

COPYRIGHT
This software product is copyrighted and all rl 111 r erved by
Commodore EI ctronics Ltd. The distribution nn I of this
product are intended for the use of the origin I !)Ur 11 er on ly.
Lawful users of this program are hereby licen dilly l read the
program, from It med ium into memory of a compul r, lely for the
purpose of executing the program. Duplicating , pyln , lIing or
otherwise distributi ng this product is a violation f til I w.

This manual is copyrighted and all rights are reserv d. III
document may not, In whole or in part, be copied , ph t 0 pi ,
reproduced, translated or reduced to any electronic m lum
machine readable form without prior consent, in wrltln ,fr m
Commodore Electronics Ltd.

DISCLAIMER
COMMODORE ELECTRONICS LTD. ("COMMODORE") MAK N
WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH RESP C
THE PROGRAM DESCRIBED HEREIN , ITS QUALITY,
PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. THIS PROGRAM IS SOLD "AS IS". TH
ENTIRE RISK AS TO ITS QUALITY AN D PERFORMANCE IS WI H
THE BUYER. SHOULD THE PROGRAM PROVE DEFECTIVE
FOLLOWING ITS PURCHASE, THE BUYER (AN D NOT HE
CREATOR OF TH E PROGRAM, COMMODORE, THEIR
DISTRIBUTORS OR THEIR RETAILERS) ASSUMES TH E N I
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION
AND ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN NO
EVENT WILL COMMODORE BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT IN THE PROGRAM EVEN IF IT HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. SOME LAWS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF IMPLIED
WARRANTIES OR LIABILITIES FOR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY.

Your new SUPER EXPANDER 64 cartridge is a powerful ,extension of
the BASIC language. It gives you the commands needed to easily
access and implement Commodore's graphics, music, and sound
capabilities. You will be amazed at how quickly and easily you can
do the following:

• Plot points and lines

• Draw arcs, circles, ellipses, rectangles, triangles, octagons

• Paint shapes with your choice of colors

• Read game paddle, joystick, and light pen locations

• Display text or split screens to display both text and graphics

• Program your Commodore 64 function keys .

. We sincerely hope you enjoy using SUPER EXPANDER 64. Here are
several other Commodore software packages which you should
know about:

The Commodore 64 Macro Assembler Development System

This package is designed for experienced Assembly language
programmers. Everything you need to create, assemble, load, and
execute 6500 series Assembly language code is included.

Disk Bonus Pack
Cassette Bonus Pack

As an introduction to your Commodore 64, both of these packages
feature programming aids, music and video demonstration programs,
and several educational and personal programs.

Screen Editor

The Screen Editor helps you design software by letting you create
and edit your own screens. This programming tool is for users with
some computer experience.

The Word Machine and The Name Machine

This is an easy-to-Iearn and easy-to-use wordprocessing package.
Perfect for letters, address lists, memos, and notes, these programs
let you overtype, insert, and delete text; personalize form letters; and
print in draft, formal, or informal formats.

The Manager

This is a general data base for handling your files. THE MAN AGER
interfaces with wordprocessing, accumulates totals on the screen,
and creates subfiles. THE MANAGER sorts from any field and
features powerful report generating capabilities.

II

Easymail64

With EASYMAIL 64, your address files are Impl to manage. You
can now easily keep track of names/addres nd pri nt as many
mailing labels as you desire. EASYMAIL 64 h th features you
need for preparing special mailings (Le., capabilitl s for searching for
a specific category). Here are some of the EASYMAIL 64's many
features: entry, change or deletion of labels by name or label
number; printing on one or two abreast address labels; a complete
printout of all of your data; and a HELP function.

Easyscript 64

EASYSCRIPT 64 is a p w rful word processor with table producing
capabilities. This pack fa tures comprehensive printer controls
and easy document h ndllng.

"'

Preface
The SUPER EXPANDER 64 is a powerful extension of the BASIC
language in your Commodore 64 computer. Previously, you had to
Peek or Poke specific memory locations to access your computer's
graphics and sound features. Now, the SUPER EXPANDER 64
provides new BASIC commands so you can easily access the
Commodore 64's many features . Simply "plug" the SUPER
EXPANDER 64 cartridge into your computer and turn on the power.
With SUPER EXPANDER 64, you have the power to:

• Build high resolution graphic displays

• Create and animate sprites

• Create your own shapes or figures

• Draw points, lines, arcs, circles, and ellipses

• Draw polygons such as rectangles, triangles, octagons

• Combine text and high resolution graphics

• Fill shapes with your choice of colors

• Read game paddle, joystick, and light pen positions

• Create music and game sounds

• Define programmable function keys

Most BASIC programming tasks that you can do with the SUPER
EXPANDER 64, can also be done in BASIC alone. However, when
using the SUPER EXPANDER 64, your programs will generally be
more compact, run much faster, and be easier to develop. Also, the
SUPER EXPANDER 64 lets you program many tasks that simply
cannot be done using BASIC alone .

. This manual is intended for readers who already know some BASIC
programming and are familiar with the many features of the
Commodore 64. The SUPER EXPANDER 64 commands and functions
are explained and accompanied by specific program examples for
you to try. If anything in this manual is unclear, you should refer to
the Commodore 64 User's Guide and the Commodore 64
PROGRAMMER'S REFERENCE GUIDE for additional information.

We are sure you will enjoy using Commodore's SUPER EXPANDER
64 cartridge, with its many graphics and sound features. Even
readers with little "artistic" or "music" background will be able to
easily incorporate bright, colorful, animated graphics and interesting
sounds in their business, education, and game programs.

iv

User Conventions
Here is a brief discussion of certain key and symbols, and thei r
respective use in the SUPER EXPANDER 64 manual. This will also
help you to interpret the syntax of the commands and functions,
including their optional features.

RETURN To continue on with a program after a line of input,
press the RETURN key.

SHIFT To input the upper case convention of a letter, press
and hold down the SHIFT key in conjuncti on with the
desired key. Both keys should then be released at the
same time.

To represent the "Commodore" key found on the lower
left hand corner of your Commodore 64 keyboard
(beside the SHIFT key)

< > Angled brackets ind icate that the enclosed parameter is
required information. However, the parameter itself may
be of a variable nature.

[] Square brackets indicate that the enclosed parameter is
optional and may be -om itted from the comm nd ynt x.

Several consecutive periods, "ell ipses" , p clfy to
repeat the preceding optional parameter.

A command is a keyword that may stand alone or be fo llowed by one
or more parameters. Each of these parameters is separated by a
punctuation mark, such as a comma (,), semi-colon (;), number sign
(#) or space.

A function is a keyword which is immediately followed by
parentheses that enclose one or two arguments. Refer to your
Commodore 64 Programmer's Reference Guide for a further
explanation of commands and functions.

v

Command Summary
To enter GRAPHIC/TEXT mode:

GRAPHIC <mode> [,clear]

To enter Sprite Designer mode:

SPRDEF

Graphic Shape Generation and Color Selection:

Pixel Graphics and Color Selection

BOX [source] < ,X1 ,Y1 > [,[X2,Y2] [,[angle] [,fill]]]

CHAR [source] , <column,row > , < string> [,reverse]

CIRCLE [source] ,[X1,Y1] < ,X-rad > [,[Y-rad] [,[start]
[,[end] [,[angle] [,[inc]]]]]]

COLOR [bgnd] [,[fgnd] [,[mcr1] [,[mcr2] [,ext]]]]

DRAW [source] [,X1,Y1] [TO X2,Y2] ...

GSHAPE < stringname > [,[X1 ,Y1] [,method]]

LOCATE < X,Y >

PAINT [source] [,[X1 ,Y1] [,halt]]

SCALE < n >

SCNCLR

SSHAPE < stringname > , <X1 ,Y1 > [,X2,Y2]

Sprite Graphics and Programmable Collision Interrupts

COUNT < event > [,Iine-num]

MOVSPR < number > < ,X1 ,Y1 >

SPRCOL [smcr-1] [,smcr-2]

SPRITE < number > [,[on/off] [,[fgnd] [,[priority]
[,[x-exp] [,y-exp] [,mode]]]]]]

SPRSAV < orig in > , < dest ination >

vi

Built-in Functions and User Interface:

Graphic Functions

RCLR «area»

ROOT (< data>)

RGR (0)

Sprite Functions

RBUMP « event»

RSPCOL (< register>)

RSPPOS (< sprite> , < data>)

RSPR (< sprite > , < field»

Game Port 1/0 and Programmable Function Keys

KEY [< keynum, string-expr >]
RJOY (< joysti ck >)

RPEN (< data >)

RPOT « paddle »

Creating Music and Sound with the SUPER EXPANDER 64:

Setting Up for Music and Sound

FILTER [freq], [,[Iow] [,[band] [,[high] [res)]))
TEM PO < speed>
TUN E < env > , [,[atk] [,[dec) [,[sus] [,[rel] [,[form] [,[width))))))

Music Elements

Element

A,B:C,D,E,F,G,

$

W
H
Q
I
S
R

Description

Notes
Sharp
Flat
Dotted note
Whole note
Half note
Quarter note
Eighth note
Sixteenth note
Rest

Playing Your Music and Sounds

SID Control Description
I

< CTRL-F > Enable/disable music playb k (CI-:IR$())
o Octave
T TUN E envelope
U Volume
V Voice
X Filter

V II

TABLE OF CONTENTS
PREFACE ; iv

USER CONVENTIONS ; v

COMMAND SUMMARY vi

1 GETTING STARTED. 1

2 TEXT and GRAPHICS. 3

Selecting Modes 4
Selecting Colors : ... 6
Plotting Points and Lines 8
Drawing Boxes, Circles, and Polygons 11
Mixing Text with Graphics 15
Saving and Replacing Shapes 17

3 SPRITE GRAPHICS : 20

Sprite Designer Mode 21
Defining Sprite Characteri;:;tics 23
Saving Sprites 27
Animating Sprites " .' 28
Handling Sprite Collisions 30

4 GAME CONTROLS and FUNCTION KEYS 33

Game Port Input/Output 33
Programmable Function Keys 36

5 SOUND EFFECTS and MUSIC 38

Defining Sound Effects 38
Playing Your Sound Effects 41

APPENDICES : 43

Appendix I
Appendix II
Appendix III

PROGRAMMING NOTES 43
COMMAND REFERENCE GUIDE 46
SAMPLE PROGRAMS 54

v iii

Getting Started

SUPER EXPANDER 64 is a cartridge based program that adds 21
n w mmands and 11 new built-in functions to the BASIC language
In y ur C mmodore 64. Follow these easy steps to start the SUPER
EXPAN D 4 program:

• Turn 0 y ur computer (ALWAYS turn the computer power
OF wh n In rtlng or removing a cartridge.)

• Po It I n th SUP R EXPANDER 64 cartridge so that the label is
fac ing up nd th p n end is towards you.

INSERT PHOTO A

. .

l1li11 - 1 2 3 .; 5 5) 8 9 a + - £. w •••

• , aWE ~ I T U I C P ~ *) .. 1.4

:to:. ';;', A S V f G H J k I. '= il'LJI"

0< '~"I l ~ C Y B N M • , i SH ill ,~. ;:

~~ .

• Insert the SUPER EXPANDER 64 cartridge into the cartridge
expansion slot. This is located just to the left of and behind the
power light on your computer.

• Turn ON your computer.

You can now begin entering SUPER EXPANDER 64 commands
directly from the keyboard (DIRECT mode) or you can incorporate
these additional commands into your BASIC programs (PROGRAM
mode). In DIRECT mode, simply enter the commands and pr s
RETURN for immediate execution. In PROGRAM mode, th
additional SUPER EXPANDER 64 commands are entered In y r
BASIC programs using standard line numbers. Type RUN f th
program to execute.

Important Notes:

• Anytime your commands generate an unreadable display, such
as white lettering on a white background, press the RUN/STOP
and RESTORE keys simultaneously. This returns the computer
to its original state, i.e., all sprites are turned off, all sound is
stopped, and you are returned to standard text mode. The
program in memory will remain intact.

• Programs created using SUPER EXPANDER 64 commands
require that the cartridge is plugged in each time the program is
run. Otherwise, the SUPER EXPANDER 64 commands will
generate errors.

• In normal BASIC programs, keywords are reduced to Single
character "tokens" (or internal symbols) to conserve memory.
The SUPER EXPANDER 64 keywords are reduced to two
character tokens. Thus, when SUPER EXPANDER 64 commands
are used in IFITHEN statements, a colon (:) MUST appear
between the THEN and the SUPER EXPANDER 64 keyword.

• If any optional parameter is omitted on any SUPER EXPANDER
64 command, the parameter will default to the previously
specified value. This is true even if the parameter was set in a
previous program. Thus, we recommend that you do not omit
optional parameters when using any SUPER EXPANDER 64
command for the first time in a program. Also, when you do
omit a parameter in a SUPER EXPANDER 64 command, you
must use a comma as a "place holder" if any parameters after it
are explicitly stated.

2

TEXT and GRAPHICS

• Selecting Modes

• S lecting Colors

• I ttlng Points and Lines

• r win Boxes, Circles, and Polygons

xl with Graphics

• vln nd pi Ing Shapes

TEXT and GRAPHICS

In this chapter, we will d rl h w to
EXPANDER 64's graphic mod nd h w t for
drawing. Ways to plot points and lin ,dr w b x , Irc l and
regular polygons are also discussed. We will how you how 10 mix
text with your graphics displays and even define and move shapes
on the screen.

3

Selecting Modes

The SUPER EXPANDER 64 program supports four graphic modes:
Text, Multi-Color, High Resolution, and Split Screen. You can select
the mode you want by using the GRAPHIC command as shown
below:

GRAPHIC < mode > [,clear]

The required < mode> parameter is a number from 0 through 3 and
is used for selecting one of the four graphic modes. When the
optional [,clear] parameter is non-zero, the screen will be cleared to
the background color (see the section on Selecting Colors) after the
new mode is selected. The following list shows the four graphic
modes and their corresponding < mode > values:

o = Standard Text Mode
1 = Multi-Color (Bit Map) Mode
2 = High Resolution (Bit Map) Mode
3 = Split Screen Mode (Mixed High Res/Text)

Here are some examples of the GRAPHIC command:

GRAPHIC 1 Selects Multi-color Mode.

GRAPHIC 2,1 Selects High Resolution Mode and clears
the Bit-Map Screen.

100 M=3: C=1 : GRAPHIC M,C

110 REM Line 100 selects Split-Screen Mode and clears the
screen

Another way to clear the screen, without using the GRAPHIC
command, is to use the SCNCLR command. This command has the
same effect as a non-zero [,clear) parameter with the GRAPHIC
command. The SCNCLR command is used by itself, without
parameters:

100 SCNCLR Clears the Screen in any Mode.

4

The RGR (0) function tells you which gr pil i In I you last selected
by returning a number from 0 through 3. R () Iud exactly as
shown here. The number that is returned c rr p nd to the
< mode> value used in the GRAPHIC comm nd. H r are some
examples:

20 GRAPHIC 3: PRINT RGR (0): END
30 REM LINE 20 PRINTS A "3" WHEN RUN

100 IF RGR (0) > 0 THEN: GRAPHIC 0,1
110 PRINT "SWITCH TO TEXT MODE"

~"'I

The following is a brief description of each of the GRAPHIC modes
and their different characteristics (refer to the Commodore 64
PROGRAMMER'S REFERENCE GUIDE for a more detailed
discussion):

Standard Text Mode

Your computer is in Standard Text mode when you turn the power
ON. In text mode, a maximum of 1000 characters can be displayed
(25 lines of 40 characters each). Each character consists of an 8 by 8
dot region and may be anyone of the 16 available colors.

