

NEVADA COBOL

for the Commodore 64

Programmers' Reference Manual

Copyright© 1979,1981,1982,1983 by Ellis Computing

Copyright© 1983 Commodore Electronics Limited

Commodore Electronics Ltd.

1200 Wilson Drive

West Chester, PA 19380

COPYRIGHT

Copyright, 1983 by Ellis Computing and Commodore Electronics,

Ltd. The distribution and sale of this product are intended for the

use of the original purchaser only. Lawful users of this program

are hereby licenced only to read the program, from its medium

into memory of a computer, solely for the purpose of executing

the program. Duplicating, copying, selling or otherwise

distributing this product is a violation of the law.

This manual is copyrighted and all rights are reserved. This

document may not, in whole or in part, be copied, photocopied,

reproduced, translated or reduced to any electronic medium or

machine readable form without prior consent, in writing, from Ellis

Computing and Commodore Electronics Ltd.

DISCLAIMER

ELLIS COMPUTING AND COMMODORE ELECTRONICS LTD.

("COMMODORE") MAKE NO WARRANTIES, EITHER EXPRESS

OR IMPLIED, WITH RESPECT TO THE PROGRAM DESCRIBED

HEREIN, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR

FITNESS FOR ANY PARTICULAR PURPOSE. THIS PROGRAM IS

SOLD "AS IS". THE ENTIRE RISK AS TO ITS QUALITY AND

PERFORMANCE IS WITH THE BUYER. SHOULD THE PROGRAM

PROVE DEFECTIVE FOLLOWING ITS PURCHASE, THE BUYER

(AND NOT THE CREATOR OF THE PROGRAM, ELLIS

COMPUTING, COMMODORE, THEIR DISTRIBUTORS OR THEIR

RETAILERS) ASSUMES THE ENTIRE COST OF ALL NECESSARY

SERVICING, REPAIR OR CORRECTION AND ANY INCIDENTAL

OR CONSEQUENTIAL DAMAGES. IN NO EVENT WILL ELLIS

COMPUTING AND/OR COMMODORE BE LIABLE FOR DIRECT,

INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES

RESULTING FROM ANY DEFECT IN THE PROGRAM EVEN IF IT

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

SOME LAWS DO NOT ALLOW THE EXCLUSION OR LIMITATION

OF IMPLIED WARRANTIES OR LIABILITIES FOR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR

EXCLUSION MAY NOT APPLY.

TRADEMARKS

NEVADA COBOL™ NEVADA FORTRAN™ NEVADA PILOT™

NEVADA EDIT™ and Ellis Computing™ are trademarks of Ellis

Computing. CP/M is a registered trademark of Digital Research

Corporation.

ACKNOWLEDGMENT

This acknowledgment has been reproduced from the "CODASYL

COBOL Journal of Development, 1978-79" and "American National

Standard Programming Language COBOL, X3.23-1974" as

requested in those publications.

Any organization interested in reproducing the COBOL standard

and specifications in whole or in part, using ideas from this

document as the basis for an instruction manual or for any other

purpose, is free to do so. However, all such organizations are

requested to reproduce the following acknowledgment paragraphs

in their entirety as part of the preface to any such publication (any

organization using a short passage from this document, such as in

a book review, is requested to mention "COBOL" in acknowledg

ment of the source, but need not quote the acknowledgment):

COBOL is an industry Language and is not the property of any

company or group of companies, or of any organization or group

of organizations.

No warranty, expressed or implied, is made by any contributor or

by the CODASYL Programming Language Committee as to the

accuracy and functioning of the programming system and

Language. Moreover, no responsibility is assumed by any

contributor, or by the Committee, in connection therewith.

The authors and copyright holders of the copyrighted material
used herein

"FLOW-MATIC (Trademark of Sperry Rand Corporation),

Programming for the UNIVAC® I and II, Data Automation

Systems copyrighted 1958,1959, by Sperry Rand Corporation;

IBM Commercial Translator, Form No. F28-8013, copyrighted

1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by

Minneapolis-Honeywell"

have specifically authorized the use of this material in whole or in

part, in the COBOL specifications. Such authorization extends to

the reproduction and use of COBOL specifications in

programming manuals or similar publications.

We hope you enjoy using NEVADA COBOL™ for the Commodore 64.

NEVADA COBOL for the Commodore 64 runs under CP/M® 2.2 Operating

System. Here are several other Commodore software packages which you

should know about:

NEVADA FORTRAN™
This is an 8080/8085/Z80 version of FORTRAN IV. The compiler works from

disk (also using the assembler) to produce machine code that executes at

maximum CPU speed. First, a source program is entered as FORTRAN IV

program statements and compiled to produce assembly code. Next, any

errors must be corrected. Then, intermediate code is assembled into 8080

object code which is now ready for execution under CP/M.

EASY SCRIPT 64

This is a powerful word processor with table producing capabilities,

comprehensive printer controls, easy update facilities, easy document

handling, the ability to interact with EASY SPELL 64, and more.

THE WORD MACHINE and THE NAME MACHINE

This is an easy-to-learn and easy-to-use wordprocessing package. Perfect

for letters, address lists, memos, and notes, these programs let you

overtype, insert, and delete text; personalize form letters; and print in draft,

formal, or informal formats.

EASY SPELL 64

Easy Spell 64 features the following: the automatic correction of spelling

errors, the ability to count the number of words in your manuscript and

interact with Easy Script 64, and a built-in 20,000 word dictionary that lets

you add words not already stored there.

EASY MAIL 64

With Easy Mail 64, you can easily manage your address files. Label

printing is also simplified with Easy Mail's ability to search for specific
fields/categories. The program's features include entry, change, or deletion

of a file by name or number; the capability to print one or two abreast

labels; a HELP screen; and the ability to print a complete printout of all the

data in each of your records.

EASY CALC 64

Easy Calc 64 is an easy-to-use electronic spread sheet which features

editing functions and HELP screens. With Easy Calc 64, you can also print

bar charts and individually formatted tables.

THE MANAGER

The Manager is a general data base for handing your files.

NEVADA COBOL and NEVADA FORTRAN are trademarks of Ellis Computing

CP/M is a registered trademark of Digital Research, Inc.

THE COMMODORE 64 MACRO ASSEMBLER DEVELOPMENT SYSTEM

This package is designed for experienced Assembly language

programmers. Everything you need to create, assemble, load, and execute

6500 series Assembly language code is included.

SCREEN EDITOR

The Screen Editor helps you design software by letting you create and edit

your own screens. This programming tool is for users with some computer

experience.

SUPER EXPANDER 64

This cartridge is a powerful extension of the BASIC language which gives

you the commands needed to easily access and implement Commodore's

graphics, music, and sound capabilities. You will be amazed at how

quickly and easily you can plot points and lines; draw arcs, circles,

ellipses, rectangles, triangles, octagons; paint shapes with specified

colors; read game paddle and joystick locations; create music and sound;

display text; split screens to display both text and graphics; and program

the function keys.

THE EASY FINANCE SERIES

Commodore is proud to announce an entire series of EASY FINANCE

software packages which may solve many of your business and personal

needs. The EASY FINANCE series is called "easy" because all of the

programs are simple to operate and require no programming experience.

Here is a brief description of each:

EASY FINANCE I — LOANS

LOANS shows you how to make the most out of your hard-earned money

by calculating 12 different loan concepts for you. Principal, regular

payment, last payment, and remaining balance are just some of the

functions EASY FINANCE I can determine.

EASY FINANCE II — INVESTMENTS

INVESTMENTS helps you make the right financial decisions by showing

you how to make the most out of 16 investment concepts. Functions such

as future investment value, initial investment, and internal rate of return

can be calculated.

EASY FINANCE III — ADVANCED INVESTMENTS

ADVANCED INVESTMENTS is an advanced version of EASY FINANCE II.

It shows you how to make the most out of 16 more investment concepts.

Financial terms are clarified and functions such as discount commercial

paper, financial management rate of return, and financial leverage and

earnings per share are included.

EASY FINANCE IV - BUSINESS MANAGEMENT

This is a business management package that shows managers how to

make the right decisions about production, inventory, control,

compensation, and much more. Lease purchase analysis, depreciation

switch, and optimal order quantity are some of the 21 functions this

program can calculate for you.

EASY FINANCE V — STATISTICS

STATISTICS shows you how to make the most out of statistics. This

includes payoff matrix analysis, regression analysis forecasting, and

apportionment by ratios.

Please contact your local Commodore dealer for additional information on

other software available for your Commodore computer.

Thank you for owning a Commodore computer. Now that you are a

member of the Commodore family, maybe you'd like to expand

your computer's family. Here is a list of additional hardware which

is compatible with your Commodore computer:

1525 Printer

This printer is an 80-column, dot-matrix, impact printer for creating

printouts and hard-copies from your VIC 20 or Commodore 64. The
printer features 30 characters per second print speed and prints

graphics and text characters.

1526 Printer

This bi-directional, 80 column, dot-matrix, impact printer is

excellent for creating printouts and hardcopies from your
computer. The printer features programmable line spacing and a

print format interpreter.

1520 Plotter/Printer

This is a four color, high resolution plotter that connects directly

to your VIC 20 or Commodore 64 computer. With the 1520

Plotter/Printer you can plot on a piece of paper, the unique color

graphics that you have created on your screen.

Commodore Speech Module

The speech module cartridge comes with a built-in vocabulary of

234 words which are easily programmed into sentences. The

module "talks" in a pleasant female or male voice ... it can

generate other types of voices with special vocabularies geared to

each software package. The speech module works with disk, tape,

and also has a slot for accepting plug-in cartridges.

1701/1702 Monitor

This full color monitor is compatible with the VIC 20, Commodore

64, and other computers. The 1701/1702 Monitor features high

quality resolution video and a built-in speaker with audio amplifier.

1530 DATASSETTE™

The 1530 DATASSETTE is a low cost, highly reliable way to store

and retrieve programs and data. It features keys for Play, Record,

Fast-Forward, Rewind, and Stop. The 1530 DATASSETTE uses

standard audio cassette tapes and allows naming of programs and

files, verification of programs, and programmable end of tape

marker sensing.

Joystick and Paddles

Controls for games and entertainment.

Modem

The 1600 Modem telephone interface lets you communicate with

other computer systems over your telephone line! The modem

package includes cassette-tape terminal software, a free password

and one-hour subscription to the CompuServe System™* and

software controls for duplex, baud rate, and parity. There is also

an optional adapter available for non-modular phones. The 1650

Automatic Modem features all of the above plus automatic answer

and automatic dial.

PET 64

This unique machine combines many of the Commodore 64

features with the capabilities of the Commodore PET. However,

sprites, color, and sound are not featured on this machine.

SX-64/DX-64 Portable Color Computers

These new computers are Commodore 64's in a convenient

portable style. The model SX-64 (single disk drive) and DX-64

(double disk drive) are excellent investments for business people,

as well as affordable for today's students.

DATASSETTE is a trademark of Commodore Electronics, Ltd.

TABLE OF CONTENTS

PREFACE 1
USER CONVENTIONS 1

COBOL RESERVEDWORDS 2
FILES ON THE NEVADA COBOL DATA DISK 4

1 INTRODUCTION 5

SETTING UP 6
GETTING STARTED 6
COBOL PROGRAMMING CONCEPTS 8

THE FOUR DIVISIONS OF A COBOL PROGRAM 10

2 RUNNING NEVADA COBOL 12

BUILDING A PROGRAM 14

COBOL CODING FORMAT 14

COMPILING A PROGRAM 15

EXECUTING A PROGRAM 16

LISTING A PROGRAM 17

3 IDENTIFICATION DIVISION 18

PROGRAM-ID STATEMENT 18

COPYSTATEMENT 18

4 ENVIRONMENT DIVISION 20

CONFIGURATION SECTION 20

SOURCE-COMPUTER 20

OBJECT-COMPUTER 20

SPECIAL-NAMES 20
INPUT-OUTPUT SECTION 22

FILE CONTROL 24

COPY STATEMENT 24

5 DATADIVISION 25

FILE SECTION 25

FILE DESCRIPTION (FD) 25

RECORD DESCRIPTION 26

WORKING-STORAGE SECTION 27

COPYSTATEMENT 31

6 PROCEDURE DIVISION 32

STATEMENT KEYWORDS:

ACCEPT 32

ADD 34

ALTER 34

CALL ,, 35

CANCEL 37

CLOSE 38

COPY 38

DISPLAY 39

DIVIDE 40

END PROGRAM 41

EXIT 41

GOTO 42

IF 43
INSPECT 45

MOVE 52
MULTIPLY 54

OPEN 55

PERFORM 55

READ 59

REWRITE 60

STOP 60

SUBTRACT 61

WRITE 62

7 ERROR CODES AND MESSAGES 63

COMPILER ERROR MESSAGES 63

RUN TIME AND COMPILE TIME ERROR MESSAGES 65

APPENDIXI SAMPLE PROGRAMS 66

APPENDIX II GLOSSARY 91

APPENDIX III LIST OF REFERENCES 113

INDEX 114

PREFACE

This reference manual assumes you already have the knowledge

to program in COBOL and have read the Commodore 64 CP/M

Operating System User's Guide. An additional list of

supplementary materials can be found in the back of this book.

This manual is not a tutorial and will not teach you "how to"

program in COBOL However, for the experienced COBOL

programmer who is already familiar with the CP/M Operating

System, this manual provides the necessary tools for using

NEVADA COBOL on your Commodore 64. The manual includes:

• General concepts of COBOL programming

• Details on using COBOL

• A list of Reserved Words

• A description of the four Divisions of a COBOL program

• Sample Programs

• Error Codes and Messages

• A Glossary of Terms

We hope you enjoy using NEVADA COBOL on your Commodore
64.

USER CONVENTIONS

It is recommended that you familiarize yourself with the

Commodore keyboard. Here is a brief discussion of certain keys

and symbols, and their respective use in the NEVADA COBOL

manual. This will also help you interpret the syntax of the

commands, including their optional features.

{ } Braces indicate that a choice must be made

[] Square brackets indicate optional information that may be
omitted

Several consecutive periods, "ellipses", specify that the
preceding clauses can be repeated.

<CR> To continue on after a line of input, press the RETURN
key.

Lower-case characters represent data to be supplied by the
programmer

Emboldened UPPER-CASE characters are key words that must be
used

Upper-case characters that are not emboldened are optional
reserved words

COBOL RESERVED WORDS

The following ANSI-1974 COBOL Reserved Words can be used

with NEVADA COBOL for the Commodore 64.

ACCEPT

ACCESS

ADD

ADVANCING

AFTER

ALL

ALPHABETIC

ALTER

AND

ARE

AREA

ASSIGN

AT

AUTHOR

BEFORE

BLOCK

BY

CALL

CANCEL

CHARACTERS

CLOSE

COLLATING

COMMA

COMP

COMPUTATIONAL

CONFIGURATION

CONTAINS

COPY

CURRENCY

DATA

DATE-COMPILED

DATE-WRITTEN

DEBUGGING

DECIMAL-POINT

DELIMITER

DEPENDING

DISPLAY

DIVIDE

DIVISION

ELSE

END

ENVIRONMENT

EQUAL

ERROR

EXIT

FD

FILE

FILE-CONTROL

FILLER

FIRST

FOR

FROM

GIVING

GO

GREATER

HIGH-VALUE

HIGH-VALUES

I-O

I-O-CONTROL

IDENTIFICATION

IF

INITIAL

INPUT

INPUT-OUTPUT

INSPECT

INSTALLATION

INTO

INVALID

IS

JUST

JUSTIFIED

KEY

LABEL

LEADING

LEFT

LESS

LINE

LINES

LINKAGE

LOW-VALUE

LOW-VALUES

MEMORY

MODE

MODULES

MOVE

MULTIPLY

NEXT

NO

NOT

NUMERIC

OBJECT-COMPUTER

OCCURS

OF

OFF

OMITTED

ON

OPEN

OR

ORGANIZATION

OUTPUT

PAGE

PERFORM

PIC

PICTURE

PROCEDURE

PROCEED

PROGRAM

PROGRAM-ID

QUOTE

QUOTES

RANDOM

READ

RECORD

RECORDS

REDEFINES

RELATIVE

REPLACING

REWRITE

RIGHT

ROUNDED

RUN

SAME

SECTION

SECURITY

SELECT

SENTENCE

SEQUENCE

SEQUENTIAL

SIGN

SIZE

SOURCE-COMPUTER

SPACE

SPACES

SPECIAL-NAMES

STANDARD

STATUS

STOP

SUBTRACT

SYNC

SYNCHRONIZED

TALLYING

THAN

THROUGH

THRU

TIMES

TO

UNTIL

USAGE

USING

VALUE

WITH

WORDS

WORKING-STORAGE

WRITE

ZERO

ZEROES

ZEROS

The following words are NEVADA COBOL Reserved Words

(Not ANSI-1974):

ASCII

BEGINNING

COMP-3

COMPUTATIONAL-3

DISK

ENDING

FILE-ID

PRINTER

FILES ON THE NEVADA COBOL DATA DISK

CC.COM is the COBOL COMPILER and is always on the default

drive at compile time.

W4.COM is a random file and is always on the default drive at

compile time.

W5.CBL is the error message file and is always on the default

drive at compile time. This file is a standard text file that may be

changed by the user.

RUN.COM is the run time loader/subroutine code and can be on

any drive. It is only used at run time.

ERR0RS.COM displays the error report from the default drive. This

program is used to re-display the error report from the last compile

but is not required for compiling.

RENUMBER.CBL is a COBOL source code program that must be

compiled before it can be used. It renumbers COBOL source

programs.

CONFIG.CBL is a COBOL source code program that must be

compiled before it can be used. It will configure the CRT for line

length, BIOS and the delete character, etc.

C0NVHEX.COM is used in conjunction with the CP/M assembler

for those of you wishing to write called programs in assembly

language. It converts (.HEX) files to (.OBJ) files. This program is

executed as follows:

COMVHEX file-name[.HEX]

The program will create the output file if necessary with the same

file-name and type (.OBJ). If you do a lot of work in assembly

language, you may want to get Nevada FORTRAN, as it comes

with an assembler that is compatible with Nevada COBOL.

FILES THAT WILL BE CREATED AT COMPILE TIME

W1.WRK is a work file and will be created on the default drive or

the assigned drive at compile time.

W3.WRK is the error work file and will be created on the default

drive at compile time.

1 INTRODUCTION
COBOL (Common Business Oriented Language) is a programming
language that has been used for business applications since the
early 1960's. COBOL is based on English and uses certain words
and syntax rules derived from English. NEVADA COBOL for the

Commodore 64 is an updated subset of COBOL and is designed
for small businesses with a Commodore 64 microcomputer.

As in English, the basic unit of COBOL is the word. A "word" may

be a COBOL reserved word or a word that you define. Reserved
words have specific meaning to the COBOL compiler;

programmer-defined words can be assigned to data-names and

procedure-names and must conform to the COBOL rules for the
formation of names.

As the programmer, you combine Reserved Words and your

programmer-defined words into clauses and statements. A clause
or a statement specifies one action to be performed, one

condition to be analyzed, or one description of data. These

clauses and statements can then be combined into sentences.

Sentences may be simple (one statement or clause), or they may
be compound (several statements or several clauses). Logically
related sentences can be combined into paragraphs; related
paragraphs can be combined into sections. These sections are
then placed in one of the appropriate program divisions.

There are four divisions in a COBOL program:

INDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.
DATA DIVISION.

PROCEDURE DIVISION.

Each of the four divisions is briefly described in the chart at the

end of this chapter. A more detailed description of the divisions is
given in the subsequent chapters.

SETTING UP

The following is a list of the required Hardware:

• Your Commodore 64 computer

• The Commodore Z80 microprocessor (This is your CP/M

Operating System cartridge.)

• A Commodore 1541 single disk drive or a Commodore IEEE

interface and a CBM dual disk drive model 4040

• A video display monitor such as the Commodore Color Monitor

Model 1701/1702

The following is a list of the required Software:

• Commodore's CP/M Operating System disk

• A text editor ED. COM is found on your Commodore CP/M

Operating System disk.

GETTING STARTED

Throughout our discussion we will be referring to the following

disks:

NEVADA COBOL Data disk

Included in your NEVADA COBOL software package, this disk

should only be read. A listing of the files contained on this disk

can be found at the front of this manual.

CP/M Operating System disk

This is your Commodore CP/M Operating System disk that you

use with your Z80 cartridge.

CP/M-NEVADA COBOL Operations disk

This is a disk which you create.

Note that you should NEVER write on your NEVADA COBOL Data

disk. To pervent any mistakes from occurring, be sure that your

NEVADA COBOL Data disk is write protected. (Place a standard

protection label over the "square cornered" notch on the disk.)

Before continuing, consult your Commodore 64 CP/M Operating

System User's Guide if you are not familiar with the DIR, ERA, PIP,

and STAT commands.

Follow these steps to get started using NEVADA COBOL:

1. Use one of your CP/M Operating System disk backup copies

to create your CP/M-NEVADA COBOL Operations disk. If you

don't have a backup copy of the CP/M Operating System disk,

see Section 4.2 The Copy Utility in your Commodore CP/M

Operating System User's Guide.

2. Use the CP/M ERA command to erase all of the files except

the PIP.COM and ED.COM files from your newly created

NEVADA COBOL Operations disk.

3. If you are using the IEEE interface and the Commodore dual

disk drive, insert the newly created CP/M-NEVADA COBOL
Operations disk into drive 0 (A). Insert the NEVADA COBOL

Data disk into drive 1 (B). Now, boot CP/M.

If you have a 1541 single disk drive, insert the newly created

CP/M NEVADA COBOL Operations disk into the disk drive and
boot CP/M.

After CP/M is booted, the computer automatically displays an

'A >' prompt. This signifies disk A is ready to be accessed. Here
is a sample of how each file should be copied on a single disk

drive system. Remember, we will refer to the NEVADA COBOL

Data disk as disk 'B' and the CP/M-NEVADA COBOL Operations
disk as disk 'A'.

Use the PIP command to copy the files from your NEVADA

COBOL Data disk to the CP/M-NEVADA COBOL Operations disk.

PIP will prompt you throughout the entire copy process. To invoke
the PIP program, input PIP after the 'A >' prompt:

A>PIP <CR>

After RETURN is pressed, an asterisk (*) is displayed on the

following line. Now, copy and verify the file CONFIG.CBL:

*A:CONFIG.CBL= B:CONFIG.CBL[V]

The following prompt will then be displayed:

Insert disk B into drive 0, press return

Insert the NEVADA COBOL Data disk and press RETURN. The PIP

program will read the file CONFIG.CBL from the disk. After a short

period of time, the following prompt will be displayed:

Insert disk A into drive 0, press return

Insert the CP/M-NEVADA COBOL Operations disk and press

RETURN. The PIP program will now write onto the disk the

CONFIG.CBL file. Upon completion, an asterisk will appear. You

can now continue copying your files from the NEVADA COBOL

Data disk to the CP/M-NEVADA COBOL Operations disk using the
following format:

*A:destination= B:source[V]

Continue this process until all files from the NEVADA COBOL

Data disk are copied to the CP/M-NEVADA COBOL Operations

disk. PIP can be terminated at any time by pressing RETURN after
any asterisk (*) prompt.

We suggest now placing your NEVADA COBOL Data disk in a safe

place. You will not need it unless something happens to your

Operations disk. Depending on how much program development

you do, it may be wise to backup your CP/M-NEVADA COBOL

Operations disk at least once a day.

COBOL PROGRAMMING CONCEPTS

In English, vocabulary and punctuation are used to form

sentences so that concepts can be clearly understood. In COBOL,

similar techniques are used to form program statements. Here is a
table to highlight some of these techniques.

Concept Function

Punctuation A .,; must immediately follow the

last character of a word and be

followed by a space. The , and ; are

interchangeable. The opening

parenthesis, *(', cannot be followed

by a space; the closing parenthesis,

')' cannot be preceded by a space.

Verbs Verbs are used in the PROCEDURE

DIVISION. All verbs fall into the

following categories:

Example

0001 MOVE MONEY (10) TO

SAVING AND LOAN.

