At reset, the B register is cleared, giving initially a true "zero page".

	Cohininod		IC, LSI, MIICROPIROCESSOR, 4510	
SIZE	DRAWING NUMI3ER	R1EV.	SCAIL	SHEET 14 OF 52
Λ	390400	1		

Processor status P register

The processor status register is an 8-bit register which is used to indicate the status of the microprocessor. It contains 8 processor "flags". Some of the flags are set or reset based on the results of various types of operations. Others are more spẹcific.
The flaggs are...
Flag. Name Typical indication
$\mathrm{N} \quad$ Negative result of operation is negative
V Overflow result of add or subtract causes signed overflow

E Extend disables stack pointer extension
B Break interrupt was caused by BRK opcode
D . Decimal perform add/subtract using BCD math
I Interrupt disable IRQ interrupts
Z Zero result of operation is zero
C Carry operation caused a carry

Stack Pointer SP

The stack pointer is a 16 bit register that has two modes. It can be programmed to be cither an 8 -bit page programmable pointer, or a full 16-bit pointer. The processor status E bit selects which mode will be used. When set, the E bit selects the 8 -bit mode. When reset, the E bit selects the 16 -bit mode.

Upon reset, the 65 CE 02 will come up in the 8 -bit page-programmable mode, with the stack page set to 1 . This makes it،compatible with earlier 6502 products. The programmer can quickly change the default stack page by loading the Y register with the desired page and transferring its contents to the stack pointer high byte, using the TYS opcode. The 8 -bit stack pointer can be set by loading the X register with the desired value, and transferring its contents to the stack pointer low byte, using the TXS opcode.

To select the 16-bit stack pointer mode, the user must cxecute a CLE (for CLear Extend disable) opeode. Setting the 16 -bit pointer is done by loading the X and Y registers with the desired stack pointer low and high bytes, respectively, and then transferring their contents to the stack pointer using TXS and TYS. To return to 8 -bit page mode, simply exccute a SEE (SEt Extend disable) opcode.

Program Counter PC

The program counter is a 16 -bit up-only counter that determines what area of memory that program information will be feiched from. The user generally only modifies it using jumps, branches, subroutine calls, or returns. It is set initially, and by interrupts, from vectors at memory addresses FFFA through FFFF (hex). See "Interrupts" below.

Commodore

SIZE	DRAWING NUMBIER	STIV.	SHIE	SIEET 15 OF 52
	390490	1		

2.4.2 65CE02 Core Interrupts

There are three basic interrupt sources with the 65CE02 corc. These are RES*, IRQ*, and NMI*, for Resct, Interrupt Request, and Non-Maskable Interrupt, and Sct Overflow. The Reset is a hard non-recoverable interrupt that stops everything. The IRQ is a "maskable" interrupt, in that its occurance can be prevented. The NMI is "non=̀maskable", and if such an event occurs, can only be inhibited with the MAP opcode.

One important design feature, which must be remembered is that no interrupt can oceur immediately after a onecycle opeode. This is very important, because there are times when you want to temporarily prevent interrupts from occurring. The best example of this is, when setting a 16 -bit stack pointer, you do not want an interrupt to occur between the times you set the low-order byte, and the high-order byte. If it could happen, the interrupt would do stack writes using a pointer that was only partially set, thus, writing to an unwanted arca.After executing a MAP opode, all interrupts except RES* are inhibited until the execution of a NOP opeode.

IRQ*

The IRQ* (Interrupt ReQuest) input will cause an interrupt, if it is at a low logic level, and the I processor status flag is reset. The interrupt sequence will begin with the first SYNC after a multiple-cycle opcode. The two program counter bytes PCH and PCL, and the processor status register P, are pushed onto the stack. (This causes the stack pointer SP to be decremented by 3.) Then the program counter bytes PCL and PCH are loaded from memory addresscs FFFE and FFFF, respectively.

An interrupt caused by the IRQ* input, is similar to the BRK opcode, but differs, as follows. The program counter value stored on the stack points to the opeode that would have been executed, had the interrupt not occurred. On return from interrupt, the processor will return to that opeode. Also, when the Pregister is pushed onto the stack, the B or "break" flag pushed, is zero, to indicate that the interrupt was not soltware generated.

NMI*
The NMI* (Non-Maskable Interrupt) input will cause an interrupt after receiving a high to low transition The interrupt sequence will begin with the first SYNC after a multiple-cycle opcode. NMI* inputs cannot be masked by the processor status register I flag. The two program counter bytes PCH and PCL, and the processor status register P, are pushed onto the stack. (This causes the stack pointer SP to be decremented by 3.) Then the program counter bytes PCL and PCH are loaded from memory addresses FFFA and FFFB.

As with IRQ*, when the P register is pushed onto the stack, the B or "break" flag pushed, and is zero, to indicate that the interrupt was not software generated.

RES*

The RES* (reset) input will cause a hard reset instantly as it is brought to a low logic level. This effects the following conditions. The currently exceuting opeode will be terminated. The B and Z registers will be cleared. The stack pointer will be set to "byte" mode, with the stack page set to page 1 . The processor status bits E and I will be set.

The RES* input should be held low for at least 2 clock cycles. But once brought high, the reset sequence begins. The first four cyeles of the reset sequence do nothing. Then the program counter bytes PCL and PCH are loaded from memory addresses FFFC and FFFD, and normal program exccution begins.

Commodore

SIZE	DRAVING NUMBER	REV.	SCALIE	SHIEET 16 OF 52
A	390490	1		

2.4.3 65CE02 Core Addressing Modes

It should be noted that all 8-bit addresses are referred to as "byte" addresses, and all 16-bit addresses are referred to as "word" addresses. In all word addresses, the low-order byte of the address is fetched from the lower of two consecutive memory addresses, and the high-order byte of the address is fetched the higher of the two. So, in all operations, the low-order address byte is fetched first.

Implied OPR

The register or flag affected is identified entirely by the opcode in this (usually) single cyele instruction. In this document, any implied operation, where the implied register is not explicitly declared, implies the accumulator. Example: INC with no arguments implies "increment the accumulator".

Immediate (byte, word) OPR \#xx
The data used in the operation is taken from the byte or bytes immediately following the opeode in the 2-byte or 3byte instruction.

Base Page OPR bp (formerly Zcro Page)

The second byte of the typically two-byte instruction contains the low-order address byte, and the B register contains the high-order address byte of the memory location to be used by the operation.

Base Page, indexed by $\mathrm{X} \quad$ OPR bp, X (formerly Zero Page, X)
The second byte of the two-byte instruction is added to the X index register to form the low-order address byte, and the B register contains the high-order address byte of the memory location to be used by the operation.

Base Page, indexed by Y OPR bp,Y (formerly Zero Page, Y)
The second byte of the two-byte instruction is added to the Y index register to form the low-order address byte, and the B register contains the high-order adderess byte of the memory location to be used by the operation.
Absolute
OPR abs

The second and third bytes of the three-byte instruction contain the low-order and high-order address bytes, respectively, of the memory location to be used by the operation.

Absolute, indexed by $X \quad$ OPR abs, X
The second and third bytes of the three-byte instruction are added to the unsigned contents of the X index register to form the low-order and high-order address bytes, respectively, of the memory location to be used by the operation.

Absolute, indexed by Y
 OPR abs, Y

The second and third bytes of the three-byte instruction are added to the unsigned contents of the Y index register to form the low-order and high-order address bytes, respectively, of the memory location to be used by the operation.

Indirect (word)
OPR (abs)
The second and third bytes of the three-byte instruction contain the low-order and high-order address bytes, respectively, of two memory locations containing the low-order and high-order addresses, respectively.

Inclexed by X, indirect (bytc) OPR (bp, X) (formerly (zp, X))
The second byte of the two-byte instruction is added to the contents of the X register to form the low-order address byte, and the contents of the B register contains the high-order address byte, of two memory locations that contain the low-order and high-order address of the memory location to be used by the operation.

Conmodore			TILE IC, LSI, MICROPROCESSOR, 4510	
SIZE	DRAWING NUMBI:R	REV.	SCalli	SHELE 17 ()F 52
Λ	390400	1		

Indexed by X , indirect (word)
OPR (abs,X)
The second and third bytes of the three-byte instruction are added to the unsigned contents of the X index register to form the low-order and high-order address bytes, respectively, of two memory locations containing the low-order and high-order address bytes.

Indirect, indexed by Y OPR (bp), Y (formerly (zp),Y)
-. The second byte of the two-byte instruction contains the low-order byte, and the B register contains the high-order address byte of two memory locations whose contents are added to the unsigned Y index register to form the. address of the memory location to be used by the operation.

Indircct, indexed by Z OPR (bp),Z (formerly (zp))
The second byte of the two-byte instruction contains the low-order byte, and the B register contains the high-order address byte of two memory locations whose contents are added to the unsigned Z index register to form the address of the memory location to be used by the operation.

Stack Pointer Indirect, indexed by Y OPR (d,SP), Y
The second byte of the two-byte instruction contains an unsigned offset value, d, which is added to the stack pointer (word) to form the address of two memory locations whose contents are added to the unsigned Y register to form the address of the memory location to be used by the operation.

Relative (byte)
Bxx LABEL
The second byte of the two-byte branch instruction is sign-extended to a full word and added to the program counter (now containing the opcode address plus two). If the condition of the branch is true, the sum is stored back into the program counter.

Rclative (word)
Bxx LABEL (branches only)
The socond and third bytes of the three-byte branch instruction are added to the low-order and high-order program counter bytes, respectively. (the program counter now contains the opeode address plus two). If the condition of the branch is true, the sum is stored back into the program counter.

2.4.4 65CE02 Core Instruction Set

Add memory to accumulator with carry ADC $\mathrm{A}=\mathrm{A}+\mathrm{M}+\mathrm{C}$

Addressing Mode
immediate
base page
base page indexed X absolute. absolute indexed X absolute indexed Y base page indexed indirect X base page indirect indexed Y base page indirect indexed Z

Abbrev. Opcode
IMM " 69
BP 65
$\mathrm{BP}, \mathrm{X} \quad 75$
ABS 6D
ABS, X 7D
ABS,Y 79
(BP,X) 61
(BP),Y 71
(BP),Z 72

The ADC instructions add data fetched from memory and carry to the contents of the accumulator. The results of the add are then stored in the accumulator. If the "D" or Decimal Mode flagg is set, in the processor status register, then a Binary Coded Decimal (BCD) add is performed.