High Resolution Mode

High Resolution mode is for creating graphics with the highest
degree of precision and detail. In this mode, the screen is treated as
a grid with 320 horizontal dots by 200 vertical dots. Therefore, your
designs appear very sharp and crisp. Each 8 by 8 dot region of the
screen (these regions correspond to text character locations) may
have your choice of any two colors (Foreground and Background).

Multi-Color Mode

With Multi-Color mode, horizontal resolution is sacrificed for the
ability to use more colors. The screen has 160 horizontal dots by 200
vertical dots. Each Multi-Color horizontal dot is twice as wide as
each High Resolution horizontal dot. Multi-Color mode lets you
display up to four different colors in each 8 by 8 dot region. The four
colors you can set are Background, Foreground, Multi-Color 1 and
Multi-Color 2.

Split Screen Mode

The Split Screen mode mixes both the High Resolution and Standard
Text modes. In Split Screen mode, the top part of the screen is a 320
dot horizontal by 160 dot vertical High Resolution bit map. The
bottom part of the screen is a "window" where you can display five
(5) lines of Standard Text.

See the photographs on the back of this manual and Appendi x III
SAMPLE PROGRAMS for more examples of the GRAPHIC m des.

5

Selecting Colors

On your Commodore 64, you can independently set the Background,
Border, and Foreground areas to any of the 16 colors. You may also
set two multi-color "registers", though you will not see the effects of
this unless you are using Multi-Color GRAPHIC mode. With the
SUPER EXPANDER 64, you can use the COLOR command to select
your choice of colors for these areas or "color sources". The syntax
for the COLOR command is as follows:

COLOR [bgnd) [,[fgnd) [,[mcr1) [,[mcr2) [,ext))))

The [bgnd) parameter specifies the Background color. The [fgnd)
parameter specifies the Foreground color which is the color of the
letters in text mode and most shapes drawn in High Resolution
mode. The [mcr1) and [mcr2) parameters are the Multi-Color registers
which are only viewable in Multi-Color mode. The [,ext) parameter
specifies the Exterior Border color.

You can use any of the sixteen available colors on your Commodore
64 for any of the five parameters of the COLOR command. We will
later refer to each of these parameters as "color sources". To select
a color source for an area, simply specify its "color code" number in
the appropriate position of the COLOR command. Here is a list of
the colors and their corresponding color codes:

COLOR CODE COLOR
Black 0 Orange
White 1 Brown
Red 2 Light Red
Cyan 3 Dark Grey
Purple 4 Medium Grey
Green 5 Light Green
Blue 6 Light Blue
Yellow 7 Light Grey

CODE
8
9

10
11
12
13
14
15

Remember to use a comma as a position holder for fields which are
omitted (these remain the same color as previously set). For
example, to specify a black background, white lettering, and a light
grey exterior border, use a COLOR command as follows:

COLOR 0,1" ,15 Sets Background color to black,
Foreground to white, and Border to light
grey. This does not change the color of
Multi-Color1 or Multi-Color2.

COLOR, , , ,3 Sets Border (only) to Cyan.
Other areas remain as previously set.

Notice that changing the Background color has no immediate effect
unless you are in TEXT mode. In any GRAPHIC mode, the newly
selected Background color is seen once you begin drawing or after a
SCNCLR command.

6

See the photographs on the back of thl m nu I and Appendix III
SAMPLE PROGRAMS for more example of th COLOR command.

To check what colors you last set, use the RCLfunction. The
syntax for this function is as follows:

RCLR « area»

The < area> argument is a number 0 through 4 that corresponds to
one of the five areas of the screen whose colors are set by the
COLOR command. For example, if < area> is 0, then RCLR will
return the color code (a number 0 through 15) that was last specified
for the background area of the screen.

Here is how to examine each of the screen color registers:

RCLR (0) Returns Background color code
RCLR (1) Returns Foreground color code
RCLR (2) Returns Multi-Color1 color code
RCLR (3) Returns Multi-Color2 color code
RCLR (4) Returns Exterior Border color code

Here is a sample program you c:_an RUN to see how RCLR works:

10 COLOR 0,7,2,3,4
20 FOR C = 0 TO 4
30 PRINT RCLR (C)
40 NEXT C

7

Plotting Points and Lines

Before you are ready to start drawing, there is an important concept
that you should understand: the Pixel Cursor (PC). A pixel
corresponds to a.dot location on the screen. The pixel cursor is
similar to the flashing cursor you see in Text mode which indicates
where the next character will be displayed.

Although invisible, the pixel cursor indicates where the next dot will
be placed in a High Resolution or Multi-Color bit map screen. In
SUPER EXPANDER 64 commands where optional coordinates are
omitted, the pixel cursor is also used as the default coordinate.
Specific examples of how the PC is used as a default coordinate will
be included in the following command discussions.

The LOCATE command lets you place the PC anywhere on the
screen. The results of the LOCATE command will not be seen until
you actually draw something.

The syntax for the LOCATE command is:

LOCATE < X,Y >

The "X" part of the required < X,Y > parameter represents the
horizontal distance across the screen in dot positions. When "X"
equals 0, the PC is at 'the left edge of the screen. The "Y" part of the
< X,Y > parameter represents the vertical distance down the screen
in dot positions. When "Y" equals 0, the PC is at the top edge of the
screen. In SUPER EXPANDER 64 commands, if an optional X-Y
coordinate is omitted, the current PC location is used as a default
location. As each of the SUPER EXPANDER 64 commands is
discussed, we will specify which X-Y coordinates are optional.

The X and Y Coordinates can be specified as either absolute values
or as an offset from the current PC location. By preceding the X or Y
value with either a plus sign or minus sign (+, -), the PC is moved
j n either a positive or negative direction relative to its current
location. A plus sign before the X value moves the PC to the right
and a minus sign moves the PC to the left. Likewise, a plus sign
before the Y value moves the PC downward from its current location
and a minus sign moves the PC upward. Anywhere that you explicitly
state an X or Y coordinate in SUPER EXPANDER 64 commands, you
can use either absolute values or a relative offset.

8

Here are some examples of the LOCA

10 LOCATE 0,0 Places PC t tI'I
the screen

50 LOCATE 160,100 Places PC t th
the High R

80

ft corner of

In these examples, the new PC locations wer Iv n s either an
absolute X,Y coordinate or a relative offset. In thl nd other SUPER
EXPANDER 64 commands, an alternate way to expr the new
location can be used. In the LOCATE command, a with several
other commands that draw, you can specify a distance and angle
relative to the current PC location by using a semi-colon In the place
of the comma. For example:

LOCATE 50;45

The PC is moved from its current location by a di:?,tance of 50 dot
positions at an angle of 45 degrees.

Other SUPER EXPANDER 64 commands such as DRAW, BOX,
CIRCLE, etc., can also change the PC location. You can find out
where the PC is at any time by using the RDOT function. RDOT will
give you the X or Y coordinate, or the color source for the pixel at the
current PC location. Here is the syntax for the RDOT command:

RDOT «data»

When the < data> argument is 0, the X-coordinate of the PC
location is returned ; when the < data> argument has a value of 1,
the V-coordinate of the PC location is returned; and when the
< data> argument has a value of 2, a number from 0 through 3 is
returned. This number represents the color source (as described in
the COLOR command) for the dot at the current PC location and is
shown in the following table:

o = Background
1 = Foreground
2 = Multi-Color1
3 = Multi-Color2

The value of the color sources returned by RDOT (2) corresponds to
the positions of the parameter fields in the COLOR command. Here
are some examples using the RDOT function :

10 X = RDOT (0) The horizontal position of the PC is put into
variable 'X'. .

20 B= 1: PRINT RDOT (B) Prints the vertical position o f
the PC.

30 LOCATE X,Y: CT= RDOT (2) Identifies the color sourc
for the dot at location X,Y.

9

You are now ready to use the DRAW command to draw simple,
straight lines on the screen. The syntax for the DRAW command is
as follows:

DRAW [source] [,X1 ,Y1] [TO X2,Y2] ...

In the DRAW command, [source] is the color source for the line to be
drawn and can have values from 0 through 3, corresponding to the
preceding RDOT table. If [source] is omitted, the Foreground color
source is used for drawing. Drawing begins at the [,X1,Y1] position. If
this parameter is omitted, drawing begins at the current PC location.
The line is drawn to [X2,Y2] if given; otherwise, a single dot is drawn
at [,X1,Y1]. Drawing a line changes the PC location to the last point
plotted on the line.

You can use absolute coordinate values or relative offsets for either
set of X-V locations. Also, you can use an alternate form of the
DRAW command which lets you draw a line from the current PC at a
given angle and distance (simply use a semi-colon to replace the
comma). For example:

DRAW [source] [, <dist >; < angle>] [TO < dist >;< angle> I ...
The line will be drawn for the given distance (in dot positions), at the
specified angle (in degrees, where 0 degrees is straight up) from the
current PC location. Both the distance and angle parameters must be
specified.

Here are some sample DRAW commands (be sure to specify
GRAPHIC 2,1, before trying these examples):

DRAW 1,100,50 Draws a dot in Foreground color.

DRAW TO 200, 100 The PC is used to start the line at
100,150.

DRAW ,10,10 TO 100,60

DRAW 3 TO - 20, + 40 Uses relative offset for X2,Y2.

DRAW 2 TO 25; 30 The line is 25 dots long, at 30
degrees from the current PC.

DRAW ,10,10 TO 10,60 TO 100,60 TO 10,10

DRAW 0,100,50 Erases the dot drawn by the first
example.

See the photographs on the back of this manual and Appendix III
SAMPLE PROGRAMS for more examples of the DRAW command.

10

Drawing Box s, Circles, and Polygons

The BOX mmand lets you draw a rectangl nywh re on the
screen. TI1 rectangle can be any size or pro rtl on. Special features
of the BOX command let you rotate the rectang l l ny ang le or
automatl lIy fi ll the box with color. The synt x r r th BOX
command Is:

BOX [source] < ,X1,Y1 > [, [X2,Y2] [, [angl 1 [,(1 11) 11
In this syntax example, any of the parameters [X2,Y2)
[,fill] may be omitted. However, you must be sur t u
place holders if any parameters follow the ones y u I

The [source] is the color source for the rectangl e. If [urce] is
omitted, the Foreground color source is used. The OX I drawn
starting from [X2,Y2] if given (otherwise, from the current PC
location), and drawn to the required < ,X1,Y1 > location. The final
position of the PC will be at [X2,Y2] if the [angle] param t r Is
omitted or zero. The [angle] and [,fill] parameters are both optional.
The [angle] parameter specifies clockwise degrees of rotation about
the center of the rectangle. If the [,fill] parameter is non-zero, the box
will be filled with the same color as the outline of the box (source
color).

Here are some samples of the BOX command (be sure to specify
GRAPHIC 2,1 before trying these examples):

BOX 1,10,10,60,60 Draws a square.

BOX 1, + 80, + 40 This box uses relative offset from
current PC value.

BOX ,10,10,60,60,45,1 Rotates the square and fills it with
color.

BOX 1,0,0,319,199 This draws a box around the Hi-Res
screen, just inside the border.

BOX 1,30;45",1 Distance and angle from PC locates the
opposite corner.

As you can see in the last example, BOX is another command you
can alter to specify a distance and angle by simply using a semi
colon in place of a comma. The current PC location is used as the
starting point to draw a rectangle. Then, the diagonally opposite
corner is located by moving the PC for a distance of 30 at an angle of
45 degrees. This point is then used as the < X1,Y1 > coordinate.

With the SUPER EXPANDER 64 CIRCLE command, you can draw
arcs, circles, ellipses, and even triangles and other polygons. The
syntax for the CIRCLE command is as follows:

CIRCLE [source] ,[X1,Y1L< ,X-rad > [,[Y-rad] [,[start] [,[end]
[,[angle] [,[inc]]]]]]

11

The [source] is the color source for the circle. The origin (or center)
of the circle is loc~ted at [X1 ,Y1] (if omitted, the current PC is used).
As with preceding commands, you can use absolute values, relative
offsets, or distance and angle for the [X1 ,Y11 parameter in the
CIRCLE command. The < ,X-rad > parameter is required and
specifies the horizontal radius of the circle in dot positions. The
optional [Y-rad] parameter specifies the vertical radius of the circle in
dot positions (if omitted, the < X-rad > value is used).

The optional [start] and [end] parameters define the starting and
ending points of an arc on the circumference of the circle. The
default values for [start] and [end] are ° and 360 respectively. These
points are given in degrees (where ° is straight up, 90 is right, 180 is
down, etc.). The [angle] parameter specifies the clockwise degrees of
rotation about the center of the circle. The default value for [angle] is ° (Le., no rotation).

The final PC location will be on the circumference of the circle at the
[end] arc angle. Because of the difference between the number of
horizontal and vertical dots on the screen, setting the X radius equal
to the Y radius will draw an ellipse, ratherthan a circle. To draw a
circle, the scaling of the radius values should be near the ratio of
horizontal to vertical dots on the screen. This ratio will depend on
the graphic mode you are using. More information will be presented
on X-Y coordinate ratios in our discussion of the SCALE command.

The SUPER EXPANDER 64 actually draws circles by plotting a series
of straight lines. This is done by calculating the next point on the
circumference of the circle and then drawing a straight line from the
last plotted point. The [,inc] parameter, increment value, specifies
how many degrees around the circle (clockwise) the PC is moved
before drawing the next line. The default value for the increment is 2
degrees. As the increment value becomes larger, the outline of the
circle becomes coarser, until a point is reached where the circle
appears as a regular polygon.

Here is a set of examples which illustrate the CIRCLE command (be
sure to specify GRAPHIC 2,1 before trying these samples):

CIRCLE 1,160,100,100,75 Circle

CIRCLE 1,160,100,65,10 Ellipse

CIRCLE 1,160,100,65,10, , ,45 Rotated Ellipse

CIRCLE ,60,40,20,18, , , ,45 Octagon

CIRCLE ,260,40,20, , " ,90 Diamond

CIRCLE ,60,140,20,18", ,120 Triangle

The PAINT command lets you fill an outlined area with color. The
syntax for PAINT is as follows:

PAINT [source] [,[X1 ,Y1] [,halt]]

12

The [sour J p If ies the color source to Int with (Background
Foreground, Multl-Color1, Multi-Color2). P Inth! wil l begin at the
current PC I tlon or at [X1 ,Y1] if specifl d. Yu an state the
[X1 ,Y1] co rain t as absolute values, relatlvrr ts, or distance
and angle.

Painting ntlnues around the [X1,Y1] locatl n until an outli ne is
encount r d. he [,halt] parameter specifies wI! t type of outline will
stop the PAINT. If [,hal t] is 0, PAINT will fill to n utl lne of the same
color sour used in the PAINT command. If [,/1 It] Is 1, PAINT will
fill to any F r grou nd or Multi-Color outline.