Type

Imperative

Conditional

Compiler

Directing

Input-Output

Description

Gives a direct

processing

instruction

Tests a condition IF A = B

(IF cannot appear

in imperative

statements)

GO TO PERFORM

Instructs the

compiler during

compilation time

Assists in the

transfer of data

between peri

pherals and

memory

COPY

OPEN, CLOSE, READ, WRITE

MOVE Verb Transfers data

from one area of

memory to

another

To send to more

than one field

To transfer

numbers, use a

numeric MOVE

a) Align the dec

imal points

b) Move the

digits

c) Fill in zeros

Arithmetic To add,

subtract,

multiply and

divide values

Sequence To pass control

Control to a statement

that is not in

sequential order

To permanently

transfer control

To temporarily

transfer control

and return to the

statement follow

ing the sequence

interruption

The last portion PERFORM

of a sequence (A) THRU (B)

control procedure EXIT

consists of either

of these

MOVE (old field) TO (new field)

MOVE (old field) TO (new field),

(new field), (new field)

ADD (value) TO (field)

SUBTRACT (fieldi) FROM (field2)

GIVING (field3)

MULTIPLY (number of times) BY

(receiving field)

DIVIDE (divisor) INTO (dividend)

GIVING (quotient)

GOTO (procedure name)

PERFORM

THE FOUR DIVISIONS OF A COBOL PROGRAM

The IDENTIFICATION DIVISION lets you specify:
• Program Name

• Programmer's Name

• System or application
• Dates when written and compiled
• Security restrictions

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T6WF.

0004* THIS PROGRAM CREATES A FILE OF FIXED LENGTH
0004* RECORDS IF THE RECORD SIZES ARE CHANGED TO
0004* YOUR NEEDS, CAN BE USED TO CREATE THE SPACE
0004* NEEDED (ALLOCATE) FOR A RANDOM FILE.

The ENVIRONMENT DIVISION lets you specify:
• Source — Computer used to compile the program
• Object — Computer used to execute the compiled Object

program

• The Input-Output section for identifying the File — Control;
i.e., location of each file referenced and how each file will be
used

• Filenames may be up to 30 characters

0005 ENVIRONMENT DIVISION.
0006 CONFIGURATION SECTION.
0007 SOURCE-COMPUTER.
0008 8080-CPU.

0009 OBJECT-COMPUTER.

0010 8080-CPU.

0011 INPUT-OUTPUT SECTION.
0012 FILE-CONTROL

0013 SELECT FILE1 ASSIGN TO DISK
0014 ORGANIZATION IS SEQUENTIAL
0015 ACCESS MODE IS SEQUENTIAL

The DATA DIVISION lets you:

• Give a detailed description of all the data to be used, i.e.,
format of each file and record within each file

• Assign data-names to each of the items of data to be used
• Describe in the Working Storage Section records and data

items that are not part of the files, but are used during the
processing of the object program

• The Working Storage Section identifies intermediate storage
areas along with constant values used.

10

0016 DATA DIVISION.

0017 FILE SECTION.

0018 FD FILE1
0019 LABEL RECORDS ARE STANDARD
0020 VALUE OF FILE-ID IS OUT-FILE-NAME

0021 BLOCK CONTAINS 1 RECORD
0022 DATA RECORDS ARE O-RECORD.

0023 01 O-RECORD.

0024 02 SEQ PIC 9999.
0025 02 REC1 PIC IS X(156).

0026 O2 SEQ2 PIC 9999.
0027 WORKING-STORAGE SECTION.

0028 01 OUT-FILE-NAME PIC X(14)
0029 VALUE "A:TESTF.WRK".

0030 01 X1 PIC 9999

0031 VALUE 0001.

The PROCEDURE DIVISION lets you:
• Define the necessary instructions for solving the program

0032 PROCEDURE DIVISION

0033 BEGIN.
0034 DISPLAY "ENTER OUTPUT FILE NAME".
0035 DISPLAY OUT-FILE-NAME WITH NO ADVANCING.
0036* TO ACCEPT AND USE THE FILE-NAME JUST DISPLAYED
0036* YOU CAN HIT THE <CR> KEY. SEE #2 UNDER ACCEPT.
0036 ACCEPT OUT-FILE-NAME.

0037 OPEN OUTPUT FILE1.

0038 MOVE SPACES TO O-RECORD.

0039 BEGIN2.

0040 MOVE X1 TO SEQ.

0041 MOVE X1 TO SEQ2.

0042 ADD1TOX1.

0043 DISPLAY O-RECORD.

0044 WRITE O-RECORD.

0045 IF X1 IS = TO 201

0046 GO TO EOJ.

0047 GO TO BEGIN2.

0048 EOJ.

0049 CLOSE FILE1.

0050 STOP RUN.

0051 END PROGRAM T6WF.

11

2 RUNNING NEVADA COBOL
Now, boot up the newly created NEVADA COBOL Operations disk.
Notice that CP/M display's the amount of memory available.
Compiling and executing of COBOL programs should be done
with the same CP/M version or one of larger memory unless your
COBOL programs are given an upper address limit. Also, do not
write protect this Operations disk because during compile time,
data will be written onto it.

The next step is to compile the program called CONFIG. This is
done by typing the following:

A> CC CONFIG

The disk drive(s) will work away and the COBOL compiler will

finally display SUCCESSFUL COMPILE. If you have any problems
compiling, read ahead about compiling a program, as on small
disk drives you may have to assign files to other disk drives or
make space available on the default drive. Normally, everything
should go smoothly and work properly if the compiler has been
copied correctly.

Next, type the following:

A> RUN CONFIG

where RUN.COM and CONFIG.OBJ are both on the current
logged-in disk drive (A). The program CONFIG is used to specialize
the RUN time package and asks the following questions:

ENTER SCREEN INFORMATION

ENTER 2-DIGIT HEXADECIMAL CODE FOR DELETE-KEY
enter 08

ENTER 2-DIGIT HEXADECIMAL CODE FOR BACKSPACE
CURSOR

enter 08

IS THE BACKSPACE PRECEDED WITH AN ESCAPE CHARACTER
(Y/N)?

enter N

ENTER # OF CHARACTERS ACROSS SCREEN
enter 40

ENTER # OF LINES PER SCREEN PAGE

enter 25

DOES YOUR BIOS ISSUE A CR/LF AT THE END OF EACH LINE
(Y/N)?

enter Y

DOES YOUR PRINTER REQUIRE A LINE FEED (Y/N)?
enter Y

12

DO YOU WANT TO USE CPM FUNCTION 1 & 2 CONSOLE I-O

(Y/N)?

usually Y (user's option)

If N, other information will be displayed

Answer N if you will be sending escape characters to

the CRT.

DOES YOUR CPM BACKSPACE AND BLANK THE DELETED

CHARACTER (Y/N)?

this is usually N

DO YOU WANT TO ACCEPT ANY HEX CHARACTER OR ONLY

DISPLAY ASCII (H/A)?

this is usually A

EOJ CONFIG RETURNING TO CPM

CC RENUMBER

Compiling RENUMBER.LBL creates RENUMBER. OBJ which

automatically numbers or renumbers user written programs.

Once the CONFIG program has been run and you are satisfied

with the ACCEPT/DISPLAY functions, the programs are no longer

needed on the CP/M-NEVADA COBOL Operations disk and may be

removed as follows:

A> ERA CONFIG.*

A> ERA RENUMBER.CBL

On some single density 5Va disks, you may want to have a

separate disk for compiling only. This disk needs only the

following files:

CC.COM about 6K.

W4.COM about 30K.

W5.COM about 6K.

And at run time, you can also have a separate disk. It only needs

one file:

RUN.COM about 12K.

With this disk file arrangement, the COBOL compiler will work on

disks with very limited disk space.

13

BUILDING A PROGRAM

The first step is to create a COBOL source program file. This file
will later be submitted to the COBOL compiler for compilation.
Create the file by using a text editor. You can copy an existing
COBOL source file such as RENUMBER.CBL that is on the
NEVADA COBOL Data disk and create a new program file called
for example, MYPROG.CBL. Then, modify MYPROG.CBL as
required. This saves keying time as well as avoiding the possibility
of misspelling required keywords.

Each line of the COBOL source file must be terminated with a
carriage return line feed. This is automatically done with text
editor, ED.COM which should now be on your CP/M-NEVADA
COBOL Operations disk.

COBOL CODING FORMAT

ANSI-1974 NEVADA COBOL
column column

Sequence number 1-6 . 1-4
Indicator area 7 5

A-field 8-11 6-9

B-field 12-72 10-70

1. You can use either format because the compiler looks at the
first line of the source program and determines either 4
position or 6 position line numbers are used. When converting
ANSI programs to NEVADA COBOL (or vice versa) adjust the
sequence number by two positions and the other columns will
align properly. We felt that 9999 sequence numbers would be
enough for microprocessors and would also be compatible
with other microprocessor software (i.e. RENUMBER, edits,
etc.).

2. The indicator area can contain only the following:
which indicates a comments line.

/ which indicates a comments line after head of
forms.

SPACE which indicates a standard COBOL statement line.
D which indicates a Debugging line.
— which indicates a continuation line. When a non-

numeric literal is continued, a quotation mark (")
must also appear in column 10.

All other characters are flagged by the compiler and are
treated as comment lines.

3. Sequential line numbers are required because all errors are
referenced by a line number.

14

4. Each line must be terminated by a carriage return line feed

(ODOA hex).

EXAMPLE:

Columns

123456789012345678901234567890

0001 IDENTIFICATION DIVISION.

0002* this is a comment line, the next line is blank

0003*

COMPILING A PROGRAM

To compile a program simply type CC file-name. A copyright

message will appear until the error report is displayed or until the

successful compile message is displayed. Using the error report

line number/message, correct the source and recompile if
necessary. The compile can be interrupted (aborted) by pressing

the CONTROL-C keys. In the following examples, the CP/M

operating system gives the prompt A > and the user types in the

rest of the line.

A>CC RENUMBER <CR>

In the above case, the source file RENUMBER.CBL is on the

default drive. The object code file will be created if necessary on

the default drive with the file-name of RENUMBER.OBJ. The work
file W1 will be created if necessary on the default drive.

A> CC SOURCE.BBB <CR>

In the above example, all assignable files are on disk drive B. The
type field is used for drive assignment. The first position is for the
source file, the second position is for the object file and the third
position is for W1, a large work file. All source files must be type

'.CBU.

A> CC CONFIG.ABB <CR>

In the above case, the source file CONFIG.CBL is on drive (A) and
the object file CONFIG.OBJ will be created if necessary on drive

(B) as will the work file W1.WRK.

Warning: If you forget and type CC file-name.CBL, you will get a
CP/M BDOS Select Error. This is because the computer will look

for drive C: or L: in error.

15

EXECUTING A PROGRAM

Once the object file has been produced, the program can be
executed by simply typing RUN file-name. The run time package is
called RUN and lives in memory locations 100H to 2EFFH. It
contains a special loader and all the required run time

subroutines. Execution of the program can be interrupted (aborted)
by pressing the CONTROL C keys.

A> RUN[u:]OBJECT <CR>

In the above case, RUN is on the logged-in drive. The optional [u]
would be the disk drive of where the OBJECT resides if other than
drive (A).

B>RUN A:PAYROLL <CR>

In the above case, RUN.COM is on the current logged-in drive (B)
and PAYROLLQBJ is on drive (A).

A> RUN RENUMBER <CR>

where RUN.COM and the object program RENUMBER.OBJ are
both on the current logged-in disk drive (A). The program
RENUMBER is used to renumber the first four positions of
COBOL source code programs. After loading, the following
prompt appears:

ENTER FILE NAME A:FILENAME.TYP

at this point the user enters his program-name.

A:CONFIG.CBL

The program then renumbers the requested file-name and when
complete displays:

RENUMBERING COMPLETE

In some cases, the renumber program issues error messages. If an

input line is all spaces (blank) or if any of the first four positions

contain a tab character (09H), the user is notified that the line has

been skipped. This is because the renumber program uses the

rewrite statement which cannot expand the input. Warning, on

some implimentations of CP/M, it has been reported that these

blank lines cause the file to be destroyed. If this should happen,

you must not use blank lines or tabs!

EXAMPLE:

Columns

1234567890123456

0001 *
*

9999/ head of form comment line is OK

16

LISTING A PROGRAM

To list a NEVADA COBOL source code program, use the CP/M
TYPE command; and, if you have a printer, use CTRL-P.

A> TYPE RENUMBER.CBL[CTRL-P] <CR>
A> TYPE CONFIG.CBL <CR>
A>TYPEW5.CBL<CR>

17

3 IDENTIFICATION DIVISION
The IDENTIFICATION DIVISION of a COBOL program is entirely

for documentation purposes only and is treated as comments by

the compiler. However, the required key words are checked, so all

text must be in upper-case and follow the COBOL rules.

FUNCTION: To identify the source program for documentation
purposes.

FORMAT:

IDENTIFICATION DIVISION.

PROGRAM-ID, program name.

[AUTHOR, comment entry.]

(INSTALLATION, comment entry.]

[DATE-WRITTEN, comment entry.]

[DATE-COMPILED, comment entry.]

[SECURITY, comment entry.]

EXAMPLE:

0001 IDENTIFICATION DIVISION.

0002 PROGRAM-ID. TEST1.

0003 AUTHOR. COMMODORE BUSINESS MACHINES.
0004 INSTALLATION. WEST CHESTER, PA

0005 DATE-WRITTEN. JULY 1, 1983.

0006 DATE-COMPILED. JULY 17, 1983.

0007 SECURITY. COPYRIGHT CBM, INC.

0008* comment lines with * in column 5 can be lower-case.

Another statement that can be placed in the IDENTIFICATION

DIVISION is the COPY statement. The COPY statement inserts
text into the source program at compile time.

FORMAT:

COPY u:filename.

RULES:

1. A COPY cannot occur within another COPY.

2. The disk unit (u:) is optional. The current logged-in disk drive is
used as the default if the unit is not specified.

3. The COPY statement should be preceded by a space and
terminated by a period, normally, starting in column 7.

4. The file type is not part of the COPY statement, but must be
type CBL

18

EXAMPLE:

0001 IDENTIFICATION DIVISION.

0002 PROGRAM-ID. TESTCOPY.

0003 COPYA:FILE1.

0008 COPY A:FILE2.

0015 COPY B:FILE3.

The following represents a separate file named FILE1.CBL to be

included (copied) by the above copy statement line 0003.

0004 AUTHOR. COMMODORE BUSINESS MACHINES.

0005 INSTALLATION. WEST CHESTER, PA

0006 DATE-WRITTEN. AUGUST 7,1982.

0007 DATE-COMPILED. AUGUST 7, 1982.

19

4 ENVIRONMENT DIVISION
The ENVIRONMENT DIVISION identifies the computer to use for

program compilation and execution. The ENVIRONMENT

DIVISION may consist of a CONFIGURATION SECTION, INPUT-

OUTPUT SECTION and COPY information.

FORMAT:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER, comment [WITH DEBUGGING MODE].

OBJECT-COMPUTER, comment

{MODULES}

{WORDS}

[MEMORY SIZE integer-1 {CHARACTERS}]

[MEMORY BEGINNING integer-1 ENDING integer-2]

[PROGRAM COLLATING SEQUENCE IS ASCII].

SPECIAL-NAMES. [CURRENCY SIGN IS literal-1]

[DECIMAL-POINT IS COMMA].

RULES:

1. The generated object code uses memory up to integer-1

CHARACTERS (upper-address limit), if specified. Format 2

specifies a MEMORY BEGINNING address and an ENDING

address used to relocate CALLed programs. If these clauses

are not used, the generated object code will use all available

contiguous memory.

2. At compile time, the Compiler uses all available contiguous
memory.

3. When WITH DEBUGGING MODE is specified, lines with "D" in
column 5 are also compiled.

4. PROGRAM COLLATING SEQUENCE IS ASCII is treated as
comments by the compiler since the machine collating

sequence is ASCII.

5. The literal which appears in the CURRENCY SIGN IS literal

clause is used in the PICTURE clause to represent the

currency symbol. The literal is limited to a single character

and must not be one of the following characters.

a. digits 0 thru 9;

b. alphabetic characters A, B, C, D, L, P, R, S, V, X, Z, or the
space;

c. special characters ,* + - ;()"/ =

If this clause is not present, only the currency sign is used in
the picture clause.

20

6. The clause DECIMAL-POINT IS COMMA means that the

function of comma and period are exchanged in the character-

string of the PICTURE clause and in numeric literals.

7. lnteger-1 and integer-2 in the MEMORY SIZE clause are

addresses. Users with relocated versions please remember to

adjust these addresses upwards.

EXAMPLE:

0011 ENVIRONMENT DIVISION.

0012 CONFIGURATION SECTION.

0013 SOURCE-COMPUTER. 8080-CPU.

0014 WITH DEBUGGING MODE.

0015 OBJECT-COMPUTER. 8080-CPU.

0016 MEMORY SIZE 16383 CHARACTERS.

0017* the following line would be used for called programs.

0018 MEMORY BEGINNING 16384 ENDING 32767.

Here is a Memory Map to help you visualize where the various

portions of your program may be placed in memory.

MEMORY MAP

0000

I

0100 beginning of runtime package —

—0000

I

—-0100

2E00--

12K runtime package

Your COBOL object code gets loaded starting here

and continues upl

and...

continues loading down from the top of

memory or the memory ending statement.

So loading takes place in both directions!

-2E00

Your called program can go anywhere as long as

it's + 1 byte above the calling program's

ending memory statement.

A second or third called program could be here

to the bottom of CP/M which varies on each

machine. Be careful when porting to other

machines that you don't overwrite CPM!!!

Bottom of CP/M -----

CPM

i... -end of memory ■

21

.... i

The INPUT-OUTPUT SECTION names each file used and
specifies the associated external hardware devices.

FORMAT:

INPUT-OUTPUT SECTION.

FILE-CONTROL

SELECT filename-1 ASSIGN TO

{PRINTER}

{DISK}

{SEQUENTIAL}
[, ORGANIZATION is {RELATIVE}]

{SEQUENTIAL}
[, ACCESS MODE IS {RANDOM}]

[RELATIVE KEY IS dataname-1]

[RECORD DELIMITER IS STANDARD]

[, FILE STATUS IS dataname-2].

I-O-CONTROL

SAME [RECORD] AREA FOR filename-1, filename-2...

RULES:

1. Each filename-1 must be unique.

2. The RECORD DELIMITER statement cannot be used with the
PRINTER.

3. When the RECORD DELIMITER statement is specified, each
record is variable length and separated by a carriage return
and line feed.

4. On a delimited write, the record to be transferred is first
searched from right to left for the first non-blank character and

the delimiter is placed one position to the right of it. The

record including the delimiter is then transferred.

5. On a delimited read, the record is transferred from left to right

until the record area is filled or until a delimiter is detected in

the incoming data. The delimiter is not transferred to the user

area. If the data record is shorter than the record area space,

the previous data remains unaltered.

22

6. Dataname-2 must be defined in the WORKING-STORAGE
section as a two (2) character alphanumeric data item.

Position 1 (STATUS KEY 1) Position 2 (STATUS KEY 2)
0 = Successful completion 0 = No information available

1 = AT END X = SEE ERROR CODES

2= INVALID KEY

3= PERMANENT ERROR

9 = SEE STATUS KEY 2

7. ORGANIZATION IS RELATIVE applies only to fixed length

DISK files. If this clause is not specified, then
ORGANIZATION IS SEQUENTIAL is assumed.

8. The RELATIVE KEY uniquely identifies each record in a
RANDOM file by an integer greater than zero. This number

specifies the records logical ordinal position in the file. For
example, the tenth record is the one addressed by relative

record number 10 and is in the tenth record area.

9. The RELATIVE KEY is multiplied by the record size and
divided by the physical block size and the block is retrieved.

10 The RELATIVE KEY is always an unsigned integer with size 7

or less in the WORKING-STORAGE SECTION.

11. SAME RECORD AREA is for documentation purposes only.

12. A RELATIVE file is created with a fixed length sequential write

program to allocate the file space.

13. When RECORD DELIMITER is not specified, the records are

output in fixed length format — each one the size of the

longest record description for that file.

14. On INVALID KEY the user record area results are unspecified

(filled with padding 1AH characters).

15. On fixed length read when the last record is short, the

remainder of the user area is filled with padding characters.

16. On a DELIMITED read when a short record is read, the results

to the right of the last valid input character are unspecified

(whatever was there from before the read). It's a good idea to

move spaces to the record area before each read.

17. On a DELIMITED read if the input data contains a tab

character (09H), it is passed to the user unchanged. If we

expanded the tabs, then we could not use packed decimal

data types because of the possibility of 09H a valid

combination in packed decimal. Therefore, we don't process

the tabs. This allows the use of packed decimal (COMP-3) data

types in DELIMITED files. CP/M has a program called PIP that

can be used to expand tab characters. See your Commodore

23

64 CP/M Operating System User's Guide for a description of
the PIP (T) option.

18. If the DISK is SELECTed, then the information will be

associated with the DISK. However, if the PRINTER is

SELECTed, you have the option of sending information to the
PRINTER or DISK. The choice can be made at compile time or

at run time depending on which LABEL RECORDS clause is

chosen in the (FD) File Description entry, described later.

EXAMPLE:

0021 INPUT-OUTPUT SECTION.

0022 FILE-CONTROL

0023 SELECT OLD-PAYROLL-MASTER-FILE
0024 ASSIGN TO DISK

0025 ORGANIZATION IS SEQUENTIAL

0026 ACCESS MODE IS SEQUENTIAL

0027 RECORD DELIMITER IS STANDARD

0028 STATUS IS STA-1

0029 SELECT LISTING ASSIGN TO PRINTER.

0030 SELECT NEW-PAYROLL-MASTER-FILE
0031 ASSIGN TO DISK

0032 ACCESS MODE IS RANDOM

0033 RELATIVE KEY IS KEY3

0034 STATUS IS STA-2

NOTE: Also see Appendix I Sample Programs at the end of this
manual.

The COPY statement inserts text into the source program at

compile time.

FORMAT:

COPY u:file-name.

RULES:

1. A COPY cannot occur within another COPY.

2. The disk unit (u:) is optional. If not specified, the default drive

is used.

3. The COPY statement should be preceded by a space and

terminated by a period, normally, starting in column 7.

4. The file type is not part of the COPY statement, but must be

type CBL.

EXAMPLE:

0011 ENVIRONMENT DIVISION.

0012 COPY A:FILE4.

0013* the following copy looks for FILE5.CBL on the default

0014* drive

0015 COPY FILE5.
24

5 DATA DIVISION
The DATA DIVISION specifies the particular characteristics of

each file.

FORMAT:

DATA DIVISION.

FILE SECTION.

FD file-name

{RECORDS}

[,BLOCK CONTAINS integer-1 {CHARACTERS}]

{RECORD IS OMITTED}

LABEL'RECORDS ARE STANDARD}

{data-name-1}

VALUE OF FILE-ID IS {literal-1}

{RECORD IS}

[DATA{RECORDS ARE} record-name-1 [record-

name-2]].

RULES:

1. BLOCK CONTAINS clause is for documentation purposes

only.

2. LABEL RECORDS ARE STANDARD must be used for all disk

files and may be used for printer files.

3. VALUE OF FILE-ID must also be used for all disk files and may

be used for printer files.

4. Literal-1 is a 1-14 character file name and disk unit. The disk

unit is optional and if not present at run time, the currently

logged-in disk unit will be used.

5. To send output directly to the printer, specify VALUE OF FILE-

ID IS "A:PRINTER". Any other file-name sends the output to

the disk.

6. LABEL RECORD IS OMITTED can only be used for SELECTed

PRINTER files and sends output directly to the printer which

cannot be redirected at run time. Also, if this clause is used,

then the clause VALUE OF FILE-ID cannot be used.

However, if the clause LABEL RECORDS ARE STANDARD is

used in conjunction with a SELECTed PRINTER file, then the

clause VALUE OF FILE-ID must be used. This combination

allows the user the choice of redirecting the printer output to

the disk at compile time or run time.

