
T _ 5 _

1. ^ I ~

- LI

■ i ■ m i - m m ■ l iTi i "J ■ i ■ 3 -

4 Friendly Introduction to Your SX-64 Portable Color Computer

\ commodore
COMPUTER

USER'S GUIDE STATEMENT

"This equipment generates and uses radio frequency energy. If it is not pro

perly installed and used in strict accordance with the manufacturer's instruc

tions, this equipment may interfere with radio and television reception. This

machine has been tested and found to comply with the limits for a Class B

computing device in accordance with the specifications in Subpart J of Part 15

of FCC Rules, which are designed to provide reasonable protection against

such interference in a residential installation. If you suspect interference, you

can test this equipment by turning if off and on. If you determine that there is in

terference with radio or television reception, try one or more of the following

measures to correct it:

• reorient the receiving antenna

• move the computer away from the receiver

• change the relative positions of the computer equipment and the receiver

• plug the computer into a different outlet so that the computer and the

receiver are on different branch circuits.

If necessary, consult your Commodore dealer or an experienced radio/televi

sion technician for additional suggestions. You may also wish to consult the

following booklet, which was prepared by the Federal Communications Com-

mission:

"How to Identify and Resolve Radio-TV Interference Problems" This booklet

is available from the U.S. Government Printing Office, Washington. D.C. 20402.

Stock No. 004-000-00345-4."

-

-

USER'S GUIDE STATEMENT
" This equipment generates and uses radio frequency energy. 11 it is not pro

perly instal led and used in strict accordance with the manufacturer's instruc
tions, this equi pment may interfere with rad io and television reception. This
machine has been tested and found to comply with the limits for a Class B
computing device in accordance with the specifications in Subpart J of Part 15
of FCC Rules, which are designed to provide reasonable protection against
such interference in a residential installation . If you suspect interference, you
can test this equipment by turning if off and on. 11 you determine that there is in·
terference with radio or television recept ion , try one or more of the following
measures to correct it :

• reorient the receiving antenna
• move the computer away from the receiver
• change the relative positions of the computer eq uipment and the receiver
• plug the computer into a different outlet so that the computer and the

receiver are on different branch circuits.

If necessary, consult your Commodore dealer or an experienced radio/televi
sion technician for additional suggestions. You may also wish to consu lt the
following booklet, which was prepared by the Federal Communications Com
mission:

" How to Identify and Resolve Radio·TV Interference Problems" Th is booklet
is available from the U.S. Government Printing Office, Washington, D.C. 20402,
Stock No. 004-000·00345·4."

-

-

—

THE INFORMATION IN THIS MANUAL HAS BEEN REVIEWED AND IS BELIEVED TO BE ry

ENTIRELY RELIABLE. NO RESPONSIBILITY, HOWEVER, IS ASSUMED FOR fNACCURACIES.

THE MATERIAL IN THIS MANUAL IS FOR INFORMATION PURPOSES ONLY, AND IS SUBJECT

TO CHANGE WITHOUT NOTICE. __

THIS MANUAL IS COPYRIGHTED AN D CONTAINS PROPRIETARY INFORMATION. NO PART OF

THIS PUBLICATION MAY BE REPRODUCED, STORED IN A RETRIEVAL SYSTEM, OR TRANS

MITTED IN ANY FORM OR BY ANY MEANS. ELECTRONIC, MECHANICAL, PHOTOCOPYING,

RECORDING OR OTHERWISE. WITHOUT THE PRIOR WRITTEN PERMISSION OF COMMODORE

BUSINESS MACHINES. INC ^

Copvrigh!©1983 by Commodore Business Machines. Inc

All rights reserved.

THE INFORMATION IN TH IS MANUAL HAS BEEN REV IEWED AND IS BELIEVED TO BE

ENTIRE L Y RELI ABLE , NO RESPON SIBI LI TY, HOWEVER, IS ASSUMEO FO R INACCURACIES.
THE MATERIA L IN TH IS MAN UA L IS FOR INFO RMA T ION PUR POSES ONLY, AND IS SUBJECT
TO CH ANGE WITHOUT NOTICE

TH IS MANUAL IS COPYRIGHTED AND CONTA INS PROPRIETARY INFORMATION . NO PART OF

TH IS PUB LICATI ON M A Y BE REP RODUCED, STORED IN A RE TRIEVA L SYSTEM, OR T RANS·
M ITTED IN ANY FORM OR BY ANY MEANS, E LECTRON IC, MECHANICAL , PHOTOCOPY ING,
RECORDING OR OTHERWISE. WITHOUT TH E PR IOR WRITTEN PERMISSION OF COM!\10DORE
BUS INESS t\.l ACHINES, INC

CoPVrighl© l g83 bv Commodore Business Machines, Inc

All ngh ! s reserved.

TABLE OF CONTENTS

CHAPTER 1

SETTING UP

Unpacking and Setting Up the Executive 64 Computer 3

Transporting the Executive 64 5

Troubleshooting chart: Executive64 6

Color Adjustment 7

Expanding Your System With Optional Peripherals 9

CHAPTER 2

GETTING STARTED

Communicating with your64: The Keyboard 12
Loading and Saving Programs 17

How to Load Prepackaged Software 18

How to Format a New Disk 19

How to Save Programs 19

Listing a Directory of Programs on a Disk 20

Files 20

Sequential Files 21

Relative Files 24

Random Access File 26

Chart of BASIC Commands for Disks and Printers 30

CHAPTER 3

BEGINNING BASIC

Printing and Calculating 32

Mathematical Functions 33

Multiple Calculations on One Line 35

Execution Order in Calculations 36

Combining PRINT'S Capabilities 37

CHAPTER 4

WRITING SIMPLE PROGRAMS IN BASIC

Line Numbers 39

The GOTO Statement 40
Using the LIST Command 40
Editing Tips 41

How to Use Variables 42

Using FOR...NEXT Loops I...... 45

v

v

v TABLE OF CONTENTS
v CHAPTER 1
v SETTING UP

v

v

v

v

v

v

Unpacking and Setting Up the Executive 64 Computer. • . • 3
Transporting the Executive 64 . • 5
Troubleshooting chart : Executive 64•.• 6
Color Adjustment.•. • 7
Expanding Your System With Optional Peripherals • . • . • 9

CHAPTER 2
GETTING STARTED
Communicating with your 64: The Keyboard • • . • 12
Loading and Saving Programs. • • 17
How to Load Prepackaged Software • • . • 1 B
How to Format a New Disk . • 19
How to Save Programs. • • . • 19
Li sting a Directory of Programs on a Disk .. 20
Files. •...• . • 20
Sequential Files•......... 21
Relative Fi les ...•.•.... 24
Random Access File • . • . • 26
Chart of BASIC Commands for Disks and Printers. • .• . . . •. .• 30

CHAPTER 3
BEGINNING BASIC
Printing and Calculating • • • 32
Mathematical Functions•...... 33
Multiple Calculations on One Line •..• .•... 35
Execution Order in Calculations . • . • . • . 36
Combining PRINT's Capabilities••. •. 37

CHAPTER 4
WRITING SIMPLE PROGRAMS IN BASIC
Line Numbers. • 39
The GOTO Statement • • • . • . .. 40
Using the LIST Command • •.• 40
Edit ing Tips.•..............•....... 41
How to Use Variables . • • . .. 42
Using FOR. .. NEXT Loops•• .•.• • 45

CHAPTER 5

ADVANCED BASIC

Introduction 46

Simple Animation 47
INPUT 49
Using the GET Statement for Data Input 51

Using GET to Program Function Keys 52

Random Numbers and Other Functions 53

Guessing Game 55
Your Roll 56
Random Graphics 57

CHAPTER 6

COLOR GRAPHICS

How to Use Colorand Graphics on YourComputer 58

Printing Colors 59
ColorCHRS Codes 61
How to Use PEEKS and POKEs 63
Screen Graphics 64
Screen Memory Map 65
Color Memory Map °6
More Bouncing Balls 67

CHAPTER 7

INTRODUCTION TO SPRITES

Bits, Bytes and Sprites 69
Creating Sprites 7?
More on Sprites: Colors and Extra Movement 78

CHAPTER 8

MAKING MUSIC ON YOUR COMPUTER: FOR
NON-PROGRAMMERS

Structure of a Sound Program 79
Sample Sound Program °^
Playing a Song on Your 64 87
Creating Sound Effects "

CHAPTER 9

ADVANCED DATA HANDLING

READ and DATA Statements 91
Calculating Averages 93
Subscripted Variables 95
Dimensioning Arrays 96
Simulated Dice Roll with Arrays 97
Two-dimensional Arrays "

CHAPTER 5
ADVANCED BASIC
Introduction . • 46
Simple Animation . • 47
INPUT . • 49
Using the GET Statement for Data Input. • 51
Using GET to Program Function Keys•. ••. • 52
Random Numbers and Other Funct ions•..• . •. 53
Guessing Game 55
Your Roll ••... 56
Random Graphics • . • • . • • 57

CHAPTER 6
COLOR GRAPHICS
How to Use Color and Graphics on Your Computer • . . . 58
Printing Colors . 59
Color CHR$ Codes. • 61
How to Use PEEKs and POKEs. • . • 63
Screen Graphics. • • . . . 64
Screen Memory Map • . . . • . • • . . . • 65
Color Memory Map • • • 66
More Bouncing Balls . • • 67

CHAPTER 7
INTRODUCTION TO SPRITES
Bits, Bytes and Spri tes . • . • . • 69
Creating Sprites• . •.• . • . .. 72
More on Sprites: Colors and Extra Movement • . . . • 78

CHAPTER 8
MAKING MUSIC ON YOUR COMPUTER: FOR
NON·PROGRAMMERS
Structure of a Sound Program . • 79
Sample Sound Program • . . . • • . • 85
Playing a Song on Your 64 87
Creating Sound Effects • . • • . . . • • . • . • .. 89

CHAPTER 9
ADVANCED DATA HANDLING
READ and DATA Statements • • 91
Calculating Averages. • . • • 93
Subscri pted Variables•. 95
Dimensioning Arrays • . 96
Simulated Dice Roll with Arrays • 97
Two-dimensional Arrays • . • • . • 99

APPENDICES

Available Software 103

Description of DOS Error Messages 112

Executive 64 BASIC 116

Abbreviations for BASIC Keywords 128

Screen Display Codes 130

ASCII and CHR$ Codes 133

Screen and Color Memory Maps 136

Deriving Mathematical Functions 138

Pinouts for Input/Output Devices 139

Programs to Try 143

Converting Standard BASIC Programs to Executive 64 BASIC 146

Error Messages 147

Music Note Values 149

Bibliography 152

Sprite Register Map 154

6566/6567 (VIC-II) Chip Register Map 157

Executive 64 Sound Control Settings 158

6581 Sound Interface Device(SID) Chip Specifications 161

Disk and Printer Commands and Statements 163

INDEX no

v

APPENDICES
Available Software•......... .•.•.. 103
Description of DOS Error Messages•. • . • . •.• • . • 112
Execut ive 64 BASiC 116
Abbreviations for BASIC Keywords 128
Screen Display Codes • . • 130
ASCII and CHR$ Codes • .•... 133
Screen and Color Memory Maps •.• .•. •. • . . •...•.. . •.. ... 136
Deriving Mathemalical Funcl ions•.......................•..... 138
Pinouts for Input/Output Devices 139
Programs to Try 143
Converting Standard BASIC Programs to Executive 64 BASIC•. 146
Error Messages 147
Music Note Values. 149
Bibliography. • .• .•.• . •.. ..•.• .•.• 152
Sprite Regi ster Map • . • . ••... 154
6566/6567 (VIC-II) Chip Register Map•..... 157
Executive 64 Sound Control Setti ngs • .•• 158
6581 Sound Interface Device (SID) Chip Specifications • . • . . • 161
Disk and Printer Commands and Statements • 163

INDEX 170

-

—

-

-

-

-

-

—

-

()

f.1

()

n
n

INTRODUCTION

The Commodore Executive 64 is one of the best values in the home com

puter industry. You can use your 64K color computer for everything from

business applications to household paperwork to exciting games. The 64 offers

you lots of memory (64K), lots of color(16 different colors), lots of sound (music
and sound effects), and lots of fun and practical uses. You can use prepackag

ed software, or you can write your own programs in easy-to-learn BASIC. All

software designed for the Commodore 64 on disk or cartridge also runs on the
Executive 64.

The Executive 64 models (the SX-64 and the DX-64) have all the capabilities of

the best selling Commodore 64, plus one or two disk drives and a 5" color

monitor built-in. The Executive 64 snaps together to form its own carrying case,

and it's light enough to carry and use anywhere.

This easy-to-read user's guide contains all the information you need to set up

your equipment properly, understand how to operate your new SX-64 or DX-64.

and learn how to create your own simple BASIC programs.

This user's guide is intended to introduce you to computers, but it is beyond

the scope of this manual to tell you everything you need to know about com

puters or about BASIC. However, this guide does refer you to a variety of

publications that explain the topics we present here in more detail. These

publications include the Commodore 64 Programmer's Reference Guide and

our Introduction to BASIC series.

For those of you who don't want to learn how to program, you won't have to

search through the whole book to learn how to use Commodore prepackaged

programs and games, or other prepackaged, third party software. We've put all

the information you need to know right up front in Chapters 1 and 2.

SPRITE GRAPHICS

Many exciting features are waiting for you inside your Executive 64. Your

new computer gives you the microcomputer industry's most advanced

graphics, which we call SPRITE GRAPHICS. Sprite graphics let you:

• Design your own pictures in different colors, just like the ones you see on

arcade-type video games.

Animate as many as 8 different overlapping sprites at once.

Double a sprite's size.

Move your creations anywhere on the screen.

Pass images in front or behind each other.

Use automatic collision detection that tells the computer to do whatever you

want when sprites touch each other.

You can use these features to write games and educational software. In addi

tion, you'll see sprites used in the preprogrammed software you buy from Com

modore.

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

INTRODUCTION
The Commodore Executive 64 is one of the best values in the home com·

puter industry. You can use your 64K color computer for everything from
business applications to household paperwork to excit ing games. The 64 offers
you lots of memory (64K), lots of color (16 different colors), lots of sound (music
and sound effects), and lots of fun and practical uses. You can use prepackag·
ed software, or you can write your own programs in easy·to·learn BASIC. All
software designed for the Commodore 64 on disk or cartridge also runs on the
Executive 64.

The Execut ive 64 models (the SX-64 and the DX-64) have all the capabilities of
the best sell ing Commodore 64, plus one or two disk drives and a 5" color
monitor bu ilt·in. The Executive 64 snaps together to form its own carrying case,
and it 's light enough to carry and use anywhere.

This easy·to·read user's guide contains all the information you need to set up
your equipment properl y, understand how to operate your new SX-64 or DX-64,
and learn how to create your own simple BASIC programs.

This user's guide is intended to introduce you to computers, but it is beyond
the scope of this manual to te ll you everything you need to know about com·
puters or about BASIC. However, this guide does refer you to a variety of
publications that explain the topics we present here in more detail. These
publications include the Commodore 64 Programmer's Reference Guide and
our Introduction to BASIC series.

For those of you who don't want to learn how to program, you won't have to
search through the whole book to learn how to use Commodore prepackaged
programs and games, or other prepackaged, third party software. We've put all
the information you need to know right up front in Chapters 1 and 2.

SPRITE GRAPHICS
Many exciting features are waiting for you inside your Executive 64. Your

new computer gives you the microcomputer industry's most advanced
graphiCS, which we call SPRITE GRAPHICS. Sprite graphics let you:

• Design your own pictures in different colors, just like the ones you see on
arcade· type video games.

o Ani mate as many as 8 different overlapping sprites at once.
• Double a sprite's size.
• Move your creations anywhere on the screen.
o Pass images in front or behind each other.
• Use automatic collision detection that tells the computer to do whatever you

want when sprites touch each other.

You can use these features to write games and educational software. In addi
tion, you'll see sprites used in the preprogrammed software you buy from Com·
modore.

MUSIC SYNTHESIS

The Executive 64 also has built-in music and sound effects that rival many

well known music synthesizers. This part of your computer gives you:

• 3 independent voices, each with a full 9 octave piano-type range.

• 4 different waveforms (sawtooth, triangle, variable pulse, and noise).

• A programmable ADSR (attack, decay, sustain, and release) envelope

generator.

• A programmable high, low, and bandpass filter that you can use for each

voice.

• Variable resonance and volume controls.

If you want your music to play back with professional sound reproduction,

the 64 computers let you connect your audio output to almost any high-quality

amplification system.

LOW-PRICED PERIPHERALS

As your computer needs grow, so can your system. You can expand your

system by connecting your Executive 64 to other pieces of equipment, known

as peripherals, which include accessories like these:

• The VIC-1541 disk drive (as many as five at a time).

• The VIC 1525, 1526, and MPS-801 dot matrix printers, and the 1520

printer/plotter, for printed copies of your programs, letters, etc.

• The 1600 VICMODEM for access through your telephone to the massive

databases of larger computers, and the services of hundreds of specialists

and a variety of information networks.

• The Commodore 1701/1702 color monitor.

• The Z-80 microprocessor, for access to CP/M * *, which offers a variety of ap

plications software.

Commodore wants you to really enjoy your new Executive 64. As you learn,

bear in mind that programming takes time to learn. Be patient with yourself as

you go through the USER'S GUIDE. Before you start, please take a few minutes

to fill out and mail in the owner/registration card that came with your computer.

This will ensure that your new computer is properly registered with Com

modore Headquarters and that you receive the most up-to-date information

regarding future enhancements for your system.

NOTE: Many programs are under development while this manual is being pro

duced. Please check with your local Commodore dealer and with Commodore

User's Magazines and Clubs, which will keep you up-to-date on the many ap

plications programs being written all over the world for the Commodore 64 and

Executive 64.

•Commodore 64 and Executive 64 are trademarks of Commodore Electronics

Ltd.

**CP/M is a registered trademark of Digital Research, Inc. Specifications are

subject to change.

MUSIC SYNTHESIS
The Executive 64 also has built·in music and sound effects that rival many

well known music synthesizers. This part of your computer gives you:

• 3 independent vOices, each with a full 9 octave piano-type range.
• 4 different waveforms (sawtooth, triangle, variable pulse, and noise).
• A programmable ADSR (attack, decay, sustain, and release) envelope

generator.
• A programmable high, low, and bandpass filter that you can use for each

voice.
• Variable resonance and volume controls.

If you want your music to play back with professional sound reproduction,
the 64 computers let you connect your audio output to almost any high·quality
amplification system.

LOW·PRICED PERIPHERALS
As your computer needs grow, so can your system. You can expand your

system by connecting your Executive 64 to other pieces of equ ipment, known
as peripherals, which include accessories like these:

• The VIC·1541 disk drive (as many as five at a ti me).
• The VIC 1525, 1526, and MPS·801 dot matrix printers, and the 1520

printer/plotter, for printed copies of your programs, letters, etc.
• The 1600 VICMODEM for access through your telephone to the massive

databases of larger computers, and the selVices of hundreds of specialists
and a variety of information networks.

• The Commodore 1701 /1 702 color monitor.
• The Z·80 microprocessor, for access to CP/M" , which offers a variety of ap·

plications software.

Commodore wants you to really enjoy your new Executive 64. As you learn,
bear in mind that programming takes time to learn. Be patient with yourself as
you go through the USER'S GUIDE. Before you start, please take a few minu tes
to fill out and mail in the owner/registration card that came with your computer
This will ensure that your new computer is properly registered with Com·
modore Headquarters and that you receive the most up-ta-date information
regarding future enhancements for your system.

NOTE: Many programs are under development while this manual is being pro·
duced. Please check with your local Commodore dealer and with Commodore
User's Magazines and Clubs, which wi ll keep you up·to·date on the many ap·
plications programs being written all over the world for the Commodore 64 and
Execut ive 64.

·Commodore 64 and Executive 64 are trademarks of Commodore Electronics
Ltd .

.. CP/M is a reg istered trademark of Digital Research , Inc. Specificat ions are
subject to change.

CHAPTER 1

SETTING UP

• Unpacking and Setting Up the Executive 64 Computer

• Transporting the Executive 64

• Troubleshooting Chart: Executive 64

• Color Adjustment

• Expanding Your Systems With Optional Peripherals

GAME CARTRIDGE AUDIO/VIDEO SERIAL USER

PORTS PORT CONNECTOR PORT PORT POWER SOCKET

FUSE

RELEASE

BUTTONS

-

—

—

—

GAME
PORTS

CHAPTER 1
SETTING UP

• Unpacking and Setting Up the Executive 64 Computer

• Transporting the Execut ive 64

• Troubleshooting Chart: Executive 64

• Color Adjustment

• Expand ing Your Systems With Optional Peripherals

CARTRIDGE AUDIO/ VIDEO SERIAL USER
PORT CONNECTOR PORT PORT POWER SOCKET

FUSE

POWER
SWnCH

n

()

HANDLE

LOCK

STORAGE ISX-64 ONLY}

MONITOR

CONTROL PANEL

KEYBOARD-TO-BASE

CONNECTOR

v

v

HANDLE
lOCI(

-

--I-

S" COLOR

MONITOR

KEYBOARO-TO_BASE

CONNECTOR

BASE_TO.

KEYBOARD

CONNECTOR

2

HINGE

STORAGE ISX-64 O.'#L"I

MONITOR

CONTROL PANEL

DISK DRIVE

aiSK DRIVE

LIGHT

UNPACKING AND SETTING UP THE EXECUTIVE 64
COMPUTER

Remove your Executive 64 carefully from its packaging. Inside you should
find these items:

• The Executive 64 computer

' A black carrying case that contains two white boxes. One box contains a

power cord: the other contains a smaller cable for connecting the keyboard.

If any of these items is missing when you first unpack your Executive 64,

contact your dealer immediately for replacement.

Before you begin setting up your Executive 64 for the first time, take a few

minutes to examine the diagrams in this section. Look over your computer,

noting the locations of the outlet, called ports, where peripheral devices are

plugged into the computer. Note the ON/OFF switch, the power cord outlet,

and the handle locks. This examination will simplify the set up procedure.

Follow these instructions each time you set up your Executive 64:

1. Stand the Executive 64 on its end so that the front of the computer and the

handle are on top.

2. Unlock the handle. The locks are located at the base of each side of the

handle, just under the circular blue hinges. Note that there are three dots

on each hinge just above the lock tabs. Move both lock tabs to the center

position.

3. Move the handle down towards the side with the four rubber feet. Set the

handle so it is perpendicular to the sides of the computer. You may wish to

readjust the handle later.

4. Relock the handle lock tabs so the handle is stable. Make sure both lock

tabs are locked and that the handle is secured.

5. Set the computer down carefully so that the handle serves as the front sup

port.

6. Remove the front cover of the Executive 64 by pushing down the dark grey

buttons at the top of the cover. Hold down the buttons while you ease the

top of the cover towards you. Lift out the bottom of the cover and place the

keyboard on the table in front of the computer base.

7. Connect the keyboard to the base with the short, dark grey cable you found

in the separate carrying case when you first checked the contents of the

Executive 64. The larger, angled end of the cable goes into a slot on the

bottom of the computer located just under the disk drive. You should lift up

the computer base to see how this plug connects. Note the corresponding

2 rows of holes where the plug goes. Hold the plug with the rows of pins

perpendicular to the computer base. In other words, the pins don't go in

first; they should be on the side facing the back end of the computer. Push

the plug up and in until it is securely installed.

8. Plug the other end of the cable into the port in the back of the keyboard.

Note that the plug goes in only one way. Make sure the plug is secure.

9. Make sure your Executive 64 is turned OFF. The power switch is on the far

left top of the back end as you face the monitor. Look at this end of the

computer, and move the switch back and forth until you see the white cir

cle on one side of the switch. When the computer is OFF. the circle is

SHOWING.

10. Plug in the power cord. This cord goes in the back near the power switch.

Note that the plug goes in only one way. Make sure the cord is secure. Plug

the other end into a standard 120 volt outlet for three prong plugs.

UNPACKING AND SEITING UP THE EXECUTIVE 64
COMPUTER

Remove your Executive 64 carefully from its packaging. Inside you should
find these items:

• The Executive 64 computer
• A black carrying case that contains two white boxes. One box contains a

power cord ; the other contains a smaller cable for connecting the keyboard.

It any of these items is missing when you first unpack your Executive 64,
contact your dealer immediately for replacement.

Before you begin setting up your Executive 64 for the first time, take a few
minutes to examine the diagrams in this section. Look over your computer,
noting the locations of the outlet, cal led ports, where peripheral devices are
plugged into the computer. Note the ON/OFF switch, Ihe power cord outlet,
and the hand le locks. Th is examinat ion will simplify the set up procedure.