The final PC I cation will be at [X1 ,Y1] when palntln I completed. If
the [X1,Y1] rdinate lies on a dot of the same c I r ource as used
with the PAINT command, then no painting is don . h first
example Iliu trates this:

CIRCLE 1,160,100,65,50: PAINT 1

In the examples below, lines 10 through 30 are execut d prior to the
PAINT commands:

10 COLOR 1,11 : GRAPHIC 1,1
20 CIRCLE 1,80,100,50,40
30 CIRCLE 2,100,100,50,40
50 PAINT 1,1 10,100,1
60 PAINT 2,1 10,100,0
70 PAINT 0,1 10,100

Line 50 will fill the overlapping portions of the two circl es with the
current foreground color. Line 60 will fill all of the Multi-Color ci rcle
drawn by line 30. Using a color source value of 0 (Background color)
effectively erases an area and its outline, as shown by line 70.

Up until now, our programming examples have been using X and Y
coordinates that are the same as the X and Y coordinates recognized
by the video contro ller chip in your computer. In addition to this
"standard" coordinate system, the SUPER EXPANDER 64 provides
an alternate scale for X and Y coordinates. You can switch from one
scale to the other, by using the SCALE command. The syntax for the
SCALE command is:

SCALE < n>

When < n > is 0, THE SUPER EXPANDER 64 uses the standard
coordinate system. In SCALE 0, the X-V coordinates for the screen
boundaries depend on the particular GRAPHIC mode you are using.

13

When < n > is 1, the SUPER EXPANDER 64's special coord inate
system is used. In SCALE 1, both X and Y coordinates range from 0
through 1023, regardless of which GRAPHIC mode you have
selected. Here is a table showing the screen boundary coordinates
for each of the Bit Map GRAPHIC modes in both scales:

Scale Mode X·Coord. Y·Coord.

o Multi-Color (GRAPHIC 1) 0 thru 159 0 thru 199
o High Resolution (GRAPHIC 2) 0 thru 319 0 thru 199
o Split Screen (GRAPHIC 3) 0 thru 319 0 thru 159
1 All GRAPHIC Modes 0 thru 1023 0 thru 1023

You can see from the preceding table that many programming tasks
can be made easier using SCALE 1 since it gives you the same X
and Y coordinates for all GRAPHIC modes. Here is an example using
both scales in a program:

10 COLOR 1,9" ,12: GRAPHIC 2,1
20 SCALE 0: CIRCLE 1,160,100,50,40
30 SCALE 1: COLOR ,6: CIRCLE 1,512,512,140,280
40 GOTO 40

This program draws a brown circle on the screen using SCALE 0,
then draws a blue circle just inside the first one, using SCALE 1. The
origin for both circles is the exact center of the screen.

You can see from the table of screen boundary coordinates that the
ranges of X-V coordinate values assume definite ratios to each other.
These ratios vary depending on the particular graphic mode you are
using.

Here is a table which shows the ratios of X-V coordinate values from
each of the Graphic modes. You can use these ratios in your
programs to draw "true" circles, squares, etc. These ratios will make
the proportions of the shapes you draw accurate, even though they
may not appear "perfect" due to differences in video monitors.

Mode To Calculate X To Calculate Y

Multi-Color (GRAPHIC 1) .8 * Y 1.25 * Y
High Resolution (GRAPHIC 2) 1.6 * Y .625 * X
Split Screen (GRAPHIC 3) 1.6 * Y .625 * X

See the photographs on the back of this manual and Appendix III
SAMPLE PROGRAMS for more examples of the BOX, CIRCLE,
PAINT, and SCALE commands.

14

Mixing Text with Graphics

In this section, we will discuss the CHAR mm nd which lets you
mix text (upper case and graphics charact r nly) with your Multi-
Color and High Resolution Bit Map displays. In ntrast with the
PRINT command which can be used only in t nd rd Text mode or
on the bottom five lines in Split Screen mode, th CHAR command
can display text anywhere on the screen, in any mode.

The syntax for the CHAR command is:

CHAR [source] ,< column,row >, < string [,r verse]

The [source] is the color source for the text. In High R solut ion and
Split Screen modes, only [source] values of 0 or 1 h v any meaning.
Using a [source] value of 0 (Background), you can " r e " text that
you previously put on the screen. Using a [source) v lu of 1 will
display text in the current Foreground color.

The < column, row > parameters are required. The column> can
range from 0 through 39, with column 0 being the leftmost side of
the screen. The < row > can range from 0 through 24, with row 0
being the top line of the screen. These parameter ranges correspond
with the 40 by 25 screen size in Standard Text mode.

For the '(string> parameter, you can use a literal string inside
double quote marks ("string") or the name of a string variable in your
program. Just as with the PRINT statement, if your CHAR text string
overflows the current character row on the screen, it will
automatically be continued on the next row, starting in the first
col4mn.

The [,reverse] parameter can have a value of 0 or 1, and provides for
displaying reverse video characters. The effects of the reverse
parameter depend on tile graphic mode you are using. In Standard
Text mode, the [,reverse] parameter is ignored, and the CHAR string
is displayed exactly as it would be seen using PRINT. This includes
acting on (instead of printing) control characters for color selection,
cursor movement, and reverse field.

In High Resolution or Split Screen modes, if the [,reverse] parameter
has a value of 0, text will be displayed normally. If [,reverse] has a
value of 1, the entire CHAR string is displayed in reverse video. In
these modes (and in Multi-Color mode), control characters in the
string are ignored as "controls" and will be printed.

In Multi-Color mode, the effects of the [,reverse] parameter depend
on the value of the [source] parameter. When [source] is 1, 2, or 3 and
the [,reverse] parameter is zero, text is displayed normally; and when
[,reverse] is 1, text is displayed in reverse video. In either case, the
selected color source is used.

15

In Multi-Color mode, when [source] is zero, text will always be
displayed in Foreground color, instead of the Background color
which would be used in other modes. In addition, when [,reverse] is
also 0, the text characters will be displayed with a Background of
Multi-Color1; and when [,reverse] is 1, the characters will be
displayed with a Background of Multi-Color2.

Here is a chart of how the values of [source] and [,reverse] affect how
CHAR will display text in Multi-Color mode.

Source Reverse Description of Text Displayed

1,2,3 0 Normal video in selected color source

1,2,3 1 Reverse video in selected color source

0 0 Dot pattern of text is Foreground,
background is Multi-Color1

0 1 Dot pattern or text is Foreground,
background is Multi-Color2

To illustrate the preceding descriptions of CHAR, here is a sample
program that shows the effects of the [source] and [,reverse]
parameter values in both High-Resolution and Multi-Color modes:

10 COLOR 1,0,6,9,15: GRAPHIC 2,1
20 CHAR 0,1, 1,"SOURCE = 0 REVERSE = 0" ,0
30 CHAR 0,1, 3,"SOURCE = 0 REVERSE = 1",1
40 CHAR 1,1, 5,"SOURCE = 1 REVERSE = 0" ,0
50 CHAR 1,1 , 7,"SOURCE = 1 REVERSE = 1",1
60 CHAR 2,1, 9,"SOURCE = 2 REVERSE = 0",0
70 CHAR 2,1,11,"SOURCE = 2 REVERSE = 1",1
80 CHAR 3,1,13,"SOURCE = 3 REVERSE = 0",0
90 CHAR 3,1,15,"SOURCE = 3 REVERSE = 1",1

100 GET A$: IF A$ = " " THEN 100
110 IF RGR (0) = 2 THEN: GRAPHIC 1,1: GOTO 20
120 STOP

The program will first display several lines of text in High Resolut ion
mode, then wait for you to press any key. The program will then
change to Multi-Color mode and display the same text again. All
possible combinations of the [source] and [,reverse] parameters are
included in this program.

You can use CHAR with a color source of 0 (Background) to erase
normal or reverse video of text with a color source of 1 (Foreground);
or, to put text into an area which was painted or filled with a BOX
command (in Foreground color). For more examples of the CHAR
command, see the photographs on the back of this manual and
Appendix III SAMPLE PROGRAMS.

16

Saving and Replacing Shapes

A powerful feature of the SUPER EXPANDER
transfer graphic shapes from the screen into A IC string variables
or vice versa (from strings onto the screen). Th SHAPE command
is used to transfer a rectangular area of a Bit M creen (Multi-
Color, High Resolution, or Split Screen mode) Int BASIC string
variable.

The syntax for the SSHAPE command is as follow

SSHAPE < stringname >, < X1,Y1 > [,X2,Y2]

The < string name > is the name of the BASIC string variable to
receive the shape data. Similar to the BOX command, the optional
[,X2,Y2] parameter defines the starting point for saving the shape. If
[,X2,Y2] is omitted, the current PC location is used. The requ ired
< X1,Y1 > parameter locates the diagonally opposite corner of the
rectangular area to be saved. The SSHAPE command does not affect
the location of the PC.

Because BASIC limits string lengths to a maximum of 255
characters, the size of the area you can save with SSHAPE is limited.
You can calculate the size of the string needed to store a given
shape by using one of the following formulas (these formulas
assume that SCALE 0 is being used):

For Multi-Color Mode, String Size Equals:

INT ((ABS (X1- X2)+ 1) /4+ .99) * (ABS (Y1- Y2)+ 1)+ 4

For High Resolution or Split Screen Modes, String Size Equals:

INT ((ABS (X1- X2)+ 1) /8+ .99) * (ABS (Y1- Y2)+ 1)+ 4

If you are using SSHAPE in SCALE 1, divide the difference of
"X1 - X2" by 3.2 and divide the difference of "Y1 - Y2" by 5.12. Then,
substitute these results for the respective subtract operations in
either of the preceding formulas. For example, if you are using
SSHAPE in SCALE 1, you can determine the string size for High
Resolution or split screen mode with the following steps:

A = INT (ABS(X1 - X2)/3.2 + 1)
B = INT(ABS(Y1-Y2)/5.12+1)
SIZE = INT (Al8 + .99)* B + 4

17

The shape is transferred into the string, pixel row by pixel row. The
last four bytes of the string will contain the column and row lengths.
These are used by the GSHAPE command to put strings back onto
the screen. Here are some examples to illustrate the SSHAPE
command:

SSHAPE A$,O,O,SO,SO This saves an area at the upper
left corner of the screen

SCALE 0: SSHAPE B$,-40,-20,200,120 This saves an
area near the
center of the
screen

SCALE 1: SSHAPE D$(6),S12,S12,640,SeO This saves an
area near the
center of the
screen

SSHAPE K$,480,480 Saves from the PC to 480,480

The GSHAPE command is the opposite of SSHAPE. It places the
contents of a string variable onto a Bit Map screen display. The
syntax for the GSHAPE command is:

GSHAPE < string name > [, [X1,Y1] [,method]]

The < stringname > is the name of a BASIC string variable which is
used as the source for drawing the shape on the screen. The
optional [X1,Y1] parameter locates the upper left corner of the shape
as it is drawn on the screen. If [X1 ,Y1] is omitted, the current PC
location is used. The optional [,method] parameter specifies how the
shape will be drawn on the screen. The GSHAPE command does not
change the PC location.

The [,method] parameter allows you to place the shape in any of five
different ways, combining shape data from the string with images
already on the screen. This parameter can have a value from °
through 4. Here is a table showing the values and their
corresponding methods of placement; then each method is
discussed in more detail:

° 1
2
3
4

AS IS:

Draw shape AS IS
Draw shape INVERTED
'OR' shape with screen
'AND' shape with screen
'XOR' shape with screen

Draws the shape AS SAVED, overlaying the present
display. The string shape replaces what had formerly
been displayed.

INVERTED: Draws the shape as saved, changing the Foreground
color areas of the string to Background color and vice
versa.

18

'OR': Performs alogical OR of shape data in the string with
the image data on the screen. This effectively "adds"
the shape in the string to the screen. The result is that
both shapes are merged together and all parts of both
are displayed.

'AND': Performs a logical AND of shape data in the string
with the image data on the screen. This effectively
"erases" the parts of the two shapes that do not
coincide. The result is that only the points where the
two shapes coincided are displayed.

'XOR': Performs a logical XOR (Exclusive OR) of shape data in
the string with the image data on the screen. The
result is that only those portions of the two shapes
that were different are now displayed.

These descriptions of the [,method] parameter apply to high
resolution images. In Multi-Color mode, the effects of inversion and
logical operations on the shapes may instead be a change of color.
This depends on the color sources used for the two shapes since
Multi-Color dots on the screen are two bits wide.

Here is an example of GSHAPE and SSHAPE:

10 SCNCLR
20 GRAPHIC 2,1:SCALE 1:COLOR 6,14",6
30 CIRCLE ,530,530,18,18
40 PAINT 1 ,530,530,0
50 SSHAPE D$,512,512,640,580: REM SAVE COLORED CIRCLE
60 FOR I = 0 TO 1000: NEXT I
70 SCNCLR: FOR I = 0 TO 100Q: NEXT I
80 <3SHAPE D$,512,512: REM RESTORE COLORED CIRCLE

In addition to saving and restoring shapes to and from the screen,
you can use GSHAPE and SSHAPE with SPRSAV (a sprite shape
handling command) to transfer graphic shapes to sprites; or, from
sprites to the screen. We will discuss this idea in greater detail in the
chapter on Sprite Graphics.

To see a colorful illustration of the SSHAPE and GSHAPE
commands, turn to the photographs on the back cover of this
manual. To see the program listing which created this picture, turn to
Appendix III SAMPLE PROGRAMS Listing 5.

19

SPRITE GRAPHICS

Sprite Graphics

• Sprite Designer Mode

• Defining Sprite Characteristics

• Saving Sprites

• Animating Sprites

• Handling Sprite Collisions

One of the most interesting features of the Commodore 64 is its
ability to display movable objects called "sprites". Sprites are
graphic images that you define and place anywhere on or off the
screen. Sprites are especially suited for video graphics and arcade
type animation. You can display up to eight sprites on the screen at
any given time. You can define each sprite as either a High
Resolution or Multi-Color shape and can expand each in the X and/or
Y directions.

Also, sprites can be combined with each other to create large and
colorful graphic images. Each sprite can be assigned a "display
priority" which makes it appear to move in front of or behind images
in your Bit Map graphics display. This feature lets you create a three
dimensional graphics effect. The SUPER EXPANDER 64 can even
detect when any sprite bumps into or "collides with" another sprite I
or a shape in your Bit Map display. . 1

20

Sprite Designer Mode

The SUPER EXPANDER 64 features a Sprite Designer Mode which
makes it very easy for you to design and build prite images. You
can enter the Sprite Designer from either Direct Mode or from your
BASIC program. While you are using the Sprite Designer, execution
of your BASIC program is suspended; and several keyboard
"function controls" for sprite design are provided by the SUPER
EXPANDER 64. To enter the Sprite Designer Mode, use the SPRDEF
command. This command has no parameters.

When you first enter the Sprite Designer, the screen is cleared and a
large area for designing a sprite appears on the left portion of the
screen. Just below this area, the prompt "SPRITE NUMBER?" is
displayed. You should enter a number 0 through 7 which
corresponds to the sprite you wish to define or modify. (Note, you do
not have to press RETURN after the sprite number.) The current
definition of the selected sprite is then displayed in the large design
area, and also in its actual size on the right side of the screen.