25

At compile time, the user can specify the printer by using a

literal which contains the key word PRINTER. Any other name

will be treated as a disk file name and the information will be

sent to it. If the file does not exist, it will be created.

If the user wishes to reassign the printer at run time, then a

data-name is used in place of the literal. The keyword

PRINTER is used as the value of the data-name if the

information is to be sent to the printer. Any other name will

send the information to the disk. If the disk file does not exist,
it will be created.

EXAMPLE:

0041 DATA DIVISION.

0042 FILE SECTION.

0043 FD NEW-PAYROLL-MASTER-FILE
0044 LABEL RECORDS ARE STANDARD

0045 VALUE OF FILE-ID IS "A:MASTER.ACT"
0046 DATA RECORDS ARE HOURLY, SALARY.

0047* note record descriptions go here, see next examples
0066 FD LISTING LABEL RECORDS ARE STANDARD

0067* note the next line sends data directly to the printer
0068* see cp/m STAT command for printer assignment
0069* using the LST: to serial or parallel port

0070 VALUE OF FILE-ID IS "PRINTER"

0071 DATA RECORD IS PRINT-LINE.

0100 FD THE-SOURCE LABEL RECORDS ARE STANDARD
0101 VALUE OF FILE-ID IS THE-FILE

0102 DATA RECORD IS DISK-IN.

0103 FD LIST-SPOOL

0104 LABEL RECORDS ARE STANDARD

0105* note the next line sends data to disk file for later
0106* printing, see cpm TYPE command using control-p.

0107 VALUE OF FILE-ID IS "B:LISTTXT"

0108 DATA RECORD IS PRT-LINE.

0109 FD LIST2

0110* note the next line sends data directly to printer

0111 LABEL RECORD IS OMITTED

0112 DATA RECORD IS PRT-LINE2.

RECORD DESCRIPTION — A description of each record is stated

in the DATA DIVISION. Here, the particular characteristics of the
data fields for each record are specified.

26

FORMAT:

{data-name-1}

level-number {FILLER} [REDEFINES data-name-2]

[, OCCURS integer-1 TIMES]

{PIC}
[, {PICTURE} IS {character-string-1}]

{SYNC} {LEFT}
[{SYNCHRONIZED}! {RIGHT}]]

{JUST}

[{JUSTIFIED} RIGHT]

[BLANK WHEN ZERO]

{COMP}

{COMP-3}

{DISPLAY}

{COMPUTATIONAL-3}

[[, USAGE IS] {COMPUTATIONAL }]....

WORKING-STORAGE SECTION.

same as above and

{[ALL] literal}

{QUOTE} {HIGH-VALUE}

{ZERO} {LOW-VALUE}

[.VALUE IS {SPACE}]....

LINKAGE SECTION.

same as above without value clauses.

RULES:

1. Level-number must be an integer between 01 and 49 or 77.

2. The VALUE clause cannot be used in an item which also

contains an OCCURS or REDEFINES clause.

3. The OCCURS clause cannot be used in a 01 or 77 level entry.

4. The WORKING-STORAGE area must be initialized before use,

as its initial value is unspecified.

5. The plural form of SPACE, ZERO, HIGH-VALUE, LOW-VALUE

and QUOTE can be used.

6. A PICTURE clause must be specified only for elementary

items.

7. The maximum number of characters allowed in character-

string-1 is 30.

27

8. The character-string-1 describes the characteristics and

editing requirements of the data. It describes the size of the

data, the editing to be performed on the data, and the category

of the data. There are five types of data that can be described
with a picture clause:

A. Alphabetic character strings contain the symbols 'A1 and

'B'. The contents of the alphabetic described item can be

any combination of the (26) letters of the Roman alphabet

and the space character from the COBOL character set.

B. Numeric character strings contain the symbols '9', 'S', and

'V. The number of digit positions that can be described

must range from 1 to 18 inclusive. The contents of the

numeric described item can contain the Arabic numerals 0-9

and +, - signs.

C. Alphanumeric character strings contain the symbols 'A', 'X',

'9'. Its contents can be any printable ASCII character.

D. Alphanumeric edited character strings contain the symbols
'A', 'X', '9', 'B', 'O' 7\

E. Numeric edited character strings contain the symbols "B, /,

V, Z, O, 9".

The following characters can also be contained "* ., + - $

CR DB". (Note: CR and DB may cause a shift to the left in

the placement of the decimal point.)

A description of each individual character follows:

Each A represents a character position that can contain

only a letter of the alphabet or a space.

Each B represents a character position into which the

space character will be inserted.

The S indicates the presence (but not the representation

nor the position) of an operational sign, and must be

written as the leftmost character in the picture string.

The V indicates the location of the assumed decimal

point and may appear only once in a character string.

Each X indicates a character position that may contain

any allowable character from the ASCII set.

Each Z represents a leading numeric character position;

when that position contains a zero, the zero is replaced

by a space character. Each Z is counted in the size of the

item.

28

Each 0 represents a character position into which the

numeral zero will be inserted and is counted in the size

of the item.

Each 9 represents a character position that contains a

numeral and is counted in the size of the item.

Each comma represents a character position into which a

comma will be inserted and is counted in the size of the

item.

The period represents a character position into which the

period will be inserted and is counted in the size of the

item. It also is used for alignment purposes.

The minus sign (-) represents a character position into

which the editing sign control symbol will be inserted

and is counted in the size of the item.

The plus sign (+) represents a character position into

which the editing sign control symbol will be inserted

and is counted in the size of the item.

Each asterisk represents a leading numeric character

position into which the asterisk (*) will be inserted and is

counted in the size of the item.

The currency symbol ($) represents a character position

into which the ($) is inserted and is counted in the size of

the item.

The credit and debit symbols (CR) (DB) each represent

two character positions into which they will be inserted

and are counted in the size of the item. CR and DB may

cause a shift in the placement of the decimal point.

9. The USAGE IS clause determines the format of numeric data

items stored internally and externally. The default value is

DISPLAY which represents ASCII format with the sign stored

in the units position bit 7. A positive sign is a 0 bit and a

negative sign is 1 bit. Thus, a negative number prints as a

lower case letter (- 500 = 50p) unless it is moved to an edited

field. COMPUTATIONAL-3 (COMP-3) directs the compiler to

store digits two to the byte in packed decimal format with the

sign stored in the right hand end 4 bits. A positive sign is 0000

and a negative sign is 0001. COMPUTATIONAL (COMP) directs

the compiler to store values in binary Intel 8080 format with a

maximum value of decimal 32767. No matter how the COMP

picture is described 9 or 9999, the compiler always assigns 2

bytes for storage.

29

10. Binary data types should not be used in delimited files

because of the possibility of duplicating the delimiter
character.

11. When moving numeric values greater than 32767 to a binary

data type, the results are unspecified. For purposes of data
conversion to binary, the value 67.000 is greater than 32767 if
the binary picture is 99V999.

12. Justified can only be used with elementary data items and
cannot be used wth numeric or edited picture items.

13. REDEFINES must not be used in Level 01 entries in the File
Section. Use the Data Records clause and repeated level 01's
for multiple records in the file section.

14. COMP & COMP-3 may be used at the group level.

EXAMPLE:

0047 01 HOURLY.

0048 02 PAY-TYPE PICTURE IS X.

0049 02 FIRST-NAME PICTURE IS X(20)

0050 02 LAST-NAME PICTURE X(20)

0051 02 SOC-SEC-NUM PIC 9(9) USAGE IS COMP-3.
0052 02 ITM1 PICTURE IS X.

0053 02 ITM11 REDEFINES ITM1 PIC 9.

0054 02 INCOME PIC S9(16)V99.

0055 02 TAXES OCCURS 10 TIMES PICTURE IS S9(10)V99.
0056 01 MONTHLY.

0057 05 FILLER PIC X.

0058 05 GRP-ITM.

0059 10 GRP-ITM2.

0060 15 GRP-AMT PIC 9(6)V99.

0061 15 GRP-AMT-1 PIC 9(6)V99.

0062 01 PRINT-LINE PICTURE IS X(132).

0081 WORKING-STORAGE SECTION.

0082 01 INVENTORY.

0083 02 PART-NUM PICTURE 9(5) USAGE IS COMP-3.

0084 02 QTY-IN-STOCK PIC 9(6) COMP-3.

0085 02 W-INDEX PICTURE 99 VALUE IS 01 COMP.

0086 02 W-ITM2 PIC X(5) VALUE "TEST1".

0087 01 A-TABLE.

0088 02 T1 PIC X(5) VALUE "FIRST".

0089 02 T2 PIC X(5) VALUE "SECOND".

0090 02 T3 PIC X(5) VALUE "THIRD".

0091 01 B-TABLE REDEFINES A-TABLE.

0092 02 ORDER OCCURS 3 TIMES PICTURE X(5).

30

0093 01 EDIT.
0094 02 E-1 PICTURE $,$$$,$$$,$$$,$$$,$$$.99CR.

0095 02 E-2 PIC 99V999+.

0096 02 E-3 PIC ZZ,ZZZ,ZZZ.99 - .

0097 02 E-4 PIC $,$$$,$$$.99DB.

0098* by using the ACCEPT verb the next file name can be

0100* changed at object time.

0101 01 THE-FILE PICTURE X(14) VALUE "AiFILENAME.WRK"

0102 01 KEY3 PIC 9(7) COMP-3 VALUE 1.

0103 02 KEY1 PIC X.

0104 02 KEY2 PIC X.

0105* maximum record or item size is 4095

0106 01 BIG-ITEM PIC X(4095).

Also, within the DATA DIVISION is the COPY statement. The

COPY statement inserts text into the source program at compile

time.

FORMAT:

COPY u:file-name.

RULES:

1. A COPY cannot occur within another COPY.

2. The disk unit (u:) is optional and if not present, the default

drive is used.

3. The COPY statement should be preceded by a space and

terminated by a period, normally starting in column 7.

4. The file type is not part of the COPY statement, but must be

type CBL

EXAMPLE:

0041 DATA DIVISION.

0042 COPY A:FILE6.

0055 COPY A.FILE7.

0105 COPY A:FILE8.

31

6 PROCEDURE DIVISION.
The PROCEDURE DIVISION of a COBOL program specifies the
procedures that will be used to solve the given problem.

FORMAT:

PROCEDURE DIVISION.

[USING data-name-1 [, data-name-2]...].

[section-name SECTION [segment-number]],
paragraph name.

problem-solving statements,

paragraph-name.

problem-solving statements.

END PROGRAM program-name.

RULES:

1. The first entry in the PROCEDURE DIVISION must be a

paragraph name, section-name of USING statement.

2. Each paragraph-name or section-name must be unique.

3. Each paragraph-name must be followed by a period.

4. Each problem-solving statement must be made up of reserved
words, words previously described in a previous division,

paragraph-names, figurative constants, numeric literals, non-

numeric literals and/or punctuation marks.

EXAMPLE:

0100 PROCEDURE DIVISION.

0101 BEGIN.

0102 DISPLAY "HELLO".

0103 STOP RUN.

0104 END PROGRAM TEST1.

Note: Keywords that can be used as part of the solution in the

PROCEDURE DIVISION follow. They are arranged in alphabetical

order for easy reference.

ESsSh lets you input data from the keyboard and assigns that
data to the specified data item (identifier).

FORMAT:

ACCEPT identifier.

32

RULES:

1. The ACCEPT device is the console video typewriter.

2. Data is transferred from left to right until the receiving data

item (identifier) is filled or until a carriage return is entered.

The carriage return key is used to release the item and is not

transferred to memory.

3. The delete key can be used to backspace if a mistake is made.

4. The backspace does not go past the beginning of the ACCEPT

field.

5. In the CP/M mode using function 1 & 2 when the right end of a
field is exceeded, a "< " character notifies the user the last

character was not entered into memory. This is done because

CP/M automatically echo's the input character when it is

keyed and it appears to the user as if it was processed

internally when it was not. However, if the RUN time package

is modified to use function 6 or direct BIOS, then the

characters exceeding the user field are not output to the

screen.

6. See DISPLAY UNIT and the program CONFIG for details on

setting up the CRT drivers.

7. The carriage return character is not echoed to the screen

unless the CP/M function 1 & 2 mode is being used where

CP/M automatically echo's it.

EXAMPLE:

0101 PROCEDURE DIVISION.

0102 BEGIN.

0103 ACCEPT EMPLOYEE-NAME (X1).

0104 ACCEPT TODAYS-DATE.

0105 DISPLAY "ENTER FILE NAME

<D:FFFFFFFF.EEE>".
0106 ACCEPT THE FILE-NAME.

0107*

0108* clear the screen on a sol-20 next.

0109 DISPLAY " "OB" ".

0110* note screen-full can be 80*24= 1920 size item.

0111 DISPLAY SCREEN-FULL

0112* set the cursor using a hexadecimal string.

0113 DISPLAY ""1B,01,3F"".

0114 ACCEPT INPUT-ITEM.

33

03j| lets you add two numeric data items and store the sum.

FORMAT:

{literal-1} {literal-2}

ADD {identifier-1} [TO] {identifier-2}

[GIVING identifier-3] [ROUNDED]

[,ON SIZE ERROR imperative-statement]

RULES:

1. Each ADD verb statement must contain an addend and an

augend.

2. Figurative constants cannot be used.

3. Only numeric items and numeric literals can be used, except

identifier-3 which can be an elementary numeric edited item.

4. The composite of operands must not contain more than 18

digits.

5. An identifier can only reference an elementary item.

6. Each operand can contain an operational sign and an implied

decimal point.

7. Operands are aligned according to implied decimal points.

8. ROUNDED performs a test to see if right truncation will occur

and, if it will, adjusts the result by adding 1 if the truncated

digit is 5 or greater.

9. ON SIZE ERROR performs a test to see if overflow has

occurred and, if it has, executes the imperative-statement.

EXAMPLE:

0150 ADD SALES-TAX TO TOTAL GIVING GRAND-TOTAL

0151 ROUNDED ON SIZE ERROR GO TO ERROR-ROUTINE.

E5E3modifies a predetermined sequence of operations.

FORMAT:

ALTER paragraph-name-1 TO PROCEED TO paragraph-name-2.

RULES:

1. Paragraph-name-1 must be the name of a paragraph which

contains a single sentence consisting of:

GO TO paragraph-name.

2. The execution of the ALTER statement modifies the GO TO
paragraph-name-1, so that subsequent executions of

paragraph-name-1 transfer control to paragraph-name-2.

34

EXAMPLE:

0200 PARA-6. GO TO BEGIN.

0201 PARA-7.

0202 ALTER PARA-6 TO PROCEED TO END-OF-JOB.

0203 GO TO PARA-6.

0204 END-OF-JOB.

The EEHIstatement causes control to be transferred from one
object program to another, within the RUN unit.

FORMAT:

{literal-1}

CALL {identifier-1}

[USING data-name-1 [data-name-2]...]

RULES:

1. Literal-1 must be a nonnumeric literal.

2. Identifier-1 must be defined as an alphanumeric data item

such that its value can be a program name.

3. The USING phrase is included in the CALL statement only if

there is a USING phrase in the Procedure Division header of

the called program and the number of operands in each

USING phrase must be identical.

4. Each of the operands in the USING phrase must have been

defined as a data item in the File Section or Working-Storage

Section, and must have a level-number of 01 or 77.

5. The program whose name is specified by the value of literal-1

or identifier-1 is the called program; the program in which the

CALL statement appears is the calling program.

6. The execution of a CALL statement causes control to pass to

the called program.

7. A called program is in its initial state the first time it is called

within a RUN unit and the first time it is called after a

CANCEL to the called program. On all other entries into the

called program, the state of the program remains unchanged

from its state when last exited. This includes all data fields,

the status and positioning of all files, and all alterable switch

settings.

8. Called programs may contain CALL statements. However, a

called program must not contain a CALL statement that

directly or indirectly calls the calling program.

9. The data-names, specified by the USING phrase of the CALL

statement, indicate those data items available to a calling

program that may be referred to in the called program. The

35

order of appearance of the data-name in the USING phrase of

the CALL statement and the USING phrase in the Procedure

Divsion header is critical. Corresponding data-names refer to a

single set of data which is available to the called and calling

program. The correspondence is positional, not by name.

NEVADA COBOL details:

1. Called programs must be type .OBJ.

2. Each called program is dynamically loaded the first time and

entered into a table in the RUN time package. Future calls go

directly to the called program.

3. Up to five active called programs may be resident at any one

time. At that point, one will have to be CANCELed before any

other can be loaded.

4. You can CALL another main program from the current

program, thus overlaying the first program. Since the working-

storage section always begins at the same point in memory,

those data-items not initialized with value statements will

contain the information from the prior program. Be sure to

CANCEL the program to remove it from the table because

once the table is full and a program is called, the job will

terminate.

5. CALLed programs need not be COBOL programs. However,

they must be type .OBJ and be ORGed (assembled with proper

origin). The .OBJ file contains the machine language code for

a program, the address at which the run time package is to

load it, and the address at which execution of the loaded

program is to begin. An .OBJ file consists of one or more

segments that have the format:

#BYTES DESCRIPTION

2 Number of code and data bytes in segment

2 Load address of code and data belonging to the

segment.

Variable Code and/or data.

The RUN time package will load each segment at the specified

address until a starting address is encountered. A starting

address is represented as load address with a zero byte count.

6. A program is supplied to convert CP/M HEX files to .OBJ

format named CONVHEX.COM.

7. The RUN time package transfers control to the called program

by means of an 8080 CALL instruction. The called program

should return via the 8080 RET instruction. The called program

should use its own stack not the COBOL stack.

36

8. Parameters are passed to the called program in the registers.

H & L = parameter 1, D & E = parameter 2, B & C= either

parameter 3 or the address of the left end of a list of

parameter addresses (if more than three parameters are

passed). The parameters consist of 16-bit addresses pointing

to the right end of each data-name.

9. In some cases, it is possible to execute called programs

without the calling program for testing when no data is being

passed. Since the loading format is the same for all type .OBJ

programs, you can A> RUN NEXTPROG.

EXAMPLE:

0001 CALL "NEXTPROG" USING REC-1, REC-2.

0555 CALL NEXT-PROG USING REC-1, REC-2.

* also see complete programs at end of manual.

QJSISI statement releases the memory areas occupied by
the referenced program.

FORMAT:

{literal-1}

CANCEL {identifier-1}

RULES:

1. Subsequent to the execution of a CANCEL statement, the

program referred to therein ceases to have any logical

relationship to the RUN unit in which the CANCEL statement

appears. A subsequently executed CALL statement naming

the same program will result in that program being initiated in

its initial state. The memory areas associated with the named

programs are released so as to be made available for

disposition by the operating system.

2. A program named in the CANCEL statement must not refer to

any program that has been called and has not yet executed an
EXIT PROGRAM statement.

3. A logical relationship to a cancelled subprogram is
established only by execution of a subsequent CALL
statement.

4. A called program is cancelled either by being referred to as

the operand of a CANCEL statement or by the termination of
the run unit of which the program is a member.

5. No action is taken when a CANCEL statement is executed
naming a program that has not been called in this unit or has
been called and is at present cancelled. Control passes to the
next statement.

37

EXAMPLE:

0001 CANCEL "LASTPROG".

0555 CANCEL LAST-PROG.

Note: See the Sample Programs in Appendix I.

mg*£13terminates the processing of input and output files.

FORMAT:

CLOSE file-name

RULES:

1. A file must be opened before it can be closed.

2. If required, the CLOSE statement writes the final block with

padding before closing the file.

EXAMPLE:

0300 END-OF-JOB.

0301 CLOSE NEW-PAYROLL-MASTER-FILE.

0302 CLOSE OLD-PAYROLL-MASTER-FILE.

0303 CLOSE LISTING.

The|JS2UiJ statement inserts text into the source program at
compile time.

FORMAT:

COPY u:file-name.

RULES:

1. A COPY cannot occur within another COPY.

2. The disk unit (u:) is optional and not present, the default drive

will be used.

3. The COPY statement should be preceded by a space and
terminated by a period, normally, starting in column 7.

4. The file type is not part of the COPY statement but must be

type CBL.

EXAMPLE:

0100 PROCEDURE DIVISION.

0101 PARAGRAPH-A.

0102 COPY A:FILEA.

2500 PARAGRAPH-B.

2501 COPY A:FILEB.

3500 PARAGRAPH-C

3501 COPY B:FILEC.

38

I lets you display data on the video monitor.

FORMAT-1:

{literal-1} {literal-2}

DISPLAY {identifier-1} [{identifier-2}]...

[WITH NO ADVANCING]

FORMAT-2:

{literal-3}

DISPLAY UNIT {identifier-3}.

RULES:

1. The DISPLAY device is the video monitor.

2. If the literal is a numeric literal, then it must not be signed as

the sign would be displayed as a lower case letter.

3. A carriage return and line feed are executed before data

transfer begins unless WITH NO ADVANCING is specified.

4. Data4 is transferred from left to right until all of the data in

literal or identifier-1 is transferred.

5. If data is longer than 64 or 80 characters as set by the CON FIG

program, the video display will continue on the next line. In

this way, the entire screen can be filled with one DISPLAY

statement.

6. Each literal may be any figurative constant, except ALL.

7. If a figurative constant is specified as one of the operands,

only a single occurrence of the figurative constant is

displayed.

8. The DISPLAY statement causes the contents of each operand

to be transferred to the hardware device in the order listed.

9. The DISPLAY UNIT literal changes the I-O driver at run time as

follows:

"OX" skips CP/M and uses the BIOS driver.

"2X" uses CP/M function 1 & 2 drivers.

"6X" uses CP/M 2.X function 6 drivers.

X will allow any character to be input. Any other

character in this position will allow only ASCII input.

All of these changes are temporary.

10. To permanently change the RUN time package drivers, read

the instructions for the program CON FIG.

11. UNIT 0 or UNIT 6 must be used if you are sending or receiving

characters other than ASCII, such as video control characters.

This is because CP/M monitors function 1 and 2 and will not

allow certain control characters to pass to and from the user.

39

EXAMPLE:

0350 ERROR-ROUTINE.

0351 DISPLAY ERROR-MESSAGE (ERROR-CODE).
0352 DISPLAY FIRST-NAME, LAST-NAME, "NAME".
0359D DISPLAY "DEBUG MODE ERROR ROUTINE".
0360 DISPLAY "CONTINUE ON SAME LINE" WITH NO

ADVANCING.

0370* the next line clears the screen on a Sol-20 or VDM-1
0380 DISPLAY " "OB" ".

0391 * the next line clears the screen on Hazeltine-1520
0392 DISPLAY " "7E,1C" ".

0393* each CRT is different but if you know the commands you
0394* can also set the cursor and display in reverse.
0395* the next line sets the I-O driver for BIOS any
0396* incoming character will be passed to user.
0397 DISPLAY UNIT "OX".

0500* the following sequence is a common debugging method
0501 PARAGRAPH-A.

0502* line 0505 is a debugging line used when testing
0503* to let the programmer know that the paragraph has been
0504* executed

0505D DISPLAY "PARAGRAPH-A".

EJJ[33lets y°u divide one numerical data item into another and
set the value of an item equal to the quotient.

FORMAT:

DIVIDE {identifier-1} INTO {identifier-2}
[GIVING identifier-3]

[ROUNDED] [, ON SIZE ERROR imperative-statement]

RULES:

1. Each DIVIDE statement must contain a dividend and a divisor.

2. Each identifier must refer to an elementary numeric item,
except the identifier-3 which may be an elementary numeric
edited item.

3. The composite of operands must not contain more than 18
digits.

4. An identifier can only reference an elementary item.

5. Each operand can contain an operational sign and an implii
decimal point.

6. Operands are aligned according to implied decimal points.

40

7. ROUNDED performs a test to see if right truncation will occur

and, if it will, adjusts the results by adding 1 if the truncated

digit is 5 or greater.

8. ON SIZE ERROR performs a test to see if overflow has

occurred and, if it has, executes the imperative-statement.