Foll ow these instructions each time you set up your Executive 64:

1. Stand the Executive 64 on its end so that the front of the computer and the
handle are on top.

2. Unlock the handle. The locks are located at the base of each side of the
handle, just under the ci rcu lar blue hinges. Note that there are three dots
on each hinge just above the lock tabs. Move both lock tabs to the center
position .

3. Move the handle down towards the side with the four rubber feet. Set the
handle so it is perpendicular to the sides of the computer. You may wish to
readjust the handle later.

4. Relock the handle lock tabs so the handle is stable. Make sure both lock n
tabs are locked and that the handle is secured.

5. Set the computer down careful ly so that the handle serves as the front sup
port.

6. Remove the front cover of the Executive 64 by pushing down the dark grey
buttons at the top of the cover. Hold down the buttons while you ease the
top of the cover towards you. lift out the bottom of the cover and place the
keyboard on the table in front of the computer base.

7. Connect the keyboard to the base with the short, dark grey cable you found
in the separate carrying case when you first checked the contents of the
Executive 64. The larger, angled end of the cable goes into a slot on the
bottom of the computer located just under the disk drive. You should lift up
the computer base to see how this plug connects. Note the corresponding
2 rows of holes where the pl ug goes. Hold the plug with the rows of pins
perpendicular to the computer base. In other words, the pins don't go in
first ; they should be on the side facing the back end of the computer. Push
the plug up and in unlil it is securely installed.

8. Plug the other end of the cable into the port in the back of the keyboard.
Note that the plug goes in only one way. Make sure the plug is secure.

9. Make sure your Executive 64 is turned OFF. The power switch is on the far
left top of the back end as you face the monitor. Look at this end of the
compu ter, and move the switch back and forth until you see the white cir
cle on one side of the switch. When the computer is OFF, the ci rcle is
SHOWING.

10. Plug in the power cord. This cord goes in the back near the power switch.
Note that the plug goes in on ly one way. Make sure the cord is secure. Plug
the other end into a standard 120 volt outlet for three prong plugs.

3

11, Turn the computer on with the power switch discussed in step 9. When the

computer is on, the red disk drive light (or lights, if you have two drives)

come on and in a few seconds the screen displays the power-on message:

SX-64 BASIC V2.0 *""

64K RAM SYSTEM 38911 BASIC BYTES FREE

READY.

12. Adjust the picture, if necessary. The background color should be white, the

border should be cyan flight blue-green), and the characters should be blue.

The picture controls are behind the small door with the Commodore logo.

This door is on the right front as you face the monitor. Use the button to

open the door. The control knobs are identified inside the door. Use them

as you would use the adjustments on a TV set. Note that the top knob con

trols the volume for your Executive 64.

Now you're ready to begin using your Executive 64. If you have any problems,

consult the trouble-shooting chart. Before you use the disk drive, be sure to

consult Chapter 2.

v

v

v

v

v

11. Turn the computer on with the power switch discussed in step 9. When the
compu ter is on , the red disk drive light (or lights, if you have two drives)
come on and in a few seconds the screen displays the power-on message:

SX-64 BASIC V2.0
64K RAM SYSTEM 38911 BASIC BYTES FREE
READY.

12. Adj ust the picture, if necessary. The backg round color shou ld be white, the
border shou ld be cyan (light blue·green), and the characters should be blue.
The picture controls are behind the small door with the Commodore logo.
This door is on the right front as you face the monitor. Use the button to
open the door. The control knobs are identified inside the door. Use them
as you wou ld use the adjustments on a TV set. Note that the top knob con·
trois the volume for your Executive 64.

Now you're ready to begin using your Executive 64. If you have any problems,
consult the trouble'shooting chart. Before you use the disk drive, be su re to
consult Chapter 2.

4

TRANSPORTING THE EXECUTIVE 64

The Executive 64 is easy to pack and carry with you. Follow these steps to

prepare your Executive 64 for carrying:

1. Remove any disks from the disk drives and turn the computer OFF. If you

have an SX-64, do not carry disks in the computer's storage slot.

2. Remove any cartridges.

3. Turn off and disconnect any peripheral devices that are attached to your

computer.

4. Remove the power cord from the back end of the computer.

5. Unplug the keyboard connection cable from the keyboard, and then remove

the other end from the base of the computer.

6. Pack the cables in their boxes, and put the boxes in the carrying case. Note

that the smaller cable goes in the smaller box.

7. Place the metal strip at the top of the keyboard into the long slot at the bot

tom of the computer's front, just under the monitor and disk drive.

8. Push the keyboard on the slot until the keyboard clicks into place in the

buttons above the monitor and disk drive. Make sure the keyboard is

securely attached.

9. Lift the computer up to stand on its back end.

10. Unlock the tabs on each side of the handle's base. The tabs are unlocked

when they are in the center position. Make sure both tabs are unlocked.

11. Move the handle up to the top of the computer so the handle rests in the

carrying position. The handle should be parallel to the sides of the com

puter's base.

12. Relock the tabs. The tabs are locked when they are in the side positions,

not in the center position. Make sure both tabs are locked and that the han

dle is secure.

13. Attach the carrying case containing the cords to the Executive 64's handle.

The Executive 64 is now ready to be carried wherever you go. Be sure to han

dle the Executive 64 carefully when you transport it.

TRANSPORTING THE EXECUTIVE 64
The Executive 64 is easy to pack and carry with you. Follow these steps to

prepare your Executive 64 for carrying:

1. Remove any disks from the disk drives and turn the computer OFF. If you
have an SX-64, do not carry disks in the computer's storage slot.

2. Remove any cartridges.
3. Turn off and disconnect any peripheral devices that are attached to your

computer.
4. Remove the power cord from the back end of the computer.
5. Unplug the keyboard connection cable from the keyboard, and then remove

the other end from the base of the computer.
6. Pack the cables in their boxes, and put the boxes in the carrying case. Note

that the smaller cable goes in the smaller box.
7. Place the metal strip at the top of the keyboard into the long slot at the bot·

tom of the computer's front , just under the monitor and disk drive.
8. Push the keyboard on the slot until the keyboard clicks into place in the

buttons above the monitor and disk drive. Make sure the keyboard is
securely attached.

9. Lift the computer up to stand on its back end.
10. Unlock the tabs on each side of the handle's base. The tabs are un locked

when they are in the center position. Make sure both tabs are unlocked.
11. Move the handle up to the top of the computer so the handle rests in the

carrying position. The handle should be parallel to the sides of the com
puter's base.

12. Relock the tabs. The tabs are locked when they are in the side positions,
not in the center position. Make sure both tabs are locked and that the han
dle is secure.

13. Attach the carrying case containing the cords to the Executive 64's hand le.

The Executive 64 is now ready to be carried wherever you go. Be sure to han
dle the Executive 64 carefully when you transport it.

5

TROUBLESHOOTING CHART: Executive 64

Symptom

Indicator Light

not "On"

No picture

Random pattern on

monitor when

cartridge is in

Picture with poor

or no coior

Excess background

noise

Picture OK, but no

sound

Disk won't LOAD

Cause

Computer not

"On"

Power cable not

plugged in

Power supply not

plugged in

Bad fuse in

computer

Power not ON

Malfunction

Cartridge not

properly installed

Poorly adjusted

picture

Volume too

high

Volume too

low

Disk improperly

inserted

Drive door noi

closed

Bad disk

Malfunctioning

drive

Remedy

Make sure power switch

is in "On" position

Check power socket for

loose or disconnected

power cable.

Check connection

with wall outlet

Take system to

authorized dealer for

replacement of fuse

Check previous remedies

Take system to

authorized Commodore
dealer for repair

Turn off power and

reinsert cartridge

Adjust picture controls

Adjust volume control

Adjust volume control

Remove disk; insert

according to directions

(see Chapter 2)

Make sure door is

secure

Insert another disk

Take system to

authorized dealer for
repair

v

TROUBLESHOOTING CHART: Executive 64

Symptom Cause Remedy

Indicator Light Computer not Make sure power switch
not "On" "On" is in "On" position

Power cable not Check power socket for
plugged in loose or disconnected

v power cable.

Power supply not Check connection
plugged in with wall outlet

Bad fuse in Take system to
computer authorized dealer for

replacement of fuse

No picture Power not ON Check previous remedies

Malfunction Take system to
authorized Commodore
dealer for repair

Random pattern on Cartridge not Turn off power and
monitor when properly installed reinsert cartridge
cartridge is in

Picture with poor Poorly adjusted Adjust picture controls
or no color picture

Excess background Volume too Adj ust volume control
noise high

v Picture OK, but no Volume too Adjust volume control
sound low

Disk won't LOAD Disk improperly Remove disk; insert
inserted according to directions

(see Chapter 2)

Drive door not Make sure door is
v closed secure

Bad disk Insert another disk

Malfunctioning Take system to
drive authorized dealer for

repai r

v

6

v

CURSOR

The flashing square under READY is called the cursor. It's a marker that

shows where what you type on the keyboard will be displayed on the screen. As

you type, the cursor moves ahead one space as the original cursor position is

replaced with the character you typed. Try typing on the keyboard and watch

the cursor move while characters you type are displayed on the screen.

COLOR ADJUSTMENT

There is a simple way to get a pattern of colors on the monitor so you can

easily adjust the set. Even though you may not be familiar with the operation of

the computer right now, just follow along, and you'll see how easy it is to use

your computer.

First, look on the left side of the keyboard and locate the key marked

ISTI1 . This stands for ConTROL and is used, in conjunction with other

keys, to instruct the computer to do a specific task.

To use a control (unction, you hold down the »**<:;.* key while pressing a

second key. —■■■■ mm
Try this: hold the KUiil key while also pressing the Q key. Then

release both keys. Nothing obvious should have happened, but if you touch any

key now, the screen will show the character displayed in reverse type, rather

than normal type — like the opening message of anything you typed eariler.

Held down ;he HJ.mJ.U What happens9 If you did the above procedure cor

rectly, you should see a light blue bar move across the screen and then move

down to the next line as long as the fciJ.m-T.^ i ■ presse I

CURSOR

The flashing square under READY is called the cursor. It's a marker that
shows where what you type on the keyboard will be displayed on the screen. As
you type, the cursor moves ahead one space as the original cursor position is
replaced with the character you typed. Try typing on the keyboard and watch
the cursor move while characters you type are displayed on the screen .

COLOR ADJUSTMENT

There is a simple way to get a pattern of colors on the monitor so you can
easily adjust the set. Even though you may not be familiar with the operation of
the computer right now, just follow along, and you'll see how easy it is to use
your computer.

First , look on the left side of the keyboard and locate the key marked
II!iiDI . This stands for ConTROL and is used, in conjunction with other

keys, to instruct the computer to do a specific task.
To use a control function, you hold down the II!iiDI key wh ile pressing a

second key.
Try this: hold the II!iiDI key while also pressing the D key. Then

release both keys. Nothing obvious should have happened, but if you touch any
key now, the screen wil l show the character displayed in reverse type, rather
than normal type - like the opening message of anything you typed eariler.

Hold down the Mbai:!.,., . What happens? If you did the above procedure cor
rectly , you should see a light blue bar move across the screen and then move
down to the next line as long as the Mb3i:"\-) is pressed.

READY -

7

(l

(l

Now. hold KUiil while pressing any of the other number keys. Each of

them has a color marked on the front. Anything displayed from this point will be

in that color. For example, hold E3 and the Q key and release both.

Watch the display. The bar is now in yellow! In a like manner you can change

the bar to any of the other colors indicated on the number keys by holding

EES and the appropriate,- key.
Change the bar to a few more different colors and then adjust the color and

tint controls on your monitor so the display matches the color you selected.

The display should appear something like this:

RED BAR

GREEN BAR

BLUE BAR

YELLOW BAR

At this point everything is properly adjusted and working correctly. The
following chapters will introduce you to the BASIC language. However, you can
immediately start using some of the many prewritten applications and games

available without knowing anything about computer programming.

Each of these packages contains detailed information about how to use the

program. It is suggested, though, that you read through the first few chapters of

this manual to become more familiar with the operation of your new system.

Now, hold EIilI while pressing any of the other number keys. Each of
them has a color marked on the front. Anything displayed from this point wi ll be
in that color. hold EIilI and the D key and release both.
Now hold the

Watch the displa,y. bar is now in yellow! In a like manner you can change
the bar to any other colors indicated on the number keys by holding
EIilI and the appropriate key.
Change the bar to a few more different colors and then adjust the color and

tint controls on your monitor so the display matches the color you selected.
The display should appear something like this:

II RED BAR
D GREEN BAR
D BLUE BAR
D YELLOW BAR

At this pOint everything is properly adjusted and working correctly. The
following chapters will introduce you to the BASIC language. However, you can
immediately start using some of the many prewritten applications and games
available without knowing anything about computer programming.

Each of these packages contains detailed information about how to use the
program. It is suggested , though, that you read through the first few chapters of
this manual to become more familiar with the operat ion of your new system.

8

EXPANDING YOUR SYSTEM WITH OPTIONAL PERIPHERALS

Commodore offers a variety of peripheral devices that expand the

capabilities of your computer. These peripherals include:

• storage devices

• printers and plotters

• monitors

• modems for telecommunications

• game attachments

• speech and graphics modules

• desktop controllers

STORAGE DEVICES

Disk Drives

Commodore's disk drives let you store large amounts of information on 5Va "

floppy diskettes. Diskettes offer fast storage and retrieval, and they

automatically keep track of all your files in a directory, or table of contents, that

you can display on your screen or print on a printer.

The SX-64 is equipped with one built-in disk drive; the DX-64 has two drives.

In addition, you can add extra disk drives by daisy-chaining them to your com

puter. Daisy-chaining means connecting one drive to the computer, and then

connecting additional drives to each other.

By acquiring the Commodore 64 IEEE Interface Expansion Card, you can also

attach any IEEE disk drive, such as Commodore's CBM 8050 or 4040 Dual Flop

py Disk Drives, to the Executive 64.

Chapter 2 contains detailed information on using disk drives.

PRINTING AND PLOTTING DEVICES

Printers

You can attach Commodore's 1525, 1526, or MPS-801 Printers to the Ex

ecutive 64. These models are inexpensive dot matrix printers. By acquiring the

Commodore 64 IEEE Interface Expansion Card, you can also attach any IEEE

printer, such as Commodore's 6400 letter quality printer, or the high speed 8023

dot matrix printer, to the Executive 64.

Printer/Plotter

Commodore's 1520 Printer/Plotter prints and draws graphics in four colors

(black, blue, red, and green). With the 1520, you can draw bar charts, pies, and a

variety of complex graphics.

THE 1701/1702 MONITOR

Commodore's 14" color monitor offers a superior color picture with high

resolution that enhances your computing experience. This monitor can be con

nected to the Executive 64. The monitor is connected to the computer by an

8-pin DIN cable. The 1701/1702 Color Monitor User's Guide that comes with the

monitor clearly explains connections. You can also consult Appendix I for infor

mation about the pinouts in the 8-pin connector.

NOTE: You can also use a 5-pin cable to connect a monitor to the Executive 64.

Just plug it into the 8-pin connector.

EXPANDING YOUR SYSTEM WITH OPTIONAL PERIPHERALS n
Commodore offers a variety of peripheral devices that expand the ,...,

capabilities of your computer. These peripherals include:

• storage devices
• pri nters and plotters n
• monitors
• modems for telecommunications r-.
• game attachments
• speech and graphics modules
• desktop controllers ~

STORAGE DEVICES

Disk Drives

Commodore's disk drives let you store large amounts of information on 5'A"
floppy diskettes. Diskettes offer fast storage and retrieval , and they
automatically keep track of all your fi les in a directory, or table of contents, that
you can display on your screen or print on a pri nter.

The SX-64 is equipped with one built-in disk drive; the DX-64 has two drives.
In addition, you can add extra disk drives by daisy-chaining them to your com
puter. Daisy-chaining means connecting one drive to the computer, and then
connect ing additional drives to each other.

By acquiring the Commodore 64 IEEE Interface Expansion Card, you can also
attach any IEEE disk drive, such as Commodore's CBM 8050 or 4040 Dual Flop·
py Disk Drives, to the Executive 64.

Chapter 2 contains detailed information on using disk drives.

PRINTING AND PLOTTING DEVICES

Printers

You can attach Commodore's 1525, 1526, or MPS·801 Printers to the Ex·
ecutive 64. These models are inexpensive dot matrix printers. By acquiring the
Commodore 64 IEEE Interface Expansion Card, you can also attach any IEEE
printer, such as Commodore's 6400 letter quality printer, or the high speed 8023
dot matrix printer, to the Executive 64.

Printer/Plotter

Commodore's 1520 Printer/Plotter prints and draws graphics in four colors
(black, bl ue, red , and green). With the 1520, you can draw barcharts, pies, and a
variety of complex graphics.

THE 170111702 MONITOR

Commodore's 14" color monitor offers a superior color picture with high
resolution that enhances your computing experience. This moni tor can be con
nected 10 the Executive 64. The monitor is connected to the computer by an
8·pin DIN cable. The 1701 /1702 Color Monitor User's Guide that comes with the
monitor clearly explains connections. You can also consult Appendix I for infor
mation about the pinouts in the 8-pin connector.

NOTE: You can also use a 5-pin cable to connect a monitor to the Executive 64.
Just plug it into the 8·pin connector.

9

n

MODEMS FOR TELECOMMUNICATIONS

The 1600 VICMODEM

Commodore's inexpensive 1600 VICMODEM lets you use your telephone to

connect your Executive 64 to other computers and computer services. These

computer services include CompuServe, The Commodore Information Net

work. The Source, Dow Jones News/Retrieval, and others.

THE Z-80 MICROPROCESSOR AND CP/M"' OPERATING SYSTEM

The Z-80 microprocessor turns your Executive 64 into a dual microprocessor

home computer. The Z-80 gives you access to the popular CP/M Operating

System, which offers a variety of software applications, including wordprocess-

ing. widely-used business programs, high level computer languages (e.g.,

COBOL, FORTRAN), and other useful programs.

ATTACHMENTS FOR GAMES AND OTHER USES

Commodore offers joysticks, paddles, and trackballs that enhance game-

piaying on your computer. These attachments also have other applications. For
example, the joystick works with Commodore's MAGIC DESK™ software

series, which lets you perform many complex tasks without knowing any com

puter language. The joystick moves a hand that points to a picture representing
the task you want to do.

THE COMMODORE SPEECH MODULE

Commodore's Speech Module makes your Executive 64 talk. The module
comes with a built-in vocabulary of 235 utterances, and, with software support,

it can speak in different voices. The Module is easily programmed in BASIC and
also works with preprogrammed software on disk and cartridge. Some of Com

modore's first talking cartridges include: the MAGIC DESK™ series. GORF and
WIZARD OF WOR.

COMMODORE GRAPHICS AIDS

Commodore provides a variety of graphics programming aids, including the
SUPEREXPANDER 64 cartridge, which adds easy-to-learn graphic plotting and

music programming commands to BASIC; SIMON'S BASIC, which adds 118

powerful new commands to BASIC, including programming help and graphics

commands: and LOGO, an easy-to-learn progamming language with TURTLE
graphics.

10

v

v

v

MODEMS FOR TELECOMMUNICATIONS

The 1600 VICMODEM

Commodore's inexpensive 1600 VICMODEM leis you use your telephone to
connect your Executive 64 to other computers and computer services. These
computer services include CompuServe, The Commodore Information Net·
work, The Source, Dow Jones News/Retrieval, and others.

THE Z·BO MICROPROCESSOR AND CP/M" OPERATING SYSTEM

The Z-80 microprocessor turns your Executive 64 into a dual microprocessor
home computer. The Z.aO gives you access to the popular CP/M Operating
System, which ofters a variety of software applicat ions, including wordprocess·
ing , widely-used business programs, high level computer languages (e.g.,
COBOL, FORTRAN), and other uselul programs.

ATIACHMENTS FOR GAMES AND OTHER USES

Commodore ofters joysticks, paddles, and trackballs that enhance game·
playing on your computer. These attachments also have other appl icat ions. For
example, the joystick works with Commodore's MAGIC DESKT" software
series, which lets you perform many complex tasks without knowing any com·
puter language. The joystick moves a hand that paints to a picture representing
the task you want to do.

THE COMMODORE SPEECH MODULE

Commodore's Speech Modu le makes your Executive 64 talk. The module
comes with a bu ilt·in vocabulary of 235 utterances, and, with software support,
it can speak in different voices. The Module is easily programmed in BASIC and
also works with preprogrammed software on disk and cartridge. Some of Com
modore's first talking cartridges include: the MAG IC DESKT" series, GORF, and
WIZARD OF WOR.

COMMODORE GRAPHICS AIDS

Commodore provides a variety of graphics programming aids, including the
SUPEREXPANDER 64 cartridge, which adds easy·to·learn graphic plotting and
music programming commands to BASIC; SIMON'S BASIC, which adds 11 8
powerfu l new commands to BASIC, including programming help and graphics
commands; and LOGO, an easy·to·learn progamming language with TURTLE
graphics.

10

SPECIAL DESKTOP CONTROLLER

Commodore will soon introduce a special device that controls the screen as

you move the controller across a desktop. This new controller will be an op

tional enhancement for Commodore Software products, such as the MAGIC

DESK Series.

MUSIC ATTACHMENTS

Commodore will also soon offer a Musical Keyboard and a 3-pad percussion

attachment called the Digi-drumrM. Both products will include special software

packages. These attachments will increase the music making capabilities of

the 64 computers.

CONNECTING TO A STEREO SYSTEM

The sound and music-making capabilities of the Executive 64 can be enhanc

ed by connecting your computer to a high quality amplifier and stereo speakers.

The 8-pin DIN cable discussed in the 1701/1702 Color Monitor section can also

be used to connect your computer to an amplifier.

DESIGNING A COMPUTER SYSTEM FOR YOUR NEEDS

Commodore offers a variety of peripherals that let you create your own

customized computer system. We offer different types of storage, printing, and

telecommunications devices so you can choose what's best for you. For more

information about Commodore peripherals, read The Commodore Peripherals

Guide and the Commodore magazines discussed in Appendix R and consult

your Commodore dealer.

11

SPECIAL DESKTOP CONTROLLER

Commodore will soon introduce a special device that controls the screen as
you move Ihe conlroller across a desktop. This new conlroller will be an op·
tional enhancement for Commodore Software products, such as the MAGIC
DESK Series.

MUSIC ATTACHMENTS

Commodore will also soon offer a Musical Keyboard and a 3-pad percussion
attachment called the Digi-drum™. Both products will include special software
packages. These attachments will increase the music making capabilities of
the 64 computers.

CONNECTING TO A STEREO SYSTEM

The sound and music-making capabilities of the Execut ive 64 can be enhanc
ed by connecting your computer to a high quali ty amplifier and stereo speakers.
The 8-pin DIN cable discussed in the 170111702 Color Monitor section can also
be used to connect your computer to an amplifier.

DESIGNING A COMPUTER SYSTEM FOR YOUR NEEDS

Commodore offers a variety of peripherals that let you create your own
customized computer system. We offer different types of storage, printing, and
telecommunications devices so you can choose what's best for you . For more
information about Commodore peripherals, read The Commodore Peripherals
Guide and the Commodore magazines discussed in Appendi x R and consult
your Commodore dealer.

11

CHAPTER 2

GETTING STARTED

• Communicating with your 64: The Keyboard

• Loading and Saving Programs

• How to Load Prepackaged Software

• How to Formal a New Disk

• How to Save Programs

• Listing a Directory of programs on a Disk

• Files

• Sequential Files

• Relative Files

• Random Access Files

• Chart of BASIC Commands for Disks and Printers

COMMUNICATING WITH YOUR 64: THE KEYBOARD

The computer keyboard lets you communicate with your 64. You use the

keys to tell the computer what you want it to do and to answer the questions
the computer displays on the screen.

The keyboard looks like a regular typewriter, but the computer has special

keys that let the 64 do more than a typewriter. While you read the next few

pages, take a look at these special keys.

RETURN The RETURN key tells the computer to look at

what you typed and put this information in

memory. The RETURN key also moves the cursor

to the next line.

NOTE: Memory is all the information the com

puter currectly knows without needing you to tell

it where to look.

SHIFT The SHIFT key works like the shift key on a

regular typewriter: it lets you print capital letters

or the top characters on double character keys.

12

CHAPTER 2
GEITING STARTED
• Communicating with your 64: The Keyboard

• Load ing and Saving Programs

• How to Load Prepackaged Software

• How to Format a New Disk

• How to Save Programs

• Listing a Directory of programs on a Disk

• Fi les

• Sequential Files

• Relative Files

• Random Access Files

• Chart of BASIC Commands for Disks and Printers

COMMUNICATING WITH YOUR 64: THE KEYBOARD
The computer keyboard lets you communicate with your 64. You use the

keys to tell the computer what you want it to do and to answer the questions
the computer displays on the screen.