At the top left corner of the design area, you will see a cursor that is
either a single or double plus sign (+, + +) for High Resolution or
Multi-Color sprites respectively. You can use your cursor control
keys to move the cursor within the design area. The HOME key
places the cursor at the upper left corner of the design area. The
CLR key erases the design area to Background color and also places
the cursor at the upper left corner.

There are four keys that are used as special "function controls" to
make designing sprites more convenient. They are the "A, M, X, and
Y" keys. Each of these keys "toggles" a specific function ON or OFF
each time the key is pressed. These function keys are listed below:

KEY FUNCTION

A Automatic cursor movement
M Toggles sprite display mode
X Toggles sprite X expansion
Y Toggles sprite Y expansion

While the Automatic Cursor function (A) is ON, when you fill a dot in
the sprite design with color, the cursor is automatically moved to the
next position. When this function is OFF, you must use the cursor
control keys.

Each time the 'M' key is pressed, it toggles the "actual size" sprite,
located at the right of the screen, from High Resolution to Multi
Color mode or vice versa. Also, the image displayed in the design
area will change accordingly.

The 'X' key expands or reduces the horizontal size of the sprite each
time the key is pressed. Similarly, the 'Y' key expands or reduces the
vertical size of the sprite each time the key is pressed.

21

You can set the Foreground color of the sprite by using your
Commodore 64's color control keys in the usual way. Pressing the
CTRL key with a number key (1-8) selects color codes 0 through 7.

Pressing the Commodore key ([?J) with a number key (1-8),
selects color codes 8 through 15. This setting of Foreground color
for the sprite is a temporary convenience for viewing the sprite while
you are defining its shape. The SPRITE command (described later in
this chapter is used to "permanently" set Sprite Foreground colors
in your programs.

The Foreground color for sprites is defined separately and
independently from the Bit Map for Text Foreground color. The same
is true of multi-color selection for sprites. However, the Multi-Color1
and Multi-Color2 sprite colors can be set only outside the sprite
designer using the SPRCOL command (described later in this
chapter). Thus, if you will be designing multi-color sprites, you
should use the SPRCOL command before entering the Sprite
Designer.

When you are ready to begin filling the design area with color, the
number keys 1 through 4 are used to select a color source for each
dot in the design area. The following list shows these numbers and
their associated color sources:

KEY COLOR SOURCE

1 Screen Background color
2 Sprite Foreground color
3 Sprite Multi-Color1
4 Sprite Multi-Color2

Finally, when you have finished designing a sprite and want to
preserve it for later use, simply press and hold the SHIFT key while
you strike the RETURN key. Pressing the STOP key by itself cancels
all of the changes that you have made to the design area of the
screen, but the current definition of the sprite is left intact.

Whether the sprite is saved or not, the Sprite Designer returns to the
"SPRITE NUMBER?" prompt. At this point, you can either enter a
sprite number to continue defining sprites, or exit the Sprite
Designer by pressing the RETURN key. If you had used the SPRDEF
command in a BASIC program, and exit the Sprite Designer, the
SUPER EXPANDER 64 will resume execution of your program.

22

Defining Sprite Characteristics

After you have defined your sprite images, and fore using them in
your programs, you must next define their dlspl y characteristics:
colors, sizes, display priorities, and mode. Th SPRCOL and SPRITE
commands let you choose each of these charact ri stics for your
sprites.

The SPRCOL command sets the Multi-Color1 and Mult i-Color2 colors
for all sprites. If you will be using the Sprite De i n r to create Multi
Color mode sprites, you should use the SPRCOL command first;
otherwise,the design area and the "sample sprite" may not be
properly viewable.

These Multi-Color colors for sprites should not be confused with the
Multi-Color1 and Multi-Color2 Bit Map colors as set by the COLOR
command. The Sprite Multi-Color colors are separat Iy defined by
the SPRCOL command.

The syntax of the SPRCOL command is:

SPRCOL [smcr-1] [,smcr-2]

The [smcr-1] parameter sets Multi-Color1 for all sprites, and [,smcr-2]
sets Multi-Color2 for all sprites. Either of these parameters may be
any color code from 0 through 15, corresponding to the table shown
for the COLOR command. If either color parameter is omitted, its
current color value is left unchanged. Only sprites wh ich are set to
Multi-Color mode by the SPRITE command will display either of
these colors. Here are some examples of setting sprite Multi-Color
colors:

10 MA=2: MB=7: SPRCOL MA, MB: REM
SET SPRITE MULTI-COLOR1 TO
RED AND MULTI-COLOR 2 TO YELLOW

150 SPRCOL ,6: REM
LEAVES MULTI-COLOR1 UNCHANGED

To check what sprite Multi-Color values you last set, use the
RSPCOL function. This function returns the current color code value
for the sprite Mult i-Color " registers" . The syntax of the RSPCOL
function is:

RSPCOL « register »

23

The < register> argument may have a value of 0 or 1. When
< register> is 0, RSPCOL returns the Sprite Multi-Color1 color code
as a number from 0 through 15. Similarly, when ,< register> is 1,
RSPCOL returns the color code for Sprite Multi-Color2. Here are
some examples of how to use the RSPCOL function:

200 PRINT RSPCOL (0), RSPCOL (1): REM
PRINTS THE VALUES OF BOTH SPRITE
MULTI-COLORS

300 IF RSPCOL (0)= 6 THEN: SPRCOL 4: REM
SETS SPRITE MULTI-COLOR1 TO PURPLE,
IF IT IS NOW BLUE

For each of your sprites, you can use the SPRITE command to set
certain characteristics. This includes turning sprites ON or OFF and
setting a mode, Foreground color, and display priority. With the
SPRITE command, you can also change the horizontal and/or vertical
size of each sprite. Any parameters that you omit, will leave those
characteristics unchanged from their last settings. The SPRITE
command syntax is:

SPRITE < number> [, [on/off] [, [fgnd] [, [priority] [, [x-exp]
[, [y-exp] [,mode]]]]]]

The required < number> parameter specifies which sprite the
command refers to and its value must range from 0 through 7. The
[on/off] field determines whether the sprite is displayed or not. When
the value of this field is 1, the sprite is displayed (ON); and when this
field is 0, the sprite is turned OFF. The [fgnd] parameter sets the
Foreground color of the given sprite to a color code from 0 through
15.

The [priority] field gives the sprite a "display priority" that causes it
to "appear" as if it moves in front of or behind your Bit Map display
when you set the sprite in motion. If the [priority] value is 1, the
sprite will appear "behind" the Bit Map display. This sets the sprite
to "Low" priority. If the [priority] value is 0, the sprite wil appear "in
front of" the display, setting the sprite to "High" priority. This is how
you can create a three dimensional effect for your animated color
graphics. With respect to each other, sprite priority is fixed with the
lower numbered sprites being displayed in front of higher numbered
sprites. Sprite 0 has the highest priority and sprite 7 has the lowest
priority.

The sprite expansion parameters, [x-exp] and [y-exp], let you
independently expand a sprite to twice its size in either or both the
X-Y directions, or reduce the sprite to normal size. When the [x-exp]
field is 1, the sprite becomes twice as large in the horizontal (X)
direction; and when the [x-exp] field is 0, the sprite is displayed at
normal width. Similarly, when the [y-exp] field is 1, the sprite
becomes twice as large in the vertical (Y) direction; and when the

24

[y-exp] field is 0, the sprite is displayed at normal height. When you
expand a sprite, the number of dots that define the sprite's image
does not change; instead, the size of each dot is doubled in the
direction of your choice.

The [,mode] parameter determines whether a sprite will be displayed
as a High Resolution or a Multi-Color shape. When the value of
[,mode] is 0, the sprite is displayed as a High Resolution shape, 24
dots wide by 21 dots high. When the value of [,mode] is 1, the sprite
is displayed as a Multi-Color shape, 12 dots wide by 21 dots high.

You can display High Resolution sprites in two colors: the
Background color (as set by the COLOR command) and the Sprite
Foreground color (as set with the [fgnd] field of this command). For
Multi-Color sprites, you have two additional colors to use: Sprite
Multi-Color1 and Sprite Multi-Color2 (as set by the SPRCOL
command).

In SUPER EXPANDER 64 programs, you cannot display sprites in
Standard Text mode. However, in any of the Bit Map graphic modes,
you may use either or both High Resolution or Multi-Color sprites. If
you press the STOP key or an error condition halts your program, the
SUPER EXPANDER 64 will automatically return you to Standard Text
mode and turn off all sprites and sound.

Here are some examples of the SPRITE command:

10 SPRITE 1,1,1,0,0,0,1: REM SETS SPRITE 1 ON,
FOREGROUND WHITE, MULTI-COLOR

20 SPRITE 7,1,7,0,1,1,0: REM SETS SPRITE 7 ON , FGND
YELLOW, X AND Y EXPANSION ON
HIGH RESOLUTION MODE

30 SPRITE 5", ,1: REM EXPANDS SPRITE 5 IN X, ALL OTHER
CHARACTERISTICS ARE UNCHANGED

To check what characteristics were last set for each of your sprites,
use the RSPR function. This function has two arguments: a sprite
number and a number which represents a parameter position of the
SPRITE command. The syntax of the RSPR function is as follows:

RSPR (< sprite>, < field>)

The < sprite> argument is a value from ° through 7 and represents
the number of the sprite you want information about. The < field>
argument is a value from ° through 5 that states which characteristic
you are checking. Each of the < field> argument values for the
RSPR function corresponds directly to a parameter position on the
SPRITE command.

25

Thus, for the stated sprite number, the RSPR function returns the
last setting of any of the parameters of the SPRITE command. Here
is a table that shows the values for the < field> argument, the
characteristic checked, and the values that can be returned:

Field Characteristic Values Returned

o
1
2
3
4
5

Sprite Display ON/OFF
Sprite Foreground color
Display Priority
Sprite Expanded in X
Sprite Expanded in Y
Sprite Display Mode

o = OFF; 1 = ON
o thru 15 (color code)
o = High; 1 = Low
o = No; 1 = Yes
o = No; 1 = Yes
o = Hi Res; 1 = Multi-Color

Here are two examples of the RSPR function:

10 IF RSPR (5,5) = 1 THEN :SPRITE 5,,2
20 REM IF SPRITE 51S MULTI-COLOR MODE, THEN SET ITS

FOREGROUND COLOR TO RED

10 FOR S = 0 TO 7: FOR N = 0 TO 5
20 PRINT RSPR (S,N);: NEXT N
30 PRINT: NEXT S
40 REM LINES 10 THROUGH 30 WILL PRINT A LIST OF ALL

THE CURRENT CHARACTERISTIC VALUES FOR ALL
SPRITES

For examples of the SPRDEF, SPRCOL, and SPRITE commands, see
the photographs on the back cover of this manual and Appendix III
SAMPLE PROGRAMS.

26

Saving Sprites

Just as you can transfer portions of the Bit Map screen into BASIC
string variables (using the SSHAPE command), you can transfer
sprite shapes into string variables using the SPRSAV command.
SPRSAV also can transfer data in string variables into sprites, or
from sprite to sprite. The syntax for the SPRSAV command is the
following:

SPRSAV < origin>, <destination>

Either parameter of the SPRSAV command can be a string variable
name or a sprite number. Also, both parameters can be sprite
numbers, but they cannot both be strings. To transfer a sprite image
to a string, < origin> would be a sprite number and < destination>
would be a string name. Conversely, to transfer string data to a
sprite, < origin> would be a string name and < destination> would
be a sprite number.

When both parameters are sprite numbers, the < destination>
sprite assumes the same definition as the < origin> sprite (which is
left unchanged). In this case, the resulting appearance of the two
sprites may not be identical because their characteristic definitions
may not be the same. This is because only the dot pattern of the
< origin> sprite is copied to the < destination> sprite.

The dot pattern of a sprite is saved pixel row by pixel row, jus(as
with the SSHAPE command. Likewise, the last four bytes of the
< destination> string contains the column and row lengths. The
format of the strings created by the SSHAPE and SPRSAV
commands are identical. Thus, you can use SPRSAV to transfer a
sprite to a string, and then use GSHAPE to draw the sprite as a
shape on your Bit Map screen.

Similarly, you can use SSHAPE to transfer a shape from the Bit Map
into a string, and then use SPRSAV to put the string into a sprite.
When you transfer shapes to sprites in this manner, be sure that you
save an area the same size as the sprite in dot positions (an area of
24 by 21 dots for High Resolution or an area of 12 by 21 dots for
Multi-Color).

Here are a few examples of the SPRSAV command:

SPRSAV 1,A$: REM TRANSFERS THE DOT PADERN OF
SPRITE 1 TO THE STRING NAMED A$

SPRSAV B$,2: REM TRANSFERS THE STRING B$ INTO
SPRITE 2

10 C=: 0= 4: IF RSPCOL(O)= 2 THEN: SPRSAV C,D
20 REM IF THE SPRITE MULTI-COLOR1 IS RED, THEN

TRANSFER TH E DOT PA DERN OF SPRITE 1 TO SPRITE 4

27

Animating Sprites

One of the most interesting and powerful features of the SUPER
EXPANDER 64 is the ability it gives you to position and set sprites in
motion. For each sprite, you can use the MOVSPR command to set
its position, start it moving, and stop it. The syntax for the MOVSPR
command is as follows:

MOVSPR < number> < ,X1 ,Y1 >

The < number> is the sprite's number (0 through 7) whose position
you want to set or change. The < ,X1,Y1 > coordinate is the new
location for the sprite. To position a sprite, you can state < X1 ,Y1 >
as absolute values or as a relative offset. However, when using a
relative offset to position a sprite, you should be aware that the new
position is calculated from the current sprite position, instead of the
current PC location.

Sprites are positioned with respect to their upper left hand corner.
There is a specific portion of your screen or "window" where sprites
are visible. The coordinates that define this window are different
from the coordinates that define the boundaries of a Bit Map screen.
For example, the top left corner of a Bit Map screen is (0,0). To
position the top left corner of a sprite to the same location, the sprite
X-V coordinates would be (24,50). Use the table of X-V coordinate
ratios (see SCALE) to calculate both absolute placement coordinates
or relative move distances for sprites.

You can also use a special form of the < ,X1,Y1 > parameter of the
MOVSPR command to set a sprite in motion or to stop it. In this
case, the "X1" and "Y1" parts of the parameter are separated by a
number sign (#) instead of a comma. The "X1" value specifies a
clockwise angle in degrees for the direction the sprite will move. The
"Y1" value is a number from 0 through 15 and specifies a constant
speed for the sprite (where 0 stops motion of the sprite and 15 is the
fastest speed). The speed of a sprite is measured by the number of
dot positions (in the indicated direction) that the sprite will be moved
in a period of time. Sprite motion is actually a series of
instantaneous relative offsets which your eye recognizes as smooth
motion.

You can independently set any or all sprites in motion at varying
speeds and directions simultaneously. When display of a sprite is
turned OFF by the SPRITE command, its motion is stopped
automatically. When the sprite is turned back ON, its motion will
resume automatically at the former speed and direction.