EXAMPLE:

0400 CALC-1.

0401 DIVIDE HOURS INTO GROSS-PAY GIVING

HOURLY-RATE

0402 ROUNDED ON SIZE ERROR GO TO ERR-2.

0403 DIVIDE HOURS INTO MILES.

ld?l»IJ;NM;M!l specifies the physical end of the program.

FORMAT:

END PROGRAM program-name

RULES:

1. This entry must be the last physical statement in every source

program.

2. This is a Compiler Directing statement that tells the Compiler

it is the last statement in the COBOL source program file to be

processed.

EXAMPLE:

* all program statements must be above

9999 END PROGRAM TEST1.

IzEiiifurnishes an end point for a series of procedures.

FORMAT-1:

EXIT.

FORMAT-2:

EXIT PROGRAM.

RULES:

1. The EXIT statement must appear in a sentence by itself, and

be the only sentence in the paragraph.

2. An execution of an EXIT PROGRAM statement in a called
program causes control to be passed to the calling program.

Execution of an EXIT PROGRAM statement in a program

which is not called, behaves as if the statement were an EXIT

statement.

41

EXAMPLE:

0500 PARA-END.

0501 EXIT.

0600 END-SUBPROGRAM.
0601 EXIT PROGRAM.

iwm lets you leave the normal sequence of procedures and
continue at another area of the program.

FORMAT-1:

GO TO procedure-name-1.

FORMAT-2:

GO TO procedure-name-1, [procedure-name-21.
DEPENDING ON identifier.

RULES:

1. The GO TO statement must be the last statement in a
sequence.

2. Identifier is the name of a numeric elementary item described
without any positions to the right of the assumed decimal
point.

3. When a paragraph is referenced by an ALTER statement, that
paragraph can consist only of a paragraph header followed by
a format-1 GO TO statement.

4. When a GO TO statement, represented by format-1 is
executed, control is transferred to procedure-name-1 or to
another procedure-name if the GO TO statement has been
modified by an ALTER statement.

5. When a GO TO statement represented by format-2 is executed,
control is transferred to procedure-name-1, procedure-name-2,
etc., depending on the value of the identifier being 1, 2,..., n. if
the value of the identifier is anything other than the positive or
unsigned integers 1, 2,..., n, then no transfer occurs and
control passes to the next statement in the normal sequence
for execution.

EXAMPLE:

0330 IF A-SWITCH IS EQUAL TO 1
0331 MOVE X-AMT TO Y-AMT
0332 GO TO A-SUBROUTINE.
0333 GO TO MAIN-PROGRAM
0334 CASE-STATEM ENT-PARA.

0335 GO TO A-PARA, B-PARA, C-PARA DEPENDING ON X1
0336 ALTERED-PARA.
0337 GO TO FIRST-PARA.

42

THE D3 statement causes a condition to be evaluated. The
subsequent action of the object program depends on whether the

value of the condition is true or false.

FORMAT-1:

IF {condition}

{condition}:

{statement-1}

{NEXT SENTENCE}

{ELSEstatement-2}

{ELSE NEXT SENTENCE}

{ = < >
{EQUAL TO

{LESS THAN

{GREATER THAN}

{NUMERIC}

{ALPHABETIC}

{literal}

{identifier-2}identifier-1 IS [NOT]

{condition}:

identifier-3 IS [NOT]

FORMAT-2:

{OR }
IF condition {AND} condition

RULES:

1. Statement-1 and statement-2 represent an imperative

statement.

2. Non-numeric comparisons are made left to right using the

ASCII collating sequence.

3. Numeric comparisons are made by aligning the decimal points

and treating them as algebraic quantities.

4. Identifier-3 must be a DISPLAY (ASCII) data type.

5. If the condition is true, statement-1 is executed if specified. If
statement-1 contains a procedure branching statement,

control is explicitly transferred in accordance with the rules of
that statement. If statement-1 does not contain a procedure
branching statement, the ELSE phrase, if specified, is ignored

and control passes to the next executable sentence.

6. The ELSE NEXT SENTENCE phrase may be omitted if it
immediately precedes the terminal period of the sentence.

7. If the condition is true and the NEXT SENTENCE phrase is
specified instead of statement-1, the ELSE phrase, if specified,
is ignored and control passes to the next executable sentence.

43

8. If the condition is false, statement-1 or its surrogate NEXT
SENTENCE is ignored, and statement-2, if specified, is
executed. If statement-2 contains a procedure branching

statement, control is explicitly transferred in accordance with
the rules of that statement. If statement-2 does not contain a
procedure branching statement, control passes to the next

executable sentence. If the ELSE statement-2 is not specified,
statement-1 is ignored and control passes to the next
executable sentence.

9. If the condition is false, and the ELSE NEXT SENTENCE
phrase is specified, statement-1 is ignored, if specified, and
control passes to the next executable sentence. ^

10. Two conditions can be combined by the logical operators AND
and OR.

EXAMPLE:

0340 IF LAST-NAME IS NOT ALPHABETIC
0341 MOVE ERR-CODE TO MESG

0342 ADD 1 TO ERR-COUNT

0343 GO TO KEY-PUNCH-ERROR
0344 ELSE

0345 PERFORM A-PARA THRU B-PARA.

0346 IF HOURLY-RATE <3.90 AND FRINGE-BENEFITS < 6000
0347 GO TO MIN-WAGE-ERROR.
0348 IF A = B

0349 OR = C

0350 OR = D

0351 OR X NOT > Y

0352 MOVE S TO W

0353 ELSE

0354 MOVE S TO AW.

44

TheD2S3S1 statement provides the ability to tally, replace, or
tally and replace occurrences of single characters in a data item.

FORMAT-1

INSPECT identifier-1 TALLYING
{ALL {literal-1} }

{LEADING {identifier-3} }

{identifier-2FOR{ {CHARACTERS}
{AFTER} {literal-2}

[{BEFORE} INITIAL {identifier-4}]}...}...

FORMAT-2

INSPECT identifier-1 REPLACING
{literal-4}

CHARACTERS BY {identifier-6}
{AFTER} {literal-5}

[{BEFORE} INITIAL {identifier-7}

{FIRST} {literal-3} {literal-4}
{LEADING} { {identifier-5} BY {identifier-6}

{AFTER} {literal-5}

[{BEFORE} INITIAL {identifier-7}

FORMAT-3

INSPECT identifier-1 TALLYING
{ALL {literal-1} }
{LEADING {identifier-3} }

{identifier-2 FOR { {CHARACTERS}
{AFTER} {literal-2}
[{BEFORE} INITIAL {identifier-4}]}...}...

REPLACING

{literal-4}

CHARACTERS BY {identifier-6}
{AFTER} {literal-5}
[{BEFORE} INITIAL {identifier-7}

{FIRST} {literal-3} {literal-4}
{LEADING} {identifier-5} BY {identifier-6}
x {AFTER} {literal-5}

[{BEFORE} INITIAL {identifier-7}

45

RULES:

1. ldentifier-1 must reference either a group item or any category

of elementary item, described (either implicitly or explicitly) as
usage is DISPLAY.

2. ldentifier-3...identifier-n must reference either an elementary
alphabetic, alphanumeric or numeric item described (either
implicitly or explicitly) as usage is DISPLAY.

3. Each literal must be nonnumeric and may be any figurative
constant, except ALL.

4. Literal-1, 2, 3, 4, 5 and the data items referenced by identifier-3,
4, 5, 6, and 7 must be one character in length.

FORMATS 1 and 3 only

5. ldentifier-2 must reference an elementary numeric data item.

6. If either literal-1 or literal-2 is a figurative constant, the

figurative constant refers to an implicit one character data
item.

FORMATS 2 and 3 only

7. The size of the data referenced by literal-4 or identifier-6 must
be equal to the size of the data referenced by literal-3 or
identifier-5. When a figurative constant is used as literal-4, the
size of the figurative constant is equal to the size of literal-3 or
the size of the data item referenced by identifier-5.

8. When the CHARACTERS phrase is used, literal-4, literal-5 or
the size of the data item referenced by identifier-6, identifier-7
must be one character in length.

9. When a figurative constant is used as literal-3, the data
referenced by literal-4 or identifier-6 must be one character in
length.

46

GENERAL RULES:

1. Inspection (which includes the comparison cycle, the

establishment of boundaries for the BEFORE or AFTER

phrase, and the mechanism for tallying and/or replacing)

begins at the leftmost character position of the data item

referenced by identifier-1, regardless of its class, and proceeds

from left to right to the rightmost character position as

described in general rules 4 through 6.

2. For use in the INSPECT statement, the contents of the data

item referenced by identifier-1, 3, 4, 5, 6, or 7 will be treated as

follows:

a. If any of identifier-1, 3, 4, 5, 6 or 7 are described as

alphanumeric, the INSPECT statement treats the contents

of each such identifier as a character-string.

b. If any of identifier-1, 3, 4, 5, 6 or 7 are described as

alphanumeric edited, numeric edited or unsigned numeric,

the data item is inspected as though it had been redefined

as alphanumeric and the INSPECT statement had been

written to reference the redefined data item.

c. If any of the identifier-1, 3, 4, 5, 6 or 7 are described as

signed numeric, the data item is inspected as though it had

been moved to an unsigned numeric data item of the same

length and then the rules in general rule 2b had been

applied.

3. In general rules 4 through 11 all references to literal-1, 2, 3, 4

and 5 apply equally to the contents of the data item referenced

by identifier-3, 4, 5, 6 and 7, respectively.

4. During inspection of the contents of the data item referenced
by identifier-1, each properly matched occurrence of literal-1 is

tallied (formats 1 and 3) and/or each properly matched

occurrence of literal-3 is replaced by literal-4 (formats 2 and 3).

5. The comparison operation to determine the occurrences of

literal-1 to be tallied and/or occurrences of literal-3 to be

replaced, occurs as follows:

a. The operands of the TALLYING and REPLACING phrases
are considered in the order they are specified in the

INSPECT statement from left to right. The first literal-1,

literal-3 is compared to an equal number of contiguous

characters, starting with the leftmost character position in

the data item referenced by identifier-1. Literal-1, literal-3

and that portion of the contents of the data item referenced

by identifier-1 match if, and only if, they are equal, character

for character.

47

b. If no match occurs in the comparison of the first literal-1,
literal-3, the comparison is repeated with each successive
literal-1, literal-3, until either a match is found or there is no

successive literal-1, literal-3. When there is no successive

literal-1, literal-3, the character position in the data item

referenced by identifier-1 (immediately to the right of the
leftmost character position considered in the last

comparison cycle) is considered as the leftmost character

position, and the comparison cycle begins again with the
first literal-1, literal-3.

c. Whenever a match occurs, TALLYING and/or REPLACING
takes place as described in general rules 8 through 10. The
character position in the data item referenced by identifier-1
(immediately to the right of the rightmost character position
that participated in the match) is now considered to be the
leftmost character position of the data item referenced by
identifier-1, and the comparison cycle starts again with the
first literal-1, literal-3.

d. The comparison operation continues until the rightmost
character position of the data item referenced by identifier-1
has participated in a match or has been considered as the
leftmost character position. When this occurs, inspection is
terminated.

e. If the CHARACTERS phrase is specified, an implied one
character operand participates in the cycle described in
paragraphs 5a through 5b above, except no comparison to

the contents of the data item referenced by identifier-1
takes place. This implied character is considered always to
match the leftmost character of the contents of the data
item referenced by identifier-1, participating in the current
comparison cycle.

The COMPARISON OPERATION determines the occurrences
of literal-1 to be tallied and/or occurrences of literal-3 to be
replaced and is affected by the BEFORE and AFTER phrase a.'
follows:

48

Using the BEFORE Phrase

a. If the BEFORE phrase is specified, then the associated
literal-1, literal-3 or implied operand of the CHARACTERS
phrase participate only in comparison cycles involving

contents of the data item referenced by identifier-1 from its
leftmost character position, up to but not including, the first

occurrence of literal-2, literal-5.

The position of this first occurrence of literal-2 is

determined before the first cycle of the comparison

operation is begun.

b. If there is no occurrence of literal-2, literal-5 within the
contents of data item referenced by identifier-1, then its
associated literal-1, literal-3, or the implied operand of the
CHARACTERS phrase participates in the comparison

operation as though the BEFORE phrase had not been

specified.

c. If, on any comparison cycle, literal-1, literal-3 or the implied
operand of the CHARACTERS phrase does not match the
contents of the data item referenced by identifier-1, then

they are not eligible to participate in the comparison

operation.

Using the AFTER Phrase

a. If the AFTER phrase is specified, then the associated
literal-1, literal-3, or implied operand of the CHARACTERS
phrase participates only in comparison cycles involving
contents of data items referenced by identifier-1 from its
character position immediately to the right of the rightmost

character position of the first occurrence of literal-2,

literal-5, and the rightmost character position of the data

item referenced by identifier-1.

The position of this first occurrence is determined before

the first cycle of the comparison operation is begun.

b. If there is no occurrence of literal-1, literal-5 within the
contents of the data item referenced by identifier-1, then its

associated literal-1, literal-3, or the implied operand of the
CHARACTERS phrase is not eligible to participate in the

comparison operation.

c. If, on any comparison cycle, literal-1, literal-3 or the implied
operand of the CHARACTERS phrase does not match the
contents of the data item referenced by identifier-1, then

they are not eligible to participate in the comparison

operation.

49

FORMAT 1

7. The contents of the data item referenced by identifier-2 is not
initialized by the execution of the INSPECT statement.

8. The rules for TALLYING are as follows:

a. If the ALL phrase is specified, the contents of the data item
referenced by identifier-2 is incremented by one (1) for each
occurrence of literal-1 matched within the contents of the
data item referenced by identifier-1.

b. If the LEADING phrase is specified, the contents of the data
item referenced by identifier-2 is incremented by one (1) for
each contiguous (adjacent) occurrence of literal-1 matched
within the contents of the data item referenced by
identifier-1, provided that the leftmost such occurrence is at
the point where comparison began in the first comparison
cycle in which literal-1 was eligible to participate.

c. If the CHARACTERS phrase is specified, the contents of
the data item referenced by identifier-2 is incremented by
one (1) for each character matched, in the sense of general
rule 5e, within the contents of the data item referenced by
identifier-1.

FORMAT 2

9. The required words ALL, LEADING, and FIRST are adjectives.

10. The rules for replacement are as follows:

a. When the CHARACTERS phrase is specified, each
character matched, in the sense of general rule 5e, in the
contents of the data item referenced by identifier-1 is
replaced by literal-4.

b. When the adjective ALL is specified, each occurrence of
literal-3 matched in the contents of the data item referenced
by identifier-1 is replaced by literal-4.

c. When the adjective LEADING is specified, each contiguous
occurrence of literal-3 matched in the contents of the data
item referenced by identifier-1 is replaced by literal-4,
providing that the leftmost occurrence is at the point where
comparison began in the first comparison cycle that literal-3
was eligible to participate.

d. When the adjective FIRST is specified, the leftmost
occurrence of literal-3 matched within the contents of the

data item referenced by identifier-1 is replaced by literal-4.

50

FORMAT 3

11 A format 3 INSPECT statement is interpreted and executed as
through two successive INSPECT statements specifying the
same identifier-1 had been written with one statement being a
format 1 statement with TALLYING phrases identical to those
specified in the format 3 statement, and the other statement
being a format 2 statement with REPLACING phrases identical
to those specified in the format 3 statement. The general rules
given for matching and counting apply to the format 1
statement and the general rules given for matching and
replacing apply to the format 2 statement.

Here are six examples of the INSPECT statement:

INSPECT word TALLYING count FOR LEADING "L" BEFORE
INITIAL "A", count-1 FOR LEADING "A" BEFORE INITIAL "L".

Where word = LARGE, count = 1, count-1 = 0.
Where word = ANALYST, count = 0, count-1 = 1.

INSPECT word TALLYING count FOR ALL "L", REPLACING
LEADING "A" BY "E" AFTER INITIAL "L".

Where word = CALLAR, count = 2, word = CALLAR.
Where word = SALAMI, count = 1,word = SALEMI.
Where word = LATTER, count = 1,word = LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL

"X".

Where word = ARXAX, word = GRXAX.
Where word = HANDAX, word = HGNDGX.

INSPECT word TALLYING count FOR CHARACTERS AFTER

INITIAL "J" REPLACING ALL "A" BY "B".

Where word = ADJECTIVE, count = 6, word = BDJECTIVE.
Where word = JACK, count = 3, word = JBCK.
Where word = JUJMAB, count = 5, word = JUJMBB.

INSPECT word REPLACING ALL "X" BY "Y", "B" BY "Z", "W" BY

"Q" AFTER INITIAL "R".

Where word = RXXBQWY, word = RYYZQQY.

Where word = YZACDWBR, word = RAQRYEZ.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE

INITIAL "A".

word before: 12 XZABCD

word after: BBBBBABCD

51

transfers data from one data area to another.

FORMAT:

{literal-1}

MOVE {identifier-1} TO identifier-2 [identifier-3]...

RULES:

1. Identifier-1 and literal-1 represent the sending area and
identifier-2 indentifier-3,..., represent the receiving area.

2. The data designated by the literal-1 or identifier-1 is moved
first to identifier-2, then to identifier-3,.... The rules referring to
identifier-2 also apply to the other receiving areas. Any
subscripting associated with identifier-2,..., is evaluated
immediately before the data is moved to the receivinq data
item. *

3. Any MOVE in which the sending and receiving items are both
elementary items is an elementary move. Every elementary
item belongs to one of the following categories: numeric,
alphabetic, alphanumeric, numeric edited, alphanumeric '
edited. These categories are described in the PICTURE clause
Numeric literals belong to the category numeric, and
nonnumeric literals belong to the category alphanumeric. The
figurative constant ZERO belongs to the category numeric. All
other figurative constants belong to the category alpha
numeric.

The following rules apply to an elementary move between
these categories:

a. The figurative constant SPACE, a numeric edited,
alphanumeric edited, or alphabetic data item must not be
moved to a numeric or numeric edited data item.

b. A numeric literal, the figurative constant ZERO, a numeric
data item or a numeric edited data item must not be moved
to an alphabetic data item.

c. A non-integer numeric literal or a non-integer numeric data
item must not be moved to an alphanumeric or alpha
numeric edited data item.

d. All other elementary moves are legal and are performed
according to the rules given in general rule 4.

52

4 Any necessary conversion of data from one form of internal
representation to another takes place during legal elementary
moves, along with any editing specified for the receiving data

item:

a. When an alphanumeric edited or alphanumeric item is a
receiving item, alignment and any necessary space filling
takes place. If the size of the sending item is greater than
the size of the receiving item, the excess characters are
truncated on the right after the receiving item is filled. If the
sending item is described as being signed numeric, the
operational sign will not be moved; if the operational sign
occupied a separate character position, that character will
not be moved and the size of the sending item will be
considered to be one less than its actual size (in terms of
standard data format characters).

b. When a numeric or numeric edited item is the receiving
item, alignment by decimal point and any necessary zero-

filling takes place as necessary, except where zeroes are

replaced because of editing requirements.

1. When a signed numeric item is the receiving item, the
sign of the sending item is placed in the receiving item.
Conversion of the representation of the sign takes place

as necessary. If the sending item is unsigned, a positive

sign is generated for the receiving item.

2. When an unsigned numeric item is the receiving item,

the absolute value of the sending item is moved and no

operational sign is generated for the receiving item.

3. When a data item described as alphanumeric is the

sending item, data is moved as if the sending item were

described as an unsigned numeric integer.

c. When a receiving field is described as alphabetic,

justification and any necessary space-filling takes place as

defined. If the size of the sending item is greater than the

size of the receiving item, the excess characters are

truncated on the right after the receiving item is filled.

5. Any move that is not an elementary move is treated exactly as

if it were an alphanumeric to alphanumeric elementary move,

except that there is no conversion of data from one form of

internal representation to another. In such a move, the

receiving area will be filled without consideration for the

individual elementary or group items contained within either

the sending or receiving area, except as noted in the OCCURS

clause.

53

6. If literal-1 is SPACE, QUOTE or ZERO, then identifier-2 is
entirely filled with the figurative constant.

7. In a non-numeric move, the data is moved left to right.

EXAMPLE:

0360 MAIN-MOVE-ROUTINE.
0361 MOVE SPACES TO PRINT-LINE.
0362 MOVE FIRST-NAME TO P-FIRST-NAME.
0363 MOVE LAST-NAME TO P-LAST-NAME.
0364 MOVE ORDER (W-INDEX) TO P-ORDER.
0365 MOVE ZEROS TO AMT-1, AMT-2, AMOUNT-3
0366 MOVE SPACES TO FIRST-NAME LAST-NAME

MULTIPLY I lets you multiply numeric data items and set the value of
an item equal to the result.

FORMAT:

{literal-1} {literal-2}
MULTIPLY {identifier-1} BY {identifier-2}

[GIVING identifier-3] [ROUNDED]

[, ON SIZE ERROR imperative-statement]

RULES:

1. Each indentifier must be an elementary numeric item, except
identifier-3 which may be an elementary numeric edited item.

2. Each literal must be a numeric literal.

3. The resultant product must not contain more than 18 digits.

4. An identifier can only reference an elementary item.

5. Each operand can contain an operational sign and an implied
decimal point.

6. Operands are aligned according to implied decimal points.

7. ROUNDED performs a test to see if right truncation will occur
and, if it will, adjusts the result by adding 1 if the truncated
digit is 5 or greater.

8. ON SIZE ERROR performs a test to see if overflow has
occurred and, if it has, executes the imperative-statement.

EXAMPLE:

0399 CALCULATION-ROUTINE.

0400 MULTIPLY WAGE-RATE BY REGULAR-HRS GIVING
0401 GROSS-PAY ROUNDED ON SIZE ERROR GO TO

P-ERR.

0402 MULTIPLY WAGE-RATE BY OVERTIME-HOURS

54

EHUllets you initiate the processing of both input and output

files.

FORMAT:

{1-0 }
{INPUT }

OPEN {OUTPUT} file-name

RULES:

1. A file must be opened before it can be read, written or closed.

2. The OPEN statement does not cause a data transfer to or from

the file.

3. In the output SEQUENTIAL ACCESS mode, if the file does not

exist, it is created.

4. In the RANDOM ACCESS mode, the file must already exist.

5. The I-O (INPUT-OUTPUT) option applies to DISK files only.

EXAMPLE:

0700 BEGIN.
0701 OPEN OUTPUT NEW-PAYROLL-MASTER-FILE.

0702 OPEN INPUT OLD-PAYROLL-MASTER-FILE.

0703 OPEN OUTPUT LISTING.

[jjg|^tl;lfl lets you depart from the normal sequence of
procedures in order to execute one statement, or a sequence of
statements, and then return to the normal sequence.

FORMAT 1:

{THROUGH}

PERFORM procedure-name-1 [{THRU} procedure-name-2]

FORMAT 2:

PERFORM procedure-name-1 [{THRU} procedure-name-2]
{integer-1}

{identifier-1} TIMES

FORMAT 3:

PERFORM procedure-name-1 [{THRU} procedure-name-2]
{OR }

UNTIL condition-1 {AND} condition-2

55

RULES:

1. Each identifier represents a numeric elementary item

described in the Data Division. In format 2, identifier-1 must be

described as a numeric integer.

2. The words THRU and THROUGH are equivalent.

3. When the PERFORM statement is executed, control is

transferred to the first statement of the procedure named

procedure-name-1. This transfer of control occurs only once

for each execution of a PERFORM statement. For those cases

where a transfer of control to the named procedure does take

place, an implicit transfer of control to the next executable

statement following the PERFORM statement is established

as follows:

a. If procedure-name-1 is a paragraph-name and procedure-

name-2 is not specified, then the return is after the last

statement of procedure-name-1.

b. If procedure-name-1 is a section-name and procedure-

name-2 is not specified, then the return is after the last

statement of the last paragraph in procedure-name-1.

c. If procedure-name-2 is specified and it is a paragraph-name,

then the return is after the last statement of the paragraph.

d. If procedure-name-2 is specified and it is section-name, then

the return is after the last statement of the last paragraph in

the section.