The keyboard looks like a regu lar typewriter, but the computer has special
keys that let the 64 do more than a typewriter. While you read the next few
pages, take a look at these special keys.

RETURN The RETURN key tells the computer to look at

SHIFT

what you typed and put this information in
memory. The RETURN key also moves the cursor
to the next line.

NOTE: Memory is all the information the com-
puter currectly knows without needing you to tell 0
it where to look.

The SHIFT key works like the shift key on a
regular typewriter: it lets you print capital letters
or the top characters on double character keys.

mm
~-'~ t::jJ- \\

12

m
~-''\

When you are using the graphics on the front of

the keys, the SHIFT key displays the graphic

character on the RIGHT side of the key.

-

-

- When you are using the four special function

keys at the right side of the keyboard, the SHIFT

key gives you the functions on the FRONT of the

key (f2, f4, f6, and f8).

13

v

v

When you are using the graphics on the front of
the keys, the SH IFT key displays the graphic
character on the RIGHT side of the key.

'-;-h
~

When you are using the fou r special funct ion
keys at the right side 01 the keyboard, the SHIFT
key gives you the functions on the FRONT of the
key (f2, f4, f6, and f8).

13

KEYS THAT LET YOU MAKE CHANGES

CRSR

INST/DEL

The cursor is the little colored rectangle that

marks your place on the screen. There are two

CuRSoR keys:

tCRSR+ moves the cursor up and down

■•-CRSR-*- moves the cursor left and right

You must use the SHIFT key with the

+ CRSR+ key to move the cursor up, and with

the * CRSR-*- key to move the cursor to the left.

You don't have to keep tapping a CRSR key to

get it to move more than one space. Just hold it

down until the cursor is where you want it.

DEL stands for DELete. When you press the

DEL key, the cursor moves back a space and

erases the character that's there.

PRINT "ERROR"#B

PRINT "ERROR"B

When you DELete in the middle of a line, move

the cursor just to the left of the character you

want to DELete.

FIX ITAGAINS, SAM

FIX IT AGAINSB SAM

Then press the DEL key. The characters to the

right automatically move over to close up the

space.

FIX IT AGAIN, SAM

INST stands for INSerT. You have to use the

SHIFT key with the INST/DEL key when you want

to insert characters in a line.

If you've left some characters out of a line, use

the CRSR keys to move the cursor back to the er
ror.

WHILE U WERE OUT

WHILE ■ WERE OUT

Then, while you hold down the SHIFT key,

press the INST/DEL key until you have enough

space to add the missing characters. INST

doesn't move the cursor; it adds space between

the cursor and the character to its right.

WHILE ■ U WERE OUT

WHILE YOU WERE OUT

Use the DEL and INST keys together to fix

wrong characters.

WE'RE NUMBER TWO!

WE'RE NUMBER !

WE'RE NUMBER ■ !

WE'RE NUMBER ONE!

14

KEYS THAT LET YOU MAKE CHANGES

CRSR

INSTIDEL

The cursor is the little colored rectangle that
marks your place on the screen. There are two
CuRSoR keys:

t CRSR. moves the cursor up and down
-CRSR - moves the cursor left and right

You must use the SHIFT key with the
t CRSR . key to move the cursor up, and with

the + CRSR - key to move the cursor to the left.
You don't have to keep tapping a CRSR key to

get it to move more than one space. Just hold it
down until the cursor is where you want it.

DEL stands for DELete. When you press the
DEL key, the cursor moves back a space and
erases the character that's there.

PRINT " ERROR"#.
PRINT " ERROR" .

When you DELete in the middle of a line, move
the cu rsor just to the left of the character you
want to DELete.

FIX IT AGAINS, SAM
FIX IT AGAINS. SAM

Then press the DEL key. The characters to the
right automatically move over to close up the
space.

FIX IT AGAIN , SAM

INST stands for INSerT. You have to use the
SHI FT key wi th the INSTIDEL key when you want
to insert characters in a line.

If you 've left some characters out of a line, use
the CRSR keys to move the cursor back to the er·
ror.

WHILE U WERE OUT
WHILE. WERE OUT

Then, while you hold down the SHIFT key,
press the INST/DEL key until you have enough
space to add the missing characters. INST
doesn't move the cursor; it adds space between
the cursor and the character to its right.

WHILE. U WERE OUT
WH ILE YOU WERE OUT

Use the DEL and INST keys together to fix
wrong characters.

WE'RE NUMBER TWO!
WE'RE NUMBER !
WE'RE NUMBER.
WE'RE NUMBER ON E !

14

n
n

CLR/HOME

RESTORE

HOME moves the cursor back to the upper left

corner of the screen. This is called the "HOME"

position.

CLR stands for CLeaR. When you use the

SHIFT key with the CLR/HOME key, the screen

CLeaRs and the cursor returns to the home

positon.

The RETORE key returns the computer to its

normal state by RESTOREing the default condi

tions (e.g., the default screen color is blue, the

default for I/O chips is OFF, etc.) RESTORE does

such things as clear the screen, returning it to the

original color, and turn off the picture- and sound-

making chips.

NOTE: For RESTORE to work, you must hold

down the STOP key while you press the

RESTORE key.

For example, suppose you've just piayed a

music program that also turned your screen red

and yellow while it LISTed the program. When you

press STOP and RESTORE at the end of the pro

gram, the last note from the program will cease,

your screen will turn blue and the only thing

displayed will be the READY prompt.

15

'-"

~

~

'-"

v

'-'

'"'
v

v

'-'

'-'

'"'
;..)

...-J

v

--'

v

'-'

'-"

'-'

~

'-"

'-'

CLR/HOME

RESTORE

HOME moves the cursor back to the upper left
corner of the screen. This is called the " HOME"
position.

CLR stands for CLeaR. When you use the
SHIFT key with the CLRlHOME key, the screen
CLeaRs and the cursor returns to the home
positon.

The RETORE key returns the computer to its
normal state by RESTOREing the default condi
tions (e.g., the default screen color is blue, the
default for 1/0 chips is OFF, etc.) RESTORE does
such things as clear the screen , returning it to the
original color, and turn off the picture- and sound
making chips.

NOTE: For RESTORE to work, you must hold
down the STOP key whi le you press the
RESTORE key.

For example, suppose you've just played a
music program that also turned your screen red
and yellow while it LISTed the program. When you
press STOP and RESTORE at the end of the pro
gram, the last note from the program wi ll cease,
your screen will turn blue and the only thing
displayed will be the READY prompt.

15

FUNCTION KEYS

The keys on the right side of the keyboard, f1-f8, are function keys that you

can program to perform a variety of tasks. The explanation of the GET state

ment in Chapter 5 tells you how to program function keys.

CTRL

RUN/STOP

COMMODORE KEY

The ConTRoL key lets you set colors and do

other special tasks called control functions.

To set colors, hold down the CTRL key while

you press the key with the color you want. You

can get eight more colors with the C^ key.

Chapter 6 also has more about colors.

To get a control function, hold the CTRL key

down while you press the other key. Control func

tions are commonly used in prepackaged soft

ware such as a word processing system.

You can halt a BASIC program while it is still

RUNning by pressing the STOP key. You can also

use the STOP key to halt a printout while it is still

printing.

RUN lets you load a program automatically

from diskette.

When you want to use the RUN key, you must

also use the SHIFT key.

The Commodore key C^ can do two things:

1. [Cs| lets you switch back and forth between
the upper and lower case display mode (the let

ters and characters on the tops of the keys}

and the upper case/graphic display mode (capi

tal letters and the graphics on the fronts of the

keys).

To switch modes, press the C= and SHIFT

keys at the same time.

When you first turn on your64, it is in the up

per case/graphic mode, which means that

everything you type in is in capital letters.

When you are in this mode, you can also print

all the graphics on the fronts of the keys.

• To print the graphic on the right side of a

key, hold down the SHIFT key while you

press the key with the graphic you want to

print. You can only print the right side

graphics when you are in the upper

case/graphic mode.

• To print the graphic on the left side of a key,

hold down the ,O key while you press the

graphic key. You" can print the left side

graphic in either mode.

16

FUNCTION KEYS

The keys on the right side of the keyboard, fH8, are function keys that you
can program to perform a variety of tasks. The explanation of the GET state·
ment in Chapter 5 tells you how to program function keys.

CTRl

RUN/STOP

~ COMMODORE KEY

The ConTRol key lets you set colors and do
other special tasks called control functions.

To set colors, hold down the CTRl key white
you press the key with the color you want. You
can get eight more cotors with the ~ key.
Chapter 6 also has more about colors.

To get a control function, hold the CTRl key
down while you press the other key. Cont rol func·
tions are commonly used in prepackaged soft·
ware such as a word processing system.

You can hal t a BASIC prog ram while it is stil l
RU Nning by pressing the STOP key. You can also
use the STOP key to halt a printout while it is stil l
printing.

RUN lets you load a program automatical ly
from diskette.

When you want to use the RUN key, you must
also use the SHIFT key.

The Commodore key ~ can do two things:

1. ~ lets you switch back and fonh between
the upper and lower case display mode (the let·
ters and characters on the tops of the keys)
and the upper case/graphic display mode (capi·
tal letters and the graphics on the fronts of the
keys).

To switch modes, press the ~ and SH IFT
keys at the same time.

When you first turn on your 64, it Is in the up·
per case/g raphic mode, which means that
everything you type in is in capital letters.
When you are in this mode, you can also print
all the graph ics on the fronts of the keys.
• To print the graphic on the right side of a

key, hold down the SHIFT key while you
press the key with the graphic you want to
print. You can on ly print the right side
graphics when you are in the upper
case/graphic mode.

• To print the graphic on the left side of a key,
hold down the ~ key while you press the
graphic key. You can print the left side
graphic in either mode.

16

_

—

2. The [C=j key also lets you use the second set of
eight colors shown on the color keys.JTo get

these other colors, hold down the [CE key

while you press the number for the color you

want.

—

-

LOADING AND SAVING PROGRAMS

The Executive 64 accepts programs from disk or cartridge. This means you

can use prewritten software simply by loading it. But more important, the 64

lets you save your own programs for reuse. To reuse a program you wrote and

saved on disk, all you do is load and run it.

Prepackaged software on disk or cartridge designed for the Commodore 64

also runs on the Executive 64.

17

r;-~
~

2. The ~ key also lets you use the second set of
eight colors shown on the color keys. To get
these other colors, hold down the ~ key
while you press the number for the color you
want.

LOADING AND SAVING PROGRAMS
The Executive 64 accepts programs from disk or cartridge. Th is means you

can use prewritten software simply by loading it. But more important, the 64
lets you save your own programs tor reuse. To reuse a program you wrote and
saved on disk, all you do is load and run it.

Prepackaged software on disk or cartridge designed for the Commodore 64
also runs on the Executive 64.

17

HOW TO LOAD PREPACKAGED SOFTWARE

Loading Cartridges

You can use a special line of programs and games on cartridge with your 64.

The programs include a wide variety of business and personal applications. The

games are just like real arcade games, not imitations.

Follow these steps to load games and other cartridges:

1. Turn OFF your Executive 64.

YOU MUST TURN OFF YOUR EXECUTIVE 64 BEFORE YOU INSERT OR

REMOVE CARTRIDGES. IF YOU DON'T. YOU MAY DAMAGE THE CAR

TRIDGE AND THE COMPUTER.

2. Insert the cartridge in the slot on the top of your computer.

3. Turn on your 64.

4. Begin the game by typing the START key that's listed in the game's instruc

tion sheet.

Loading Disks

Disks, which are often called "floppy disks", are really easy to use.

The steps are the same for loading preprogrammed disks and disks that you

program yourself.

1. insert a disk into your disk drive. Make sure the label on the disk is facing up.

Put the disk in so that the labelled end goes in last. Look for a little notch on

the disk (it might be covered with a little piece of tape). This notch must be

on the left side as you put in the disk, assuming that you're facing your com

puter. Be sure the disk is all the way in.

2. Close the protective gate on the disk drive after you insert the disk. Just

push down the lever.

3. Type LOAD "PROGRAM NAME". 8. The 8 is the code for disks. You need to

type it here to let the computer know you're loading a disk.

NOTE: You can LOAD the first program by using the ' sign in place of the

program name: LOAD "*", 8.

4. Press the RETURN key. The disk will spin and your screen will say:

SEARCHING FOR PROGRAM NAME

LOADING

READY

■

5. Type RUN when the screen says READY and the cursor appears. Your soft

ware is ready to use.

18

HOW TO LOAD PREPACKAGED SOFTWARE
Loading Cartridges

You can use a special line of programs and games on cartridge with your 64.
The programs incl ude a wide variety of business and personal applicat ions. The
games are just like real arcade games, not imitations.

Follow these steps to load games and other cartridges:

1. Turn OFF your Executive 64.

YOU MUST TURN OFF YOUR EXECUTIVE 64 BEFORE YOU INSERT OR
REMOVE CARTRIDGES. IF YOU DON'T, YOU MAY DAMAGE THE CAR·
TRIDGE AND THE COMPUTER.

2. Insert the cartridge in the slot on the top of your compu ter.
3. Turn on your 64.
4. Begin the game by typing the START key that's listed in the game's instruc·

tion sheet.

Loading Disks

Disks, which are often called " floppy disks", are really easy to use.
The steps are the same for loading preprogrammed disks and disks that you

program yourself.

1. Insert a disk into your disk drive. Make sure the label on the disk is facing up.
Put the disk in so that the labelled end goes in last. Look for a little notch on
the disk (it might be covered with a little piece of tape). This notch must be
on the left side as you put in the disk, assuming that you 're facing your com·
puter. Be sure the disk is all the way in.

2. Close the protective gate on the disk drive after you insert the disk. Just
push down the lever.

3. Type LOAD " PROGRAM NAME" , 8. The 8 is the code for disks. You need to
type it here to let the computer know you're loading a disk.

NOTE: You can LOAD the first program by using the · sign in place of the
program name: LOAD " . " , 8.

4. Press the RETURN key. The disk will spin and your screen wi ll say:

SEARCHING FOR PROGRAM NAME
LOADING

READY

•
5. Type RUN when the screen says READY and the cursor appears. Your soft·
~is~~u~ n

18

n

n

HOW TO FORMAT A NEW DISK

When you're using a new. unprogrammed disk for the first time, you need to

format it. Formatting, which is also called headering, prepares your disk by do

ing things like dividing the disk into blocks. Formatting also creates a directory

that you use as a table of contents for the files you save on the disk. DO NOT

header a preprogrammed disk.

You only have to format new disks, not disks that already have programs on

them unless you want to erase the entire disk and reuse it.

To format a new disk, use this special version of the OPEN and NEW com

mands:

OPEN 1,8.15,liN0:<name>.<id>"

NO tells the computer to header (NEW) the disk in drive 0. If you have a DX-64,

header disks in drive 0.

The name you use in this command goes in the directory as the name of the

entire disk. Give the disk any name up to 16 characters.

The id is any two characters. Give the disk any id you want, but you should

give every disk a different id code.

When the disk drive light goes off. type CLOSE 1 and press return.

BE CAREFUL! Headering a disk erases all information on the disk, if there is

any. Header only a new disk or a disk you are willing to erase. Here are some ex

amples of OPEN commands that header a disk:

OPEN 1,8,15,"N0:MYFILE.A3"

OPEN 1,8,15,"N0:$RECORDS,02"

Now that you know how to header a disk, you are ready to use disks to write

and save programs on your Executive 64. Appendix S contains more informa

tion on the OPEN command.

HOW TO SAVE PROGRAMS

When you want to reuse a program you've written, be sure to SAVE it before

you LOAD another program. If you don't, you'll lose the program.

When you change a SAVEd program, you have to SAVE it again if you want to

keep the new version.

When you reSAVE a program, you are replacing the old version with the new

one. If you want to keep both the old and the changed versions, you have to give

the new one a different name when you SAVE it.

When you want to SAVE a program you've written on disk, follow these sim

ple steps:

1. Key in SAVE "PROGRAM NAME",8. The 8 is the code for disks. It tells the

computer that you're using a disk.

2. Press RETURN. The disk makes a noise, and the computer displays this

message when the program is saved:

SAVING "PROGRAM NAME"

OK

READY

19

v

HOW TO FORMAT A NEW DISK
When you're using a new, unprogrammed disk for the first time, you need to

format it. Formatting, which is also called headering, prepares your disk by do
ing things like dividing the disk into blocks. Formatting also creates a directory
that you use as a table of contents for the files you save on the disk. DO NOT
header a preprogrammed disk.

You only have to format new disks, not disks that already have programs on
them unless you want to erase the entire disk and reuse it.

To format a new disk, use this special version of the OPEN and NEW com·
mands:

OPEN 1,8,15,"NO: <name> , < id Y '

NO tells the computer to header (N EW) the disk in drive O. If you have a DX-64,
header disks in drive O.

The name you use in this command goes in the directory as the name of the
v entire disk. Give the disk any name up to 16 characters.

'-' The id is any two characters. Give the disk any id you want, but you should

v

v

give every disk a different id code.

When the disk drive light goes off, type CLOSE 1 and press return.

BE CAREFUL! Headering a disk erases all information on the disk, if there is
any. Header only a new disk or a disk you are willing to erase. Here are some ex
amples of OPEN commands that header a disk:

OPEN 1,8, 15," NO:MYFILE,A3"
OPEN 1,8,15,"NO:$RECORDS,02"

Now that you know how to header a disk, you are ready to use disks to write
and save programs on your Executive 64. Appendix S contains more informa
tion on the OPEN command.

HOW TO SAVE PROGRAMS

When you want to reuse a program you 've written, be sure to SAVE it before
you LOAD another program. If you don't, you'll lose the program.

When you change a SAVEd program, you have to SAVE it again if you want to
keep the new version.

When you reSAVE a program, you are replacing the old version with the new
one. If you want to keep both the old and the changed vers ions, you have to give
the new one a different name when you SAVE it.

When you want to SAVE a program you 've written on disk, follow these sim·
pie steps:

1. Key in SAVE " PROGRAM NAME",8. The 8 is the code for disks. It tells the
computer that you 're using a disk.

2. Press RETURN. The disk makes a nOise, and the computer displays this
message when the program is saved:

SAVING "PROGRAM NAME"
OK
READY

19

—

LISTING A DIRECTORY OF PROGRAMS ON A DISK

When you SAVE programs on a disk, the computer automatically makes a ^

table of contents, or a DIRECTORY, of the names of the programs on the disk.

You can display this directory to see what programs are on your disk. Follow

these steps:
-—i

1. Key in: LOAD "$",8 and press RETURN. The computer displays this

message: <■

SEARCHING FOR $ m

LOADING

READY ^

2. Key in: LIST and press RETURN ft

Your programs names are displayed on your screen. _

FILES

There are two types of files that you can store:

1. PROGRAM FILES, which store BASIC or machine language programs.

2. DATA FILES, which store numeric and string data that you can use in pro

grams. A unit of a data file is called a RECORD; each record can contain one ^

or more pieces of data.

There are three types of data files, which differ in the way data records are

stored and accessed: ^

1. SEQUENTIAL FILES, which store data in records in the order you input the

data. Data records are accessed sequentially, which means that you can't go

directly to record 10; you must read the file from beginning to end. ^

2. RELATIVE FILES, which let you access data records directly by positioning

a pointer to any record relative to the beginning of the file, which means that

you can go directly to record 10.

3. RANDOM ACCESS, or user files, which store data records according to your

design. Unlike the other file types, these files are not maintained by the disk ^

operating system. You must design and maintain them yourself.

-

20

LISTING A DIRECTORY OF PROGRAMS ON A DISK
When you SAVE programs on a disk, the computer automatically makes a

table of contents, or a DIRECTORY, of the names of the programs on the disk.
You can display this directory to see what programs are on your disk. Follow
these steps:

1. Key in: LOAD "$",8 and press RETURN. The computer displays this
message:

SEARCHING FOR $
LOADING
READY

2. Key in: LIST and press RETURN

Your programs names are displayed on your screen.

FILES
There are two types of files that you can store:

1. PROGRAM FILES, which store BASIC or machine language programs.
2. DATA FILES, which store numeric and string data that you can use in pro·

grams. A unit of a data file is called a RECORD; each record can contain one
or more pieces of data.

There are three types of data files, which differ in the way data records are
stored and accessed:

1. SEQUENTIAL FILES, which store data in records in the order you input the
data. Data records are accessed sequentially, which means that you can't go
directly to record 10; you must read the file from beginning to end.

2. RELATIVE FILES, which let you access data records directly by posit ioning
a pOinter to any record relat ive to the beginning of the file, which means that
you can go directly to record 10.

3. RANDOM ACCESS, or user fites, which store data records according to your
design. Unlike the other fil e types, these files are not maintained by the disk
operat ing system. You must design and maintain them yourself.

20

SEQUENTIAL FILES

FORMAT FOR OPENING A SEQUENTIAL FILE:

OPEN file#, device#, channels. ■'O:name.type,direction"

The file number is the same as in all your other applications of the OPEN

statement, and it is used throughout the program to refer to this particular file.

The device# is usually 8. The channel# is a data channel, number 2 through 14. It

is convenient to use the same number for both the channel^ and file#, to keep

them straight. The name is the file name (no wild cards or pattern matching if

you're creating a write file). The type can be any of the ones from the chart

beiow. You can abbreviate by using the first letter (P, S, U, R). The direction

must be READ or WRITE. You can use just the first letter (R or W).

FILE TYPE MEANING

PRG Program

SEQ Sequential

USR User

REL Relative

EXAMPLES OF OPENING SEQUENTIAL FILES:

OPEN 2, 8, 2, "0:DATA, S, W

OPEN 8, 8, 8, "0:Program, P, R"

OPEN A, B, C, "0:" + A$ + "U, W"

If the file already exists, you can use the replace option in the OPEN state

ment. Simply add the @0: before the file's name in the OPEN statement.

EXAMPLE OF SEQUENTIAL FILE WITH REPLACE OPTION:

OPEN 2, 8, 2, ■'@0:DATA,S,WM

The 0: should always precede the name of the file or the drive will only allow

you to use 2 of the available buffers.

WRITING TO AND READING FROM A SEQUENTIAL FILE

PRINT# and INPUTS and GET#

The PRINTS command works exactly like the PRINT statement, except that

output is re-directed to the disk drive. The reason for the special emphasis on

the word exactly is that all the formatting capabilities of the PRINT statement,

as applies to punctuation and data types, applies here too. It just means that

you have to be careful when putting data into your files.

FORMAT FOR WRITING TO FILE WITH PRINTS:

PRINTS files, data list

The file# is the one from the OPEN statement when the file was created.

The data list is the same as the regular PRINT statement — a list of variables

and/or text inside quotes. However, you must be especially careful when

writing data so that it is as easy as possible to read back again later.

21

v

v

SEQUENTIAL FILES
FORMAT FOR OPENING A SEQUENTIAL FILE:

OPEN file#, device#, channel#, "O:name,type,direction"

The file number is the same as in all your other applications of the OPEN
statement, and it is used throughout the prog ram to refer to this particular file.
The device# is usually 8. The channel# is a data channel, number 2 throug h 14.11
is convenient to use the same number for both the channel# and file# , to keep
them stra ight. The name is the file name (no wild cards or pattern matching if
you're creating a write file). The type can be any of the ones from the chart
below. You can abbreviate by using the first letter (P, S, U, R). The direction
must be READ or WRITE. You can use just the first letter (R or W).

FILE TYPE

PRG
SEQ
USR
REL

MEANING

Program
Sequential
User
Relative

EXAMPLES OF OPENING SEQUENTIAL FILES:

OPEN 2, 8, 2, "O:DATA, S, W"

OPEN 8, 8, 8, "O: Program, P, R"

OPEN A, B, C, "0:" + A$ + "u, W"

If the file already exists, you can use the replace option in the OPEN state·
ment. Simply add the @O: before the fi le's name in the OPEN statement.

EXAMPLE OF SEQUENTIAL FILE WITH REPLACE OPTION:

OPEN 2,8, 2, "@O:DATA,S,W"

The 0: shou ld always precede the name of the fi le or the drive will only al low
you to use 2 of the available bu ffers.

WRITING TO AND READING FROM A SEQUENTIAL FILE

PRINT# and INPUT# and GET#

The PRINT# command works exactly like the PRINT statement, except that
output is re·directed to the disk drive. The reason for the special emphasis on
the word exactly is that all the formatting capabilities of the PRINT statement,
as applies to punctuation and data types, applies here too. It just means that
you have to be careful when putting data into your files.

FORMAT FOR WRITING TO FILE WITH PRINT#:

PRINT# file#, data list

The file# is the one from the OPEN statement when the fil e was created.