28

Here are some examples of the MOVSPR command:

MOVSPR 1,160,100: REM PUTS THE UPPER LEFT CORNER
OF SPRITE 1 AT THE CENTER OF THE
HIGH RESOLUTION SCREEN

MOVSPR 1, + 40, - 60: REM USES RELATIVE OFFSET TO
MOVE SPRITE 1 BY 40 DOTS TO THE
RIGHT AND 60 DOTS UPWARD

MOVSPR 2,90#8: REM SETS SPRITE 21N MOTION AT A
90 DEGREE ANGLE AND A SPEED OF 8

You can check the position and speed of sprites by using the
RSPPOS function. This function has two arguments: a sprite number
and a number which requests the X position, Y position, or speed of
the sprite. The syntax of the RSPPOS function is as follows:

RSPPOS(< sprite> , < data>)

The < sprite> argument identifies which sprite you are checking.
The < data> argument specifies what information is to be returned.
When < data> is 0, the current X position of the sprite is returned,
and when < data> is 1, the current Y position of the sprite is
returned, and when < data> is 2, the current speed of the sprite is
returned as a number from ° through 15.

NOTE THAT RSPPOS ALWAYS RETURNS SCALE ° COORDINATES.

Here are some examples of the RSPPOS function:

RSPPOS (4,0): REM RETURNS THE CURRENT X POSITION OF
SPRITE 4

RSPPOS (7,1): REM RETURNS THE CURRENT Y POSITION OF
SPRITE 7

10 S=3: D=2: PRINT RSPPOS(S,D)
20 REM PRINTS THE CURRENT SPEED VALUE OF SPRITE 3

29

Handling Sprite Collisions

The SUPER EXPANDER 64 program gives you the ability to detect
when any of your moving sprites "collide" into each other or images
in your Bit Map display. You can detect sprite collisions by using the
COUNT command and determine which sprites collided by using the
RBUMP function. This gives you the ability to create animated
graphic displays in BASIC programs.

The COUNT command detects three types of events: collisions
between sprites, collisions between sprites and Bit Map images, and
light pen activation. When one of these events occurs, your program
finishes the current statement and then the SUPER EXPANDER 64
transfers control to the first line number of your collision handling
subroutine.

In other words, your BASIC program is "interrupted" and sent to your
collision subroutine. We will later refer to any of these events as
"collision interrupts". After a RETURN statement in your collision
subroutine is executed, control is returned to the statement which
follows the one that was just interrupted.

The syntax for the COUNT command is as follows:

COUNT < event> [,Iine-num]

The < event> parameter can have a value of 0 through 2 and
specifies which type of event should cause a collision interrupt.
When < event> is 0, sprite to sprite collisions are detected; when
<event> is a 1, sprite collisions with the Bit Map display are

detected; and when < event> is 2, light pen activation causes an
"interrupt".

The [,line-num] parameter is the first line number of the subroutine in
your BASIC program where control will be transferred when a
collision interrupt of the stated < event> type occurs. When the
optional [,Iine-num] parameter is specified, then collision detection is
turned ON (enabled) for the given type of < event> . When the [,Iine
num] parameter is omitted, collision detection is turned OFF
(disabled) for the specified type of < event> .

A sprite to sprite collision occurs when any part of a sprite that is
not Background color occupies the same location as a non
Background portion of any other sprite. A sprite cannot cause a
collision interrupt when it is completely off the screen (not visible). A
sprite to Bit Map collision occurs when any part of a sprite that is
not Background color occupies the same location as any non
Background image on the screen (i.e., Foreground, Multi-Color1, or
Multi-Color2). Sprites that have been turned OFF (disabled) using the
SPRITE command do not cause collision interrupts.

30

Here are some examples of the COLINT statement:

50 COLINT 0,500: REM START DETECTING SPRITE TO SPRITE
COLLISIONS

60 COLINT 1,600: REM START DETECTING SPRITE TO BIT
MAP COLLISIONS

500 COLINT 0: COLINT 1: REM DISABLE SPRITE TO SPRITE
AND SPRITE TO BIT MAP
COLLISIONS

In the preceding examples, line 50 causes control to be transferred
to a subroutine at line 500 whenever a sprite to sprite collision
occurs. Similarly, line 60 causes control to be transferred to a
subroutine at line 600 when a sprite to Bit Map collision is detected.
In line 500, detection of any further sprite collisions is disabled while
the current collision is handled.

You can have any/all types of < event> detection active at the same
time; but, only one collision can be handled at a time. Therefore, you
should always disable further detection of collisions as the first step
in your collision handling subroutines. This prevents further
interrupts from occurring while you are processing the present one.
Also, the last step you should take in your collision interrupt
subroutine is to reenable collision detection.

To check which sprites have collided, you can use the RBUMP
function. This function returns information about which sprites have
collided with other sprites, or which sprites have collided with the
Bit Map display. You do not have to have collision interrupts ON in
order to use RBUMP. The syntax for the RBUMP function is:

RBUMP (< event>)

The RBUMP < event> argument corresponds directly to the
<event> type of the COLINT command. When < event> is 0, the
RBUMP function returns information about sprite to sprite collisions;
when < event> is 1, RBUMP returns information on which sprites
collided with the Bit Map display.

In either of the preceding cases, RBUMP returns a number from 0
through 255. The bit positions (0-7) in the number returned by
RBUMP correspond to sprite numbers 0 through 7. When a bit is
turned ON (has a value of 1), the sprite in that bit position was
involved in a collision. In the event of multiple collisions occurring
simultaneously, you should also use the RSPPOS function previously
discussed to determine which sprite collided with what object.

31

The RBUMP function reads the hardware sprite collision registers in
the video controller chip of the Commodore 64. These registers are
automatically set to zero whenever they are read, whether you use
the RBUMP function or the PEEK function to read them directly.
Thus, if you need to refer to the information returned by RBUMP
more than once, you must assign the value to a variable name.

Here is an example of the RBUMP function:

1000 A = RBUMP(O): B = RBUMP(1)
1010 REM LINE 1000 READS BOTH THE SPRITE TO SPRITE

AND SPRITE TO BIT MAP COLLISIONS

In the next example, line 530 uses the logical AND operator to check
whether or not sprite 1 has collided.

500 MOVSPR 1,160,100: REM PUTS SPRITE 1 AT SCREEN
CENTER

510 FOR X = 1 TO 50: REM LOOP 50 TIMES
520 MOVSPR 1, + 5, + 5: REM MOVE RIG HT 5 DOTS AN D

DOWN 5 DOTS
530 IF RBUMP (0) AND 2 THEN GOSUB 800
540 REM WHEN SPRITE 1 COLLIDES, THEN EXECUTE THE

SUBROUTINE AT LINE 800
550 NEXT X: REM END THE LOOP.

For examples of the SPRSAV, MOVSPR, and COLINT commands,
see the photographs on the back cover of this manual and Appendix
III SAMPLE PROGRAMS.

32

GAME CONTROLS and FUNCTION KEYS

• Game Port Input/Output

• Programmable Function Keys

Game Port Input/Output

The SUPER EXPANDER 64 provides three functions that let you
easily read the positions of one or two joysticks, up to four game
paddles, or light pen coordinates from the Commodore 64 game
control ports. These include the RJOY function for joysticks, RPOT
for game paddles, and RPEN for the light pen. The syntax for the
RJOY function is:

RJOY (< joystick>)

The < joystick> argument can have a value of 1 or 2 and specifies
whether the joystick attached to Control Port 1 or Control Port 2 is
read. A number is returned by RJOY that indicates which direction
the joystick is being pushed toward. When the "fire" button on the
joystick is pressed, a value of 128 is added to the direction value of
the number returned. The illustration below shows the values which
correspond with each of the joystick directions:

FIRE BUTTON

1

8 2

7 0 3

6 4

5

Joystick Direction Values

Here are some examples of the RJOY function. Turn to Appendix III
SAMPLE PROGRAMS for a sample program that further illustrates
the use of the RJOY function.

10 D = RJOY(1): IF D > 127 THEN GOSUB 750
20 REM IF JOYSTICK 1 FIRE BUTTON IS PRESSED, THEN

EXECUTE THE SUBROUTINE AT LINE 750

50 D = RJOY(2): REM READ JOYSTICK 2 DIRECTION
60 IF D= 6 THEN X = X-1: Y = Y + 1: GOTO 50
70 REM IF JOYSTICK IS PRESSED TO THE LEFT AND DOWN,

THEN ADJUST X-V COORDINATES ACCORDINGLY

33

Using the RPOT function, you can read the current position of up to
four game paddles (or potentiometers). Paddles 0 and 1 are read from
Control Port 1 and paddles 2 and 3 are read from Control Port 2. The
syntax of the RPOT function is as follows:

RPOT(< paddle>)

The < paddle> argument can have a value of 0 through 3 and
specifies which paddle will be read. The RPOT function returns a
number from 0 through 255 which indicates the position of the
control knob on the paddle. When the paddle "fire" button is
pressed, a value of 256 is added to this number. Thus, when the
value returned from RPOT is greater than 255, the fire button is being
pressed.

Here is an example of the RPOT function. Refer to Appendix III
SAMPLE PROGRAMS for an illustration of using the RPOT function
in an animated game.

800 X = RPOT(O): Y = RPOT(1)
810 REM LlNE8DO READS BOTH PADDLES ON CONTROL

PORT 1
820 IF X > 255 OR Y > 255 THEN GOSUB 1000
830 REM LINE 820 CHECKS FOR FIRE BUTTONS PRESSED

AND EXECUTES SUBROUTINE AT LINE 1000 IF YES
840 MOVSPR 4,X,Y: REM UPDATE SPRITE 4 POSITION
850 GOTO 800

The RPEN function returns the value of the X or Y coordinate of the
light pen from its last activation. The collis ion interrupt feature does
not have to be active to use the RPEN function. The coordinates
returned by RPEN always use the "standard" SCALE 0 coord inate
system. The syntax for the RPEN function is:

RPEN(< data >)

The < data > argument can have a value of 0 or 1 and states whether
the X or Y coordinate, respectively, of the light pen is returned. The
RPEN values returned can vary from one system to another. As a
result, the X position is returned as an even number, rang ing from
approximately 60 through 380; and the Y posit ion ranging from
approximately 50 through 250.

A value of 0 is returned from RPEN when the light pen is off screen
and has not triggered an interrupt since it was last read. A whi te (or
very bright) screen background is usually required to stimulate the
light pen. Note that only Control Port 1 is capable of reading a light
pen.

34

Here is an example of the RPEN function:

50 X = RPEN(O): Y = RPEN(1)
60 REM LINE 50 READS THE X AND Y COORDINATES OF THE

PEN
70 IF X = 0 and Y = 0 THEN 50
80 REM LOOP IF LIGHT PEN IS NOT ACTIVATED
90 SPRITE 7,0: REM TURN OFF SPRITE 7 WHEN PEN IS

TRIGGERED

35

Programmable Function Keys

The SUPER EXPANDER 64 lets you take full advantage of the power
of the Function Keys by programming your own definitions for them
in your BASIC programs. By programming the Function Keys with
frequently used commands, you can save yourself a lot of time and
effort, not to mention mistakes. The SUPER EXPANDER 64 initially
gives you the following definitions for the eight function keys:

f1 = "GRAPHIC" f5 = "RUN"
f2 = "SAVE" f6 = "CIRCLE"
f3 = "SPRDEF" f7 = "LIST"
f4 = "LOAD" fS = "SPRITE"

You can use the KEY command to either program the Function Keys
or check their current meanings. The syntax for the KEY command
is:

KEY [<keynum, string-expr>]

The KEY command used without parameters will LIST the current
function key definitions to the screen (output device number 3). The
CMD command can be used to re-direct output to other devices such
as the printer or disk unit.

When the [< keynum, string-expr >] parameters are present, the
function key specified by < keynum > will be re-defined. The
< keynum > value may range from 1 through S. The < ,string-expr >
may be a literal string inside double quotes ("string"), a BASIC string
variable name, or a string expression formed by concatenation
(linking strings together) using the' +' operator. All terms of the
expression must also be strings.

After you have programmed the function keys, you can use them in
both Direct mode and Program mode. In Direct mode, the string that
you have programmed for that key will be printed on the Standard
Text screen (this may not be visible in Bit Map graphic modes). Then,
when you press the RETURN key, the string is executed as a Direct
mode command (or series of commands separated by colons ":'). If a
RETURN (CH R$(13») is included as the last character of the string,
simply press the function key to execute its associated command or
commands.
In Program mode, you can use function keys in response to the INPUT
or GET commands to fill string variables in your programs. For the
INPUT command, pressing a function key prints its current definition
just behind the INPUT command's question mark (?) prompt. When
you press RETURN, the string is transferred to the variable of the
INPUT command. As before, if a RETURN (CHR$(13)) is included as
the last character of the string, simply press the function key to
transfer the function key string to the variable.

36

The maximum combined string length for all of your Function Key
definitions is 255 characters. Generally, this number of characters is
more than enough for all practical purposes, since you will not
usually program long command sequences for the Function Keys. To
turn "OFF" one or more of the Programmable Function Keys, use the
CHR$(n) function to redefine each key to its original value. These
would be the character values returned by the GET command on
systems not equipped with the SUPER EXPANDER 64.

For example, to turn OFF the f1 key, specify KEY 1,CHRS(133). Here
is a short program to use or modify for setting up your own Function
Key definitions:

10 KEY 1, "RUN" + CHR$(13)
20 KEY 2, "SAVE" + CH R$(34) + "VSPX.1" + CH R$(34) +

",8" + CHR$(13)
30 KEY 3, "LOAD" + CHR$(34)+ "VSPX.1" + CHR$(34)+

",8" + CHR$(13)
40 KEY 4, "X= 100: Y = 80: GOTO 1000" + CHR(13)
50 KEY 5, "COLOR 1,11"+CHR(13)
60 KEY 6, "CIRCLE"
70 KEY 7, "LIST" + CHR$(13)
80 KEY 8, "KEY" + CHR$(13)

In addition to what we have specified in the preceding Function Key
strings, we can also use control characters for defining the
following:

• Color selection

• Cursor movement

• Reverse field video and

• Playing music strings

37

SOUND EFFECTS and MUSIC

• Defining Sound Effects

• Playing Your Sound Effects

Defining Sound Effects

The SUPER EXPANDER 64 lets you easily use the Commodore 64's
Sound Interface Device (SID) chip to generate game sound effects
and music. The musical scale that the SUPER EXPANDER 64
provides approximates concert pitch (where note A in octave 4 has a
frequency of 440 hz). Commands are provided to determine the
characteristics of the sounds to be produced. Also, you can play
music in Direct mode or in Program mode. Refer to the Commodore
64's Programmer Reference Guide for more details on sound.

The TEMPO command is used to set the speed at which music is
played. The TUNE command is used to define the waveforms and
"envelopes" of the sounds. The FILTER command is used to create
resonance effects and to enhance or suppress selected frequency
ranges in the sounds.

The syntax for the TEMPO command is:

TEMPO < speed>

The < speed> parameter governs the relative duration of notes as
they are played. The value of < speed > can range from 0 through
255. At 0, the note will sound continuously. As the < speed> value
increases, the duration of the note becomes shorter. The initial value
of TEM PO is set to 8.