4. There is no necessary relationship between procedure-name-1

and procedure-name-2 except that a consecutive sequence of

operations is to be executed beginning at the procedure

named procedure-name-1 and ending with the execution of the

procedure named procedure-name-2. In particular, GO TO and

PERFORM statements may occur between procedure-name-1

and the end of procedure-name-2. If there are two or more

logical paths to the return point, then procedure-name-2 may

be the name of a paragraph consisting of the EXIT statement,

to which all of these paths must lead.

5. If control passes to these procedures by means other than a

PERFORM statement, control will pass through the last

statement of the procedure to the next executable statement

as if no PERFORM statement mentioned these procedures.

56

6. The PERFORM statements operate as follows with rule 5

above, applying to all formats:

a. Format 1 is the basic PERFORM statement. A procedure

referenced by this type of PERFORM statement is executed

once and then control passes to the next executable

statement following the PERFORM statement.

b. Format 2 is the PERFORM...TIMES. The procedures are

performed the number of times specified by integer-1 or by

the initial value of the data item referenced by identifier-1

for that execution. If, at the time of execution of a

PERFORM statement, the value of the data item referenced

by identifier-1 is equal to zero or is negative, control passes

to the next executable statement following the PERFORM

statement. Following the execution of the procedures the

specified number of times, control is transferred to the next

executable statement following the PERFORM statement.

During execution of the PERFORM statement, references to

identifier-1 cannot alter the number of times the procedures

are to be executed from that which was indicated by the

initial value of identifier-1.

c. Format 3 is the PERFORM...UNTIL The specified

procedures are performed until the condition specified by

the UNTIL phrase is true. When the condition is true,

control is transferred to the next executable statement after

the PERFORM statement. If the condition is true when the

PERFORM statement is entered, no transfer to procedure-

name-1 takes place, and control is passed to the next

executable statement following the PERFORM statement.

7. If a sequence of statements referred to by a PERFORM

statement includes another PERFORM statement, the

sequence of procedures associated with the included

PERFORM must itself either be totally included in, or totally

excluded from, the logical sequence referred to by the first

PERFORM. Thus, an active PERFORM statement, whose

execution point begins within the range of another PERFORM

statement, must not allow control to pass to the exit of the

other active PERFORM statement; furthermore, two or more

such active PERFORM statements may not have a common

exit.

57

8. A PERFORM statement that appears in a section that is not an

independent segment can have within its range, in addition to

any declarative sections whose execution is caused within

that range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more

non-independent segments.

b. Sections and/or paragraphs wholly contained in a single

independent segment.

9. A PERFORM statement that appears in an independent

segment can have within its range, in addition to any

declarative sections whose execution is caused within that

range, only one of the following:

a. Sections and/or paragraphs wholly contained in one or more

non-independent segments.

b. Sections and/or paragraphs wholly contained in the same

independent segment as the PERFORM statement.

EXAMPLE:

0750 PERFORM CALCULATE-PAY THRU PARA-END.

0751 PERFORM MAIN-PROGRAM.

0791 PERFORM CHECK-ROUTINE 5 TIMES.

0799 PERFORM TEST-ROUTINE UNTIL CODE-1 > T-CODE
0800 PERFORM PARA-1 THRU PARA-2

0801 UNTIL A = B or X = Y AND Z = W.

58

13333 makes available the next logical record from an open file.

FORMAT:

{AT END}

READ file-name RECORD {INVALID KEY} imperative-statement

RULES:

1. A file must be OPENed before it can be read.

2. The AT END statement must be used for SEQUENTIAL files

and is executed at the end of the file.

3. The INVALID KEY statement must be used with RANDOM

files and if executed, the data in the user area is unspecified.

4. The number of the requested record in a RANDOM file must

be placed in the RELATIVE KEY before the READ statement is

executed.

5. When reading variable length delimited files, the record area

should be cleared to spaces before each read because the

data in the user record area to the right of the last valid

character of the input item is unspecified, i.e., whatever data

was there from before the read will be there.

6. When reading variable length delimited files, the TAB (09H)

characters created by some text editors are not expanded to

avoid conflict with packed decimal (COMP-3) data type. If tab

characters are used, they can be expanded by CP/M's PIP

command using the "T" option before processing by COBOL

programs.

EXAMPLE:

0800 READ-ROUTINE.

0801 MOVE SPACE TO PAYROLL-RECORD.

0802 READ OLD-PAYROLL-MASTER-FILE

0803 AT END GO TO OLD-EOJ-ROUTINE.

0900 READ-RANDOM.

* if you wanted record 100 in a random file

0901 MOVE 100 to KEY3-RECORD-NUMBER.

0902 READ IN-RANDOM-FILE

0903 INVALID KEY DISPLAY "INVALID KEY".

59

REWRITE replaces a record existing in a disk file.

FORMAT:

REWRITE record-name [INVALID KEY imperative-statement]

RULES:

1. The file must have been opened in the I-O mode.

2. The record-name must be the name of a logical record in the

FILE SECTION of the DATA DIVISION.

3. The REWRITE statement must have been preceded by a

successful READ statement in the SEQUENTIAL ACCESS

MODE as it is this logical record that is replaced.

4. The INVALID KEY clause must be used for RANDOM files.

5. For files accessed in RANDOM access mode, the record

logically replaces the record specified by the contents of the

RELATIVE KEY data item associated with the file.

EXAMPLE:

* IN-FILE is the file name and IN-REC is a record name

* for the file

0097 SEQ-REWRITE.

0098 READ IN-FILE RECORD AT END GO TO EOJ.

0099 MOVE NEW-DATA TO IN-REC.

0100 REWRITE IN-REC.

0200 RANDOM-REWRITE.

0201 MOVE 100 TO KEY-REL

0202 REWRITE NEW-REC INVALID KEY GO TO ERROR.

HEEfl causes permanent or temporary suspension of the
execution of the object program.

FORMAT:

{literal}

STOP {RUN}

RULES:

1. All files should be closed before a STOP RUN statement is

issued.

2. The STOP RUN statement must be the last statement

executed in the program as the operating system takes control

after execution.

3. The literal is displayed on the console device and waits for a

code followed by a carriage return to be entered as follows:

C < CR > = continue
E <^ CR y = exit to operating system.

60

EXAMPLE:

0900 END-OF-JOB. STOP RUN.

0500 ERR. STOP "SIZE ERROR ENTER C TO CONTINUE".

£JI]TQ2i59 lets you subtract one numeric data item from another
and set the value of an item equal to the result.

FORMAT:

{literal-1} {literal-2}

SUBTRACT {identifier-1} FROM {identifier-2}

[GIVING identifier-3] [ROUNDED]

[, ON SIZE ERROR imperative-statement]

RULES:

1. Each identifier must refer to an elementary numeric item,

except identifier-3 which may refer to an elementary numeric

edited item.

2. The composite of operands must not contain more than 18

digits.

3. An identifier can only reference an elementary item.

4. Each operand can contain an operational sign and an implied

decimal point.

5. Operands are aligned according to implied decimal points.

6. ROUNDED performs a test to see if right truncation will occur

and, if it will, adjusts the result by adding 1 if the truncated

digit is 5 or greater.

7. ON SIZE ERROR performs a test to see if overflow has

occurred and, if it has, executes the imperative-statement.

EXAMPLE:

0870 SUBTRACT TAXES FROM GROSS-PAY GIVING NET-PAY

0871 ROUNDED ON SIZE ERROR GO TO TAX-ERR-ROUTINE.

61

[releases a record to an output file and allows for vertical

positioning if the output device is a printer.

FORMAT:

{PAGE }

{ LINE }

WRITE record-name [BEFORE ADVANCING {integer LINES}]

WRITE record-name [INVALID KEY imperative-statement]

RULES:

1. The record-name must be the name of a logical record in the

FILE SECTION of the DATA DIVISION.

2. The reserved word PAGE issues a standard form feed (OCH)

control character to the device driver.

3. Integer LINES issues the specified number of carriage return

line feeds.

4. The INVALID KEY clause must be used for RANDOM files.

5. The requested record number must be placed in the RELATIVE

KEY before writing to a RANDOM file.

EXAMPLE:

0900 P-ROUTINE.

0901 WRITE PRINT-LINE BEFORE ADVANCING 2 LINES.

0902 MOVE SPACES TO PRINT-LINE.

0903 WRITE PRINT-LINE BEFORE ADVANCING PAGE.

1000 WRITE-RANDOM.

1001 MOVE 1000 TO KEY3.

1002 WRITE D-RANDOM-OUT

1003 INVALID KEY DISPLAY "INVALID KEY".

1050 SEQ. WRITE.

1051 WRITE D-REC.

62

7 ERROR CODES AND MESSAGES
COMPILER ERROR MESSAGES

During compilation, all error codes are output to a disk work file

(W3.WRK). At the end of each COBOL Division, the compiler

checks for any fatal errors and terminates the compile if any have

been found. At the end of compilation, a report is displayed and is

available for redisplay using the program ERRORS if needed:

A>ERROR <CR> .

Using the CP/M feature CTRL-P, the error messages can also be

sent to the printer as they are displayed. Also, CTRL-S can be

used to stop and start the report.

All of the compiler error messages are contained on a file named

W5.CBL and can be changed by the user. For example, you may

want to have your error messages displayed in German or some

other language. These messages can be more than one line and

upper-case or lower-case. See error code number 003 below for an

example.

Note: The Level codes are F for Fatal (no object code generated)

and W for Warning Possible Error. Also, (not shown below) each

line is preceded by the source program's actual line number.

SEQ. ERROR

NO. COL NO.

9999 70

dataname

dataname

dataname

dataname

dataname

dataname

dataname

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

LEVEL TEXT

F SYNTAX ERROR

F NOT A COBOL WORD

F SYNTAX ERROR OR PERIOD MISSING FROM

PRIOR LINE

F FILE NOT SELECTED IN THE I-O SECTION

F OCCURS LIMITED TO ONE LEVEL

F SUBSCRIPTED ITEMS CANNOT BE REDEFINED

F PICTURE ITEMS MUST BE ELEMENTARY

F EDITED PICTURE CONTAINS ILLEGAL

COMBINATIONS

F MAX RECORD LENGTH OF 4095 EXCEEDED

F ELEMENTARY ITEM DOES NOT HAVE PICTURE

CLAUSE

F ILLEGAL REDEFINES DUE TO INCORRECT

REFERENCE

F SUBSCRIPT ERROR

F ILLEGAL COMBINATION OF CHARACTERS IN

PICTURE

F DUPLICATION OF PREVIOUS NAME IS ILLEGAL

F ENVIRONMENT DIVISION MISSING

F FD MUST CONTAIN A LABEL RECORD CLAUSE

F VALUE OF FILE-ID MISSING

F SUBSCRIPT LITERAL CONTAINS ILLEGAL

VALUE

63

dataname

dataname

dataname

dataname

dataname

dataname

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

W

W

F

W

W

w

w

w

w

w

F

w

F

F

F

F

W

F

F

USAGE CONFLICT

OCCURS CLAUSE IS ILLEGAL AT 01 LEVEL

VALUE IS ILLEGAL WITH OCCURS CLAUSE

VALUE IS ILLEGAL FOR REDEFINED ITEMS

ILLEGAL CHARACTER IN WORD

MUST HAVE RELATIVE KEY

MUST BE IN WORKING-STORAGE

KEY NOT ELEMENTARY

RELATIVE KEY MUST BE PIC 9(7)

PARAGRAPH NAME IS NOT DEFINED

PARAGRAPH NAME IS NOT ALTERABLE

TOO MANY FILES SELECTED

NEED MORE MEMORY OR REDUCE SIZE OF

LABELS

CORRECT ALL ERRORS AND RECOMPILE

MISSING DIVISION STATEMENT

TOO MANY PARAGRAPH NAMES

TOO MANY FORWARD REFERENCES

01-10 AND 77 LEVELS ONLY

IS NOT DEFINED

AREA B MUST START WITH " ON CONTINUED

LITERAL

ILLEGAL HEXADECIMAL CHARACTER

ILLEGAL FILE-ID "U:FILE"

ASCII (DISPLAY) DATA TYPE REQUIRED

RANDOM FILES MUST USE INVALID KEY

CLAUSE

RESERVED WORD NOT YET IMPLEMENTED

VALUE/PICTURE SIGN ERROR

COPY CANNOT ALSO COPY

COPY FILE NAME TOO LONG

COULD NOT FINE REDEFINED ITEM NAME

LITERAL OVER 120 CHARACTERS LONG

LITERAL TRUNCATED RIGHT END

MORE THAN 30 CHARACTERS IN A WORD

LITERAL LONGER THAN PICTURE

REDEFINED AREA ADJUSTED

EDITED PICTURE MODIFIED

TWO RECORDS IN A FILE HAVE DIFFERENT

SIZES

COLUMN 5 OR 7 TREATED AS COMMENTS

LINE NUMBER OUT OF SEQUENCE

RANDOM FILE CANNOT BE DELIMITED

PERIOD IS MISSING AFTER PREVIOUS WORD

DECIMAL POINT SIZES DIFFERENT

PRINTER CANNOT BE DELIMITED

VALUE EXCEEDS 5 DIGITS FOR COMP

ILLEGAL VALUE FOR COMP

ILLEGAL CURRENCY SIGN

COPY FILE-NAME MISSING

ALL LITERAL LIMITED TO 1 BYTE

ZERO MISSING IN BLANK WHEN ZERO

BLANK WHEN ZERO NOT ALLOWED AT GROUP

LEVEL

64

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

F

F

F

F

W

F

F

F

F

F

F

F

F

F

F

F

BLANK WHEN ZERO MUST BE ASCII DISPLAY

BLANK WHEN ZERO FOR NUMERIC ONLY

JUSTIFIED MUST BE ELEMENTARY DATA ITEM

JUSTIFIED CANNOT BE NUMERIC OR EDITED

ADDRESS EXCEEDS CURRENT CPM BASE

ADDRESS

MORE THAN 255 LINKAGE ITEMS

USING WITH NO LINKAGE SECTION

IF/UNTIL NESTED CONDITIONAL ARE ILLEGAL

RESERVED WORD "SENTENCE" IS MISSING

ONLY PRINTER FILES CAN HAVE OMITTED

MORE THAN ONE LABEL RECORDS CLAUSE

SUCCESSFUL COMPILE MEMORY AVAILABLE

MEMORY OVERFLOW REDUCE PROGRAM SIZE

look at MEMORY size clause under OBJECT-

COMPUTER.

ADVANCING FOR PRINTER FILES ONLY

REDEFINES AT 01 LEVEL IN FILE SECTION IS

ILLEGAL

COMP AND COMP-3 CANNOT CONTAIN EDIT

SYMBOLS

PROGRAM NAME

USER LINE ERR

LINE NO LVLTEXT

ENTER<CR>FOR NEXT LINE

ERROR MESSAGE NEXT LINE:

RUN TIME AND COMPILE TIME ERROR MESSAGES

The RUN time package will display the unit and file-name

following the error codes. The following codes are also used in

the STATUS keys when specified.

90 No additional information

91 Error in extending the file

92 End of disk data — disk is full

93 File not open

94 No more directory space — disk is full

95 File cannot be found

96 File already open

97 Reading unwritten data in random access

98 Rewrite without prior read in I-O MODE

99 Reading an output file or writing to an input file

100 ERROR MESSAGE NOT IN TABLE

101 SUBSCRIPT ERROR value exceeds 65K.

102 BOUNDARY ERROR program fell through last paragraph.

Note: The RUN time package must be the one distributed with the

current version of the compiler.

65

APPENDIX I SAMPLE PROGRAMS

Listing No. 1 — Sequentially Read a Fixed Length File

0001

0002

0003

0004*

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

0031

0032

0033

0034

0035

0036

0037

0038

0039

0040

0041

0042

IDENTIFICATION DIVISION.

PROGRAM-ID.

T6RF.

THIS PROGRAM READS A FIXED LENGTH FILE

SEQUENTIALLY

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER.

COMMODORE-64.

OBJECT-COMPUTER.

COMMODORE-64.

INPUT-OUTPUT SECTION.

FILE-CONTROL

SELECT FILE1 ASSIGN TO DISK

ORGANIZATION IS SEQUENTIAL

ACCESS MODE IS SEQUENTIAL

FILE STATUS IS STATUS-KEY.

DATA DIVISION.

FILE SECTION.

FD FILE1

LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS NAME-OF-FILE

BLOCK CONTAINS 1 RECORD

DATA RECORDS ARE I-RECORD.

01 I-RECORD.

02 SEQ PIC 9999.

02 REC1 PIC IS X(160).

WORKING-STORAGE SECTION.

01 STATUS-KEY PIC XX.

01 NAME-OF-FILE PIC X(14)

VALUE "A:TESTF.WRK".

PROCEDURE DIVISION.

BEGIN.

DISPLAY "ENTER INPUT FILE NAME".

DISPLAY NAME-OF-FILE WITH NO ADVANCING

ACCEPT NAME-OF-FILE

OPEN INPUT FILE1.

BEGIN2.

MOVE SPACE TO I-RECORD.

MOVE SPACE TO STATUS-KEY.

READ FILE1

AT END

GO TO EOJ.

0043

0044

0045

0046

0047

0048

0049

0050

0051

DISPLAY I-RECORD

DISPLAY STATUS-KEY.

GO TO BEGIN2.

EOJ.

DISPLAY STATUS-KEY

CLOSE FILE1.

DISPLAY STATUS-KEY.

STOP RUN.

END PROGRAM T6RF.

Listing No. 2 — Read and Rewrite Fixed Length Records

0001

0002

0003

0004*

0005

0006

0007

0008

0009

0010

0011

0012

0013

0014

0015

0016

0017

0018

0019

0020

0021

0022

0023

0024

0025

0026

0027

0028

0029

0030

IDENTIFICATION DIVISION.

PROGRAM-ID.

T6IOF.

THIS PROGRAM READS THEN REWRITES FIXED

LENGTH RECORDS.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER.

COMMODORE-64.

OBJECT-COMPUTER.

COMMODORE-64.

INPUT-OUTPUT SECTION.

FILE-CONTROL

SELECT FILE1 ASSIGN TO DISK

ORGANIZATION IS SEQUENTIAL

ACCESS MODE IS SEQUENTIAL

DATA DIVISION.

FILE SECTION.

FD FILE1

LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS IN-OUT-FILE

DATA RECORDS ARE I-O-RECORD.

01 I-O-RECORD.

02 SEQ PIC 9999.

02 REC1 PIC IS X(160).

WORKING-STORAGE SECTION.

01 IN-OUT-FILE PIC X(14)

VALUE "A:TESTF.WRK".

01 X1 PIC 9999

VALUE 1001.

PROCEDURE DIVISION.

67

0031 BEGIN.

0032 DISPLAY "ENTER FILE NAME".

0033 DISPLAY IN-OUT-FILE WITH NO ADVANCING.

0034 ACCEPT IN-OUT-FILE.

0035 OPEN I-O FILE1.

0036 MOVE SPACE TO I-O-RECORD.

0037 BEGIN2.

0038 READ FILE1

0039 AT END

0040 GO TO EOJ.

0041 DISPLAY SEQ.

0042 DISPLAY "IN" WITH NO ADVANCING.

0043 MOVE X1 TO SEQ.

0044 ADD1TOX1.

0045 DISPLAY SEQ.

0046 REWRITE I-O-RECORD.

0047 DISPLAY "OUT" WITH NO ADVANCING.

0048 GO TO BEGIN2.

0049 EOJ.

0050 CLOSE FILE1.

0051 STOP RUN.

0052 END PROGRAM T6IOF.

68

Listing No. 3 — Create a File of Variable Length

0001 IDENTIFICATION DIVISION.

0002 PROGRAM-ID.

0003 T6WD.

0004* THIS PROGRAM CREATES A FILE OF VARIABLE

0005* LENGTH (DELIMITED) RECORDS. MOST TEXT EDITORS

* CREATE THIS TYPE OF FILE. EACH RECORD ENDS

* WITH A CARRIAGE RETURN AND LINE FEED.

0005 ENVIRONMENT DIVISION.

0006 CONFIGURATION SECTION.

0007 SOURCE-COMPUTER.

0008 COMMODORE-64.

0009 OBJECT-COMPUTER.

0010 COMMODORE-64.

0011 INPUT-OUTPUT SECTION.

0012 FILE-CONTROL

0013 SELECT FILE1 ASSIGN TO DISK

0014 ORGANIZATION IS SEQUENTIAL

0015 ACCESS MODE IS SEQUENTIAL

* the next statement tells the compiler each record is to be

* delimited (separated) by or ended with a carriage return

* and line feed.

0016 RECORD DELIMITER IS STANDARD.

0017 DATA DIVISION.

0018 FILE SECTION.

0019 FD FILE1

0020 LABEL RECORDS ARE STANDARD

0021 VALUE OF FILE-ID IS OUT-FILE

0022 DATA RECORDS ARE O-RECORD.

0023 01 O-RECORD.

0024 02 SEQ PIC 9999.

0025 02 REC1 PIC IS X(156).

0026 02 SEQ2 PIC 9999.

0027 WORKING-STORAGE SECTION.

0028 01 OUT-FILE PIC X(14)

0029 VALUE IS "A:TESTB.WRK".

0030 01 X1 PIC 9999

0031 VALUE 0001.

0032 01 PAD.

0033 02 FILLER PIC X(30)

0034 VALUE SPACE.

0035 02 FILLER PIC X(30)

0036 VALUE SPACE.

0037 02 FILLER PIC X(30)

0038 VALUE SPACE.

0039 02 FILLER PIC X(30)

0040 VALUE SPACE.

0041 02 FILLER PIC X(30)

0042 VALUE SPACE.

0043 02 FILLER PIC X(05)

0044 VALUE "AAAAA".

0045 PROCEDURE DIVISION.

0046 BEGIN.

0047 DISPLAY "ENTER OUTPUT FILE NAME".

0048 DISPLAY OUT-FILE WITH NO ADVANCING.

0049 ACCEPT OUT-FILE.

0050 MOVE SPACE TO O-RECORD.

0051 OPEN OUTPUT FILE1.

0052 DISPLAY "OPEN".

0053 MOVE PAD TO REC1.

0054 BEGIN2.

0055 MOVE X1 TO SEQ.

0056 MOVE X1 TO SEQ2.

0057 ADD1TOX1.

0058 DISPLAY O-RECORD.

0059 WRITE O-RECORD

0060 IFX1 = 011

0061 GO TO EOJ.

0062 GO TO BEGIN2.

0063 EOJ.

0064 CLOSE FILE1.

0065 STOP RUN.

0066 END PROGRAM T6WD.

70

Listing No. A — Read a Variable Length File

0001 IDENTIFICATION DIVISION.

0002 PROGRAM-ID.

0003 T6RD.

0004* THIS PROGRAM READS A VARIABLE LENGTH

(DELIMITED) FILE.

* this kind of file is created by most text editors. Each

* record in the file is terminated with a carriage return and

* line feed.

0005 ENVIRONMENT DIVISION.

0006 CONFIGURATION SECTION.

0007 SOURCE-COMPUTER.

0008 COMMODORE-64.

0009 OBJECT-COMPUTER.

0010 COMMODORE-64.

0011 INPUT-OUTPUT SECTION.

0012 FILE-CONTROL

0013 SELECT FILE1 ASSIGN TO DISK

0014 ORGANIZATION IS SEQUENTIAL

0015 ACCESS MODE IS SEQUENTIAL

* the next statement tells the compiler the records will end

* with a carriage return and line feed.

0016 RECORD DELIMITER IS STANDARD.

0017 DATA DIVISION.

0018 FILE SECTION.

0019 FD FILE1

0020 LABEL RECORDS ARE STANDARD

0021 VALUE OF FILE-ID IS IN-FILE

0022 DATA RECORDS ARE I-RECORD.

0023 01 I-RECORD.

0024 02 SEQ PIC 9999.

0025 02 REC1 PIC IS X(160).