The " N " or Negative flag will be set if the sum is negative, otherwise it is cleared. The "V" or Overflow flag will be set if the sign of the sum is different from the sign of both addends, indicating a signed overflow. Otherwise, it is cleared. The "Z" or Zero flag is set if the sum (stored into the accumulator) is zero, otherwise, it is cleared. The "C" or carry is set if the sum of the unsigned addends execeds 255 (binary mode) or 99 (decimal mode).

Flags

N	V	E	B	D	I	Z	C
N	V	-	-	-	-	Z	C

And memory logically with accumulator
$\mathrm{A}=\mathrm{A}$. and. M

Addressing Mode
immediate
base page
base page indexed X
absolute
absolute indexed X
absolute indexed Y
base page indexed indirect X base page indirect indexed Y base page indirect indexed Z

Abbrev. Opcocic
lMM 29
BP 25
$\mathrm{BP}, \mathrm{X} \quad 35$
ABS . 2D
ABS, X 3D
ABS, Y 39
(BP,X) 21
(BP),Y 31
(BP),Z 32
$\therefore \quad 390490$

REV.	SCALIE	SIIEET 19 OF 52
1		

Bytes	Cycles	Mode
2	2	immediate
2	3	base page non-indexed, or indexed X or Y
3	4	absolute non-indexed, or indexed X or Y
2	5	base page indexed indirect X, or indirect indexed Y or Z

The AND instructions perform a logical "and" between data bits fetched from memory and the accumulator bits. The results are then stored in the accumulator. For each accumulator and corresponding memory bit that are both logical 1 's, the result is a 1 . Otherwise it is 0 .

The " N " or Negative flag will be set if the bit 7 result is a 1 . Otherwise it is cleared. The "Z" or Zero flag is set if all result bits are zero, otherwise, it is cleared.
Flags NVEBDIZC

```
N-...-.-Z-
```

Arithmetic shifts, memory or accumulator,]e $\int \mathrm{f}$ or right
ASL ASR ASW

ASL. Arithmetic shift left A or M		$\mathrm{A}<1$ or $\mathrm{M}<1$		
ASR		A>1 or M1		
ASW Arithmetic shift left M (word)		$\mathrm{Mw}<1$		
Addressing Mode register (A)	Abbrev.	Opcodes		
		ASL	ASR	ASW
		0A	43	
base page	BP	()6	44	
base page indexed X	BP, X	16	54	
absolute	ABS	OE		CB
absolute indexed X	ABS, X	1E		

Bytes Cycles Mode

1	1	register (ASL)
1	2	register (ASR)
2	4	base page (byte) non-indexed, or indexed X
3	5	absolute non-indexed, or indexed X
3	7	absolute (ASW)

The ASL instructions shift a single byte of data in memory or the accumulator left (towards the most significant bit) one bit position. A 0 is shifted into bit 0 .

The " N " or Negative bit will be set if the result bit 7 is (operand bit 6 was) a 1 . Otherwise, it is cleared. The "Z" or Zero flag is set if ALL result bits are zero. The "C" or Carry flag is set il the bit shifted out is (operand bit 7 was) a 1. Otherwise, it is cleared.

The ASR instructions shift a single byte of data in the accumulator right (towards the least significant bit) one bit position. Since this is an arithmetic shift, the sign of the operand will be maintained. The "N" or Negative bit will be set if bit 7 (operand and result) is a 1 . Otherwise, it is cleared. The " Z " or Zero flag is set if ALL result bits are zero. The " C " or Carry flag is set if the bit shifted out is (operand bit 0 was) a 1. Otherwise, it is cleared.

The ASW instruction shifts a word (two bytes) of data in memory left (towards the most significant bit) one bit position. A zero is shifted into bit 0 . The " N " or Negative bit will be set if the result bit 15 is (operand bit 1,4 was) a 1. Otherwise, it is cleared. The "Z" or Zero flag is set if ALL result bits (both bytes) are zero. The "C" or Carry flag is set if the bit shifted out is (operand bit 15 was) a 1 . Otherwise, it is cleared.

Commodore

TTTLE
IC, LSI, MICROPROCESSOR, 4510

SIZE	DREAWING NUMBEE	REV,	Scniti	SIIEET 20 OF S2
A	390490	1		

Flags | N | V | E | B | D | I | Z | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N | - | - | - | - | - | Z | C |

Bit Test
BIT
(A.and.M)

Addrcssing Mode	Abbrev.	Opcode
immediate	IMM	89
base page	BP	24
base page indexed X	BP, X	34
absolute	ABS	2 C
absolute indexed X	ABS,X	3 C

Bytes	Cycles	Mode
2	2	Immediate
2	4	base page non-indexed, or indexed X
3	5	absolute non-indexed, or indexed X

The BIT testing instructions perform a logical "and" between data fetched from memory, and the accumulator. The result is not stored.

The "Ṇ" flag will be set if bit 7 of the memory operand is a 1 . Otherwise it is cleared. The "V" flag will be set if bit 6 of the memory operand is a 1 . Otherwise, it is cleared. The " Z " or Zero flag will be set if all result bits of the "and" operation are zero. Otherwise, it is cleared.

Flags NVEBDIZC 76--- Z

Branch if memory bit reset or set
BBR , BBS
Opcode to test bit
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
BBR 0F1F 2F 3F 4F 5F 6F 7F Branch if bit reset
BBS $\quad 8 \mathrm{~F} 9 \mathrm{~F}$ AF BF CF DF EF FF Branch if bit set

Bytes	Cycles	Mode
3	4	base-page (test), byte-rclative (branch)

The BBR instructions test a single bit within a Base-Page memory location. If the bit is resel (or 0) the byte-offset relative branch is taken.

Similarly, the BBS performs a the same test. If the bit is set (or 1) the branch is taken.
Use of these opcodes are discouraged, as they may be unavailable in future products.

Commodore

IC, LSI, MICROPROCESSOR, 4510

The relative offset of the branch is refereneed to the BBR or BBS opeode +3 , or the location after the three BBR or BBS instruction bytes.

Flags NVEBDIZC

Branch conditional or unconditional

BCC BCS BEQ BMI BNE BPL BRU BVC BVS

Opcode	Opcode Byte	Opcocle Word Relative	Opcode Purposc
Title	Relative	Relave	Branch if Carry Clcar
BCC	90	93	Branch if Carry Sct
BCS	B0	B3	Branch if EQual (Z flag set)
BEQ	F0	F3	Branch if MInus (N flag sct)
BMI	30	33	Branch if Not Equal (Z flag clear)
BNE	D0	D3	Branch if PLus (N flag clear)
BPL	10	13	BRanch Unconditional
BRU	80	83	Branch if oVerlow Clear
BVC	50	53	Branch if oVerllow Sct
BVS	70	73	
Bytes Cycles	Modc		
2	2	bytc-rclative	
3	3	word-relative	

All branches of this type are taken, if the condition indicated by the opeode is truc. All branch relative offsets are referenced to the branch opeode location +2 . This means that for byte-relative, the offset is relative to the location after the two instruction bytes. For word-relative, the offset is relative to the last of the three instruction bytes.

Flags NVEBDIZC

Break (force an interrupt)
BRK
Bytes Cycles Mode Opcode
27 implicd 00 (stack) $<\mathrm{PC}+1 w \mathrm{P}, \mathrm{SP}<$ SP-3
The BRI instruction causes the processor to enter the IRQ or Interrupt ReQuest state. The program counter (now incremented by 2), bytes PCH and PCL, and the processor status register P, are pushed onto the stack. (This causes the stack pointer SP to be decremented by 3.) Then the program counter bytes PCL and PCH are loaded from memory addresses FFFE and FFFF, respectively.

The BRK differs from an externally generated interrupt request (IRQ) as follows. The program counter value stored on the stack is $\mathrm{PC}+2$, or the address of the BRK opeode +2 . On return from interrupt, the processor will return to the BRK address+2, thus skipping the opcode byte, and a following "dummy" byte. A normal IRQ will not add 2, so that a return will execute the interrupted opcode. Also, when the P register is pushed onto the stack, the B or "break" flag is set, to indieate that the interrupt was software generated. All outside interrupts push P with the B flag eleared.

Branch to subroutine

Bytes	Cycles	Mode	Opcode	
3	5	word-relative	63	(stack) $<\mathrm{PC}+2 \mathrm{~V}, \mathrm{SP}<\mathrm{SP}-2$

The BSR Branch to SubRoutine instruction pushes the two program counter bytes PCH and PCL onto the stack. It then adds the word-relative signed offset to the program counter. The relative offset is referenced to the address of the BSR opcode +2 , hence, it is relative to the third byte of the three-byte BSR instruction. The return address, on the stack, also points to this address. This was done to make it compatible with the RTS functionality, and to be consistant will other word-relative operations.

Flags NVEBDIZC

Clear processor status bits

CLC Clear the Carry bit	18	1
CLD Clear the Decimal mode bit	D8	1
CLE Clear stack Extend disable bit	02	2
CLI Clear Interrupt disable bit	58	2
CLV Clear the Ovellow bit	B8	1

CLC CLD CLE CLI CLV Flags
 NVEBCI Z C
 - - - - - 0
 - - - 0 - -
 - - 0 - - - -
 - - - - 0 -
 - 0 -

$\begin{array}{ll}\text { Bytes } & \text { Mode } \\ 1 & \text { implied }\end{array}$
All of the P register bit clear intructions are a single byte long. Most of them require a single CPU cycle. The CLI and CLE require 2 cycles. The purpose of extending the CLI to 2 cycles, is to enable an interrupt to occur immediately, if one is pending. Interrupts cannot occur after single cycle instructions.

