
c~ cOlTllTlodore
COMPUTER

SIMONS' BASIC
USER GUIDE

Commodore ltallana SPA
Via Fratelli Gracchi 48,
Cinisello Balsamo, Milano, Italy.

C64108

Commodore Business Machines Inc.,
1200, Wilson Drive, West Chester,
PA 19380, USA.

Commodore Computer BV Commodore Buromaschlnen GmbH,
Marksingel, 2e4811 NV Breda, Postbus 720, Lyoner Str. 38, Postfach 710126,
4803aS Breda, Netherlands. 6000 Frankfurt, West Germany.

Commodore Business Machines Ltd.,
3370, Pharmacy Avenue, Agincourt,
Ontario, M1W 2K4, Canada.

Commodore A.G. Schwelz,
Aeschenvorstadt 57,4010,
Basel, Switzerland.

Commodore Business Machines Ply. Ltd.,
5, Orion Road, Lane Cove,
New South Wales 2066, Australia.

Commodore Business Machines (UK) Ltd.,
675 Ajax Avenue, Slough Trading Estate,
Slough, Berks. SL 1 4BG England.

SIMONS' BASIC USER GUIDE

ABOUT THE AUTHOR

When David Simons was thirteen, his father gave him a
COMMODORE computer for his birthday. Since that time
he has developed an understanding of computers far in
advance of his years. The SIMONS' BASIC program is the
product of that experience. David was motivated by the
desire to have his new COMMODORE 64 include as many
commands as possible. He surveyed the variations to
BASIC offered by other micros and even some minis. From
this list he put together 114 commands that now comprise
SIMONS' BASIC. It is with pride that COMMODORE
markets the work of this sixteen·year-old student.

This manual was prepared on a COMMMODORE 8QQQ
series computer system using a word processor. The files
were then electronically transmitted into a phototypesetter
and typeset by

THE ELECTRONIC VILLAGE LTD., London W4

without compositor intervention.

Special thanks to Gail Wellington, Steve Beats and Keith
Morris who helped in the preparation of this manual.

ii

SIMONS' BASIC USER GUIDE

COMMENTS AND ERRATA REQUEST

TO THE READER

To the best of our knowledge, this manual is technically
and typographically correct at the time of gOing to print.
However, no matter how fine we make the sieve for
catching errors, sometimes a few slip through.

If you notice any mistakes, we would be grateful if you
would nQtify us of them. Comments, criticisms and
suggestions are also earnestly solicited.

Yours sincerely,

r11~
<

Michael G. Smith.

Technical Author

COMMODORE BUSINESS MACHINES (UK), LTD.
675 Ajax Avenue
Trading Estate
Slough, Berkshire SL 1 4BG
ENGLAND

iii

SIMONS' BASIC USER GUIDE

COPYRIGHT -SOFTWARE PRODUCT

This software product is copyrighted and all rights are reserved by

D. S. Software
19 Reddings
Welwyn Garden City
Herts ALB 7LA
U.K.

The distribution and sale of this product are intended for the original purchaser
only. Lawful users of these programs are hereby licensed only to read these
programs from the medium into the memory of a computer solely for the purpose
of executing the programs. Security copies of the programs may be made only for
their own use. Duplicating for any other purpose, copying, selling or otherwise
distributing this product is a violation of the law.

COPYRIG HT - MAN UAL

This manual is copyrighted and all rights are reserved. This document may not,
in whole or in part be copied, photocopied, reprinted, translated, reduced to any
electronic medium or machine readable form or reproduced in any manner without
prior consent in writing from COMMODORE BUSINESS MACHINES, LTD., Software
Products Manager.

DISCLAIMER

Although programs are tested by COMMODORE before release, no claim is made
regarding the accuracy of this software. COMMODORE and its distributors cannot
assume liability or responsibility for any loss or damage arising from the use of
these programs. Programs are sold only on the basis of this understanding.
Individual applications should be thoroughly tested before implementation. Should
you require installation, maintenance or training, please consult your COMMODORE
dealer.

iv

TABLE OF CONTENTS

TABLE OF CONTENTS
SECTION ONE-INTRODUCTION TO SIMONS' BASIC

1.1 INTRODUCTION .. 1-1
1.2 THE SIMONS' BASIC MANUAL ' 1-2
1.3 STARTING SIMONS' BASiC 1-4
1.4 SIMONS' BASIC COMMANDS 1-4
1.5 ENTERING COMMANDS 1-6
1.6 CONVENTIONS .. 1-6

SECTION TWO-PROGRAMMING AIDS

2.1 INTRODUCTION .. 2-1
2.2 ASSIGNING COMMANDS TO THE FUNCTION KEYS 2-2
2.2.1 KEY , ... 2-2
2.2.2 ADDING CARRIAGE RETURNS 2-2
2.2.3 DISPLAY . , .. 2-3
2.3 AUTO ... 2-3
2.4 RENUMBER , , , 2-4
2.5 PAUSE , .. , , , 2-5
2.6 CGOTO ... 2-6
2.7 RESET .. 2-6
2.8 MERGE ... 2-7
2.9 PROGRAM LISTING AIDS 2-8
2.9.1 PAGE ' 2-8
2.9.2 OPTION ' 2-9
2.9.3 DELAY ... 2-1IJ
2.111 FIND .. 2-11
2.11 PROGRAM DEBUGGING AIDS , 2-12
2.11.1 TRACE , 2-12
2.11.2 RETRACE , 2-13
2.12 DUMP ... 2-14
2.13 COLD .. 2-15
2.14 PROGRAM SECURITY AIDS 2-15
2.14.1 INTRODUCTION ... 2-15
2.14.2 DISAPA , 2-16
2.14.3 SECURE .. ,2-17
2.15 OLD ... 2-17

v

SIMONS' BASIC USER GUIDE

SECTION THREE-INPUT VALIDATION AND TEXT MANIPULATION

3.1 INTRODUCTION .. 3-1
3.2 CHARACTER STRING HANDLING , 3-2
3.2.1 INSERT ... 3-2
3.2.2 INST .. 3-3
3.2.3 PLACE .. 3-4
3.2.4 DUP .. 3-5
3.2.5 CENTRE ... , 3-5
3.2.6 AT ... 3-6
3.2.7 USE , 3-7
3.3 INPUT VALIDATION COMMANDS 3-8
3.3.1 FETCH .. 3-8
3.3.2 I N KEY .. 3-9
3.3.3 ON KEy : 3-1G
3.3.4 DiSABLE ... 3-11
3.3.5 RESUME ,. , 3-11

SECTION FOUR-EXTRA NUMERIC AIDS

4.1 INTRODUCTION .. 4-1
4.2 ADDITIONAL ARITHMETIC OPERATORS 4-1
4.2.1 MOD , 4-1
4.2.2 DIV , 4-2
4.2.3 FRAC ... 4-2
4.3 NUMERIC CONVERSION 4-3
4.3.1 . BINARY TO DECIMAL CONVERSiON 4-3
4.3.2 HEXADECIMAL TO DECIMAL CONVERSiON ... , 4-3
4.3.3 COMBINING THE CONVERSION COMMANDS 4-4
4.4 EXOR .. ·.4.4

SECTION FIVE-DISKETTE COMMANDS

5.1 INTRODUCTION .. 5-1
5.2 DiSK ... 5-1
5.3 DIR ... 5-2

vi

TAJ3LE OF CONTENTS

SECTION SIX-GRAPHICS WITH SIMONS' BASIC

6.1 INTRODUCTION .. 6-1
6.2 SCREEN CONFIGURATION 6-2
6.3 COMMODORE 64 COLOURS 6-2
6.4 PLOT TYPES .. 6-3
6.5 GRAPHICS PLOTTING COMMANDS 6-3
6.5.1 COLOUR .. 6-3
6.5.2 HIRES .. 6-4
6.5.3 REC .. 6-5
6.5.4 MULTI .. 6-5
6.5.5 NRM .. 6-6
6.5.6 LOW COL ... 6-6
6.5.7 HI COL ... 6-7
6.5.8 PLOT ... 6-8
6.5.9 TEST ... 6-9
6.5.1 Ii' LINE ... 6-11i'
6.5.11 CiRCLE .. 6-1 Ii'
6.5.12 ARC ... 6-11
6.5.13 ANGL .. 6-12
6.5.14 PAINT ... 6-13
6.5.15 BLOCK .. 6-14
6.5.16 DRAW ... 6-14
6.5.17 ROT ... 6-15
6.5.18 CSET .. 6-17
6.6 PRINTING TEXT ON A GRAPHICS SCREEN 6-18
6.6.1 CHAR " 6-18
6.6.2 TEXT .. 6-19

SECTION SEVEN-SCREEN MANIPULATION

7.1 INTRODUCTION .. 7-1
7.2 BCKGNDS ... 7-2
7.3 FLASH .. 7-3
7.4 OFF .. 7-4
7.5 BFLASH .. 7-4
7.6 FCHR ... 7-5
7.7 FCOL ~ 7-6
7.8 FILL .. 7-6
7.9 MOVE .. 7-7
7.1 Ii' INV ... 7-8
7.11 SCROLLING ... 7-9
7.12 STORING AND RECALLING SCREEN DATA 7-111
7.12.1 SCRSV " 7-1IJ
7.12.2 SCRLD ... 7-11
7.13 PRINTING SCREEN DATA 7-11
7.13.1 INTRODUCTION .. 7-1X
7.13.2 COPY .. 7-11
7.13.3 HRDCPY ... 7-12

vii

SIMONS' BASIC USER GUIDE

SECTION EIGHT-SPRITE AND USER·DEFINED GRAPHICS

8.1 INTRODUCTION .. 8·1
8.2 SPRITES ; 8·1
8.2.1 INTRODUCTION .. 8·1
8.2.2 DESIGN ... 8·2
8.2.3 @•.................••...••........................... 8·3
8.2.4 CMOB .. 8·5
8.2.5 MOB SET ... 8·6
8.2.6 MMOB .. 8·7
8.2.7 RLOCMOB .. 8·8
8.2.8 DETECT ... 8·8
8.2.9 CH ECK ; ... 8·9
8.2.10 MOB OFF ... 8·9
8.3 CREATING USER·DEFINED CHARACTERS 8·1Q
8.3.1 INTRODUCTION ... 8·1Q
8.3.2 MEM .. 8·10
8.3.3 DESiGN .. 8·12
8.3.4 @ ... 8.13

SECTION NINE-STRUCTURED PROGRAMMING

9.1 INTRODUCTION ; 9·1
9.2 CONDITION TESTING AND PROGRAM LOOPS 9·1
9.2.1 IF ... THEN ... ELSE ... 9·1
9.2.2 REPEAT.. ... UNTIL ... 9·2
9.2.3 RCOMP ... 9·3
9.2.4 LOOP ... EXIT IF ... END LOOP 9·4
9.3 PROGRAM PROCEDURES 9·5
9.3.1 INTRODUCTION .. 9·5
9.3.2 PROC ... 9·5
9.3.3 END PROC .. 9·6
9.3.4 CALL : 9·6
9.3.5 EXEC ... 9·7
9.4 PROGRAM VARIABLES 9·8
9.4.1 INTRODUCTION .. 9·8
9.4.2 LOCAL .. 9·8
9.4.3 GLOBAL .. 9·9

viii

TABLE OF CONTENTS

SECTION TEN-ERROR TRAPPING

10.1 INTRODUCTION ... 10-1
10.2 ON ERROR ... 11J-1
10.3 OUT ... 10-3
10.4 NO ERROR ... 1074

SECTION ELEVEN-MAKING MUSIC WITH SIMONS' BASIC

11.1 INTRODUCTION ... 11-1
11.1.1 SOUND SHAPiNG ... 11-1
11.1.2 SOUND WAVES ... 11-2
11.1.3 PROGRAMMING SOUND 11-4
11.2 MUSIC COMMANDS 11-5
11.2.1 VOL ... 11-5
11.2.2 WAVE ... 11-5
11.2.3 ENVELOPE .. 11-8X
11.2.4 MUSiC ... 11-9
11.2.5 PLAY ... 11-11

SECTION TWELVE-READ FUNCTIONS

12.1 INTRODUCTION ... 12-1
12.2 PEN X .. 12-1
12.3 PENY .. 12-2
12.4 POT ... 12-3
12.5 JOY ... 12-5

SECTION THIRTEEN-EXAMPLES OF SIMONS' BASIC PROGRAMS

13.1 INTRODUCTION ... 13-1
13.2 PROGRAM 1 - DRAWING A POLyHEDRON 13-1
13.3 PROGRAM 2 - WORD SEARCH 13-2
13.4 PROGRAM 3 - LETTER SLIDER 13-5
13.5 PROGRAM 4 - A VINTAGE CAR 13-8

APPENDIX-ERROR MESSAGES

GLOSSARY

INDEX

Ix

SIMONS' BASIC USER GUIDE TABLE OF CONTENTS

TABLE OF FIGURES
Figure

3-1 A SINGLE 'AT' COMMAND 3-6
3-2 A COMPOUNDED 'AT' COMMAND 3-7

8-1 MEMORY CONFIGURATION BEFORE MEM 8-11
8-2 MEMORY CONFIGURATION AFTER MEM 8-11

11-1 A SOUND ENVELOPE 11-2
11-2 A TRIANGULAR SOUND WAVE 11-2
11-3 A SAWTOOTH SOUND WAVE 11-3
11-4 A PULSE/SQUARE WAVE 11-3
11-5 A NOISE WAVE ... 11-4

12-1 JOYSTICK VALUES .. 12-5

x

INTRODUCTION

SECTION ONE
INTRODUCTION TO SIMONS' BASIC

1.1 INTRODUCTION

The SIMONS' BASIC cartridge has been designed to enable you to realize the full
potential of your COMMODORE 64 computer. It does so by providing an additional
114 commands to complement the COMMODORE 64's standard BASIC. These extra
commands fall into twelve broad areas as outlined below:

PROGRAMMING AIDS, such as KEY and TRACE, to facilitate speedier, more
efficient BASIC programming.

CHARACTER STRING HANDLING commands, like INSERT and PLACE, to give you
full control over string manipulation.

TEXT commands, such as CENTRE and PRINT AT, to facilitate screen formatting.

IMPROVED INPUT commands, like FETCH and INKEY, to give you full control over
what is typed from the keyboard.

EXTRA ARITHMETIC OPERATORS, such as MOD and DIV, to provide a simpler
method of integer division.

NUMERIC CONVERSION commands to enable you to change binary or hexadecimal
numbers into the decimal equivalents.

STRUCTURED PROGRAMMING commands, such as PROC and IF .. THEN .. ELSE,
to enable you to write more legible code.

SCREEN MANIPULATION aids, like SCRSV and COPY, to allow you to storelload
screen data and/or produce a print-out of a highllow resolution screen.

GRAPHICS PLOTTING commands, such as CIRCLE and PAINT, to enable you to
draw shapes on the screen.

SPRITE and USER-DEFINED GRAPHICS commands, like DESIGN, MOB SET,
DETECT and CHECK to allow you to create and animate your own 'moveable object
blocks' or design your own graphics characters.

MUSIC commands, such as WAVE and ENVELOPE, to enable you to create sound
effects and compose and play music.

DISKETTE OPERATING commands, such as DIR, to simplify file handling.

1·1

SIMONS' BASIC USER GUIDE

The range of commands provided by the SIMONS' BASIC cartridge make it an
essential tool for anyone interested in getting the most from his COMMODORE 64.

This manual has not been designed to teach BASIC programming on the
COMMODORE 64. If you have no knowledge of BASIC programming, please refer
to one of the following:

COMMODORE 64 User's Guide (supplied with your computer)

An Introduction to BASIC Parts 1 and 2, by Andrew Colin.

1.2 THE SIMONS' BASIC MANUAL

This manual is divided into thirteen sections as outlined below:

SECTION ONE-INTRODUCTION TO SIMONS' BASIC
This section outlines SIMONS' BASIC in broad terms. It also explains how to load
the cartridge and how to enter a SIMONS' BASIC command. Included are the
conventions used in this manual to describe each command. The compatability
of SIMONS' BASIC with standard COMMODORE 64 BASIC is also discussed.
Instructions on how to store, load and run SIMONS' BASIC programs are also given.

SECTION TWO-PROGRAMMING AIDS
Contained here are commands such as AUTO and TRACE to facilitate speedier,
more efficient BASIC programming. Also included in this section is the KEY
command which enables the COMMODORE 64's function keys to be programmed.

SECTION THREE-INPUT VALIDATION AND TEXT MANIPULATION
This section contains commands like INSERT and PLACE to improve character
string handling. Also included are the commands FETCH and INKEY, both of which
provide improved control over user input. In addition, screen text formatting
commands, such as CENTRE and PRINT AT are also explained.

SECTION FOUR-EXTRA NUMERIC AIDS
Here three extra arithmetic operators, MOD, DIV and FRAC are described. The first
two commands deal with integer division, whilst the third enables the fractional
part of a number to be extracted. This section also contains a description of the
commands % and $ which are used respectively for converting binary or
hexadecimal numbers into decimal form and the EXOR command which performs
an additional Boolean operation.

SECTION FIVE-DISKETTE COMMANDS
Two commands, DISK and DlR, are discussed here. DISK enables various disk
operating commands such as formatting and file scratching to be done with one
command, i.e. the disk channel is closed automatically when the task has been
completed. DIR enables all, or a selected part, of a diskette directory to be displayed
on the screen.

1·2

INTRODUCTION

SECTION SIX-GRAPHICS WITH SIMONS' BASIC
In this section the wide range of SIMONS' BASIC graphics plotting commands are
described. These commands allow you to draw shapes on the screen and paint
them with any of the sixteen colours supplied by the COMMODORE 64.

SECTION SEVEN-SCREEN MANIPULATION
This section describes how to scroll an area of the screen in any direction. Also
included are commands for moving an area of the screen to another location,
changing the colour of screen characters and for storing and recalling screen data.
Commands enabling high/low resolution screens to be printed are also described.

SECTION EIGHT-SPRITE AND USER·DEFINED GRAPHICS
Section Eight describes the SIMONS' BASIC commands concerned with the design
and animation of COMMODORE 64 Sprite graphics. Also in1cluded are instructions
to enable you to create your own graphics characters.

SECTION NINE-STRUCTURED PROGRAMMING
Here the various SIMONS' BASIC structured programming commands are explained.

SECTION TEN-ERROR TRAPPING
Section Ten contains commands which enable certain BASIC program errors to
be trapped to prevent your programs from crashing.

SECTION ELEVEN-MAKING MUSIC WITH SIMONS' BASIC
Here the SIMONS' BASIC commands which allow you to play music on the
COMMODORE 64 are described.

SECTION TWELVE-READ FUNCTIONS
This section describes those functions, such as PENX and POT, which allow you
to incorporate control by a games device, such as a joystick, into a program.

SECTION THIRTEEN·-EXAMPLES OF SIMONS' BASIC PROGRAMS
Section Thirteen contains listings of programs written using SIMONS' BASIC to
demonstrate what may be achieved with the cartridge.

APPENDIX A-ERROR MESSAGES
A list of the error messages that you may encounter when using SIMONS' BASIC
commands and their probable causes are given in this Appendix.

GLOSSARY
A list of terms that are used in this manual and their definitions are given in this
section.

1·3

SIMONS' BASIC USER GUIDE

1.3 STARTING SIMONS' BASIC

The SIMONS' BASIC cartridge must always be inserted or removed from the
COMMODORE 64 with the power OFF. The cartridge is inserted, label uppermost,
into the cartridge slot at the rear of the computer. (See your COMMODORE 64 User's
Guide.)

To begin using SIMONS' BASIC, simply turn the computer on with the cartridge
in place. The following message is then displayed:

*** EXPANDED CBM V2 BASIC ***
3(j719 BYTES FREE

All the SIMONS' BASIC commands are now included in the operating system of
your COMMODORE 64 and may be used at any time like any other BASIC command.
Note that SIMONS' BASIC uses approximately 8K of the memory of the
COMMODORE 64.

1.4 SIMONS' BASIC COMMANDS

The following is a list of commands which are added to your COMMODORE 64
operating system by the SIMONS' BASIC cartridge:

Commands for entering, debugging, listing and securing programs:

KEY, DISPLAY, AUTO, RENUMBER, PAUSE, MERGE, PAGE,
OPTION, DELAY, FIND, TRACE, RETRACE, DUMP, COLD, OLD,
RESET, CGOTO, DISAPA, SECURE.

Commands for text manipulation, screen formatting and input validation:

INSERT, INST, PLACE, DUP, USE, CENTRE, AT, LIN, FETCH,
INKEY, ON KEY, DISABLE, RESUME.

Commands for integer division, numeric conversion and an additional Boolean
operation.

MOD, DIV, FRAC, %, $, EXOR.

1·4

INTRODUCTION

Commands for diskette handling:

DISK, DIR.

Commands for graphics plotting:

COLOUR, HIRES, MULTI, NRM, HICOL, LOW COL, PLOT, LINE,
REC, CIRCLE, ARC, ANGL, BLOCK, PAINT, NRM, DRAW, ROT,
CHAR, TEXT, TEST, CSET.

Commands for storing, printing and manipulating screen data:

LEFT/RIGHT/UP/DOWN scrolling, BCKGNDS, FLASH, OFF, BFLASH,
FCHR, FCOL, FILL, MOVE, INV, SCRSV, SCRLD, COPY, HRDCPY.

Commands for generating/animating Sprites and creating your own characters:

DESIGN, @, CMOB, MOB SET, MMOB, RLOCMOB, DETECT,
CHECK, MOB OFF, MEM.

Structured programming commands:

IF .. THEN .. ELSE, REPEAT..UNTIL, LOOP .. EXIT IF .. END LOOP, PROC,
CALL, EXEC, END PROC, RCOMP, LOCAL, GLOBAL, NO ERROR, ON
ERROR, OUT.

Commands for music synthesis:

WAVE, ENVELOPE, MUSIC, VOL, PLAY, SOUND.

Functions to use games devices with your programs:

PEN X, PENY, POT, JOY.

1·5

SIMONS' BASIC USER GUIDE

1.5 ENTERING COMMANDS

All SIMONS' BASIC commands are entered in the same way as those in standard
Commodore BASIC. Most SIMONS' BASIC commanc;ls can be used in direct mode
or as part of a program. Any exceptions to this rule are indicated in the introduction
to each section of the manual.

1.6 CONVENTIONS

The format of each SIMONS' BASIC command in this manual is presented using
the following method of notation:

1. Brackets and items written in capital letters must be typed exactly as
shown.

2. Items printed in lower case indicate a user-supplied or variable entry, e.g.
coordinates or a plotting colour.

3. Other symbols, such as quotation marks and commas, must be typed
exactly as shown.

4. Pressing the RETURN key is indicated by < RETURN>.

5. Keys other than alphabetic and numeric characters are indicated in the
listing by the name on the key surface enclosed in < >,
e.g. <CLR/HOME>. These appear on the screen as reversed characters. If
two keys are enclosed, e.g. <CTRL RVS ON>, you must hold down the
first key before pressing the second key.

6. With the exception of the F!ND command (see Section 2.1IJ), all SIMONS'
BASIC keywords must be separated from the first parameter of the
command with a space.

1·6

SECTION TWO
PROGRAMMING AIDS

2.1 INTRODUCTION

PROGRAMMING AIDS

SIMONS' BASIC provides several commands which are useful when entering,
debugging and listing your BASIC programs whether they include SIMONS' BASIC
commands or not.

The KEY command enables the COMMODORE 64's function keys to be programmed.
DISPLAY lists the values that have been assigned to these keys. The AUTO and
RENUMBER commands create automatic program line numbering. MERGE
combines a stored BASIC program with the program currently in the COMMODORE
64's memory.

The PAGE command permits you to specify how many screen lines you wish to
use when listing programs on the screen. OPTION highlights all SIMONS' BASIC
commands in a program listing. The DELAY command allows you to control the
rate of scroll of program listings on the screen.

The TRACE and RETRACE commands display the numbers of program lines as they
are executed. The DUMP command lists the values of all non-array variables. FIND
locates all occurrences of a particular string of characters.

The PAUSE command is used to set a time delay in your program. CGOTO branches
to a calculated line number. RESET instructs the COMMODORE 64 to read data
from a defined program line. The SECURE and DISAPA commands 'blank' specified
program lines to prevent unauthorised persons from examining your code. COLD
returns the COMMODORE 64 to the SIMONS' BASIC start-up screen. The OLD
command allows you to recover a program that has been NEWed.

Note that all the commands in this section can be used in direct mode or as part
of a program.

2·1

SIMONS' BASIC USER GUIDE

2.2 ASSIGNING COMMANDS TO THE FUNCTION KEYS

2.2.1 KEY

FORMAT:

PURPOSE:

KEY number,"code"

To assign a command to a function key.

KEY enables you to assign your own commands to the
COMMODORE 64 function keys and then change these commands
If you wish. The number in the command format Indicates the
function key you wish to use from 1 to 16. The second parameter
Is the code you wish to assign to this key. A maximum of fifteen
characters may be assigned to each key. Pressing the keys
normally, you obtain functions F1, F3, F5 and F7. Holding down
the SHIFT key and pressing these same keys, you get functions
F2, F4, F6 and F8. By holding down the Commodore logo key and
pressing the keys, you obtain functions F9, F1Q, F11 and F12. If
you hold down the SHIFT key and the Commodore logo key, you
get functions F13, F14, F15 and F16. Note that the code you assign
to each key must be enclosed in quotation marks.

EXAMPLE: To assign the command MOB SET to function key F8:

COMMAND: KEY 8,"MOB SET" <RETURN>

RESULT: The SIMONS' BASIC code MOB SET is now assigned to the F8
function key and will be displayed every time this key is pressed.

2.2.2 ADDING CARRIAGE RETURNS

To eliminate the need to press RETURN following a function key command, you
may add a carriage return to the key assignment as follows

a) Assign your command to the key (see Section 2.2.1). Type the end quote
marks but do not press RETURN.

b) Type + CHR$(13) and press RETURN.

Now when you press the function key, you will automatically generate a RETURN
following the aSSigned command.

EXAMPLE: To assign the BASIC command LIST and an automatic carriage
return to the F7 function key:

COMMAND: KEY 7,"LlST" + CHR$(13) <RETURN>

RESULT: You may now list a program simply by pressing the F7 key.

2·2

PROGRAMMING AIDS

2.2.3 DISPLAY

FORMAT:

PURPOSE:

DISPLAY

To list the commands assigned to the function keys.

DISPLAY enables you to review the current function key
assignments.

EXAM PLE: To list the function key assignments after the assignment examples
in the previous two sections:

COMMAND: DISPLAY <RETURN>

DISPLAY: KEY 1

2.3 AUTO

FORMAT:

PURPOSE:

KEY 2
KEY 3
KEY 4 ""
KEY 5
KEY 6
KEY 7 "LIST" + CHR$(13)
KEY 8 "MOB SET"
KEY 9
KEY 1~
KEY 11
KEY 12
KEY 13
KEY 14
KEY 15
KEY 16

AUTO start line number, increment

To automatically generate program line numbers at a specified
increment.