The data list is the same as the regular PRINT statement - a list of variables
and/or text inside quotes. However, you must be especially careful when
writing data so that it is as easy as possible to read back again later.

21

When using the PRINT# statement, if you use commas (,) to separate items

in the list, the items will be separated by some blank spaces, as if it were be

ing formatted for the screen. Semicolons (;) don't result in any extra spaces.

In order to more fully understand what's happening, here is a diagram of a se

quential file created by the statement OPEN 5, 8. 5, "0:TEST,S,W":

col

char 10 14

The eof stands for the end-of-file marker. String data entering the file goes in

byte by byte, including spaces.

For instance, let's set up some variables with the statement A$= "HELLO":

B$= "ALL": C$= "BYE". Here is a picture of a file after the statement PRINTS

5, A$: B$; C$:

Jur

H

!

[■

2

I.

.1

1.

i

0

5

A

6

L

7

L

U

B

'*

Y

10

b.

11

CR

U

eof

IJ

CR stands for the CHRS code 13, the carriage return, which is automatically

PRINTed at the end of every PRINT or PRINT# statement unless there is a com

ma or semicolon at the end of the line.

NOTE: Do not leave a space between PRINT and #, and do not try to abbreviate

the command as ?#. See the appendixes in the user manual for the correct ab

breviation.

FORMAT FOR INPUT# STATEMENT:

INPUTS file#, variable list

When using INPUTS to read data, there is no way to tell that it's not supposed

to be one long string. You need something in the file to act as a separator.

Characters to use as separators include the CR, a comma or a semicolon. The
CR can be added easily by just using one variable per line in the PRINT# state

ment, and the system puts one there automatically. The statement PRINTS 5,

A$: PRINTS 5, B$: PRINTS 5, C$ puts a CR after every variable being written, pro

viding the proper separation for a statement like INPUTS5, A$, B$, C$. A line like

Z$=",":PRINTS5. A$Z$ BSZSCS will do the job as well, and in less space. The

file after that line looks like this:

that

II

1

L

-

i

1

L

4

0

s 6

A

7

L

8

L

9 IU

B

II

Y

12

1.

U

CR

14

eol

IS

Putting commas between variables results in lots of extra space on the disk

being used. A statement like PRINTS 5. A$, BS makes a file that looks like:

i.hj[

H

I

b

2

1.

3

L

4

0

b 7 8 10

■\

12

L

13

L

i4

CR

:j

eol

24

22

When using the PRINT# statement, if you use commas (,) to separate items
in the list, the items will be separated by some blank spaces, as if it were be
ing formatted for the screen. Semicolons (;) don't result in any extra spaces.

In order to more fu lly understand what 's happening, here is a diagram of a se
quen tial file created by the statement OPEN 5, 8, 5, " O:TEST,S,W":

char

The eat stands for the end-at-tile marker. String data entering the file goes in
byte by byte, including spaces.

For instance, let's set up some variables with the statement A$= " HELLO":
B$= "ALL" : C$= " BYE". Here is a picture of a file after the statement PRINT#
5, A$; BS; CS:

.. h .. , \ Il \ l ILILIUI ' IL

CR stands for the CHRS code 13, the carriage return, which is automatically
PRINTed at the end of every PRINT or PRINT# statement unless there is a com
ma or semicolon at the end of the line.

NOTE: Do not leave a space between PRINT and #, and do not try to abbreviate
the command as ?#. See the appendixes in the user manual for the correct ab
breviat ion.

FORMAT FOR INPUT# STATEMENT:

INPUT# file#, variable list

When using IN PUT# to read data, there is no way to tell that it 's not supposed
to be one long string. You need something in the file to act as a separator.
Characters to use as separators include the CR, a comma or a semicolon. The
CR can be added easily by just using one variable per line in the PRINT# state
ment, and the system puts one there automatically. The statement PRINT# 5,
A$: PRINT# 5, B$: PRINT# 5, C$ puts a CR after every variable being written , pro
viding the proper separation for a statement like INPUT#5, A$, B$, C$. A line like
ZS= "," :PRINT# 5, AS Z$ B$ Z$ C$ wil l do the job as wel l, and in less space. The
file after that line looks like this:

\. hll '

Putting commas between variables results in lots of extra space on the disk
being used. A statement like PRINT# 5, A$, BS makes a file that looks like:

d l J f

22

Numeric data written in the file takes the form of a string, as if the STR$ func

tion had been performed on it before writing it out. The first character will be a

blank space if the number is positive, and a minus sign (-) if the number is

negative. Then comes the number, and the last character is the cursor right

character. This format provides enough information for the INPUTS statement

to read them in as separate numbers if several are written with no other special

separators. It is somewhat wasteful of space, since there can be two unused

characters if the numbers are positive.

Here is a picture of the file after the statement PRINT#5,1; 3; 5; 7 is perform

ed:

CR euf

io I2 13

GET#

The GET# retrieves data from the disk, one character at a time.

FORMAT FOR THE GET# STATEMENT:

GET# file#, variable list

Data comes in byte by byte, including the CR, comma, and other separating

characters. It is much safer to use string variables when using the GET# state

ment. You will get a BASIC error message if string data is received where a
number was requested, but not vice-versa.

EXAMPLES OF GET# STATEMENT:

GET# 5, A$

GET# A, B$, C$, D$

GET 5, A

The GET# statement is extremely useful when examining files with unknown

contents, like a file that may have been damaged by an experimental program. It

is safer than INPUT# because there is a limit to the number of characters allow
ed between separators of INPUT variables. With GET#, you receive every

character, and you can examine separators as well as other data.

23

v

v

Numeric data written in the file takes the form of a string, as if the STR$ fu nc
tion had been performed on it before wri ting it out. The first character wi ll be a
blank space if the number is positive, and a minus sign (-) if the number is
negative. Then comes the number, and the last character is the cu rsor right
character. This format provides enough information for the INPUT# statement
to read them in as separate numbers if several are wri tten with no other spec ial
separators. It is somewhat wasteful of space, since there can be two unused
characters if the numbers are positive.

Here is a picture of the file after the statement PRINT# 5, t; 3; 5; 7 is perform
ed:

GET#

The GET# retrieves data from the disk, one character at a time.

FORMAT FOR THE GET# STATEM ENT:

GET# file#, variable list

IS

Data comes in byte by byte, including the CR, comma, and other separating
characters. It is much safer to use string variables when using the GET# state
ment. You will get a BASIC error message if string data is received where a
number was requested, but not vice-versa.

EXAM PLES OF GET# STATEMENT:

GET# 5, A$

GET# A, B$, C$, D$

GET 5, A

The GET# statement is extremely usefu l when examining files with unknown
contents, like a file that may have been damaged by an experimental program. It
is safer than INPUT# because there is a limit to the number of characters al low
ed between separators of INPUT variables. With GET#, you receive every
character, and you can examine separators as well as other data.

23

RELATIVE FILES

FORMAT FOR THE OPEN STATEMENT TO CREATE RELATIVE FILE:

OPEN file#. device#, channel*, "name.L," + CHR$(record length)

EXAMPLES OF OPEN STATEMENT CREATING RELATIVE FILES:

OPEN 2, 8, 2, I*FILE,L1" + CHR$(100)

OPEN F. 8, F. A$ + ",L," + CHR$(O)

OPEN A, B, C, "TEST,L,"+ CHR$(33)

**

RELATIVE FILE FORMAT

DATA BLOCK

BYTE

0,1

2—256

DEFINITION

Track and sector of next data block.

254 bytes of data. Empty records contain FF (all binary ones) in

the first byte followed by 00 (binary all zeros) to the end of the

record. Partially filled records are padded with nulls (00).

SIDE SECTOR BLOCK

BYTE DEFINITION

0,1

2

3

4,5

6,7

8,9

10,11

12,13

14,15

16—256

Track and sector of next side sector block.

Side sector number. (0-5)

Record length.

Track and sector of first side sector (number 0)

Track and sector of second side sector (number 1)

Track and sector of third side sector (number 2)

Track and sector of fourth side sector (number 3)

Track and sector of fifth side sector (number 4)

Track and sector of sixth side sector (number 5)

Track and sector pointers to 120 data blocks.

'

Upon execution, the DOS first checks to see if the file exists. If it does,

then nothing happens. The only way to erase an old relative file is by using the

SCRATCH command, but not by using the replace option.

24

RElATIVE FILES

FORMAT FOR THE OPEN STATEMENT TO CREATE RELATIVE FILE:

OPEN file#, device#, channel#, " name,L," + CHR$(record length)

EXAMPLES OF OPEN STATEMENT CREATING RELATIVE FILES:

OPEN 2,8, 2, " FILE,L," + CHR$(100)

OPEN F, 8, F, A$ + ",L," + CHR$(Q)

OPEN A, B, C, "TEST,L," + CHR$(33)

RELATIVE FILE FORMAT

DATA BLOCK

BYTE DEFINITION

0,1 Track and sector of next data block.

2- 256 254 bytes of data. Empty records contain FF (all binary ones) in
the first byte followed by 00 (binary al l zeros) to the end of the
record. Partially filled records are padded with nulls (00).

SIDE SECTOR BLOCK

BYTE DEFINITION

0,1 Track and sector of next side sector block.

2 Side sector number. (0-5)

3 Record length.

4,5 Track and sector of first side sector (number 0)

6,7 Track and sector of second side sector (number 1)

8,9 Track and sector of th ird side sector (number 2)

10,11 Track and sector of fourth side sector (number 3)

12,13 Track and sector of fifth side sector (number 4)

14,15 Track and sector of sixth side sector (number 5)

16- 256 Track and sector pOinters to 120 data blocks.

Upon execution , the DOS first checks to see if the file exists. If it does,
then nothing happens. The on ly way to erase an old re lat ive file is by using the
SCRATCH command , but not by using the replace option.

24

FORMAT FOR OPENING AN EXISTING RELATIVE FILE:

OPEN file#, device#, channel#, "name"

In this case, the DOS automatically knows that it is a relative file. This syntax,

and the one shown in the above section, both allow either reading or writing to

the file.

In order to read or write, you must, before any operation, position the file

pointer to the correct record position.

The position command is sent to the command channel (15), so you must

open an additional file for the command channel. In the following example, 15

is the file number of the command channel, and 8 is the file number of the

relative file.

OPEN 15,8,15

OPEN 8,8.8

FORMAT FOR POSITION COMMAND:

PRINT#file#, "P" CHR$(channel# + 96) CHR$(rec#lo) CHR$(rec#hi)

CHRS(position)

EXAMPLES OF POSITION COMMAND:

PRINT#15, "P" CHR$(CH + 96) CHR$(R1) CHR${R2) CHR$(P)

PRINT#15, "P" CHR$(4 + 96) CHR$(R1) CHR$(R2) CHR$(P)

The 2-byte format for the record number is needed because one byte can only

hold 256 different numbers, and we can have over 700 records in the file. The

rec# lo contains the least significant part of the address, and the rec# hi is the

most significant part. This could be translated to the actual record number by

the formula REC#= REC HI * 256 + REC LO.

If the record number is known, the high and low bytes can be determined as
follows:

REC# HI=INT(REC#/256)

REC# LO= REC#—REC# Hl'256

EXAMPLE:

PRINT#15, "P" CHR$(4 + 96) CHR$(R1) CHR$(R2) CHR$(0)

If REC# = 540: R2= INT(540/256) ... so R2 = 2

R1=540—R2*256 . . . so R1=28

Let's assume we have a mailing list. The list consists of 8 pieces of data, ac

cording to this chart:

Field Name

first name

last name

address line 1

address line 2

city

Length

12

15

20

20

12

state

zip code

phone number

TOTAL

2

g

10

100

25

v

v

'-'

v

v

FORMAT FOR OPENING AN EXISTING RE LATIVE FILE:

OPEN file#, device#, channel#, "name"

In this case, the DOS automatically knows that it is a relative fil e. This syntax,
and the one shown in the above section , both al low either reading or writi ng to
the file .

In order to read or write, you must, before any operation, position the file
pOinter to the correct record position.

The position command is sent to the command channel (15), so you must
open an additional file for the command channel. In the following example, 15
is the file number of the command channel, and 8 is the file number of the
relative file.

OPEN 15,8,15
OPEN 8,8,8

FORMAT FOR POSITION COMMAND:

PRINT#file#, " P" CHRS(channel# + 96) CHR$(rec#lo) CHR$(rec#hi)
CHR$(position)

EXAMPLES OF POSITION COMMAND:

PRINT#15, " P" CHR$(CH + 96) CHR$(R1) CHR$(R2) CHR$(P)

PRINT#15, " P" CHR$(4 + 96) CHR$(R1) CHR$(R2) CHR$(P)

The 2-byte format for the record number is needed because one byte can only
hold 256 different numbers, and we can have over 700 records in the file_ The
rec# 10 contains the least significant part of the address, and the rec# hi is the
most significant part. This could be translated to the actual record number by
the formula REC# = REC HI " 256 + REC LO.

If the record number is known, the high and low bytes can be determined as
fol lows:

REC# HI = INT(REC#1256)
REC# LO= REC#-REC# HI"256

EXAMPLE:

PRINT#15, " P" CHR$(4 + 96) CHRS(R1) CHRS(R2) CHR$(O)

If REC# = 540: R2 = INT(5401256) __ _ so R2 = 2
R1 = 540-R2"256 . __ so R1 = 28

Let 's assume we have a mailing list. The list consists of 8 pieces of data, ac
cording to this chart:

Field Name Length
state 2

first name 12 zip code 9
last name 15 phone number 10
address line 1 20
address line 2 20 - --- -- -
city 12 TOTAL 100

25

This is how the record length is determined. We would probably want to

allow an extra character in length for each field, to allow for separations; other

wise the INPUT# command would pick up a much longer piece of the file than

needed, just like in sequential files. Therefore, we'll set up a file with a length of

108 characters per record.

When working with a new relative file that will soon be very large, it will save

much time to create a record at the projected end of the file. In other words, if

you expect the file to be 1000 records long, create a record# 1000 as soon as the

file is created. This will force the DOS to create all intermediate records, mak

ing later use of those records much faster.

EXAMPLE OF CREATING LARGE FILE:

OPEN 1,8, 15: OPEN 2, 8,2, "0:REL,L," +CHR$(60)

PRINT#1, "P" CHR$(2+96) CHR$(0) CHR$(4) CHR$(1)

PRINT#2, "END"

CLOSE 2: CLOSE 1

RANDOM FILES, OR USER FILES

Random files let you access and update each of the individual 256-byte

blocks of data stored on the disk. As was mentioned in the first chapter, there

are a total of 683 blocks on the diskette, of which 664 are free on a blank
diskette. Each block of data really means 1 Track and sector of the same name.

The diskette is divided into tracks, which are laid out as concentric circles on
the surface of the diskette. There are 35 different tracks, starting with track 1 at

the outside of the diskette to track 35 at the center. Track 18 is used for the

directory, and the DOS fills up the diskette from the center outward.

Each track is subdivided into sectors. Because there is more room on the
outer tracks, there are more sectors there. The outer tracks contain 21 sectors
each, while the inner ones only have 17 blocks each. The table below shows the

number of sectors per track.

Track and Block Format

TRACK NUMBER

1 to 17

18 to 24

25 to 30

31 to 35

SECTOR RANGE

0 to 20

0 to 18

0 to 17

0 to 16

TOTAL BLOCKS

21

19

18

17

The DOS contains commands for reading and writing directly to any track
and sector on the diskette. There are also commands for checking to see which
blocks (tracks & sectors) are available, and for marking off used blocks.

NOTE: You must be sure to maintain this information, especially when there are
other types of files on the disk. Failure to do so could corrupt other files.

These commands are transmitted through the command channel (channel
15), and tell the disk what to do with the data. The data must be read later
through one of the open data channels.

26

This is how the record length is determined. We would probably want to
allow an extra character in length for each field, to allow for separa tions; other·
wise the INPUT# command would pick up a much longer piece of the file than
needed, just like in sequential files. Therefore, we'll set up a file with a length of
108 characters per record.

When working with a new relative file that will soon be very large, it will save
much time to create a record at the projected end of the file. In other words, if
you expect the file to be 1000 records long, create a record# 1000 as soon as the
file is created. This will force the DOS to create all intermediate records, mak
ing later use of those records much faster.

EXAMPLE OF CREATING LARGE FILE:

OPEN 1,8, 15: OPEN 2,8, 2, "0:REL,L," +CHR$(60)
PRINT#l , "P" CHR$(2 + 96) CHR$(O) CHR$(4) CHR$(l)
PRINT#2, " END"
CLOSE 2: CLOSE 1

RANDOM FILES, OR USER FILES
Random files let you access and update each of the individual 256·byte

blocks of data stored on the disk. As was mentioned in the first chapter, there
are a total of 683 blocks on the diskette, of which 664 are free on a blank
diskette. Each block of data really means 1 Track and sector of the same name.

The diskette is divided into tracks, which are laid out as concentric circles on
the surface of the diskette. There are 35 different tracks, starting with track 1 at
the outside of the diskette to track 35 at the center. Track 18 is used for the
directory, and the DOS fills up the diskette from the center outward.

Each track is subd ivided into sectors. Because there is more room on the
outer tracks, there are more sectors there. The outer tracks contain 21 sectors
each, while the inner ones only have 17 blocks each. The table below shows the
number of sectors per track.

Track and Block Format

TRACK NUMBER SECTOR RANGE TOTAL BLOCKS

1 to 17 o to 20 21
18 to 24 o to 18 19
25 to 30 o to 17 18
31 to 35 o to 16 17

The DOS contains commands for read ing and writ ing directly to any track
and sector on the diskette. There are also commands for checking to see which
blocks (tracks & sectors) are available, and for marking off used blocks.

NOTE: You must be sure to maintain th is information, especially when there are
other types of files on the disk. Fail ure to do so cou ld corrupt other files.

These commands are transmitted through the command channel (channel#
15), and tell the disk what to do with the data. The data must be read later
through one of the open data channels.

26

OPENING A DATA CHANNEL FOR RANDOM ACCESS

When working with random access files, you need to have 2 channels open

to the disk: one for the commands, and the other for the data. The command
channel is OPENed to channel 15, just like other disk commands you've en

countered so far. The data channel for random access files is OPENed by selec
ting the pound sign (#) as the file name. The # sign represents the buffer

number (1-5) where "#" defaults to the next available buffer.

FORMAT FOR OPEN STATEMENT FOR RANDOM ACCESS DATA:

OPEN file*, device#, channel*, "#"

or

OPEN file#, device#, channel*, "#buffer#"

EXAMPLES OF OPENING RANDOM ACCESS DATA CHANNEL:

OPEN 5, 8, 5, "#"

OPEN A, B, C, "#2"

BLOCK-READ

FORMAT FOR BLOCK-READ COMMAND:

PRINT#file#, "BLOCK-READ:" channel; drive; track; sector

or abbreviated as

PRINT#file#, "B-R:" channel; drive; track; sector

This command will move one block of data from the diskette into the

selected channel. Once this operation has been performed, the INPUTS and

GET# statements can read the information.

BLOCK-WRITE

The BLOCK-WRITE command is the exact opposite of the BLOCK-READ

command. First you must fill up a data buffer with your information, then you

write that buffer to the correct location on the disk.

FORMAT FOR BLOCK-WRITE COMMAND:

PRINT#file#, "BLOCK-WRITE:" channel; drive; track; sector

or abbreviated as

PRINT#filelf, "B-W:" channel; drive; track; sector

When the data is being put into the buffer, a pointer in the DOS keeps track

of how many characters there are. When you perform the BLOCK-WRITE opera

tion, that pointer is recorded on the disk.

27

v

v

v

v

OPENING A DATA CHANNEL FOR RANDOM ACCESS

When working with random access files, you need to have 2 channels open
to the disk: one for the commands, and the other for the data. The command
channel is OPENed to channel 15, just like other disk commands you've en·
countered so far. The data channel for random access files is OPENed by selec·
ting the pound sign (#) as the file name. The # sign represents the buffer
number (1·5) where "#" defaults to the next available buffer.

FORMAT FOR OPEN STATEM ENT FOR RANDOM ACCESS DATA:

OPEN file#, device#, channel#, "#"

or

OPEN file#, device#, channel#, " #buffer#"

EXAMPLES OF OPENING RANDOM ACCESS DATA CHANNEL:

OPEN 5, 8, 5, "#"

OPEN A, B, C, "#2"

BLOCK·READ

FORMAT FOR BLOCK·READ COMMAND:

PRINT#file#, " BLOCK·READ:" channel; drive; track; sector

or abbreviated as

PRINT#file#, " B·R:" channel; drive; track; sector

This command will move one block of data from the diskette into the
selected channel. Once this operation has been performed, the INPUT# and
GET# statements can read the information.

BLOCK-WRITE

The BLOCK·WRITE command is the exact oppOSite of the BLOCK·READ
command. First you must fill up a data buffer wi th your information , then you
write that buffer to the correct location on the disk.

FORMAT FOR BLOCK-WRITE COMMAND:

PRINT#file#, "BLOCK-WRITE:" channel; drive; track; sector

or abbreviated as

PRINT#filefl , " B·W:" channel; drive; track; sector

When the data is being put into the buffer, a pOinter in the DOS keeps track
of how many characters there are. When you perform the BLOCK·WRITE opera·
tion, that pOinter is recorded on the disk.

27

BLOCK-ALLOCATE

In order to safely use random files along with regular files, your programs

must check the BAM (Block Availability Map) to find available blocks, and

change the BAM to reflect that you've used them. Once you update the BAM,

your random files will be safe — unless you perform the VALIDATE command.

FORMAT FOR THE BLOCK-ALLOCATE COMMAND:

PRINT#file#, "BLOCK-ALLOCATE:" drive; track; sector

If you try a block that isn't available, the DOS will set the error message to

number 65, NO BLOCK, and set the track and block numbers to the next

available track and block number. Therefore, any time you attempt to write a

block to the disk, you must first try to allocate that block. If that block isn't

available, read the next block available from the error channel and then allocate

that block.

BLOCK-FREE

The BLOCK-FREE command is the opposite of BLOCK-ALLOCATE, in that it

frees a block that you don't want to use anymore for use by the system. It is

vaguely similar to the SCRATCH command for files, since it doesn't really erase

any data from the disk — just frees the entry, in this case just in the BAM.

FORMAT FOR BLOCK-FREE COMMAND:

PRINT#file#, "BLOCK-FREE:" drive; track; sector

or abbreviated as

PRINT#file#, "B-F:" drive; track; sector

USING RANDOM FILES

The most common method for keeping track of which blocks on the disk you

used, is to build up a sequential file to go with each random file. Use this file to

keep a list of record, track, and sector locations. This means that there are 3

channels open to the disk for each random file: one for the command channel,

one for the random data, and the other for the sequential data. This also means

that there are 2 buffers that you're filling up at the same time.

28

BLOCK·ALLOCATE

In order to safely use random fil es along with regular files, your programs
must check the BAM (Block Availabil ity Map) to find available blocks, and
change the BAM to reflect that you've used them. Once you update the BAM,
your random files will be safe - unless you perform the VALIDATE command.

FORMAT FOR THE BLOCK·ALLOCATE COMMAND:

PRINT#file#, "BLOCK·ALLOCATE:" drive; track; sector

If you try a block that isn't available, the DOS will set the error message to
number 65, NO BLOCK, and set the track and block numbers to the next
available track and block number. Therefore, any time you attempt to write a
block to the diSk, you must first try to allocate that block. If that block isn't
available, read the next block available from the error channel and then allocate
that block.

BLOCK·FREE

The BLOCK·FREE command is the opposite of BLOCK·ALLOCATE, in that it
frees a block that you don't want to use anymore for use by the system. It is
vaguely similar to the SCRATCH command for files, since it doesn't really erase
any data from the disk - just frees the entry, in this case just in the BAM.

FORMAT FOR BLOCK·FREE COMMAND: 0

PRINT#file#, " BLOCK·FREE:" drive; track; sector "

or abbreviated as

PRINT#fi le#, "B·F:" drive; track; sector

USING RANDOM FILES

The most common method for keeping track of which blocks on the disk you
used, is to bu ild up a sequential file to go with each random fil e. Use this file to
keep a list of record, track, and sector locations. Thi s means that there are 3
channels open to the disk for each random fil e: one for the command channel ,
one for the random data, and the other for the sequential data. This also means
that there are 2 buffers that you're filling up at the same time.

28

BUFFER-POINTER

The buffer pointer keeps track of where the last piece of data was written. It

also is the pointer for where the next piece of data is to be read. By changing

the buffer pointer's location within the buffer, you can get random access to the

individual bytes within a block. This way, you can subdivide each block into

records.

For example, let's take a hypothetical mailing list. The information such as

name, address, etc., will take up a total of 64 characters maximum. We could

divide each block of the random access file into 4 separate records, and by

knowing the track, sector, and record numbers, we can access that individual

record.