Compare registers with memory Compare accumulator with memory CPX Compare index X with memory
CPY Compare index Y with memory
CPZ Compare index Z with memory
CMP CPX CPY CPZ CMP

Addressing Mode	Abbrev.	CMP	CPX	CPY	CPZ
immediate	IMM	C9	E0	C0	C2
base page	BP	C5	E4	C4	D4
base page indexed X	BP, X	D5			
absolute	ABS	CD	EC	CC	DC
absolute indexed X	ABS, X	DD			
absolute indexed Y	ABS, Y	D9			
base page indexed indirect X	(BP,X)	C1			
base page indirect indexed Y	(BP), Y	D1.			
base page indirect indexed Z	(BP), Z.	D2			

Bytes	Cycles	Mode
2	2	immediate
2	3	base page non-indexed, or indexed X or Y

SIZE	DRAWING NUMBIR	RISV.	SCNLE	SIILET $23(6 F 52$
A	$390!90$			

3	4
2	5

absolute non-indexed, or indexed X or Y
25 base page indexed indirect X , or indirect indexed Y or Z
Compares are performed by subtracting a value in memory from the register being tested. The results are not stored in any register, except the following status flags are updated.

The "N" or Negative flag will be set if the result is negative (assuming signed operands), otherwise it is cleared. The " Z " or Zero flag is set if the result is zero, otherwise it is cleared. The " C " or carry flag is set if the unsigned register value is greater than or equal to the unsigned memory value.

Flags \quad| NVEBDIZC |
| :--- |
| |

Decrement Registers or Memory
DEC DEW DEX DEY DEZ

DEC Decrement accumulator or memory
DEW . Decrement a memory word
DEX Decrement index X
DEY Decrement index Y
DEZ Decrement index Z

A-1 or M-1
Mw-1
X -1
Y-1
Z-1.

	Opcodes					
Addressing Mode	Abbrev.	DEC	DEW	DEX	DEY	DEZ
implied	3 A	CA	88	$3 B$		
base page	BP	C6	C3			
base page indexed X	BP, X	DG				
absolute	ABS	CE				
absolute indexed X	ABS, X	DE				

Bytes	Cycles	Mode
1	1	register
2	4	base page (byte) non-indexed, or indexed X
2	6	base page (word)
3	5	absolute non-indexed, or inclexed X

The DEC (accumulator), DEX, DEY, and DEZ instructions are single-bytc, single-cycle, and decrement (or subtract 1 from) the specified register.

The DEC (memory), and DEW (memory) instructions decrement a byte or word, respectively, in memory'. The "N" or "negative" flag is set if the result value is negative. Otherwise, it is cleared. The "Z" or "zero" flag is set if the result of the decrement is zero. Otherwise, it is cleared.
Flags NVEBDIZC
N - - - - Z

Exclusive OR accumulator logically with memory EOR A=A.or.M.and..not.(A.and.M)

Addressing Mode
immediate
base page
base page indexed X
absolute
absolute indexcd X
absolute indexed Y

Abbrev. Opcode
IMM 49
BP 4.5
$\mathrm{BP}, \mathrm{X} \quad 55$
ABS 4D
$A B S, X \quad 5 D$
$\mathrm{ABS}, \mathrm{Y} \quad 59$

SIZE	DRAWING NUMBER	REV.	SCALE:	SIIEET 24 CF 52
A	390490	1		

base page indexed indirect X base page indirect indexed Y base page indirect indexed Z			(BP, X)	41
			(BP), Y	51
			(BP), Z	52
Bytes Cycles Mode				
2	2	immediate		
2	3	base page no	dexed, or	X or Y
3	4	absolute no	dexed, or	X or Y
2	5	base page in	d indirec	dircet i

The EOR instructions perform an "exclusive or" between bits fetched from memory and the accumulator bits. The results are then stored in the accumulator. For each accumulator or corresponding memory bit that are different (one 1 , and one 0) the result is a 1 . Otherwise it is 0 .

The " N " or Negative flag will be set if the bit 7 result is a 1 . Otherwise it is cleared. The " Z " or Zero flag is set if all result bits are zero, otherwise, it is cleared.
Flags

$$
\begin{aligned}
& \text { NVEBDIZC } \\
& \text { N }-.--Z-
\end{aligned}
$$

Increment Registers or Memory
INC INW INX INY INZ

	Increment accumulator or memory			A+1 or M+1			
INW.	Increment a memory word			Mw+1			
INX	Increment index X			X+1			
INY	Increment index Y			Y+1			
INZ	Increment index Z			Z+1			
				Opcodes		INY	
Addressing Mode			Abbrcv. INC	INW	INX		INZ
implicd			1A E8	C8	1B		
base page			BP	E6	E3		
base page indexed X			BP, X	F6			
absolute			ABS	EE			
absolute indexed X			ABS, X	FE			
Bytes	Cycles	Mod					
1	1						
2	4	basc	non-indexed, or	dexed			
2 !	6						
3	5	abso	cexed, or indexe				

The INC (accumulator), INX, INY, and INZ instructions are single-byle, single-cycle, and increment (or add 1 to) the specified register. The INC (memory), and INW (memory) instructions increment a byte or word, respectively, in memory. The " N " or "negative" flag is set if the result value is negative. Otherwise, it is cleared. The " Z " or "zero" flag is set if the result of the increment is zero. Otherwise, it is cleared.

Flags NVEBDIZC
N Z

SI7E	DRAWING NUMBER	REV.	*'^1.	SHEET 25 OF 52
Λ	30090	1		

The JSR Jump to SubRoutine instruction pushes the two program counter bytes PCH and PCL onto the stack. It then loads the program counter with the new address. The return address, stored on the stack, is actually the address of the JSR opcode+2, or is pointing to the third byte of the threc-byte JSR instruction
Flags NVEBDIZC

Load registers
LDA LDX LIJY LDZ
LDA Load Accumulator from memory
LDX Load index X from memory X
LDY Load index Y from memory Y
LDZ Load index Z from memory Z

Addressing Mode	Abbrcv.	LDA	LDX	LDY	LDZ
immediate	IMM	A9	A2	A0	A3
base page	BP	A5	A6	A4	
base page indexed X	BP, X	B5		B4	
base page indexed Y	BP,Y		B6		
absolute	ABS	AD	AE	AC	AB
absolute indexed X	ABS,X	BD		BC	BB
absolute indexed Y	ABS,Y	B9	BE		
base page indexed indirect X	(BP,X)	A1			
base page indirect indexed Y	(BP),Y	B1			
base page indirect indexed Z	(BP),Z	B2			
stack vector indir indexed Y	(d,SP),Y	E2			

Bytes Cycles Mode

2	2	immediate
2	3	base page non-indexed, or indexed X or Y
3	4	absolute non-indexed, or indexed X or Y
2	5	base page indexed indirect X, or indirect indexed Y or Z
2	6	stack vector indirect indexed Y

These instructions load the specified register from memory. The " N " or Negative flag will be set if the bit 7 loaded is a 1. Otherwise it is cleared. The " Z " or Zero flag is set if all bits loaded are zero, otherwise, it is cleared

Flags NVEBDIZC

$$
7 \ldots--2-
$$

Logical shift, memory or accumulator, right
LSR
$\mathrm{A}>1$ or $\mathrm{M}<\mathrm{M}>1$

The LSR instructions shift a single byte of data in memory or the accumulator right (towards the least significant bit) one bit position. A 0 is shifted into bit 7 (the sign bit).

The " N " or Negative bit will be cleared. The " Z " or Zero flag is set if ALL result bits are zero. The "C" or Carry flag is set if the bit shifted out is (operand bit 0 was) a 1 . Otherwise, it is cleared.

Flags . NVEBDIZC

$$
\text { R }-\cdots-\mathrm{ZC}
$$

ADD MAP OPCODE HERE

Negate (twos complement) accumulator $\mathrm{A}=-\mathrm{A}$			
Addressing Mode	Opcode	Bytes	Cycles
implied	42	1	2

The NEG or "negate" instruction performs a two's-complement inversion of the data in the accumulator. For example, 1 becomes $-1,-5$ becomes 5 , etc. The same can be achieved by subtracting A from zero.

The " N " or Negative flag will be set if the accumulator bit 7 becomes a 1. Otherwise it is cleared. The " Z " or Zero flag is set if the accumulator is (and was) zero.

Flags NVEBDIZC
$\cdots \mathrm{N}-\cdots-\mathrm{Z}$ -
No-operátion
Addressing Mode
implied

	il	
Opcode	Bytcs	Cycles
EA	1	1

Fags NVEBDIZC

SIZE	DKAVING NUMIBER	RIVV.	SCALE	SIIEET 27 OF 52
A	390490	1		

The NOP instruction has no effect, except after a MAP in which case it is used to re-enable interrupts inhibited by the MAP opcodc.

Or memory logically with accumulator
A=A.or.M

Addressing Modc immediate

Abbrcv.	Opcode
IMM	09
BP	05
BP,X.	15
ABS	$0 D$
ABS,X	$1 D$
ABS,Y	19
(BP,X)	01
(BP),Y	11
$(B P), Z$	12

base page BP 05
base page indexed X absolute absolute indexed X absolute indexed Y base page indexed indirect X base page indirect indexed Y base page indirect indexed Z
(BP),Z 12

Bytes Cycles Mode
$2 \quad 2$ immediatc
23 base page non-indexed, or indexed X or Y
34 absolute non-inclexed, or indexed X or Y
25 base page indexed indirect X, or indirect indexed Y or Z
The ORA instructions perform a logical "or" between data bits fetehed from memory and the accumulator bits. The results are then stored in the accumulator. For either accumulator or corresponding memory bit that is a logical 1 , the result is a 1 . Otherwise it is 0 .

The " N " or Negative flag will be set if the bit 7 result is a 1 . Otherwise it is cleared. The "Z" or Zero flag is set if all result bits are zero, otherwise, it is cleared.

Flags NVEBDIZC
N - - - - Z
Pull register data from stack
PLA PLP PLX PLY PLZ

	Opcod	
PLA	Pull Accumulator from stack	68
PLX	Pull index X from stack	FA
PLY	Pull index Y from stack	$7 A$
PLZ	Pull index Z from stack	FB
PLP	Pull Processor status from stack	28

Bytes Cycles Mode
13 register
The Pull register operations, first, increment the stack pointer SP, and then, load the specified register with data from the stack:
$i+1$
i

Commodore

IC, LSI, MICROPROCESSOR, 4510

Except in the case of PLP, the "N" or Negative flag will be set if the bit 7 loaded is a 1 . Otherwise it is cleared. The "Z" or Zero flag is set if all bits loaded are zero, otherwise, it is cleared.