0026 WORKING-STORAGE SECTION.

0027 01 IN-FILE PIC X(14)

0028 VALUE "AfTESTB.WRK".

0029 PROCEDURE DIVISION.

0030 BEGIN.

0031 DISPLAY "ENTER INPUT FILE NAME".

0032 DISPLAY IN-FILE WITH NO ADVANCING.

0033 ACCEPT IN-FILE.

0034 OPEN INPUT FILE1.

71

0035 BEGIN2.

0036* the next statement is necessary because the delimited
0036* read only transfers data into the record area and if short,
0036* the data from prior reads will be in the record area on the
0036* right end.

0036 MOVE SPACE TO I-RECORD.
0037 READ FILE1

0038 AT END

0039 GO TO EOJ.

0040 DISPLAY I-RECORD.
0041 GO TO BEGIN2.
0042 EOJ.

0043 CLOSE FILE1.

0044 STOP RUN.

0045 END PROGRAM T6RD.

Listing No. 5 — Read and Rewrite Variable Length Records

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T6IOD.

0004* THIS PROGRAM READS THEN REWRITES VARIABLE
LENGTH RECORDS.

0005 ENVIRONMENT DIVISION.

0006 CONFIGURATION SECTION.
0007 SOURCE-COMPUTER.
0008 COMMODORE-64.

0009 OBJECT-COMPUTER.
0010 COMMODORE-64.

0011 INPUT-OUTPUT SECTION.
0012 FILE-CONTROL

0013 SELECT FILE1 ASSIGN TO DISK

0014 ORGANIZATION IS SEQUENTIAL
0015 ACCESS MODE IS SEQUENTIAL

0016 RECORD DELIMITER IS STANDARD.

0017 DATA DIVISION.

0018 FILE SECTION.

0019 FD FILE1

0020 LABEL RECORDS ARE STANDARD

0021 VALUE OF FILE-ID IS I-O-FILE-NAME

0022 DATA RECORDS IS A-RECORD.

72

0023 01 A-RECORD.

0024 02 SEQ PIC 9999.

0025 02 REC1 PIC IS X(160).
0026 WORKING-STORAGE SECTION.

0027 01 X1 PIC 9999

0028 VALUE 2001.

0029 01 I-O-FILEPICX(14)

0030 VALUE IS "A:TESTB.WRK".

0031 PROCEDURE DIVISION.

0032 BEGIN.

0033 DISPLAY "ENTER I-O FILE NAME".
0034 DISPLAY I-O-FILE-NAME WITH NO ADVANCING.

0035 ACCEPT I-O-FILE-NAME.

0036 OPEN I-O FILE1.

0037 BEGIN2.

0038 MOVE SPACE TO A-RECORD.

0039 READ FILE1

0040 AT END

0041 GO TO EOJ.

0042 MOVE X1 TO SEQ.

0043 ADD1TOX1.

0044 DISPLAY SEQ.

0045 REWRITE A-RECORD.

0046 GOTOBEGIN2.

0047 EOJ.

0048 CLOSE FILE1.

0049 DISPLAY "RENUMBERING COMPLETE".

0050 STOP RUN.

0051 END PROGRAM T6IOD.

73

Listing No. 6 — Read a Variable Length File, Output to the Printer

0001 IDENTIFICATION DIVISION.

0002 PROGRAM-ID. TST-PRT.

* This sample program reads in a variable length file
* and outputs it to the printer.

0003 ENVIRONMENT DIVISION.
0004 CONFIGURATION SECTION.

0005 SOURCE-COMPUTER. COMMODORE-64
0006 OBJECT-COMPUTER. COMMODORE-64
0008 INPUT-OUTPUT SECTION.
0009 FILE-CONTROL

0010 SELECT FILE1 ASSIGN TO DISK
0011 RECORD DELIMITER IS STANDARD.

* the next line is for printers and/or printer-files.
0012 SELECT FILE2 ASSIGN TO PRINTER.
0013 DATA DIVISION.

0014 FILE SECTION.

0015 FD FILE1

0016 LABEL RECORDS ARE STANDARD
0017 VALUE OF FILE-ID IS IN-FILE1-NAME
0018 DATA RECORD is TESTB.
0019 01 TESTB PIC X(80).
0020 FD FILE2

0021 LABEL RECORDS ARE STANDARD

0022 VALUE OF FILE-ID IS OUT-FILE2-NAME
0023 DATA RECORD IS PRINT-LINE.
0024 01 PRINT-LINE PICTURE IS X(132).

0025 WORKING-STORAGE SECTION.

* the input file-name can be a cobol source file to be listed
* on the printer, this file-name can be changed at run time
* see line 0030-0032.

0026 01 IN-FILE1-NAME PIC X(14) VALUE "A:T01 .CBL".

* in line 0027 "printer" is the key word to send output to the

* physical printer.

* any other file-name sends output to the named disk file.

* this option of either printing or sending output to the

* printer can be made at run time, see lines 0033-0035.

74

0027 01 OUT-FILE2-NAME PIC X(14) VALUE "PRINTER".

0028 PROCEDURE DIVISION.

0029 BEGIN.

0030 DISPLAY "ENTER INPUT FILE".
0031 DISPLAY IN-FILE1-NAME WITH NO ADVANCING.

0032 ACCEPT IN-FILE1-NAME.

0033 DISPLAY "ENTER PRINTER FILE".
0034 DISPLAY OUT-FILE2-NAME WITH NO ADVANCING.

* no need to re-enter the word "printer" just hit cr

0035 ACCEPT OUT-FILE2-NAME.

0036 OPEN INPUT FILE1.

0037 OPEN OUTPUT FILE2.

0038 MOVE SPACES TO PRINT-LINE.

0039 PARA-3.

0040 MOVE SPACE TO TESTB.

0041 READ FILE1 AT END GO TO EOJ.
0042 MOVE TESTB TO PRINT-LINE.
0043 WRITE PRINT-LINE BEFORE ADVANCING 1 LINE.

0044 GO TO PARA-3.

0045 EOJ.
0046 MOVE SPACES TO PRINT-LINE.
0047 WRITE PRINT-LINE BEFORE ADVANCING PAGE.

0048 CLOSE FILE1.

0049 CLOSE FILE2.

0050 STOP RUN.

0051 END PROGRAM TST-PRT.

75

Listing No. 7 — Write Random Fixed Length Records to a File
Previously Created Using a Sequential Fixed Length Write
Program

0001 IDENTIFICATION DIVISION.

0002 PROGRAM-ID.

0003 T8WR.

0004* THIS PROGRAM WRITES RANDOM FIXED LENGTH
0004* RECORDS TO A FILE THAT HAS BEEN CREATED USING
0004* A SEQUENTIAL FIXED LENGTH WRITE PROGRAM TO
0004* ALLOCATE THE REQUIRED FILE SPACE
0005 ENVIRONMENT DIVISION.
0006 CONFIGURATION SECTION.
0007 SOURCE-COMPUTER.

0008 COMMODORE-64.

0009 OBJECT-COMPUTER.

0010 COMMODORE-64.

0011 INPUT-OUTPUT SECTION.
0012 FILE-CONTROL

0013 SELECT FILE1 ASSIGN TO DISK
0014 ORGANIZATION IS
0015 RELATIVE

0016 ACCESS MODE IS RANDOM
0017 RELATIVE KEY IS KEY-1.
0018 DATA DIVISION.
0019 FILE SECTION.

0020 FD FILE1

0021 LABEL RECORDS ARE STANDARD
0022 VALUE OF FILE-ID IS OUT-FILE

0023 DATA RECORDS ARE O-RECORD.
0024 01 O-RECORD.

0025 02 SEQ PIC 9999.

0026 02 REC1 PIC IS X(160).

0027 WORKING-STORAGE SECTION.

0028 01 OUT-FILE PIC X(14)

0029 VALUE "A:TESTF.WRK".

0030 01 KEY-1 PIC 9(7) COMP-3.

0031 01 XX-KEY PIC 9(4) VALUE 1.

0032 PROCEDURE DIVISION.

0033 BEGIN.

0034 DISPLAY "ENTER OUTPUT FILE NAME".

0035 DISPLAY OUT-FILE WITH NO ADVANCING.

0036 ACCEPT OUT-FILE.

0037 OPEN OUTPUT FILE1.

76

0038 BEGIN2.
0039 MOVE SPACE TO O-RECORD.

0040 MOVE 0001 TO XX-KEY.
0041 DISPLAY "ENTER RECORD NUMBER 0001".

0042 ACCEPT XX-KEY.

0043 IF XX-KEY IS NOT NUMERIC

0044 GO TO BEGIN2.

0045 IF XX-KEY = 9999

0046 GO TO EOJ.
0047 MOVE XX-KEY TO KEY-1.

0048 MOVE XX-KEY TO SEQ.
0049 DISPLAY "ENTER DATA FOR RECORD".

0050 ACCEPT REC1.

0051 WRITE O-RECORD

0052 INVALID KEY
0053 DISPLAY "INVALID KEY" GO TO BEGIN2.

0054 DISPLAY O-RECORD.

0055 GO TO BEGIN2.

0056 EOJ.

0057 CLOSE FILE1.

0058 DISPLAY "EOJ".

0059 STOP RUN.

0060 END PROGRAM T8WR.

Listing No. 8 — Read Random Fixed Length Records

0001 IDENTIFICATION DIVISION.

0002 PROGRAM-ID.

0003 T8RR.
0004* THIS PROGRAM WRITES RANDOM FIXED LENGTH

RECORDS

0005 ENVIRONMENT DIVISION.

0006 CONFIGURATION SECTION.

0007 SOURCE-COMPUTER.

0008 COMMODORE-64.

0009 OBJECT-COMPUTER.

0010 COMMODORE-64.

0011 INPUT-OUTPUT SECTION.

0012 FILE-CONTROL

0013 SELECT FILE1 ASSIGN TO DISK

0014 ORGANIZATION IS

0015 RELATIVE

0016 ACCESS MODE IS RANDOM

0017 RELATIVE KEY IS KEY-1.

77

0018 DATA DIVISION.

0019 FILE SECTION.

0020 FD FILE1

0021 LABEL RECORDS ARE STANDARD

0022 VALUE OF FILE-ID IS IN-FILE

0023 DATA RECORDS ARE I-RECORD.
0024 01 I-RECORD.

0025 02 PART-NUMBER PIC 9999.

0026 02 ITEM-DESCRIPTION PIC IS X(160).
0027 WORKING-STORAGE SECTION.
0028 01 IN-FILE PIC X(14)

0029 VALUE "A:TESTF.WRK".
0030 01 KEY-1 PIC 9(7) COMP-3.

0031 01 XX-KEY PIC 9(4).

0032 PROCEDURE DIVISION.
0033 BEGIN.

0034 DISPLAY "ENTER INPUT FILE NAME".

0035 DISPLAY IN-FILE WITH NO ADVANCING.
0036 ACCEPT IN-FILE.

0037 OPEN INPUT FILE1.

0038 DISPLAY "OPEN".

0039 BEGIN2.

0040 MOVE SPACE TO I-RECORD.

0041 MOVE 0001 TO XX-KEY.

0042 DISPLAY "ENTER RECORD NUMBER 0001"
0043 ACCEPT XX-KEY.

0044 IF XX-KEY IS NOT NUMERIC

0045 GO TO BEGIN2.

0046 IF XX-KEY = 9999

0047 GO TO EOJ.

0048 MOVE XX-KEY TO KEY-1.

0049 READ FILE1

0050 INVALID KEY

0051 DISPLAY "INVALID KEY" GO TO BEGIN2.

0051 * don't display on invalid key as data is unspecified.

0052 DISPLAY I-RECORD.

0053 GO TO BEGIN2.

0054 EOJ.

0055 CLOSE FILE1.

0056 DISPLAY "EOJ".

0057 STOP RUN.

0058 END PROGRAM T8RR.

78

Listing No. 9 — Read and Rewrite Fixed Length Records in

Random Mode

0001 IDENTIFICATION DIVISION.

0002 PROGRAM-ID.

0003 T8IOR.
0004* THIS PROGRAM READS THEN REWRITES FIXED

LENGTH RECORDS

0005* IN RANDOM MODE.
0006 ENVIRONMENT DIVISION.

0007 CONFIGURATION SECTION.

0008 SOURCE-COMPUTER.

0009 COMMODORE-64.

0010 OBJECT-COMPUTER.

0011 COMMODORE-64.

0012 INPUT-OUTPUT SECTION.

0013 FILE-CONTROL

0014 SELECT FILE1 ASSIGN TO DISK

0015 ORGANIZATION IS

0016 RELATIVE

0017 ACCESS MODE IS RANDOM

0018 RELATIVE KEY IS KEY-1.

0019 DATA DIVISION.

0020 FILE SECTION.

0021 FD FILE1

0022 LABEL RECORDS ARE STANDARD

0023 VALUE OF FILE-ID IS I-O-FILE

0024 BLOCK CONTAINS 1 RECORD

0025 DATA RECORDS ARE A-RECORD.

0026 01 A-RECORD.

0027 02 SEQ PIC 9999.

0028 02 REC1 PIC IS X(160).

0029 WORKING-STORAGE SECTION.

0030 01 I-O-FILE PIC X(14)

0031 VALUE "A:TESTF.WRK".

0032 01 KEY-1 PIC 9(7) COMP-3.

0033 01 XX-KEY PIC 9(4)

0034 VALUE 1.

0035 PROCEDURE DIVISION.

79

0036 BEGIN.

0037 DISPLAY "ENTER 1-0 FILE NAME"
0038 DISPLAY I-O-FILE WITH NO ADVANCING
0039 ACCEPT I-O-FILE
0040 OPEN 1-0 FILE1.
0041 BEGIN2.

0042 MOVE SPACE TO A-RECORD
0043 MOVE 1 TO XX-KEY

0044 DISPLAY "ENTER RECORD NUMBER 0001
0045 ACCEPT XX-KEY.
0046 IF XX-KEY IS NOT NUMERIC
0047 GO TO BEGIN2.
0048 IF XX-KEY = 9999
0049 GO TO EOJ.

0050 MOVE XX-KEY TO KEY-1
0051 READ FILE1

0052 INVALID KEY

0053 DISPLAY "READ INVALID KEY" GO TO
0054 DISPLAY A-RECORD.
0055 DISPLAY "ENTER NEW DATA"
0056 ACCEPT REC1.
0057 REWRITE A-RECORD
0058 INVALID KEY

0059 DISPLAY "REWRITE INVALID KEY"
0060 DISPLAY A-RECORD
0061 GO TO BEGIN2.
0062 EOJ.

0063 CLOSE FILE1.
0064 DISPLAY "EOJ".
0065 STOP RUN.

0066 END PROGRAM T8IOR.

80

Listing No. 10 — Examples of Calling and Called Programs

0001 IDENTIFICATION DIVISION.

0002 PROGRAM-ID.

0004* THIS PROGRAM CALLS PROGRAM T20A WHICH IN
0005* TURN CALLS PROGRAM T20B.
0006 ENVIRONMENT DIVISION.
0007 CONFIGURATION SECTION.

0008 SOURCE-COMPUTER.

0009 COMMODORE-64.

0010 OBJECT-COMPUTER.
The following memory statement is necessary for memory
mapping as it marks the upper boundary address (16383).
The data from this program loads from the bottom-up and
from the top-down. Free space, if any, is somewhere
between the top address and the starting address.

0011 8080-CPU MEMORY SIZE 16383 CHARACTERS.

0012 DATA DIVISION.
0013 WORKING-STORAGE SECTION.

0014 01 M1.

0015 02 M1-2.

0016 03 M1-3 PIC XXX.

0017 02 M1-4 PIC 99.
0018 02 M1-5 PIC 99V99 COMP VALUE 11.11.
0019 02 M1-6 PIC 999999V99 COMP-3 VALUE 012345.78.

0020 02 M1-7 PIC $99,999.99
0021 01 M2 PIC S9V9999 VALUE 0.6143.
0022 01 M3 PIC X(10) VALUE "A:T20A".

0023 01 M4 PIC X(120).
0024 01 M5 PIC X(20) JUSTIFIED.

0025 PROCEDURE DIVISION.

0026 BEGIN.

0027 DISPLAY "START T20".

0028 MOVE ALL "A" TO M4.
0029 CALL "T20A" USING M1, M2, M3, M4, M5.

0030 DISPLAY "EOJ-T20".

0031 STOP RUN.

0032 END PROGRAM T20.

81

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.
0003 T20A.

0004* THIS PROGRAM IS CALLED BY T20 AND IN
0005* TURN CALLS PROGRAM T20B.
0006 ENVIRONMENT DIVISION.
0007 CONFIGURATION SECTION.
0008 SOURCE-COMPUTER.
0009 COMMODORE-64.
0010^ OBJECT-COMPUTER.

The following memory statement is necessary. It must be
at least 1 byte higher than the previous programs ending

* address (16383 +1 = 16384) in this example.
0011 8080-CPU MEMORY BEGINNING 16384 ENDING 20000
0012 DATA DIVISION.

0013 WORKING-STORAGE SECTION
0014 01 L3 PIC X(10) VALUE "A:T20A".
0015 LINKAGE SECTION.
0016 01 M1.

0017 02 M1-2.

0018 03 M1-3 PIC XXX.
0019 02 M1-4 PIC 99.

0020 02 M1 -5 PIC 99V99 COM P.
0021 02 M1-6 PIC 999999V99 COMP-3
0022 02 M1-7 PIC $99,999.99
0023 01 M2 PIC S9V9999.
0024 77 M3 PIC X(10).

0025 77 M4 PIC X(120).

0026 77 M5 PIC X(20) JUSTIFIED.
0027 PROCEDURE DIVISION.

0028* no period after the word division when using usinq
0029 USING M1, M2, M3, M4, M5.
0030 BEGIN.

0031 DISPLAY "THIS IS T20A".
0032 DISPLAY M3.

0033 DISPLAY M4.

0034 CALL "T2OB" USING L3.
0035 CANCEL "T20B".
0036 EOJ1.

0036 EXIT PROGRAM.
0037 EOJ.

0038 STOP RUN.

0039 END PROGRAM T20A.

82

0001 IDENTIFICATION DIVISION.

0002 PROGRAM-ID.

0004* THIS PROGRAM IS CALLED BY T20A AND EXITS BACK
0005* TO IT. NOTE HOW THE MEMORY IS ALLOCATED.
0006 ENVIRONMENT DIVISION.
0007 CONFIGURATION SECTION.

0008 SOURCE-COMPUTER.

0009 COMMODORE-64.

0010 OBJECT-COMPUTER.
* The following memory statement is necessary to control

* the memory mapping of this third program module. It
* starts at address 20001 just one byte higher than the
* previous programs ending address.

0011 8080-CPU MEMORY BEGINNING 20001 ENDING 24000.

0012 DATA DIVISION.

0013 FILE SECTION.
0014 WORKING-STORAGE SECTION.

0015 01 L1 PIC X(10) VALUE SPACE.

0016 LINKAGE SECTION.

0017 01 L3 PIC X(10).
0018 PROCEDURE DIVISION

0019 USING L3.

0020 BEGIN.
0021 DISPLAY "THIS IS T20-B".

0022 DISPLAY L3.

0023 E0J1.
0024 EXIT PROGRAM.

0025 EOJ.

0026 STOP RUN.
0027 END PROGRAM T20B.

83

Listing No. 11 — Chain to Execute the Next Program Using
CP/M's Submit

0001 IDENTIFICATION DIVISION.
0002 PROGRAM-ID.

0003 TSUBMIT.

0004* THIS PROGRAM CHAINS TO EXECUTE THE NEXT
0005* PROGRAM USING CP/M's SUBMIT WHEN THE NEXT

PROGRAM IS NOT TYPE (.OBJ)

0006 ENVIRONMENT DIVISION.
0007 CONFIGURATION SECTION.

0008 SOURCE-COMPUTER.

0009 COMMODORE-64.
0010 OBJECT-COMPUTER.

0011 COMMODORE-64.

0012 INPUT-OUTPUT SECTION.
0013 FILE-CONTROL

0014 SELECT FILE1 ASSIGN TO DISK

0015 RECORD DELIMITER IS STANDARD.
0016 DATA DIVISION.

0017 FILE SECTION.

0018 FD FILE1

0019 LABEL RECORDS ARE STANDARD
0020 VALUE OF FILE-ID IS "A:$$$.SUB"
0021 DATA RECORDS ARE NEXT-PROGRAM
0022 01 NEXT-PROGRAM PIC X(16).
0023 WORKING-STORAGE SECTION.
0024 01 W-NEXT-PROGRAM.

0025 02 NAME-SIZE PIC X VALUE " "07" "
0026 02 NAME PIC X (7) VALUE "ED TEXT".
0027 02 STOPPER PIC 99 COMP VALUE ZERO
0028 PROCEDURE DIVISION.
0029 BEGIN.

0030 OPEN OUTPUT FILE1.

0031 MOVE W-NEXT-PROGRAM TO NEXT-PROGRAM
0032 WRITE NEXT-PROGRAM.
0033 CLOSE FILE1.
0034 STOP RUN.

0035 END PROGRAM TSUBMIT.

84

Listing No. 12 — Call an Assembly Language Program used to

Transfer Files from CP/M to PTDOS.

0001 IDENTIFICATION DIVISION.

0002 PROGRAM-ID. TRANSFER.
* This program calls an assembly language program call
* "trans". It is used to transfer files from CP/M to PTDOS a
* unix like operating system.

0003 ENVIRONMENT DIVISION.

0004 CONFIGURATION SECTION.

0005 SOURCE-COMPUTER. COMMODORE-64.

0006 OBJECT-COMPUTER. COMMODORE-64.

* the following is the actual ending address for this
* program, the assembly language program is orged just

* after it.

0007 MEMORY SIZE 16383 CHARACTERS.

0008 INPUT-OUTPUT SECTION.

0009 FILE-CONTROL

0010 SELECT FILE1 ASSIGN TO INPUT DISK
0011 ORGANIZATION IS SEQUENTIAL.

0012 ACCESS MODE IS SEQUENTIAL.

0013 DATA DIVISION.

0014 FILE SECTION.

0015 FD FILE1
0016 LABEL RECORDS ARE STANDARD

0017 VALUE OF FILE-ID IS IN-FILE-NAME

0018 BLOCK CONTAINS 1 RECORD

0019 DATA RECORDS ARE TESTA.

0020 01 TESTA.

0021 02 REC1 PICTURE IS X(256).

0022 WORKING-STORAGE SECTION.

0023 01 ANSWER PIC X VALUE "Y".
0024 01 IN-FILE-NAME PIC X(14) VALUE "A:TXX.CBL

0025 01 OUT-FILE-NAME PIC X(10) VALUE "TXX/1

0026 01 TRANSFER-TYPE PIC 9 VALUE 1.

0027 01 TRANSFER-FUNCTION PIC X VALUE "1".
0028 01 TRANSFER-ERROR PIC XX VALUE "00".

0029 PROCEDURE DIVISION.

0030 BEGIN.
0031 DISPLAY "ENTER INPUT CP/M FILE NAME "IN-FILE-

NAME.