When the AUTO command is entered, the start program line number
you have defined is displayed with the cursor following it waiting
entry of a line of code. Thereafter, each time you type in a line of
code and press RETURN, the increment you have specified will be
added to the number of the previous line. The resulting figure will
be displayed as the next program line number. To terminate this
function, simply press RETURN when the line number is displayed.

2·3

SIMONS' BASIC USER GUIDE

EXAMPLE: To generate program line numbers automatically in intervals of 5
beginning at line 1~:

COMMAND: AUTO 1~,5 <RETURN>

DISPLAY: 1(J

TYPE: GET A$ <RETURN>

DISPLAY: 1(J GET A$
15

TYPE: IF A$ = "" THEN 1(J <RETURN>

DISPLAY: 1(J GET A$
15 IF A$ = "" THEN 1(J
2(J

RESULT: Each time you enter a line of code and press RETURN, a line number
5 larger than the previous number is displayed.

EXAMPLE: To terminate automatic program line numbering in the program
listed above:

TYPE: <RETURN>

COMMAND: LIST <RETURN>

DISPLAY: 1(J GET A$
15 IF A$ = "" THEN 1~
READY

RESULT: Automatic numbering is terminated.

2.4 RENUMBER

FORMAT:

PURPOSE:

RENUMBER start line number,increment

To automatically renumber all program lines.

RENUMBER automatically changes the numbers of all program
lines. The program now begins at the start line number you have
specified and ali subsequent line numbers are displayed at the
selected increment. This command is particularly useful if you need
space in a program to insert more code.

NOTE
The RENUMBER command does not renumber
GOTOs or GOSUBs. However, SIMONS' BASIC
obviates the need for these instructions by
replacing them with structured programming
commands. See Section 9.

2·4

PROGRAMMING AIDS

EXAMPLE: To renumber all the program lines of the following program:

ENTRY: 1 PRINT"<SHIFT CLR/HOME>"
2 FOR X = 1 TO 20
3 Z = RND(1) * 255
4 POKE 53280,Z
5 FOR Y = 1 TO 250: NEXTY,X

COMMAND: RENUMBER 100,10 < RETURN>

TYPE: LIST < RETURN>

DISPLAY: 100 PRINT"<SHIFT CLR/HOME>"
110 FORX = 1 TO 20

2.5 PAUSE

FORMAT:

or:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

120 Z = RND(1) * 255
130 POKE 53280,Z
140 FOR Y = 1 TO 25IJ: NEXTY,X

PAUSE "message",number of seconds

PAUSE number of seconds

To stop program execution for a specific interval.

PAUSE causes a program to wait before continuing to execute. The
interval is a pre·specified length of time measured in seconds. Note
that fractions of a second CANNOT be used. The PAUSE command
can be used in two ways, either with or without a message.

If a message, enclosed in quotation marks, is included in the PAUSE
command, the message is displayed for the specified period of time.
Pressing the RETURN key interrupts the pause and continues the
program execution.-

If no message is included after the PAUSE, the program simply waits
until the specified delay has elapsed.

To cause a program delay of 10 seconds:

1IJIJ PAUSE 1IJ

When line 1IJIJ of the program is reached, a delay of 1IJ seconds
occurs.

2·5

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

RESULT:"

To display a message and walt for 1 minute:

1IJIJ PAUSE "PRESS RETURN TO CONTlNUE",81J

When this line is executed, PRESS RETURN TO CONTINUE is
. displayed and the program does not go on for one minute or until
the RETURN key is pressed.

'2.6 CGOTO

FORMAT:

or:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

2.7 RESET

FORMAT:

PURPOSE:

CGOTO expression

CGOTO operand operator varIable

To compute the line number to which the program should branch.

The CGOTO command allows you to branch to a variable line
number determined by the result of a computation.

To branch to five different line numbers specified by a loop variable:

1IJ REM"*** EXAMPLE OF CGOTO ***
2IJ FOR I = 1 TO 5
3IJ CGOTO I * 1IJ + 4IJ
4IJ END
5(1) PRINT"I = 1":NEXT
8(1) PRINT"I = 2":NEXT
7(1) PRINT"I = 3":NEXT
8(1) PRINT"I = 4":NEXT
90 PRINT"I = 5":NEXT

For each value of I, the line number is calculated and that line
executed.

RESET line number

To move data pOinters to a specific line of data.

In standard BASIC, data is always read sequentially, i.e. the first
item of data is used by the first READ statement, the second item
by the next etc. RESET enables you to indicate the program line
within a block of data from which reading is to begin i.e. you need
not begin at the first item of data in the program or you may skip
over some items to a specific point.

2·6

EXAMPLE:

ENTRY:

TYPE:

ENTER:

DISPLAY:

RESULT:

ACTION:

RESULT:

PROGRAMMING AIDS

To select specific data depending on user input:

10 REM"*** EXAMPLE OF RESET ***
20 PRINT"<SHIFT CLR/HOME>"
30 PRINT "WHICH CATEGORY?":PRINT:PRINT
40 PRINT"1) DOGS","2) CATS","3) BIRDS","4) FISH"
50 INPUT A: IF A < 0 OR A> 5 THEN PRINT"<SHIFT CURSOR

UP>": GOTO 50
60 IF A = 1 THEN RESET 100
70 IF A = 2 THEN RESET 110
80 IF A = 3 THEN RESET 120
90 IF A = 4 THEN RESET 130
95 FOR I = 1 TO 5
97 READ A$:PRINT A$:NEXT I
99 PAUSE 10:GOTO 20

100 DATA ALSATIAN,CORGI,TERRIER,LABRADOR,SPANIEL
110 DATA PERSIAN,TABBY,ALLEY,SIAMESE,BURMESE
120 DATA SPARROW,STARUNG,BUDGIE,CANARY,PIGEON
130 DATA TROUT,SALMON,CHUBB,BASS,ROACH

RUN <RETURN>

3 <RETURN>

SPARROW
STARLING
BUDGIE
CANARY
PIGEON

The program reads five items of data beginning at the line number
relating to the user input value. .

Hold down the RUN/STOP key and press the RESTORE key.

The program stops.

2.8 MERGE

FORMAT:

PURPOSE:

MERGE "program name",device number

To load a previously saved program and incorporate it into the
program currently in the COMMODORE 64's memory.

The device number refers to the number of the peripheral on which
the program to be MERGEd is stored. This number is 1 for a cassette
unit and 8 for a disk unit. If no device number is specified, 1, i.e.
cassette is assumed. The program name is specified in the same
way as with the BASIC command LOAD.

2·7

SIMONS' BASIC USER GUIDE

CAUTION
THE MERGED PROGRAM WILL FOLLOW THE
PROGRAM CURRENTLY IN MEMORY, i.e. THE
MERGED PROGRAM LINES WILL BE
APPENDED RATHER THAN INTERSPERSED.
USE THE RENUMBER COMMAND (see Section
2.4) TO RENUMBER THE MERGED PROGRAM
BEFORE EXECUTION.

EXAMPLE: To MERGE the cassette program named "SIMONS' BASIC1" with
the program currently in memory:

ACTION: Write a small program and save it on cassette under the name
"SIMONS' BASIC1".

COMMAND: Type NEW <RETURN>

ACTION: Write another small program.

COMMAND: MERGE "SIMONS' BASIC1",1 <RETURN>

DISPLAY: PRESS PLAY ON TAPE

ACTION: Press the PLAY button on the cassette unit.

DISPLAY: LOADING SIMONS' BASIC1
READY

RESULT: The two programs are now merged.

2.9 PROGRAM LISTING AIDS

2.9.1 PAGE

FORMAT:

PURPOSE:

PAGE n

To divide a program listing into 'pages' of n lines.

PAGE permits you to specify the number of screen lines you wish
to use when listing a program. When the command is executed,
a LIST will display the first line number of the program. Each section
of the listing can then be displayed by pressing the RETURN key.
A parameter of zero will terminate the paging enabling the program
to be listed normally. Note that the parameter in this command
refers to the number of screen lines and not to program lines which
may occupy more than one screen line. If a program line overflows
the screen limits you have defined, that entire line will appear on
the next screen.

2·8

PROGRAMMING AIDS

EXAMPLE: To list a program using only 5 screen lines:

ACTION: Load or create a program containing more than ten lines of code.

COMMAND: PAGE 5 <RETURN>

TYPE: LIST < RETURN>

RESULT: The first program line number is displayed.

COMMAND: Press the RETURN key.

RESULT: The first 5 lines of your program are displayed.

COMMAND: Press the RETURN key.

RESULT: The second 5 lines of your program are displayed.

COMMAND: PAGE ~ < RETURN>

TYPE: LIST < RETURN>

RESULT: Your program lists normally.

2.9.2 OPTION

FORMAT:

PURPOSE:

OPTION n

To highlight all SIMONS' BASIC commands when a program is
listed.

The OPTION command with a parameter of 1~ causes all SIMONS'
BASIC commands to be highlighted in reverse-field when the
program is listed either on the screen or on the printer. A parameter
other than 1~ (between ~ and 255) turns off the highlighting.

CAUTION
LISTINGS PRINTED AFTER THE, OPTION
COMMAND HAS BEEN USED WILL CAUSE
YOUR PRINTER RIBBON TO WEAR OUT VERY
QUICKLY_ IT IS THEREFORE RECOMMENDED
THAT LISTINGS OF THIS SORT ARE NOT
PRINTED FREQUENTLY.

Note that some of the commands used in the example program
below have not yet been covered. They are included merely to
illustrate the use of the OPTION command.

2·9

SIMONS' BASIC USER GUIDE

EXAMPLE: To highlight all SIMONS' BASIC commands in the following
program:

111 HIRES 11,1
211 CIRCLE 1611,1211,11,28,11111
311 REC 1611,1211,1611,1211,11
411 PAUSE 111
511 CSET II : END

COMMAND: OPTION 111 < RETURN>

TYPE: LIST < RETURN>

RESULT: The SIMONS' BASIC commands are highlighted in reverse field in
the screen listing.

COMMAND: OPTION II < RETURN>

TYPE: LIST < RETURN>

RESULT: The program lists normally.

NOTE
When listing to the printer enter all the
commands on one line, e.g.:

OPE N 4,4:CMD4:LlST:PRINT # 4:CLOSE4 < RETURN>

Before listing any subsequent program, switch

2.9.3 DELAY

FORMAT:

PURPOSE:

the printer off and then back on.

DELAY n

To vary the rate of scrolling of a program listing.

When the SHIFT key is held down during a program listing, the rate
of screen scroll slows down. The DELAY command varies the speed
of this slowed listing. The parameter following the command
determines the duration of the delay. This number must be in the
range 1 to 255. A larger value in the command causes a
proportionately slower program listing scroll rate.

EXAMPLE: To list a program at the slowest speed available:

COMMAND: DELAY 255 <RETURN>

2·10

PROGRAMMING AIDS

TYPE: LIST < RETURN>

ACTION: Hold down the SHIFT key.

RESULT: The program listing is displayed character by character.

COMMAND: Release the SHIFT key.

RESULT: The program lists normally.

2.10 FIND

FORMAT:

or:

PURPOSE:

EXAMPLE:

NOTE
When listing any BASIC program on the
COMMODORE 64, the CTRL key slows down the
rate of screen scroll until the key is released.

FINDcode

FINDcharacter string

To search a BASIC program for a given code or character string
and display the numbers of the program lines where it appears.

FIND is used to locate specific code or character string occurrences
in a BASIC program. The command displays all line numbers that
contain the string or code. Note that any spaces between FIND and
the specified characters or between the final character and RETURN
are considered part of the character string for which the search is
being made. Therefore program keywords must be entered
WITHOUT a preceding space.

To find the character string ABCD in the following program:

10 REM FIND ABCD
20 REM PRINT "ABCD" VERTICALLY
30 PRINT "ABCD VERTICALLY"
40 A$ = "ABCD"
50 FOR C = 1 TO LEN (A$)
60 PRINT MID$(A$,C,1):NEXT
70 REM ABCD DONE

COMMAND: FIND"ABCD" <RETURN>

DISPLAY:

RESULT:

40

Every program line number containing the character string ABCD
enclosed within quotation marks is displayed. Note that line
numbers 10 and 70 are not displayed because ABCD is not within
quotation marks in those lines.

2·11

SIMONS' BASIC USER GUIDE

2.11 PROGRAM DEBUGGING AIDS

2.11.1 TRACE

FORMAT:

PURPOSE:

EXAMPLE:

TRACE n

To display the number of the program line being executed.

The TRACE command is entered before a program is run. If a value
of 1!J is used as the command parameter, when you execute the
program, a "window" appears in the top right corner of the screen.
As the program lines are executed, the numbers are displayed in
the window. A maximum of six numbers are shown at anyone time.
The format is: # (line number). The lines in the window scroll
automatically so that the last but one program line number executed
appears at the bottom of the window. The Commodore logo key,
if held down, enables you to step through the program line by line.
A parameter of !J will turn TRACE off. Note that the TRACE
command CANNOT be used on a high-resolution screen or if the
MEM command (see Section 8.3.2) has been used.

CAUTION
THE TRACE WINDOW OVERWRITES ANYTHING
DISPLAYED IN ITS POSITION ON THE SCREEN.
THEREFORE, TAKE CARE THAT ANY TEXT YOU
WISH TO OBSERVE IS PRINTED OUTSIDE THIS
AREA.

To display the program line numbers one at a time when the
following program is RUN:

1!J PRINT "<SHIFT CLR/HOME>"
2!J FOR X =" 65 TO 96
3!J PRINT "<CLR/HOME>";CHR$(X)
4!J FOR Z= 1 TO 25!J: NEXT Z
5!J NEXT X
6!J GOTO 2!J

COMMAND: TRACE 1!J <RETURN>

TYPE: RUN < RETURN>

RESULT: Each line of the program, as it is executed, appears in the window.

TYPE: TRACE !J RUN < RETURN >

RESULT: The window disappears and the program executes normally.

2·12

PROGRAMMING AIDS

2.11.2 RETRACE

FORMAT: RETRACE

PURPOSE: To resume TRACING after editing a program.

When using the TRACE command, if you stop program execution
and clear the screen, the TRACE window disappears. The RETRACE
command turns TRACE back on and displays the last set of line
numbers that were executed before the program was stopped. When
the program is re-run, the normal TRACE display appears. Execution
does not continue from where the program was stopped but from
its start. Note that RETRACE cannot be used if the TRACE
command has been turned off.

EXAMPLE: Using the program from the previous section, to stop the program
execution, clear the screen and re-run with TRACE:

COMMAND: TRACE 1Q < RETURN>

TYPE: RUN < RETURN>

RESULT: Each line of the program as it is executed appears in the TRACE
window.

ACTION: Press the RUN/STOP key.

TYPE: LIST < RETURN>

ENTER: 3Q PRINT "<CLR/HOME>";CHR$(X),X <RETURN>

ACTION: Hold down the SHIFT key and press the CLR/HOME key.

RESULT: The screen clears.

COMMAND: RETRACE < RETURN>

RESULT: The window at the top right of the screen re-appears and displays
the line numbers that were showing when the program was stopped.

ACTION: Move the cursor below the window.

TYPE: RUN <RETURN>

RESULT: The line numbers are again displayed in the TRACE window as the
program runs.

2·13

SIMONS' BASIC USER GUIDE

2.12 DUMP

FORMAT:

PURPOSE:

EXAMPLE:

DUMP

To display the values of all non-array variables.

The DUMP command display the values of all variables except those
contained in arrays. The values shown are those contained in the
variables when the program was stopped either by pressing the
RUN/STOP key or by reaching a program terminator. The variables
are listed in the order in which they were defined in the program
and are displayed in the format:

variable name = value

NOTE
If your program contains more than 25 variables,
to prevent the list from scrolling off the screen,
hold down the CTRL key. To view the remainder
of the list release the key.

To display the variables from the following program:

10 A$ = "RANDOM COLOURS"
20 PRINT "<SHIFT CLR/HOME>",A$
30 X = INT(RND(8) * 15)
60 POKE 53281,X
70 FOR C = 1 TO 100:NEXT C
80 GOTO 30

TYPE: RUN < RETURN>

ACTION: After the screen has changed colour a few times, hold down the
RUN/STOP key and press the RESTORE key.

COMMAND: DUMP <RETURN>

DISPLAY:A$ = "RANDOM COLOURS"
X = 9
C = 80

(Note that, because the values of X and C are generated randomly,
the numbers displayed for these two variables will depend on when
the program is stopped.)

2·14

2.13 COLD

FORMAT:

PURPOSE:

PROGRAMMING AIDS

COLD

To reset the COMMODORE 64 to the start of SIMONS' BASIC:

COLD will clear any program held In the memory of the
COMMODORE 64 and display the screen that appeared when you
switched on the computer with the SIMONS' BASIC cartridge in
place.

WARNING
ANY PROGRAM THAT IS IN THE COMPUTER'S
MEMORY WHEN THE COLD COMMAND IS
USED IS CLEARED. IF YOU WISH, YOU MAY
RECALL IT BY USING THE OLD COMMAND (See
Section 2.15). IF ANY PART OF A NEW
PROGRAM HAS BEEN ENTERED THERE IS NO
WAY TO RESTORE THE PREVIOUS PROGRAM.

EXAMPLE: To reset the COMMODORE 64 to the start of SIMONS' BASIC.

COMMAND: COLD <RETURN>

RESULT: The initial SIMONS' BASIC screen is displayed.

2.14 PROGRAM SECURITY AIDS

2.14.1 INTRODUCTION

SIMONS' BASIC provides two commands which can be used to hide specified lines
of program code in order to prevent unauthorised persons from examining them.
The DISAPA command indicates which lines of code you wish to hide. The SECURE
command blanks the code in these lines. These commands are useful for hiding
passwords, serial numbers, etc.

WARNING
THERE IS NO WAY TO REVERSE THESE
COMMANDS OTHER THAN RE·TYPING THE
HIDDEN LINES. THEREFORE, BEFORE THEY
ARE USED, IT IS WISE TO STORE AN UN·
SECURED COPY OF THE PROGRAM FOR YOUR
OWN USE.

2-15

SIMONS' BASIC USER GUIDE

2.14.2 DISAPA

FORMAT:

PURPOSE:

EXAMPLE:

DISAPA:

To indicate that the code in a program line is to be hidden.

The DISAPA command is used as the first command on a program
line and specifies that the code in this line is to be hidden. The
SECURE command (see the following section) is then used to hide
the code. The DISAPA command automatically places three colons
(:) before the code in each line in which it appears.

Note that it is necessary to allow space on the line for these
characters, i.e. the maximum length of a line to be hidden (excluding
DISAPA and colons) is 3~ characters.

To indicate that the code in lines 1~ to 4~ of the following program
is to be hidden:

1~ PRINT "HELLO"
2fJ PRINT SA
3fJ SA=SA+ 1
4fJ GOTO 1fJ

ENTER: 1fJ DISAPA: PRINT "HELLO"
4fJ DISAPA: GOTO 1fJ

COMMAND: LIST <RETURN>

DISPLAY: 1fJ DISAPA ::::: PRINT "HELLO"
2fJ PRINT SA
3fJ SA = SA + 1
4fJ DISAPA ::::: GOTO 1fJ

RESULT: When you use the SECURE command, (see the following section)
the program lines containing DISAPA will be hidden.

2·16

PROGRAMMING AIDS

2.14.3 SECURE

FORMAT:

PURPOSE:

SECURE 0

To hide all program lines beginning with the DISAPA command.

The SECURE command prevents listing of the code in all program
lines containing DISAPA (see the previous section) as the first
command on that line. The code will execute as normal.

EXAMPLE: To hide lines 10 and 40 in the example program from the previous
section:

COMMAND: SECURE 0 <RETURN>

TYPE: LIST < RETURN>

DISPLAY: 10
20 PRINT SA
30 SA=SA+1
40

RESULT: When the program is listed, lines 10 and 40 appear to contain no
code though the line numbers are displayed and the program runs
normally.

2.15 OLD

FORMAT:

PURPOSE:

EXAMPLE:

OLD

To reverse the NEW command.

OLD enables a program that has apparently been cleared from
memory with the NEW command to be recalled and executed again.
The command requires no parameters. (In more technical terms the
OLD command resets the zero·page pointers to the start and end
of BASIC.)

To NEW the following program and then recall it:

10 REM OLD COMMAND
20 A$ = "COMMODORE 64"
30 FOR C = 1 TO LEN(A$)
40 PRINT"<CLR/HOME> ",LEFT$(A$,C)
50 FOR X = 1 TO 100 :NEXT X,C

2·17

SIMONS' BASIC USER GUIDE

COMMAND: NEW < RETURN>

TYPE: LIST < RETURN>

DISPLAY: READY

COMMAND: OLD <RETURN>

TYPE: LIST < RETURN>

DISPLAY: 10 REM OLD COMMAND
20 A$ = "COMMODORE 64"
30 FOR C = 1 TO LEN(A$)
40 PRINT"<CLR/HOME> ",LEFT$(A$,C)
50 FOR X = 1 TO 100 :NEXT X,C

2·18

INPUT VALIDATION AND TEXT MANIPULATION

SECTION TH REE
INPUT VALIDATION AND TEXT MANIPULATION

3.1 INTRODUCTION

Section Three contains those SIMONS' BASIC commands concerned with character
string handling, screen formatting and input validation.

The INSERT command enables you to create a larger character string by inserting
one string into another. INST enables one character string to be overwritten, from
a specified position within it, by another string. The PLACE command allows you
to determine the position of a group of characters within a string. DUP permits you
to produce a larger character string by duplicating a smaller one a defined number
of times.

The LIN command returns the number of the row on which the cursor is positioned.
CENTRE allows you to centre text on a screen line. The PRINT AT command permits
you to specify where text is to be printed on the screen. USE permits you to align
columns of numeric data.

The FETCH command enables you to set parameters for user input. INKEY allows
you to check which function key has been pressed. The ON KEY command causes
a program to branch to a specific point depending on what has been typed. DISABLE
terminates this command while RESUME causes it to be re-enabled.

Used in conjunction with the standard COMMODORE 64 BASIC character string
commands, these features provide you with full manipulative control over text
strings.

Note that the commands in this section may be used in direct mode or as part of
a program.

3·1

SIMONS' BASIC USER GUIDE

3.2 CHARACTER STRING HANDLING

3.2.1 INSERT

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

RESULT:

INSERT ("sub string","main string",p)

To insert one character string into another.

INSERT allows a group of characters to be placed in the midst of
a character string thereby creating a longer string. The parameter
p indicates the position in the main string AFTER which the sub
string is inserted. The sub·string and main·string can be any
expressions enclosed within quotation marks or string variables,
i.e. "aaaaa" or a$. The maximum length of the new string is 255
characters.

The INSERT command may also be used to compare two character
strings using 'true/false' logic, i.e. compared in a statement of logic
where a value of-1 is returned if the statement is true and IJ if it
is false. •

Two possible errors can be generated if this command is !Jsed
incorrectly. They are:

? INSERT PARAMETER TOO LARGE

This occurs when the position specified as the insert point within
the main string is a value larger than the string length.

? CREATED STRING TOO LONG

This error message is displayed if the string you have created with
the INSERT command is greater than 255 characters, i.e. greater
than BASIC can support.

To insert the word "BYE" into the character string "GOOD HE
SAID":

1IJIJ PRINT INSERT ("BYE ","GOOD HE SAID",5)

RUN <RETURN>

GOOD BYE HE SAID

The sub string "BYE" has been inserted within the main string
"GOOD HE SAID" beginning at the sixth character position.

3-2

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

TYPE:

DISPLAY:

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

RESULT:

3.2.2 INST

FORMAT:

PURPOSE:

INPUT VALIDATION AND TEXT MANIPULATION

To create a longer string variable:

100 B$ = "BYE "
105 A$= INSERT (B$,"GOOD HE SAID",5)
110 PRINT A$

RUN < RETURN>

GOOD BYE HE SAID

DUMP <RETURN>

B$ = "BYE"
A$="GOOD BYE HE SAID"

To compare two character strings:

100 A = (INSERT("BYE ","GOOD HE SAID",5) = " GOOD BYE
HE SAID")

110 PRINT A

RUN < RETURN>

·1

Because the two strings are the same, i.e. the condition is true, a
value of ·1 is returned. If the condition had been false, a value of
zero would have been returned.

INST ("sub string","main string",p)

To overwrite a string beginning at a specified position.

INST replaces a string of characters with another string overwriting
the main string starting from the position specified. The sub string
or main string can be any expression provided they are character
string variables i.e. "aaaaa" or XX$. The value of p indicates the
position AFTER which the sub string overwrites the main string.

There is one possible error message that could occur with this
command: .

? CREATED STRING TOO LONG

This happens if the new string you have created is longer than 255
characters. ~

3·3

SIMONS' BASIC USER GUIDE

EXAMPLE: To replace the word "GOOD" with "BETTER" in the sentence "HE
WAS GOOD":

ENTER: 5 A$ = "HE WAS GOOD"
1(1 A$= INST("BETTER",A$,7)
2(1 PRINT A$

TYPE: RUN < RETURN>

DISPLAY: HE WAS BETTER

COMMAND: DUMP <RETURN>

DISPLAY: A$ = "HE WAS BETTER"

3.2.3 PLACE

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

EXAMPLE:

ENTER:

PRINT PLACE ("sub string","main string")

To determine the position of a sub string within a main string.

PLACE searches for a specified group of characters (sub string)
within a character string. If the group is found, the position of the
first character of the group is returned. If a match is not found a
value of zero is returned. The length of the sub string must always
be shorter than that of the main string being searched. This
command may also be used to compare two numeric variables.

To determine the position of the sub string "BETTER" within the
main string "HE WAS BETTER":

1(1 A$= INST("BETTER","HE WAS GOOD",7)
21) PRINT PLACE ("BETTER",A$)

RUN < RETURN>

8

A simple English Language test:

1(1 PRINT"ENTER THE POSITION OF THE FIRST CHARACTER
OF THE ADVERB";

15 PRINT"IN THE FOLLOWING SENTENCE:":PRINT
2(1 PAUSE 1
3(1 A$ = "HE CALLED OUT FOR HER LOUDLY"
4(1 B = PLACE("LOUDLY",A$):B$ = "LOUDLY":PRINT A$
5(1 INPUT A
6(1 IF A = B THEN 8(1
7(1 PRINT"INCORRECT":PRINT"THE CORRECT ANSWER IS" B
75 PRINT"THE ADVERB IS ";B$:END
8(1 PRINT "WELL DONE":END

3-4

TYPE:

DISPLAY:

TYPE:

DISPLAY:

3.2.4 DUP

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

INPUT VALIDATION AND TEXT MANIPULATION

RUN < RETURN>

ENTER THE POSITION OF THE FIRST CHARACTER OF THE
ADVERB IN THE FOLLOWING SENTENCE:

HE CALLED OUT FOR HER LOUDLY

8 <RETURN>

INCORRECT
THE CORRECT ANSWER IS 23
THE ADVERB IS LOUDLY

DUP ("string",n)

To duplicate a character string n times.

DUP enables a new character string to be produced from multiples
of a string. The n indicates the number of times the old string is
reproduced.