In the case of PLP, all processor flags (P register bits) will be loaded from the stack, except the "B" or "break" flag, which is always a 1, and the "E" or "stack pointer Extend disable" flag, which can only be set by SEE, or cleared by CLE instructions.

Flags NVEBDIZC

$$
\begin{aligned}
& N-\cdots--Z-\quad \text { (except PLP) } \\
& 76-3210 \text { (PLP only) }
\end{aligned}
$$

Push registers or data onto stack
PHA PHP PHW PHX PHY PHZ
PHA : Push Accumulator onto stack
PHP Push Processor status onto stack
PHW Push a word from memory onto stack
PHX Push index X onto stack
PHY Push index Y onto stack
PHZ : Push index Z onto stack

Addrcssing Mode	Abbrev	PHA	PHP	PHW	PHX	PHY	PHZ
register		48	08		DA	$5 A$	DB
word immediate	IMMw			F4			
word absolute	ABSw			FC			

Bytcs Cycles Mode

1	3	register
3	5	word immediate
3	7	word absolute

These instructions push either the contents of a register onto the stack, or push two bytes of data from memory (PHW) onto the stack. If a register is pushed, the stack pointer will decrement a single address. If a word from memory is pushed, the stack pointer will decrement by 2 . No flags are changed.

Flags NVEBDIZC

NOTE: word pushes are performed low-byte first. This means that the lower order byte pushed will become the high order byte on the stack.

Reset memory bits
$\mathrm{M}=\mathrm{M}$.and.-bit
Opcode to reset bit

0	1	2	3	4	5	6	7
07	17	27	37	47	57	67	77

Byles Cycles Mode
2 . 4 basc-page

These instructions reset a single bit in base-page memory, as specified by the opeode. No flags are modified. Flags NVEBDIZC

Use of these opcodes is discouraged, as they may be unavailable on a later product.
Rotate memory or accumulator, left or right
ROL ROR ROW
ROL". Rotate memory or accumulator left throught carry
ROR Rotate memory or accumulator right throught carry
ROW. Rotate memory (word) left throught carry

		Opcodes		
Addressing Mode	Abbrcv.	ROL	ROR	ROW
register (A)		$2 A$	$6 A$	
base page	BP	26	66	
base page indexed X	BP,X	36	76	
absolute	ABS	2 E	6 E	EB
absolute indexed X	ABS, X	.	3 E	7 E

Bytes Cycles Mode

1	1	register
2	4	base page (byte) non-indexed, or indexed X
3	5	absolute non-indexed, or indexed X
2	6	absolute (word)

The ROL'instructions shift a single byte of data in memory or the accumulator left (towards the most significant bit) one bit position. The state of the " C " or "carry" flag is shifted into bit 0 .

The "N" or Negative bit will be set if the result bit 7 is (operand bit 6 was) a 1 . Otherwise, it is cleared. The "Z" or Zero flag is set if ALL result bits are zero. The " C " or Carry flag is set if the bit shifted out is (operand bit 7 was) a 1. Otherwise, it is cleared

The ROR instructions shift a single byte of data in memory or the accumulator right (towards the least significant bit) one bit position. The state of the "C" or "carry" flag is shifted into bit 7.

The " N " or Negative bit will be set if bit 7 is (carry was) a 1 . Otherwise, it is cleared. The "Z" or Zero flag is set if ALL result bits are zero. The " C " or Carry flag is set if the bit shifted out is (operand bit 0 was) a 1 . Otherwise, it is cleared.

The ROW instruction shifts a word (two bytes) of data in memory left (towards the most significant bit) one bit position. The state of the "C" or "carry" flag is shifted into bit 0 .

The "N" or Negative bit will be set if the result bit 15 is (operand bit 14 was) a 1 . Otherwise, it is cleared. The "Z" or Zero flag is set if ALL result bits (both bytes) are zero. The " C " or Carry flag is set if the bit shifted out is (operand bit 15 was) a 1 . Otherwise, it is cleared.

Flags' NVEBDIZC
N - - - Z Z

Commodore

$$
\text { IC, LSI, MICROPROCESSOR, } 4510
$$

Return from BRK, interrupt, kernal, or subroutine

Operation	description	Opcode	bytes	cycles	
RTI	Return from interrupt	40	1	5	P,PCw(SP),SP 3
RTN \#n	Return from kernal	62	2	7	$\mathrm{PCw}(\mathrm{SP})+1, \mathrm{SP} 2+\mathrm{N}$
RTS	Return from subroutinc	60	1	4	$\mathrm{PCw}(\mathrm{SP})+1, \mathrm{SP} 2$

The RTI or ReTurn from Interrupt instruction pulls P register data and a re'urn address into program counter bytes PCL and PCH from the stack. The stack pointer SP is resultantly incremented by 3 . Execution continues at the address recovered from the stack.

The RTS or ReTurn from Subroutine instruction pulls a return address into program counter bytes PCL and PCH from the stack. The stack pointer SP is resultantly incremented by 2 . Execution continues at the address recovered +1 , since BSR and JSR instructions set the return address one byte short of the desired return address.

The RTN or ReTurn from kerNal subroutine is similar to RTS, except that it contains an immediate parameter N indicating how many extra bytes to discard from the stack. This is useful for returning from subroutines which have arguments passed to them on the stack. The stack pointer $S P$ is incremented by $2+N$, instead of by 2 , as in RTS.

```
Flags. NVEBDIZC
    - - ...... (RTN and RTS)
    76--3210(RTI)
```

Subtract memory from accumulator wilh borrow
$\mathrm{A}=\mathrm{A}-\mathrm{M}+\mathrm{C}-1$
Addressing Mode
immediate
base page
basc page indexed X
absolute
absolute indexed X

Abbrev.	Opcode
IMM	E9
BP	E5
BP,X	F5
ABS	ED
ABS,X	FD
ABS,Y	F9
(BP,X)	E1
(BP),Y	F1
(BP),Z	F2

absolute indexed Y
$A B S, X \quad F D$
base page indexed indirect X
base page indirect indexed Y
base page indirect indexed Z
(BP),Z F2

Bytes Cycles Mode
22 immediate
2 . 3 base page non-indexed, or indexed X or Y
3 .. 4 absolute non-inclexed, or indexed X or Y
25 base page indexed indirect X , or indirect indexed Y or Z
The SBC instructions subtract data fetehed from memory from the contents of the accumulator, assuming the "C" or "carry" flag was sct. If " C " was clear, an additional count is subtracted. The results of the subtract is stored in the accumulator. If the " D " or Decimal Mode flag, in the processor status register, then a Binary Coded Decimal (BCD) subtract is performed.

The " N " or Negative flag will be set if the difference is negative, otherwise it is cleared. The "V" or Overflow flag will be set if the sign of the difference is different from the sign of both operands, indicating a signed overflow. Otherwise, it is cleared. The "Z" or Zero flag is set if the difference (stored into the accumulator) is zero, otherwise, it is cleared. The " C " or carry is set if the unsigned minuend (in the accumulator) is greater-than or equal-to the unsigned subtrahend (in memory). Otherwise, it is cleared.

Commodore

$$
\text { IC, LSI, MICROPROCESSOR, } 4510
$$

A

Flags NVEBDIZC
NV - - - - Z C

Set processor status bits
SEC SED SEE SEI

All of the P register bit set intructions are a single byte long. Most of them require a single CPU cycle. The SEE and SEI require 2 cycles.

Set memory bits SMB M=M.or.bit
Opcode to set bit

0	1	2	3	4	5	6	7
87	97	A7	B7	C7	D7	E7	F7

Bytes Cycles Mode
2 . 4 base-page
These instructions set a single bit in base-page memory, as specified by the opeode. No flags are modified. Use of this opcode is discouraged, as it may be unavailable on a later product.
$\begin{array}{lllllllll}\text { Flags } & \mathrm{N} & \mathrm{V} & \mathrm{E} & \mathrm{B} & \mathrm{D} & \mathrm{I} & \mathrm{Z} & \mathrm{C}\end{array}$

Store registers
STA STX STY STZ
STA Store Accumulator to memory MA
STX Store index X to memory M X
STY Store index Y to memory MY
STZ Store index Z to memory MZ

Opeodes

Addressing Mode	Abbrev.	STA	STX	STY	STZ
base page	BP	85	86	84	64
base page indexed X	BP,X	95		94	74
base page indexed Y	BP,Y		96		
absolute	ABS	$8 D$	SE	SC	9 C
absolute indexed X	ABS,X	$9 D$		$8 B$	$9 E$
absolute indexed Y	ABS,Y	99	$9 B$		
base page indexed indirect X	(BP,X)	81			
basc page indirect indexed Y	(BP),Y	91			
base page indirect indexed Z	(BP),Z	92			
stack vector indirect indexed Y	$(\mathrm{d}, \mathrm{SP}), Y$	82			

Bytes Cycle Mode
$2 \quad 3 \quad$ base page non-indexed, or indexed X or Y

Commodore

3	4
2	5
2	6

absolute non-indexed, or indexed X or Y
26 base page indexed indirect X, or indirect indexed Y or Z

These instructions store the specified register to memory. No flags are affected.

These instructions transfer the contents of the specified source register to the specified destination register. Any transfer to $\mathrm{A}, \mathrm{X}, \mathrm{Y}$, or Z will affect the flags as follows. The " N " or "negative" flag will be set if the value moved is negative (bit 7 set), otherwise, it is cleared. The "Z" or "zero" flag will be set if the value moved is zero (all bits 0), ollaerwise, it is cleared. Any transfer to SPL or SPH will not alter any flags.

Bytes	Cycles	Mode
1	1	register

Test and reset or set memory bits TRB TSB
TRB Test and reset memory bits with accumulator (M.and.A),M.and.-A
TSB Test and set memory bits with accumulator (M.and.A),M.or.A

Addressing Mode
base page
absolute

Opeodes

These instructions test and set or reset bits in memory, using the accumulator for both a test mask, and a set or reset mask. First, a logical AND is performed between memory and the accumulator. The "Z" or "zero" flag is set if all bits of the result of the AND are zero. Otherwise it is reset.