FORMAT FOR BUFFER-POINTER COMMAND:

PRINT#file#, "BUFFER-POINTER:" channel; location

or abbreviated as

PRINT#file#, "B-P:" channel; location

EXAMPLE OF SETTING POINTER TO 64TH CHARACTER OF BUFFER:

PRINT# 15, "B-P:" 5; 64

USER1 and USER2

The user commands are generally designed to work with machine language
(see the next chapter for more on this). The USER1 and USER2 commands are

special versions of the BLOCK-READ and BLOCK-WRITE commands, but ...
with an important difference: the way USER1 and USER2 work with the buffer-
pointer.

The BLOCK-READ command reads up to 256 characters, but slops reading
when the buffer-pointer stored with the block says that block is finished. The

USER1 command performs the BLOCK-READ operation, but first forces the
pointer to 255 in order to read the entire block of data from the disk.

FORMAT FOR USER1 COMMAND

PRINT#file#, "U1:" channel; drive; track; sector

or

PRiNT#file#, "UA:" channel; drive; track; sector

There is no difference between the U1 and UA designations for this com
mand.

The BLOCK-WRITE command writes the contents of the buffer to the block

on the disk along with the value of the buffer-pointer. The USER2 command
writes the buffer without disturbing the buffer-pointer value already stored on

that block of the diskette. This is useful when a block is to be read in with

BLOCK-READ, updated through the BUFFER-POINTER and PRINT#

statements, and then written back to the diskette with USER2.

FORMAT FOR USER2 COMMAND:

PR)NT#file#, "U2:" channel; drive; track; sector

or

PRINT#file#. "UB:" channel: drive; track; sector

29

v

v

v

v

v

v

v

v

BUFFER·POINTER

The buffer painter keeps track of where the last piece of data was wri tten. It
also is the painter for where the next piece of data is to be read. By changing
the buffer painter's location within the buffer, you can get random access to the
individual bytes within a block. This way, you can subdivide each block into
records.

For example, let 's take a hypothetical mai ling list. The information such as
name, address, etc., will take up a total of 64 characters maximum. We cou ld
divide each block of the random access file into 4 separate records, and by
knowing the track, sector, and record numbers, we can access that individual
record.

FORMAT FOR BUFFER·POINTER COMMAND:

PRINT#fil e# , " BUFFE R-POINTER:" channel; location

or abbreviated as

PRINT#file#, " B-P:" channel ; location

EXAMPLE OF SETIING POINTER TO 64TH CHARACTER OF BUFFER:

PRINT# 15, " B·P:" 5; 64

USER1 and USER2

The user commands are general ly designed to work with machine language
(see the next chapter for more on this). The USER1 and USER2 commands are
special versions of the BLOCK-READ and BLOCK-WRITE commands, but ...
with an important difference: the way USER1 and USER2 work with the buffer·
pOinter.

The BLOCK·READ command reads up to 256 characters, but stops reading
when the buffer,pointer stored with the block says that block is fin ished. The
USER1 command performs the BLOCK·READ operation, but first forces the
painter to 255 in order to read the entire block of data from the disk.

FORMAT FOR USER1 COMMAND

PRINT#f ile#, " U1 :" channel; drive; track; sector

or

PRINT#file#, "UA:" channel; dri ve; track; sector

There is no difference between the U1 and UA designations for this com
mand.

The BLOCK-WRITE command writes the contents of the buffer to the block
on the disk along with the value of the buffer,pointer. The USER2 command
writes the buffer without disturbing the buffer-painter value already stored on
that block of the diskette. This is useful when a block is to be read in with
BLOCK·READ, updated through the BUFFER·POINTER and PRINT#
statements, and then written back to the diskette with USER2.

FORMAT FOR USER2 COM MAND:

PRINT#file# , "U2:" channel; drive; track; sector

or

PRINT#file#, "UB:" channel ; drive; track; sector

29

CHART OF BASIC COMMANDS FOR DISKS AND PRINTERS

This chart lists the BASIC commands and statements that are used to per

form operations with disk drives. Commands marked with a " sign can also be

used to direct output to printers when you use the printer device number, which

is 4. Disk Operating Systems (DOS) error messages are described in Appendix

B.

Command

CLOSE ■

CMD ■

GET#

LOAD

INITIALIZE

1NPUT#

NEW

Function

Ends file or

closes channel

to a device

Redirects output

from screen to

device named

Reads characters

one by one from

device named in

OPEN statement

Brings programs

into current

memory from disk

Returns drive to the

same state as when

you turned it on.

Use when error

prevents disk

operations.

Retrieves data

stored on disk

Headers diskette.

Also erases

diskette.

Examples

CLOSE 1 closes file 1, which

must have been

previously OPENed

with the same

number

OPEN 1,8,'1SCOTT" file must be OPENed

first

CMD 1 sends file 1 output to

disk

OPEN 1,4:CMD 1 sends output to

printer

OPEN 1,8,"SCOTT" OPENs file 1 on disk.

GET# 1,A$ reads from file 1;

assigns data to A$

GET# 1,A,B,C reads from file 1;

assigns data to A,

then B, then C then

back to A, etc.

LOAD "*",8 loads 1st program

on disk

LOAD "SCM",8 loads file SCM from

disk

LOAD "$",8 loads file directory

{key in LIST to

display)

OPEN 15,8,15,"!" OPENs command

channel (15). When

command channel is

OPEN, the

INITIALIZE command

is sent to the device

named (the disk

drive, device 8).

OPEN 1,8,"MEYER" OPENs file 1 on disk

INPUT# 1,A,B reads data, assigns

to variables A and B

OPEN 15,8.15"N0: OPENs file SCM. NO

SCM.01" means NEW disk in

drive 0. SCM is the

name of the disk. 01

is the disk id.

CHART OF BASIC COMMANDS FOR DISKS AND PRINTERS
This chart lisls Ihe BASIC commands and slalemenls that are used to per

form operations with disk drives. Commands marked with a • sign can also be
used to direct output to printers when you use the printer device number. which
is 4. Disk Operating Systems (DOS) error messages are described in Appendix
B.

Command Function Examples

CLOSE' Ends file or CLOSE 1 closes file 1. which
closes channel must have been
to a device previously OPENed

with the same
number

CMD' Redirects output OPEN 1.8."SCOn" file must be OPENed
from screen to first
device named CMD1 sends file 1 output to

disk
OPEN 1.4:CMD 1 sends output to

printer

GET# Reads characters OPEN 1.8."SCOn" OPENs file 1 on disk.
one by one from GET# 1.A$ reads from file 1;
device named in assigns data to A$
OPEN statement GET# 1.A.B.C reads from file 1;

assigns data to A.
then B. then C then
back to A. etc.

LOAD Brings programs LOAD ·.8 loads 1 st program
into current on disk
memory from disk LOAD "SCM".8 loads file SCM from

disk
LOAD "$".8 loads file directory

(key in LIST to
display)

INITIALIZE Returns drive to the OPEN 15.8.15."1" OPENs command
same state as when channel (15). When
you turned it on. command channel is
Use when error OPEN. the
prevents disk INITIALIZE command
operations. is sent to the device

named (the disk
drive. device 8).

INPUT# Retrieves data OPEN 1.8."MEYER" OPENs file 1 on disk
stored on disk INPUT# 1.A.B reads data. assigns

to variables A and B

NEW Headers diskette. OPEN 15.8.15" NO: OPENs file SCM. NO
Also erases SCM.01" means NEW disk in
diskette. drive O. SCM is the

name of the disk. 01
is the disk id.

30

_

OPEN *

PRINT# *

RENAME

SAVE

SCRATCH

VALIDATE

VERIFY

Opens channel for

input or output

to a peripheral

Writes data to a

file

Changes a file

name.

Stores program

Erase files from

disk

Reorganizes disk.

Collects blocks

taken up by

improperly CLOSEd

files. Do not use

with Random

Access (User) Files.

Compares program

in current memory

to stored program

OPEN 1,8,8,"D,W" opens file D on disk.

W means write to

file. 8 is the

secondary address,

required for disk. See

Appendix S.

OPEN 1,4 opens channel to

printer

OPEN 1,8.0 opens file 1 to read

from disk

OPEN 1,8,8,"SCM" opens disk file 1 to

write

PRINTS 1,"A";"B" writes A and B to

file 1

CLOSE 1 ends writing to file 1

OPEN 15,8,15,"R: RENAMES file 15.

newname = old

name"

OPEN 15,8,15,-R: RENAMES file

SCM = MEYER" MEYER, changing it

to SCM

SAVE "SCM",8 stores file SCM on

disk

OPEN 15,8,15"S: Erases file GMS

GMS"

OPEN 15,8,15"S: Erases all files that

M*" start with M.

OPEN 15,8,15,"V" Validates file 15.

OPEN 15,8,15, Validates file 15.

"VALIDATE"

SAVE "SM",8 puts current program

on disk

VERIFY "SM",8 compares SAVEd

version of SM with

version still in cur

rent memory to verify

correct program

storage

Appendix S and the Commodore 64 Programmer's Reference Guide contain

more information about these BASIC commands and statements.

The 64 Programmer's Reference Guide explains all BASIC version 2.0 com

mands and statements. The Commodore Peripheral Guide contains more

detailed information and sample programs for using disk drives and printers.

There books are available at bookstores and from your Commodore dealer.

31

v

v

v

v

v

v

OPEN· Opens channel for OPEN 1,8,8,"D,W " opens file D on disk.
input or output W means write to
to a peripheral file . 8 is the

secondary address,
required for disk. See
Appendix S.

OPEN 1,4 opens channel to
printer

OPEN 1,8,0 opens file 1 to read
from disk

PRINT# • Writes data to a OPEN 1,B,8,"SCM" opens disk file 1 to
file write

PRINT# 1," A" ;" B" writes A and B to
file 1

CLOSE 1 ends writi ng to file 1

RENAM E Changes a file OPEN 15,8,15,"R: RENAMEs fi le 15.
name. new name = old

name"
OPEN 15,8,15,"R: RENAMEs file
SCM= MEYER" MEYER, changing it

to SCM

SAVE Stores program SAVE "SCM",8 stores fi le SCM on
disk

SCRATCH Erase files from OPEN 15,8,15"S: Erases file GMS
disk GMS"

OPEN 15,8,15"S: Erases all files that
M* " start with M.

VALIDATE Reorganizes disk. OPEN 15,8,15," V" Validates file 15.
Collects blocks OPEN 15,8,15, Validates fi le 15.
taken up by "VALIDATE"
improperly CLOSEd
fil es. Do not use
with Random
Access (User) Files.

VERIFY Compares program SAVE "SM",8 puts current program
in current memory on disk
to stored program VERIFY "SM" ,8 compares SAVEd

version of SM with
version sti ll in cur·
rent memory to verify
correct program
storage

Appendix S and the Commodore 64 Programmer's Reference Gu ide contain
more information about these BASIC commands and statements.

The 64 Programmer's Reference Guide explains all BASIC version 2.0 com·
mands and statements. The Commodore Peripheral Guide contains more
detailed information and sample programs for using disk drives and pri nters.
There books are available at bookstores and from your Commodore dealer.

31

-

—

—

-

—■

—■

-

-

—

n
n

n

CHAPTER 3

BEGINNING BASIC

• Printing and Calculating

• Mathematical Functions

• Multiple Calculations On One Line

• Execution Order in Calculations

• Combining PRINT'S Capabilities

PRINTING AND CALCULATING

If you don't know BASIC, this section teaches you how to do some simple

things like print words and calculate problems.

The PRINT statement tells the 64 computer to print something on the screen.

PRINT is one of the most useful and powerful commands in the BASIC

language. You can use it to display just about anything, including graphics and

the results of computations. To use the PRINT command, follow these steps:

1. Key in the word PRINT. This tells the computer what kind of job you want it

to do.

2. Key in a quotation mark. This tells the computer where the message you

want to print begins.

3. Key in whatever you want to print on the screen.

4. Key in a closing quotation mark. This tells the computer where the message

you want to print ends.

5. Press the RETURN key. This tells the computer to follow your instructions,

which in this case is to print your message exactly as you typed it.

When you follow these steps, the computer prints your message and

displays the READY prompt. It looks like this:

PRINT "I LOVE MY COMMODORE" You key in this and press RETURN

I LOVE MY COMMODORE The computer prints this

READY

The Executive 64 prints whatever you enclosed in quotes. Remember to key

in both quotation marks.

If you make a mistake in your PRINT statement, use the INST/DEL key to cor

rect your error. You can change as many characters as you like before you press

the RETURN key.

If you made a mistake that you didn't catch before you pressed the RETURN

key, the computer can't follow your instructions. Instead, it displays an error

message to help you figure out what you did wrong. For example:

7SYNTAX ERROR

If you get this message, check over what you typed in to see where you made

a mistake. The computer is very precise, and it can't follow instructions that

contain spelling errors or other mistakes. To avoid mistakes, be sure you type

things in the correct form.

Remember that the best way to get to know BASIC and your 64 is to try dif

ferent things and see what happens.

32

CHAPTER 3
BEGINNING BASIC
• Printing and Calculating

• Mathematical Functions

• Multiple Calculations On One line

• Execution Order in Calculations

• Combining PRINT's Capabilities

PRINTING AND CALCULATING
If you don't know BASIC, this section teaches you how to do some simple

things like print words and calculate problems.
The PRINT statement tells the 64 computer to print something on the screen.

PRINT is one of the most useful and powerful commands in the BASIC
language. You can use it to display just about anything, including graphics and
the results of computations. To use the PRINT command , follow these steps:

1. Key in the word PRINT. This tells the computer what kind of job you want it
to do.

2. Key in a quotation mark. This tel ls the computer where the message you
want to print begins.

3. Key in whatever you want to print on the screen.
4. Key in a closing quotation mark. This tells the computer where the message

you want to print ends.
5. Press the RETURN key. This tells the computer to follow your instructions,

which in this case is to print your message exactly as you typed it.

When you follow these steps, the computer prints your message and
displays the READY prompt. It looks li ke this:

PRINT " I LOVE MY COMMODORE" You key in this and press RETURN

I LOVE MY COMMODORE
READY

The computer prints this

The Execut ive 64 prints whatever you enclosed in quotes. Remember to key
in both quotation marks.

If you make a mistake in your PRINT statement, use the INSTfDEL key to cor
rect your error. You can change as many characters as you like before you press
the RETURN key.

If you made a mistake that you didn 't catch before you pressed the RETURN
key, the computer can't follow your instructions. Instead, it displays an error
message to help you figure out what you did wrong. For example:

?SYNTAX ERROR

If you get this message, check over what you typed in to see where you made
a mistake. The computer is very precise, and it can't follow instructions that
contain spelling errors or other mistakes. To avoid mistakes, be sure you type
things in the correct form.

Remember that the best way to get to know BASIC and your 64 is to try dif
ferent things and see what happens.

32

USING PRINT TO CALCULATE

You can use PRINT to do more than just display what you put in quotation

marks. You can also use it to perform calculations and automatically display

the results. Follow these steps:

1. Key in PRINT

2. Key in the calculation you want to solve. DON'T enclose it in quotation

marks.

3. Press the RETURN key. The computer displays the answer followed by the

READY prompt.

Here's an example:

PRINT 12 + 12 Type this line and press RETURN

24

READY The computer displays

■ the answer

Be sure you leave off the quotation marks when you want the computer to

solve a problem. If you type the problem inside quotation marks, the computer

assumes you just want to display the problem, not solve it. For example:

PRINT "12 + 12" Key in this line

12 + 12 and press RETURN

READY The computer displays

■ what's in quotes

So all you have to do to use PRINT as a calculator is omit the quotation

marks. You can use PRINT to add, subtract, multiply and divide. You can also

use exponents and perform advanced mathematical functions such as figuring

square roots.

MATHEMATICAL FUNCTIONS

ADDITION

Use the plus sign (+) to tell the computer to add numbers. Remember to

press RETURN after you type PRINT and the calculation. This tells the com

puter to follow your instructions.

SUBTRACTION

Use the minus sign (-) to subtract. Press the RETURN key at the end of the

calculation. For example:

PRINT 12-9 Key in this and RETURN

3 The computer displays this

MULTIPLICATION

Use the asterisk (*) to multiply. You can't use the conventional x because

the computer would think it's the letter x, not the multiplication sign. Press

RETURN at the end of the calculation. For example:

PRINT 12 * 12 Key in this and RETURN

144 The computer displays this

33

v

v

v

v

v

v

u

v

u

USING PRINT TO CALCULATE

You can use PRINT 10 do more Ihan just display what you put in quotation
marks. You can also use it to perform calcu lations and automatically display
the results. Follow these steps:

1. Key in PRINT
2. Key in the calculation you want to solve. DON'T enclose it in quotation

marks.
3. Press the RETURN key. The computer displays the answer followed by the

READY prompt.

Here's an example:

PRINT 12 + 12
24

READY

•

Type this line and press RETURN

The computer displays
the answer

Be sure you leave off the quotation marks when you want the computer to
solve a problem. If you type the problem inside quotation marks, the computer
assumes you just want to display the problem, not solve it. For example:

PRINT " 12 + 12" Key in this line
12 + 12 and press RETURN

READY

•
The computer displays
what 's in quotes

So all you have to do to use PRINT as a calculator is omit the quotation
marks. You can use PRINT to add, subtract, multiply and divide. You can also
use exponents and perform advanced mathematical functions such as figuring
square roots.

MATHEMATICAL FUNCTIONS

ADDITION

Use the plus sign (+) to tell the computer to add numbers. Remember to
press RETURN after you type PRINT and the calculation. This tells the com
puter to follow your instructions.

SUBTRACTION

Use the minus sign (-) to subtract. Press the RETU RN key at the end of the
calculation. For example:

PRINT 12 - 9
3

MULTIPLICATION

Key in th is and RETURN
The computer displays this

Use the asterisk (*) to multiply. You can't use the conventional x because
the computer would think it's the letter x, not the multiplication sign. Press
RETURN at the end of the calculation. For example:

PRINT 12 * 12 Key in this and RETURN
144 The compu ter displays this

33

-

DIVISION

Use the slash mark (/) for division. Press the RETURN key after you type the

calculation. For example:
,—,

PRINT 144/12 Key in this and RETURN

12 The computer displays this

EXPONENTIATION

Use the up arrow (t) to raise a number to a power. Press the RETURN key

after you type the calculation. For example, to find 12 to the fifth power, type

this:

PRINT 12 t 5 Key in this and RETURN

248832 The computer displays this

This is the same as:
—

PRINT 12 • 12 * 12 * 12 * 12

248832
.—V

TIP:

BASIC has shortcuts that make programming even faster. One shortcut is ab

breviating BASIC keywords. For example, you can use a ? in place of PRINT.

Throughout this book, we'll show you other abbreviations for BASIC keywords.

Appendix D lists these abbreviations and shows what is displayed on the

screen when you type the abbreviated form.

-

"

~-

34

DIVISION

Use the slash mark (~ for division. Press the RETURN key after you type the
calculation. For example:

PRINT 144/12
12

EXPONENTIATION

Key in this and RETURN
The computer displays this

Use the up arrow (t) to raise a number to a power. Press the RETURN key
after you type the calculation. For example, to find 12 to the fifth power, type
this:

PRINT 12 t 5
248832

This is the same as:

PRINT 12 • 12 • 12 • 12 • 12
248832

TIP:

Key in this and RETURN
The computer displays this

BASIC has shortcuts that make programming even faster. One shortcut is abo
breviating BASIC keywords. For example, you can use a ? in place of PRINT.
Throughout this book, we'll show you other abbreviations for BASIC keywords.
Appendix D lists these abbreviations and shows what is displayed on the
screen when you type the abbreviated form.

34

MULTIPLE CALCULATIONS ON ONE LINE

The last example shows that you can perform more than one calculation on a

line. You can also perform different kinds of calculations on the same line. For

example:

? 3 * 5 _ 7 + 2 Key in this and RETURN

10 The computer displays this

So far our examples have used small numbers and simple problems. But the

64 can do much more complex calculations. The next example adds large

numbers.

Notice that 78956.87 doesn't have a comma between the 8 and the 9. You

can't use commas this way in BASIC. BASIC thinks commas indicate new

numbers, so it would think 78.956.87 is two numbers: 78 and 956.87. Remember

to press RETURN after you type the problem.

? 1234.5 + 3457.8 + 78956.87

83649.17

The next example uses a ten digit number. The 64 can work with numbers

that have up to ten digits, but can only display nine digits in the answer. So the

64 rounds numbers that are more than nine digits. Numbers five and over are

rounded up, and numbers four and under are rounded down. This means that

12123123.45 is rounded to 12123123.5. Because of rounding, the computer

doesn't give the same answer you'd get if you added these numbers by hand. In

this case, the answer is 12131364.817. You can see the difference rounding

makes.

? 12123123.45 + 345.78 + 7895.687

12131364.9

The 64 prints numbers between 0.01 and 999,999,999 using standard nota

tion, except for leaving out commas in large numbers. Numbers outside this

range are printed using scientific notation. Scientific notation lets you express

a very large or very small number as a power of 10. For example:

?123000000000000000

1.23E+17

Another way of expressing this number is 1.23 * 10 117. The 64 uses scien

tific notation for numbers with lots of digits to make them easier to read.

There is a limit to the numbers the computer can handle, even using scien

tific notation. These limits are:

Largest numbers: +/- 1.70141183E + 38

Smallest numbers: +/- 2.93873588E-39

35

v

v

v

v

v

v

v

v

v

v

v

MULTIPLE CALCULATIONS ON ONE LINE
The last example shows that you can perform more than one calculation on a

line. You can also perform different kinds of calculations on the same line. For
example:

?3 "5- 7+2
10

Key in this and RETURN
The computer displays this

So far our examples have used small numbers and simple problems. But the
64 can do much more complex calculations. The next example adds large
numbers.

Notice that 78956.87 doesn't have a comma between the 8 and the 9. You
can't use commas this way in BASIC. BASIC thinks commas indicate new
numbers, so it would think 78,956.87 is two numbers: 78 and 956.87. Remember
to press RETURN after you type the problem.

? 1234.5 + 3457.8 + 78956.87
83649.17

The next example uses a ten digit number. The 64 can work with numbers
that have up to ten dig its, but can only display nine digits in the answer. So the
64 rounds numbers that are more than nine digits. Numbers five and over are
rounded up, and numbers four and under are rounded down. This means that
12123123.45 is rounded to 12123123.5. Because of rounding, the computer
doesn't give the same answer you'd get if you added these numbers by hand. In
this case, the answer is 12131364.817. You can see the difference rounding
makes.

? 12123123.45 + 345.78 + 7895.687
12131364.9

The 64 pri nts numbers between 0.01 and 999,999,999 using standard nota·
tion, except for leaving out commas in large numbers. Numbers outside this
range are printed using scientific notation. Scientific notation lets you express
a very large or very smal l number as a power of 10. For example:

? 123000000000000000
1.23E+ 17

Another way of expressing this number is 1.23 " 10 ! 17. The 64 uses scien
tific notation for numbers with lots of digits to make them easier to read.

There is a limit to the numbers the computer can handle, even using scien·
tific notation. These limits are:

Largest numbers: +/- 1.70141183E+38
v Smallest numbers: + / - 2.93873588E - 39

v

35

EXECUTION ORDER IN CALCULATIONS

If you tried to perform some mixed calculations of your own, you might not

have gotten the results you expected. This is because the computer performs

calculations in a certain order.

In this calculation:

20 + 8/2

the answer is 14 if you add 20 to 8 first, and then divide 28 by 4. But the answer

is 24 if you first divide 8 by 2, and then add 20 and 4.

On the 64, you always get 24 because the computer always performs calcula

tions in the same order. Problems are solved from left to right, but within that

general movement, some types of calculations take precedence over others.

Here is the order of precedence:

First: - minus sign for negative numbers, not for subtraction.

Second: t exponentiation, left to right

Third: */ multiplication and division, left to right

Fourth: + - addition and subtraction, left to right

This means that the computer checks the whole calculation for negative

numbers before doing anything else. Then it looks for exponents; then it per

forms all multiplication and division; then it adds and subtracts.

This explains why 20 + 8 / 2 is 24: 8 is divided by 2 before 20 is added

because division has precedence over addition.

There is an easy way to override the order of precedence: enclose any

calculation you want solved first in parentheses. If you add parentheses to the

equation shown above, here's what happens:

? (20 + 8) / 2

14

You get 14 because the parentheses allow 20 and 8 to be added before the

division occurs.