Note that, if the new string you have created is longer than 255
characters, the following error message is displayed:

? CREATED STRING TOO LONG

To duplicate a character string three times and then add another
string:

1~ A$ = DUP ("HELLO-",3)
2G B$ = "WHAT'S GOING ON HERE?"
30 C$ = A$ + B$:PRINT C$

RUN <RETURN>

HELLO-HELLO-HELLO-WHAT'S GOING ON HERE?

3.2.5 CENTRE

FORMAT:

PURPOSE:

CENTRE "character string"

To centre a character string on a screen line_

CENTRE enables text to be displayed in the middle of a screen line.
You need not know the length of the text to use this command.

3-5

SIMONS' BASIC USER GUIDE

EXAMPLE: To centre the character string "COMMODORE 64":

COMMAND: CENTRE "COMMODORE 64" <RETURN>

DISPLAY: COMMODORE 64

3.2.6 AT

FORMAT:

or:

PURPOSE:

PRINT AT (c,r) "character string"

PRINT "1 st.string" AT(c,r)"2nd.string"

To print a character string at a specified screen location.

The AT command enables you to specify the screen location where
the printing of a character string will begin. This replaces the use
of cursor control characters to position the text. The parameters
c and r define the column and row coordinates of the location on
the screen where you wish the character string following the
parameter to begin. More than one AT command may be combined
in a single statement.

EXAMPLE: To position the character string "COMMODORE 64" at column 13,
row 8:

COMMAND: PRINT AT(13,8)"COMMODORE 64" < RETURN>

DISPLAY: As shown in Figure 3·1.

tOllltODlIRE 64

FIGURE 3·1 A SINGLE 'AT' COMMAND

3·6

INPUT VALIDATION AND TEXT MANIPULATION

EXAMPLE: To print the character string "CBM 64" starting at column 13, row
8 and the string "SIMONS' BASIC" three lines below and two
characters to the right:

COMMAND: PRINT AT(13,8)"CBM 64"AT(15,11)"SIMONS' BASIC" <RETURN>

DISPLAY: As shown in Figure 3·2.

3.2.7 USE

FORMAT:

or:

PURPOSE:

S11(01I5' BItSIC

FIGURE 3·2 A COMPOUNDED 'AT' COMMAND

USE u# # #.# # # # #",vs:PRINT

USE U# # text. # # #text",vs:PRINT

To format numeric data.

The USE command allows you to format lists of numbers, i.e. to
align the decimal pOints. The amount of hash signs (#) either side
of the decimal point instructs the COMMODORE 64 to display the
corresponding number of figures from the string relative to this
position. If you wish, you may also insert text between the hash
signs. The parameter vs is the string representation of the number
you wish to USE. Note that PRINT must follow the string as the
USE command does not force a carriage return.

3-7

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

TYPE:

ACTION:

DISPLAY:

ACTION:

DISPLAY:

RESULT:

To print a tabulated list of randomly generated prices:

10 REM"* * * EXAMPLE OF USE * * *
20 A$ = STR$(RND(1) * 199)
30 USE "$ # # #. # # C",A$:PRINT
40 GET A$:IF A$ = '''' THEN 40
50 GOTO 20

RUN <RETURN>

Press any key

$126.45C

Press any key

$ 35.36C

Each time you press a key, a value is displayed. The decimal points
of all figures in the list appear in the same position on each screen
line. Note that, as the values are generated randomly, the figures
that are shown above are examples only.

3.3 INPUT VALIDATION COMMANDS

3.3.1 FETCH

FORMAT:

PURPOSE:

FETCH "control character",I,designated string.

To limit the type and number of characters for user input.

FETCH enables you to control what is accepted as input from the
keyboard. The control character within quotation marks determines
the types of characters allowed. The types of valid characters and
the associated control character are shown below:

CONTROL CHARACTER

CLR/HOME

CURSOR DOWN
CURSOR RIGHT

VALID CHARACTERS

Un-shifted alphabetic
characters only.
Numeric characters only.
Alphanumeric and shifted
characters.

The parameter I in the FETCH command is a number which specifies
the maximum amount of characters that the user may enter. The
third parameter in the command specifies the string variable into
which the input will be placed.

3-8

INPUT VALIDATION AND TEXT MANIPULATION

EXAMPLE: To restrict user input to a maximum of eight unshifted alphabetical
characters and place this input into the string variable A$:

ENTER: 1rb PRINT:PRINT"WHAT'S YOUR NAME?"
2rb FETCH" <CLR HOME> ",8,A$
3rb PRINT"HELLO "A$

TYPE: RUN <RETURN>

DISPLAY: WHAT'S YOUR NAME?
(cursor)

ACTION: Hold down the SHIFT key and press any letter.

RESULT: Nothing happens.

ACTION: Press a numeric key.

RESULT: Again, nothing happens.

TYPE: MIKE <RETURN>

DISPLAY: HELLO MIKE

COMMAND: DUMP <RETURN>

DISPLAY: A$ = "MIKE"

RESULT: Only a string of eight or fewer unshifted alphabetic characters is
accepted as input into A$.

3.3.2 INKEY

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

INKEY

To test for a function key input.

INKEY enables you to determine which function key has been
pressed. INKEY represents the number of the function key which
is pressed (1 through 8). This command is especially useful in menu
driven programs where the functions keys can be used to select
specific options or operations.

To test for function keys F1 and F2:

1rb A = INKEY
2rb ON A GOSUB 1rbrbrb,2000
3rb GOT010

1rbrbrb PRINT "YOU PRESSED F1":RETURN
2rbrbrb PRINT "YOU PRESSED F2":RETURN

3-9

SIMONS' BASIC USER GUIDE

TYPE:

ACTION:

DISPLAY:

ACTION:

DISPLAY:

3.3.3 ON KEY

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

RUN <RETURN>

Press the F1 function key.

YOU PRESSED F1

Hold down the SHIFT key and press the F1 function key.

YOU PRESSED F2

ON KEY "character(s)",:GOTO line number

To branch to a specific pOint in a program.

The ON KEY command causes the COMMODORE 64 to scan the
keyboard for input of one of the characters defined in the command.
Any key not specified is ignored. On receipt of a valid character,
program execution continues from the line specified by GOTO. The
reserved variable ST holds the CHR$ value of the key that has been
pressed. (A full list of CHR$ codes can be found in your
COMMODORE 64 User Guide.) This command is especially useful
in menu-driven programs.

NOTE
When an ON key command is executed the
COMMODORE 64 will still scan the keyboard
even after a character within the specified range
has been entered. You must therefore use the
DISABLE command (see the following section)
to turn ON KEY off.

To define a range of valid input characters:

10 PRINT"<SHIFT CLR/HOME>PRESS A KEY (E TO END)"
20 B$ = "DGHNVMLPOE"
30 ON KEY B$,: GOTO 50
40 GOTO 20

When this section of the program is run, the program halts until
one of the characters in the range defined is entered.

3·10

INPUT VALIDATION AND TEXT MANIPULATION

3.3.4 DISABLE

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

DISABLE

To terminate the ON KEY command.

DISABLE causes the keyboard scan generated by the ON KEY
command (see the previous section) to be turned off. This command
must ALWAYS be used if the ON KEY command has been used.
Failure to do so will result in 'recursive jumps', i.e. the program will
always return to the line specified by ON KEY each time one of the
specified characters is typed.

To disable the ON KEY command:

1@ PRINT"<SHIFTCLR/HOME>PRESS A KEY (E TO END)"
2@ B$ = "DGHNVMLPOE"
3@ ON KEY B$,: GOTO 5@
4@ GOTO 2@
5@ DISABLE

When this section of the program is executed, the ON KEY
command is turned off after a valid character is typed.

3.3.5 RESUME

FORMAT:

PURPOSE:

RESUME

To reinstate the previous ON KEY command.

The RESUME command causes the last ON KEY command that was
defined to be turned back on. This causes the program to halt again
until one of the characters in the range specified by ON KEY is
typed.

3·11

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

TYPE:

TYPE:

DISPLAY:

TYPE:

RESULT:

TYPE: -,

DISPLAY:

RESULT:

Expanding the program from the previous section, to turn the ON
KEY command back on:

1Q PRINT "<SHIFT CLR/HOME> PRESS A KEY (E TO END)"
2Q B$ = "DGHNVMLPOE"
3Q ON KEY B$,: GOTO 5Q
4Q GOTO 3Q
5Q DISABLE
6Q A$ = CHR$(Sn: X = PLACE(A$,B$)
7Q ON X GOTO 8Q,9Q,1 QQ, 11 Q, 12Q, 13Q, 14Q, 15Q, 16Q, 17Q
80 PRINT "IT WAS D": RESUME
9Q PRINT "IT WAS G": RESUME

1QQ PRINT "IT WAS H": RESUME
11Q PRINT "IT WAS N": RESUME
12Q PRINT "IT WAS V": RESUME
13Q PRINT "IT WAS M": RESUME
14Q PRINT "IT WAS L": RESUME
15Q PRINT "IT WAS P": RESUME
16Q PRINT "IT WAS 0": RESUME
17Q PRINT "IT WAS E": END

RUN < RETURN>

V <RETURN>

IT WAS V

X <RETURN>

Nothing is displayed.

E <RETURN>

IT WAS E
READY

A character within the range defined in the ON KEY command
causes that character message to be displayed. Any other character
is ignored.

3-12

SECTION FOUR
EXTRA NUMERIC AIDS

EXTRA NUMERIC AIDS

4.1 INTRODUCTION

This section contains various commands to assist you when handling numeric data.
The commands MOD and DIV enable integer division to be performed on positive
numbers. All results are returned rounded. FRAC allows you to extract the fractional
part of a number. Also included in this section are commands to convert
hexadecimal or binary numbers into decimal. An addition Boolean operator,
exclusive or (EXOR), completes the commands in this section.

Note that the commands in this section may be used in direct mode or as part of
a program.

4.2 ADDITIONAL ARITHMETIC OPERATORS

4.2.1 MOD

FORMAT:

PURPOSE:

EXAMPLE:

TYPE:

DISPLAY:

MOD(x,y)

To return the remainder when one integer is divided by another.

The MOD command displays the remainder when one integer, i.e.
whole number, is divided by another integer. The MOD comman~
can be used directly or within a program.

To divide 15 by 4 and produce the remainder:

PRINT MOD(15,4) < RETURN>

3

4-1

SIMONS' BASIC USER GUIDE

4.2.2 DIV

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

DISPLAY:

4.2.3 FRAC

FORMAT:

PURPOSE:

DIV(x,y)

To return the largest integer which, whefl multiplied by y is equal
to or less than x.

The DIV command enables you to divide one floating-point number
by another and produce the result in integer format, i.e. the
fractional part of the result is ignored.

To divide 1G by 3 and produce the result in integer form:

1 G A = DIV(1 G,3)
2G PRINT A

RUN < RETURN>

3

FRAC(n)

To return the fractional part of a number.

FRAC allows you to extract that part of a floating-point, i.e. non
integer, number that follows the decimal point up to a maximum
of nine decimal places.

EXAMPLE: To divide 22 by 6 and produce the fractional part of the result:

COMMAND: PRINT FRAC(22/6) < RETURN>

DISPLAY: .666666667

EXAMPLE: To return the fractional part of 71":

ENTRY: 1G PRINT 71"

2G PRINT FRAC(7I")

TYPE: RUN < RETURN>

DISPLAY: 3.14159265
.141592653

4·2

EXTRA NUMERIC AIDS

4.3 NUMERIC CONVERSION

4.3.1 % - BINARY TO DECIMAL CONVERSION

FORMAT:

PURPOSE:

PRINT %binary number

To convert from binary into decimal.

The % command converts a binary number into its decimal
equivalent.

If a non-binary number is used as the argument in the command,
the message:

? NOT BINARY CHARACTER

is displayed.

EXAMPLE: To convert the binary number 1f)1111l1f)1 into decimal form:

COMMAND: PRINT %1f)11f)1f)1 <RETURN>

DISPLAY: 181

4.3.2 $ - HEXADECIMAL TO DECIMAL CONVERSION

FORMAT:

PURPOSE:

PRINT $hexadecimal number

To convert from hexadecimal into decimal

The $ command converts a hexadecimal number into its decimal
equivalent.

If a non-hexadecimal number is used as the argument in the
command, the message:

? NOT HEX CHARACTER

is displayed.

EXAMPLE: To convert the hexadecimal number EB38 into decimal form:

COMMAND: PRINT $EB38 <RETURN>

DISPLAY: 6f)216

4·3

SIMONS' BASIC USER GUIDE

4.3.3 COMBINING THE CONVERSION COMMANDS

The two commands above can be used together.

EXAMPLE: To add together a binary and hexadecimal number and return the
result in decimal form:

COMMAND: PRINT %W11Q1Q1 + $EB38 <RETURN>

DISPLAY: 6Q397

4.4. EXOR

FORMAT:

PURPOSE:

EXOR(n,n1)

To perform an exclusive or between two numbers

The EXOR command allows you to perform an exclusive or between
two number. The command first converts both numbers into binary
form. It then compares these binary numbers bit by bit. If both bits
are the same, the corresponding result bit is cleared, i.e. a Q. If the
bits are different, the corresponding result bit is set, i.e. a 1.

EXAMPLE: To ex<::lusive or 87 and 45:

COMMAND: PRINT EXOR(87,45)

DISPLAY: 122

EXAMPLE:

ENTRY:

TYPE:

RESULT:

The routine used to arrive at this answer is shown below:

First Number
Second Number

= 87 = Q1Q1Q111
= 45 = QQ1Q11Q1

Result = Q1111Q1Q = 122

To print characters on the screen in reverse field:

5 PRINT"<SHIFT CLR/HOME>"
7 FOR C = 1 TO 1Q
8 PRINT "SIMONS' BASIC":PRINT:NEXT

1Q FOR X = Q TO 999
2Q A = PEEK (.1Q24 + X)
3Q IF A = 32 THEN 6Q
4Q K = EXOR (A,128)
5Q POKE 1Q24 + X,K
6Q NEXT :GOTO 1 Q

RUN <RETURN>

Every character on the screen is changed into reverse field and then
back to normal.

4·4

SECTION FIVE
DISKETTE COMMANDS

DISKETTE COMMANDS

5.1 INTRODUCTION

SIMONS' BASIC contains two simplified disk-handling commands. DISK eliminates
the need to specify a logical file number, device number and secondary address
when opening a channel to a disk drive unit. The command also automatically closes
the channel when the operation specified has been completed. The DIR command
replaces the BASIC code LOAD "$",8 allowing you to list some or all of a diskette
directory with a single command.

5.2 DISK

FORMAT:

PURPOSE:

DISK, "operation".

To open a diskette channel and then close it when the operation
is executed.

DISK replaces the following BASIC code:

OPEN logical file,device number,secondary address:PRINT # logical
file

The command opens a channel to the diskette unit and then
automatically closes this channel when the specified operation has
been completed.

EXAMPLE: To format a new diskette heading it "TEST":

ACTION: Place a new diskette in the diskette unit.

COMMAND: DISK "N0:TEST, 01" <RETURN>

RESULT: After a few minutes, the new diskette is formatted with the header
"TEST" and the drive light goes off to indicate that the diskette
channel has been closed.

5·1

SIMONS' BASIC USER GUIDE

EXAMPLE:

ACTION:

To scratch a program from a diskette:

Type in the following short program and then save it under the name
of "ORANGE" on diskette:

1CD REM"*** EXAMPLE OF DISK ***
2CD REM"* * * DELETING A PROGRAM * * *

COMMAND: DISK "SCD:ORANGE" < RETURN>

RESULT: The program "ORANGE" is deleted from the diskette and the
diskette channel is closed.

5.3 DIR

FORMAT:

or:

or:

or:

PURPOSE:

DIR "$

DI R"$:character string *

DIR"$:?character string

DIR"$:?character string *

To list some or a" of a diskette directory.

The DIR command replaces the BASIC code: LOAD "$",8. The
command enables you to display some or a" of a diskette directory.
You may display only those files whose names begin with a
particular character or string of characters by entering this character
or character string followed by an asterisk. If you wish, you may
display only those files where a specific character or character
string is in a particular position within the filename by replacing
the leading characters with question marks (?).

EXAMPLE: To list a complete directory:

COMMAND: DIR"$ <RETURN>

RESULT: The directory of the diskette in device number 8 is displayed.

EXAMPLE: To list only those files where the third character of the filename
is "S":

COMMAND: DIR"$:??S* <RETURN>

RESULT: The display shows the directory listing of the names of files in which
the third character is S.

5·2

GRAPHICS WITH SIMONS' BASIC

SECTION SIX
GRAPHICS WITH SIMONS' BASIC

6.1 INTRODUCTION

This section describes the comprehensive SIMONS' BASIC graphics plotting
commands. These commands enable you to plot pOints, draw shapes, enter text
and paint on the screen in anyone of sixteen colours without having to access
any memory locations.

The COLOUR command sets up the colour of the screen and the border surrounding
it. The HIRES command puts the COMMODORE 64 into high-resolution graphics
plotting mode. In this mode, all pOints are plotted pixel by pixel. MULTI initializes
the multi-colour mode. Here, each point plotted is two pixels wide. Both the HIRES
and MULTI commands allow you to specify in which colour you wish to plot your
graphics shapes. The LOW COL command changes these colours while HI COL
reverts back to those plotting colours that were originally selected.

The PLOT command enables single dots to be plotted on the screen. TEST allows
you to check the status of a defined screen location, i.e. whether a dot has been
plotted in that position and in which colour the dot has been plotted. The REC
command allows you to draw rectangles and CIRCLE enables circular shapes to
be drawn. The ARC command plots a specified section of the circumference of
a circular shape while the ANGL command draws its radius. Line draws a solid line.

The PAINT command fills a graphics shape with a specified colour. BLOCK displays
fully shaded blocks of colour. The DRAW and ROT commands permit you to design
a freehand shape and then display it at a specific size and angle of rotation.

The CSET command selects either the Upper/Lower case or Upper Case/Graphics
COMMODORE 64 character set. This command also allows you to recall and display
the last graphics screen that was shown. The CHAR and TEXT commands print
single characters and character strings respectively on a graphics screen. NRM
returns to a normal screen from a graphics screen.

The first half of Section Six discusses the configuration of the screen and the
differences between high-resolution and multi-colour graphics. The sixteen
COMMODORE 64 colours are listed and you are shown how to select a colour when
plotting. The second half of this section describes the format and use of each
graphics plotting command. The commands are listed in the order in which they
might be used to write programs such as those contained in Section Thirteen of
this manual.

Note that, with the exception of the COLOUR command, the commands in Section
Six can only be used as part of a program.

6-1

SIMONS' BASIC USER GUIDE

6.2 SCREEN CONFIGURATION

For the purposes of graphics plotting, the COMMODORE 64 screen is divided into
a matrix or grid. Each point on the grid is specified by its x and y coordinates much
as you would indicate a point on a graph. For example, location IJ,IJ refers to the
top left corner of the screen. The size of the grid varies according to whether you
are using the high-resolution or multi-colour graphics mode. In high-resolution mode,
the screen is divided into a 32IJ by 2IJIJ dot matrix. In multi-colour mode, this matrix
is 16IJ by 2IJIJ dots. This means that each dot plotted in high-resolution mode is
one pixel wide, i.e. the smallest addressable pOint on the screen. In multi-colour
mode, each point plotted is two pixels wide.

6.3 COMMODORE 64 COLOtJRS

Whether in high-resolution or multi-colour mode, only THREE colours can· be used
in anyone 8 by 8 pixel area of the screen. The COMMODORE 64 provides sixteen
different plotting colours. These colours and their associated values are listed below:

IJ Black
1 White
2 Red
3 Cyan
4 Purple
5 Green
6 Blue
7 Yellow
8 Orange
9 Brown
1IJ Light Red
11 Gray 1
12 Gray 2
13 Light Green
14 Light Blue
15 Gray 3

When plotting graphics, the colour you wish to use for the shape is specified in
terms of its associated colour number.

6·2

GRAPHICS WITH SIMONS' BASIC

6.4 PLOT TYPES

All SIMONS' BASIC graphics-plotting commands have one common feature. They
each require you to specify a 'plot type'. This simply tells the COMMODORE 64
how to plot each point. The plot types for both high-resolution and multi-colour
modes are listed below:

HIGH·RESOLUTION MODE

PLOT
TYPE

o
1
2

FUNCTION PERFORMED

Clears a dot.
Plots a dot on the screen.
Inverses a dot, i.e. turns a dot OFF if it is ON, or ON if it is
OFF.

MUL TI·COLOUR MODE

PLOT
TYPE

o
1

2

3

4

FUNCTION PERFORMED

Clears a dot.
Plots a dot in colour 1 of the MULTI/LOW COL command.

Plots a dot in colour 2 of the MULTI/LOW COL command.

Plots a dot in colour 3 of the MULTI/LOW COL command.

Inverses the dot colour, Le.:
A dot plotted in colour 0 changes to colour 3
A dot plotted in colour 1 changes to colour 2
A dot plotted in colour 2 changes to colour 1
A dot plotted in colour 3 changes to colour 0

6.5 GRAPHICS PLOTTING COMMANDS

6.5.1 COLOUR

FORMAT:

PURPOSE:

COLOUR bo,sc

To set up the screen background and border colours.

The COLOUR command allows you to specify the colour of the
screen background for a low-resolution screen and the the colour
of the border surrounding both low and high·resolution screens.
The parameter sc refers to the screen background colour and the
parameter bo to the border colour. Colours are selected by
specifying their associated colour numbers (see Section 6.3).

6·3

SIMONS' BASIC USER GUIDE

Note that the screen background for a low-resolution screen will
remain at the colour selected until the COLOUR command is
executed again using a different colour value. The background
colour of a screen containing high-resolution or multi-colour
graphics is selected using the HIRES command (see the following
section).

EXAM PLE: To specify a screen background colour of cyan and a border colour
of blue:

COMMAND: COLOUR 3,6 < RETURN>

RESULT: A cyan screen is displayed surrounded by a blue border.

6.5_2 HIRES

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

RESULT:

ACTION:

RESULT:

HIRES pC,sb

To initialize the high-resolution graphics mode and select a plotting
colour and screen background colour.

The HIRES command sets the screen into high-resolution graphics
mode, i.e all points are plotted pixel by pixel. The first parameter,
pc, is the colour number of the plotting colour you wish to use (see
Section 6.3). The second parameter, sb, specifies the background
colour of each 8 by 8 pixel square through which plotting takes
place. Note that there must be a space between the HIRES
command and its first parameter.

To select a plot colour of black on a white background:

1(J HIRES (J,1
2(J GOTO 2(J

RUN < RETURN>

A blank white screen is displayed.

Press the RUN/STOP key.

The normal screen appears.

6-4

6.5.3 REC

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

RESULT:

ACTION:

RESULT:

6.5.4 MULTI

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

GRAPHICS WITH SIMONS' BASIC

REC x,y, A, B ,plot type

To draw a rectangle.

The REC command draws a rectangular shape on a graphics screen.
The first parameters of the command (x,y) specify the coordinates
of the top left corner of the rectangle. The x indicates the distance
from the left edge and y from the top of the screen. The parameter
A indicates the distance from the top left to the top right corner

of the rectangle and B from the top left to the bottom left corner.
Plot type is as described in Section 6.4.

To draw a rectangle in high-resolution graphics at the top left corner
of the screen:

Hb HIRES O,1
20 REC 0,0,40,20,1
30 GOTO 30

RUN < RETURN>

A black rectangle is displayed.

Press the RUN/STOP key.

The normal screen is displayed.

HIRES pc,sb: MULTI c1,c2,c3

To initialize the multi-colour graphics mode and select three plotting
colours.

MULTI, when used following the HIRES command, will cause all
plotting to take place in multi-colour graphics mode, i.e. each point
plotted will be two pixels wide. The three parameters following
MULTI define the plot colours you wish to use. Each plot colour
is selected by referring to its position within the MULTI command
as the 'plot type' in a plotting commafld(see Section 6.4).

To enter the multi-colour graphics mode specifying black, red and
blue as the plotting clours and then draw three rectangles:

10 HIRES O,1: MULTI 0,2,6
30 REC 0,0,40,20,1
40 REC 20,20,40,20,2
50 REC 40,40,40,20,3
60 GOTO 60

6-5

SIMONS' BASIC USER GUIDE

TYPE:

RESULT:

ACTION:

RESULT:

6.5.5 NRM

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

RESULT:

RUN < RETURN>

One black, one red and one blue rectangle are drawn.

Press the RUN/STOP key.

The normal screen is displayed.

NRM

To return to a low·resolution screen from a graphics screen.

The NRM command allows you to clear a high·resolution or multi·
colour graphics display and return to a low·resolution screen.

Using the program from the previous section, to return to the normal
screen after the graphics screen has been displayed for five·
seconds:

H. HIRES IJ,1: MULTI IJ,2,6
3IJ REC IJ,IJ,4IJ,2IJ,1
4IJ R EC 2IJ,2IJ,4IJ,2IJ,2
5IJ R EC 4IJ,4IJ,4IJ,2IJ,3
6IJ PAUSE 5
7IJ NRM

RUN < RETURN>

Three rectangles are displayed for five seconds. The normal screen
then appears displaying READY and a flashing cursor.

6.5.6 LOW COL

FORMAT:

PURPOSE:

LOW COL c1,c2,c3

To change plotting colours.

LOW COL enables you to specify a different set of graphics plotting
colours from those originally selected with the HIRES or MULTI
commands.

NOTE
Because only two colours are used in high
resolution graphics plotting (see Section 6.5.2),
the third colour in the LOW COL command has
no effect in hi-res. However, three numbers must
be used in the LOW COL command irrespective
of what graphics mode has been initialized.

6-6

EXAMPLE:

ENTER:

TYPE:

RESULT:

EXAMPLE:

ENTER:

TYPE:

RESULT:

6.5.7 HI COL

FORMAT:

PURPOSE:

GRAPHICS WITH SIMONS' BASIC

To draw a black rectangle in high·resolution graphics mode and
shade the lines yellow:

1m HIRES m,1
2m LOW COL m,7,m
3m REC 2m,2m,6m,6m,1
4m PAUSE 5
5m NRM

RUN <RETURN>

A black rectangle is drawn on a white screen. Every 8 by 8 pixel
rectangle over which plotting has occurred is coloured yellow. After
five seconds, the normal screen is displayed.

To draw three rectangles in multi-colour graphics mode using each
of the original plot colours, then changing these colours and
drawing three rectangles in each of the new colours:

1m HIRES m,1: MULTI 2,3,6: Z = 1m
2m FOR X = 1 TO 3
3m REC 1m,Z,3m,3m,X
4m Z = Z + 4m: NEXT
5m LOW COL 4,5,7: Z = 1m
6m FOR X = 1 TO 3
7m REC 5m,Z,3m,3m,X
8m Z = Z + 4m: NEXT
gm PAUSE 5

1mm NRM

RUN <RETURN>

Six rectangles are drawn, each a different colour. After five seconds,
the normal screen is displayed.

HI COL

To revert to the originally selected plotting colours.

The HI COL command allows you to restore your original plotting
colours, i.e. those originally set up with the HIRES or MULTI
command, if LOW COL (see the previous section) has been used.