The TSB then performs a logical OR between the bits of the accumulator and the bits in memory, storing the result back into memory.

The TRB, instead, performs a logical AND between the inverted bits of the accumulator and the bits in memory, storing the result back into memory.

Commodore

$$
\text { IC, LSI, MICROPROCESSOR, } 4510
$$

सारह	TRRAVING numbier	REV.	SCNLI	SHIEET 33 (1) 52
A	390490)	1		

Flags	N	V	E	B	D	I	Z	C
	-	-	-	-	-	-	Z	-
MAO Opcode		MAP						

Addressing Mode	Abbv	Opcode	Bytes	Cycles
Implicd	MAP	5 C	1	4

The C4510 memory coremapper allows the microprocessor to access up to 1 megabyte of memory. Here's how. The 6503 microprocessor can only access 64 K bytes of memory because it only uses addresses of 16 bits. But the 4510 memory mapper allows these addresses to be redirected to new physical addresses to access different parts of a much larger memory, within the 64 K byte confinement window.

The 64 K window has been divided into eight blocks, and two regions, with four blocks in each region. Blocks 0 through 3 are in the "lower" region, and blocks 4 through 7 are in the "upper" region, as shown...

UPIER REGION	BLOCK 7	$-\mathrm{FBFF}$
	BLOCK 6	$\begin{array}{r} \mathrm{COOO} \\ -\mathrm{A} 000 \\ \mathrm{SOOO} \end{array}$
REGION	BLOCK 5	
	BLOCK 4	
LOWER REGION	BLOCK 3	6000
	13LOCK 2	
		- 4000
	BLOCK 1	
		2000
	BLOCK 0	0

FIGURE 3 - MEMORY MAPPER 64K CONFINEMENT WINDOW
Each block can be programmed to be "mapped", or "non-mapped" via bits in the mapper's "mask" registers. Nonmapped means, simply, address out equals address in. Therefore, there are still only 64 K bytes of non-mapped memory. Mapped, means that address out equals address in plus some offset. The offset is programmed via the mapper's "offset" registers. There are two "offsct" registers. One is for the lower region, and one is for the upper region.

The low-order 8 address bits are never mapped. The offsets are only added to the 12 high-order address bits. This means the smallest unit you can map to is 256 bytes or one page.

The 4510 has an output (MAP) which lets the outside world know when the processor is accessing a mapped (MAP/ is low) or non-mapped (MAP/ is high) address. This is useful for systems where you may want I/O devices to be at fixed (non-mapped) addresses, and only memory at mapped addresses.

It is possible, and likely, to have mapped, and unmapped memory at the same physical address. And, with offset registers seft to zero, mapped addresses will match unmapped ones. The only difference is the MAP/ signal to tell whether the address is mapped or unmapped. The MAp operation transfers the contents of the A, X, Y, and Z registers to the memory mapper registers $\mathrm{A}, \mathrm{X}, \mathrm{Y}$, and Z . All subsequent interrupts are inhibited until a NOP is exccuted.

| SIZEE | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \wedge | 390490 | REAWING NUMBER | SCALI: | SIIEET 34 OF 52 |

Flags NVEBDIZC

7	6	5	4	3	2	1	0	Br
LOWER	LOWER	LOWER	LOVER	LOWER	LOWER	LOWER	LOWER	
OFF 15	Of: 14	OFF 13	OFF 12	OFF11	OFF 10	O1F9	OFF 8	\wedge
$\begin{gathered} \mathrm{MAP} \\ \mathrm{BLK} 3 \end{gathered}$	$\begin{gathered} \mathrm{MAP} \\ \mathrm{BLK} 2 \end{gathered}$	$\begin{gathered} \mathrm{MAP}^{\prime} \\ \text { BLK } 1 \end{gathered}$	$\begin{aligned} & \text { MAP } \\ & \text { BLK } 0 \end{aligned}$	$\begin{gathered} \text { LOWER } \\ \text { OFF } 19 \end{gathered}$	LOWER OFF 18	$\begin{aligned} & \text { LOWER } \\ & \text { OFF } 17 \end{aligned}$	LOWER OFF 16	X
UPPER OFF 15	UPPER OFF 14	UPPER OFF 13	UPIPER OII: 12	UPPER OFI: 11	UPPER Of: 10	UPPER $\text { OFF } 9$	UPPER $\text { OFI } 8$	Y
$\begin{gathered} \text { MAP } \\ \text { BLK } 7 \end{gathered}$	$\begin{gathered} \text { MAP } \\ \text { BLK } 6 \end{gathered}$	$\begin{aligned} & \mathrm{MAP} \\ & \mathrm{BLK} 5 \end{aligned}$	$\begin{gathered} \mathrm{MAP} \\ \mathrm{BLK} 4 \end{gathered}$	$\begin{aligned} & \text { UPPER } \\ & \text { OFF } 19 \end{aligned}$	UTPDER OIF 18	$\begin{aligned} & \text { UPPER } \\ & \text { OFF } 17 \end{aligned}$	UPPER OFF 16	Z

After exccuting the MAP opcode, all interrupts are inhibited. This is done to allow the operating system to complete a mapping sequence without fear of getting an interrupt. An interrupt occuring before the proper stackpointer is set will cause return address data to be written to an undesired area.

Upon completing the mapping sequence, the operating system must remove the interruipt inhibit by executing an NOP opcode. Note that application soltware may exccute NOPs with no effect.

To program the mapper, the operating system must load the $\mathrm{A}, \mathrm{X}, \mathrm{Y}$, and Z registers with the following information, and execute a MAP opcode.

2.5 PERIPIIERAL CONTROL FUNCTIONS

2.5.1 I/O PORTS

Ports A, B and Deach consist of an S-bit Peripheral Data Register (PR) and an S-bit Data Direction Register (DDR). Port E consists of a 2-bit PR and DDR registers. If a bit in the DDR is set to one, the corresponcling bit in the PR is an output, if a DDR bit is set to a zero, the corresponding PR bit is delined as an input. On a READ, the PR bit reflects the information present on the actual port pins (PRA0-PRA7, PRB0-PRB7, PRC2, PRDO-PRD7, PRE0-PRE1) for both input and output bits. All ports have passive pull-up devices as well as active pull-ups, providing both CMOS and TTL compatibility. In addition to normal I/O opcration, PRB6, RB7, PRDG and PRD7 also provide timer output functions (refer to Control Register section, 2.5.8).

Only bit PC2 and DPC2 of PORT C mect the above description. The other bits function as described in the following:

$\mathrm{PCO}_{.} \mathrm{PCl}$

These signals are simply register bits. When read, they will reflect the value previously written to the PRC register.

PC4
This bit is a "high" if it's configured as injut (DPC4 is a "low"). If configured as output (DPC4 is a "high"), the

Commodore

SIVE	Dikniving numilir	REV.	Scmili	SIEEET 35 (1) 52
A	390490	1		

bit will reflect its previous written value when PORT C is read. Then the PRC46 pin is pulled "low" if PC4 is "high"; otherwise, PRC46 is pulled-up through passive resistor.

PC5

This bit is a "high" if it's configured as input (DPC5 is a "low"). If configured as output (DPC5 is a "high"), the bit will reflect its previous written value when PORT C is read. Then the PRC57 pin is pulled "low" if PC5 is "high"; otherwise, PRC57 is pulled-up through passive resistor.

PC6, PC7

These bits are always configured as inputs. When PORT C (PRC) is read, PC6 and PC7 will reflect the values on the PRC46 and PRC57 pins, respectively.

2.5.2 HANDSHAKING

Handshaking on data transfers can be accomplished using the PC/ output pin and either the FLAGA/ or FLAGB/ input pin. The PC/ line will go low and stay low for two cycles, two cycles after a read or write to PORT D. This is required to meet Centronics Parallel Interface specs. The PC/ line can be used to indicate "data ready" at PORT D or "data accepted" from PORT D. Handshaking on 16-bit data transfers (using cither PORT A or B and then PORT D) is possible by always reading or writing PORT A or PORT B first. The FLAG/lines are negative edge sensitive inputs which can be used for receiving the $\mathrm{PC} /$ output from other 4510 devices, or as general purpose interrupt inputs. A negative transition on FLAGA/ or FLAGB/will sct the FLAGA or FLAGB interrupt bits, respectively.

2.5.3 INTERVAL TIMERS

(Timer A, Timer B, Timer C, Timer D)
Each interval timer consists of a 16 -bit read-only Timer Counter and a16-bit write-only Timer Lateh (prescaler). Data written to the timer are latched in the Timer Lateh, while data read from the timer are the present contents of the Timer Counter. The timers can be used inclependently or linked in pairs for extended operations (TIMER A may be linked with Timer B; TIMER C may be linked with TIMER D). The various timer modes allow generation of long time delays, variable width pulses, pulse trains and variable frequency waveforms. Utilizing the CNT inputs, the timers can count external pulses or measure frequency, pulse witdih and delay times of external signals. Each timer has an associated control register, providing independent control of the following functions (see bits functional description in section 2.5 .8 below):

Start/Stop

Each timer may be started or stopped by the microprocessor at any time by writing to the START/STOP bit of the corresponding control register (CRA, CRB, CRB or CRC).

PRB', PRD On/Off

Control bits allow any of the timer oui aits to appear on a PORT B or PORT' D output line (PRB6 for TIMER A, PRB7 for TIMER B, PRD6 for TIMER C and PRD7 for TIMER D). Note that this function overrides the DDRB control bit and forces the appropiate PB or PC line to be an output.

Toggle/Pulsc

Control bits select the ouputs applied to PORT B and PORT D. On every timer underflow the ouput ean either toggle or generate a single positive pulse of one cycle duration. The Toggle output is set high whenever the appropiate timer is started and is set low by RESET/.

One-Shol/Continuous

Control bits select either timer mode. In one-shot mode, the timer will count down from the latched value to zero,

$!$
generate an interrupt, reload the latched value, then stop. In continuous mode, the timer will count from the latehed value to zero, generate an interrupt, reload the latehed value and repeat the procedure continuously.