You can calculate the actual duration of a whole note by the formula
(duration = 19.22/ < speed>) in seconds. Here are some
examples of setting TEMPO:

10 TEMPO 180: REM FAST TEMPO SOUNDS ARE GOOD FOR
GAMES

20 TEMPO 6: REM FOR SLOW CHAMBER MUSIC

The syntax for the TUNE command is:

TUN E < env >, [,[atk) [,[dec) [,[sus) [,[rel) [,[form) [,width))))))

The <env > parameter specifies the TUNE envelope number and
can have a value from 0 through 9. The [atk), [dec], [sus), and [rei]
parameters may have values ranging from 0 through 15 and are used
together to define the Attack, Decay, Sustain, and Release (ADSR)
characteristics of the waveform envelope.

38

The Attack is the time during which the sound builds from nothing to
peak volume. The Decay is the time it takes for the sound to fall from
peak volume to the sustain level. The Sustain is the volume level at
which the note will be held for most of its duration. The Release is
the time the sound requires to fall from the Sustain level to nothing.

The [form] parameter specifies the waveform of the sound and may
have a value from 0 through 4. The following list shows the [form]
parameter values and their corresponding waveforms:

Values Waveforms

o
1
2
3
4

Triangle
Sawtooth
Pulse
Random Noise
Ring Modulation

The [,width] parameter has meaning only when the waveform
selected is the "pulse" waveform. This parameter can have a value
from 0 through 4095. A width of 2048 produces a square wave.

The SUPER EXPANDER 64 lets you define up to ten TUNE
envelopes. These are set to the initial values as defined in the chart
below:

Env Atk Dec Sus Rei Form Width Instrument

0 0 9 0 0 2 1536 Piano
1 12 0 12 0 1 Accordion
2 0 0 15 0 0 Calliope
3 0 5 5 0 3 Drum
4 9 4 4 0 0 Flute
5 0 9 2 1 1 Guitar
6 0 9 0 0 2 512 Harpsichord
7 0 9 9 0 2 2048 Organ
8 8 9 4 1 2 512 Trumpet
9 0 9 0 0 0 Xylophone

Here are some examples of the TUN E command:

40 TUNE 0"",,1280: REM CHANGES PULSE WIDTH FOR THE
PIANO ENVELOPE

50 TUNE 4,12,6,6: REM INCREASES ATTACK, DECAY, AND
SUSTAIN VALUES FOR THE FLUTE
ENVELOPE

39

The FILTER command is used to dynamically vary other tonal
qualities of the sounds produced. You can do this by setting a filter
cutoff to suppress selected ranges of frequencies. You can also
specify a resonance effect which emphasizes notes with frequencies
near the cutoff frequency of the filter. The syntax for the FILTER
command is:

FILTER [freq] [,[low] [,[band] [,[high] [,res]]]]

The [freq] parameter is the cutoff frequency for the filter in the SID
chip and may range in value from ° through 2048. To determine the
actual cutoff frequency in Hz, multiply this value by 5.8 and add 30.

The [low], [band] and [high] parameters are used together to
determine which parts of the audio spectrum are passed onto the
output of the SID chip unaltered, and which parts are suppressed by
the filter. Each of these parameters can have a value of ° (suppress)
or 1 (pass). You can set any/all of these parameters to either value.

The [,res] parameter can range from ° through 15. This determines
the resonance (i.e., how strongly the peaking effect of sounds near
the cutoff frequency are emphasized). Here are some examples of
the FILTER command:

10 FILTER 2048",1 Sets filter cutoff and high pass filter mode.

30 FI L TER 1024" " 1 ° Sets the resonance control.

70 FILTER 700,1 ,0,1 Set the filter for a "notch reject" mode of
operation to suppress sounds that are
nearest to the selected cutoff frequency

40

Playing Your Sound Effects

With the SUPER EXPANDER 64, music is composed using string ·
characters. You can play music by entering these characters from
your keyboard in Direct mode or by including them in PRINT strings
in your programs. Notes are specified by the letters A through G. The
durations of notes are indicated by the letters W (whole), H (half), Q
(quarter), I (eighth), and S (sixteenth). Every note that follows one of
the "duration" letters is played at the same length until you change
the duration. The letter R specifies a rest for the duration of one note.

Notes that are preceded by a '#' sign are played as sharps and notes
preceded by a '$' are played as flats. Notes preceded by a '.' are
played as "dotted notes", at one and a half times the normal
duration. Here is a chart which summarizes these music elements:

Element Description

A,B,C,D,E,F,G Notes
Sharp (precedes note)
$ Flat (precedes note)

Dotted (precedes note)
W Whole notes will follow
H Half notes will follow
Q Quarter notes will follow
I Eighth notes will follow
S Sixteenth notes wi II follow
R Rest (for one note duration)

Similarly, letters are used to define certain SID chip control values.
You can set the master volume control by using the letter U,
followed by a number 0 through 9. The TUNE envelope is selected by
the letter T, followed by a number 0 through 9. These values
correspond to the envelope numbers as set by the TUNE command.

One or more of the SID chip's three voices can be active at the same
time. The letter V followed by a number from 0 through 2 selects
which voices will play music. The filter in the SID chip is turned ON
by 'X1' and is turned OFF by 'XO'. Since there is only one filter, its
current settings apply to all voices that are enabled.

The particular octave for a note is selected by the letter '0' followed
by a number from 0 through 6. The < CTRL-F > character is used as
a toggle to enable and disable the actual playing of music. Here is a
chart that summarizes the SID control values:

SID Control Description

U Volume (0 -9)
T TUNE envelope (0 - 9)
V Voice (0 - 2)
X FILTER (0 = OFF, 1 = ON)
o Octave (0 - 6)

< CTRL-F > Enable/disable music playback (CHR$(6))

41

~-------- --

The initial default values for the musical parameters are: TUNE 0,
Voice 0, Octave 4, Volume 9, Filter 0 (OFF), and Whole note duration.
As with other features of the SUPER EXPANDER 64, once a value
has been set for a music element, that value becomes the new
default for later operations.

Here is an example of music strings that you can try:

10 PRINT "PLAYING HALF NOTES
< CTRL-F> HCDEFGAB <CTRL-F>
AND NOW SIXTEENTHS .. . "

20 PRINT CHR$(6);"SCDEFGAB"

Now, enter these lines and let's "Boogie"!

1 POKE53280,0:POKE53281,0:PRINT CHR$(147)
10 FILTER 1200,1,0,1,9: TEMPO 13
20 PRINT CHR$(6)"OnOX1U9";
30 PRI NT"V1101 C02CV2.Q04CV003EV1101 E02E";
35 PRI NT"V2.Q04CV003EV1101G02G01 A02A";
40 PRI NT"01 $BV2.Q04CV003EV1102$B01A02A";
45 PRINT"V2.Q04CV003EV1101 G02G01 E02E";
50 PRI NT"V1101 C02CV2.Q04CV003EV1101 E02E";
55 PRI NT"V2.Q04CV003EV1101 G02G01 A02A";
60 PRI NT"01$BV2.Q04CV003EV1102$B01 A02A";
65 PRINT"V2.Q04CV003EV1101G02G01 E02E";
70 PRINT"V1101 F02FV2.Q04CV003$EV1101A02A";
75 PRINT"V2.Q04CV003$EV1102C03C02D03D";
80 PRI NT"02$EV2.Q04CV003$EV1102$E02D03D";
85 PRINT"V2.Q04CV003$EV1102C03C01 A02A";
90 PRI NT"V1101 F02FV2.Q04CV003$EV1101 A02A";
95 PRINT"V2.Q04CV003$EV1102C03C02D03D";
100 PRINT" 02$EV2.Q04CV003$EV1102$E02D03D";
1 05 PRINT"V2.Q04CV003$EV1102C03C01 A02A";
110 PRINT"V1101 C02CV2.Q04CV003EV1101 E02E";
115 PRINT"V2.Q04CV003EV1101G02G01A02A";
120 PRINT"01$BV2.Q04CV003EV1102$B01 A02A";
125 PRI NT"V2.Q04CV003EV1101 G02G01 E02E";
130 PRI NT"V2.Q04DV003FV1101 G02GV1101 B";
135 PRINT"V2.Q04DV003FV1102B02D03D02E03E";
140 PRI NT"V1101 F02FV2.Q04CV003$EV1101 A02A";
145 PRI NT"V2.Q04CV003$EV1102C03C02D03D";
150 PRI NT"V1101 C02CV2.Q04CV003EV1101 E02E";
155 PRINT"V2.Q04CV003EV1101 G02G01 A02A";
160 PRI NT"01 $BV2.Q04CV003EV1102$B01 A02A";
165 PRI NT"V2.Q04CV003EV1101 G02G01 E02E";
170 GOT030

42

APPENDICES

Appendix I PROGRAMMERS NOTES
In this section, we will present additional information about the
operation of the SUPER EXPANDER 64. You will find some important
notes concerning the following areas:

• How Memory is Used

• Bit Map Graphic Displays

• Sprites and Collision Interrupts

• I/O and Error Handling

How Memory is Used

The SUPER EXPANDER 64 program is an auto-start cartridge which
resides in memory at $8000 - $9FFF (hexadecimal) or 32768 -
40959 (decimal). The amount of BASIC program space available for
use is reduced by 8192 bytes. The SUPER EXPANDER 64 also uses
the RAM memory from $COOO - $CBFF (49152 - 52223). Although
the rest of the memory up to $CFFF (53247) is not presently used, it
is reserved for possible future system software expansion.

The SUPER EXPANDER 64 program also uses the RAM memory that
exists "beneath" it and the BASIC language ROM at $8000 -
$BFFF. This memory is used for screen displays, sprite patterns,
programmable character definitions, etc. You can use the POKE
command to change the contents of this RAM memory, but a PEEK
function returns the contents of the ROM memory instead. Here is a
chart which summarizes the SUPER EXPANDER 64's use of the RAM
memory in these areas:

Hex Addr. Decimal

$8000 32768
$8AOO 35328
$8CQO 35840

$9000

$AOOO
$COOO

$C400

$CCOO

36864

40960
49152

50176

52224

Description

Coordinate stack area for PAIN.T
Sprite image patterns (8 sprites)
Color control RAM for Bit Map
displays
Character generator ROM (thru
$9FFF)
Bit Map Screen (thru $BFFF)
Temporary data storage and work
areas
RAM for programmable characters
(used by CHAR and Split Screen Text)
Reserved for expansion (thru $CFFF)

43

A 2048 byte program used to drive the Commodore IEEE-488
interface is ordinarily stored in RAM memory starting at $COOO.
During system initialization, when the SUPER EXPANDER 64 detects
the presence of this device, it relocates the IEEE-488 program. The
IEEE-488 program is then automatically moved to $7800 (30720). This
reduces the amount of program space by another 2048 bytes.

Bit Map Graphic Displays

When using the PRINT command in Multi-Color GRAPHIC mode, it is
impossible to prevent the Screen Editor from updating the color
control RAM. Consequently, if you print to the Text screen behind
the Bit Map display, you may see some colors change. The net effect
is that images displayed in Multi-Color2 will become Foreground
color.

In GRAPHIC modes 2 and 3 (High Resolution and Split Screen), lines
are drawn one dot wide. You can toggle between this and bold lines
that are two dots wide by using the POKE command. POKE 49168,0
sets line width to one dot, and POKE 49168,1 sets line width to two
dots.

In Split Screen mode, the cursor is visible only when it is somewhere
on the bottom five lines of the screen. Using the HOME key or CRSR
controls can move the cursor to a position behind the Bit Map
portion of the screen where it becomes "lost" until you CRSR down.

The SSHAPE and SPRSAV commands transfer shapes to strings
pixel row by pixel row. Four bytes are appended to the string which
contain the column (X) and row (Y) lengths to the shape. The first two
bytes are the number of X-positions less one, and the last two bytes
are the number of Y-positions less one. Both numbers are stated as
16-bit "address pointers" in low-byte, high-byte format.

Sprites and Collision Interrupts

You may set the Foreground color of a sprite the same as the
Background color for the Bit Map screen and the sprite will then be
invisible. However, if enabled, the sprite will still cause collision
interrupts with other sprites or Bit Map displays. Although you can
only have eight sprite definitions active at the same time you can
define more sprites by storing the definitions in strings.

When you set sprites in motion, the speed parameter of MOVSPR is
used as the actual number of dot positions that the sprite moves in
each time interval. In other words, the movement is a series of
"instantaneous" relocations. Thus, a sprite moving at high speed can
miss colliding with a thin line or shape, or another small sprite by
"jumping" past it.

44

1/0 and Error Handling

While displaying sprites, the SUPER EXPANDER 64 changes certain
address pointers used to handle system interrupts. Therefore, before
attempting any cassette tape I/O, you must turn OFF all sprites to
restore the normal system interrupt handling.

The SUPER EXPANDER 64 reports command errors through the
BASIC interpreter and thus adds no unique error messages of its
own. Instead, bad statement syntax causes a "SYNTAX ERROR"
message and a parameter value out of range is an "ILLEGAL
QUANTITY" error. Missing parameters or arguments are reported by
an "OUT OF DATA" error message. A PAINT command which runs
out of coordinate stack space results in a "FORMULA TOO
COMPLEX" error message.

When you halt a BASIC program by pressing the STOP key, or when
BASIC halts the program on an error condition, the SUPER
EXPANDER 64 will automatically select Standard Text mode and turn
sprites OFF. However, any automatic motion is left active. Use the
MOVSPR command to set speed to zero or use the STOP/RESTORE
keys to halt sprite motion. Color selections and Bit Map display data
are left unchanged. When a program terminates with an END or
STOP statement, Text mode is not selected automatically.

Pressing the STOP key will not interrupt the PAINT command or
playback of a music string or the drawing of a line. Pressing the
RUN/STOP and RESTORE keys will reset the SUPER EXPANDER 64
to all of its initial default values, except for Function Key definitions.
Typing CONT to continue a halted program will not switch back to
the intended graphic mode, nor restart music playback, sprite
movement, or collision detection.

45

Appendix II COMMAND REFERENCE GUIDE

BOX [source] <,X1,Y1 > [,[X2,Y2] [,[angle] [,fill]]]

Parameter

[source]
<,X1,Y1>

[X2,Y2]

[angle]

[fi II]

Description

Color source for rectangle (0 - 3)
Specified corner coordinate
Corner coordinate opposite < ,X1,Y1> ;

(default is PC)
Rotation in clockwise degrees

(default is 0)
Fill shape with same color as source

(default is 0)

CHAR [source] , < column,row >, < string> [,reverse]

Parameter

[source]
< column,row >
< string>
[,reverse]

Description

Color source (0 - 3; default 1)
Character column, row location
String to be displayed
Reverse field, except Text mode

(default is 0)

CIRCLE [source] ,[X1,Y1] < ,X-rad > [,[Y-rad] [,[start] [,[end] [,[angle]
[,inc]]]]]

Parameter

[source]
[X1,Y1]
< ,X-rad>
[Y-rad]
[start]
[end]
[angle]

[,inc]

Description

Color source (0 - 3); (default is 1)
Center coordinate (default is PC)
Radius in X
Radius in Y (default is X-rad)
Starting arc (default is 0 degrees)
Ending arc (default is 360 degrees)
Rotation in clockwise degrees

(default is 0 degrees)
Increment in degrees (coarseness)

(default is 2)

COLINT < event> [,Iine-num]

Parameter

<event>

[,Iine-num]

Description

Type of interrupt (0 - 2)
o - Sprite to sprite collisions
1 - Sprite to Bit Map display collisions
2 - Light pen activation
Line number of subroutine to handle the

particular type of collision < event>

46

COLOR [bgnd] [,[fgnd] [,[mcr1] [,[mcr2] [,ext]]]]

Parameter

[bgnd]
[fgnd]
[mcr1]
[mcr2]
[,ext]

Description

Background color (0 - 15)
Foreground color (0 - 15)
Multi-Color register 1 (0 - 15)
Multi-Color register 2 (0 - 15)
External border color (0 - 15)

(Defaults will not change current color)

COLOR CODE COLOR CODE COLOR CODE

Black
White
Red
Cyan
Purple

o
1
2
3
4

Green 5
Blue 6
Yellow 7
Orange 8
Brown 9

Light Red 10
Dark Grey 11
Med.Grey 12
Light Green 13
Light Blue 14
Light Grey 15

DRAW [source] [,X1,Y1] [TO X2,Y2] ...