6·7

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTER:

TYPE:

RESULT:

6.5.8 PLOT

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

To draw nine rectangles in different colours:

10 HIRES 0,1: MULTI 2,3,6: Z = 10
20 FOR Y = 10 TO 50 STEP 40
30 FOR X = 1 TO 3
40 REC Y,Z,30,30,X
50 Z = Z + 40:NEXT X: Z = 10:LOW COL 4,5,7:NEXT Y
60 HI COL
70 FOR X = 1 TO 3
80 REC Y,Z,30,30,X
90 Z = Z + 40:NEXT

100 PAUSE 5
110 NRM

RUN < RETURN>

Three rectangles are displayed in the original plot colours, three
in the colours assigned with the LOW COL command and three
more, again using the original plot colours. After five seconds, the
normal screen is displayed.

PLOT x,y,plot type

To plot one dot.

PLOT plots a single dot on a graphics screen. The parameters x
and y specify the horizontal and vertical screen coordinates
respectively of the pOint to be plotted. Plot type is as described
in Section 6.4.

To plot a black dot in multi·colour graphics mode:

10 HIRES 0,1:MULTI 0,1,2
20 PLOT 80,100,1
30 PAUSE 5
40 NRM

RUN < RETURN>

A black dot is plotted at the centre of the screen. After five seconds,
the normal screen is displayed .

..

6·8

EXAMPLE:

ENTRY:

TYPE:

RESULT:

6.5.9 TEST

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

To plot a dotted curve:

1@ HIRES @,1
2@ FOR X = @ TO 32@ STEP .5
3@ Y = 1@@ + SIN(X/3@)*9@
4@ PLOT X,Y,1
5@ NEXT

1@@@ GOTO 1@@@

RUN < RETURN>

A black sine wave is drawn.

variable = TEST (x,y)

GRAPHICS WITH SIMONS' BASIC

To determine if something has been drawn at a screen location.

TEST allows you to examine the status of a location on a graphics
screen. The parameters x and yare the screen coordinates of the
point being tested. If a dot has been plotted at that pOint, the plot
type of the dot is returned (see Section 6.4). A value of @ is returned
if no dot is present. The dot may be any part of a graphics shape.

To generate a line that terminates when it touches another line:

1@ REM"··· EXAMPLE OF TEST •••
2@ HIRES @,1
25 FOR X = @ TO 2@@
3@ PLOT 2@@,X,1:NEXT
4@ FOR I = 1 TO 32@
5@ IF TEST(I,1@@) = 1 THEN 7@
6@ PLOT 1,1@@,1:NEXT
7@ PAUSE 5
8@ NRM

RUN < RETURN>

The horizontal line stops when it touches the vertical line. After five
seconds, the normal screen is displayed.

6·9

SIMONS' BASIC USER GUIDE

6.5.111 LINE

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

LINE x,y,x1,y1,plot type

To plot a line.

LINE draws a line from one point on the screen to another. The
parameters x and yare the screen coordinates of the start of the
line. The parameters x1 and y1 are the coordinates of the end of
the line. Plot type is as described in Section 6.4.

To draw a diagonal line across the screen:

10 HIRES 0,1
20 LI N E 0,0,320,200,1
30 PAUSE 5
40 NRM

RUN <RETURN>

A black line is drawn from the top left corner to the bottom right
corner of the screen. After five seconds, the normal screen is
displayed.

6.5.11 CIRCLE

FORMAT:

PURPOSE:

CIRCLE x,y,xr,yr,plot type

To plot a circular shape.

CIRCLE enables you to draw a circular shape on a graphics screen.
The parameters x and y specify the screen coordinates of the centre
of the shape you wish to draw. The parameters xr and yr indicate
the horizontal and vertical radii of the shape respectively. By varying
these radii, circles and ellipses of different sizes can be drawn. Plot
type is as described in Section 6.4.

NOTE
Because the screen is rectangular rather than
square, x and y radii of the same length will not
enable you to draw a perfect circle on the screen.
In order to do this in high·resolution mode, the
x radius must equal the y radius multiplied by 1.4
In multi·colour mode, the x radius must equal the
y radius multiplied by 1.6. However, if you wish
to dump a Multi·Colour or High·Resolution screen
containing circles on the printer, to obtain printed
round shapes, the values of the x and y radii must
be equal. See Section 7.13.2 for details of
printing.

6-10

EXAMPLE:

ENTRY:

TYPE:

RESULT:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

6.5.12 ARC

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

GRAPHICS WITH SIMONS' BASIC

To draw a circular shape in high-resolution mode:

1Q HIRES O,1
2Q CI RCLE 160,100,52,40,1
3Q PAUSE 5
40 NRM

RUN < RETURN>

A black circle is drawn in the centre of the screen. After five
seconds, the normal screen is displayed.

To draw an ellipse in multi-colour graphics mode:

10 HIRES 0,1:MULTI 2,3,4
20 CI RCLE 80,100,60,30,1
30 PAUSE 5
40 NRM

RUN <RETURN>

A red ellipse is drawn. After five seconds, the normal screen is
displayed.

ARC x,y,sa,ea,i,xr,yr,plot type

To draw an arc of a circular shape.

The ARC command enables you to draw part of the circumference
of a circular shape. The parameters x and yare the screen
coordinates of the centre of the circular shape from which the arc
is drawn. Parameters sa and ea define the start and end angles of
the arc respectively. The parameter i specifies the plotting
increment, i.e. the interval in degrees between each point on the
arc. To obtain a solid arc, this value is 1. A larger value separates
the dots that make up the arc. Parameters xr and yr indicate the
vertical and horizontal radii respectively of the circular shape of
which the arc is part. Plot type is as described in Section 6.4.

To draw two arcs of the same circular shape:

10 HIRES O,1
20 ARC 160,100,30,150,1,40,40,1
30 ARC 160,100,210,330,1,40,40,1
40 PAUSE 5
50 NRM

RUN < RETURN>

A pair of black 'brackets' is drawn. After five seconds, the normal
screen is displayed.

6-11

SIMONS' BASIC USER GUIDE

6.5.13 ANGL

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

ANGL x,y,angle,xr,yr,plot type

To draw the radius of a circle.

The ANGL command allows you to draw the radius of a circle
without having to display its circumference. The parameters x and
yare the screen coordinates of the centre of the circle. 'angle' is
the angle, in degrees, at which the radius is drawn relative to the
perpendicular, e.g. a radius drawn at an angle of 45 degrees would
be at the 3 o'clock position on a clock-face. Parameters xr and yr
are the horizontal and vertical radii respectively of the circular shape
of which the radius is part. Plot type is as described in Section 6.4.

To draw a wheel:

11) HIRES 0,1
20 CI RCLE 161),100,41) * 1.4,41),1
30 CIRCLE 160,11)1),45 * 1.4,45,1
40 FOR X = 0 TO 361) STEP 22.5
50 ANGL 161),11)1),X,41) * 1.4,41),1
61) NEXT
71) PAUSE 11)
81) NRM

RUN < RETURN>

A black 'spoked' wheel is drawn. After ten seconds, the normal
screen is displayed.

To draw a fan:

11) HIRES 1),1
21) FOR X = I) TO 171) STEP 5
31) ANG L 161),1 I)I),X,41),41), 1
41) NEXT
51) FOR X = 171) TO I) STEP-5
61) ANG L 161),11)1),X,41),41),1)
71) NEXT
81) PAUSE 11)
91) NRM

RUN < RETURN>

A fan is opened and then closed. After ten seconds, the normal
screen is displayed.

6·12

6.5.14 PAINT

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

GRAPHICS WITH SIMONS' BASIC

PAINT x,y,plot type (1a,1,2,30nly)

To fill an enclosed area with colour

PAINT fills in a graphics shape with the colour defined by plot type
(see Section 6.4). The area to be painted MUST be completely
enclosed or painting will take place over the whole screen. The area
to be painted Is specified by the x and y coordinates of ANY point
within its boundaries. In high-resolution mode, the same area may
only be painted once. This can be overcome by clearing the screen,
changing the plotting colours with the LOW COL command (see
Section 6.5.6) re·drawing the shape and then painting it again. In
multi·colour mode, the same area may be painted with a different
colour as often as you wish.

To draw a black rectangle and paint it in yellow:

11a HIRESIa,1
2eJ REC 121a,61a,41a,41a,1
3eJ LOW COL 7,1,eJ
40 PAINT 13eJ,7eJ,1
51a PAUSE 5
6eJ NRM

RUN < RETURN>

A black square is drawn in the centre of the screen and filled in
with yellow. After five seconds, the normal screen is displayed.

To draw a coloured pie chart:

11a HIRES 1a,1:MULTI 5,4,6
2eJ CI RCLE 8eJ,1 eJla,48, 78,1
31a ANGL 8eJ,1eJeJ,12eJ,48,78,1
41a ANGL 8eJ, 1eJeJ, 16eJ,48,78, 1
51a ANGL 81a, 1eJeJ,22eJ,48,78, 1
Sla ANGL 8eJ,1 laeJ,331a,48, 78, 1
71a PAINT 91a,35,1
81a PAINT SIa,SIa,3
91a PAINT 91a,12eJ,2

1la5 LOW COL 7,4,S
111a PAINT 81a, 11eJ, 1
12eJ PAUSE 5
131a NRM

RUN < RETURN>

A four-segment pie chart is drawn in the centre of the screen and
each segment is painted a different colour. After five seconds, the
normal screen is displayed.

6-13

SIMONS' BASIC USER GUIDE

6.5.15 BLOCK

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

6.5.16 DRAW

FORMAT:

PURPOSE:

BLOCK x,y,x1,y1,plot type

To draw a fully shaded block of colour.

The BLOCK command draws a rectangle and fills it with colour all
at the same time. This single command performs the same function
as drawing a rectangle with the REC command and colouring it with
the PAINT command. The BLOCK command carries out both
operations at once. Note, however, that with BLOCK, the colour of
the sides of the rectangle are the same as that of the inside of the
shape.

The BLOCK command is useful if you wish to create several
adjacent blocks of different colours without separating them with
lines. The parameters x and y specify the top left·hand corner of
the block of colour you wish to display. Parameters x1 and y1 are
the coordinates of the bottom right-hand corner of the block. Plot
type is as described in Section 6.4.

To draw two blocks in different colours:

10 HIRES 0,1: MULTI 2,6,1
20 BLOCK 10,50,50,90,1
30 BLOCK 51,50,90,90,2
40 PAUSE 5
50 NRM

RUN < RETURN>

A red block is displayed adjacent to a blue block. After five seconds,
the normal screen is displayed.

DRAW .. nnnnnnn 9",x,y,plot type

To design a shape.

The DRAW command allows you to design a shape and then display
it on the screen. The shape is designed in the same way as drawing
a picture on a piece of paper without removing the pencil. There
is, however, one important difference - you can instruct the
COMMODORE 64 to move the pencil and not make a mark. (See
Section 6.5.17 for an example.)

6·14

EXAMPLE:

ENTRY:

RESULT:

6.5.17 ROT

FORMAT:

PURPOSE:

GRAPHICS WITH SIMONS' BASIC

The x and y parameters in the DRAW command are the coordinates
of the point on the screen where the drawing of the shape begins,
I.e. its origin. Each n within the quotation marks Is an instruction
telling the COMMODORE 64 how to move the pencil when drawing
the shape. A maximum of 74 Instructions can be placed within the
quotation marks on anyone program line. You may, however, add
strings of instructions together up to a maximum of 255. To continue
the shape thereafter, a new origin must be specified beginning
where the previous string ended. Each instruction and Its
corresponding number is shown below:

NUMBER INSTRUCTION

o Move one pixel to the right.
1 Move one pixel up.
2 Move one pixel down.
3 Move one pixel to the left.
5 Move one pixel to the right and plot a dot.
6 Move one pixel up and plot a dot.
7 Move one pixel down and plot a dot.
8 Move one pixel to the left and plot a dot.
9 Stop drawing.

Note that the instructions above merely design a shape. The shape
cannot be drawn until the DRAW and ROT commands are both
incorporated into the program (see the following section), i.e the
DRAW command specifies the shape and the ROT command
generates it. Plot type is as described in Section 6.4.

To deSign a bell:

10 A$ = "5757575787878757575757575
7777777777777575757575757578888888888888"

20 A$ = A$ + "8888888888888865656565656565
6666666666666"

30 A$ = A$ + "565656565656868686565656"

When this section of the program is run, the design Instructions
for a bell are stored In the variable A$.

ROT r,s

To display a shape in a specified orientation and size.

The ROT command allows you to display a shape created by the
DRAW command (see the section above) at a specified angle of
rotation in a defined size. The parameter r specifies by how much
the shape is to be rotated relatiVi:! to the perpendicular about its
origin, i.e. the point on the screen from which the shape was drawn.
This value of r (range (J thru 7) defines the angie of rotation as shown
in the table below:

6-15

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

TYPE:

RESULT:

ROTATION NUMBER

(j

DEGREES OF ROTATION

(j
1 45
2 9(j
3 135
4 18(j
5 225
6 27(j
7 315

The second parameter in the ROT command defines the displayed
size of the shape you have designed. A "1" in this position indicates
that the shape is to be displayed at normal size, i.e. each parameter
in the draw command represents one pixel. Any increase in this
figure causes a corresponding increase in size.

NOTE
If you specify too large a size for the shape you
have designed, it will disappear from the screen
when it is displayed. Always ensure therefore
that this figure is kept at a realistic level.

To display, in normal and enlarged size, the shape designed in the
previous section:

1(j A$ = ~'5757575787878757575757575
7777777777777575757575757578888888888888"

2(j A$ = A$ + "8888888888888865656565656565
6666666666666' ,

3(j A$ = A$ + "565656565656868686565656"
4(j HIRES (j,1
45 FOR Y = (j TO 7
5(j FOR X = 1 TO 3
6(j ROT Y,X
7(j DRAW A$, 16(j,8(j, 1
8(j PAUSE 1
9(j DRAW A$,16(j,8(j,(j
1(j(j NEXT:NEXT
11(j FOR X = 3 TO 1 STEp·1
115 FOR Y = 7 TO (j STEp·1
12(j ROT Y,X
13(j DRAW A$,16(j,8(j,1
14(j PAUSE 1:DRAW A$,16(j,8(j,(j:NEXT:NEXT
15(j GOTO 45

RUN < RETURN>

A bell is displayed at seven different angles of rotation in three sizes

6·16

6.5.18 CSET

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

EXAMPLE:

ENTRY:

GRAPHICS WITH SIMONS' BASIC

CSET n

To select either of the COMMODORE 64 character sets or recall
and display the last graphics screen.

The CSET command serves one of three functions depending on
the value of the parameter n. CSET II allows you to select the
COMMODORE 64 Upper Case/Graphics character set. CSET 1
enables you to select the Upper/Lower Case character set. CSET
2 re-displays the last graphics screen that was shown.

NOTE
When recalling a multi-colour graphics screen,
you must always follow CSET 2 with the
command MULTI (see Section 6.5.3) using the
same parameters that were originally assigned
to this command.

To print a string using alternate character sets:

111 PRINT"<SHIFT CLR/HOME>"
211 PRINT AT (12,14)"SIMONS' BASIC"
311 CSET 1:PAUSE 1:CSET II:PAUSE 1
411 GOTO 111

RUN < RETURN>

The character string "SIMONS' BASIC" is displayed at the centre
of the screen first in upper case and then lower case letters.

To re-display a previously created high-resolution screen:

111 HIRES 1I,1:MULTI 11,4,6
15 FOR I = 1 TO 211
211 A = INT(911 * RND(1)) + 2: B = INT(911 * RND(1)) + 2
25 C = INT(911 * RND(1)) + 2: 0 = INT(611 * RND(1)) + 2
27 P = INT(3 * RND(1)) + 1
311 REC A,B,C,D,1
35 PAINT A + 1,B + 1,P
37 NEXT I
411 PAUSE 2:CSET II
511 PRINT"<SHIFT CLR/HOME> PRESS ANY KEY TO RE-DISPLAY"
611 PRINT"«CURSOR DOWN»THE LAST SCREEN"
711 GET A$: IF A$ = "" THEN 7(1
8(1 CSET 2: MULTI (1,4,6: PAUSE 2:CSET (I
9(1 GOTO 511

6·17

SIMONS' BASIC USER GUIDE

TYPE:

RESULT:

ACTION:

RESULT:

RUN < RETURN>

2Q coloured squares are drawn on a multi-colour graphics screen.
After a short delay. the normal screen appears with the message
PRESS ANY KEY TO RE-DISPLAY THE LAST SCREEN.

Press any key.

The graphics screen Is re-displayed.

6.6 PRINTING TEXT ON A GRAPHICS SCREEN

6.6.1 CHAR

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

CHAR x,y,poke code,plot type,size

To print a character on a graphics screen.

The CHAR command allows you to display text character by
character on a high-resolution or multi-colour graphics screen. The
parameters x and y specify the location of the character on the
screen. The next parameter in the command Is the 'poke' code of
the character you wish to display. (A full list of poke codes is
contained in your COMMODORE 64 User's Guide.) Plot type is as
described in Section 6.4. The last parameter in this command
specifies the height of the character in the range 1 thru 8. A "1"
in this position indicates that the character is to be displayed at
its normal size, i.e. eight pixels high. Any increase in this figure
causes a corresponding increase in character height, e.g. a value
of 3 would display the character at a height of 24 pixels. The width
of characters CANNOT be varied.

NOTE
User-defined graphics characters CANNOT be
used on a high-resolution or multi-colour
graphics screen.

To display characters at twice their normal size:

1Q REM"*** EXAMPLE OF CHAR ***
2Q HIRES Q,1
3Q FOR J = 1 TO 12
4Q FOR I = (I TO 4(1
5Q CHAR I * 8, A,I + J * 4(1,1,2
6(1 NEXT:A = A + 15: NEXT
70 PAUSE 5
8Q NRM

6·18

SIMONS' BASIC USER GUIDE

TYPE:

RESULT:

6.6.2 TEXT

FORMAT:

or:

PURPOSE:

RUN < RETURN>

The entire COMMODORE 64 character set is displayed at double
its normal height. After a five second delay, the normal screen is
displayed.

TEXT x,y,"(CTRL a) character string",plot type,s,i

TEXT x,y, "(CTRL b) character string" ,plot type,s,i

To print a character string on a graphics screen.

TEXT enables you to print character strings on a graphics screen.
The parameters x and y specify the screen coordinates of the first
letter of the string. The next parameter is the string itself. The
control character preceding the string indicates whether the text.
is to be displayed in upper or lower case letters. To display text
in upper case:

1. Type the first set of quotation marks.

2. Hold down the CTRL key and press the 'a' key. (A reverse·
field 'A' is displayed.)

3. Enter the character string.

4. Type the last set of quotation marks.

To display text in lower case:

1. Type the first set of quotation marks.

2. Hold down the CTRL key and press the 'b' key. (A reverse·
·field '8' is displayed.)

3. Enter the character string.

4. Type the last set of quotation marks.

You may also mix upper and lower case letters in the same string.
To do this, hold down the CTRL key and press the 'a' key before
the characters you wish to display in upper case, and hold down
the CTRL key and press the 'b' key before the characters you wish
to display in lower case.

6·19

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

RESULT:

Plot type is as described in Section 6.4. The parameter s specifies
the height of each character in the string in the range 1 thru 8. A
"1" in this position specifies normal-sized characters. Any increase
in this figure causes a corresponding increase in character size,
e.g. if you specified a character size of 8, the text would be displayed
at eight times its normal height. The width of characters CANNOT
be changed. The last parameter i, defines the number of pixels
between each character in the string. For normal spacing, this figure
is 8. Any increase in this figure creates a correspondingly larger
space between characters.

To display two character strings on a high-resolution screen:

1~ REM"··· EXAMPLE OF TEXT •••
2~ HIRES ~,1
3~ FOR I = 1 TO 3~
4~ X = INT(32~ * RND(1)):Y = INT(2~0 * RND(1))
5~ LINE 160,100,X,Y,1:NEXT
60 TEXT 60,20,"<CTRL B>TEXT ON THE HIRES SCREEN",1,2,8
7~TEXT 20,180,"<CTRL A>ANYWHERE <CTRL B>YOU LIKE
!", 1, 1,16
80 PAUSE 5
90 NRM

When the program is run, a series of random lines are drawn. Two
messages are then displayed, the first in lower case using
characters at eight times their normal size, the second in upper and
lower case using double spaces between letters.

6·20

SCREEN MANIPULATION

SECTION SEVEN
SCREEN MANIPULATION

7.1 INTRODUCTION

Several comprehensive low-resolution graphics and screen data-handling features
are included in SIMONS' BASIC.

The BCKGNDS command allows you to define the colour of the background of a
character. The FLASH command switches characters in a defined colour into reverse
field and then back again at a specified interval. BFlASH flashes the border
surrounding the screen in a similar fashion. OFF terminates the FLASH command.

The FCHR command enables a defined area of the screen to be filled with a selected
character. The FCOl command fills a specified section of the screen with a
designated colour. Fill combines these commands by enabling you to fill a defined
area of the screen with a specific character in a particular colour.

The MOVE command duplicates a specified section of the screen at another screen
location. The INV command enables you to inverse the characters in a specified
section of the screen, i.e. change normal characters into reverse-field and vice-versa.

The COPY command allows you to print the contents of a graphics screen using
your Commodore serial printer. HRDCPY carries out the same function for normal
screen data.

The SCRSV command enables you to store a low resolution screen. SCRlD allows
you to recall and display a stored screen.

Section Seven also contains commands for scrolling a defined area of the screen
in a designated direction. This may be done with wrap round, i.e. letters scrolling
off of one side of the defined area and re-appearing at the other, or with blanking,
i.e. letters scrolling off the defined area but not re-appearing.

Note that the commands in this section may be used in direct mode or as part of
a program.

7·1

SIMONS' BASIC USER GUIDE

7.2 BCKGNDS

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

BCKGNDS sc,b1,b2,b3

To change the background colour of a character.

When each character on the keyboard is displayed, it occupies an
8 by 8 pixel square on the screen. (A pixel is the smallest
addressable point on the screen.) The colour of the square is
normally that of the rest of the screen (except of course if the
character is displayed in reverse-field). The BCKGNDS command
allows you to change the colour of this square both for the regular
screen and for reverse field. Note that only those characters
inscribed on the top of each key may be used with the BCKGNDS
command. Graphics characters CANNOT be used.

The parameter sc of the BCKGNDS command defines the colour
of the screen. The next three parameters specify the background
colour of a shifted character, a reverse-field unshifted character
and a reverse-field shifted character respectively.

To print a message using three different character background
colours: (Note that in the following program the characters in italics
must be typed with the SHIFT key held down.)

1fJ PRINT"<SHIFT CLR/HOME>"
2fJ BCKGNDS 1,3,5,6
3fJ PRINT"THIS IS AN EXAMPLE":PRINT
40 PRINT"<CTRL RVS ON>OF THE SIMONS' BASIC":PRINT
50 PRINT"<CTRL RVS ON > BCKGNDS COMMAND":PRINT

RUN < RETURN>

Three lines of text are displayed, the first on a cyan background,
the second on green and the third on blue.

7·2

7.3 FLASH

FORMAT:

or:

PURPOSE:

FLASH colour,speed

FLASH colour

To flash a screen colour.

SCREEN MANIPULATION

The FLASH command enables you to alternate a specific screen
colour between normal and reverse field display either once every
four seconds or at a defined speed. This defined speed can range
from 1 thru 255. Each unit of speed is approximately one sixtieth
of a second and, once initialized, flashing continues until the OFF
command (see the following section) is used. Note that FLASH
cannot be used on a high-resolution or multi-colour graphics screen.

EXAMPLE: To flash, at a defined speed, those areas of the screen coloured red:

ENTRY: 1Q PRINT"<SHIFT CLR/HOME>"
2Q PRINT AT(12,1Q)"WHY,<CTRU3> HELLO <CTRU1 >THERE"
3Q FLASH 2,1Q

1QQQ GOTO 1QQQ

TYPE: RUN < RETURN>

RESULT: The word "HELLO" flashes on and off continuously approximately
every sixth of a second.

EXAMPLE: To cause those areas of the screen coloured black to flash every
four seconds:

ACTION: Enter the program from the previous section and then list it on the
screen.

COMMAND: FLASH Q <RETURN>

RESULT: The program listing flashes on and off every four seconds.

7·3

SIMONS' BASIC USER GUIDE

7.4 OFF

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

OFF

To turn the FLASH command off.

OFF terminates the FLASH command. Note that the resulting colour
of the characters that have been flashed depends on when the OFF
command is used.

To turn off the FLASH command in the program above:

10 PRINT"<SHIFT CLR/HOME>"
20 PRINT AT(12,10)"WHY,<CTRU3> HELLO <CTRU1 >THERE"
30 FLASH 2,10
40 PAUSE 10
50 OFF
60 PRINT AT(12,10)"WHY,<CTRU3> HELLO <CTRU1>THERE"

RUN < RETURN>

The word "HELLO" flashes for ten seconds only.

7.5 BFLASH

FORMAT:

or

PURPOSE:

BFLASH speed,c1,c2

BFLASH 0

To flash, or turn off flashing, the screen border.

BFLASH allows you to flash the border surrounding the
COMMODORE 64 screen. The first parameter in the command
specifies the flashing speed in the range 1 thru 255. Each unit is
approximately one sixtieth of a second. The parameters c1 and c2
are the numbers of the colours with which the border will be flashed.
BFLASH 0 turns flashing off. Note that the resulting colour of the
border depends on when the command is executed.

EXAMPLE: To flash the border in red then blue:

COMMAND: BFLASH 25,2,6 <RETURN>

RESULT: The screen border flashes continuously, first in red, then in blue,
changing about every third of a second.

7·4

EXAMPLE:

ENTRY:

TYPE:

RESULT:

7.6 FCHR

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

SCREEN MANIPULATION

To flash the screen border and then turn flashing off:

10 BFlASH 25,2,6
20 PAUSE 5
30 BFlASH °

1000 GOTO 1000

RUN < RETURN>

The border flashes in red then blue for five seconds.

FCHR r,c,w,d,code

To fill an area of the screen with a character.

The FCHR command enables you to fill a defined area of the screen
with a specific character. The parameters rand c are the row and
column coordinates of the start of the screen to be filled. Rows are
numbered ° to 24 and columns from ° to 39. The parameters wand
d define the width and depth of the screen area respectively. Width
is measured in characters and depth in rows. The last command
parameter is the 'poke' code of the character you wish to display.
(A full list of poke codes is contained in your COMMODORE 64
User's Guide.)

To display a block of 'A's:

10 PRINT"<SHIFT ClR/HOME>"
15 FCOl 0,0,10,10,0
20 FCHR 0,0,10,10,1
30 GOTO 20
RUN < RETURN>

A ten by ten block in the top left corner of the screen is filled with
A's.

7·5

SIMONS' BASIC USER GUIDE

7.7 FeOl

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

7.8 Fill

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

FCOL r,c,w,l,colour

To change a character colour.