Force Load

A strobe bit allows the timer lateh to be loaded into the timer counter at any time, whether the timer is running or not.
Input Mode
Control bits allow selection of the clock used to decrement the timer. TIMER A or TIMER C can count C1MHZ clock pulses or external pulses applied to the CNTA or CNTB, respectively. The C1MHZ clock is obtained after internally dividing the C7MHZ by a factor of seven.

TIMER B can count C1MHZ clock pulses, external pulses applicd to the CNTA input, TIMER A underflow pulses or TIMER A underflow pulses while the CNTA pin is held high.

11
TIMER D can count C1MHZ clock pulses, external pulses applicd to the CTNB input, TIMER C underflow pulses or TIMER C underflow pulses while the CNTB pin is held high. The timer lateh is loaded into the timer on any timer underflow, on a force load or following a write to the high byte of the presealer while the timer is stopped. If the timer is running, a write to the high byte will load the timer latch, but not reload the counter.

2.5.4 Time of Day Clocks (TODA, TODB)

The TODA and TODB clocks are special purpose timers for real-time applications. Each clock, TODA or TODB, consists of a 24 -hour (AM/PM) clock with $1 / 10 \mathrm{th}$ second resolution. Each is organized into four registers: 10 ths of seconds (TODATS, TODBTS), Scconds (TODAS, TODBS), Minutes (TODAM, TODBM) and Hours (TODAH, TODBH). The AM/PM flag is in the MSB of the Hours register for casy testing. Each register reads out in BCD format to simplify conversion for driving displays, etc. Each TOD requires a 10 HZ clock input to kecp accurate timing. This 10 HZ clock is gencrated by dividing the C7MHz clock input by a factor of 102273 for NTSC (60 Hz) applications, or a factor of 101339 for PAL (50 Hz) applications. The divider ratio is selected by the TODA IN and the TODB IN bits of the Control Registers, CRA and CRC, respectively (see 2.5.8).

In addition to time-keeping, a programmable ALARM is provided for generating an interrupt at the desired time, from either of the TOD clocks. The ALARM registers registers are located at the same addresses as the corresponding TODA and TODB registers. Access to the ALARM is governed by bit 7 in the Control Registers CRB and CRD. The ALARM registers are write-only; any read of a TOD address will read time regardless of the state of the ALARM access control bits.

A specific sequence of events must be followed for proper selting an reading of each TOD. A TOD is automatically stopped whenever a write to the corresponding Hours register occurs. The TOD will not start again until after a write to the proper 10ths of seconds register. This assures that a TOD will always start at the desired time. Since a carry from one stage to the next can occur at any time with respect to a read operation, a latching function is included to keep all Time of Day information constant during a read sequence. All four registers of each TOD lateh on aread of the corresponding Hours register and remain latched until after a read of the corresponding 10ths of second register. A TOD continues to count when the output registers are latched. If only one register is to be read, there is no carry problem and the register can be read "on the fly", provided that any read of the Hours register is followed by a read of the proper 10ths of seconds, to disable the latching.

2.5.5 Scrial Ports (SDRA, SDRB)

Each scrial port is a buffered, 8-bit synchronous shift register system. A control bit (CRA SPA bit, CRC. SPB bit) selects input or output mode for either the SDRA or SDRB port.

Commodore

SIZE	DRAWING NUMBER	REV.	SCALI:	SIIEET 37 ()F 52
A	1390400	1		

In input mode, data on the SPA or SPB pin is shifted into the corresponding shift register on the rising edge of the signal applied to the CNTA or CNTB pin, respectively. After 8 CNTA pulses, the data in the shift register is dumped into the SERIALA Data Register (SDRA) and an interrupt is generated, SPA bit is set in register ICRA. After 8 CNTB pulses, the data in the shift register is dumped into the SERLALB Data Register (SDRB) and an interrupt is generated, SPB bit is set in register ICRB.

In the output mode, TIMER A is used for the baud rate generator of serial port A , Timer C for serial port B . Data is shifted on an SP pin at half the underflow rate of the TIMER used. The maximum baud rate possible is C 1 MHz divided by four, but the maximum useable baud rate will be determined by line loading and the speed at which the receiver responds to input data. Transmission will start following a write to Scrial Data Register (provicled the proper TIMER used is running and in continuous mode). The clock signal derived from TIMER A would appear as an output on the CNTA pin; the one from TIMER C would appear otn the CNTB pin. The data in the Serial Data Regișter will be loaded into its corresponding shift register then shift out to the SPA or SPB pin when a CNTA or CNTB pulse occurs, respectively. Data shifted out becomes valid on the falling edge of its CNT clock and remains valid until the next falling edge. After 8 CNT pulses, an interrupt is generated to indicate more data can be sent. If the Serial Data Register was loaded with new information prior to this interrupt, the new data will automatically be loaded into the shift register and transmission will continue. If the microprocessor stays one byte ahead of the shift register, transmission will be continuous. If no further data is to be transmitted, after the 8th CNT pulse, CNT will return high and SP will remain at the level of the last data bit transmitted. SDR data is shifted out MSB first and serial input data should aiso appear on this format.

The bidirectional capability of each of the Scrial Ports and CNT clocks allows many 4510 to be connected to a common serial communication bus on which one Scrial Port would act as a master and source for data and shift clock, while the other Serial Port (and all other ports from other 4510 devices) would act as slaves. All the CNT and SP outputs are open drain to allow such a common bus. Protocol for master/slave selection can be transmitted over the serial bus, or via dedicated handshaking lines.

2.5.6 FAST SERIAL MODE

The FAST SERIAL logic consists of a 2-bit write-only register, which resides in location 0001 (hex). Upon reset, both bits in the register are forced low, which allows the device to operate as normal (the CNTA, SPA, PRC57 and FLAGA/ lines will not be affected).

Bit 7 of the FAST SERIAL register is the Fast Scrial Mode disable bit (DMODE* bit).
Bit 6 of the FAST SERIAL register is the FSDIR** bit. When the DMODE* bit is set high, the FSDIR* bit will be used as an output to control the fast serial data direction buffer hardware, and as an input to sense a fast disk enable signal. This function will affect the CNTA, SPA, PRC57 and FLAGA/ lines as summarized in the following table.

DMODE*	FSDIR
0	X
1	0
1	1
1	

FUNCTION

Fast Scrial mode i; disabled.
INPUT MODE. woth the CNTA and the SPA lines will belave

- as outputs. The CNTA output will reflect the
state of the FLABA/ pin, whereas the SPA output
will reflect the state of the PRC57 pin.
OUTPUT MODE. Both the FLAGA/ and PRC57 lines will behave as outputs. The FLAGA/ ouput will reflect the state
of the CNTA pin, whereas the PRC57 output will reflect that of the SPA pin.

2.5.7 Interrupt Control Registers (ICRA, ICRB)

Theseregisters control the following sources of interrupts:
i. Underflows from TIMER A, TIMER B, TIMER C and TIMER D
ii. TODA ALARM and TODB ALARM.
iii. SERIALA and SERIALB Port full/cmpty conditions.
iv. FLAGA/ and FLAGB/ low transitions.

The ICRA and ICRB registers each provides masking and interrupt information. ICRA and ICRB each consists of a write-only MASK register and a read-only DATA register. Any interrupt will set the corresponding bit in the DATA register. Any interrupt which is enabled by the MASK register will set the IR bit (MSB) of its corresponding DATA register and bring the IRQ/ pin low. In a multi-chip system, the IR bit (IRA of ICRA or IRB of ICRB) can be polled to detect which chip has generated an interrupt request. The interrupt DATA register is cleared and the lRQ / line returns high following a read of the DATA register. Since cach interrupt sets and interrupt bit regardless of the MASK, and each interrupt bit can be selectively masked to prevent the generation of a processor interrupt, it is possible to intermix polled interrupts with true interrupts. However, polling either of the IR bits will cause its corresponding DATA register to clear, therefore, it is up to the user to preserve the information contained in the DATA registers if any polled interrupts were present.

Both MASK (ICRA, ICRB) registers provide convenient control of individual mask bits. When writing to a MASK register, if bit 7 of the data written (corresponding to AS/C in ICRA, or BS/C in ICRB) is a ZERO, any mask bit written with a one will be cleared, while those bits written with a zero will be unaffected. In order for an interrupt flag to set the IR bit and generate an Interrupt Request, the corresponding MASK bit must be set in the corresponding MASK Register.

2.5.8 Control Registers (CRA, CRB, CRC, CRD)

CRA (0XE):
BIT Bit Name Function
0 STARTA $1=$ START TIMER A, $0=$ STOP TIMER A.
This bit is automatically reset when TIMER A underflow occurs during oneshot mode.
1 PRB6 ON $1=$ TIMER A output appears on $\mathrm{PRBG}, 0=\mathrm{PRBG}$ normal port operation.
2 OUT-A MODE $1=$ TOGGLE output applicd on port PRBG
$0=$ PULSE output applicd on port PRBG.
3 : RUN-A MODE 1=ONE-SHOT TIMER A operation,
$0=$ CONTINUOUS TIMER A Operation.
4 LOADA $1=$ FORCE LOAD on TIMER A (this is a STROBE input, there is no data storage, bit 4 will always read back a zero and writing a zero has no effect).

5 TMRA INMODE $1=$ TIMER A counts positive CNTA transitions, $0=$ TIMER A counts internal C1MHZ pulses.

6 SPA MODE $1=$ SERIAL A PORT output mode (CNTA sources shift clock),
$0=$ SERIAL A PORT input mode (external shift clock on CNTA)

Commodore

IC, LSI, MICROPROCESSOR, 4510

STET	DRAWING NUMBER	RİV.	SCALE	SIIEET 39 () 52
Λ	390490	1		

CRB (0XF):
(Bits $0-4$ of the CRB register operate identically to bits $0-4$ of the CRA register, except that functions now apply to TIMER B and bit 1 controls the output of TIMER B on PRB7).