Here's another example that shows how you can change the order, and the

answer, with parentheses:

? 30 + 15-2-3

57

? (30 + 15) * 2 - 3

87

?30 + 15 " (2 - 3)

15

?(30 + 15) * (2 - 3)

-45

The last example has two calculations in parentheses. As usual, they're

evaluated from left to right, and then the rest of the problem is solved. When

you have more than one calculation in parentheses, you can further control the

order by using parentheses within parentheses. The problem in the innermost

parentheses is solved first. For example:

? 30 + (15 ' (2 - 3))

15
In this case, 3 is subtracted from 2, then 15 is multiplied by - 1, and - 15 is

added to 30. As you experiment with solving calculations, you'll get familiar

with the order in which mixed calculations are solved.

36

EXECUTION ORDER IN CALCULATIONS

If you tried to perform some mixed calculations of your own, you might not
have gotten the results you expected. This is because the computer performs
calculations in a certain order.

In this calculation:

20 + 8 / 2

the answer is 14 if you add 20 to 8 fi rst, and then divide 28 by 4. But the answer
is 24 if you first divide 8 by 2, and then add 20 and 4.

On the 64, you always get 24 because the computer always performs calcula·
tions in the same order. Problems are solved from left to right, but within that
general movement, some types of calculations take precedence over others.
Here is the order of precedence:

First:
Second:
Third:
Fourth:

t
"I
+ -

minus sign for negative numbers, not for subtraction.
exponentiation, left to right
multiplication and division, left to right
addition and subtraction, left to right

This means that the computer checks the whole calculation for negat ive
numbers before dOing anythi ng else. Then it looks for exponents; then it per·
forms al l multiplication and division; then it adds and subtracts.

This explains why 20 + 8 1 2 is 24: 8 is divided by 2 before 20 is added
because division has precedence over addition.

There is an easy way to override the order of precedence: enclose any
calcu lation you want solved firs t in parentheses. If you add parentheses to the
equation shown above, here's what happens:

?(20+8)/2
14

You get 14 because the parentheses allow 20 and 8 to be added before the
division occurs.

Here's another example that shows how you can change the order, and the
answer, wi th parentheses:

? 30 + 15 " 2 - 3
57

? (30 + 15) " 2 - 3
87

? 30 + 15 " (2 - 3)
15

? (30 + 15)" (2 - 3)
-45

The last example has two calcu lations in parentheses. As usual, they're
evaluated from left to right, and then the rest of the problem is solved. When
you have more than one calculation in parentheses, you can further control the
order by using parentheses within parentheses. The problem in the innermost
parentheses is solved fi rst. For example:

? 30 + (15 " (2 - 3))
15

In this case, 3 is subtracted from 2, then 15 is multiplied by - 1, and - 15 is
added to 30. As you experiment wi th solving calculations, you'll get fami liar
with the order in which mixed calculations are solved.

36

COMBINING PRINT'S CAPABILITIES

The 64 computers let you combine the two types of print statements that

you've read about in this book. Remember that anything you enclose in quota

tion marks is displayed exactly as you type it.
The next example shows how you can combine the types of PRINT

statements. The equation enclosed in quotes is displayed without being solved.
The equation not in quotes is solved. The semicolon separates the two parts of

the PRINT statement {semicolon means no space).

? "5 * 9 = "; 5 * 9 You key in this and RETURN
5 • g = 45 The computer displays this

Remember, only the second part of the statement actually solves the calcula

tion. The two parts are separated by a semicolon. You always have to separate

the parts of a mixed PRINT statement with some punctuation for it to work the

way you want it to. If you use a comma instead of a semicolon, there is more

space between the two parts when they're displayed. A semicolon leaves out

space.

The Executive 64's screen is organized into 4 zones of 10 columns each.

When you use a comma to separate parts of a PRINT statement, the comma

works as a tab, sending each result into the next zone. For example:

?"total:";95,'lshortage:";15

total:95 shortage:15

If you have more than four results, they are automatically displayed on the

next line. For example:

? 2 • 3,4 - 6,2 13,6/4,100 + (-48)

6 -2 8 [1.5
52

Here's the difference when you use semicolons:

? 2 * 3:4 - 6;2 t 3:6 / 4:100 + (- 48)

6-2 8 1.5 52

You can use the difference between the comma and the semicolon in format

ting PRINT statements to create complex displays.

37

v

v

'-'

'-'

v

COMBINING PRINT'S CAPABILITIES
The 64 computers let you combine the two types of print statements that

you've read about in this book. Remember that anything you enclose in quota
tion marks is disp layed exactly as you type it.

The next example shows how you can combine the types of PRINT
statements. The equation enclosed in quotes is displayed without being solved.
The equation not in quotes is solved. The semicolon separates the two parts of
the PRINT statement (semicolon means no space).

? " 5 • 9 = " ; 5 • 9 You key in this and RETURN
5 • 9 = 45 The computer displays this

Remember, only the second part of the statement actually solves the calcu la
tion. The two parts are separated by a semicolon. You always have to separate
the parts of a mixed PRINT statement with some punctuation for it to work the
way you want it to. If you use a comma instead of a semicolon, there is more
space between the two parts when they're displayed. A semicolon leaves out
space.

The Executive 64's screen is organized into 4 zones of 10 columns each.
When you use a comma to separate parts of a PRINT statement, the comma
works as a tab, sending each result into the next zone. For example:

?" total: " ;95,"shortage: ";15
total:95 shortage:15

If you have more than four results, they are automatically displayed on the
next line. For example:

? 2 • 3,4 - 6,2 t 3,6 f 4,100 + (- 48)
'-' 6 - 2 8 0.5

52

v

Here's the difference when you use semicolons:

? 2 ' 3;4 - 6;2 , 3;6 f 4;100 + (- 48)
6 - 2 8 1.5 52

You can use the difference between the comma and the semicolon in format
ting PRINT statements to create complex displays.

37

-

-

-

-

n

CHAPTER 4

WRITING SIMPLE PROGRAMS IN BASIC

• Line Numbers

• The GOTO Statement

• Using the LIST Command

• Editing Tips

• How to Use Variables

• Using FOR...NEXT Loops

So far this book has shown you how to do simple things with your 64. You've

experimented with typing single lines of instructions into your computer and

getting instant results by pressing the RETURN key. This easy way of doing

things on your computer is called the IMMEDIATE or CALCULATOR mode.

But you'll probably want to use your computer to do more complex jobs that

use more than one statement. When you combine a number of statements into

a PROGRAM, you can use the full power of your 64.

To see how easy it is to write your first program on the 64, follow these steps:

1. Clear the screen by holding down the SHIFT key while you press the

CLR/HOME key.

2. Key in NEW and press RETURN. This clears out information that might still

be in the computer's memory after your experimenting.

3. Key in the following two lines exactly as they appear here:

10 ? "EXECUTIVE 64"

20 GOTO 10

4. Remember to press the RETURN key after each line. After you key in the first

line and press RETURN, you'll notice that the computer doesn't respond to

the PRINT command right away like it did before when you typed in the same

kind of commands. This is because you are now beginning the command

with a line number (10). When you use line numbers, the computer knows

that you're writing a program, so it waits for you to finish keying in the whole

program before following any of your instructions.

5. Key in RUN and press RETURN. The RUN command tells the computer that

you've finished keying in program statements, and you're ready to have your

instructions followed. Here's what happens when you RUN this program:

EXECUTIVE 64

EXECUTIVE 64

EXECUTIVE 64

EXECUTIVE 64

EXECUTIVE 64

EXECUTIVE 64

38

CHAPTER 4
WRITING SIMPLE PROGRAMS IN BASIC

• Line Numbers

• The GOTO Statement

• Using the LIST Command

• Editing Tips

• How to Use Variables

• Using FOR. .. NEXT Loops

So far this book has shown you how to do simple things with your 64. You 've
experimented with typing si ngle lines of instructions into your computer and
getting instant results by pressing the RETURN key. This easy way of doing
things on you r computer is called the IMMEDIATE or CALCULATOR mode.

But you 'll probably want to use your computer to do more complex jobs that
use more than one statement. When you combine a number of statements into
a PROGRAM, you can use the fu ll power of your 64.

To see how easy it is to write you r fi rst prog ram on Ihe 64, follow these steps:

1. Clear the screen by holding down the SHIFT key while you press the
CLRlHOME key.

2. Key in NEW and press RETU RN. This clears out information that might still
be in the computer's memory after your experimenting.

3. Key in the following two lines exactly as they appear here:

10 ? " EXECUTIVE 64"
20 GOTO 10

4. Remember to press the RETURN key after each line. After you key in the first
line and press RETURN, you' ll notice that the computer doesn't respond to
the PRINT command right away like it did before when you typed in the same
kind of commands. This is because you are now beg inning the command
with a line number (10). When you use line numbers, the computer knows
that you're writing a program , so it waits for you to finish keying in the whole
program before following any of your instructions.

5. Key in RUN and press RETURN. The RUN command tells the computer that
you 've fin ished keyi ng in program statements, and you 're ready to have your
instructions followed. Here's what happens when you RUN this program:

EXECUTIVE 64
EXECUTIVE 64
EXECUTIVE 64
EXECUTIVE 64
EXECUTI VE 64
EXECUTIVE 64

38

n
n

6. Stop the program's execution by pressing the RUN/STOP key. The computer

continues to follow your orders by printing EXECUTIVE 64 over and over un

til you interrupt with the RUN/STOP key. Here's how your screen looks when

you press STOP.

EXECUTIVE 64

EXECUTIVE 64

EXECUTIVE 64

EXECUTIVE 64

EXECUTIVE 64

EXECUTIVE 64

BREAK IN 10

READY

This simple program introduces several important concepts that are the

basis for all programming.

LINE NUMBERS

We mentioned before in step 4 that line numbers tell the computer that

you're writing a program. They also tell the computer in what order you want the

statements in your program to executive. Without line numbers to tell the com

puter when to follow which instruction, the computer doesn't know what to do

first.

The longer and more complex your program is, the more important it is to

remember that the computer relies on you to tell it WHEN to do things, as well

as WHAT to do. One good thing about this is that you can key in line 20 before

line 10 because the computer just checks the line numbers to find out the order

for executing the program. The computer doesn't check for the order your lines
appear on the screen.

Another advantage of line numbers is that you can use the number to refer to

the statement on the line. When you want to go back and repeat the execution

of a statement, all you do is refer to it by line number in a GOTO statement, as
you did in the example above.

39

v

v

v

v

6. Stop the program's execution by pressing the RUN/STOP key. The computer
continues to follow your orders by printing EXECUTIVE 64 over and over un·
til you interrupt wi th the RUN/STOP key. Here's how your screen looks when
you press STOP.

EXECUTIVE 64
EXECUTIVE 64
EXECUTIVE 64
EXECUTIVE 64
EXECUTIVE 64
EXECUTIVE 64
BREAK IN 10
READY

This simple program introduces several important concepts that are the
basis for all programming.

LINE NUMBERS
We mentioned before in step 4 that line numbers tell the computer that

you 're writing a program. They also tell the computer in what order you want the
statements in your program to executive. Without line numbers to te ll the com·
puter when to follow which instruction, the computer doesn't know what to do
fi rst.

The longer and more complex your program is, the more important it is to
remember that the computer relies on you to tell it WH EN to do things, as well
as WHAT to do. One good thing about this is that you can key in line 20 before
line 10 because the computer just checks the line numbers to find out the order
for executing the program . The computer doesn 't check for the order your lines
appear on the screen.

Another advantage of line numbers is that you can use the number to refer to
the statement on the line. When you want to go back and repeat the execution
of a statement, al l you do is refer to it by line number in a GOTO statement, as
you did in the example above.

39

THE GOTO STATEMENT

When you told the computer to RUN the sample program above, EXECUTIVE

64 was PRINTed repeatedly instead of just once because of the GOTO state

ment in line 20.

The GOTO statement tells the computer to go directly to a specified line.

Then the computer follows the instructions in the specified line and goes on to

the next line.

You can use a GOTO statement to tell the computer to go back to a line

that's already been executed. Or GOTO can tell the computer to skip forward,

even if this means that some lines in the program don't get executed.

In our example, the program PRINTS the message in line 10 and moves to

line 20. There, the GOTO statement tells the computer to go back to line 10 and

do what line 10 says to do. So, the program prints the message in line 10 again,

and then moves to line 20, which sends the computer back to line 10 and so on.

This repetition is called a LOOP. Because the example doesn't give the com

puter a way out of the loop, the circle repeats endlessly. You have to halt the cy

cle by interrupting the program with the RUN/STOP key.

It's best to include a statement in your program that ends the loop so you

don't have to use the RUN/STOP key. We'll explain more above ending loops

later in this chapter.

USING THE LIST COMMAND

Now that you've interrupted execution of the sample program, key in LIST on

your screen. Your program is now displayed intact because it's still in the com

puter's memory, even though you interrupted the program's execution. The only

difference is that the computer changed your ? into the word PRINT. This

doesn't affect your program, it's just the way the computer does things. When

you use the LIST command, the computer also displays the lines of the pro

gram in correct numerical order, even if you entered the lines out of order.

One of the important differences between writing programs and entering

single lines in the immediate/calculator mode is that you permanently lose an

immediate statement once you execute it and clear the screen. But. until you

start a new program, you can always get a program back just by keying in LIST.

From here, you can change the program, SAVE it, or RUN it again.

40

THE GOTO STATEMENT
When you told the computer to RUN the sample program above, EXECUTIVE

64 was PRINTed repeatedly instead of just once because of the GOTO state·
ment in line 20.

The GOTO statement te lls the computer to go directly to a specified line. I)

Then the computer follows the instructions in the specified line and goes on to
the next line. ()

You can use a GOTO statement to tell the computer to go back to a line
that's already been executed. Or GOTO can tell the computer to skip forward,
even if this means that some lines in the program don't get executed .

In our example, the program PRINTS the message in line 10 and moves to
line 20. There, the GOTO statement tells the computer to go back to line 10 and
do what line 10 says to do. So, the program prints the message in li ne 10 again,
and then moves to line 20, which sends the computer back to line 10 and so on.

This repetition is called a LOOP. Because the example doesn' t give the com·
puter a way out of the loop, the circle repeats end lessly. You have to halt the cy·
cle by interrup ting the program with the RUN/STOP key.

It's best to include a statement in your program that ends the loop so you
don't have to use the RUN/STOP key. We'll explain more above ending loops
later in this chapter.

USING THE LIST COMMAND
Now that you've interrupted execution of the sample program, key in LIST on

your screen. Your program is now displayed intact because it 's still in the com
puter's memory, even though you interrupted the program's execution. The only
difference is that the computer changed your? into the word PRINT. This
doesn' t affect your program, it 's just the way the computer does things. When
you use the LIST command, the computer also displays the lines of the pro·
gram in correct numerical order, even if you entered the lines out of order.

One of the important differences between writ ing programs and entering
single li nes in the immediate/calculator mode is that you permanently lose an
immediate statement once you execute it and clear the screen. But, until you
start a new program, you can always get a program back just by keying in LIST.

From here, you can change the program, SAVE it, or RUN it again.

40

EDITING TIPS

When you make a mistake in a line you've keyed in, or when you just want to

change a line, the 64 offers you a number of editing options.

1. You can retype a line any time, and the computer automatically substitutes

the new line for the old one. All you have to do to replace a line is use the

same line number. For example:

10 ? "My name is Sarah"

20 ? "I was born in California"

20 ? "I live in Pennsylvania"

RUN

My name is Sarah

I live in Pennsylvania

As you can see, the first line 20 never executes because it is replaced by

the second line 20. If you now key in a LIST command, you'll see that only

the second line 20 is still part of the program,

2. You can easily erase a line you don't want just by keying in the line number

and pressing the RETURN key. If you now key in LIST, you'll see that the line

is gone, and so is the line number.

3. You can easily edit an existing line. Use the CuRSoR keys to move the cur

sor back to the line you want to change, and then just edit the line any way

you want to. As soon as you press the RETURN key, the edited line will

replace the old line. Remember to use the INST/DEL key to insert or delete.

When you finish editing, you can check your program again to verify changes

by keying in the LIST command. Remember that LIST also puts lines in

numerical order if you've keyed them in out of order.

Try editing our sample program by adding a semicolon to the end of the line,

changing EXECUTIVE to COMMODORE, and omitting the 64. After you finish

the changes, be sure to move the cursor past line 20 before you RUN the pro

gram. Here's how the program works now:

LIST

10 PRINT "COMMODORE":

20 GOTO 10

COMMODORE COMMODORE COMMODORE COMMODORE

COMMODORE COMMODORE COMMODORE COMMODORE

BREAK IN 10

READY

41

EDITING TIPS
When you make a mistake in a line you've keyed in, or when you just want to

change a line, the 64 offers you a number of editing options.

1. You can retype a line any time, and the computer automatically substitutes
the new tine for the old one. All you have to do to replace a line is use the
same line number. For example:

10 ? " My name is Sarah "
20 ? " I was born in California"
20 ? " I live in Pennsylvania"
RUN
My name is Sarah
I live in Pennsylvania

As you can see, the first line 20 never executes because it is replaced by
the second line 20. If you now key in a LIST command , you'll see that only
the second line 20 is still part of the program.

2. You can easily erase a li ne you don' t want just by keying in the line number
and pressing the RETURN key. If you now key in LIST, you'll see that the line
is gone, and so is the line number.

3. You can easi ly edit an ex ist ing line. Use the CuRSoR keys to move the cur·
sor back to the line you want to change, and then just edit the line any way
you want to. As soon as you press the RETURN key, the edited line will
replace the old line. Remember to use the INST/DEL key to insert or delete.

When you finish editing, you can check your program again to verify changes
by keying in the LIST command. Remember that LIST also puts lines in
numerical order if you've keyed them in out of order.

Try editing our sample program by adding a semicolon to the end of the line,
changing EXECUTIVE to COMMODORE, and omitting the 64. After you finish
the changes, be sure to move the cursor past line 20 before you RUN the pro·
gram. Here's how the program works now:

LIST
10 PRINT "COMMODORE";
20 GOTO 10
COMMODORE COMMODORE COMMODORE COMMODORE
COMMODORE COMMODORE COMMODORE COMMODORE
BREAK IN 10
READY

41

HOW TO USE VARIABLES

A variable is a symbol that stands for a value. Sometimes the value of a

variable is unknown before you RUN a program. One of the purposes of a pro

gram may be to find one or more values for a variable. Look at this line from a

program:

10 X = 28 + Y

In this equation, X and Y are variables. Suppose X stands for the number of

days in a month. One of the best things about a variable is that you can reuse it

in a program, so X can stand for the days in all the months, not just one month.

This is where Y comes in. All months have 28 days, so Y stands for the days

over 28. Later in this chapter there's a program that gives values to these two

variables.

The most important thing now is understanding how variables work, because

variables allow you to do complex tasks with you computer. Variables also let

you write programs that are very reusable.

Imagine that your computer contains a bunch of little slots, like a bank of

mail boxes. When you write a program, you can use some of these slots to hold

values. All you do is give a name to the slots you need, and during the program

you can put values into each slot by using the slot's name. For example, in the

equation above, we used two slots by naming one X and one Y. At the beginning

of a program, these slots have names, but they're empty. Here's what happens

when you put a value in Y's slot:

X Y

3

Now the variable Y has the value 3. You can give Y this value just by writing this

simple statement:

20 Y = 3

Since Y equals 28 plus Y, when you RUN the program X's slot gets a value, too.

X

31

Y

3

Here's how the program looks:

10 X = 28 + Y

20 Y = 3

30 ? "THE NUMBER OF DAYS IN MAY IS";X

RUN

THE NUMBER OF DAYS IN MAY IS 31

Here's another program that uses variables:

10 X% = 15

20 X = 23.5

30 X$ = 'TOTAL:11

40 Y = X% + X

50 ? X$;Y

42

HOW TO USE VARIABLES
A variable is a symbol that slands lor a value. Somelimes Ihe value of a

variable is unknown belore you RUN a program. One of the purposes 01 a pro·
gram may be to find one or more values for a variable. Look at this line from a
program:

10 X = 28 + Y

In this equal ion, X and Yare variables. Suppose X slands for Ihe number of
days in a month. One of Ihe best th ings about a variable is that you can reuse it
in a program, so X can stand for the days in all the months, not just one month.
This is where Y comes in. All months have 28 days, so Y stands for the days
over 28. Later in this chapter there's a prog ram that gives values to these two
variables.

The most important thing now is understanding how variables work, because
variables allow you to do complex tasks with you computer. Variables also let
you write programs that are very reusable.

Imagine that your computer contains a bunch of little slots, like a bank of
mail boxes. When you write a program, you can use some of these slots to hold
values. All you do is give a name to the slots you need, and during the program
you can put values into each slot by using the slot's name. For example, in the
equation above, we used two slots by naming one X and one Y. At the beginning
of a program, these slots have names, but they're empty. Here's what happens
when you put a value in Y's slot:

X

Now the variable Y has the val ue 3. You can give Y this value just by writing th is
simple statement:

31

Here's how the program looks:

10 X = 28 + Y
20 Y = 3
30 ? "THE NUMBER OF DAYS IN MAY IS";X
RUN
TH E NUMBER OF DAYS IN MAY IS 31

Here's another program that uses variables:

10 X% = 15
20 X = 23.5
30 X$ = "TOTAL:"
40 Y = X% + X
50 ? X$;Y

42

n
r

When you RUN the program, the imaginary slots look like this after line 30 is ex

ecuted:

x%

15

X

23.5

X$

TOTAL:

Y

When you RUN the program. Y gets a value: 38.5

The above example uses the three types of variables:

TYPE SYMBOL DESCRIPTION

POSSIBLE

EXAMPLES VALUES

Integer

Text string

Floating

point

%

$

whole numbers

characters in

quotes

read (decimal)

or whole numbers

A /o, A1 /o

X$. AB$

X, AB

15,102,3

"TOTAL",

"DAY 1"

23.5, 12,

1.3E+2

Be sure you use the right variable types in your programs. If you try to do

something like assign a text string to an integer variable, your program won't

work.

There are a few other things to keep in mind when you assign names to

variables:

• A variable name can have one or two characters, not counting the special

symbol used with integer and text string variables.

• You can use more than two alphabetic characters in a variable name, but the

computer only recognizes the first two. So the computer would think PA.

PARTNO and PAGENO are the same variable referring to the same "slot".

• A program is easier for people to read when you use longer variable names,

but when you use more than two characters in a name, be sure the first two

are unique.

• You can use X, X%, and XS in one program because the special symbols %

and $ make each variable name unique. The same is true of A2, A2%, and

A2$.

• The first character must be alphabetic (A to Z). The second and any later

characters can be either alphabetic or numeric (0 to 9). Remember that the

computer ignores every character after the second unless it's a % or $ in the

third position.

• Variable names can't contain BASIC keywords, which are also called reserv

ed words. These are the words like PRINT and RUN that are part of the

BASIC language. Appendix D lists all the BASIC reserved words.

43

v

u

v

When you RUN the program, the imaginary slots look like this after line 30 is ex
ecuted:

When you RUN the program, Y gets a val ue: 38.5

The above example uses the three types of variables:

POSSIBLE
TYPE SYMBOL DESCRIPTION EXAMPLES VALUES

Integer % whole numbers X% , A1 % 15,102,3
Text stri ng S characters in X$, AB$ "TOTAL",

quotes " DAY 1"
Floating read (decimal) X, AB 23.5, 12,
point or whole numbers 1.3E + 2

Be sure you use the right variable types in your programs. If you try to do
something like assign a text string to an integer variable, your program won't
work.

There are a few other things to keep in mind when you assign names to
variables:

• A variable name can have one or two characters, not counting the special
symbol used with integer and text string variables.

• You can use more than two alphabetic characters in a variable name, but the
computer only recognizes the first two. So the computer wou ld think PA,
PARTNO and PAGENO are the same variab le referring to the same " slot" .

• A program is easier for people to read when you use longer variable names,
but when you use more than two characters in a name, be sure the first two
are unique.

• You can use X, X% , and X$ in one program because the special symbols %
and $ make each variable name unique. The same is true of A2, A2% , and
A2$.

• The fi rst character must be alphabetic (A to Z). The second and any later
characters can be either alphabetic or numeric (0 to 9). Remember that the
computer ignores every character after the second unless it's a % or $ in the
third position.

• Variable names can' t contain BASIC keywords, which are also called reserv·
ed words. These are the words like PRINT and RUN that are part of the
BASIC language. Appendix D lists all the BASIC reserved words.

43

Here's one more sample program that shows you how to use variables. This

example also uses some of the other things you've learned so far.

NEW

10 X = 1.05

20 Y = 300

30 Z = X * Y

40 PRINT "SEATS AVAILABLE:";Y

50 PRINT "TICKETS AVAILABLE:";Z

60 Y = Y + 1

70 PRINT "OVERBOOKING POINT:";Y

RUN

SEATS AVAILABLE: 300 a

TICKETS AVAILABLE: 315

OVERBOOKING POINT: 301

Lines (10 ■ 30) assign variable names.