The FCOL command changes the colour of all characters in a
specified screen area to a defined colour. As in the FCHR command
(see the previous section), the first four command parameters define
the area of the screen you wish to use. The last parameter is the
number of the new colour for each character that appears in this
area. (A list of colour numbers appears in Section 6.3 of this manuaL)

To change the character colour from black to red:

1/J PRINT"<SHIFT CLR/HOME>"
15 FCOL 12,15, 1/J, 1/J,/J
2/J FCHR 12,15,1/J,1/J,1
3/J FCOL 12,15,5,5,2
RUN <RETURN>

A block of 1/J/J As is displayed. One quarter are coloured red, the
remainder are black.

FILL r,c,w,l,code,colour

To fill a defined area on the screen with a specific character in a
particular colour.

FILL allows you to fill a defined area of the screen with characters
of a specific colour and type. As in the FCHR command (see Section
7.6), the first four parameters in the FILL command define the area
of the screen to be used. The next parameter is the poke code of
the character to be displayed. (A list of poke codes appears in your
COMMODORE 64 User's Guide.) The final parameter in the FILL
command is the colour in which you wish to display the character.

To display solid blocks of colour:

1/J REM"··· EXAMPLE OF FILL •••
2/J PRINT"<SHIFT CLR/HOME>"
3/J X = INT(4/J * RND(1»:Y = INT(25 * RND(1»
4/J X1 = INT(2/J * RND(1» + 1:Y1 = INT(15 * RND(1» + 1
5/J IF X + X1 > 4/J OR Y + '('1 > 25 THEN 3/J
6/J FILL Y,X,X1,Y1,16/J,INT(16 * RND(1»:GOTO 3/J

7·6

TYPE:

RESULT:

ACTION:

RESULT:

7.9 MOVE

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

ACTION:

RESULT:

SCREEN MANIPULATION

RUN < RETURN>

Blocks of different colour are displayed in random positions on the
screen.

Hold down the RUN/STOP key and press the RESTORE key.

The normal screen is displayed.

MOVE r,c,w,l,dr,dc

To duplicate a section of the screen.

MOVE enables you to re-display a defined block of the screen
elsewhere on the screen. The first four command parameters define
the screen area you wish to reproduce (see Section 7.S). The last
two parameters specify the row and column coordinates of the top
left corner of the area into which the information will be reproduced.

NOTE
The depth of the screen area to be duplicated
added to the row number of the area into which
the information is to be reproduced must not
exceed 25, i.e. the height of the screen. Likewise,
the width of the area to be duplicated plus the
column number of the area into which the data
is to be reproduced must not be greater that 411,
i.e. the width of the screen. If you exceed these
totals, the message "BAD MODE" will be
displayed and you must re-enter the MOVE
command again.

To duplicate a block of text:

1Q REM"*** EXAMPLE OF MOVE ***
2Q PRINT"<SHIFT CLR/HOME> <CTRU1 > PRESS SPACE BAR"
3Q PRINT"<CTRL 2>TO MOVE THIS AREA"
4Q PRINT"<CTRL 3>TO ANOTHER PART"
5Q PRINT"<CTRL 4>OF THE SCREEN."
SQ GET A$:IF A$ < >" " THEN 6f)
7Q MOVE Q,Q,17,5,15,2f)
8Q GOTO 8Q

RUN <RETURN>

Press the Space Bar.

The message in the top left corner of the screen is duplicated in
the bottom right.

7-7

SIMONS' BASIC USER GUIDE

7.10 INV

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

ACTION:

RESl:JLT:

ACTION:

RESULT:

INV r,c,w,1

To inverse a specified screen area.

The INV command causes all normal characters within a defined
screen area to be displayed in reverse field. Any character already
displayed in reverse field will be displayed normally. (Note to the
more advanced programmer: the INV command simply sets or clears
bit 7 of the character.)

To inverse a block of text:

10 REM"·· ·EXAMPLE OF INV •••
20 PRINT"<SHIFT CLR/HOME> PRESS THE SPACE BAR
30 PRINT"TO INVERSE THIS"
40 PRINT"AREA OF SCREEN!"
50 GET A$:IF A$ < >" "THEN 50
60 INV 0,0,19,4
70 GOTO 50

RUN < RETURN>

Press the space bar.

The message shown is displayed in reverse field.

Press the space bar again.

The message is displayed normally.

7·8

SCREEN MANIPULATION

7.11 SCROLLING

FORMAT:

or:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

direction W,sr,sc,ec,r

direction B,sr,sc,ec,er

To scroll an area of the screen.

SIMONS' BASIC provides a command to enable you to scroll
specified areas of screen data in anyone of four directions. The
first parameter in a scrolling command specifies the direction of
scrolling - LEFT, RIGHT, UP or DOWN.

The second command parameter is either a W or a B to indicate
scrolling with 'wrap round' or 'blanking' respectively. If a section
of the screen is scrolled with 'wrap round', any characters within
the specified screen area will scroll off the edge of this area and
re-appear at the opposite edge. 'Blanking' differs from 'wrap round'
in that characters that are scrolled off the screen do not re-appear.

The parameters sr and sc in a scrolling command define the row
and column coordinates of the start of the area you wish to scroll.
Parameters ec and er specify the column and row coordinates of
the end of the scroll area. ScrOlling commands may be combined
in order to scroll different areas of the screen in varying directions.
The maximum height and width of any scroll area cannot exceed
24 lines down and 23 characters across respectively. Note that
scrolling cannot be used on high-resolution or multi-colour graphics
screens.

To scroll two areas of the screen in different directions:

1~ PRINT"<SHIFT CLR/HOME>"
2~ FOR X = ~ TO 39
3~ Y = INT(1~ * SIN(X/7I')) + 12
4~ PRINT AT(X,Y)"·"
5~ NEXT
6~ LEFTW ~,~,2~,25: RIGHTW ~,2~,2~,25
7~ GOTO 6~

RUN < RETURN>

A curved line is scrolled across the screen in both directions at the
same time.

7·9

SIMONS' BASIC USER GUIDE

7.12 STORING AND RECALLING SCREEN DATA

7.12.1 SCRSV

FORMAT:

or:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

SCRSV 2,8,2,"name,S,W"

SCRSV 1,1,1,"name"

To store data from a low-resolution screen.

The SCRSV command allows you to store the data from a low
resolution screen on cassette or diskette. The first figure following
the command is a logical file number. This tells the COMMODORE
64 to open a channel to the disk drive or cassette unit. The second
figure specifies the storage device you wish to use. This number
is 1 for cassette or 8 for diskette. The third figure is a secondary
address. This is a special instruction telling the computer how to
store the information. For example, a secondary address of 1 for
cassette, instructs the COMMODORE 64 that a file is to be written
and that an end-of-file marker is to be placed at the end of the tape
when the file is closed. The 'name' is the title you wish to give to
the screen data. This name must be unique for each screen you
store. You may then use this name in the SCRLD command (see
the following section) to recall and display the stored data. The
parameter S indicates that the file being accessed is sequential.
W instructs the COMMODORE 64 that this file is to be written to
rather than read from. When stored, each screen occupies
approximately five blocks. Note that the parameters are separated
by commas and quotation marks are placed around name and S,W.

The SCRSV command cannot be used to store high-resolution or
multi-colour graphics.

To draw the French Tricolor and save it on diskette:

10 PRINT"<SHIFT CLR/HOME>"
20 FILL 6,10,20,4,160,2
30 FI LL 10,10,20,4,160,1
40 FI LL 14,10,20,4,160,6
50 SCRSV 2,8,2,"TRICOLOR,S,W"
80 GOTO 80 .

RUN < RETURN>

The flag is drawn and then stored on the diskette.

7·10

7.12.2 SCRlD

FORMAT:

or:

PURPOSE:

EXAMPLE:

TYPE:

RESULT:

SCREEN MANIPULATION

SCRLD 2,8,2,"name"

SCRLD 1,1, 0, "name"

To recall stored screen data.

The SCRLD command allows you to recall and display a screen that
has been stored with the SCRSV command (see the previous
section). The first figure following the command is a logical file
number. This tells the COMMODORE 64 to open a data channel to
the disk drive or cassette unit. The second figure after the command
specifies the device on which the data has been stored. This number
is 1 for cassette or 8 for diskette. The third figure is a secondary
address. This is a special instruction telling the computer that the
information is to be loaded into the same area of memory that it
occupied before it was stored. The title you assigned to the screen
data is the final parameter and must be enclosed in quotation
marks.

To recall and display the screen data stored on diskette in the
program in the previous section:

SCRLD 2,8,2, "TRICOLOR" < RETURN>

The Tricolor is recalled from diskette and redrawn on the screen.

7.13 PRINTING SCREEN DATA

7.13.1 INTRODUCTION

SIMONS' BASIC provides two commands which enable you to use a serial printer
to reproduce information from either normal or graphics screens. These commands
are extremely useful in artwork design or for producing graphs and histograms in
statistical representation.

7.13.2 COpy

FORMAT:

PURPOSE:

COpy

To produce a hard copy of a graphics screen.

COPY outputs the contents of a graphics screen on a serial printer.
Note that if you have used the CIRCLE command (see Section 6.5.9)
to draw perfect circles on the screen, the radii you have defined
for these circles must be changed in order to produce the same
display on the printer. To print a perfect Circle, the x radius must
equal the y radius. To display the screen again, simply change the
x radius back to its original value.

7·11

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

TYPE:

RESULT:

To display a distorted ple-chart on a hlgh·resolutlon screen and then
produce a round chart on the printer:

1Q HIRES Q,1:MULTI 5,4,6
2Q CIRCLE 8Q,1QIJ,78,78,1
3IJ ANGL 80,1IJIJ,12IJ,78,78,1
4Q ANGL 8Q,1IJQ,16IJ,78,78,1
5Q ANGL 80,1QQ,22Q,78,78,1
6Q ANGL 8Q,1QQ,33Q,78,78,1
7Q PAINT 90,35,1
8IJ PAINT 60,6IJ,3
9Q PAINT 90,12Q,2.
1Q5 LOW COL 7,4,6
11Q PAINT 8IJ,11Q,1
12Q COPY

1 QQQ GOTO 1 QIJ0

RUN <RETURN>

A flattened ple·chart Is displayed on the screen and then a correct
circle is printed.

7.13.3 HRDCPY

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

RESULT:

HRDCPY

To print a hard copy of a low·resolution screen.

HRDCPY enables you to reproduce a low resolution screen on a
serial printer. This command is most useful in printing forms,
Invoices etc.

To print a message, first on the screen and then on the printer:

1Q PRINT"<SHIFT CLR/HOME>"
2Q PRINT AT(5,8)"SIMONS' BASIC":PRINT
3Q PRINT"THE ULTIMATE IN BASIC AIDS"
4Q HRDCPY
5Q END

RUN < RETURN>

The data Is displayed on the screen and then printed on the
Commodore printer.

7·12

SPRITE AND USER·DEFINED GRAPHICS

SECTION EIGHT
SPRITE AND USER-DEFINED GRAPHICS

8.1 INTRODUCTION

Section Eight contains those commands concerned with the generation and
animation of 'sprltes' and the creation of user-defined graphics. The section Is
divided into two parts, one for each of these topics.

8.2 SPRITES

8.2.1 INTRODUCTION

A sprite is a programmable object that can be made Into a variety of shapes. This
object can be moved around the screen by simply telling the computer where the
sprite should be placed. (A more detailed description of sprites can be found in
your COMMODORE 64 User's Guide.)

A sprite in SIMONS' BASIC is called a 'moveable object block' or MOB. Up to eight
independent MOBs can be displayed and animated on the screen at anyone time.
MOBs can be displayed on normal and graphics screens. There are two types of
MOB - high-resolution and multi-colour. A high-resolution MOB Is 24 dots wide and
21 dots deep. Each dot on this type of MOB is one pixel wide. A multi-colour MOB
is 12 dots wide and 21 dots deep. Here, each point is two pixels wide. A high
resolution MOB can be painted with any ONE of the 15 COMMODORE 64 colours.
Multi-colour MOBs can be painted with up to THREE different colours.

In standard BASIC, generation and animation of sprites requires many POKE
commands. SIMONS' BASIC replaces POKEs with simple, easy-to-use BASiC-type
commands.

The DESIGN command is used to specify the location in the memory of the
COMMODORE 64 where the data for each MOB is stored. Each MOB is then
designed on a grid within your program listing so that you can see its shape before
it is used. MOBs can be used on a normal screen or in conjunction with high
resolution and multi-colour graphics. The MOB SET command sets-up a specified
MOB and assigns its primary colour. CMOB is used to assign two extra colours
for use when designing a multi-colour MOB. The MMOB command allows you to
display and/or move a selected MOB to a specified screen location. RLOCMOB
enables you to move a displayed MOB from one screen location to another. The
DETECT and CHECK commands are used to determine whether a MOB has collided
with another MOB or an item of screen data.

8·1

SIMONS' BASIC USER GUIDE

Note that the commands In this section can only be used as part of a program.

The examples used In this section of the manual all build towards a complete
program which displays two MOBS on the screen. Therefore, do not use the NEW
command between examples and do not run the program until told to do so.

8.2.2 DESIGN

FORMAT:

or:

PURPOSE:

DESIGN c,ad

DESIGN c,sa + gc

To allocate memory space for a MOB.

The DESIGN command reserves sufficient space in the
COMMODORE 64's memory for the MOB you are creating. Each
MOB uses 64 bytes of memory. The first parameter In the DESIGN
command specifies whether the mob is In high-resolution or multi
colour mode. A "1" In this position Indicates multi-colour and a "Q"
high-resolution. The second parameter, ad, defines the start address
of the first byte of MOB data. This number must be a multiple of
64 within the range 2Q48 to 16319 and can be entered in decimal
or hexadecimal form. A hexadecimal number must be preceded by
a dollar sign ($). If a MOB is to be used on a high-resolution graphics'
screen, you must add a graphics-constant value of 49152 decimal
or $CQQQ hexadecimal to this figure.

Each 64-byte area of available MOB memory Is called a Block. If
you divide the MOB data start-address by 64, you will produce a
Block Number. This number is used within the MOB SET command
(see Section 8.2.3) to set up the MOB.

NOTE
The graphics constant figure MUST NOT be
added to the start address when calculating a
block number.

The areas available within the COMMODORE 64's memory for MOB
data and the associated block numbers are listed below:

BLOCK NUMBERS

32 - 63
128 - 255

MEMORY LOCATIONS

2Q48 - 4Q95
8192 - 16383

If you have used the MEM command (see Section 8.3.1), only Blocks
192 thru 255 are available for MOB data.

8-2

EXAMPLE:

ENTRY:

RESULT:

EXAMPLE:

ENTRY:

RESULT:

8.2.3 @

FORMAT:

or:

PURPOSE:

SPRITE AND USER·DEFINED GRAPHICS

NOTE
You may set up as many MOBs as the memory
of the COMMODORE 64 can accommodate.
However, you may only display up to eight MOBs
at a time. If, during the course of a program, you
wish to get rid of one MOB and create another
in its place, simply design the new MOB using
the start address of the MOB you are replacing.

To allocate memory space for a high-resolution MOB on a normal
screen:

9(1 DESIGN (1,2(148

When the multi-colour MOB is created, its data is stored from
memory location 2(148 onwards in Block 32, i.e. 2(148 divided by 64.

To allocate memory space for a multi-colour MOB on a normal
screen:

32(1 DESIGN 1,2112

When the high resolution MOB is created, its data is stored from
memory location 2112 in Block 33, i.e. 2112 divided by 64.

@

@

To set up the design grid for a MOB.

The @ command allows you to set up a grid for the design of a
MOB. The grid is 24 dots wide for high-resolution MOBs and 12 dots
wide for multi-colour MOBs. In both cases, the grid is 21 lines deep.

NOTE
Ensure that each line number for the grid is the
same length, i.e. two digits or four digits. By
doing this, you will avoid indentation of part of
the grid, thus facilitating the MOB design
process.

As explained in Section 8.1, one colour can be used for high
resolution MOBs and three colours for multi-colour MOBs. The high
resolution MOB colour and the primary colour for a multi-colour
MOB are defined in the MOB SET command (see the following
section). The two additional multi-colour MOB colours are assigned
with the CMOB command (see Section 8.2.4). The colours for each
point on the MOB are assigned by using one of the characters on
the table below:

8-3

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

RESULT:

HIGH·RESOLUTION MOBS

COLOUR CODE

B

COLOUR USED

The colour assigned In the MOB SET
command

MULTI·COLOUR MOBS

COLOUR CODE

B
C

D

COLOUR USED

Colour 1 In the CMOB command
The colour assigned in the MOB SET
command
Colour 2 In the CMOB command

You may of course also use the screen background colour In either
type of MOB by simply not entering a character.

To design a hlgh·resolutlon MOB:

5 PRINT"<SHIFT CLR/HOME"
10 REM"*** EXMiPLE OF f10BS ***"
80 REM"*** DESIGN THE HOBS ***"
90 DESIGN 0,2048
100 @ ••••••••• BBBBB ••••••••••
110 @ •••.•••• BB ••• BB •••••••••
120 @ ••••••• BB ••••• BB ••••••••
130 @ •••••.•• BB ••• BB •••••••••
140 @ ••••••••• BBBBB ••••••••••
150 @ ••••••••••• B ••••••••••••
160 @ •••• BBBBBBBBBBBBBBBB ••••
170 @ •••• BBBBBBB.BBBBBBBB ••••
180 @ •••• BBBBBB •• BBBBBBBB ••••
190 @ ••• BBB •• BBB.BBB •• BBBB •••
200 @ ••• BBB •• BBB.BBB •• BBBB •••
210 @ ••• BBBBBBB ••• BBBBBBBB •••
220 @ •• BBBBBBBBBBBBBBBBBBBB ••
230 @ •• BBB ••• B ••• B •• BBB.BBB ••
240 @ •• BBBB.BB.B.B.B.BB.BBB ••
250 @.BBBBB.BB.B.B.BB.B.BBBB.
260 @.BBBBB.BB ••• B.BBB •• BBBB.
270 @.BBBBBBBBBBBBBBBBBBBBBB.
280 @.BBBBBBBBBBBBBBBBBBBBBB.
290 @ ••••••••••••••••••••••••
300 @ ••••••••••••••••••••••••

When this section of the program Is run, the drawing within the grid
Is stored as MOB data in memory block 32.

EXAMPLE:

ENTRY:

RESULT:

8.2.4 CMOB

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

To design a multi·colour MOB:

320 DESIGN 1,2112
400 @ BB
410 @ •.•.. BCDB •••
420 @ •••. BBCCCBBB
430 @ ..• BBCCCR ..•
440 @ ..•.• BCB ••••
450 @.BB .• BCB ••••
460 @BCCB.BCB ...•
470 @.BCB.BCB •..•
480 @ .• BB.BCB
490 @ ... BBCCCB •••
500 @ .. BDCDCDCB •.
510 0.BDCDCDCDCB.
520 @.BCDCDCDCCB.
530 @ •• BCDCDCBB ..
540 @'" BBBBR .•.•
550 @ •••• B •• B ...•
560 @ ... B •..• B .••
570 @ •• B •••••• B ••
580 @ •.. B •.•••• B.
590 @ •• BBB •••. BBB
600 @ B •.•.. B

SPRITE AND USER·DEFINED GRAPHICS

When this section of the program is run, the drawing within the grid
is stored as MOB data in memory block 33.

CMOB c1,c2

To set up colours for a multi·colour MOB.

The CMOB command allows you to define the two additional
colours for a multi-colour MOB, i.e. the colour of those pOints on
the MOB drawn with the letters Band D in the MOB grid (see Section
8.2.3).

Continuing with the program above, to assign the colours black and
green to the multi-colour MOB:

61" CMOB ",5

When the multi·colour MOB is displayed, a" pOints drawn with B
are black and a" those drawn with D green.

8·5

SIMONS' BASIC USER GUIDE

8.2.5 MOB SET

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

EXAMPLE:

ENTRY:

RESULT:

MOB SET mb,blk,col,pr,res

To set up a MOB

The MOB SET command, as its name suggests, initializes a MOB.
The parameter mb specifies the number of the MOB you are setting
up. This number must be unique for each MOB. The lower the MOB
number the greater its priority over other MOBs, i.e. if two or more
MOBs are travelling across the screen, a MOB with a lower number
passes over a MOB with a higher number.

The second parameter of the MOB SET command, blk, defines the
memory block from which the MOB data will be taken (see Section
8.2.2). The next parameter, col, defines the main MOB colour, i.e.
the colour to assign to each point on the MOB drawn with a B in
high-resolution mode or a C in multi-colour mode.

The parameter, pr, specifies the priority of the MOB over screen
data, i.e. whether you wish the MOB to pass OVER or UNDER other
characters on the screen. A "0" in this position gives the MOB
priority over screen data, a "1" gives screen data priority over MOBs.
The last parameter in the MOB SET command, res, indicates
whether the MOB was created in multi-colour or high-resolution
mode. A "1" in this position indicates multi-colour; "0" defines high
resolution.

To set up the high-resolution MOB in the program from the previous
section:

700 MOB SET 0,32,0,1,0

When this section of the program is executed, the high-resolution
MOB number 0 in memory block 32 is initialized. When displayed, .
the MOB is coloured black and passes over all screen data.

To set up the multi-colour MOB in the program from the previous
section.

710 MOB SET 1,33,2,0,1

When this part of the program is executed, the multi-colour MOB
numbered 1 in memory block 33 is set up. When displayed, the MOB
has a main colour of red and passes over all screen data.

8·6

8.2.6 MMOB

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

SPRITE AND USER·DEFINED GRAPHICS

M MOB mn,x1 ,y1 ,x2,y2,expansion,speed

To display and/or move a MOB.

The MMOB command allows you to display a MOB at one point
on the screen and then, if you wish, move it to another location.
The first parameter, mn, specifies the number of the MOB you wish
to display and move. The parameters x1 and x2 are the coordinates
of the point on the screen where the MOB will be displayed before
it is moved. Parameters x2 and y2 indicate the MOB destination
point after movement has taken place. If you do not wish to move
a MOB but merely display it, simply use the same coordinates for
both the start and end screen locations.

Expansion refers to the size of the MOB when it is displayed. The
expansion numbers and resulting display sizes are shown on the
table below:

EXPANSION RESULT

° The MOB is displayed in normal size

2

3

The MOB is expanded in the x axis, Le.
displayed at twice its normal width

The MOB is expanded in the y axis, Le.
displayed at twice its normal height

The MOB is expanded in both axes, Le.
displayed at twice its normal width AND height

Speed specifies the rate at which the MOB will travel. This number
must be in the range 1 thru 255: 1 is the fastest speed, 255 is the
slowest.

To move the MOBs in the program above:

800 MMOB 1,0,0,200,200,2,20
810 MMOB 0,0,0,185,70,3,20

When this section of the program is run, the high-resolution MOB,
expanded in the y axis, is displayed at the top of the screen. The
multi-colour MOB appears at twice its normal size at the bottom
of the screen. .

8·7

SIMONS' BASIC USER GUIDE

8.2.7 RLOCMOB

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:·

8.2.8 DETECT

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RLOCMOB mn,x,y,expansion,speed

To move a MOB between two screen locations.

RLOCMOB enables you to move a displayed MOB to a different
location on the screen. The parameters x and yare the screen
coordinates of the point to which the MOB will be moved. The other
parameters are the same as those used In the MMOB command
(see the previous section).

To relocate both MOBs In the program above:

82(J FOR I = 1 TO 2(J:X = 1511 * INT(RND(1» + 5G
83G RLOCMOB 1,X,2(JG,2,1G
84G RLOCMOB (J,X-15,7(J,3,1(J
85(J NEXT
When this part of the program Is run, the two MOBs appear to chase
each other across the screen.

DETECT n

To Initialize MOB collision detection.

The DETECT command turns on MOB collision detection. A value
of G assigned to n causes the COMMODORE 64 to detect collision
between one MOB and another. If 1 Is used as the command
parameter, collision detection between MOBs and screen data Is
Initialized. Note that the DETECT command must always be used
TWICE. The command Is first used to clear the area in the
computer's memory which Indicates whether collision has taken
place. (This area Is called the 'sprite collision register'.) The second
time the command Is used, collision detection Is Initialized.

To clear the sprite collision register In the program above:

825 DETECT (J

8.2.9 CHECK

FORMAT:

or:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

SPRITE AND USER·DEFINED GRAPHICS

IF CHECK (mn1,mn2) = Q THEN action

IF CHECK (Q) = Q THEN action

To check for MOB collision.

The CHECK command is used to test for collision between MOBs
or between a MOB and screen data. The MOBs on which you wish
to test for collision are indicated within the brackets following the
command.

A parameter of zero within the brackets causes the COMMODORE
64 to check for collision between any sprite and screen data. If
collision has occurred, the defined action is taken.

To scroll the high·resolution MOB down the screen and check for
collision between it and the multi·colour MOB:

858 FOR P = 7Q TO 2Q0
859 DETECT 0:IF CHECK(Q,1) = Q THEN 865
86Q RLOCMOB Q,X . 15,P,3,1Q: NEXT

When this section of the program is run, the action specified in line
865 (see the following section) is carried out when one MOB touches
the other MOB.

8.2.10 MOB OFF

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

ACTION:

RESULT:

MOB OFF mn

To clear a MOB from the screen.

The MOB OFF command blanks a MOB from the screen. The
parameter mn specifies the number of the MOB you wish to remove.

To complete the program above:

855 PRINT AT(X/8+ 2,20)"OH SH ... "
856 PAUSE 1
865 PRINT AT(X/8 + 2,20)"OH SHUCKS!!"
87Q PAUSE 1
875 MOB OFF 1:RLOCMOB Q,X·15,196,3,1Q

RUN <RETURN>

Watch the Birdie!!

The road·runner is crushed by the weight. (Apologies to all bird
lovers.)

8·9

SIMONS' BASIC USER GUIDE

8.3 CREATING USER·DEFINED CHARACTERS

8.3.1 INTRODUCTION

SIMONS' BASIC provides a facility to enable you to replace existing keyboard
characters with user-defined characters of your own.

The COMMODORE 64 character set is held In ROM, i.e. Read Only Memory. In order
to re-define these characters, the character set must be moved into RAM, i.e.
Random Access Memory. The MEM command carries out this function. The DESIGN
command allows you to specify the character you wish to re-deflne in terms of Its
poke code. (A full list of poke codes is contained In your COMMODORE 64 User's
Guide.) Each character Is designed within a grid. This allows you to view the
character as It Is being created. Note that user-deflned characters CANNOT be used
on a graphics screen.

8,3.2 MEM

FORMAT:

PURPOSE:

MEM

To move the character ROM to RAM.

The MEM command moves the character set in ROM Into RAM
behind the Kemal. The screen Is moved to location $CCOO and sprite
data may only be inserted from location $FIJIJIJ, i.e. Block 192,
onwards (see Section 8.2.1). To revert back· to the original
COMMODORE 64 character set, simply hold down the RUN/STOP
key and press the RESTORE key.

Figures 8.1 and 8.2 show the configuration of the COMMODORE
64's memory before and after the MEM command has been used.