BIT	Bit Namc
5,6	TIMERB
	INMODE

7 ALARM TODA CRC (1XE):
BIT Bit Name
0 STARTC

1 PRD6 ON

2

3 RUN-C MODE

4 LOADC

5 TMRC INMODE
6 SPB MODE

Function
Bits 5 and 6 select one of four input modes for TIMER B as follows:
CRB6 CRB5
$0 \quad 0 \quad$ TIMER B counts C1MHz pulscs.
0 : 1 TIMER B counts positive CNTA transitions.
1 : 0 TIMER B counts TIMERA uaderflow pulses.
11 TIMER B counts TIMERA underflows while CNTA is high.
1=writing to TODA registers sets ALARM, $0=$ writing to TODA registers sets TODA clock.

Function

$1=$ START TIMER C, $0=$ STOP TIMER C. This bit is automatically resct when TIMER C underflow occurs during oneshot mode.

1=TIMER C output appcars on PRD6 $0=$ PRDG normal port operation.

1=TOGGLE output applicd on port PRDG, $0=$ PULSE output applied on port PRDG.

1=ONE-SHOT TIMER C operation, $0=$ CONTINUOUS TIMER C operation.
$1=$ FORCE LOAD on TIMER C (this is a STROBE input, there is no data storage, bit 4 will always read back a zero and writing a zero has no cffect).

1=TIMER C counts positive CNTB transitions, $0=$ TIMER C counts internal CLMHZ pulses.
1=SERIAL B PORT output mode (CNTB sources shift clock), $0=$ SERIAL B PORT input mode (external shift clock on CNTB)

Commodore

IC, LSI, MICROPROCESSOR, 4510

SCAIIF \quad SIIELET 40 ()! 52
$1=50 \mathrm{~Hz}$ operation. C7MHZ divided clown by 101339 to gene rate TODB input of 10 Hz
$0=60 \mathrm{~Hz}$ operation. C7MHZ divided down by 102273 to generate TODB input of 10 Hz

CRD (1XF):
(Bits 0-4 of the CRD register operate identically to bits $0-4$ of the CRD register, except that functions now apply to TIMER D and bit 1 controls the output of TIMER D on PRD7).

BIT	Bit Name
5,6	TIMERD

Function

Bits 5 and 6 select one of four input modes for TIMER D INMODE

CRD6 CRD5

0	0		TIMER D counts C1MHz pulses.
0	1	TIMER D counts positive CNTB transitions.	
1	0		TIMER D counts TIMERC underflow pulses.
1	1		TIMER D counts TIMERC underflows while CNTB is high.

7 ALARM TODB $1=$ writing to TODB registers scts ALARM, $0=$ writing to TODB registers scts TODA clock.

2.6 UART OPERATION

The device contains seven registers to control the different UART modes of operation. Section 2.2 describes how to access these registers.

The UART modes can be programmed by accessing the UART control register, URCR, whose bits function as described below.

2.6.1 UART Control Register (URCR)

BIT : Bit Name Function
$0 \quad$ PARITY EVEN 1=Even Parity. If parity is enabled, the transmitter will assert the parity bit (P) to a low when "cven" parity data is transmitted, otherwise it will pull it high. The receiver checks that the parity bit is asserted, or low, if the data received has even parity; if the bit is not asserted, the device will indicate a parity error.
$0=$ Odd Parity. If parity is enabled, the transmitter will pull the parity bit (P) low, when "odd" parity data is transmitted, otherwise it will pull it high. The receiver checks that the parity bit is asserted if the data received has odd parity; if the bit is not asserted when data had odd parity, the device will indicate a parity error.

```
1 PARITY EN 1= Parity Enabled.
    .... . 0= Parity Disabled. The transmilter and receiver will not allocate a parity bit
    in the data, instead a stop bit will be used in its place.
    Sec the Data Configuration chart below.
```


2,3 CHAR LENGTH

These two bits are used to select the number of bits per character to be transmitted or received. 5,6,7 or 8 bits per character may be selected as follows:
(3)
(2)

Commodore

IC, LSI, MICROPROCESSOR, 4510

CH1	CH0	
0	0	eight bits per character
0	1	seven bits per character
1	0	six bits per character
1	1	five bits per character

4,5 UART MODE

These two bits select whether operations will be asynchronous or synchronous for the transmitter and/or receiver. The actual selection is done as follows:

(5)	(4)
UM1	UMO
0	0
0	1
1	x

BIT Bit Name
6 RCVR EN
both transmitter and receiver operate in asynchronous mode receiver operates in synchronous mode, transmitter in asynchronous mode. receiver operates in asynchronous mode, transmitter in synchronous mode.

Function

$0=$ Receiver is disabled.
$1=$ Receiver is Enabled. To provide noise immunity, the duration of a bit interval is segmented into 16 sub-intervals. This is also used to verify that a high to low transition (START bit) on the RXD line is valid (stays low) at the half point of a bit cluration; if not valid, operation will not start. If after an idle period, a high to low transition is detected on the RXD line and is verified to be low, the receiver will have synchronized itself to the incoming character for the duration of the character. Received data is then sampled or latehed in the center of a bit time to determine the value of the remaining bits. The LSB of the data is the leading bit received. Any unused high order register bits will be set "high". The receiver expects the data to have only one parity bit (when parity is enabled) and one stop bit. At the end of the character reception, the receiver will check whether any errors have occured and will update the status register (URSR) accordingly. In addition, if no errors were encountered the recciver will load the contents of the shift register into the Receiver Data Register, climinating parity and stop bits.

In synchronous mode, the receiver will reconfigure its Data Register and Shift Register so that only 8 databits are always accepted on the RXD linc. This mode only works if an external clock is applied on the PRC2 input line, which is used to shift the bits into the Receiver Shift Register. Data on the RXD is latehed at the rising edge of the external clock applicd in PRC2.

7 XMITR EN $0=$ Transmitter is disabled
1= Transmitter is Enabled. Transmitter will start operation once the microprocessor writes data to the transmitter data register (DREG), after which the Transmitter Shift Register is loaded and the start bit is placed on the TXD linc. The LSB of the data is the leading bit being transmitted. The Transmitter is "doubled buffered" which means that the CPU can load a new character as soon as the previous one starts transmission This is indicated by the status register, bit 6 (URSRG- TEMPTY Data Register), which when set, it inclicates that the data register is ready to accept the next character. The character data format is illustrated by figure 1.3.

Commodore

IC, LSI, MICROPROCESSOR, 4510

S1\%	DRAWING NUMBİR	K1.	SCAI.E	STHETT 42 Of 52
Λ	390400	1.		

In synchronous mode, the transmitter will reconfigure its Data Register and , Shift Register so that only 8 data bits are always transmitted on the TXD line, eliminating all parity and stop bits. The external clock output will be placed in the PRC2 line and will shift the data out of the transmitter shift register. Data on the TXDline will change on the falling edge of the PRC2 signal, the external clock.

2.6.2 UART Status Register (URCR)

BIT Bit Namc
0
RFULL

1
OVR

2 PRTY

3 FRME

4 IDLE

5 ENDT

6
TEMPTY

7 TDONE

Function
Receiver Data Register Full bit. This bit is forced to a low upon reset, or after the data register (DREG) is read. This bit is enabled only if the RCVER EN bit is set in the URCR register. The FULL bit is set when the character being received is transferred from the receiver shift register into the receiver data register. If an error is encountered in the character data, this bit will not be set and the proper error bit will be set in the URSR register.

Receiver Over-Run Error bit. This bit is cleared upon reset or after reading the receiver data register. This bit is set if the new received charater is attempted to be transferred from the receiver shift regise:r before reading the last character from the data register. Therefore, the last character is preserved in the data register while the new received character is lost.

Receiver Parity Error bit. This bit is cleared upon reset or after reading the receiver data register. The PRTY bit will be set when a parity error is detected on the received character, provided the PARITY EN bit is set and receiver is running asynchronously.

Receiver Frame Error bit. This bit is cleared upon reset or after reading the receiver data register. The FRME bit is set whenever the received character contains a low in the first stop-bit slot.

Receiver lule bit. When this bit is written to a "high", the status register bits $0-3$ are disabled until the receiver detects 10 consecutive marks, highs, on the RXD line, at which time the IDLE bit is cleared. This bit is also cleared upon reset. This bit allows the microprocessor, or any external microprocessor device, to ignore the transmission of a character until the start of the next character.

Transmitter End of Transmission bit. This bit is eleared upon reset or whenever data is written into the transmitter data register, DREG. Setting this bit would disable the Transmitter Empty bit, TEMPTY, until device completes transmission.

Transmitter data register empty bit. Upon reset (RESET/ is low) TEMPTY is set to high. this bit is cleared when the processor writes new data into the transmitter clata register, DREG. The bit is set after all the bits in DREG are transferred into the transmitter shift register
This bit is cleared when the RESET/ Jine is asserted or when the DREG dumps its contents into the shift register. When this bit is set, it indicates that the

Commodore

1T11.5
IC, LSI, MICROPROCESSOR, 4510

SIZE	DRAWING NUMBI:R	Riv.	SCAI.	SIIEET 430 F 52
A	390490	1.		

2.6.3 UART Interrupt Registers (URIEN and URIFG)

BIT
7 XMTR-IRQEN

6 RCVR-IRQEN

5 XMTR-NMIEN

4
RCVR-NMIEN

Function
When the XMTR-IRQEN bit is set, both the IRQ/ output line and the XMTFLG bit are asserted whenever either one of the following two conditions are met:

1. TEMPTY is set and ENDT is cleared. or, 2. Both TEMP'TY and TDONE are sct..

When the RCVR-IRQEN bit is set, both the IRQ/ output line and the RCVFLG bit are asserted whenever either RFULL, OVR, PRTY, or FRME is set in the status register.

When the XMTR-NMIEN bit is set, both the IRQ/ output line and the XMTFLG bit s are asserted whenever either one of the following conditions are met:

1. TEMPTY is set and ENDT is cleared.
or, 2. Both TEMPTY and TDONE are set.
When the RCVR-NMIEN bit is set, both tiac IRQ/ output line and the RCVFLG bit are asserted whenever either RFULL, OVR, PRTY or FRME are set in the status register.