Parameter

[source]
[,X1,Y1]
[TO X2,Y2]

Description

Color source (0 - 3); (default) is 1)
Move PC to this location and draw a dot
Draw a line from PC to this location

FILTER [freq] [,[low] [,[band] [,[high] [,res]]]]

Argument

[freq]
[low]
[band]
[high]
[,res]

Description

Filter cutoff frequency (0 - 204&)
Low pass filter; 0 - OFF; 1 - ON
Band pass filter; 0 - OFF; 1 - ON
High pass filter; 0 - OFF; 1 - ON
Resonance (0 - 15)

GRAPHIC < mode> [,clear]

< mode> Value

o
1
2
3

Mode Description

TEXT
Multi-Color Graphic
High Resolution Graphic
Split Screen

The [,clear] parameter defaults to 0; if specified non-zero,
screen is cleared.

47

GSHAPE < stringname> [,[X1,Y1] [,method]]

Parameter

< string name >
[X1,Y1]
[,method]

Description

Shape to be drawn
Location to draw shape (default is PC)
Placement of shape (0 - 4)
o - Draw shape AS IS
1 - Draw shape INVERTED
2 - 'OR' shape with screen
3 - 'AND' shape with screen
4 - 'XOR' shape with screen

KEY[< keynum, string·expr>]

Argument

<keynum>
< ,stri ng·expr >

Description

Function Key number (1 - 8)
A literal string within double quotes; a

BASIC string variable; or a string
expression

(KEY with no parameters lists all commands assigned to the
Function Keys)

LOCATE < X,Y>

Parameter

<X,Y>

Description

Coordinate location to place PC

MOVSPR <number> <,X1,Y1 >
Parameter

<number>
<,X1,Y1 >

Description

Sprite number
Location to place sprite

PAINT [source] [,[X1,Y1] [,halt]]

Parameter

[source]
[X1,Y1j
[,haltj

Description

Color source (0 - 3); default is 0
Start painting at this location (default is PC)
End painting (0 - 2)
0- Paint to border same as color source

(default)
1 - Paint to borderof any Foreground

color

48

RBUMP(< event »

Argument

<event>

RCLR(< area»

Argument

<area>

RDOT(< data>)

Argument

< data>

RGR (0)

Argument

o

RJOY« joystick»

Argument

< joystick>

Description

Type of collision (0 - 1)
0- Information on sprite to sprite

collision
1 - Information about sprite to

background collision

Description

One of five areas (0 - 4) whose colors
(0 - 15) are set by the COLOR command
o - Returns Background color code
1 - Returns Foreground color code
2 - Returns Multi-Color1 color code
3 - Returns Multi-Color2 color code
4 - Returns Exterior Border color code

Description

The X or Y coordinate, or color source for
the pixel at current PC location
0- X coordinate of PC
1 - Y coordinate of PC
2 - Color (register 0 - 3) of dot at PC

Description

GRAPHIC mode you selected (0 - 3)

Description

Which joystick's position to read
1 - Read position of joystick attached

to Control Port 1 (0 - 8)
2 - Read position of joystick attached

to Control Port 2 (0 - 8)

(When the "Fire" button is pressed, 128 is added to position value)

RPEN(< data»

Argument

< data>

Description

To return X or Y coordinate of lightpen
o - X coordinate
1 - Y coordinate

49

RPOT(< paddle>)

Argument

<paddle)

Description

Which of four paddles to read (0 - 3);
A value returned (0 - 255) indicates the
position of paddle control knob
0- Position of paddle 1
1 - Position of paddle 2
2 - Position of paddle 3
3 - Position of paddle 4

(When "Fire" button is pressed, 256 is added to position value)

RSPCOL(<register»
Argument

< register)

Description

Sprite color information (0 - 1)
o - Sprite Multi-Color1 color code

(0 - 15)
1 - Sprite Multi-Color2 color code

(0 - 15)

RSPPOS(<sprite), < data»

Argument

<sprite>
<data>

Description

Sprite number (0 - 7)
Information about the sprite
o - Current X position
1 - Current Y position
2 - Current speed

RSPR(< sprite> ,< field))

Argument

<sprite>
<field>

Description

Sprite number (0 - 7)
A value (0 - 5) that specifies which < field>

characteristic you are checking
o - Sprite Display; 0 - OFF; 1 - ON
1 - Sprite Foreground color (0 - 15)
2 - Display Priority; 0 - High, 1 - Low
3 - Sprite Expanded in X; 0 - No; 1 - Yes
4 - Sprite Expanded in Y; 0 - No; 1 - Yes
5 - Sprite Display mode; 0 - HiRes;

1 - Multi-Color

50

SCALE < n >
Parameter

<n>

SCNCLR

Parameter

None

Description

Scale toggle
0- Standard coordinate system,

boundaries depend on GRAPHIC
mode being used

1 - SUPER EXPANDER 64 coordinate
system, boundaries range from 0
through 1023 for any mode

Description

To clear the screen in any mode

SPRCOL (smcr-1] (,smcr-2]

Parameters

[smcr-1]
[,smcr-2]

SPRDEF

User Input

0-7
A
CRSR keys
RETURN key
RETURN key
HOME key
CLR key
1 :- 4
<CTRL> 1 - 8

~ 1- 8
STOP key
SHIFT RETURN
X
Y
M

Description

Sprite Multi-Color 1 color (0 - 15)
Sprite Multi-Color 2 color (0 - 15)

(Defaults do not change color)

Description

Selects destination sprite (prompted)
Automatic cursor movement toggle
Moves cursor
Moves cursor to start of next line
Exits Sprite Designer mode (prompted)
Moves cursor to top left of grid
Erases entire grid
Selects color source
Selects sprite Foreground color (0 - 7)

Selects sprite Foreground color (8 - 15)
Cancels changes and returns to prompt
Saves sprite and returns to prompt
Expands sprite in X toggle
Expands sprite in Y toggle
Multi-Color sprite toggle

51

SPRITE < number> [,[on/off] [,[fgnd] [,[priority] [,[X-exp]
[,[Y-exp] [,mode] II]]]
Parameter

< number>
[on/off]
[fgnd]
[priority]

[X-exp]

[Y-exp]

[,mode]

Description

Sprite number (0 - 7)
Sprite enabled (1), sprite disabled (0)
Sprite Foreground color (0 - 15)
Sprite priority (0 - 1)
o - Sprite priority over screen data
1 - Screen data priority over sprite
Sprite expansion in X direction
o - X-expansion OFF
1 - X-expansion ON
Sprite expansion in Y direction
o - V-expansion OFF
1 - V-expansion ON
Sprite mode
0- Sprite displayed as High Resolution
1 - Sprite displayed as Multi-Color

(Defaults will not change the current parameters)

SPRSAV < origin> , <destination>

Parameter

< origin>
< destination>

Description

Sprite number (0 - 7) or string name
String name or sprite number

SSHAPE < stringname>, < X1,Y1> [,X2,Y2]

Parameter

< stringname >
<X1,Y1 >

[,X2,Y2]

TEM PO < speed >

Argument

< speed>

Description

Variable to save shape
Locates the diagonally opposite corner

of rectangular area to be saved
Starting point for saving shape; default

is current PC

Description

The relative duration of notes (0 - 255)
(Default is 8)

52

TUNE < env> ,[,[atk] [,[dec] [,[sus] [,[res][,[form][,width]]]]] I
Argument

< env>
[atk]
[dec]
[sus]
[rei]
[form]

[width]

Description

Envelope number (0 - 9)
Attack rate (0 - 15)
Decay rate (0 - 15)
Sustain rate (0 - 15)
Release rate (0 - 15)
Waveform of sound (0 - 4)
0- triangle
1 - Sawtooth
2 - Pulse
3 - Random Noise
4 - Ring Modulation
Has meaning only when [form] is 2 for

Pulse waveform; (0 - 4095)

53

Appendix III SAMPLE PROGRAMS

The following programs will give you practice in using the SUPER
EXPANDER 64 commands. Several of these programs correspond to
photographs on the back cover of this manual.

Listing 1: Commodore Logo

10 COLOR 3,6",4: GRAPHIC 2,1: POKE 49168,1: SCALE 0
20 CI RCLE 1,158,102,60,52,160,19" 1 .
30 CIRCLE 1,160,102,36,32,150,30,,1
40 DRAW 1,177,54 TO 177,74: DRAW 1,178,130 TO 178,151
50 COLOR ,2: DRAW 1,182,122 TO 182,104 TO 202,104 TO 226,122 TO

182,122
60 COLOR ,1: DRAW 1,182,81 TO 182,99 TO 202,99 TO 226,81 TO

182,81
70 POKE 49168,0: COLOR ,6: PAINT ,102,102
80 COLOR ,2: PAINT ,184,118: COLOR ,1: PAINT ,184,90
90 GOTO 90

Listing 2: Split Screen Exercise

10 COLOR 12,11",4: GRAPHIC 3,1
20 SCALE 0: POKE 49168,0: Q$= CHR$(34):R$= CHR$(18):

V$=CHR$(146)
30 PRINT "see note below";
40 PRINT" THIS IS MY "R$" SPLIT-SCREEN "V$" MODE."
50 PRINT" YOU CAN PRINT 5 LINES OF"
60 PRINT" UPPER-CASE TEXT AT THE BOTTOM."
70 PRINT" YOU CAN ALSO USE MY "R$" CHAR "V$"

STATEMENT"
80 PRINT"- TO PUT TEXT ANYPLACE ON THE SCREEN.";
90 COLOR ,1: CHAR 1,2,1,"YOU CAN MAKE SIMPLE LINES"
100 CHAR 1,2,3,"OR DRAW COMPLEX FIGURES"
110 CHAR 1,2,5,"WITH A SINGLE STATEMENT"
120 COLOR ,0: LOCATE 100,150: DRAW 1
130 DRAW TO 260,60: FOR J = 1 TO 6
140 GOSUB 190: XA= X: YA= Y
150 GOSUB 190: XB = X: YB = Y
160 DRAW 1,XA,YA TO XB,YB: NEXT J
170 DRAW 1, 20,100 TO 80,100 TO 30,130 TO 50,80 TO 70,130 TO

20,100
180 GOT0180
190 X = INT(RND(0)*300): IF X < 96 THEN 190
200 Y = INT(RND(0)*150): IF Y < 60 THEN 200
210 RETURN

Note: To produce the reverse characters which should appear in
quotes on Line 30, press the SHIFT and CLR/HOME key followed by
20 CRSR down keys.

54

Listing 3: Polygons

10 COLOR 15,14,,,3: GRAPHIC 2,1: SCALE 0: POKE 49168,1
20 BOX 1,318,158,0,0: BOX 1,316,156,2,2: BOX 1,314,154,4,4
30 COLOR ,11: CHAR 1,2,20,"YOU CAN USE MY 'BOX' COMMAND

TO DRAW"
40 CHAR 1,4,22,"RECTANGLES OF ANY SIZE OR SHAPE-"
50 CHAR 1,3,24,"AND ROTATE OR FILL THEM WITH COLOR."
60 POKE 49168,0: COLOR ,1: BOX 1,12,12,64,32,0,1
70 COLOR ,7: BOX 1,108,48",1
80 COLOR ,11: BOX 1,120,16,300,48
90 XA= 12: XB= 28: YA= 46: YB= 136: POKE 49168,1
100 FOR J = 1 TO 8: COLOR ,J*2- 2+ (J > 5)
110 BOX 1 ,XA, Y A,XB, YB,O, 1: XA = XA+ 24
120 XB = XB+ 24: YA = YA+ 10: YB = YB-10: NEXT J
130 COLOR ,12: BOX ,128,112,160,144,45: BOX ,128,112,160,144
140 COLOR ,5: BOX 1,128,24,196,40,,1
150 COLOR ,0: BOX ,224,16,256,48,45
160 XA= 240: YA= 60: XB = 261: YB= 140: D = 30: N = 150: COLOR ,0
170 POKE 49168,0: FOR Z = 0 TO N STEP D
180 BOX ,XA,YA,XB,YB,Z: NEXT Z
190 GOT0190

Listing 4: Arcs, Circles, and Ellipses

10 COLOR 7,9",14: GRAPHIC 2,1 : SCALE 0: POKE 49168,1
20 CHAR 1,1,1,"MY 'CIRCLE' COMMAND LETS YOU EASILY"
30 CHAR ,1,3,"DRAW ARCS, CIRCLES,"
40 DRAW ,20,80 TO 100,80: DRAW ,60,80 TO 60,40
50 R=40: CIRCLE ,60,50,R,R,130,230
60 CIRCLE ,40,80,R,R,0,110
70 CIRCLE ,8d,80,R,R,250,0
80 XA= 160: YA=68: FOR R= 6 TO 30 STEP 6
90 CIRCLE ,XA,YA,R*1.35,R: NEXT R
100 CHAR 1,21,3,"ROTATED ELLIPSES-"
110 POKE 49168,0: FOR R = 0 TO 150 STEP 30
120 CIRCLE 1,260,72,32,12",R: NEXT R
130 CHAR ,1,13,"OR ANY REGULAR POLYGON"
140 POKE 49168,1: XA = - 20: YA = 140: D = 360
150 FOR J =3 TO 7: XA=XA+ 54+ J: N =J: IF J=7 THEN N =8
160 IFJ=7THEN N=8:YA=YA-4
170 CIRCLE ,XA,YA+ (J AND 1)*32,30,25""D/N: NEXT J
180 GOTO 180

55

Listing 5: Saving Shapes and Getting Shapes

10 COLOR 1,11 " ,5: GRAPHIC 2,1: SCALE 1: POKE 49168,0
20 CHAR 1,3,1 ,"MY 'SSHAPE' COMMAND FILL A STRING"
30 CHAR 1,5,2,"FROM A RECTANGLE-SHAP A EA OF"
40 CHAR 1,7,3,"YOUR BIT-MAP SCREEN DISP AY."
50 X = 96: Y = 192: W = 64: L = 248: N = 135: D = 4 : G = 192: H = 128
60 FOR K= 0 TO 4: COLOR ,K*3
70 IF K= 1 TH EN: COLOR,2: POKE 49168,1
80 FOR J = 0 TO N STEP D
90 BOX 1,X,Y,X + W,Y + L,J: NEXT J
100 SSHAPE A$(K),X,Y,X+ W,Y + L
110 X=X+G: Y= Y+ H: NEXT K: X=96: Y= 124
120 COLOR ,11 : CHAR 1,13,5,"THEN 'GSHAPE' PLACES THE"
130 CHAR 1,15,6,"STRING ANYWHERE ON TH E"
140 CHAR 1,16,7,"SCREEN - IN FIVE WAYS."
150 FOR K=O TO 4: COLOR ,K*3
160 IF K= 0 THEN: CHAR 1,1,11,"AS IS"
170 IF K= 1 THEN: COLOR ,2: CHAR 1,3,14,"INV RTED"
180 IF K= 2 THEN: CHAR 1,2,17,"'OR' WITH SCRE Nil
190 IF K= 3 THEN: CHAR 1,8,20,"'AND' WITH SCREEN"
200 IF K= 4 THEN: CHAR 1,15,23,"'XOR' WITH SCREEN"
210 GSHAPE A$(K),X,Y,K: X = X + G: Y = Y + H: NEXT K
220 GOTO 220