SPRITE AND USER·DEFINED GRAPHICS

$EOOO - $WFF = KERNlIL IVM/HIRES &:REFN
$0000 - $DFFF = VITJFD/f!DJND/IO/OOIDJR RAM
$COOO - $CFFF = SPARE RAM BUFFER
$AOOO - $BFFF = OPERATIlC SYSTEM

$8000 - $9FFF = CARI'RIOOE SPACE

$0800 - $7FFF = USER PRl3RAM ARm

$0400 - $07FF = U1tl RES &:REFN/SPRITE POmrERS

$0200 - $03FF = VECroRS/'I1IPE BUFFER El'C.
$0100 - $01FF = STACK
$0000 - $OOFF = ZEro PAGE

FIGURE 8·1 MEMORY CONFIGURATION BEFORE MEM

$EOOO - $WFF = KERNlIL/HIRES &:REFN/SPRITE MTA
$0000 - $DFFF = VIDID/fDJND/IO/COWJR RAM
$COOO - $CFFF = IDW RES &:REFN/SPARE RAM
$AOOO - $BFFF = OPERATlm SYSTEM

$8000 - $9FFF = CARI'RIOOE SPJICE

$0800 - $7FFF = USER PRl3RAM ARm

$0400 - $07FF = SPRITE POINI'ERS

$0200 - $03FF = VECroRS/'I1IPE BUFFER El'C.
$0100 - $01FF = STACK
$0000 - $ooFF = ZEro PAGE

FIGURE 8·2 MEMORY CONFIGURATION AFTER MEM

8-11

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

RESULT:

8.3.3 DESIGN

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

NOTE
The TRACE command (see Section 2.11.1) cannot
be used If a program contains the MEM
command.

To move the character ROM to RAM:

10 MEM

When this section of the program Is run, the COMMODORE 64
character set Is moved to RAM in preparation for re-deflnltion of
characters.

DESIGN 2,$E01J1J + ch * 8

To specify the character which a user-defined graphics character
is to replace.

The DESIGN command allows you to define the character which
Is to be replaced by a user-defined character of your own. Note that
there Is also a DESIGN command associated with sprite graphics
(see Section 8.2.1) using a different format.

User-defined characters can only be used on a low-resolution
screen. The digit 2 following the DESIGN command tells the
COMMODORE 64 that user-deflned character data will follow. Each
new character occupies 8 bytes of memory. The hexadecimal figure·
$E00G is the start address of the character data. The parameter ch
Is the poke code of the existing character that you wish to change.
(A list of poke codes can be found In your COMMODORE 64 User's
Guide.) The new character is designed within an 8 by 8 grid (see
the following section). It is displayed each time you use the key
that Is inscribed with the character that has been replaced.

To re-deflne the character "Z":

20 DESIGN 2,$E01J0 + 26 * 8

When the graphics character has been created, It Is displayed each
time the letter "Z" Is used.

1M2

8.3.4 @

FORMAT:

EXAMPLE:

ENTRY:

ACTION:

DISPLAY:

ACTION:

RESULT:

SPRITE AND USER·DEFINED GRAPHICS

@ .•....••

The @ command allows you to set up a grid for the design of a
user·defined graphics character. The grid is 8 dots wide and 8 lines
deep. The new character is designed by placing a letter 'B' over
the appropriate dot on the grid.

NOTE
Ensure that each line number for the grid is the
same length, i.e. two digits, three digits or four
digits. By doing this, you will avoid indentation
of part of the grid and facilitate the character
design process.

To design a 'top hat' character:

20 DESIGN 2,$EOOO + 26 * 8
30 @ ••••••••
40 @ ••••••••
50 @ •• BBBB ..
60 @ .. BBBB ..
70 @ .. BBBB •.
80 idRBBBBBBB
90 @BBBBBBBB
30 @ ••••••••

Type RUN <RETURN>

READY

Press the Z key a few times.

The 'top hat' character is displayed.

To revert to the original COMMODORE 64 character set, simply hold
down the RUN/STOP key and press the RESTORE key.

8·13

STRUCTURED PROGRAMMING

SECTION NINE
STRUCTURED PROGRAMMING

9.1 INTRODUCTION

One of the main problems when programming in standard BASIC is the lack of a
structured flow to the more involved programs. The use of GOTOs and GOSUBs
causes all but the simplest program listings to become incomprehensible - even
to the program's author! This illegibility can be eased partially with the use of
multiple REM statements to explain what each routine does. This is not only tlme
consuming but also uses up a great deal of memory space.

SIMONS' BASIC removes these problems with special structured programming
commands. These commands largely obviate the need for GOTOs and GOSUBs
in your BASIC programs. For example, the PROC command is used to label each
program routine you use. (This function equates to Paragraph naming in the
Procedure Division in COBOL.) These routines are executed using either the CALL
or E,XEC commands.

The structure of FOR. .. NEXT loops is also changed. The REPEAT ... UNTIL command
allows you to execute a procedure a defined number of times. The LOOP ... EXIT
IF ... END LOOP provides multiple condition-testing within a loop. The normal
IF ... THEN condition test now includes ELSE to enable you to simplify specification
(on the same program line) of the routes to be taken if an expression matches or
does not match a pre-defined condition. The RCOMP command allows you to use
the previous IF ... THEN ... ELSE condition test without having to re-enter the code.

Note that the commands in this section may only be used as part of a program.

9.2 CONDITION TESTING AND PROGRAM LOOPS

9.2.1 IF .•. THEN ... ELSE

FORMAT:

PURPOSE:

IF condition THEN true:ELSE:false.

To test for a condition and branch to one Instruction if the condition
is true or to another instruction if the condition is false.

The IF ... THEN ... ELSE command acts in a similar way to the standard
BASIC IF ... THEN condition test. The one important difference is
that branches to specific sections of code can be made for both
true and false results to the test (on the same program line). Note
that ELSE must always be separated from the preceding and
following code with a colon (:).

9·1

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

TYPE:

ACTION:

RESULT:

To check the response to a question:

11) PRINT"DO YOU OWN A COMMODORE COMPUTER?"
21) PRINT "PLEASE ANSWER YES OR NO (YIN)"
31) FETCH "<CLR HOME>",1,A$
4CIJ IF A$ = "Y" THEN 6CIJ
51) IF A$ = "N" THEN 7C1J:ELSE:GOTO 3CIJ
6CD PRINT "CONGRATULATIONS":END
71) PRINT "COMMISERATIONS":END

RUN <RETURN>

When prompted, press either the 'y' or 'n' keys followed by
<RETURN>.

The appropriate message is displayed depending on whether Y or
N is pressed. Any other key results in no action.

9.2.2 REPEAT UNTIL

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

REPEAT loop UNTIL condition is met.

To perform a program loop until a specified condition is met.

REPEAT UNTIL carries out the same function as a FOR ... NEXT
loop in standard BASIC except that instead of specifying how many
times the code is to be executed at the start of the loop, the number
of loops is determined by a condition test at the end of the code.
REPEAT starts the loop; UNTIL tests for a condition, e.g. X>11),
which, when true, causes the program to leave the loop. If the
condition is not met, the loop is re·executed.

WARNING
YOU MAY NOT HAVE MORE THAN NINE
NESTED LOOPS. IF YOU EXCEED THIS FIGURE,
THE MESSAGE "? STACK TOO LARGE" IS
DISPLAYED.

To print the letters of the alphabet from A to G:

11) A = 65
21) REPEAT:PRINT CHR$(A):A = A + 1:UNTIL A> 71)
31) PRINT "DONE!"

9·2

TYPE:

DISPLAY:

9.2.3 RCOMP

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

DISPLAY:

TYPE:

DISPLAY:

TYPE:

DISPLAY:

RESULT:

RUN <RETURN>

A
B
C
D
E
F
G
DONE!

RCOMP:true:ELSE:false

STRUCTURED PROGRAMMING

To re·execute the last IF ... THEN ... ELSE condition test.

RCOMP causes the the most recently defined IF ... THEN ... ELSE
condition test in a program to be repeated. This removes the
necessity of having to re-enter the same code again.

To repeat the same condition test three times:

1Q INPUT A
2Q IF A = 1Q THEN PRINT "HELLO ";:ELSE: PRINT "BYE ";
3Q RCOMP:PRINT "MIKE ";:ELSE:PRINT "STRANGER ";
40 RCOMP:PRINT "WELOCME":ELSE:PRINT "SEE YOU AGAIN I

HOPE"
5Q GOTO 1Q

RUN < RETURN>

?

1Q <RETURN>

HELLO MIKE WELCOME

5 <RETURN>

BYE STRANGER SEE YOU AGAIN I HOPE

When a figure is typed, this input is tested three times producing
the display appropriate to the value entered.

9·3

SIMONS' BASIC USER GUIDE

9.2.4 LOOP .•. EXIT IF ••• END LOOP

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

TYPE:

DISPLAY:

TYPE:

DISPLAY:

TYPE:

DISPLAY:

RESULT:

LOOP program loop EXIT IF condition true END LOOP

To perform a continuous loop until a specified condition is met.

LOOP ... EXIT IF ... END LOOP performs a program loop In a similar
way to the command REPEAT ... UNTIL (See Section 9.2.2) with one
important difference. REPEAT...UNTIL only allows condition testing
at the end of the loop. LOOP ... EXIT IF ... END LOOP allows any
number of condition tests to be made within the loop. If a condition
is met, the program EXITs to the statement following END LOOP.
If the condition is not met, the program loop is re-executed.

WARNING
YOU MAY NOT HAVE MORE THAN FIVE
NESTED LOOPS. IF YOU EXCEED THIS FIGURE,
THE MESSAGE "? STACK TOO LARGE" IS
DISPLAYED.

To get a character between A and F from the keyboard:

111 PRINT"ENTER A LEITER BETWEEN A AND F"
211 LOOP
311 GET A$:IF A$ = "" THEN 311
411 EXIT IF ASC(A$) <65
511 EXIT IF ASC(A$»711
611 PRINT A$;
65 END LOOP
711 PRINT CHR$(13)"NOT IN RANGE":END

RUN < RETURN>

C <RETURN>

C

B <RETURN>

CB

S <RETURN>

NOT IN RANGE

The keyboard is scanned and all letters in the range defined are
displayed on the screen. A letter outside the range causes the
program to leave the loop.

9-4

STRUCTURED PROGRAMMING

9.3 PROGRAM PROCEDURES

9.3.1 INTRODUCTION

To facilitate the writing of more structured code, SIMONS' BASIC provides four
commands which enable you to label BASIC program routines and then call these
routines by name when they are required. To a great extent, this removes the
necessity of having to use GOTOs and GOSUBs in your programs. These routines
are called 'procedures'. Any procedure that is used frequently in different programs
can be stored in a procedure 'library' and then loaded when required. The PROC
command (see Section 9.3.2) is used to assign names to procedures. These are
then either executed With the CALL command (see Section 9.3.4) or with the EXEC
command (see Section 9.3.5). The CALL command acts in the same way as the
standard BASIC GOTO command, i.e the program jumps to the start of the procedure
and continues execution from that pOint. The EXEC command acts like a GOSUB,
i.e. the program jumps to the named procedure and then returns to the program
line following the EXEC command when the procedure has been completed. The
completion of the latter must always be indicated by the END PROC command (see
Section 9.3.3), which acts in the same way as RETURN in standard BASIC.

The examples used in this section of the manual all build towards a complete
program. Therefore, do not use the NEW command between examples and do not
RUN the program until told to do so.

WARNING
YOU MAY NOT HAVE MORE THAN FIVE NESTED
PROCEDURES. IF YOU EXCEED THIS FIGURE, THE
MESSAGE "? STACK TOO LARGE" IS DISPLAYED.

9.3.2 PROC

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

PROC name

To label a program routine.

PROC enables you to label program routines and then call these
routines by name when they are required. All characters on the line
following the PROC command are taken as the name of the
procedure. Therefore, PROC and the procedure name must not be
followed by any other code on the same program line. .

To assign the label "INPUT NAME" to a program routine:

1fJfJ PROC INPUT NAME

When the program is run, the code following this line forms a
procedure called INPUT NAME.

9·5

SIMONS' BASIC USER GUIDE

9.3.3 END PROC

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

9.3.4 CALL

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

END PROC

To indicate the end of a procedure.

END PROC Indicates the end of a 'closed' procedure, i.e. one to
be called by the EXEC command (see Section 9.3.5). This command
acts In the same way as RETURN in standard BASIC, i.e. when the
procedure ends, the program returns to the line following that on
which the procedure was called.

To set up a procedure for entering the user's name Into a variable:

1(1(1 PROC INPUT NAME
11(1 PRINT "WHAT IS YOUR NAME"
120 FETCH "<CLR/HOME>",15,A$
130 END PROC

When the program is run, the INPUT NAME procedure can be called
using the EXEC command (see Section 9.3.5).

CALL procedure name

To transfer program execution to a specific line of code.

The CALL command acts In the same way as GOTO in standard
BASIC except that a procedure name is ·used in place of a line
number. Everything that follows CALL on the same program line
is used as the name of the procedure being called. Therefore, CALL
and the procedure name must not be followed by any other code
on the same program line. The procedure called must be 'open',
i.e. one that does not contain END PROC.

The start of a Sort program:

1(1 PRINT"<SHIFT CLR/HOME>"
2(1 PRINT"HOW MANY NAMES DO YOU WISH TO SORT?'
30 PRINT"NO MORE THAN 15 NAMES"
32 PRINT"AND NO LONGER THAN TEN CHARACTERS"
34 PRINT"FOR EACH NAME"
40 FETCH"<CRSR DOWN>",2,X
45 IF X > 10 AND X < 16 THEN DIM A$(X)
50 IF X < 16 THEN CALL ENTER NAMES
55 GOTO 10
60 PROC ENTER NAMES
7(1 FOR I = 1 TO X
80 FETCH" <CLR/HOME > ", 1(1,A$(I):PRINT TAB(2(1)"OK"
9(1 NEXT

If the number of names entered is less than 16, the pr
continues from the procedure ENTER NAMES in line 60.

9·6

9.3.5 EXEC

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

ACTION:

RESULT:

STRUCTURED PROGRAMMING

EXEC procedure name

To call a program routine and return to the line following the call
when the procedure has been completed.

EXEC performs the same function as GOSUB in standard BASIC,
i.e. the program jumps to a specific section of code, executes the
code and then returns to the line following EXEC when END PROC
(see Section 9.3.3) is reached. Everything that follows EXEC on the
same program line is taken as the name of the procedure being
called. Therefore, EXEC and the procedure name must not be
followed by any other code on the same program line.

To complete the Sort program from the previous section.

1QQ EXEC SORT
11Q PRINT"<SHIFT CLR/HOME CRSR/DOWN>"
12Q FOR I = 1 TO X:PRINT TAB(2Q)A$(I):NEXT
13Q END
14Q:
15Q:

1QQQ PROC SORT
1Q2Q M = 1
1Q3Q REPEAT
1Q4Q T = Q:FOR I = 1 TO N . M
1Q5Q IF A$(I) < A$(I + 1) THEN 1Q7Q
1Q6Q W$ = A$(I):A$(I) = A$(I + 1):A$(I + 1) = W$:T =
1Q7Q NEXT I
1Q8Q M = M + 1
1Q9Q UNTIL T = Q
111Q END PROC

RUN < RETURN>

When prompted, enter up to 15 names, pressing RETURN between
each name.

The names are sorted and then displayed.

9·7

SIMONS' BASIC USER GUIDE

9.4 PROGRAM VARIABLES

9.4.1 INTRODUCTION

The use of variables in standard BASIC can become confusing when many variables
are required for different purposes. SIMONS' BASIC resolves this problem by
allowing you to use the same variable in two ways· locally within a specific program
routine or globally throughout the whole program. This reduces the number of
variables you need and, consequently, frees more memory space so that you can
write and run longer programs.

The value of each variable within a BASIC program changes depending on when
and where the variable is used. The LOCAL command allows you to store the values
currently held by the variables, clear them and then use the same variable names
within a specific section of code. The GLOBAL command restores the values
contained by the variables before the LOCAL command was executed.

9.4.2 LOCAL

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

LOCAL variable1, variable2, variable3

To assign variables to a specific program routine.

The LOCAL command allows you clear the values of previously
defined variables on a temporary basis and then use these variables
locally within a specific program routine. The GLOBAL command
(see the following section) restores the original values to the
variables.

WARNING
THE VARIABLES DEFINED WITH THE LOCAL
COMMAND MUST HAVE PREVIOUSLY BEEN
DECLARED. FAILURE TO ADHERE TO THIS
WARNING WILL RESULT IN THE PROGRAM
'HANGING', i.e. NO FURTHER EXECUTION WILL
OCCUR. YOU MUST THEN PRESS THE
RUN/STOP AND RESTORE KEYS TO BREAK OUT
OF THE PROGRAM.

To assign variables locally:

1Ql REM"··· EXAMPLE OF LOCAL •••
2Ql PRINT"<SHIFT CLR/HOME>"
3/J A$ = "INITIAL VALUE":A% = 123:A = 456.7
4/J LOCAL A$,A % ,A
5/J A$ = "NEW VALUE ":A% = 789:A = 321.4
6/J PRINT A$,A%,A

TYPE:

DISPLAY:

RESULT:

9.4.3 GLOBAL

,FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

TYPE:

DISPLAY:

RESULT:

RUN <RETURN>

NEW VALUE 789

STRUCTURED PROGRAMMING

321.4

The values originally assigned to the variables are stored. New
values are then assigned to the variables and these values printed.

GLOBAL

To restore original values to local variables.

The GLOBAL command causes all variables that have been used
locally within a program routine to be cleared. The values they held
before the LOCAL command was used (see the previous section)
are then re·assigned.

Using the program from the previous section, to restore GLOBAL
values to locally used variables:

10 REM"*** EXAMPLE OF LOCAUGLOBAL ***
20 PRINT"<SHIFT CLR/HOME>"
30 A$ = "INITIAL VALUE":A% = 123:A = 456.7
40 LOCAL A$,A%,A
50 A$ = "NEW VALUE ":A% = 789:A = 321.4
60 PRINT A$,A%,A
70 GLOBAL
80 PRINT A$,A%,A

RUN <RETURN>

NEW VALUE 789 321.4

INITIAL VALUE 123456.7

The values assigned to the variables before the LOCAL command
were used are restored.

9-9

$ECTION TEN
ERROR TRAPPING

ERROR TRAPPING

10.1 INTRODUCTION

SIMONS' BASIC provides commands to trap program errors in order to prevent your
BASIC programs from 'crashing'. The ON ERROR command allows you to branch
to a specified point in the program should an error be found. The variable ERRLN
contains the number of the program line on which the error has occurred and the
variable ERRN contains the error number. By testing the value held in ERRN, you
can then take appropriate action, including, if you wish, the generation and display
of your own error message. OUT turns off the most recently used ON ERROR
command. The NO ERROR command returns you to the normal COMMODORE 64
error-handling routines.

10.2 ON ERROR

FORMAT: ON ERROR: GOTO line number

PURPOSE: To trap program errors.

The ON ERROR command allows you to trap BASIC program errors
to prevent your programs from 'crashing'. When an error is found,
the program jumps to the line specified with the GOTO. The error
number is held in the variable ERRN. The line in which the error
ha~ occurred is held in the variable ERRLN. By testing the value
held in ERRN, you can check to see which error has occurred and
then take any necessary action including, if you wish, the display
of an error message of your own.

NOTE
After testing for a specific error and taking the
appropriate action, you must always use the OUT
command (see the following section) before
continuing program execution. This command
must also be used if you have stopped a program
containing the ON ERROR command and wish
to edit some of your code.

The errors that can be trapped by SIMONS' BASIC and the
associated error numbers are shown below:

11J-1

SIMONS' BASIC USER GUIDE

EXAMPLE:

ENTRY:

TYPE:

DISPLAY:

RESULT:

ERROR NUMBER

1
2
3
4
5

10
11
12
13
14
15
16
17
18
19
20
21
22
23

ERROR

Too many files
File open
File not open
File nQUound
Device- not present
Next without for
Syntax
Return without gosub
Out of data
ltIegar quantity
Overflow
Out of memory
Undefined statement
Bad subscript
Re-dimensioned array
Division by zero
Illegal direct
Type mismatch
String too long

In the examples that follow, please type In the information EXACTLY
as shown. The typing mistakes are deliberate and are included to
demonstrate the use of the SIMONS' BASIC error-trapping
commands.

To trap a SYNTAX error and display a user-defined error message:

5 REM"*** EXAMPLE OF ERROR HANDLING ***
10 ON ERROR: GOTO 100
15 PRIN"<SHIFT CLR/HOME>"
20 READ B
25 PRINT B: GOTO 20
30 DATA 1,2,3,4,5

100 IF ERRN = 11 THEN PRINT"SPELLING MISTAKE IN
LINE";ERRLN

RUN < RETURN>

SPELLING MISTAKE IN LINE 15

Because the spelling of the BASIC keyword PRINT is wrong, the
program has jumped to the error-handling routine at line 100. The
program Is searched for a SYNTAX error, I.e. error number 11.
Because this error has occurred, the user-defined error message
is displayed.

10-2

ACTION:

DISPLAY:

EXAMPLE:

TYPE:

ACTION:

TYPE:

DISPLAY:

RESULT:

10.3 OUT

FORMAT:

PURPOSE:

EXAMPLE:

ACTION:

Press the RUN/STOP key.

READY

To trap an OUT OF DATA error:

OUT < RETURN>

ERROR TRAPPING

(The OUT command is explained in the following section.)

Correct the spelling error in line 15 of the program example from
the previous section and then enter the following line of code:

11~ IF ERRN = 13 THEN PRINT"NOT ENOUGH INFORMATION
IN LlNE";ERRLN

RUN < RETURN>

1
2
3
4
5
NOT ENOUGH INFORMATION IN LINE 2~

Because there are only five items of data, the program jumps to
the error-trapping routine at line 1~~ when an attempt is made to
read item number six. Line 11~ tests for error 13, i.e. OUT OF DATA
and, because this error has occurred, displays the defined error
message.

OUT

To disable the last ON ERROR command.

OUT turns off the most recently used ON ERROR command. This
command must always be used if you wish to return to the
COMMODORE 64 error-handling routine that has been trapped by
the ON ERROR command.

Using the program example from the previous section, to turn off
the ON ERROR command:

Enter the following revised line of code:

2~ READ B: J = J + 1: IF J = 5 THEN OUT

10-3

SIMONS' BASIC USER GUIDE

TYPE:

DISPLAY:

RESULT:

RUN <RETURN>

1
2
3
4
5
?OUT OF DATA ERROR

As there are only four items of data, the program crashes when an
attempt is made to read item number 5. The COMMODORE 64
message applicable to this type of error is then displayed.

10.4 NO ERROR

FORMAT:

PURPOSE:

EXAMPLE:

ACTION:

ACTION:

DISPLAY:

NO ERROR

To re-enable the COMMODORE 64 error-handling routines.

The NO ERROR command turns off ALL the SIMONS' BASIC error
trapping commands and returns control to the COMMODORE 64
error-handling routines.

Using the program from the previous section, to return error
handling control to the COMMODORE 64:

Enter the following revised lines of code:

15 PRIN"<SHIFT CLR/HOME>"
100 NO ERROR:IF ERRN = 11 THEN PRINT"SPELLING MISTAKE
IN LlNE";ERRLN

Type RUN < RETURN>

SYNTAX ERROR IN LINE 100

10-4

MAKING MUSIC WITH SIMONS' BASIC

SECTION ELEVEN
MAKING MUSIC WITH SIMONS' BASIC

11.1 INTRODUCTION

Among the attractive features of the COMMODORE 64 is its music·synthesizing
capability. With practice and experience, it is possible to reproduce the sounds
of many different musical instruments. The music and sound attributes of the
COMMODORE 64 are extensive. SIMONS' BASIC has not been designed to utilise
all these features. The sound and music commands supplied by the cartridge are
intended primarily to introduce you to the art of sound programming on the
COMMODORE 64. If you wish to further your music programming skills on
Commodore computers, please ask your local dealer for details of the special
software and books that deal with this subject.

11.1.1 SOUND SHAPING

Different sounds are produced by different frequencies. The higher the frequency,
the higher the note produced. Most personal computers have an audio capability
but unlike most others, the COMMODORE 64 gives you the ability to 'shape' each
frequency. Shaping simply means telling the computer how each part of a frequency
should be played. The volume of a musical note or sound changes from when you
first hear it until it dies out and you cannot hear it anymore. All frequencies are
generated in four cycles: ATTACK, DECAY, SUSTAIN and RELEASE. These cycles
together form a sound 'envelope'. The function of each cycle within the envelope
is described below:

ATTACK

This determines the rate at which a frequency rises from zero to peak volume.

11·1

SIMONS' BASIC USER GUIDE

DECAY

This defines the rate at which the frequency falls from its peak volume to a middle·
ranged volume level.

SUSTAIN

This determines the mid-range volume.

RELEASE

This determines the rate at which the frequency falls from the SUSTAIN level to
zero volume.

For the purposes of clarification, a diagram representing a sound envelope is shown
In Figure 11-1.

SUSTAIN LEVEL--

,
I '

A : D: S

FIGURE 11-1 A SOUND ENVELOPE

11.1.2 SOUND WAVES

The COMMODORE 64 allows you to select the type of sound wave that you wish
to use to play the music or sound effects you have created. Each type of sound
wave produces a different effect. The waveforms and the effects they produce are
described below. A diagram of each waveform is also shown.

TRIANGLE

This waveform is low in harmonics and has a mellow flute-like quality.

FIGURE 11-2 A TRIANGULAR SOUND WAVE

11·2

MAKING MUSIC WITH SIMONS' BASIC

SAWTOOTH

The Sawtooth waveform is rich in harmonics and has a bright, brassy quality.

v[7V
FIGURE 11·3 A SAWTOOTH SOUND WAVE

PULSE/SQUARE

The Pulse/Square waveform enables you to produce various tones ranging from
bright, hollow sounds to nasal, reedy pulses. .

FIGURE 11·4 A PULSE/SQUARE WAVE

11·3

SIMONS' BASIC USER GUIDE

NOISE

As its name suggests, this waveform produces various types of noise for special
sound effects.

FIGURE 11·5 A NOISE WAVE

11.1.3 PROGRAMMING SOUND

In standard BASIC, playing music or creating special sound effects on the
COMMODORE 64 requires the use of multiple POKE commands. This can be tedious
and time·consuming but with SIMONS' BASIC, this is no longer a constraint. Special
music and sound commands provided by the cartridge remove the need to access
memory locations yourself with POKEs.

The VOL command allows you to define how loud or soft your music or sound effects
will be played. WAVE enables you to select the type of waveform you wish to use
for your sounds. The ENVELOPE command allows you to define the 'shape' of each
note within a sound envelope. The MUSIC command is used to compose the sounds
you wish to produce, while the PLAY command causes the sounds to be generated.
Note that these commands can only be used as part of a program.

The sections that follow describe the format and purpose of each SIMONS' BASIC
music command. A brief example of the use of each command is also given.

The examples used in this section of the manual all build towards a complete
program which plays a tune. Therefore, do not use the NEW command between
examples and do not RUN the program until told to do so.