2.6.4 BAUD RATE GENERATION

Any BAUD RATE canbe generated by using the following formula:

URCLK		URCLK
$\text { Baud Rate }=------------------------ \text { or, }$	COUNT	$6 \times \text { BaudRate }$

Where URCLK $=$ C7MHz input --7.15909 Mhz NTSC, \&.09375 MHz PAL
COUNT = valuc loaded in BAUD RATE latches
The following table shows some of the most common data rates used:
A. NTSC MODE (URCLK=7.15909)

Required BAUD RATE	COUNTBAUD RATE			
(HEX)			\quad	obtained
:---	\quad	Percent		
:---				
crror, \%				

Commodore

Required BAUD RATE

1800
2400
3600
4800
7200
9600
19200
56000

COUNTBAUD RATE
(HEX) obtaincd
00F8 1796.96
00B9 2393.74
007B 3503.41
005C 4811.22
003D 7216.82
002E 9520.07
001619454.00
$0007 \quad 55930.4$

Percent crror, \%
. 17
. 30
. 23
.23
. 23
.83
1.323
. 124
B. PAL MODE (URCLK $=7.09375 \mathrm{MHz}$)

Required	COUNT BAUD RATE		Percentcrror, \%
BAUD RATE	(HEX)	obtained	
50	22A2	50.001	0.002
75	1716	75.005	0.002
110	OFBE	109.987	0.01
134.5	OCDF	134.514	0.01
150	0B8B	1.49 .986	0.009
300	05C5	299.937	0.009
600	02E2	599.945	0.009
1200	0170	1198.27	. 144
1800	00F5	1802.27	. 126
2400	00B8	2396.54	. 144
3600	007A	3604.55	. 126
4800	005B	4819.12	. 398
7200	003D	7150.96	. 68
9600	002D	9638.25	. 4
192000	0016	19276.5	. 4
56000	0007	55419.9	1.04

NOTE: Errors of less than 1.5% are acceptable


```
2.6.5 CHARACTER CONFIGURATION
P= PARITY BIT
STP= STOP BIT
```


FIGURE 5
CIIARACTER CONFIGURATION

4.0 ELECTRICAL REQUIREMEN'S

4.1 ABSOLUTE MAXIMUM RATINGS

Stresses above those listed may causepermanent damage to the circuit. Functional operation ofthe device at these or any conditions other than those indicatedin the operating conditions of this specification is not implied. Exposure to the maximum ratings for extended periods may adversely affect device reliability.

Characteristic	\min	\max	units
4.1.1 ambient temperature under bias	-25	+125	${ }^{\circ} \mathrm{C}$
4.1.2 storage temperature	-65	+150	${ }^{\circ} \mathrm{C}$
4.1.3 applied supply voltage	-0.5	+7.0	volts
4.1.4 applied output vollage	-0.5	+5.5	volts
4.1.5 applied input voltage	-2.0	+7.0	volts
4.1.6 power dissipation	-	1.5	watts

4.2 OPERATING CONDITIONS

All electrical characteristics are specified overr the entire range of the operating conditions unless specifically noted. All voltages are referenced to Vss $=0.0 \mathrm{~V}$

$\therefore:$	Condition	\min	\max	units
4.2.1	supply voltage $\left(\mathrm{V}_{\text {cc }}\right)$	4.75	5.25	volts
4.2.2	Frec air temperaturc	0	70	${ }^{\circ} \mathrm{C}$

4.3 INTERFACE CHARACTERISTICS

	Characteristic	Symbols	min	\max	units	Conditions
4.3.1	Input high level	Vih	2.0	$\mathrm{V}_{\mathrm{cc}+1}$	volts	cxept RES/
			2.7	$\mathrm{V}_{\mathrm{cc}+1}$	volts	RES/only
4.3.2	Input low lcvel	$\mathrm{V}_{\text {il }}$	-0.5	0.8	volts	
4.3.3	Output high level	Voh	2.4	-	volts	$\mathrm{I}_{\text {oh }}=-400$ ua
4.3.4	Output low level	V_{ol}	-	0.4	volts	$\mathrm{I}_{\mathrm{ol}}=3.2 \mathrm{na}$
4.3.4A	Output low level (RESET/, EXTRST/)	Vol	-	0.4	volts	$\mathrm{I}_{\mathrm{ol}}=3.2 \mathrm{ma}$
4.3.5	Input lcakage	$\mathrm{I}_{\text {in }}$	-10	10	uamps	$0.0 \mathrm{v}<\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {cc }}$
4.3.6	Output leakage	Ilkg	-10	10	uamps	$0.4 \mathrm{v}<\mathrm{V}_{\text {ou }}<2.4 \mathrm{v}$ (Deselected)
4.3.7	Supply current	l_{cc}	-	200	mamps	Outputs open $\left(\mathrm{V}_{\mathrm{cc}}=5.25 \mathrm{v}\right)$

Commodore			IC, LSI, MICROPROCESSOR, 4510	
SIZE	DR^WING NUMBER	RI:V.	STSAII:	SIIIEET 47 Of: 52
A	390490	1		

4.4 SWITCIING CHARACTERISTICS

Parameter	Symbol	Min	Max	Unit
4.4.1 PhOcycle time	teyc	279		ns
4.4.2 Baudelk cycle time	1 c 7 mcyc	140		ns
4.4.3 Baudclk width hi	$\mathrm{t}_{\mathrm{p} 7 \mathrm{mlh}}$	60		ns
4.4.4 Baudclk width lo	$t_{\text {p }} \mathrm{ml}$	60		nS
4.4.5 PHO width hi	$t_{\text {pwh }}$	125		ns
4.4.6 PHO width lo	$t_{\text {pwl }}$	125		ns
4.4 .7 clocks, rise fall	$\mathrm{t}_{\mathrm{xr}}, \mathrm{t}_{\mathrm{xf}}$		15	nS
4.4.8 Address Setup	$\mathrm{t}_{\text {ads }}$		SO	ns
4.4.9 Address Hold	tadh	15		ns
4.4.10 Datain Sctup	$t_{\text {dis }}$	40		ns
4.4.11 Data in Hold	$t_{\text {doh }}$		90	ns
4.4.12 Data out Dclay	1 dod	30		ns
4.4.13 Address to no I/O Delay	$l_{\text {anio }}$		10	ns
4.4.14 Port setup time	l_{ps}	60		ns
4.4.15 Port Output Delay	$t_{\text {pd }}$		250)	ns
4.4.16 IRQ, NMI Sctup	t_{cs}	30		ns
4.4.17 IRQ, NMI Hold	$t_{\text {ch }}$	25		ns
4.4.18 IRQ, NMI Output Delay	${ }^{\text {pirc] }}$		210	ns
4.4.19 PC2 output Delay	$t_{p p c}$		110	ns
4.4.20TXD Output Delay $t_{\text {ptx }}$			110	ns
4.4.21 PRC2 Output Delay	$t_{\text {puxd }}$		110	ns
4.4.22PRC2 width hi, lo	$t_{\text {uraw }}(\mathrm{min} 2 \mathrm{cc} 7 \mathrm{mcyc})$	280		ns
4.4.23 sp Sctup	$\mathrm{t}_{\text {scnt }}$	0		ns

Note:

FLAGa, FLAGB, CNTin, SPin are asynchronous inputs with respect to PHO or BAUDCLK. PRxx are the PRA, PRB, PRC, PRE, PRC46, PRC57 port pins.

5.0 APPLICATION NOTES

The following figure outlines the pin name re-assignment for implementation in the c65 computer

FIGURE 6 C65 PIN NAME REASSIGNMIENT

6.0 PHYSICAL REQUIREMENTS

6.1 MARKING

Parts shall be marked with Manufacturer's Part Number, Manufacturer's Identification, and EIA Date Code. Pin No. 1 shall be identified.

6.2 PACKAGING

The interconnected logic circuitry shall be contained in a standard, plastic ZIP (Zig-Zag in-line package) Package with exterior dimensions per Figure 2.

7.0 ENVIRONMENTAL REQUIREMENTS

Units furnished to the requirements of this specification shall meet the following environmental resistance requirements (vendors shall furnish supporting documentation upon request):

Operating Temperature	0 to $70 \mathrm{deg} . \mathrm{C}$
Operating Humidity	5 to 95% RH non-condensing
Operating Altitude	0103000 meters
Storage Temperature	$-2010+85 \mathrm{deg} . \mathrm{C}$
Storage Humidity	51095% RH non-condensing
Storage Altitude	$0 t 015,000$ meters

7.1 PROCESS QUALIFICATION TESTS

Integrated circuits supplied to the requirements of this specification shall meet the requirements of Engineering Policy No. 1.02.008. Supporting documentation shall be supplied by vendor upon request.

7.2 ENVIRONMENTAL TEST CONIDITIONS

Devices shall comply with the following environmental resistance tests per Commodore Engineering Policy 1.02.007.

1. Temperature/humidity (85 deg . C and 95% RH non-condensing) for 168 hours.
2. Operating life (1000 hours at 70 deg. C ambient temperature)
3. Solderability per MIL-STD-883, Method 2003
4.Pressure cooker (15 psig, 120 deg. C, and 100% RH for 24 hours)

4-A
5. Solvent resistance per MIL-STD-883,Method 2015, using water and trichlorocthanc
6. Solder temperature resistance (250 deg . C for five seconds)
7. ESD requirement MIL-STD 1686 Group 3

Note: Devices shall meet this specification's operating performance requirements after the above tests are completed.

FIGURE 7-4510 TIMING

Commodore

IC, LSI, MICROIROCESSOR, 4510

SIZE	DRAWING NUMBER	REV.	SCAIIS	SIIEBT 51 Of 52
\wedge	390490	1		

FIGURE 8-4510 TIMIING (II)
Commodore TITLE

IC, LSI, MICROPROCLSSSOR, 4510

SIZE	DRAWING NUMIBER	REV.	SCALIE	SIIEET 52 O1: 52
A	390490	1		

APPROVED VENDOR LIS'T

Commodore Part Number
390490-01
390490-02

Vendor
CSG
CSG
Vendor Part Number 4510 R4 4510 R5

[^0]: *** When the FAST SERIAL MODE is cnabled
 *** the CNTA, SPA and FLAGA/ lines will ***
 *** not function as described above. Sce
 ${ }^{* * *}$ section 2.5.6 for FAST SERIAL MODE
 *** description