85

0032 ACCEPT IN-FILE-NAME.
0033 OPEN INPUT FILE1.

0034 DISPLAY "ENTER OUTPUT PTDOS FILE NAME"
OUT-FILE-NAME.

0035 ACCEPT OUT-FILE-NAME.
0036 DISPLAY "ENTER FILE TRANSFER TYPE".
0037 DISPLAY "1 = FIXED 2 = CRLF-CR (Va)?"
0038 ACCEPT TRANSFER-TYPE.
0039 MOVE 1 TO TRANSFER-FUNCTION
0040 CALL "TRANS" USING OUT-FILE-NAME
0041 TRANSFER-TYPE TRANSFER-FUNCTION TRANSFER-

ERROR

0042 TESTA.

0043 IF TRANSFER-ERROR NOT EQUAL "00"
0044 DISPLAY "PTDOS OPEN ERROR" TRANSFER-ERROR
0045 STOP RUN.

0046 BEGIN2.

0047 MOVE SPACE TO TESTA.

0048 READ FILE1 AT END GO TO EOJ

0049 MOVE 3 TO TRANSFER-FUNCTION
0050 CALL "TRANS" USING OUT-FILE-NAME
0051 TRANSFER-TYPE TRANSFER-FUNCTION TRANSFER-

ERROR

0052 TESTA.

0053 IF TRANSFER-ERROR = "00" GO TO BEGIN2
0054 DISPLAY "PTDOS WRITE ERROR".
0055 STOP RUN.

0056 EOJ.

0057 CLOSE FILE1.

0058 MOVE 2 TO TRANSFER-FUNCTION.
0059 CALL "TRANS" USING OUT-FILE-NAME

0060 TRANSFER-TYPE TRANSFER-FUNCTION TRANSFER-
ERROR

0061 TESTA.

0062 DISPLAY "ANOTHER FILE (Y/N)?"
0063 ACCEPT ANSWER.

0064 IF ANSWER = "Y" GO TO BEGIN.
0065 STOP RUN.

0066 END PROGRAM TRANSFER.

86

0001

0002

0003

0004

0005

0007

0008

0009

0010

0011

THIS PROGRAM IS "TRANS"
IT IS AN ASSEMBLY LANGUAGE PROGRAM THAT IS
CALLED BY THE PRIOR COBOL PROGRAM NAMED
TRANSFER. IT TRANSFERS CP/M FILES TO PTDOS A

UNIX LIKE OPERATING SYSTEM.
IT IS AN EXAMPLE OF AN ASSEMBLY LANGUAGE

CALLED PROGRAM

after this program is assembled, the .HEX file must
be converted to an .OBJ file, use the program

called CONVHEX to do the conversion.

RELOC EQU O ;4200H FOR TRS-80

SET UP AS FOLLOWS

BO LOAD PTDOS

W11 , *S GO TO SOLOS
0012 ; BO LOAD CP/M FROM LIFEBOAT 32K

0013
0014 'COPYPTDEFS ;THIS FILE CONTAINS THE PTDOS

DEFINITIONS

0015 ORG 16384+RELOC
0016 XEQ START ;necessary for ptdos assembler
0017 START EQU $;ENTRY FROM COBOL PROGRAM
0018 SHLD SAV1 ;OUT-FILE-NAME

0019 LXI H,0

0020 DAD SP

0021 SHLD SAVSP
0022 LXISP.STACK ;SET UP THE STACK

0023 CALL GETP
0024 LHLD SAV3 ;TRANSFER-FUNCTION

0025 MOV A,M ;GET CODE

0026 CPI '1' ;OPEN?

0027 JZ OPEN

0028 CPI '2' ;CLOSE?

0029 JZ CLOSE

0030 CPI '3' ;WRITE?

0031 JZ WRITE
0032 ; ERROR TRANSFER FUNCTION NOT 1, 2, 3

0033 ERRT LXI D.3232H ;22

0034 EXIT EQU $
0035 LHLD SAV4 .TRANSFER-ERROR

0036 MOV M,D

0037 DCX H

0038 MOV M,E

0039 LHLD SAVSP

0040 SPHL

0041 RET

0042 GETP EQU $

87

XCHG

SHLD SAV2 ;TRANSFER-TYPE
PUSH B

POP H ;POINTS TO TABLE TO ADDRESS LEFT END
MOV E,M

INXH

MOVE D,M

XCHG

SHLD SAV3 ;TRANSFER-FUNCTION
XCHG

INXH

MOV E,M

INXH

MOV D,M

XCHG

SHLD SAV4 ;TRANSFER-ERROR
XCHG

INXH

MOV E,M

INXH

MOV D,M

LXI H,255

MOV A,E

SUBL

MOV L,A

MOV A,D

SBBH

MOV H,A

SHLDSAV5
RET

OPEN EQU $

LHLD SAV1 ;OUT-FILE-NAME
LXI D.ONAME + 9
MVI, C,1D

OP1 EQU $

MOV A,M

STAXD

DCXH

DCXD

DCRC

JNZOP1

; the next 9 lines is a ptdos open function

MVI A.40H ;OPEN CREATE IF NECESSARY
LXI D.OBUFF

LXI H.ONAME

;LEFT END OF RECORD TO BE OUTPUT

RIGHT END

88

0088 CALL PSCAN

0089 JC ERROR

0090 JZ ERROR
0091 MOVA.E ;FILE NUMBER

0092 CPI 255 ; -1 for cpm

0093 JZ ERROR
0094 STA OFILENUMBER ;ptdos uses file numbers
0095 LXI D.3030H ;GOOD EXIT for the cobol program

0096 JMP EXIT

0097 ERROR EQU $

0098 MOV D,E

0099 MVI E,'9'

0100 JMP EXIT
0101 CLOSE EQU $;ptdos close function follows

0102 LDA OFILENUMBER

0103 CALL SYS
0104 DB EOFOP ;END FILE

0105 JMP ERROR
0106 LDA OFILENUMBER

0107 CALL SYS

0108 DB CLOOP
0109 JMP$;NO ERRORS RETURNED ON CLOSE

0110 LXI D.3030H ;good close message for the cobol program

0111 JMP EXIT

0112 WRITE EQU $
0113 LHLDSAV2 ;TRANSFER-TYPE

0120 MOV A,M
0121 CPI'2' ;DROPTHELF'S

0122 JZWT2

0123 CPI '1'
0124 JNZERRT ;ERROR TRANSFER-TYPE CODE

0125 LHLD SAV5 ; LEFT-END

0126 XCHG

0127 LXIB.256
0128 WT1 EQU$;ptdos writer function follows

0129 LDA OFILENUMBER

0130 CALL SYS
0131 DBWBLOP ;WRITE BLOCK

0132 JMP ERROR
0133 LXI D.3030H ;GOOD WRITE for cobol program

0134 JMP EXIT
0135 WT2EQU$;DROPTHELF'S

0136 LHLD SAV5

0137 LXI D.BUFF2

0138 LXI B.256

0139 WT2A EQU $

89

0140 MOV A,M

0141 CPIOAH ;LF
0142 JZ WT2B

0143 CPI 1AH ;CP/M's EOF FOR ASCII FILES
0144 JZ WT2C

0145 STAX D

0146 INX D

0147 WT2B EQU $
0148 INX H

0149 DCX B

0150 MOV A,C
0151 ORA B

0152 JNZWT2A

0153 WT2C EQU $
0154 LXI H, BUFF2
0155 MOV A,E
0056 SUB L

0157 MOV E,A

0158 MOV A,D

0159 SUBB H

0160 MOV D,A

0161 PUSH D

0162 POPB ;SIZE OF THIS WRITE FOR PTDOS
0163 XCHG

0164 JMPWT1

0165 SAV1DW0 ;OUT-FILE-NAME
0166 SAV2DW0 ;TRANSFER-TYPE
0167 SAV3DW0 ;TRANSFER-FUNCTION
0168 SAV4DW0 ;TRANSFER-ERROR
0169 SAV5 DW 0 .OUTPUT RECORD
0170 SAVSPDW0 ;STACK POINTER
0171 ; all that follows is for ptdos
0172 DB7 + 80H

0173 DW04COH
0174 DB0

0175 OBUFFDS20
0176 DS 20

0177 STACK DW0
0178 ONAME DS 10

0179 DB0

0180 OFILENUMBER DB 0
0181 BUFF2 DS 256

0182 LASTDB0

0183 END START ;necessary for cpm assembler

90

APPENDIX II GLOSSARY

Abbreviated Combined Relation Condition

The combined condition that results from the explicit omission of
a common subject or a common subject and common relational
operator in a consecutive sequence of relation conditions.

Access Mode ...
The manner in which records are to be operated upon within a file.

Actual Decimal Point _,.,.*
The physical representation, using either of the decimal point
characters period (.) or comma (,), of the decimal point position in

a data item.

Alphabetic Character

A character that belongs to the following set of letters: A, B, C, D,

E, F, G, H, I, J, K, L, M, N, O, P, Q, Ft, S, T, U, V, W, X, Y, Z, and the

space.

Alphanumeric Character

Any character in the computer's character set.

Alternate Record Key
A key, other than the prime record key, whose contents identify a

record within an indexed file.

Arithmetic Expression
An arithmetic expression can be an identifier, a numeric
elementary item, or a numeric literal. Such identifiers and literals
are separated by arithmetic operators or two arithmetic
expressions are separated by an arithmetic operator, or an

arithmetic expression is enclosed in parentheses.

Arithmetic Operator

A single character, or a fixed two-character combination, that

belongs to the following set:

Character Meaning

+ addition

- subtraction

multiplication

/ division

** exponentiation

Ascending Key
A key upon the values of which data is ordered starting with the

lowest value of key up to the highest value of key in accordance

with the rules for comparing data items.

91

Assumed Decimal Point

A decimal point position which does not involve the existence of
an actual character in a data item. The assumed decimal point has
logical meaning but no physical representation.

At End Condition

1. During the execution of a READ statement for a sequentially
accessed file. y

2. During the execution of a RETURN statement, when no next
logical record exists for the associated sort or merge file

Block

A physical unit of data that is normally composed of one or more
logical records. For mass storage files, a block may contain a
portion of a logical record. The size of a block has no direct
relationship to the size of the file within which the block is
contained or to the size of the logical record(s) that are either
continued within the block or that overlap the block. The term is
synonymous with physical record.

Called Program

A program which is the object of a CALL statement.

Calling Program

A program which executes a CALL to another program.

Character

A basic indivisible unit of the language.

Character Position

A character position is the amount of physical storage required to
store a single standard data format character described as usaqe
is DISPLAY.

Character-string

A sequence of contiguous characters which form a COBOL word,
a literal, a PICTURE character-string, or a comment-entry.

Class condition

The proposition, for which a truth value can be determined, that
the content of an item is wholly alphabetic or is wholly numeric.

Clause

A clause is an ordered set of consecutive COBOL character-
strings whose purpose is to specify an attribute of an entry.

92

COBOL Character Set

The complete COBOL character set consists of the 51 characters

listed below:

Character Meaning

0,1,....9 digit

A,B,....Z letter
space (blank)

+ plus sign

minus sign (hypen)

asterisk

/ slash

= equal sign

$ currency sign

comma

• semicolon

period (decimal point)

" quotation mark

(left parenthesis

) right parenthesis

> greater than symbol

^ less than symbol

COBOL Word

(See Word)

Collating Sequence .

The sequence in which the characters that are acceptable in a
computer are ordered for purposes of sorting, merging, and

comparing.

Column

A character position within a print line. The columns are
numbered from 1, by 1, starting at the leftmost character position
of the print line and extending to the rightmost position of the

print line.

Combined Condition

A condition that is the result of connecting two or more

conditions with the 'AND' or the 'OR' logical operator.

Comment-Entry

An entry in the Identification Division that may be any

combination of characters from the COBOL character set.

93

Comment Line

A source program line represented by an asterisk in the indicator
area of the line and any character from the computer's character
set in area A and area B of that line. The comment line serves only
for documentation in a program. A special form of comment line
represented by a slash (I) in the indicator area of the line and any
characters from the computer's character set in area A and area B
of that line causes page ejection prior to printing the comment.

Compile time

The time at which a COBOL source program is translated, by a
COBOL compiler, to a COBOL object program.

Compiler Directing Statement

A statement, beginning with a compiler directing verb, that causes
the compiler to take specific action during compilation.

Computer-Name

A system-name that identifies the computer upon which the
program is to be compiled or run.

Condition

A status of a program at execution time for which a truth value
can be determined. Where the term 'condition' (condition-1,
condition-2,...) appears in these language specifications in or in
reference to 'condition' (condition-1, condition-2,...) of a general
format, it is a conditional expression consisting of either a simple
condition or a combined condition consisting of the syntactically
correct combination of simple conditions, logical operators and
parentheses, for which a truth value can be determined.

Condition-Name

A user-defined word assigned to a specific value, set of values, or
range of values, within the complete set of values that a
conditional variable may possess.

Condition-Name Condition

The proposition, for which truth value can be determined, that the
value of a conditional variable is a member of the set of values
attributed to a condition-name associated with the conditional
variable.

Conditional Expression

A simple condition or a complex condition specified in an IF, or
PERFORM statement.

94

Conditional Statement

A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of
the object program is dependent on this truth value.

Conditional Variable
A data item one or more values of which has a condition-name

assigned to it.

Configuration Section
A section of the Environment Division that describes overall

specifications of source and object computers.

Connective

A reserved word that is used to:

1. Associate a data-name, paragraph-name, condition-name, or

text-name with its qualifier.

2. Link two or more operands written in a series.

3. Form conditions.

Contiguous Item
Items that are described by consecutive entries in the Data
Division, and that bear a definite hierarchic relationship to each

other.

Counter

A data item used for storing numbers or number representations

in a manner that permits these numbers to be increased or
decreased by the value of another number, or to be changed or
reset to zero or to an arbitrary positive or negative value.

Currency Sign
A character '$' of the COBOL character set.

Currency Symbol
The character defined by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is

present in a COBOL source program, the currency symbol is

identical to the currency sign.

Current Record

The record which is available in the record area associated with

the file.

Current Record Pointer

A conceptual entity that is used in the selection of the next

record.

Data Clause

A clause that appears in a data description entry in the Data

Division and provides information describing a particular attribute

of a data item.

95

Data Description Entry

An entry in the Data Division that is composed of a level-number
followed by a data-name, if required, and then followed by a set of
data clauses, as required.

Data Item

A character or a set of contiguous characters (excluding in either
case literals) defined as a unit of data by the COBOL program.

Data-Name

A user-defined word that names a data item described in a data
description entry in Data Division. When used in the general
formats, 'data-name' represents a word which can neither be
subscripted, nor indexed unless specifically permitted by the rules
for that format.

Debugging Line

A debugging line is any line with 'D' in the indicator area of the
line.

Declaratives

A set of one or more special purpose sections, written at the
beginning of the Procedure Division, the first of which is preceded
by the key word DECLARATIVES and the last of which is followed
by the key words END DECLARATIVES. A declarative is composed
of a section header, followed by a USE compiler directing
sentence, followed by a set of zeros, and one or more associated
paragraphs.

Declarative-Sentence

A compiler-directing sentence consisting of a single USE
statement terminated by the separator period.

Delimiter

A character or a sequence of contiguous characters that identify
the end of a string of characters and separates that string of

characters from the following string of characters. A delimiter is
not part of the string of characters that it delimits.

Descending Key

A key of values upon which data is ordered starting with the

highest value of key down to the lowest value of key, in

accordance with the rules for comparing data items.

Digit Position

A digit position is the amount of physical storage required to store

a single digit. This amount may vary depending on the usage of

the data item describing the digit position.

96

Division L M . .
A set of zero, one or more sections of paragraphs, called the
division body, that are formed and combined in accordance with a
specific set of rules. There are four (4) divisions in a COBOL
program: Identification, Environment, Data, and Procedure.

Division Header
A combination of words followed by a period and a space that
indicates that beginning of a division. The division headers are:

IDENTIFICATION DIVSION.

ENVIRONMENT DIVISION.

DATA DIVISION.
PROCEDURE DIVISION [USING data-name-1...].

Dynamic Access l ^ . .
An access mode in which specific logical records can be obtained
from or placed into a mass storage file in a non-sequential manner
(see Random Access) and obtained from a file in a sequential
manner (see Sequential Access), during the scope of the same

OPEN statement.

Editing Character

A single character or a fixed two-character combination belonging

to the following set:

Character

B

0

+

—

CR

DB

Z
*

$

j

/

Meaning

space

zero

plus

minus

credit

debit

zero suppress

check protect

currency sign

comma

period (decimal point)

slash

Elementary Item

A data item that is described as not being further logically

subdivided.

End of Procedure Division

The physical position in a COBOL source program after which no

further procedures appear.

Entry

Any descriptive set of consecutive clauses terminated by a period

and written in the Identification Division, Environment Division, or

Data Division of a COBOL source program.

97

Environment Clause

A clause that appears as part of an Environment Division entry.

Execution Time

(See Object Time).

Extended Mode

The state of a file after execution of an OPEN statement, with the

EXTEND phrase specified, for that file and before the execution of
a CLOSE statement for that file.

Figurative Constant

A compiler generated value referenced through the use of certain
reserved words:

• ZERO, ZEROS, or ZEROES represent one or more occurrences
of the character zero (0).

• SPACE or SPACES represent one or more occurrences of the
character space (blank).

• QUOTE or QUOTES represent one or more occurrences of the
character quote (").

• HIGH-VALUE or HIGH-VALUES represent one or more

occurrences of the character FF Hexadecimal.

• LOW-VALUE or LOW-VALUES represent one or more
occurrences of the character 00 Hexadecimal.

• ALL "literals" represent one or more occurrences of the single

non-numeric literal character.

EXAMPLE:

0001 MOVE ALL "X" TO CUSTOMER-NAME.

0002 IF CUSTOMER-NAME IS EQUAL TO ALL "X"

0003 GO TO PRT-ALIGNMENT.

0004 MOVE HIGH-VALUE TO OUT-RECORD.

File

A collection of records.

File Clause

A clause that appears as part of a File description (FD).

FILE-CONTROL

The name of an Environment Division paragraph in which the data

files for a given source program are declared.

File Description Entry

An entry in the File Section of the Data Division that is composed

of the level indicator FD, followed by a file-name, and then

followed by a set of file clauses as required.

File-Name

A user-defined word that means a file described in a file

description entry or a sort-merge file description entry within the

File Section of the Data Division.

98

File Organization

The permanent logical file structure established at the time that a

file is created.

File Section
The section of the Data Division that contains file description

entries and sort-merge file description entries together with their

associated record descriptions.

Format

A specific arrangement of a set of data.

Group Item

A named contiguous set of elementary or group items.

High Order End

The leftmost character of a string of characters.

I-OCONTROL

The name of an Environment Division paragraph in which object

program requirements for specific input-output techniques, rerun

points, sharing of same areas by several data files, and multiple

file storage on a single input-output device are specified.

I-OMODE

The state of a file after execution of an OPEN statement, with the

1-0 phrase specified, for that file and before the execution of a

CLOSE statement for that file.

Identifier

A data-name, followed as required, by the syntactically correct

combination of qualifiers, subscripts, and indices necessary to

make unique reference to a data item.

Imperative Statement

A statement that begins with an imperative verb and specifies an

unconditional action to be taken. An imperative statement may

consist of a sequence of imperative statements.

Index

A computer storage position or register, the contents of which

represent the identification of a particular element in a table.

Index Data Item

A data item in which the value associated with an index-name can

be stored in a form specified by the implementor.

Index-Name

A user-defined word that names an index associated with a

specific table.

Indexed Data-Name

An identifier that is composed of a data-name, followed by one or

more index-names enclosed in parentheses.

99

Indexed File

A file with indexed organization.

Indexed Organization

The permanent logical file structure in which each record is

identified by the value of one or more keys within that record.

Input File

A file that is opened in the input mode.

Input Mode

The state of a file after execution of an OPEN statement, with the

INPUT phrase specified for that file, and before the execution of a

CLOSE statement for that file.

Input-Output File

A file that is opened in the 1-0 mode.

Input-Output Section

The section of the Environment Division that names the files and

the external media required by an object program which also

provides information required for transmission and handling of

data during execution of the object program.

Integer

A numeric literal or a numeric data item that does not include any

character positions to the right of the assumed decimal point.

Where the term Integer' appears in general formats, integer must

not be a numeric data item, and must not be signed or zero,

unless explicitly allowed by the rules of that format.

Invalid Key Condition

A condition, at object time, caused when a specific value of the

key associated with an indexed or relative file is determined to be

invalid.

Key

A data item which identifies the location of a record, or a set of

data items which serve to identify the ordering of data.

Key of Reference

The key, either prime or alternate, currently being used to access

records within an indexed file.

Key Word

A reserved word whose presence is required when the format in

which the word appears is used in a source program.

Language-Name

A system-name that specifies a particular programming language.

Level Indicator

Two alphabetic characters that identify a specific type of file or a

position in hierarchy.

100

Level-Number

A user-defined word which indicates the position of a data item in

the hierarchical structure of a logical record or which indicates

special properties of a data description entry. A level-number is

expressed as a one or two digit number. Level-numbers in the

range 1 through 49 indicate the position of a data item in the

hierarchical structure of a logical record. Level-numbers in the

range 1 through 9 may be written either as a single digit or as a

zero followed by a significant digit. Level-numbers 66, 77 and 88

identify special properties of a data description entry.

Library-Name

A user-defined word that names a COBOL library that is to be

used by the compiler for a given source program compilation.

Library Text

A sequence of character-strings and/or separators in a COBOL

library.

Line Number

An integer that denotes the vertical position of a line on a page.

Linkage Section

The section in the Data Division of the called program that

describes data items available from the calling program. These

data items may be referred to by both the calling and called

program.

Literal

A character-string whose value is implied by the ordered set of

characters comprising the string.

Logical Operator

One of the reserved words AND, OR or NOT. In the formation of a

condition, both or either of AND and OR can be used as logical

connectives. NOT can be used for logical negation.

Logical Record

The most inclusive data item. The level-number for a record is 01.

Low Order End

The rightmost character of a string of characters.

Mass Storage

A storage medium on which data may be organized and

maintained in both a sequential and nonsequential manner.

Mass Storage File

A collection of records that is assigned to a mass storage

medium.

Mnemonic-Name

A user-defined word that is associated in the Environment Division

with a specified implementor-name.

101

Native Character Set

The implementor-defined character set associated with the

computer specified in the OBJECT-COMPUTER paragraph.

Native Collating Sequence

The implementor-defined collating sequence associated with the

computer specified in the OBJECT-COMPUTER paragraph.

Negated Simple Condition

The 'NOT' logical operator immediately followed by a simple

condition.

Next Executable Sentence

The next sentence to which control will be transferred after

execution of the current statement is complete.

Next Executable Statement

The next statement to which control will be transferred after

execution of the current statement is complete.

Next Record

The record which logically follows the current record of a file.

Noncontiguous Items

Elementary data items, in the Working-Storage and Linkage

Section, which bear no hierarchic relationship to other data items.

Nonnumeric Item

A data item whose description permits its contents to be

composed of any combination of characters taken from the

computer's character set. Certain categories of nonnumeric items

may be formed from more restricted character sets.

Nonnumeric Literal

A character-string bounded by quotation marks. The string from 1

to 120 characters may include any character in the computer's

character set. To represent a single quotation mark character

within a nonnumeric literal, two contiguous quotation marks must

be used. A second set of quotation marks (") can be used to

bound hexadecimal values. Each hexadecimal value can be

separated by a comma. Hexadecimal characters are from the set

0-9 and A-F.

EXAMPLE:

* note the following 2 lines would display ABC

0051 DISPLAY "ABC".

* the following is a hexadecimal literal for ABC

0050 GRAPHICS. DISPLAY " "41,42,43" ".

* the following line would display a single quotation

* mark because of the imbedded pair of quotation marks.

0052 DISPLAY " " " ".

0053 DISPLAY "LONG LINE CONTINUES TO NEXT LINE

0054- " QUOTE IN COL 10 & - IN COL 5 IS NECESSARY".

102

Numeric Character

A character that belongs to the following set of digits: 0,1, 2, 3, 4,

5, 6, 7, 8, 9.

Numeric Item

A data item whose description restricts its contents to a value

represented by characters chosen from the digits '0' through '9'; if

signed, the item may also contain a ' + ,'-', or other

representation of an operational sign.

Numeric Literal

A literal containing from 1 to 18 numeric characters that can also

have either a decimal point, or an algebraic sign, or both. The

decimal point must not be the rightmost character, nor can it be to

the immediate left of a minus sign. The algebraic sign, if present,

must be the leftmost character. A numeric literal cannot be

bounded by quotation marks.

EXAMPLE:

* numeric literals

0060 MATH. ADD 1 TO TOTAL-ITEMS.

0061 ADD 3.75 TO AMT-SAVED.

OBJECT-COMPUTER

The name of an Environment Division paragraph in which the

computer environment, within which the object program is

executed, is described.

Object of Entry

A set of operands and reserved words, within a Data Division

entry, that immediately follows the subject of the entry.