11·4

MAKING MUSIC WITH SIMONS' BASIC

11.2 MUSIC COMMANDS

11.2.1 VOL

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

RESULT:

11.2.2 WAVE

FORMAT:

PURPOSE:

VOL n

To select music volume.

The VOL command enables you to define the volume level at which
the music or sound that follows the command will be played.
Volume levels range from 0 thru 15. Level 15 is the loudest volume
and 0 turns the sound off. A volume level remains set until a new
VOL command is given.

To set a volume level of 15:

10 VOL 15

Any sound following this code will be played at the highest volume.

WAVE voice number,binary number

To set the music voice type

The WAVE command allows you to select the type of waveform you
wish to use to play your music or sound effects. (See Section 11.1.2.)
The first parameter in the WAVE command specifies the 'voice'
through which the sound will be played. The COMMODORE 64 has
three voices numbered 1 thru 3. Each voice contains the same nine
octaves. This means that you can playa sound through one voice
and then mix in a sound from another voice.

The second parameter in tne WAVE command is a binary number.
(Note that with the WAVE command, this number is not preceded
by a dollar sign.) This number tells the COMMODORE 64 how to
play each sound. Each of the eight bits within the number perform
a specific function. To select a function, the associated bit is set,
i.e. a 1 is placed in that position. The bits are numbered from 0 thru
7, bit 7 being the leftmost bit of the number. The function each bit
performs is shown on the following table:

11-5

SIMONS' BASIC USER GUIDE

BIT NUMBER FUNCTION PERFORMED

II
1
2
3
4
5
6
7

Sets the gate bit (not required)
Sets synchronisation
Sets ring modulation
Sets the test bit (should never be set)
Sets Triangular waveform
Sets Sawtooth waveform
Sets Pulse/Square waveform
Noise

These functions are described in greater detail below:

BIT II . THE GATE BIT

On a COMMODORE 64 without SIMONS' BASIC, this bit, when set,
'triggers' the Envelope Generator, i.e. It causes the four cycles of
a frequency to begin. However, because SIMONS' BASIC sets this
bit automatically when the PLAY command Is executed (see Section
11.2.5), you must always leave the value of this bit at !J.

BIT 1· SYNCHRONIZATION

The Synchronization bit enables a note (frequency) from one voice
to be synchronized with a note from another. By playing one steady
note (static frequency) from a voice and playing multiple notes
(variable frequency) from another, a wide range of complex
harmonies can be produced. For the best effect, the static frequency
should always be lower than the lowest value of the variable
frequency. The voice chosen to output the variable frequency
determines the voice you can select for the static frequency. This
Is outlined on the following table:

VARIABLE FREQUENCY VOICE STATIC FREQUENCY VOICE

1 3
2 1
3 2

The voice number is specified as the first parameter in the WAVE
command (see above).

11·6

MAKING MUS1C WITH SIMONS' BASIC

BIT 2 . RING MODULATION

Bit 2, when set, initializes Ring Modulation. This effect is similar
to Synchronization (see the previous section) except that both
frequency and amplitude (volume) can be varied at the same time
to create a 'wow-wow' effect. By varying the frequency of one voice
against a static frequency from another, a wide range of non
harmonic structures can be produced for creating bell or gong
sounds and special effects.

For Ring Modulation to be audible, a triangular waveform must be
selected for the variable frequency voice. This waveform is then
replaced with a modulated combination of the output from this and
another defined voice. As in Synchronization, the voice chosen to
output the variable frequency determines the voice you can select
for the static frequency. This is outlined on the following table:

VARIABLE FREQUENCY VOICE STATIC FREQUENCY VOICE

1 3
2 1
3 2

BIT 3 - THE TEST BIT

This bit is not used in SIMONS' BASIC. Therefore, it must never
be set i.e. it must always be 0.

BIT 4 - TRIANGULAR WAVEFORM

A value of 1 in bit 4 sets up a Triangular waveform.

BIT 5 - SAWTOOTH WAVEFORM

A value of 1 in this bit sets up a Sawtooth waveform.

BIT 6 . PULSE/SQUARE WAVEFORM

A value of 1 in bit 6 sets up a Pulse/Square waveform.

BIT 7 - NOISE

A value of 1 in this bit sets up a Noise waveform.

NOTE
In bits 4 thru 7, if one bit is set to 1, the remaining
bits must be left at 0.

11-7

SIMONS· BASIC USER GUIDE

EXAMPLE:

ENTRY:

RESULT:

To set up a Triangular waveform for voice 1.

2Q WAVE 1,QQQ1QQQQ

When this section of the program is executed, the music following
the command is played using a Triangular waveform.

11.2.3 ENVELOPE

FORMAT:

PURPOSE:

ENVELOPE vn,a,d,s,r

To define the 'shape' of a sound.

As explained in Section 11.1.1, the COMMODORE 64 allows you
to define an envelope which determines the shape of the sound
you wish to play. The ENVELOPE command allows you to design
this shape. The parameter vn is the number of the voice through
which you wish to play the sound. The parameters a, d, and r specify,
respectively, the duration of the ATTACK, DECAY and RELEASE
cycles of the frequency to be produced. The duration of the ATTACK,
DECAY and RELEASE cycles are measured in units of one
thousandth of a second. This is represented by a number in the
range Q thru 15. These numbers and the corresponding time cycles
are listed on the table below:

VALUE ATTACK RATE DECAY RELEASE
(TIME/CYCLE) (TIME CYCLE)

Q 2 6
1 8 24
2 16 48
3 24 72
4 38 114
5 56 168
6 68 2Q4
7 8Q 24Q
8 1QQ 3QQ
9 25Q 75Q

1Q 5QQ 15QQ
11 8QQ 24QQ
12 1QQQ 3QQQ
13 3QQQ 9QQQ
14 5QQQ 15QQQ
15 8QQQ 24QQQ

11·8

EXAMPLE:

ENTRY:

RESULT:

11.2.4 MUSIC

FORMAT:

or:

PURPOSE:

MAKING MUSIC WITH SIMONS' BASIC

At the end of each music string, hold down the SHIFT key, press
the CLR/HOM E key and enter the letter G. This causes the Release
cycle (see Section 11.1.1) of the last note to be triggered.

The SUSTAIN parameter, s, is in the range 0 thru 15. This defines
an intermediate volume level at which the sound will be held and
is equivalent to changing the volume level set up by VOL (see
Section 11.2.1) while the selected note is tieing played. Note,
however, that this affects only the note selecfed. The volume of
sounds played through other voices remains unaltered.

To create a sound envelope for the music played through voice 1:

30 ENVELOPE 1,8,8,8,0

All music notes following this command are played through voice
1 with equal rates for the Attack, Decay and Release cycles and
an intermediate volume level set at 8.

MUSIC n,"music string"

MUSIC n,variable + variable + variable

To write music or create sound effects.

The MUSIC command allows you to compose and play music or
create sound effects. The first command parameter refers to the
duration of one music beat. This number must be in the range 1
thru 255 . 1 is the longest duration, 255 is the shortest. Following
this parameter, you then define the string of musical notes you wish
to play. Strings of notes may be added up to a maximum of 255
characters. The voice through which you wish to play the notes is
specified at the beginning of the string. To do this, hold down the
SHIFT key, press the CLR/HOME key (a reverse·field 'heart' is
displayed) and enter the relevant voice number. Note that only ON E
voice can be used in a string of notes.

MUSic notes are in the range A thru G. C is the first note in each
octave, i.e the sequence of notes is C,D,E,F,G,A,B. A music sharp
is defined by holding down the SHIFT key and preSSing the letter
of the relevant note. If you wish to playa note flat, you must sharpen
the previous note, e.g. E flat would be D sharp and B flat would
be entered as A sharp. Music rests are indicated by the letter Z.

The octave in which the note will be played is defined by a number
from 0 thru 8. This number is entered AFTER the note. (Rests of
course are entered without an octave number.) The duration of each
note is specifted by a control character following the octave number.
This character is entered by pressing one of the four function keys.
The function keys and associated note durations are shown in the
table below:

11·9

SIMONS' BASIC USER GUIDE

FUNCTION KEY

F1 KEY
F3 KEY
F5 KEY
F7 KEY
F2 KEY
F4 KEY
F6 KEY
Fa KEY

NOTE DURATION

One sixteenth of a beat
One eighth of a beat
One quarter of a beat
Half a beat
One beat
Two beats
Four beats
Eight beats

After you have specified the duration of the last note in the string,
hold down the SHIFT key, press the CLR/HOME key and enter the
letter G. This causes the Release cycle (see Section 11.1.1) of each
note to be triggered.

EXAMPLE: To compose a tune:

ENTRY: 40 A$ = "<SHIFT CLR/HOME>lZ<Fl>Cs<Fl>Es<Fl>Fs<Fl>"
50 A2$ = "Gs<F7>cs<Fl>Es<Fl>FS<Fl>GS<F7>cs<Fl>ES

<Fl>Fs<Fl>GS<F3>ES<F3>CS<F3>ES<F3>DS<FS>ES<Fl>
ES<Fl>DS<Fl>CS<F7>CS<Fl>"

60 A2$ = A2$ + "ES<F3>GS<F3>GS<Fl>FS<FS>FS<F3>ES
<Fl>Fs<Fl>Gs<F3>ES<F3>Cs<F3>Ds<F3>Cs<F3>Cs<Fl>
Cs<Fl>Es<Fl>Fs<Fl>"

70 A3$ = "Cs<F7>Cs<Fl><SHIFT CLR/HOME>G"
80 MUSIC 8,A$ + A2$ + A2$ + A3$

RESULT: When this section of the program is executed, the notes B.re stored
in the variables A$, A2$ and A3$ and 'compounded' into a tune.

11·10

11.2.5 PLAY

FORMAT:

PURPOSE:

EXAMPLE:

ENTRY:

ACTION:

RESULT:

EXAMPLE:

ENTRY:

ACTION:

RESULT:

MAKING MUSIC WITH SIMONS' BASIC

PLAY n

To play composed music.

The PLAY command, as its name suggests, allows you to play the
music you have composed. The parameter following the command
indicates how the music will be played in relation the rest of the
program. A "0" in this position turns music off. A "1" plays the
music and waits for it to end before proceeding with the program.
A "2" plays the music and continues executing the program.

To play the music you have composed and continue program
execution:

90 PLAY 2
100 GOTO 100

Type RUN <RETURN>

'When The Saints Go Marching In' is played.

To create a sound effect.

10 VOL 15
20 WAVE 1,10000000
30 ENVELOPE 1,0,10,0,0
40 MUSIC 5,"<SHIFT CLR/HOME>1C5<F2>"
45 REPEAT
50 PLAY 1
55 A = A + 1: UNTIL A = 5

Type RUN < RETURN>

Five shots are fired.

Note that PLAY 2 CANNOT be used in conjunction with high
resolution or multi-colour graphics.

11-11

SECTION TWELVE
READ FUNCTIONS

READ FUNCTIONS

12.1 INTRODUCTION

Section Twelve illustrates the four read functions supplied by the SIMONS' BASIC
cartridge. If you have incorporated the use of a lightpen, joystick or paddle in your
programs, these functions will enable you to determine the position of these devices.

NOTE
The light pen must be inserted ONLY into games port 1,
i.e the port furthest away from the ON/OFF switch. A
joystick can be inserted into either games port. (See your
COMMODORE 64 User's Guide.)

The PEN X and PENY commands allow you to determine the position on the screen
at which a lightpen is pOinting. The POT command reads the screen position of
a paddle, while the JOY command allows you to determine in which direction a
joystick is pointing.

12.2 PENX

FORMAT:

PURPOSE:

variable = PENX

To return the x coordinate of the light pen.

The PEN X function returns the position of the light pen across the
screen, i.e. from the left edge. The number returned is in the range
!a to 32!a. The example for this function is contained in the following
section. Note that the PENX value must always be read before that
of PENY.

12·1

SIMONS' BASIC USER GUIDE

12.3 PENY

FORMAT:

PURPOSE:

EXAMPLE:

ACTION:

variable = PENY

To return the y coordinate of the light pen.

The PENX function returns the position of the light pen down the
screen, i.e. from the top. The number returned is in the range 0 to
200.

To sketch on the screen with the lightpen and then print out the
drawing:

Enter the following program and then RUN it. Instructions for the
program will be displayed on the screen.

10 REM:***LIOHT PEN PROGRAM_**
20 HIRES0,1
30 TExT1\!1.10, "AFTER ·,..OU HAVE T'fPED IN 'RUN''', 1.1,8
40 TEXT10,25, "'fOU HAVE 15 SECONDS TO INSERT",1,1,8
50 TEXT10,40, "THE LIGHTPEN IN 'CONTROL PORT 1''',1,1,8
60 TEXT10,55, "IoIHEN 'fOUR DRAWING IS COMPLETE",1,1,8
70 TEXT10,70,"REMOVE LIGHTPEN FROM USER PORT",1,1,8
80 TC.XT10, 85, "ANlJ PRESS SPACE-BAR FOR PR I NT -OUT" , 1 , 1 , 8
90 PAUSE 15
100 HIRES0,1
110 LINE10, 10,300,10,1:LINE300,10,300,180,1
120 LINE300,180,10,180,1:LINE10,180,10,10,1
130 GETA$:IFA,_n"THEN130
140 IFA$a:" "THEN160'
1~0 PLOT (PENX+~1)AND255,(PEN~-50)AND255,1:GOTO 150
160 COP',..: END

12-2

READ FUNCTtONS

.12.4 POT

FORMAT: variable = POT(0)

or: variable = POT(1)

PURPOSE: To return the resistance of a paddle.

EXAMPLE:

The POT function enables you to determine how far a paddle control
has been rotated. The number returned is in the range 0 thru 255.
The number following the command defines the paddle whose value
is to be read.

To move a sprite using the paddles:

ENTRY: 10 REM:***.PADDLE PROGRAM ••••
20 R~M:***.*~BY K MORRIS •• _ •• '
~;el hIf;:E:::I~i.,:i

40 rEX7i0J10J:'~~ MOViNG THE PADDL~S ~ou CAN")iJiJ8
5121 TL;:-:;'"j' J.!2i" ;;;:~5., -, Oi:.'::1' THE ::;:F'R 1 Tt::::: TO i·'·ii::E~i'· .. t· .' J. " i " :3
6~; "Te.;:'::T:i l~:I.' '::~~~I., '" i·'.ih~·r: DOi"4 ", T 'r'CIU T F.: Ir: 'f"'" i " 1" E:
f5::i TE;:~;T 1. 121,. 350' " C3ET PADDLE ;:.:;::::i21 tli'··jD i~:II;~D.i} .. ~t:: :'r·::.~:~::5~:i;:' 'I .. i " i " 8
70 D~SiGN ~,64~32+49152
;::;:21 I]: II II 1::
5!121 I:§ .. B
J. ::::;0 (! II II or :C:

J. ;;::~:! IE j3 .. II .. II II .. xi
1. :::;12: !:!: a B .. II B
i4121 @ ••••••••••• B •.•••••...• J:i
15121 @ B ••••••• ~BBBB
1 r::i.::1 (f:!"" •••• " •••• B •• " •••• xl" " " };:
17"121 (!! ••••• " ••••• :t: .•...•. J:: ••• :D
180 @.~BBBBBBBBBB:t:BBBBBBBBBBB
i 9121 I:!! ••••••••••• B •• " , •• " :t:" , • B
20121 I]! 13 II II .. II E; :t:
21121 @ B ••••••• BBBBB
220 @ B B
230 (!I ••••••••••• :8 •• " •••••••• B
24121 @ .••••••••••• x: • • , •••••••• B
25121 @•.. BBB:BBBBBBBBBB
26121 @ .. E:
2,:'121 @ .. B
280 @ •••••• " •••••••••••••••• B
29121 DESIGN 121.64*33+49152
3121121 (!lB •••••••••••••••••••••••
3iel @B •••••••••••••••••••••••

12-3

SIMONS' BASIC USER GUIDE

3210 (i!B •••••••••••••••••••••••
3310 @BBBBBBBBBBBBB •••••••••••
:3.:.10 t!B.""" .. II " .. B " " " "
:35121 @B " ,,"" E; II

:36121 @t:" " " :EI. " " "
370 @BBBBB B .. n ••••••••

38t2i (~:E:""" E: II .. " .. " B .. " " " ..
39121 I~B ••• B ••••••• B •••••••••••
41010 I:!!BBB:E:BBBBBBBBBBB:t:B:E:BBBBB.
41121 @B ••• B ••••••• B •••••••••••
420 @B ••. B .••.•.• B ••••••...•.
4310 @BBBBB ••••••• B •••••••••••
440 I:!!B ••••••••••• B •••••• , ••••
45121 (!ixl ••••• " ••••• B. , •.•••••.•
'::~f5IZI I!El .. "" .. " n II II II " II :El" .. " .. " " " II

470 @BBBBBBBBBBBBB •.••••..•••
48121 @B •• " •••.•.••••••••••••••
49121 I:!!B ••••• """"." ••• " •••• ,, •••
jlZili:1 I:!!B •••••••••••••••••••• " ••
510 ~JB SET 0.32.2.0.10
520 MOB SET 1.33.2.10.0

335 MMOBB.Z.17B.Z.17e.3.50
536 MMOB1~W}170JWJ170J8J50
346 X~INT(POT(0"
5:.:,ei ;=ORi..=ZTOX
355 IFL=iBIOTHEN615
560 RLOCMOB0.L.170.3.50

:;59(!1 . Z=i'; : 13GT054(1
615 ~~INT(POT(l)'
6;;::~J FOi;::t:=~'HO'T·

625 IFB~145THEN700
630 RLOCMOB1.B.17e.3.5e
64el t·lE:>::T B

'?e1l21 TE;:-::r:i ~~15" 1-"("121 .. IT r:' I F~c II ,I 1 0' 3" :3 : PAUSE 1
703 MOB OFF e:MOB OFF 1
705 TEXT185.178."FIRE".0.3.8
7H:1 TE)<;T75. 145. ":E:OOt1 !!!"., 1.,5., 2!21
716 BFLASH10.0.7
"1~~~:1 :·/OL j, 5
730 WAVE 1.1080101000
74121 ENVELOPE 1.3.121.15.0
75el A$= 11:.11 Zii35 1111
760 MUSIC 8., A$
77121 PLA'T' 1
82121 "/OL0: BFLASH0: HIRE::;0, i : PRINT":)

12-4

12.5 JOY

FORMAT:

PURPOSE:

READ FUNCTIONS

variable = JOY

To return the value associated with the position of a joystick.

The JOY function allows to you to test the direction in which a
joystick is pointing or if the fi're button is being held down. The
values returned and the associated joystick positions are shown
in Figure 12-1.

FIRE BunON

7 3

/~
6 5 4

FIGURE 12-1 JOYSTICK VALUES

12·5

SIMONS' BASIC USER GUIDE

EXAMPLE: To draw a shape with the joystick and then paint it:

ACTION: Enter the following program and then RUN it. Instructions for the
program will be displayed on the screen.

110 REt1: ********JCI'T' 8T I CK PR0I3RA~1****'"
U. HIRES0.1
12 LINE10.20.310.20.1:LINE310,20,31e,160,1
13 LINE310,160.10.160,1:LINE10.160,10,20,1
15 TE).;T88., :;:0. "THE t'IOZOSKETCH II , 1 • 2. 10
16 TEXT90) 43) II II" i J 2 .. 8
17 TEi':TU::.,60.,·'DF.:fH'J A SHAPE t1AKING SURE THAT" .. i.,2., 10
18 TE;":T2/.!;., 80. "THERE ARE NO GAPS, At·m KEEP"., i , 2., i I~
i 5' TE::-';T61~, Hlel., "~'J ITH Hi THE J30Ui···IDAi': I E3. " .. 1 .' :2., H'I
21~j TEi';T 11215, i 41~)., ":t3'T' 1< J ,'iORR I ~:;:: .' 1. .' 2., E: : PAUSE 3
3~:i HI F.:ESIZI., 1
35 IE:N:T93 .. 5, "THE MOZOSKETCH" , 1 .' i .' 8
4121 TEi';T 4. i 8, "DF;I:J~~ Fl :::i-IFIi:'t m·m PRE:,,:::: HiE F I f:::E BUTTOt'l , .. ' 1 .' 1 .' :;::
45 TEXT73.31, "TO SEE WHAT HAPPENS",i,I,8
50 LINE10J50J310~50Jl:LINE310J50J310J150Jl
55 LINE8i0, 156, i0,150,1:LINEi0,150,10,50,i

912i PL.OT;>:;" :1:., i
100 IF JO~=l THEN Y=Y-i:GOT0200
lie IF JO~-2 THEN ¥-¥-1:X-X+l:GOT0200
120 iF JOY=3 THEN X=X+l:GOT0200
i30 IF JOY=4 THEN ~·X+l:~-~+1:GOTC200
140 IF JOY=5 THEN V=~+1:GOT0200
150 I~~ JO~=6 T~E~ Y=~+~:X=X'-i:GOT()208

~60 lr JJi=7 ;'~E~ X=X-i:GOT0200
170 lr JO~=8 1HEN X=X-i:~=Y-i:GOT020~
180 IF JOY=i28 THEN TEXT27, ll0; ' WELL DONE PICASSO",1,3,16
190 PAJSE2:GOT0340
200 IFX(20THENX=20:GOTO 100
300 IFX)300THENX~800:GJTOi00
310 IFY(60THEN:~:=60:G(J'TO~00

320 IF~)1427riEN~=~40:GOT0100
330 PLOTXJ~!i:GOT0100
340 LOW COL 2 .. 1,1
850 PAINTX+l,Y+l.l:PAUSE5
:36iZl HI F:E:=:iZl, :1.

:~;(I21 TEi';T50., 5el, "PF.:i:::='::::: ::::j='fKE BI=:F.: FOF.: At·lOTHER GU"., 1 , ;;'::., r::;:
3:;U,) GET fi:;': I FH$:::::" "THEI"i3:~{121

390 I FFl$-" "THEi"~ 30
4;210 GOT0380

12-6

EXAMPLES OF SIMONS' BASIC PROGRAMS

SECTION THIRTEEN
EXAMPLES OF SIMONS' BASIC PROGRAMS

13.1· INTRODUCTION

Section Thirteen contains four programs to illustrate what may be achieved using
the SIMONS' BASIC cartridge. Simply type each program In and then RUN it.

13.2 PROGRAM 1-DRAWING A POLYHEDRON

The following program draws a multi-sided figure at an ever decreasing size.

IIZI PRJ.~H "::r
;2121 CErHF.:E ":::ij'10('lS: E1R8IC POL'T'i-iEDi,:R" :PRINT:PRINT
:3~:1 Cc],HF.:E "ih' :::: BEATS": PR I NT : PR HH
';~121 PF.: HiT "tKWI:EIE:t;: OF S I DES ";: FETCH ")'l" .. 2 .. r~
5i2i E;x;EC SF' I F.:AL
E;12i TE;:-:;T i 12i J 1121" l: PRESS A KEIT'I:" i " J .. ' :::
70 GETA.:iFA.=""THEN70

996
95!(
9:~Ei :
:999 :
1000 ~ROC S?IRA~
1010 MP=i06:~IR~S 0Jl
~J20 ~ORJ = 0 TO 2.5Wrr STE?rr/20
i030 ~ORK = 0+J TO 2*rr+J+.1STEP2*rr/N
1040 X=INT(MP*1.3*SiN(K)+i60)
1030 ~=INT(MP*COS(K)+i00)
l060 iFK)0+J THEN LINE Xl,ii,X,Y,l
1070 Xl=X:Yl=~:NEXT
1080 MP-MP-2:NEXT
i 121912, am PRO:::

13-1

SIMONS' BASIC USER GUIDE

13.3 PROGRAM 2-WORDSEARCH

The program below allows you to enter up to 2!J words of your own choice. It then
mixes up all the words within a grid. Your task is to pinpoint the coordinates on
the grid where each word begins. You are also given the option of printing out the
grid 50 that you can play the game away from the computer.