Lines 40 and 50 PRINT a message and the current value of variables Y and Z.

Notice that at line 40, the value for Y is 300.

Line 60 gives Y a new value, and this new value is PRINTed in line 70. Line 60

shows that a variable can have more than one value in a program.

Line 60 also shows another of the powerful features of variables: you can

make a variable equal to itself and another value. This isn't allowed in regular

algebra, but this kind of statement is commonly used in programming. It

means: take the current value of a variable, combine it with another value, and

replace the first value of the variable with this new value. You can also use

statements like these: ^

YrY-1

Y = Y + X

Y = Y/2

Y = Y ' (X + 2)

44

Here's one more sample program that shows you how to use variables. This
example also uses some of the other things you 've learned so far.

NEW
10X;1.05
20Y;3oo
30Z;X·Y
40 PRINT "SEATS AVAILABlE:";Y
50 PRINT " TICKETS AVAllABlE:";Z
60Y;Y+1
70 PRINT "OVERBOOKING POINT:";Y
RUN
SEATS AVAI LABlE: 300
TICKETS AVAILABLE: 315
OVERBOOKING POINT: 301

lines (10 - 30) assign variable names.
lines 40 and 50 PRINT a message and the current value of variables Y and Z.

Notice that at line 40, the val ue for Y is 300.
Line 60 gives Y a new value, and this new val ue is PRINTed in line 70. Line 60

shows that a variable can have more than one value in a program.
Line 60 also shows another of the powerful features of variables: you can

make a variable equal to itself and another value. This isn· t allowed in regular
algebra, but this kind of statement is common ly used in programming. It
means: take the current value of a variable, combine it wit h another value, and
replace the first va lue of the variable with th is new value. You can also use
statements like these:

Y ; Y - 1
Y ; Y + X
Y ; Y 12
Y ; Y·(X+2)

44

USING FOR/NEXT LOOPS

We mentioned loops earlier in this chapter during the explanation of the

GOTO statement. As you'll recall, loops are repeated executions of one or more

lines in a program.

The FOR/NEXT statement lets you create very useful loops that control the

number of times a segment of a program is executed. The FOR statement sets

a limit on the number of times the loop will execute by assigning a range of

values to a variable. For example:

FOR COUNT = 1 TO 4

The NEXT statement marks the end of a FOR/NEXT loop. When the program

reaches a NEXT statement, the computer checks the FOR statement to see if

the limit of the loop has been reached. If the limit hasn't been reached, the loop

continues and the variable in the FOR statement is incremented by one. For ex

ample, if you add a FOR/NEXT loop to the program at the beginning of this

chapter, here's what happens:

10 FOR CT = 1 TO 4

20 ? "EXECUTIVE 64 "; "COUNT= ";CT

30 NEXT CT

RUN

EXECUTIVE 64 COUNT = 1

EXECUTIVE 64 COUNT= 2

EXECUTIVE 64 COUNT= 3

EXECUTIVE 64 COUNT= 4

Now that you've added the FOR/NEXT loop, you don't have to break in with

the STOP key to halt the program's execution.

This FOR/NEXT loop works like this:

Line 10 gives the variable CT a range of values from 1 to 4, and tells the com

puter to execute the next lines until CT equals 4.

Line 20 tells the computer to print EXECUTIVE 64.

Line 30 tells the computer to add 1 to the current value of CT. As long as the

value of CT remains within the range of 1 to 4, the program repeats, and EX

ECUTIVE 64 is PRINTed again. When CT equals 4, line 20 executes one more

time. When line 30 again adds 1 to CT. the computer knows that CT is now out

of range. So the computer stops executing the loop, and the program ends by

itself.

45

v

v

v

v

USING FOR/NEXT LOOPS
We mentioned loops earlier in th is chapter during the explanation of the

GOTO statement. As you 'll recall, loops are repeated executions of one or more
lines in a program.

The FOR/NEXT statement lets you create very useful loops that control the
number of ti mes a segment of a program is executed. The FOR statement sets
a limit on the number of times the loop wi ll execute by assig ning a range of
values to a variable. For example:

FOR COUNT = 1 TO 4

The NEXT statement marks the end of a FOR/NEXT loop. When the program
reaches a NEXT statement, the computer checks the FOR statement to see if
the limit of the loop has been reached. If the limit hasn't been reached, the loop
continues and the variable in the FOR statement is incremen ted by one. For ex
ample, if you add a FOR/NEXT loop to the program at the beginning of th is
chapter, here's what happens:

10 FOR CT = 1 TO 4
20 ? " EXECUTIVE 64 "; "COUNT = ";CT
30 NEXT CT
RUN
EXECUTIVE 64
EXECUTIVE 64
EXECUTIVE 64
EXECUTIVE 64

COUNT= 1
COUNT= 2
COUNT= 3
COUNT= 4

Now that you've added the FOR/NEXT loop, you don't have to break in with
the STOP key to halt the program's execution.

This FOR/NEXT loop works like this:

Li ne 10 gives the variable CT a range of values from 1 to 4, and te lls the com,
puter to execute the next lines until CT equals 4.

Line 20 tells the computer to print EXECUTIVE 64.
Line 30 tells the computer to add 1 to the current val ue of CT. As long as the

val ue of CT remains within the range of 1 to 4, the program repeats, and EX,
ECUTIVE 64 is PRINTed again. When CT equals 4, line 20 executes one more
time. When line 30 again adds 1 to CT, the computer knows that CT is now out
of range. So the computer stops executing the loop, and the program ends by
itself.

45

"

-

—

*-

CHAPTER 5

ADVANCED BASIC

• Introduction

• Simple Animation

• INPUT

• Using the GET Statement for Data Input

• Using GET to Program Function Keys ^

• Random Numbers and Other Functions

• Guessing Game
(->

• Your Roll

• Random Graphics

INTRODUCTION

The next few chapters are for people who are familiar with BASIC program

ming language and the concepts necessary to write advanced programs.

Those of you who are just starting to learn how to program may find some of
the information too technical to understand completely. But you'll find some

simple examples that are written for new users in two chapters. SPRITE
GRAPHICS and CREATING SOUND. These examples will give you a good idea
of how to use the sophisticated graphics and sound capabilities available on

your Executive 64.
If you want to learn more about writing programs in BASIC, check the

bibliography in the back of this manual (Appendix N).
If you are already familiar with BASIC programming, the following chapters

will help you get started with advanced BASIC programming techniques. You'll
find extensive information about advanced programming in the COMMODORE
64 PROGRAMMER'S REFERENCE GUIDE, which is available through your

local Commodore dealer.

46

CHAPTER 5
ADVANCED BASIC
• Introduction

• Simple An imation

• IN PUT

• Using the GET Statement for Data Input

• Using GET to Program Function Keys

• Random Numbers and Other Functions

• Guessing Game

• Your Roll

• Random Graphics

INTRODUCTION
The next few chapters are for people who are familiar with BASIC program·

ming language and the concepts necessary to write advanced programs.
Those of you who are just starting to learn how to program may find some of

the information too technical to understand comp letely. But you 'll find some
simple examples that are wri tten for new users in two chapters, SPRITE
GRAPHICS and CREATING SOUND. These examples will give you a good idea
of how to use the sophisticated graphics and sound capabili ties available on
your Executive 64.

If you want to learn more about writing programs in BASIC, check the
bibliography in the back of this manual (Appendix N).

If you are already familiar with BASIC programming, the following chapters
will help you get started with advanced BASIC prog ramm ing techn iques. You' ll
find extensive information about advanced prog ramming in the COMMODORE
64 PROGRAMMER'S REFERENCE GUIDE, which is available through your
local Commodore dealer.

46

SIMPLE ANIMATION

You can use some of the 64's graphic capabilities by putting together what

you've learned so far in this manual, along with a few new concepts.

Try entering the following program to see what you can do with graphics.

Notice that you can include cursor controls and screen commands WITHIN a

PRINT statement. When you see something like <CRSR left > in a program

listing, hold down the SHIFT key and press the < - CRSR - > key. The screen

shows the graphic representation of a cursor left, which is two vertical reversed

bars. The graphic representation of the SHIFTed CLR/HOME key is a reversed

heart.

NEW

10 REM BOUNCING BALL

20 PRINT "(CLR/HOME^

FOR X

FOR BL = 1 TO 40

PRINT" . (CRSR LEFT)";:REM

FOR TM =\i TO 5
NEXTTM

NEXT BL

25

30

40

50

60

70

75

80

90

100

110

120

130

"(CRSR/DOWN)":NEXT

is aSHIFT-Q

REM MOVEjBALL RIGHT TO LEFT

FOR BL =/40 TO 1 STEP - 1

PRINT "^CRSR LEFT) (CRSR LEFT)
FOR TM = 1 TO 5

NEXTTM

NEXT BL

GOTO 20

THESE SPACES

ARE INTENTIONAL

(CRSR LEFT)";

TIP:

All

don't

words

hit £

middle of a

in this

word.

text will

your 64

be

wil

completed on

automatically

one line.

move to

However

the next

as

line

lonq

even

as

in

you

thp

When this program RUNs, it displays a bouncing ball moving across the

screen from left to right and back again. Take a close look at the program to see

how this is done.

Line 10 is a REMark that tells you what the program does. A REMark state

ment has no effect on the program itself.

Line 20 clears the screen.

Line 25 PRINTs ten cursor-down commands. This just positions the ball in
the middle of the screen. Without this line, the ball would move across the top
line of the screen.

Line 30 sets up a loop to move the ball 40 columns from left to right.
Line 40 does three things:

1. PRINTs a space to erase the previous ball positions
2. PRINTs the ball.

3. Performs a cursor-left to get ready to erase the current ball position again.

47

SIMPLE ANIMATION
You can use some of the 64's graphic capabilities by putt ing together what

you've learned so far in this manual, along with a few new concepts.
Try entering the foltowing program to see what you can do wit h graphics.

Notice that you can include cursor controls and screen commands WITHIN a
PRINT statement. When you see something like < CRSR left > in a program
listi ng, hold down the SHIFT key and press the < - CRSR - > key. The screen
shows the graphic representation of a cursor left, which is two vertical reversed
bars. The graphic representation of the SHIFTed CLRlHOME key is a reversed
heart.

NEW
10 REM BOUNCING BALL
20 PRINT "(CLR/HOME "

INDICATES NEW
COMMAND

25 FOR X = 1 TO 10: PRINT "(CRSR/DOWN)" :NEXT
30 FOR BL = 1 TO 40
40 PRINT" (CRSR LEFT)";:REM
50 FOR TM = 1 TO 5
60 NEXT TM
70 NEXT BL
75 REM MOVE BALL RIGHT TO LEFT
80 FOR BL = 40 TO 1 STEP - 1

is a SHIFT - Q
----~~----

THESE SPACES
ARE INTENTIONAL

90 PRINT " (CRSR LEFT) (C RSR LEFT) (CRSR LEFT)";
100 FOR TM = 1 TO 5
110 NEXT TM
120 NEXT BL
130 GOTO 20

TIP:
All words in this text wi ll be completed on one line. However, as long as you

don 't hit ' ;liIli'Ii' your 64 wi ll automatically move to the next line even in the
midd le of a word.

When this program RUNs, it displays a bouncing ball moving across the
screen from left to right and back again. Take a close look at the program to see
how this is done.

Line 10 is a REMark that tel ls you what the program does. A REMark state
ment has no effect on the program itself.

Line 20 clears the screen.
Line 25 PRINTs ten cursor-down commands. This just positions the ball in

the middle of the screen. Without this li ne, the ball would move across the top
li ne of the screen.

Line 30 sets up a loop to move the bal l 40 columns from left to right.
Line 40 does three things:

1. PRINTs a space to erase the previous ball positions.
2. PRINTs the ball.
3. Performs a cursor·left to get ready to erase the current ball positi on again.

47

-

Line 50 and 60 set up a loop that slows down the ball's movement. Without

this loop, the ball would move too fast for you to see clearly.
Line 70 completes the loop set up in line 30 to PRINT balls on the screen.

Each time the loop executes, the ball moves another space to the right. As you

can see from the illustration, the program contains a loop within a loop. You

can include up to ten loops within a loop. The only time you get in trouble is

when the loops cross over each other. The loops have to be NESTED inside
each other. In other words, if you start loop A and then start loop B inside loop

A. you must finish loop B (the inside loop) first.

When you're writing a program with loops, it's a good idea to draw arrows

from the beginning to the end of the loops. If your loops cross, the computer

can't figure out what you want, so it can't execute your program.

Lines 80 through 120 just reverse the steps in the first part of the program,

and move the ball from right to left. Line 90 is slightly different from line 40

because the ball is moving in the opposite direction, and you have to erase the

ball to the right and move to the left.
Line 130 sends the program back to line 20 to start the whole process over

again.

For a variation on the program, change line 40 to read:

40 PRINT "<SHIFT> < Q>"

Run the program and see what happens now. Because you left out the cursor

control, each ball remains on the screen until it is erased by the ball moving

right to left in the second part of the program.

-

48

line 50 and 60 set up a loop that slows down the ball 's movement. Withou t
this loop, the ball would move too fast fo r you to see clearly.

line 70 completes the loop set up in line 30 to PRINT balls on the screen.
Each time the loop executes, the ball moves another space to the right. As you
can see from the illustration, the program contains a loop within a loop. You
can include up to ten loops within a loop. The only time you get in trouble is
when the loops cross over each other. The loops have to be NESTED inside
each other. In other words, if you start loop A and then start loop B inside loop
A, you must finish loop B (the inside loop) first.

When you're writing a program wit h loops, it's a good idea to draw arrows
from the beginning to the end of the loops. If your loops cross , the computer
can't figure out what you want, so it can't execute your program.

lines 80 through 120 just reverse the steps in the first part of the program,
and move the bal l from right to lef t. line 90 is slightly different from line 40
because the ball is moving in the opposi te direc tion, and you have to erase the
ball to the right and move to the left.

line 130 sends the program back to line 20 to start the whole process over
again.

For a variation on the prog ram, change line 40 to read:

40 PRINT " <SHIFT> < 0 >"

Run the program and see what happens now. Because you left out the cursor
control , each ball remains on the screen until it is erased by the ball moving
right to left in the second part of the program.

48

INPUT

Up to now, everything in a program has been set up before the program

RUNs. Once you executed the program, you couldn't change or add anything.

The INPUT statement lets you send information to a program WHILE it is RUN-

ning. Not only does the program act on this information you supply, but the pro
gram won't continue until you supply it.

To get an idea of how INPUT works, type NEW, press RETURN, and enter this
short program.

10 INPUT A$

20 PRINT "YOU TYPED ";A$

30 PRINT

40 IF AS = "STOP" THEN END

50 GOTO 10

RUN

? GO

YOU TYPED GO

? CONTINUE

YOU TYPED CONTINUE

? STOP

YOU TYPED STOP

Here's what happens in this program:

Line 10 tells the computer to display a question mark to prompt you to INPUT

a value for AS, and to wait until you supply the value before continuing the pro
gram execution.

Line 20 PRINTS a message and the INPUT value, and line 30 PRINTs a blank
line.

Line 40 tells the computer to end the program immediately IF the value you
INPUT for AS is STOP.

Line 50 returns the program to line 10 so you can INPUT another value. IF line

40 is true because the last value you INPUT for A$ was STOP, then line 50 isn't
executed.

You can INPUT numeric or string variables, and you can have the INPUT

statement print a message along with a question mark to describe the kind of

INPUT the computer is waiting for. For example, here's what happens when you

add a prompt message to line 10 of the previous example:

10 INPUT "KEEP GOING";A$ Prompt message can't

RUN be more than 38

KEEP GOING? GO characters

YOU TYPED GO

KEEP GOING? STOP

YOU TYPED STOP

49

INPUT
Up to now, everything in a program has been set up before the program

RUNs. Once you executed the program, you couldn 't change or add anything.
The INPUT statement lets you send information to a program WHILE it is RUN·
ning. Not only does the program act on this information you supply, but the pro·
gram won't continue until you supply it.

To get an idea of how INPUT works, type NEW, press RETURN, and enter this
short program.

10 INPUT A$
20 PRINT " YOU TYPED ";AS
30 PRINT
40 IF A$ = "STOP" THEN END
50 GOTO 10
RUN
? GO
YOU TYPED GO

? CONTINUE
YOU TYPED CONTINUE

? STOP
YOU TYPED STOP

Here's what happens in this program:

Line 10 tells the computer to display a question mark to prompt you to INPUT
a value for AS, and to wait until you supply the value before continuing the pro·
gram execution.

Line 20 PRINTs a message and the INPUT value, and line 30 PRINTs a blank
line.

Line 40 tells the computer to end the program immediately IF the value you
INPUT for A$ is STOP.

Line 50 returns the program to line 10 so you can INPUT another value. IF line
40 is true because the last value you INPUT for AS was STOP, then line 50 isn't
executed.

You can INPUT numeric or string variables, and you can have the INPUT
statement print a message along with a question mark to describe the kind of
INPUT the computer is waiting for. For example, here's what happens when you
add a prompt message to line 10 of the previous example:

10 INPUT " KEEP GOING";A$
RUN
KEEP GOING? GO
YOU TYPED GO

Prompt message can't
be more than 38
characters

v KEEP GOING? STOP
YOU TYPED STOP

v

v

49

Here's a more complex example that demonstrates a lot of what's been

presented so far, including the INPUT statement.

NEW
1 REM TEMPERATURE CONVERSION PROGRAM

5 PRINT "(CLR/HOME)"

10 PRINT "CONVERT FROM FAHRENHEIT OR CELSIUS (F/C)":INPUT A$

20 IF AS = ""THEN 10

30 IF AS = "F"THEN 100

40 IF A$O"C" THEN END

50 INPUT "ENTER DEGREES CELSUIS: ";C

60 F = (C*9)/5 + 32

70 PRINT C;" DEG. CELSIUS = "; F;" DEG. FAHRENHEIT"

80 PRINT

90 GOTO 10
100 INPUT "ENTER DEGREES FAHRENHEIT: ";F

110 C = (F-32)'5/9

120 PRINT F:" DEG.FAHRENHEIT = ";C:" DEG. CELSIUS"

130 PRINT

140 GOTO 10

Line 10 uses the INPUT statement to print a prompt message and to wait for

you to type in a value for A$.

Lines 20. 30 and 40 check what you typed in and tell the computer where to

go next. Line 20 tells the computer to go back to line 10 and ask for INPUT again

IF nothing was typed in (IF just RETURN was pressed). Line 30 tells the com
puter to go straight to line 100 and perform the Fahrenheit-to-Celsius conver

sion IF the value you typed for A$ is F.
Line 40 checks to be sure that you haven't typed in anything beside F or C. IF

you have, line 40 ends the program. IF you typed in a C. the computer
automatically moves to line 50 to perform the Celsius-to-Fahrenheit conversion.

It may seem like too much detail to include all these IF statements to check
what you INPUT. But this is a good programming practice that can spare you a

lot of frustration. You should always try to be sure that your program takes care

of all possibilities.

Back to the example: once the program knows what type of conversion to

make, the calculations are made. Then the program PRINTS the temperature

you entered and the converted temperature.

The calculation this program performs is just straight math, using the stan

dard formula for temperature conversion. After the calculation finishes and the

answer is PRINTed. the program loops back and starts over.

Here's a sample execution of this program:

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C): ?F

ENTER DEGREES FAHRENHEIT: 32

32 DEG. FAHRENHEIT - 0 DEG. CELSIUS

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C): ?

After you RUN this program, you might want to save it on disk. This program,

as well as others in this manual, can form part of your program library.

50

Here's a more complex example that demonstrates a lot of what's been
presented so far, including the IN PUT statement.

NEW
1 REM TEMPERATURE CONVERSION PROGRAM
5 PRINT " (CLRlH OM E)"
10 PRINT "CONVERT FROM FAHRENHEIT OR CELSIUS (F/C)": INPUT AS
20 IF AS = "" THEN 10
30 IF AS = " F" THEN 100
40 IF AS <> "c" THEN END
50 INPUT " ENTER DEGREES CELSUIS: " ;C
60 F = (C ' 9V5+ 32
70 PRINT C;" DEG. CELSIUS = "; F;" DEG. FAHRENHEIT"
80 PRINT
90 GOTO 10
100 INPUT "ENTER DEGREES FAHRENHEIT: ";F
110 C = (F-32)'5/9
120 PRINT F;" DEG.FAHRENHEIT = ";C;" DEG. CELSIUS"
130 PRINT
140 GOTO 10

Line 10 uses the INPUT statement to print a prompt message and to wait for
you to type in a value for AS.

Lines 20, 30 and 40 check what you typed in and tell the computer where to
go next. Li ne 20 tells the computer to go back to line 10 and ask for IN PUT again
IF nothing was typed in (IF just RETURN was pressed). Line 30 tel ls the com
puter to go straight to line 100 and perform the Fahrenheit-to-Ce lsius conver
sion IF the val ue you typed for AS is F.

Line 40 checks to be sure that you haven't typed in anything beside F or C. IF
you have, line 40 ends the program. IF you typed in a C, the computer
automatically moves to line 50 to perform the Celsius-ta-Fahren heit conversion .

It may seem like too much detail to include all these IF statements to check
what you INPUT. But this is a good programming practice that can spare you a
lot of frustration. You should always try to be sure that your program takes care
of all possibilities.

Back to the example: once the program knows what type of conversion to
make, the calculat ions are made. Then the program PRINTs the temperature
you entered and the converted temperature.

The calcu lation thi s program performs is just straight math, using the slan
dard formula for temperature conversion. After the calculation finishes and the
answer is PRINTed, the program loops back and starts over.

Here's a sample execution of this program :

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C): ?F
ENTER DEGREES FAHRENHEIT: 32
32 DEG. FAHRENHEIT = 0 DEG. CELSIUS

CONVERT FROM FAHRENHEIT OR CELSIUS (F/C): ?

After you RUN this program, you might want to save it on disk. This program,
as wel l as others in this manual, can form part of your program library.

50
n
n
n

USING THE GET STATEMENT FOR DATA INPUT

GET lets you input one character at a time from the keyboard without press

ing the RETURN key. This really speeds up entering data in many cases.

When you RUN a program that has a GET statement, whatever key you press

is assigned to the variable you include in the GET statement. Here's an exam

ple:

1 PRINT "<CLR/HOME>"

10 GET AS: IF AS = "" THEN 10 No space between

20 PRINT A$; quotes

30 GOTO 10

Line 1 clears the screen.

Line 10 lets you type in any key on the keyboard. In effect, the loop in line 10

tells the computer to wait until you type in a key before moving to line 20.

Line 20 displays the keys you type on the screen.

Line 30 sends the program back to GET another character. It's important to

remember that the character you type in won't be displayed uniessyou PRINT it

to the screen, as we've done in line 20.

The IF statement in line 10 is very important. GET continually works, even if

you don't press a key (unlike INPUT, which waits for your response), so the se

cond part of line 10 continually checks the keyboard until you hit a key.

Try leaving out the second part of line 10 and see what happens.

To stop this program, press the RUN/STOP and RESTORE keys.

You can easily rewrite the beginning of the temperature conversion program

to use GET instead of INPUT. If you've SAVEd this program, LOAD it and

change lines 10 and 20 like this:

10 PRINT "CONVERT FROM FAHRENHEIT OR CELSIUS (F/C)"

20 GET A$: IF AS = "" THEN 20

51

v

v

USING THE GET STATEMENT FOR DATA INPUT
GET lets you input one character at a time from the keyboard without press·

ing the RETURN key. This really speeds up entering data in many cases.
When you RUN a program that has a GET statement, whatever key you press

is assigned to the variable you inc lude in the GET statement. Here's an exam·
pie:

1 PRINT " < CLRlHOME >"
10 GET A$: IF A$; " " THEN 10
20 PRINT A$;
30 GOTO 10

Li ne 1 clears the screen.

No space between
quotes

line 10 lets you type in any key on the keyboard . In effect , the loop in line 10
tel ls the computer to wait until you type in a key before moving to line 20.

line 20 displays the keys you type on the screen.
line 30 sends the program back to GET another character. It 's important to

remember that the character you type in won't be displayed unless you PRINT it
to the screen, as we've done in line 20.

The IF slatement in line 10 is very important. GET continually works, even if
you don't press a key (unlike INPUT, which waits for your response), so the se·
cond part of line 10 continually checks the keyboard until you hit a key.

Try leaving out the second part of line 10 and see what happens.
To stop this program, press the RUN/STOP and RESTORE keys.
You can easily rewrite the beginning of the temperature conversion program

to use GET instead of INPUT. If you've SAVEd this program, LOAD it and
change lines 10 and 20 like this:

10 PRINT "CONVERT FROM FAHRENHEIT OR CELSIUS (F/C)"
20 GET A$: IF A$; "" THEN 20

51

USING GET TO PROGRAM FUNCTION KEYS

As you'll recall from an earlier chapter, we told you that the keys on the right

side of the keyboard {f1 through f8) are function keys that you can program to

perform a variety of tasks.