Object Program

A set or group of executable machine language instructions and

other material designed to interact with data to provide problem

solutions. In this context, an object program is generally the

machine language result of the operation of a COBOL compiler on

a source program. Where there is no danger of ambiguity, the

word 'program' alone may be used in place of the phrase 'object

program'.

Object Time

The time at which an object program is executed.

OCCURS Clause

When describing data which is repeated, the use of the OCCURS

clause eliminates the need for separate entries. Whenever the

data-name which is the subject of an OCCURS clause is used as
an operand, it must be subscripted.

103

IF SEAT-AVAIL-CODE (39) = "Y" ...

The example above indicates that reference is being made to seat
39 (the 39th occurrence of this entry). The (39) is the subscript.

Open Mode

The state of a file after execution of an OPEN statement for that

file and before the execution of a CLOSE statement for that file.
The particular open mode is specified in the OPEN statement as
either INPUT, OUTPUT, 1-0 or EXTEND.

Operand

Whereas the general definition of operand is 'that component

which is operated upon', for the purposes of this publication, any
lowercase word (words) that appears in a statement or entry

format may be considered to be an operand and, as such, is an
implied reference to the data indicated by the operand.

Operational Sign

An algebraic sign, associated with a numeric data item or a

numeric literal, to indicate whether its value is positive or
negative.

Optional Word

A reserved word that is included in a specific format only to

improve the readability of the language and whose presence is

optional to the user when the format in which the word appears is
used in a source program.

Output File

A file that is opened in either the output mode or extend mode.

Output Mode

The state of a file after execution of an OPEN statement, with the

OUTPUT or EXTEND phrase specified for that file and before the

execution of a CLOSE statement for that file.

Page

A vertical division of a report representing a physical separation of

report data, the separation being based on internal reporting

requirements and/or external characteristics of the reporting

medium.

Paragraph

In the Procedure Division, a paragraph-name followed by a period

and a space and by zero, one, or more sentences. In the

Identification and Environment Divisions, a paragraph header

followed by zero, one, or more entries.

104

Paragraph Header

A reserved word, followed by a period and a space that indicates

the beginning of a paragraph in the Indentification and

Environment Divisions. The permissible headers are:

In the Identification Division:

PROGRAM-ID.

AUTHOR.

INSTALLATION.

DATE-WRITTEN.

DATE-COMPILED.

SECURITY.

In the Environment Division:

SOURCE-COMPUTER.

OBJECT-COMPUTER.

SPECIAL-NAMES.

FILE-CONTROL

I-O-CONTROL

Paragraph Name

A user-defined word that identifies and begins a paragraph in the

Procedure Division.

Phrase

A phrase is an ordered set of one or more consecutive COBOL

character-strings that form a portion of a COBOL procedural

statement or of a COBOL clause.

Prime Record Key

A key whose contents uniquely identify a record within an indexed

file.

Procedure

A paragraph or group of logically successive paragraphs, or a

section or group of logically successive sections, within the

Procedure Division.

Procedure-Name

A user-defined word which is used to name a paragraph or section

in the Procedure Division. It consists of a paragraph-name or a

section-name.

Program-Name

A user-defined word that identifies a COBOL source program.

105

Punctuation Character

A character that belongs to the following set:

Character Meaning

comma

; semicolon

period (decimal point)

quotation mark

(left parenthesis

) right parenthesis

= equal sign

Random Access

An access mode in which the program-specified value of a key
data item identifies the logical record that is obtained from,

deleted from, or placed into a relative or indexed file.

Record

(See Logical Record).

Record Area

A storage area allocated for the purpose of processing the record

described in a record description entry in the File Section.

Record Description Entry

The total set of data description entries associated with a
particular record.

Record Key

A key, either the prime record key or an alternative record key,

whose contents identify a record within an indexed file.

Record-Name

A user-defined word that names a record described in a record

description entry in the Data Division.

REDEFINES Clause

This clause allows you to give a name to a field which crosses

from one elementary item into the next. In the FILE SECTION,

REDEFINES may not be used on the 01 level. To redefine an entire

record, you only need to name the new record in the DATA

RECORDS clause to implicitly redefine it. For correct format,

nothing should come between data-name-1 and the REDEFINES

clause.

Reference Format

A format that provides a standard method for describing COBOL

source programs.

106

Relation Character

A character that belongs to the following set:

Character Meaning

> greater than symbol

<^ less than symbol

= equal to

Relation Condition
The proposition, for which a truth value can be determined, that
the value of an arithmetic expression or data item has a specific
relationship to the value of another arithmetic expression or data

item.

Relational Operator

A reserved word, a relation character, or group of consecutive

reserved words, or a group of consecutive reserved words and
relation characters used in the construction of a relation
condition. The permissible operators and their meaning are:

Relational operator Meaning

IS [NOT] GREATER THAN

IS [NOT] > Greater than or not greater

IS [NOT] LESS THAN
IS [NOT] < Less than or not less than

IS [NOT] EQUAL TO

IS [NOT] = Equal to or not equal to

Relative File

A file with relative organization

Relative Key

A key whose contents identify a logical record in a relative file.

Relative Organization

The permanent logical file structure in which each record is

uniquely identified by an integer value greater than zero, which

specifies the record's logical ordinal position in the file.

Reserved Word

A COBOL word specified in the list of words which may be used

in COBOL source programs, but which must not appear in the

programs as user-defined words or system-names.

Routine-Name

A user-defined word that identifies a procedure written in a

language other than COBOL.

Section

A set of zero, one, or more paragraphs or entries, called a section

body, the first of which is preceded by a section header. Each

section consists of the section header and the related section

body.

107

Section Header

A combination of words followed by a period and a space that

indicates the beginning of a section in the Environment, Data and

Procedure Division.

In the Environment and Data Divisions, a section header is

composed of reserved words followed by a period and a space.

The permissible section headers are:

In the Environment Division:

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.

WORKING-STORAGE SECTION.

LINKAGE SECTION.

In the Procedure Division, the section header is composed of a

section-name, the reserved word SECTION, a segment-number

(optional), followed by a period and a space.

Section-Name

A user-defined word which names a section in the Procedure
Division.

Segment-Number

A user-defined word which classifies sections in the Procedure

Division for purposes of segmentation. Segment-numbers may

contain only characters '0', T,..., '9'. A segment-number may be

expressed as either a one or two digit number.

Sentence

A sequence of one or more statements, the last of which is

terminated by a period followed by a space.

Separator

A punctuation character used to delimit character-strings.

Sequential Access

An access mode in which logical records are obtained from or

placed into a file in a consecutive predecessor-to-successor

logical record sequence determined by the order of records in the

file.

Sequential File

A file with sequential organization.

Sequential Organization

The permanent logical file structure in which a record is identified

by a predecessor-successor relationship established when the

record is placed into the file.

108

Sign Condition

The proposition, for which a truth value can be determined, that

the algebraic value of a data item or an arithmetic expression is

either less than, greater than, or equal to zero.

Simple Condition

Any single condition chosen from the set:

relation condition

class condition

condition-name condition

sign condition

Source-Computer

The name of an Environment Division paragraph in which the

computer environment, within which the source program is

compiled, is described.

Source Program

Although it is recognized that a source program may be

represented by other forms and symbols, in this document, it

always refers to a syntactically correct set of COBOL statements

beginning with an Identification Division and ending with the end

of the Procedure Division. In contexts where there is no danger of

ambiguity, the word 'program' alone may be used in place of the

phrase 'source program'.

Special Character

A character that belongs to the following set:

Character Meaning

+ plus, sign

- minussign

asterisk

/ slash

= equal sign

$ currency sign

, comma

; semicolon

period (decimal point)

quotation mark

(left parenthesis

) right parenthesis

> greater than symbol

\ less than symbol

Special-Character Word

A reserved word which is an arithmetic operator or a relation

character.

109

Special-Names

The name of an Environment Division paragraph in which

implementor-names are related to user specified mnemonic-
names.

Special Registers

Compiler generated storage areas whose primary use is to store

information produced in conjunction with the user of specific

COBOL features.

Standard Data Format

The concept used in describing the characteristics of data in a

COBOL Data Division under which the characteristics or

properties of the data are expressed in a form oriented to the

appearance of the data on a printed page of infinite length and

breadth, rather than a form oriented to the manner in which the

data is stored internally in the computer, or on a particular external
medium.

Statement

A syntactically valid combination of words and symbols written in

the Procedure Division beginning with a verb.

Subject of Entry

An operand or reserved word that appears immediately following

the level indicator or the level-number in a Data Division entry.

Subprogram

(See Called Program).

Subscript

An integer whose value identifies a particular element in a table.

The subscript must be, or represent, an integer. The subscript may

be a literal or a data-name. If the subscript is a data-name, the

value stored in the data-name field must be an integer.

This value can cross record boundaries (4095) for large tables

(30K-40K +) in working-storage by having a series of tables and

referencing the first one with a subscript value which points to an

item in the second, third,... table. However, if the subscript value

is such that it crosses a record boundary and no table follows,

then there is no error indication and the results are unspecified.

110

EXAMPLE:

0001 WORKING-STORAGE.

0002 01 TABLE.

0003 02 FILLER PIC X(9) VALUE "JANUARY ".

0004 02 FILLER PIC X(9) VALUE "FEBRUARY ".

0005 02 FILLER PIC X(9) VALUE "MARCH

0006 02 FILLER PIC X(9) VALUE "APRIL

0007 02 FILLER PIC X(9) VALUE "MAY

0008 02 FILLER PIC X(9) VALUE "JUNE

0009 02 FILLER PIC X(9) VALUE "JULY

0010 02 FILLER PIC X(9) VALUE "AUGUST

0011 02 FILLER PIC X(9) VALUE "SEPTEMBER".

0012 02 FILLER PIC X(9) VALUE "OCTOBER ".

0013 02 FILLER PIC X(9) VALUE "NOVEMBER ".

0014 02 FILLER PIC X(9) VALUE "DECEMBER ".

0015 01 M-TBL REDEFINES TABLE.

0016 02 MONTH OCCURS 12 TIME PIC IS X(9).

0017 PROCEDURE DIVISION.

0018 DATA-PARA.

0019 MOVE MONTH (MONTH-NO) TO PRT-MONTH-NAME.

0020*

0021 * other examples.

0022*

1234 MOVE ITEM TO TABLE (7).

1235 MOVE TABLE (7) TO PRINT-ITEM-SEVEN.

1236 MOVE 007 TO INDEX-1.

1237 MOVE TABLE (INDEX-1) TO PRINT-ITEM-SEVEN.

1238 MOVE ZEROS TO TABLE (3000).

1239 MOVE SPACES TO PRINT-LINE.
************** important ***************************

1240* If both BIN-1 and X1 are binary data types, then at RUN

1240* time the math is 20 times faster than decimal.

1241 ADD BIN-1 TO X1.

1242 IF ITEM (X1) IS EQUAL TO SPEED GO TO FAST.

1243 MOVE ALL "A" TO PRINT-LINE.

Subscripted Data-Name

An identifier that is composed of a data-name followed by one or

more subscripts enclosed in parentheses. Here are the rules for

parentheses:

• An opening parenthesis must be preceded by a space and a

closing parenthesis must be followed by a space.

• No spaces are allowed within a set of parentheses.

System-Name

A COBOL word which is used to communicate with the operating

environment.

111

Table

A set of logically consecutive items of data that are defined in the

Data Division by means of the OCCURS clause.

Table Element

A data item that belongs to the set of repeated items comprising a

table.

Text-Name

A user-defined word which identifies library text.

Text-Word

Any character-string or separator, except space, in a COBOL

library.

Truth Value

True or False represents'the result of an evaluated condition.

Unary Operator

A plus (+)ora minus (-) sign, which precedes a variable or a left

parenthesis in an arithmetic expression and which has the effect

of multiplying the expression of +1 or -1 respectively.

User-Defined Words

A COBOL word that must be supplied by the user to satisfy the

format of a clause or statement. A word contains not more than 30

characters from the set A-Z, 0-9, and -. A user-defined word

cannot begin or end with a hyphen (-) and must contain at least

one alphabetic character.

Variable

A data item whose value may be changed by execution of the

object program. A variable used in an arithmetic expression must

be a numeric elementary item.

Verb

A word that expresses an action to be taken by a COBOL compiler

or object program.

Word

A character-string of not more than 30 characters which forms a

user-defined word, a system-name, or a reserved word.

Working-Storage Section

The section of the Data Division that describes working storage

data items, composed either of noncontiguous items or of

working storage records or of both.

77-Level-Description-Entry
A data description entry that describes a noncontiguous data item

with the level-number 77.

112

REFERENCES

A Simplified Guide to Structured COBOL Programming, Wiley,

1976.

COBOL for Students, Edward Arnold, 1975.

COBOL with Style: Programming Proverbs, Hayden, 1976.

Compiler Construction, Springer-Verlag, 1976.

Compiler Construction for Digital Computers, Wiley, 1971.

CP/M Bible, Howard E. Sams & Co., Product #22015.

CP/M PRIMER, Howard E. Sams & Co., Product #21791.

CPM Users Guide, Osborne, 1981.

NEVADA COBOL Application Packages Booki, Ellis

Computing, 1980.

NEVADA COBOL USER'S GROUP, 5536 Colbert Trail, Norcross,

Georgia 30092. Newsletter started 1982.

NEVADA EDIT, Ellis Computing, 1982.

Soul of CP/M, Howard W. Sams & Co., Product #22030.

Structured COBOL Self-Teaching Guide, Wiley, 1980.

The Art of Computer Programming, Addison Wesley, 1973.

113

INDEX

A

ABBREVIATED combined relation condition 91

ACCEPT 2, 32

ACCESS MODE 91

ACTUAL Decimal Point 91

ADD verb 34

ADVANCING 2

AFTER 2, 45, 47, 49

ALL "literal" 2, 27, 39, 45, 50

ALPHABETIC CHARACTER 20, 28, 43, 91

ALPHANUMERIC CHARACTER 91

ALPHANUMERIC edited character 28, 47, 53

ALTERNATE Record Key 91

ALTER 2, 34, 42

AND 2, 43-44, 55

ARITHMETIC Expression 91

ARITHMETIC Operator 91

ARITHMETIC VERBS 9

ASCENDING Key 91

ASSEMBLY LANGUAGE 85-90

ASSIGN TO 2, 22

ASSUMED Decimal Point 28, 92

ASTERISK (•) 14, 29

AT END Condition 23, 59, 92

AUTHOR 2

B

BEFORE 2, 45, 47, 49, 62

BINARY data types (COMP) 30

BLANK WHEN ZERO 27

BLOCK CONTAINS 25, 92

BUILDING A PROGRAM 14, 69

C

CALL 2, 20, 35, 81-83, 92

CANCEL 2, 35, 37

CC.COM 4,13

CHARACTER-STRING 25, 45-46, 48-49, 92

CLASS condition 92

CLAUSE 5, 92

CLOSE 2, 38

COBOL Character Set 28, 93

COBOL Coding format 5, 8-9,14-15

COLLATING Sequence 93

COLUMN 9,14-15, 93

COMBINED Condition 93

114

COMMENT Line 93-94

COMPILE time 94

COMPILE TIME ERROR MESSAGES 63-65

COMPILER Directing Statement 8, 94

COMPILING A PROGRAM 15

COMPUTATIONAL (COMP) 2-3, 27, 29-30

COMPUTATIONAL-3 (COMP-3) 3, 23, 27, 29, 30, 59

COMPUTER-Name94

CONDITION-Name 43,94

CONDITIONAL Expression 94

CONDITIONAL Statement 8, 94

CONDITIONAL Variable 95

CONFIG.CBL4, 7,12,15-17

CONFIGURATION Section 20-21, 95

CONNECTIVE 95

CONTIGUOUS Memory 20, 95

CONVHEX.COM 4, 36

COPY 2, 7,18, 20, 24, 31,38

COUNTER 95

CP/M 6, 21,33,84-90

CREDIT and debit symbols (CR) (DB) 28, 29

CURRENT Record 95

CURRENT Record Pointer 95

CURRENCY Symbol ($) 20, 29, 95

D

DATA Disk 4, 6

DATA DIVISION 5, 10-11, 25-26, 31, 60, 62

DATA Description Entry 25, 96

DATA RECORDS ARE 25

DATE-COMPILED 2, 10

DATE-WRITTEN 2,10

DEBUGGING MODE 14, 20, 96

DECIMAL-POINT IS COMMA 21

DECLARATIVES 96

DELIMITED files 30

DEPENDING ON 42

DESCENDING Key 96

DIGIT Position 96

DISK 3, 23-24, 55

DISPLAY 27, 29, 33, 39, 43, 46

DIVIDE 2, 40, 97

DIVISION Header 5, 97

DYNAMIC Access 97

115

E

ED.COM 6-7, 14

EDITING 97

ELEMENTARY Item 54, 61, 97

ELSE 2, 43

END PROGRAM 32, 41, 97

ENTRY 97

ENVIRONMENT DIVISION 5,10, 20, 24, 98

EQUAL TO 43

ERROR CODES AND MESSAGES 23, 63-65

ERRORS.COM 4

EXECUTING A PROGRAM 16

EXIT 2, 41,56

EXIT PROGRAM 37, 41

EXTENDED Mode 98

F

FD, 2, 24-26

FIGURATIVE Constant 39, 46, 54, 98

FILE CONTROL 2, 10, 22, 98

FILE Description (FD) 24, 98

FILE Name 10, 98

FILE Organization 98-99

FILE SECTION 25-26, 60, 62, 99

FILLER 2, 77

FIRST 45, 50

FIXED-LENGTH RECORDS 66-68, 77-80

FORMAT 99

FROM 2, 61

G

GETTING STARTED 6

GIVING 34, 40, 54, 61

GLOSSARY 91-112

GO TO 34, 42, 56

GREATER THAN 43

GROUP Item 30, 99

H

HARDWARE REQUIRED 6

HEXADECIMAL literal 12

HIGH ORDER End 99

HIGH-VALUE 2, 27

116

I

1-0 55, 99

I-O-CONTROL 2, 22, 99

IDENTIFICATION DIVISION 5, 10,18-19

IF VERB 43

IMPERATIVE Statement 8, 43,54,99

INDEX Data Item 99

INDEX-Name 99

INDEXED Data-Name 99

INDEXED FILE 100

INITIAL 2, 45

INPUT File 55,100

INPUT-OUTPUT SECTION 10, 20-22, 100

INPUT-OUTPUT VERBS 8

INSPECT 2, 45, 47, 51

INSTALLATION 2

INTEGER 100

INTRODUCTION 5

INVALID KEY 23, 59-60, 62,100

J

JUSTIFIED (JUST) 2, 27, 53

K

KEY 2, 100

KEY Word 100

L

LABEL RECORDS ARE 24-25

LANGUAGE-Name 100

LEADING 2, 45, 50

LESS THAN 43

LEVEL-NUMBER 101,112

LIBRARY-Name 101

LIBRARY Text 101

LINE 2, 62

LINKAGE SECTION 27, 101

LISTING A PROGRAM 17

LITERALS 25,101

LOGICAL Record 101

LOW ORDER End 101

LOW-VALUE 2, 27

117

M

MASS Storage File 101

MEMORY MAP 21

MEMORY SIZE 21, 36

MINUS SIGN (-) 29

MNEMONIC-Name 101

MOVE VERB 9, 52

MULTIPLY 2, 54

N

NATIVE Character Set 102

NEGATED Simple Condition 102

NEXT Executable Statement 102

NEXT SENTENCE 43-44, 102

NEXT Record 102

NONCONTIGUOUS Items 102

NONNUMERIC Literal 35, 43, 46, 52, 54,102

NOT 2, 43

NUMERIC CHARACTER 28, 103

NUMERIC edited character 28, 47

NUMERIC Literal 43, 54,103

NUMERIC MOVE 52-53

O

OBJ FILES 4

OBJECT-COMPUTER 2,10,103

OBJECT of Entry 103

OBJECT Program 103

OBJECT Time 103

OCCURS clause 27, 53,103

ON SIZE ERROR 40-41, 54, 61

OPEN 8, 38, 55, 104

OPERATIONAL Sign 40, 53, 104

OPTIONAL Word 104

OR 2, 43-44, 55

ORGANIZATION IS 23

OUTPUT 2, 55, 74-75,104

118

p

PAGE 2, 62, 104

PARAGRAPH Header 105

PARAGRAPH-name 56,105

PERFORM 2, 9, 55-58

PHRASE 105

PICTURE (PIC) 2, 20-21, 27, 52

PIP 7-8, 23-24, 59

PLUS Sign (+) 29

PRIME Record Key 105

PRINTER 3, 22, 24, 26

PROCEDURE DIVISION 5, 11, 32

PROCEDURE-Name 5, 56,105

PROGRAM 2

PROGRAM COLLATING SEQUENCE 20

PROGRAM-ID 2

PUNCTUATION 8, 106

Q

QUOTE 2, 27, 54

R

RANDOM Access 22, 55, 59,106

READ 2, 8, 59-60, 67-68, 71-75

RECORD DELIMITER 22-23

RECORD Description Entry 26-106

RECORD Area 106

RECORD Key 25,106

RECORD Name 106

REDEFINES clause 27, 30, 106

REFERENCE Format 106

REFERENCES 113

RELATIONAL Operator 107

RELATION Condition 91,107

RELATIVE File 22,107

RELATIVE KEY 22-23, 58, 107

RENUMBER.CBL4, 13,14, 17

REPLACING 2, 45, 47, 51

RESERVED WORDS 1-3,107

RESERVED WORDS (NOT ANSI-1974) 1-3, 107

REWRITE 3, 60, 67-68, 72-73

ROUNDED 3, 34, 40-41, 54, 61

ROUTINE-Name 107

RUN TIME ERROR MESSAGES 65

RUN.COM 4,12-13, 16

119

s

SAME RECORD AREA 23

SAMPLE PROGRAMS 66-90

SCREEN Information 12

SECTION Header 108

SECTION-Name 32,108

SECURITY 3

SEGMENT-Number 108

SELECT 3, 22, 25

SENTENCE 3, 108

SEPARATOR 108

SEQUENCE CONTROL VERBS 9

SEQUENTIAL Access 14, 22, 55, 59-60, 66, 108

SIGN Condition 109

SIMPLE Condition 109

SOFTWARE REQUIREMENTS 6

SOURCE-COMPUTER 3, 10, 109

SOURCE Program 109

SPACE 3, 27, 52, 54

SPECIAL Character 109

SPECIAL-NAMES 3,110

STANDARD Data Format 53,110

STATEMENT 5, 110

STATUS KEY 23

STOP RUN 60

SUBJECT of Entry 110

SUBPROGRAM 110

SUBSCRIPTING 110

SUBTRACT 3, 61

SYMBOLS AND CONVENTIONS 1

SYNCHRONIZED (SYNC) 3, 27

SYSTEM-Name 10,111

T

TAB characters 16, 59

TABLE 112

TABLE Element 112

TABLE OF CONTENTS

TALLYING 3, 45, 47, 51

TEXT-Word 112

THROUGH 3, 55

THRU 3, 55

TIMES 3, 27, 55

TRUTH Value 112

120

u

UNARY Operator 112

UNIT 18, 24-25, 31, 38-39

UNTIL 3, 55

USAGE IS clause 27, 29

USER-DEFINED WORDS 112

USING 3, 32, 35

V

VALUE clause 27

VALUE OF FILE-ID 25

VARIABLE 112

VARIABLE LENGTH RECORDS 22, 59, 69-75

VERBS 8,112

W

W1.WRK4

W3.WRK 4, 63

W4.COM 4, 13

W5.CBL4, 17,63

WITH NO ADVANCING 39

WORDS 3, 5,112

WORKING-STORAGE SECTION 10, 23, 27,112

WRITE 3, 8, 62, 76-77

Z

ZERO 3, 27, 52, 54

121

t commodore

COMPUTER
Commodore Business Machines, Inc.

1200 Wilson Drive • West Chester, PA 19380

Commodore Business Machines, Limited

3370 Pharmacy Avenue • Agincourt, Ontario, M1W 2K4