Listing 6: Drawing and Painting Shapes

10 COLOR 13,6,2,4,10: GRAPHIC 1,1
20 SCALE 0: POKE 49168,0
30 XA = 30: Y A = 60: D = 360: FOR J = 3 TO 5
40 CIRCLE 1,XA,YA,20,32""D/J
50 XA=XA+ 45: NEXT J: YA= 130: XA=30
60 FOR J = 10 TO 6 STEP - 2: CIRCLE 1,XA,YA,20,32,,,,D/J
70 XA = XA + 45: NEXT J
80 CIRCLE ,75,90,60,40: PAINT 1,75,94
90 PAINT 2,30,60,1: PAINT 3,75,40,1: PAINT 2,120,60,1
100 PAINT 3,30,130,1: PAINT 2,75,140,1: PAINT 3,120,1 30,1
110 PAINT 3,40,75,1: PAINT 2,75,60,1: PAINT 3,110,80,1
120 PAINT 2,40,120,1 : PAINT 3,75,120,1: PAINT 2,110,120,1
130 GOTO 130

56

Listing 7: Floating Sprites

10 COLOR 1,1,,,13: GRAPHIC 2,1: POKE 49168,1: SCALE °
20 CHAR 1,1,17,"1 HAVE SIX COMMANDS + FOUR FUNCTIONS"
30 CHAR ,1,19,"SPECIALLY DESIGNED TO HELP YOU EASILY"
40 CHAR ,1,21,"CREATE, ANIMATE AND CONTROL SPRITES."
50 CHAR 1,0,0," ",1
60 CHAR 1,0,1," 1 2 3 4 5 6 7 8 ",1
70 CHAR 1,0,2," ",1: Q = 24
80 X= 0: Y= 2: FOR J = ° TO 7: SPRITE J,O
90 SSHAPE A$(J),X,Y,X + 23,Y + 20
100 SPRSAV A$(J),J: MOVSPR J,X+ Q,Y + 50'
110 SPRITE J,1,J*4,1: X= X+ Q: NEXT J
120 FOR Z= 1 TO 64: FOR J = ° TO 7
130 MOVSPR J,1;150: NEXT J,Z
140 FOR Z= ° TO 499: NEXT Z
150 FOR J = ° TO 7: A = 10*(INT(RND(0)*36))
160 SPRITE J",J AND 1: MOVSPR J,A#4: NEXT J
170 GOTO 170

57

Listing 8: Joystick Demonstration

This program I t you create High-Resolution designs using a
Joystick plugg d Into Control Port 1. Touch the "FIRE" button to
draw or erase lines. Hold down the "FIRE" button to draw with
dotted lines.

10 GOT0100
20 Y = Y - K:RETURN
30 X= X+ K:Y = Y - K:RETURN
40 X= X+ K:RETURN
50 X= X+ K:Y = Y + K:RETURN
60 Y = Y + K:RETURN
70 X= X- K:Y = Y + K:RETURN
80 X= X- K:RETURN
90 X= X- K:Y = Y - K:RETURN
100 COLOR14,6",4:GRAPHICO,1
110 PRINT CHR$(147)" WHEN IT COMES TO GAMES I GET

SERIOUS"
120 PRINT" MY /RJOY(N)/ FUNCTION LETS YOU EASILY"
130 PRINT" READ JOYSTICKS FROM MY GAME PORTS."
140 PRINT" THE JOYSTICK DIRECTIONS ARE READ AS:"
150 PRINT" "
160 PRINT" WHEN 'FIRE' BUnON 1
170 PRINT" IS PRESSED, ADD 8 2
180 PRINT" 128 TO THESE 7 0 3
190 PRINT" DIRECTION VALUES 6 4
200 PRINT" 5
210 PRINT" HIT SPACE BAR FOR JOYSTICK DEMONSTRATION"
220 PRINT" PRESS ANY OTHER KEY TO EXIT"
230 GETA$:IFA$=" "THEN230
240 COLOR1,12,,,9:PRINT CHR$(147):IFA$< >" "THEN340
250 GRAPHIC2,1 :SCALEO:POKE49168, 1
260 X= 160:Y = 100:K= 2:C= 1:DRAWC,X,Y
280 J = RJOY(1):IFJ = > 128THEN320
290 ON J GOSUB 20,30,40,50,60,70,80,90
300 IF J THEN:DRAW C TO X,Y
310 GOT0280
320 C= 1- C:FORN = OT049:NEXT
330 J = J -128:DRAWC,X,Y:GOT0290
340 GRAPHICO,1:END

Note: In lines 110 through 210 inclusive, insert a reverse character (in
the space provided after the beginning quote) by pressing SHIFT and
the CRSR down key. Place two of these characters in the quotes at
line 150.

58

Listing 9: SUPER EXPANDER 64 Pong

his program illustrates the use of SUPER EXPANDER 64 in
d vel oping graphics for games and recreation. In our example, we
ue Paddle 1 in Control Port 1.

o GRAPHIC1,1:SCALE 0:COLOR14,6,2,4,11
1 CIRCLE2,100, 100,4,6:PAINT2, 100, 100, 1
2 SSHAPEA$,95,90,1 06, 11 O:SPRSA V A$, 1 :SCNCLR
3 BOX2,95,90, 106, 106:PAINT2, 100,91, 1
4 SSHAPEB$,95,90,1 06,11 0:SPRSAVB$,3:SCNCLR
20 SCALE1 :CIRCLE2,300,300,50,50",:PAI NT2,300,300, 1
30 BOX3, 750,345,650,245,45: PAl NT3, 700,300, 1
40 BOX,345,750,245,650" 1
50 DRAW2,650,650T0750,650T0700, 750T0650,650: PAINT2, 700,675, 1
5 S = 8:XX = S:YY = S:X = 156:Y = 100:C = 4 ° SPRITE1,1,13",,1:SCALEO

70 X=X +XX:Y=Y+YY:MOVSPR1,X,Y
73 IFC <4THEN76
74 C =4
75 COLlNT1,200:COLlNTO,300
76 C = C+ 1
80 IFY=> 280THEN700
83 IFY=< 50THENYY= -YY
85 IFX=< 24THENXX= -XX
87 IFX = > 320THENXX= - XX
120 J = RPOT(1):SPRITE3,1,0, ,1,,1
130 MOVSPR3,287 - J,230:GOT070
200 COLlNT1:R = INT(RND(0)*3):C = °
210 IFR=OTHEN:XX= -XX:YY= -YY:MOVSPR1,X+XX,Y+YY:

RETURN
211 IFR = HHEN:XX = - XX:MOVSPR1,X + XX,Y + YY:RETURN
212 IFR =2THEN:YY= - YY:MOVSPR1,X+XX,Y+ YY:RETURN
300 COLlNTO:YY = - YY:MOVSPR1 ,X + XX,Y + YY:C = O:RETURN
700 GRAPH1C2:CHAR1,13,1," YOU MISSED! ":FORN = 1

T01000:NEXT
710 CHARO,13,1" ":GRAPHIC1:GOT055

Listing 10: Moire Pattern

10 COLOR 0,1: GRAPHIC 2,1: SCALE 0
20 X = 320: Y = 200: C = X* RND(O): D = Y* RN 0(0)
30 A = 0: B = 0: J = 0: K = 1: N = 2: P = 1
40 DRAW K,A,J TO C,D, TO A,Y
50 DRAW J,A + K,J TO C,D TO A + K,Y
60 A =A+ N: IF A<X THEN 40
70 DRAW K,J,B TO C,D TO X,B
80 DRAW J,J,B + K TO C,D TO X,B + K
90 B =B+N: IF B<YTHEN 70
100 GOTO 100

59

Listing 11 : Hypnotic Pattern

10 GRAPHI I , I : XC = 79: YC= 99: Z= 0: P= 3.14: K= P/60
20 FOR N 0 4: C(N)= INT(RND(1)*16): NEXT N
30 COLO (), (1),C(2),C(3),C(4)
40 FOR J 1999: NEXT: N = K
50 XD = INT(nN (1) *XC): YD= INT(RND(1)*YC): C= INT(RND(1)*5)
60 XA = X f X 'COS(N): XB=XC-XD*COS(N)
70 YA = Y t Y • SIN(N): YB = YC - YD*SIN(N)
80 DRAW ,XA,YA TO XB,YB
90 N=N +K: I N P THEN60
100 FOR J 0 01999: NEXT: GOTO 20

ns on the Hypnotic Pattern, try changing the divisor
Ine 10. Also, in Line 20, you can change the range
lected by the random function (RND).

60

INDEX

A
Absolute Value 5, 6, 7, 8, 9, 20
AND Method Parameter 14
Angle 6,7,8,9,21
Animating Sprites 20
Arcs (See CIRCLE Command)
Area Parameter 4
Argument 4, 6
AS IS Method Parameter 14
Attack Parameter 27
Automatic Cursor Function (A) 16

B
Background Color 3,4,9, 12, 18,32
Band Parameter 28
BASIC 1, 13, 15, 16
BASIC String Variable 13, 14,25
Bit Map Mode 2,18
BOX Command 6, 8,12

C
Cartridge 1, 31
CHAR Command 11, 12,31
CIRCLE Command 6, 8, 9, 25
Clear Screen 2, 4
Clockwise Degree of Rotation 8, 9
COUNT Command 22
Collision Interrupt (See Sprite Collision)
Colon (:) 1, 26
Color Codes 4
COLOR Command 3
Color Sources 3, 4, 7, 8, 9, 16
Column Parameter 11
Comma (,) 1, 4, 7, 8, 21
Control Port 24, 25

D
Data Argument 6, 21, 25
Decay Parameter 27
Defining Sound Effects (See Sound Effects)
Destination Parameter 20
Diagonally Opposite Corner 8, 13
Diamond 9
DIRECT Mode 1, 15,26,27,29
Display Priority (See Sprites)
Distance 6, 7, 8, 9, 21
Dot Region (Dots) 3, 6, 7, 8, 9, 10,20

61

Dotted Notes 29
DRAW Command 6, 7
Drawing Boxes, Circles, and Polygons 8

E
Eighth Note (I) 29
Ellipses 8-9
Envelope Parameter 27
Erasing 11
Error Handling 32
Errors 32
Event Argument 23
Event Parameter 22
Exterior Border Color 4

F
Field Argument 19
Fill with Color 8
FILTER Command 27
FIRE Button 24
Flat Sign ($) 29
Foreground Color 3,4,9-10,12, 16, 18,32
Form Parameter 28
Frequency Parameter 28
Function Keys (See Programmable Function Keys)
Functions 1, 3

G
Game Port Input/Output 24
GRAPHIC Command 2, 7, 25
GRAPHIC Mode 2-4,10,32
Grid 3
GSHAPE 13-15, 20

H
Half Note (H) 29
Halt Parameter 10
High Parameter 28
High Resolution Mode 2, 3,11-12,16, 18
HOME Key 15, 32
Horizontal Radius 8

I
IF/THEN 1
Increment Value 9
INVERTED Method Parameter 14

J
Joystick Argument 24

62

K
KEY Command 25
Keynum Parameter 25
Keywords 1

L
Line-Num Parameter 22
Lines 7
Loading SUPER EXPANDER 641
LOCATE Command 5
Logical AND 23
Logical OR 14
Logical XOR 14

M
Master Volume Control (U) 29
Memory 1
Method Parameter 14
Moving Sprites 15
MOVSPR Command 20-21, 32
Multi-Color Mode 2-3,16
Multi-Color1 3-4,9, 10
Multi-Color2 3-4,9-10,32
Music 26-27
Music Playback C« CTRL-F ~) 30

N
Non-zero Parameter 2, 8
Number Parameter 18, 20

o
Octagon 9
Octave (OnO
Offset 5-7
Optional Parameter 1,2,4,7-14
OR Method Parameter 14
Origin Parameter 20

p
Paddle Argument 2, 4-5, 24
PAINT Command 9, 31, 32
Parameter 2, 4, 5, 8
Pixel 13,20,32
Pixel Cursor (PC) 5-9, 13
Place Holder 1, 4
Playing Sound Effects (See Sound Effects)
Plotting Points and Lines 5
Polygons 9
Programmable Function Keys 15,24-25
PROGRAM Mode 1, 26-27

63

a
Quarter Note (Q) 29

R
Ratio of X-Y coordinate V lu
RBUMP Function 22-23
RCLR Function 4
RDOT Function 6
Rectangles (See BOX Comm nd)
Register Argument 17
Registers 3, 5
Relative Offset (See Offset) 8-9, 20-21
Release Parameter 27
Resonance Parameter 29
Rest Sign (R) 29
RESTORE Key 1, 32
Reverse Video Parameter 11 -12
RGR Function 3
RJOY Function 24
Row Parameter 11
RPEN Function 25
RPOT Function 24
RSPCOL Function 17
RSPPOS Function 21, 23
RSPR Function 19
RUN/STOP key 1

S
Saving and Replacing Shapes 13
Savi ng a Sprite 19-20
SCALE Command 10
SCNCLR 2, 4
Screen Boundary Coordinates 10-11
Selecting Colors 3-4
Selecting Modes 2
Semi-Colon (;) 6-7
Sharp Sign (#) 29
Sixteenth Note (S) 29
Sound Effects 27-30
Speed Parameter 21 , 27
Split Screen Mode 2-3,11-13,31
Sprite Argument 19,21
Sprite Collisions 15,22-23,32
SPRITE Command 16-17
Sprite Designer Mode 15
Sprite Display Mode (M) 16
Sprite X-Expansion 15-16, 18
Sprite Y-Expansion 15-16, 18
Sprites 1, 15-16; 18,20-21,25,32

64

SPRCOL Command 16-17
SPRDEF Command 15-16,25
SPRSAV Command 15, 19-20,32
Square 8
SSHAPE 13-14, 20, 32
Standard Coordinate System 10,25
Standard Text Mode 1, 3, 11, 18
Stri ng Parameter 11-14, 25
String Size Calculation 13
Sustain Parameter 27

T
TEMPO Command 27
Text Mode 2
Text with Graphics 2, 11
Toggle 16, 32
Tokens 1
Triangles 9
TUNE Command 27-29

V
Vertical Radius 8
Voice 30

W
Waveform 28
Whole Note (W) 29
Width Parameter 28
Window 3, 21

X
XOR Method Parameter 14

65

	00
	-i
	-ii
	-iii
	-iv
	-v
	-vi
	-vii
	-viii
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67