10 REM *************************** 20 RE.1 * *
~~0 REM * ~'~ORDSEARCH *
40 REM iii •
50 REM * B'i STE"/E BEATS II!
Ga REM * iii

7121 REi"i *************************** 812j
9<-;
i IZIIO E;:.;;EC SETLiP
:Li0 EXEC GETWORIIS
i 20 E:~;C:C SCRC:EN
130 EXEC SORTLENGTHS
140 EX;::C PLAC;::j,.jOrWS
15(' E;<;E.C PR I ;..jTGR:;:;:'
16:2; r:::~EC GA,"it::
17e CALi.... r~Ni:::n

i::5~
30£'0 ?ROC GAME
31002 PR:Lt~T AT(28 .. i) ·PRiN,("T' i"-i) ..
312104 GE7Q$: i FG!$<>" '1 ,. fli-..tili::!$<>" t-t I: THEN3004
3aJ2'5 Ti$="0a0000": TU=0
S:?:06 PRINT Ai(2C:.·:i.) ..
~laa8 :iF',l!j:="i,"THEN 3010
312109 HRiJCP'i
3~'I1a '~F=0: RePEAT
312':" J. ?Rlr~T AT-::28 .. ~) " ::fRO~"; -'.:: FETCh "):i': .. 3" RO$
312112 Ii" Ti$)"aa1aaa"THEN TU=1:END PROC
312120 PRINT AT(28 .. i) "CO __ i..ijviN -';: rEiCH ")!l" 0' 3 .. CO$
31213121 PRiN"j AT<28" J.) ..
;:'41214:21 RCI=:,iAi.... (RO$) : CD= f-1i.... (CO:$:)
30::';121 Ii" RCOIOANDRO<21 ANjK~O)0AN11Cr.K2 i THEt';:::'0"r"1<.1
30610 PR I NT AT < 28 .. 1) "ERROR": PAUS", 510010: PR i NT RT(28, D " " : (;OT03El U
3070 F=IO: FOR i = 1 TONW : I FRO=P'T' (I) ANDCC,l=P)<; (i) THeNF= J. : ~,; J. = i
31080 NEXT: Ii"F=lTnEN3101O
3121910 PR I NT AT (28" 1) " WRONG" : PAUSE5a01O : PR i ~iT AT< 28, 1) " " : (;OT03al1
31100 FORI=0TOLEN(W$(Xl»-1
3110 PRINT AT(3+F'X()<;1)+iIf.D;';(H'()<;'»" 2+P'r'()<;1)+HI<.D'i(H'O\1») "." ,:
3115 PRINTMID$(W$(Xl),I+l,l'
312(;:1 NEXT: PRINT ATf,25,2+X1) W$(Xi): ~jF=~~F+L
313121 UNTIL WF=NW

13-2

3140 END P;;:OC
3150
~160 :.
4000 PROC PRINTGRID
40.0 PRiNT":I": FOR',=l T020: fORX"l T020

EXAMPLES OF SIMONS' BASIC PROGRAMS

4020 IFA$(X, '0=" "THENA$(X, ',)=MiD$(W$(NWIiIRND(1)+1), 5Ii1RND(1)+1,1)
4040 PRINT AT<3+X,2+r') A$(X, '0
4050 NEXT:NEXT"
4060 END PROC,
4070
412180
5000 PROC PLACEWORDS
5~10 ?W=0:;;:EPEAT:P~=?W+L
5020 PX<PW)=INT(20~RND<1)+L)
5030 P'T (PW) = I NT< 2011!RNj) < 1)+ 1)
51214121 DR=I NT< 811!RND (1)+1) : nHPW)=DR
512141 CX=PX(?W)+LEN<~J$~?;.J))!I!j)X(j)R) : C'i=Pr'(PWHLEN(W$(PW))II!DY(DR)
5050 i FC>O:< i ORCX:>21210RCr' < 1 ORC'r':>20THEN512120
5051 REM iT FiTS THE GRiD SO CHECK LETTERS
51216121 F=0: FORCK=0TOLEN(W$(P~j))-.
512170 Zl$=Mij)$<W$~PW),C~+',1):Z2$=A$~PX(PW)+CK~DX(j)R),PY(PW)+CKII!j)Y(DR»
S080 I FZ2$0·' "Ai'-iDZ' $OZ2$THENF=.
512190 NEXT:IFF=:THEN5020
512191 REM iT FiTS SO SLOT iT IN
5100 FORCK=0TOLEN(W$(PW»-1
5110 Zl$=MiD$~W$(Pj.j), :::~+i, 1) : A$(PX(P~j)+CK*DX(j)R) J P'r'(PW)+CKIiID'i(DR))=21$
5i2121 PRINT AT(25,2+~w) W$(PW):NEXT
5.3121 UNTi~ P;.J=Nw
5140 END F'ROC
5.50
5i60
612100 ?ROC SORTLENGTHS
6010 PRINT AT<25, D "lI50RTING'·
612120 F=0:FORi=lTON~-1
612130 iFLEN(W$(I»<LEN(W$CI+l»THENT$=;.J$(I+'):W$(i+l)=W$(i):W$(I)=T$:F=l
612140 NEXT:IFF=lTHEN612120
612150 PRINT AT(25,.) "110.
612160 END PROC
607121
6080
7000 ?ROC SCREEN
71211121 PRINT"~iPlIJi"; : COLOUR 5,0
7020 PRINT" "'; :FORi=lT020:PRINT"-"; : NEXT
7030 PRINT ; : FORI=l T020: PRINT" I :di" ; : NEXT
7040 PRINT""lil"; : FORi = 1T020 : PRiNT "-iii" ; : NEXT
705121 PRINT" 'in" ,: : FORI=l T020: PRINT" I an"; : NEXT
7060 FORI=lT020:NU$=STR$(I):NU$=MID$(NU$,2):lFLEN(NU$)"lTHENNU$=u u+NU$
707121 PRINT AT(l, 1+2) NU$:PRINT AT(I+3,0) LEFT$(NU$,l)
7080 PRINT AT(I+3,1) RIGHT$(NU$,l):NEXT .
7090 END PROC
7100 :

13-3

SIMONS' BASIC USER GUIDE

7110
8000 PROC GETWORDS
8010 COLOt;lR10. <:I: PR:;:NT"~IIIHOW MAN'"" WOR:;:)S <MAX 20»)Ij"
8020 FETCH '")!i", 8, N .. J$
803121 PR I N-r : NW=\IAL< N;"';$) : ;: rNWG ORNj..D>2<:1Tt-iEN8:3 HJ
8040 PRINT"~ NOW T'TPE IN THE ~~ORllS)Il"'
8050 PRINT" THEY MUST :DE Bi::TWEEN 5 Ri-';j':; :i5 LETTERS)Ii"
8060 FOR:L=:i.TONj.o.j
8070 PRINTI "lii) ",
808121 FETe;.; "~"'., 1:5, ;"';$(:;:)
80510 :LFLEN(W$(:))(5THi::NPRiNTC;-;R$(:i3;' '":-;:-;" .. 30T0807'!l
810121 PRINT:NeX;
SHe i::NIt PROC:
85198
8999
91211210 PROC S;::;,-i;:>
90113 COLO,-iR :5.,0: PR:LNT"':::l:E:ETTH';O LIP, ,''-EASE ~'A:':T •••• "
912120 DIMA$(;23 .. 20> J W$(~::'> .. ?'X.(2~) .. P·T·~20~~ .. DX(8)"])"1'(8) .. TI.o.i(20)
912130 FO;;::L =:i. T02~1 : FOR';= '- T02121 : A$ (:;: , J) =" " : NE;"';T : NC:XT
912140 RESTORE: FOr:::;: =:i T:]8 . RERrD:n; (:L ::: • :;:rT' < ~) : (-.;C:ii7
9050 D''lTA ~I, -J.- : . -:". :i.,;:', , , 1." 3, J... -L· :i. .• -1, c., -:i..--1
906121 FORI=:i. T02e: ;.I:$"(:L)='"" : PX(I)=0: P'T(;:)=:;," NEX,
9070 END PROC
9998
9999
10000 PROC F:LN:;:Sn
:i0010 :;:FTi.i='- 7He(>.':i.01130
10020 PRINT RT{28,:i) "AGA:;:N('T'/j'i) '"
10080 GET A$: IFA$O"'T·'AN:;)8$O·";"T;';EN.0030
10040 :;:F A$=".,.···THi::N::::U;:: RUN
10050 PRINT":-:;i": i::NjJ
1121100 FORX1=:iTON;.I
10110 FORI=0TOLi::N(W$(Xl»-1 "
10120 PRiNT AT<3+PX<X:i.)+III(j)XnW~Ki.);" .. 2+P"'·(XD~-tll!D"""n''';~;':D) "~r';
10130 PRINTMID$(W$(Xl),i+l,l)
10140 NEXT'PR:LNT ATC25,2+X:i) W$(Xl):NEXT
10150 GOTOI21020

13-4

EXAMPLES OF SIMONS' BASIC PROGRAMS

13.4 PROGRAM 3-LETTER SLIDER

This program mixes the letters A thru 0 within a 4 by 4 square. There is one vacant
space in the square. You must rearrange the letters into alphabetical order by sliding
letters around the square.

1 REM ***** LETTER SLIDER GAME
2 REM **1'1111&*
3 REM ***** BY STEVE BEATS
4 :
5 EXEC iNSTRUCTiONS
Ie DiMA$(4,4),B$(4,4):MN=1
2121 S$=" £!i'I'fLIAI11i1 l' OOIiiiiL-J"
3121 C$= t=i'Ii ..
40 L$="ABCDEFGHIJKLMNO ..
50 PT= 1 : FOR'or'= lT04 : FORX-=lT04
60 i1$=Ml~$(C$,PT,1):I2$=MID$(L$,PT,1):PT=PT+1
70 W$= INST(Il$,S$,l)
8121 W$= INST(i2$,W$,10)
510 A$(X,Y)=W$
11210 NEXT:NEXT
11121 A$(4,4')=,,!!! liiiilDi :.iiii
12121 PT=1:FORY=lT04:FORX=1T04
130 B$C";, 'or')=MID$~L$, PT, 1) : PT=PT+:i.
i 40 NEXT: NEXT: PX=4 : P'T'=4
15121 PRINT"::;": CCi..OI.':RS, 121
16121 PRINT AT(:i.2,5) "~~r ,";
1 70 FORI=! T012: PRINT":Giil "; : NEXT: PRINT"lIiii-'iilil!";
18121 FORi=l T012: PRINT";i!"; : NE;:';T: PRINT" 'in';
19121 FORI=:iT0:i.2: PR ItH " I :-II"; : NEXT
200 EXEC LETTERS
205 EXEC SHUFFLE
206 REPEAT
21121 GETR$:IFR$("A"ORR$)"OPTHEN210
215 PRINT AT(12,3) "
22121 EXEC CHECKIT
23121 PRINT AT(12,3) MS$
24121 EXEC FINISHED
250 UNTIL I~I=i
26121 RUN 1121
998
9S'9
11211210 PROC LETTERS
11211121 FOR'T'= 1 T04 : FORX= 1 T04
112120 PRINT AT<3!1!X+Hl,3*",'+3) A$(X .. y)
103121 NEXT:NEXT
104121 END PROC
105121
11216121
2121121121 PROC SHUFFLE
201121 RESTORE: FORI=1 T04: READXD< I), 'T'D(I) : NEXT
212115 PRINT AT(12, ::1) "EHUFFLHlG
21212121 DATA -1,121,121,1,1,121,121,-1
212125 I=0:REPEAT:I=I+1
203121 D=INT(S*RND(RND(l»+l)

13-5

SIMONS' BASIC USER GUIDE

21340 I FPX+:X:D (D) (1 ORP:X;+:X:D (D))40RP','+'iII (D;' (1 ORF.,.'+'ill (D))4THEN213313
21350 Xl=PX+XD<D): 'T'l=P'.,'+.,.'DCD) : IFX2=X1AND','2='il THEN2030
213613 T$=A$(Xl, '.,'1) : A:!I=O<l, ','1)=A:!I=(PX, P'i) : A:f.o;PX, P'i'=T$
20713 T$=B$(Xi " .,.'1) : B$ 0'; 1 ,'.,'1)=:i3$(PX .. P',') : B$(P:X;, PY)=T$
2080 X2=PX: 'T'2=P'T' : PX=X 1 : P'i=""1
2090 E:X:EC LETTERS
211210 UNTIL 1)11210
2110 PRINT ATC12,3) "
2120 END ;:'ROC
213121
2140
31210121 PRoe eHECKIT
30105 PRHn I'IH 1" J.) "=I"10\"E t',IU~1:BER"Mt~
31211121 FL=I2I:FORI=lT04
30213 IFPX+XD(i)(10RPX+XDCI»40RPY+YD(i)(10RPY+YD(I»4THEN312140
31213121 IFB$(P:X:+:><:D (i)" P.,.'+'T'D(i))=R$THa~FL=l : TE=I
3040 i-lE:X:T: IFFL=I2ITHENMS$=" ILLEGAI_ '~'icr'iE ;!: .. : GOTO:3121lc,
3050 ::.::i=PX XjJ(TE): 'T·l=?·i..;-·,.·D(~ TE)
31216121 T$=A$C-:i .. 'd) : A$C"::i., 'T'1)=A$(P;';, P'i): A$(PX, P'i)=T$
31370 T$=B$(Xl,,'ii) ::D$(:X:l,'T':i.)=:B$(P:":,?'T') :B$(PX"P'y')=T$
30813 E:><:EC LETTERS
313912; MS$="r10VE OK ;": P:X:=:":i : P'T'='il. : l"ii-l=M~i+l
:3 we am PRoe
311121
312121
41211210
4e1e1
402121
4121:3121
404121
412150
4060
412170

PROC FINISHED
FI$="" : FOR'T=l. T04: FO"'~i<:=J. TO,':,
FI'=FI'+B$(X .. ~):NEXT'NEXT
IFFI$=L$THEN4050
Ei~D PROC
PRINT I,TC 12" 3) "1'1 ~,;rNi..jER !!!": PI"IUSEi0: ~.JIcl : GOT04040

5000 PROC I NSTRUCT I Oi-~S
,:501215 COLOUR 1121" 0
5010 PRINT":.Al10 YOU REQUIRE INSTR;jCTim~S ('T'/N)?"
5020 GETA$: I FA$'~)" 'T'" Ai'lDA$()" W THEN512120
513313 IF A$c" W THEN am PRoe
513413 PRINT":::JI1OO THE OB,JECT OF THE GAi1E IS TO GET
5135121 PRINT")I:j ALL OF THE LETTERS H4 THE CORRECT"
5060 PRun")I:j O~DER ••••• "
512170 PRINT"r,pJ
51380 pi;: ItH")I:j
5109121 PRINT")I:j
51121121 PRIt~T")l

ABC :1:1 "
E F I) H .,
I J K L "
M N 0 ~ "

5 1 10 PR I NT")l)ii
51213,PRINT")l
5130 PRINT")l
:514121 PRINT"lIl=l

TO r10'.lE A LETTER INTO THE VACANT"
SPACE" JIJST T'.,'PE THAT LETTER ,jN"
THE KE'T'BOARD."

5150 GET A$:IFA$=""THEN5150
5160 END PRQ,C:,

TR'.,' IT i~OW

13-6

EXAMPLES OF SIMONS' BASIC PROGRAMS

13.4 PROGRAM 4-A VINTAGE CAR

This program draws a vintage car on a multi colour graphics screen.

1 COLOURl13,5
Ie HIRES e·, i : Mi...;L TI 0,2,1
20 CIRCLE 30,150,110,11,1
310 CIRCLE 310,1510,13,15,1
31 PAINT 28,1513,2
32 PAINT 19,1510,1
35 ARC 3121 .. 1510 .. 2710 .. 90 .. i~1, 17,21,3
36 LINE 15/150/17/1~0/3
37 LINE 43,1513,45 .. 1510,3
38 PAINT 16,148,3
40 BLOCK 3,105,13,150 .. 1
41 LINE 3 .. 105.6 .. 1105.0
42 LINE 3,le5,3,ie7.e:LINE le.I135,i3,le5,0:LINEI3,1135,13.1e7.0
43 LINE 3,150.6.1510.0
44 LINE 3,148,3,150.10
45 LINE 3/115/0/125/i
46 LINE 3.140,10,125,1
510 ~iNE 16,139,16.1105,1
610 LINE 16,1105,310.1105.1
710 LINE 310.1105,310,129.1
71 PAINT 16,1107,1
813 LINE 313,1105.70.1105,2
910 ~INE 713,1135,710,145.2
91 LINE 710,145.47,145,2
92 PAINT 33,1107,2
93 LINE 43,152.56.152.1
94 BLOCK 56,152,74.·154.1
95 LINE 74.152,810.152.1
96 LINE 80,152,80,144,1
98 BLOCK 72,105,94, 145.2:PLOT 71,1105,1
99 PAINT 75.151,1
1130 BLOCK 82.146,108,153,1
lei BLOCK 1110.144.1210,152.1
1132 BLOCK 95,1105,1108,146 .. 1
103 BLOCK 108.1105.114.141.1
1135 BLOCK 31 .. 710.36, H2I4 .. 1
106 LINE 31.710.95,70.1

13-7

SIMONS' BASIC USER GUIDE

107 BLOCK 70.70,72.104.2
108 BLOCK. 31167195169 12
109 LINE 69.71.69.104.1
li0 LINE 72.71.72 . 104.1
112 LINE 95.70.95.104.1
114 BLOCK 35.102.69.104,1
115 BLOCK 73.102.95.104.1
li6 LINE 88.102.91.96.1
120 LINE31J66J76J66Ji
121 LINE31.65.46.65.1
122 LINE31.64.36.64.1
132 LINE97.70.99.73.1
133 LINE97.67.99.73.1
134 LiNE97.68.99.73.i
135 Li NE97J69J99J73Ji
220 CERCLE 140.150.10.11.1
230 CIRCLE 140.150.13,15.1
231 PAINT 138.150.2
232 FBiNT 129.150,1

23E~ LI NE 1251150J127J15013
0:: •• ':' I L:L i" ~E :L ~53.'). ~5fJ ., 155., 1. :'i0., :3
238 PAINT 126J148J3
300 LINE 128 .. 152 .. 114 .. 152Jl
310 LINE 114.144.124.144.1
320 PAIN1' 127 .. 151 .. i
330 L I NE 125,141 J 116J141 .. 1
340 L I i··iE i j. 6. 1. 41. .' i 16., j. 1~;. 1.
341 LINE 116 .. 115}136 .. i15 .. i
342 LI NE 136:i15 .. 136 .. i30} 1
345 PRiNl' 133 .. 12?'Ji
350 BLOCK 116 .. 105 .. 136 .. 112 .. i
S60 LINE 137.105.141.105.2
370 LINE 141.105.141.129.2
380 LINE i37~i05~i37~i15J2
390 PAINT i39Ji07J2
391 PLOT i41.i05.i:FORT~128T0 1 20STEP-2
392 LINE T.118.T.127.3:NEXT
400 LOW COL 0.2,6+8 :FORT=0T0159:IFTEST(T.98) -0ThENPLOT T.98.3
41 \::1 i"~E:":T

420 FORT=0T062STEP8:LINE 0 . T.160.T.3 : NEXT : BLOCK 0,O,160,62,3
430 PAINT 2.64.3
500 FORT=0TOi59STEP5:IFTE~r(T.96)-0THENPAiNTT,96.3
5i0 NEXT -
600 LINE 78.107.76.107.1 : PLOT 76.108,1
610 LOW COL 7.2.6+8
620 ARC 0.0.90.180,10.20.20,1
630 PAIt-IT t,l. 0.1
700 FORT=90T0180STEP10:ANGL 0.0.T.33.33.1:NEXT
999 PAUSE 4: ~~Fi:r1 : l'lEl1 : COLOUr<: f,)., el : PR I ,'n" :]:::(i!l8.:[lmmlillillillil~:;EE •• ! ! "

13-8

APPENDIX A
ERROR MESSAGES

ERROR MESSAGES

In the course of using SIMONS' BASIC, an error message may appear. These
messages are unique to the SIMONS' BASIC cartridge. Each error message, its
meaning and probable cause is given in this appendix.

? BAD MODE

This occurs when any parameter in a command is outside the range allowed.

? NOT HEX CHARACTER

An attempt has been made to convert a non-hexadecimal number into its decimal
equivalent.

? NOT BINARY CHARACTER

An attempt has been made to convert a non-binary number into its decimal
equivalent.

? UNTIL WITHOUT REPEAT

The UNTIL command has been used without any previously declared REPEAT.

? EN D LOOP WITHOUT LOOP

The END LOOP command has been used without any previously declared LOOP.

? END PROC WITHOUT EXEC

The END PROC command has been used without any procedure having been
executed.

? P~OC NOT FOUND

An attempt has been made to select a procedure that does not exist.

? NOT ENOUGH LINES

Not enough lines have been set up for a MOB design grid.

? BAD CHAR FOR A MOB IN LINE n

A parameter within the MOB design stage is outside the range defined. The line
number of the error is always that where the DESIGN command was executed
although this does not necessarily mean that the fault is in that line.

? STACK TOO LARGE

This occurs if you have nested more than nine procedures or program loops.

A·1

GLOSSARY

GLOSSARY
A list of terms used in this manual.

BIT
Abbreviation for 'Binary Digit'. The smallest unit of computer memory.

BRANCH
The transfer of program execution from one line to another.

COORDINATE
The distance of a point on a grid from the x or y axes.

DATA
Information held in the memory of the computer or on a storage device.

DEBUGGING
Correcting programming mistakes.

FLOATING POINT
A system that holds numbers in exponential form.

INTEGER
A whole number.

KERNAL
The operating system of the COMMODORE 64.

LIBRARY
A stock of programs and/or program sub-routines.

MOB
Moveable object block. A term used to describe a sprite.

OCTAVE
A group of eight musical notes.

ORIGIN
The pOint on the screen from which a shape is drawn.

PERIPHERAL
An external device which is connected to the computer.

PIXEL
The smallest addressable location on the screen.

PROGRAM CRASH
An unwanted halt in program execution.

G-1

SIMONS' BASIC USER GUIDE

REGISTER
A reserved area within the computer's memory.

SECONDARY ADDRESS
A program/file storage instruction.

SCROLLING
Moving across the screen in a vertical or horizontal direction.

SPRITE
A programmable object.

START ADDRESS
The point from which a block of data is stored within the computer's memory.

TIME CYCLE
The duration of a frequency component measured in thousandths of a second.

G·2

INDEX

INDEX
Page

ANGL .. 6-1,6-12
ARC ..•... 6-1,6:-11
Assigning commands to the function keys , 2-2
AT .. 3-1,3-6
AUTO .. 2-1,2-3
Automatic program line numbering 2-1,2-3

BCKGNDS ... 7-1,7-2
BFLASH ... 7-1,7-4
BLOCK ... 6-1,6-14
Block, Data ... -; .--.......... 8-2

CALL ... 9-1,9-5,9-6
Centering text " 3-1,3-5
CENTRE ... 3-1,3-5
CGOTO .. 2-1,2-6
Changing a character colour ' 7-1,7-6
Changing plotting colours .. 6-1,6-6
CHAR .. 6-1,6-18
CHECK .. 8-1,8-9
CIRCLE ... 6-1,6·1~
Clearing a MOB _ 8-9
CMOB' 8-1,8-5
COLD .. 2-1,2-15
Collision detection, MOB 8-1,8-8,8-9
COLOUR ... 6-1,6-3
Colour, Plotting ... 6-1,6-3
Condition testing .. 9-1
Conventions .. 1-2,1-6
Converting from hexadecimal into decimal 4-1,4-3
Converting from binary into decimal•......................... .4-1,4-3
Coordinates ... 6-2
COpy ... 7-1,7-11
CSET ... 6-1,6-17

1-1

SIMONS' BASIC USER GUIDE

Data block .. 8-2
Debugging programs .. 2-12
Defining the 'shape' of a sound 11-1
DELAy .. 2-1,2-1IJ
DESIGN .. 8-1,8-2,8-1IJ,8-12
Designing a shape ... 6-1,6-14
DETECT ... 8-1,8-8
DIR .. 5-2
DiSABLE .. 3-1,3-11
DISAPA ... 2-1,2-16
DISK ... 5-1
Diskette directory

all .. 5-1,5-2
selected ... 5-1 ,5-2

DiSPLAy ... 2-1,2-3
Displaying non-array variables 2-1,2-14
DIV .. 4-1,4-2
DRAW .. 6-1,6-14
Drawing a fully shaded block of colour 6-1,6-14
Drawing a Polyhedron ... 13-1
Drawing rectangles .. 6-1,6-5
Duplicating a section of the screen 7-1,7-7
DUMP .. 2-1,2-14
DUP ... 3-1,3-5
Duplicating character strings 3-1,3-5

END PROC .. 9-6
ENVELOPE ... 11-1,11-4,11-8
Envelope Generator ... 11-6
Error trapping .. 1a-1
EXEC ... 9-1,9-5,9-7

FCHR ... 7-1,7-5
FCOL .. 7-1,7-6
FILL ... 7-1,7-6
Filling an enclosed area with colour 6-1,6-13
FLASH .. 7-1,7-3
Flashing the screen border colour 7-1,7-4
Flashing a screen colour ... 7-1,7-3
FRAC .. 4-1,4-2
Formatting a diskette ... 5-1

GLOBAL .. 9-8
Global variables ... 9-8

HI COL .. 6-1,6-7
Hiding program code .. 2-15,2-16
High-resolution graphics ... 6-1,6-4
HIRES ... 6-1,6-4
HRDCPY : 7-1,7-12

1·2

INDEX

IF ... THEN ... ELSE ... 9-1
InitiaJizing a MOB .. 8-6
INKEY ... 3-1,3-9
INSERT .. 3-1,3-2
Inserting the SIMONS' BASIC cartridge 1-4
INST .. 3-1,3-3
Integer division .. 4-1
INV ... 7-1,7-8
Inverslng screen data .. 7-1,7-8

JOY ... 12-1,12-5
Joystick ... 12-1,12-5

KEy ... 2-1,2-2

Labelling program routines .. 9-1
Letter Slider program .. 13-5
Lightpen ... 12-1
LINE .. 6-10
listing function key commands 2-1,2-3
LOCAL ... 9-8
Local variables .. 9-8
Loading SIMONS' BASIC from diskette 1-4
LOOP ... EXIT IF ... END LOOP .. 9-1,9-4
LOW COL .. 6-1,6-6

MEM .. 8-10
MERGE .. 2-1,2-7
MMOB ... 8-1,8-7
MOB collision detection .. 8-1,8-8,8-9
MOB OFF ... 8-9
MOB priority .. 8-6
MOB SET .. 8-1,8-6
MOD .. 4-1,4-2
MOVE ... 7-1,7-7
Moving a MOB ... 8-1,8-7,8-8
MULTI ... 6-1,6-5
Multi·colour graphics .. 6-1,6-5
MUSIC ... 11-4,11-9
Music

flats ... 11-9
rests .. 11-9
sharps .. 11-9

NO ERROR ... 10-1,10-4
NRM ... 6-6
Numeric data, Formatting .. 3-1,3-7

1·3

SIMONS' BASIC USER GUIDE

OFF ... 7-1,7-4
OLD .. 2-1,2-18
ON ERROR ... 10-1
ON KEy ~ .. 3-1,3-10
OPTION .. 2-1,2-9
OUT ... ; 10-1,10,3

Paddles .. 12-1,12-3
PAGE ... 2-1,2-8
PAINT .. 6-1,6-12
PAUSE ... 2-1,2-5
PENX .. 12-1
PENY .. 12-1,12-2
PLACE ... 3-1 ,3-4
PLAy ... 11-4,11-11
Playing composed music ... 11-11
PLOT .. 6-1 ,6-8
Plot colours .. 6-1,6-2
Plot types ' 6-3
Plotting

an arc .. 6-1,6-11
circular shapes .. 6-1,6-10
the radius of a circle ... 6-1,6-12
single dots ... 6-1,6-8

POT ... 12-1,12-3
Printing

characters on a graphics screen 6-1,6-18
character strings on a graphics screen 6-1,6-19
screen data ... 7-1,7-11

PROC ... 9-1,9-5
Proced u res ' 9-5
Program loops ... 9-1
Programming the function keys .. 2-2
Programming sound ... : ... 11-4
Pulse/Square waveform .. 11-3

RCOMP .. 9-1,9-3
Read functions ... 12-1
REC ... 6-1,6-5
Recalling

stored screen data ... 7-1,7-10,7-11
a NEWed program ... 2-1,2-18

Redisplaying the last graphics screen 6-1,6-17
RENUMBER•............................... 2-1,2-4
REPEAT UNTIL ... 9-1,9-2
RESET ... 2-1,2-6
RESUME .. 3-1,3-11
RETRACE ... 2-1,2-13
Ring Modulation .. 11-7
RLOCMOB•............................. 8-1,8-8
ROT ... 6-1,6-4

1·4

INDEX

Sawtooth waveform•..•................. 11-3
SCRLD .. 7-1,7-10,7-11
Scratching a file ... 5-.2
Scrolling an area of the screen 7-1,7-9
SCRSV ... 7-1,7-10
SECURE .. 2-1,2-15,2-17
Selecting a character set ... 6-1,6-17
Selecting music volume .. 11-4,11-5
Setting up a MOB design grid•............... 8-2
Setting up a character design grid 8-12
Static frequency .. 11-6
Storing screen data .. 7-1,7-10
Synchronization ... 11-6

TEST .. 6-1,6-9
Test bit , 11-7
Testing for a function key•...•... ; ... , 3-9
TEXT ...••.......... 6-1,6-19
TRACE•.................................... 2-1,2-12
Triangular waveform .. 11-2,11-7

USE ... 3-1,3-7
User-defi ned characters ... 8-1,8-10

Variable frequency .. 11-6
Vintage car program ... 13-8
VOL ... 11-4,11-5

WAVE ... 11-4,11-5
Waveform

Noise ... 11-4X-XX
Pulse/Square ...•..•..•... 11-3
Sawtooth•....................................... 11-3
Triangle•.. 11-2

Wordsearch program " 13-2

1·5

(: commodore
COMPUTER