Here's how to program a function key:

1. Use a GET Statement to read the keyboard.

2. Use IF statements to compare the key you press to the CHR$ code for the
function key you want to use. Every character on the keyboard has a unique

CHR$ number. For example, the CHRS code of f 1 is 133. Appendix F lists the

CHR$ code for all keys.

3. Use THEN statements to tell the computer what you want the function key

to do.

When you RUN the program, all you so is press a function key you program

med, and the key will follow the instructions you gave it in the THEN statement.

For example:

10 GETA$: IF AS = ""THEN 10
20 IF AS=CHR$(137)THEN A$=CHR${14)

30 IF A$=CHR$(134)THEN A$= "YOURS TRULY" +CHR$(13)

Line 10 tells the program to assign the key you press to the variable AS. As
you'll recall from the previous example, the loop in line 10 continually checks

the keyboard for input.

Line 20 programs function key 2, CHR$(137). Line 20 tells the computer to

make AS equal to CHR$(14) if you press function key 2. CHRS(14) is the switch
from upper to lower case letters on the keyboard. When you RUN this program,
you'll see that the characters on the screen immediately make this switch if you

press f2.
Line 30 programs function key 3, CHR$(134). Line 30 tells the computer to

make A$ equal to the character string YOURS TRULY and CHR$(13) if you press
f3 during program execution. CHR$(13) is the code for the RETURN key.

THE CHRS codes for the function keys are:

f1 = CHR$(133) f2 = CHRS(137)

f3 = CHRS(134) f4 = CHR$(138)

f5 - CHR$(135) f6 = CHRS039)
f7 = CHR${136) f8 = CHRS(140)

The COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE has more in
formation about programming function keys. You can purchase this extensive

guide from your local Commodore dealer.

52

USING GET TO PROGRAM FUNCTION KEYS

As you' ll recall from an earlier chapter, we told you that the keys on the right
side of the keyboard (f1 through f8) are function keys that you can program to
perform a variety of tasks.

Here's how to program a function key:

1. Use a GET Statement to read the keyboard.
2. Use tF statements to compare the key you press to the CHR$ code for the

function key you want to use. Every character on the keyboard has a unique
CHR$ number. For example, the CHR$ code of f1 is 133. Appendix F lists the
CHR$ code for all keys.

3. Use THEN statements to tell the computer what you want the function key
to do.

When you RUN the program, all you so is press a function key you program·
med, and the key will follow the instructions you gave it in the TH EN statement.
For example:

10 GET A$: IF A$ = " " THEN 10
20 IF AS = CHR$(137) TH EN A$ = CHR$(14)
30 IF A$= CHR$(134) TH EN A$= "YOURS TRULY" + CHR$(13)

Line 10 tells the program to assign the key you press to the variable AS. As
you'll recall from the previous example, the loop in li ne 10 cont inually checks
the keyboard for input.

Line 20 programs function key 2, CHR$(137). Line 20 tells the computer to
make A$ equal to CHR$(14) if you press func tion key 2. CHR$(14) is the switch
from upper to lower case letters on the keyboard. When you RUN this program,
you'll see that the characters on the screen immediately make this switch if you
press f2.

Li ne 30 programs function key 3, CHR$(134). Line 30 te lls the computer to
make A$ equal to the character string YOURS TRULY and CHR$(13) if you press
f3 during program execution. CHR$(13) is the code for the RETURN key.

THE CHR$ codes for the function keys are:

f1 = CHRS(133) f2 = CHRS(137)
f3 = CHRS(134) f4 = CHR$(138)
f5 = CHR$(135) f6 = CHR$(139)
f7 = CHR$(136) f8 = CHRS(140)

The COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE has more in·
formation about programming function keys. You can purchase this extensive
guide from your local Commodore dealer.

52

RANDOM NUMBERS AND OTHER FUNCTIONS

The 64 also has built-in functions that you can use to perform special tasks.

Functions are like built-in programs included in BASIC. The great advantage of

these built-in functions is that you don't have to type in a number of statements

every time you want to perform a specialized calculation. Instead, all you do is

type the command for ihe function you want and the computer does all the rest.

These built-in functions include figuring square roots (SQR), finding out the

contents of a memory location (PEEK), generating random numbers (RND), etc.

Appendix C lists all the functions available on your computer.

One function you can have a lot of fun with is the random number function,

RND. If you want to design a game or an educational program, you'll often need

to be able to program your computer to make up random numbers. For exam

ple, you'd need to do this to simulate the tossing of dice. Of course you could

write a program that wouid generate these random numbers, but it's much

easier to be able to do this just by calling upon the prewritten RaNDom number

function.

To see how RND works, try this short program:

NEW

10 FOR X = 1 TO 10

20 PRINT RND(1),

30 NEXT

IF YOU LEAVE OUT THE COMMA, YOUR

LIST OF NUMBERS APPEARS AS 1 COLUMN

When you RUN this program, the screen displays:

.789280697

.256373663

.682952381

.402342724

.158209063

.664673958

.0123442287

3.90587279E-04

.879300926

.245596701

Your numbers don't match? It would be incredible if they did because the

program generates a completely random list of ten numbers.

If you RUN the program a few more time, you'll see that the results are

always different. Though the numbers don't have a pattern, you'll notice a few

consistencies about the list the program displays.

For one thing, the results are always between 1 and 0. but never equal to 1 or

0. For another, the numbers are real numbers (with decimal points).

Now, we started out to simulate dice tosses, and the results from this pro

gram aren't exactly what we're looking for. Now we'll add a few more features

to this program to get what we want.

First, add this line to the program to replace line 20, and RUN the program

aaain:

20 PRINT 6*RND(1),

RUN

3.60563664

5.48602315

3.10045018

3.91302584

2.32056144

4.52687513

1.09650123

4.39052168

5.06321506

4.10781302

53

v

v

v

RANDOM NUMBERS AND OTHER FUNCTIONS
The 64 also has buill·in functions that you can use to perform special tasks.

Functions are like built·in programs included in BASIC. The great advantage of
these built·in functions is that you don't have to type in a number of statements
every time you want to perform a specialized calculation. Instead, all you do is
type the command for Ihe funct ion you want and the computer does all the rest.

These built·in funct ions include figuring square roots (SOR), finding out the
contents of a memory location (PEEK), generating random numbers (RND), etc.
Appendix C lists all the functions available on you r computer.

One function you can have a lot of fun with is the random number function,
RND. If you want to design a game or an educational program, you'll often need
to be able to program your computer to make up random numbers. For exam·
pie, you'd need to do this to simulate the tossing of dice. Of course you could
write a program that wou ld generate these random numbers, but it 's much
easier to be able to do this just by cal ling upon the prewritten RaNDom number
function.

To see how RND works, try this short program:

NEW
10 FOR X = 1 TO 10
20 PRINT RND (1),
30 NEXT

IF YOU LEAVE OUT THE COMMA. YOUR
LIST OF NUMBERS APPEARS AS 1 COLUMN

When you RUN this program, the screen displays:

.789280697

.256373663

.682952381

.402342724

.158209063

.664673958

.0123442287
3.90587279E - 04
.879300926
.245596701

Your numbers don't match? It would be incredible if they did because the
program generates a completely random list of ten numbers.

If you RUN the program a few more time, you'll see that the results are
always different. Though the numbers don 't have a pattern, you' ll notice a few
consistencies about the list the program displays.

For one thing , the results are always between 1 and 0, but never equal to 1 or
O. For another, the numbers are real numbers (with decimal pOints).

Now, we started out to simulate dice tosses, and the results from this pro.
gram aren't exactly what we're looking for. Now we'll add a few more features
to this program to get what we want.

First, add this line to the program to replace line 20, and RUN the program
again:

20 PRINT 6'RND(1),
RUN

3.60563664
5.48602315
3.10045018
3.91302584
2.32056144

4.52687513
1.09650123
4.39052168
5.06321506
4.10781302

53

"

Now we've got results larger than 1. but still have real numbers. To solve this,

we'll use another function.

The INT function converts real numbers to integer (whole) numbers. So try

replacing line 20 again:

20 PRINT INT(6'RND(1)), "
RUN

2 3 10

2 4 5 5 ~

0 1

Now we're even closer to our goal, but you'll notice that the numbers range

from 1 to 5, not 1 to 6. So as a final step, we'll replace line 20 again:

20 PRINT INT(6'RND(1)) + 1

Now when you RUN the program, you'll get the results you want.

When you want to generate a range of real numbers instead of whole

numbers, the formula is slightly different because you must subtract the lower

limit of the range from the upper limit. For example, you can generate random

numbers between 1 and 25 by typing:

20 PRINT RND(1)'(25-1) + 1

The general formula for generating random numbers in a certain range is:

NUMBER = RND{1) *(UPPER LIMIT - LOWER LIMIT) + LOWER LIMIT

54

Now we've got results larger than 1, but still have real numbers. To solve this,
we' ll use another function.

The INT function converts real numbers to integer (whole) numbers. So try
replac ing line 20 again:

20 PRINT INT(6 " RND(1)),
RUN

2 3 1 0
2 4 5 5
o 1

Now we're even closer to our goal, but you'll notice that the numbers range
from 1 to 5, not 1 to 6. So as a final step, we'll replace line 20 again:

20 PRINT INT(6" RND(1)) + 1

Now when you RUN the program, you'll get the results you want.
When you want to generate a range of real numbers instead of whole

numbers, the formula is slightly different because you must subtract the lower
limit of the range from the upper limit. For example, you can generate random
numbers between 1 and 25 by typing:

20 PRINT RND(1)" (25- 1) + 1

The general formula for generating random numbers in a certain range is:

NUMBER = RND(1) "(UPPER LIMIT - LOWER LIMIT) + LOWER LIMIT

54

INDICATES NO

SPACE AFTER

QUOTATION MARK

GUESSING GAME

Here's a game that uses random numbers. This game not only uses the RND

function, but it also introduces some additional programming theory.

When you RUN this program, the computer generates a random number, NM,

whose value you'll try to guess in as few turns as possible.

NEW

1 REM NUMBER GUESSING GAME

2 PRINT "(CLR/HOME)"

5 INPUT -'ENTER UPPER LIMIT FOR GUESS ";LI

10 NM = INT(LI*RND(1))+1

15 CN = 0

20 PRINT "I'VE GOT THE NUMBER.":PRINT

30 INPUT "'WHAT'S YOUR GUESS"; GU

35 CN = CN + 1

40 IFGU>NM THEN PRINT "MY NUMBER IS LOWER": PRINT:GOTO 30

50 IF GU< NM THEN PRINT "MY NUMBER IS HIGHER": PRINT:GOTO 30

60 PRINT "GREAT! YOU GOT MY NUMBER"

65 PRINT "IN ONLY "'; CN ;"GUESSES.":PRINT

70 PRINT "DO YOU WANT TO TRY ANOTHER (Y/N)";

80 GET AN$: IF AN$="" THEN 80

90 IF AN$ = "Y" THEN 2

100 IF AN$< >"N" THEN 70

110 END

You can specify how large the number will be at the start of the program.

Then, it's up to you to guess what the number is.

A sample run follows along with an explanation.

ENTER UPPER LIMIT FOR GUESS? 25

I'VE GOT THE NUMBER.

WHAT'S YOUR GUESS ? 15

MY NUMBER IS HIGHER.

WHAT'S YOUR GUESS ? 20

MY NUMBER IS LOWER.

WHAT'S YOUR GUESS ? 19

GREAT! YOU GOT MY NUMBER

IN ONLY 3 GUESSES.

DO YOU WANT TO TRY ANOTHER (Y/N)?

55

GUESSING GAME
Here's a game that uses random numbers. This game not only uses the RND

function, but it also introduces some additional programming theory.
When you RUN this program, the computer generates a random number, NM,

whose value you'll try to guess in as few turns as possible.

NEW
1 REM NUMBER GUESSING GAME
2 PRINT "(CLRlHOME)" -------.r----'--_
5 IN PUT "ENTER UPPER LIMIT FOR GUESS ";LI
10 NM = INT(LI·RND(l))+ 1
15 CN = 0
20 PRINT " I'VE GOT THE NUMBER.":PRINT
30 INPUT "WHAT'S YOUR GUESS"; GU
35 CN = CN + 1

INDICATES NO
SPACE AFTER
QUOTATION MARK

40 IF GU > NM THEN PRINT " MY NUMBER IS LOWER": PRINT:GOTO 30
50 IF GU< NM THEN PRINT "MY NUMBER IS HIGHER" : PRINT:GOTO 30
60 PRINT "GREAT! YOU GOT MY NUMBER"
65 PRINT " IN ONLY "; CN ;"GUESSES." :PRINT
70 PRiNT " DO YOU WANT TO TRY ANOTHER (YIN)";
80 GET AN $: IF AN$= ,'" THEN 80
90 IF AN$ = " Y" THEN 2
100 IF AN$ < > "N" THEN 70
110 END

You can specify how large the number wil l be at the start of the program.
'-' Then, it 's up to you to guess what the number is.

v

v

A sample run fo llows along with an explanation .

ENTER UPPER LIMIT FOR GUESS? 25
I'VE GOT THE NUMBER.

WHAT'S YOUR GUESS ? 15
MY NUMBER IS HIGHER.

WHAT'S YOUR GUESS ? 20
MY NUMBER IS LOWER.

WHAT'S YOUR GUESS ? 19
GREAT! YOU GOT MY NUMBER
IN ONLY 3 GUESSES.

DO YOU WANT TO TRY ANOTH ER (YIN)?

55

~

The IF/THEN statement (lines 40-60) compare your guess to the random

number (NM) generated by line 10. If your guess is wrong, the program tells you

whether your guess is higher or lower than NM.

Each time you make a guess, line 35 adds 1 to CN. CN is a counter that keeps

track of how many guesses you take to get the right number. The purpose of

this game, of course, is to guess the number in as few tries as possible.

When you get the right answer, the program displays the message. GREAT!

YOU GOT MY NUMBER, and tells you how many guesses you took.

Remember that the program creates a new random number each time you

play the game.

You might want to add a few lines to the program that also specify the lower

range of numbers generated by this game.

PROGRAMMING TIPS:

In lines 40 and 50. a colon separates multiple statements on a single line.

This not only saves typing time, but it also conserves memory space.

Also notice that the IF/THEN statements in these two lines PRINT something

before branching to another line.

YOUR ROLL

The following program simulates the throw of two dice. You can play this lit

tle game by itseif, or use it as part of a larger game.

5 PRINT "Care to try your luck?"

10 PRINT "RED DICE = ";INT(RND(1)*6)+1

20 PRINT "WHITE DICE = ";INT(RND(1)*6)+1

30 "PRESS SPACE BAR FOR ANOTHER ROLL":PRINT

40 GET A$: IF A$ = "" THEN 40

50 IF A$ = CHR${32) THEN 10

From what you've learned about BASIC and random numbers, see if you can

follow what's going on in this program. As you may recall from the section on

programming the function keys, CHR$(32) is the character string code for the

space bar.

-

56

The IFfTHEN statement (li nes 40-60) compare your guess to the random
number (NM) generated by line 10. If your guess is wrong , the program tell s you
whether your guess is higher or lower than NM.

Each ti me you make a guess, line 35 adds 1 to CN. CN is a counter that keeps
track of how many guesses you take to get the right number. The purpose of
this game, of course, is to guess the number in as few tries as possible.

When you get the right answer, the prog ram displays the message, GREAT!
YOU GOT MY NUMBER, and tel ls you how many guesses you look.

Remember that the program creates a new random number each time you
play the game . .

You might want to add a few lines to the program that also specify the lower
range of numbers generated by this game.

PROGRAMM ING TIPS:
In lines 40 and 50, a colon separates multiple statements on a single line.

Th is not on ly saves typing time, but it also conserves memory space.
Also notice that the IFfTHEN statements in these two lines PRINT somethi ng

before branching to another li ne.

YOUR ROll
The fo llowing program simulates the throw of Iwo dice. You can play this lit·

tie game by itself, or use it as part of a larger game.

5 PRINT "Care to try your luck?"
10 PRINT " RED DICE = "; INT(RND(1)'6)+ 1
20 PRINT "WHITE DICE = ";INT(RND(1)'6)+ 1
30 " PRESS SPACE BAR FOR ANOTHER ROLL" :PRINT
40 GET A$: IF A$ = " " THEN 40
50 IF A$ = CHR$(32) THEN 10

From what you've learned about BASIC and random nu mbers, see if you can
follow what 's going on in this program. As you may recall from the section on
programming the function keys, CHR$(32) is the character string code for the
space bar.

56

RANDOM GRAPHICS

As a final note on random numbers, and as an introduction to designing

graphics, try entering and RUNning this program:

10 PRINT ■1<CLR/HOME>"

20 PRINT CHR$(205.5 + RND (1));

30 GOTO 20

The function CHRS (CHaracter String) gives you a character, based on a stan

dard code number from 0 to 255. Every character the 64 can print is encoded

this way. Appendix F lists the CHRS codes for all keys.

A quick way of finding out the code for any character is to use the function

ASC (for the standard ASCII code). Type:

PRINT ASCf'X")

X is the character you're checking. X can be any printable character, including

graphics characters. You must enclose the character in quotation marks.

Here's an example:

PRINT ASC("G")

71

The CHRS function is the opposite of ASC.

PRINT CHR$(71)

G

If you type:

PRINT CHR${205);CHR$(206)

the computer displays the two right side graphics on the M and N keys, which

are the characters used in the little maze program you just tried.

The formula 205.5 + RND(1) tells the computer to pick a random number bet

ween 205.5 and 206.5 There is fifty-fifty chance that the random number will be

above or below 206. CHRS ignores fractional values, so half the time the

character with code 205 is printed, and the rest of the time code 206 is

displayed.

You can experiment with this program by adding or subtracting a couple of

tenths from 205.5. This gives either character a greater chance of being

displayed.

57

v RANDOM GRAPHICS
"-" As a final note on random numbers, and as an introduction to designing

v

v

v

v

v

v

graphics, try entering and RUNning this program:

10 PRINT " < CLRlHOME >"
20 PRINT CHRS(205.5 + RND (1));
30 GOTO 20

The function CHR$ (CHaracter String) gives you a character, based on a stan·
dard code number from 0 to 255. Every character the 64 can print is encoded
this way. Append ix F lists the CHR$ codes for all keys.

A quick way of finding out the code for any character is to use the function
ASC (for the standard ASCII code). Type:

PRINT ASC("X")

X is the character you're checking. X can be any printable character, including
graphics characters. You must enclose the character in quotation marks.
Here's an example:

PRINT ASC("G")
71

The CHR$ function is the opposite of ASC.

PRINT CHR$(71)
G

If you type:

PRINT CHR$(205);CHR$(206)

the computer displays the two right side graphics on the M and N keys, which
are the characters used in the little maze program you just tried.

The formula 205.5 + RND(1) tells the computer to pick a random number bet·
ween 205.5 and 206.5 There is fifty· fifty chance that the random number will be
above or below 206. CHR$ ignores fractional values, so half the time the
character with code 205 is printed , and the rest of the time code 206 is
displayed.

You can experiment with this program by adding or subtracting a couple of
tenths from 205.5. This gives either character a greater chance of being
displayed.

57

—

-

-

-

—

-

~

~

n

-

CHAPTER 6

COLOR AND GRAPHICS

• How to Use Color and Graphics on Your Computer

• Printing Colors

• Color CHR$ Codes

• How to Use PEEKs and POKES

• Screen Graphics

• Screen Memory Map

• Color Memory Map

• More Bouncing Balls

—

HOW TO USE COLOR AND GRAPHICS ON YOUR COMPUTER

So far this book has presented some of the sophisticated computing

capabilities of your 64. But one of the most exciting features of your new com

puter is its outstanding ability to produce 16 different colors and a lot of dif

ferent graphics.

You've already seen a very simple demonstration of the graphics in the boun

cing ball program and in the maze program at the end of the last chapter. This

chapter introduces you to new concepts that explain graphic and color

programming, and that suggest ideas for creating your own games and advanc

ed animation.

-

<-

—

-

—

58

CHAPTER 6
COLOR AND GRAPHICS
• How to Use Color and Graphics on Your Compu ter

• Printing Colors

• Color CHR$ Codes

• How to Use PEEKs and POKEs

• Screen Graphics

• Screen Memory Map

• Color Memory Map

• More Bouncing Balls

HOW TO USE COLOR AND GRAPHICS ON YOUR COMPUTER
So far th is book has presented some of the sophisticated computing

capabilities of your 64. But one of the most exciting features of your new com·
puter is its outstanding abi li ty to produce 16 different colors and a lot of dif·
fe rent graphics.

You 've al ready seen a very simple demonstration of the graphics in the boun
cing ball program and in the maze program at the end of the last chapter. This
chapter introduces you to new concepts that explain graphic and color
programming, and that suggest ideas for creating your own games and advanc
ed animation.

58

—

PRINTING COLORS

When you tried the color aligment test in Chapter 1, you discovered that you

can change text colors by simply holding down the CTRL key and pressing one

of the color keys.

The 64 offers a full range of 16 colors. Though only eight colors are printed on

the color keys, you can get eight more by holding down the C - key and press

ing a color key. Here's a list of the colors:

DISPLAY

■

m

ii

n

B

m

KEYBOARD COLOR

ORANGE

BROWN

LT. RED

GRAY 1

GRAY 2

LT. GREEN

LT. BLUE

GRAY 3

DISPLAY

*

1
« i

ii
□

When we showed you the boucing ball program in the last chapter, you saw

that keyboard commands, such as cursor movement, can be written into PRINT

statements. In the same way you can also add text color changes to your pro

grams.

_

59

'-'

J

J

'-'

V

'-'

v

v

v

v

PRINTING COLORS
When you tried the color ali gment tes t in Chap ter 1, you discovered that you

can change text colors by simply holding down the CTRL key and pressing one
of the color keys.

The 64 offers a full range of 16 colors. Though only eight colors are printed on
the color keys, you can get eight more by holding down the C = key and press
ing a color key. Here's a list of the colors:

KEYBOARD COLOR: DISPLAY KEYBOARD COLOR DISPLAY

milD BLACK • ~D ORANGE
.~

••
milD WHITE III ~D BROWN fJ

RED ~ ~EI LT . RED ~
C YAN ~ ~a GRAY 1 ~

• ~D
..

PURPLE GRAY 2

GREEN 0 ~D IT. GREEN II
BLUE = ~D LT . BLUE 0

milD YELLOW m ~D GRAY 3 •• ..

When we showed you the boucing ball program in the last chapter, you saw
that keyboard commands, such as cursor movement, can be written into PRINT
statements. In the same way you can also add text color changes to your pro-
grams.

59

Type NEW and try experimenting with changing colors. Hold down the CTRL

key and at the same time press the 1 key. Now release both keys and press the

R key. Now hold down the CTRL key again and press the 2 key. Release the

CTRL key and type the A key. Move through the numbers, alternating with the

letters, and type out the word RAINBOW like this:

10 PRINT", R. A. I N.B.O.W"

You'll recall that cursor controls appear as graphic characters in the PRINT

statement. Color controls are also represented as graphic characters. The color

chart printed above shows the graphic characters that appear with each color.

Because of the graphic characters that are displayed when you select color

keys, your PRINT statement will look strange, but when you RUN the program,

you'll see that only the text of the message is displayed. The letters in the

message automatically change colors according to the color controls you plac

ed in the PRINT statement.

Now try making up some examples of your own, mixing any number of colors

within a single PRINT statement. Don't forget the second set of colors that you

can get by holding down the Cs key while you press a color key.

TIP:

After you RUN a program with color or mode (reverse) changes, you'll notice

that the READY prompt and any additional text you key in is the same as the

last color or mode change you made. To get back to the normal display, press

these keys together:

RUN/STOP and RESTORE

60

Type NEW and try experimenting with changing colors. Hold down the CTRL
key and at the same time press the 1 key. Now release both keys and press the
R key. Now hold down the CTRL key again and press the 2 key. Release the
CTRL key and type the A key. Move through the numbers, alternating wit h the
letters, and type out the word RAINBOW like this:

10 PRINT" r Rr A r I t r B rO r w"

mIIaOODDDD

You'll recal l that cu rsor controls appear as graphic characters in the PRINT
statement. Color controls are also represented as graphic characters. The color
chart printed above shows the graphic characters that appear with each color.
Because of the graphic characters that are displayed when you select color
keys, your PRINT statement will look strange, but when you RUN the program,
you' ll see that only the text of the message is displayed. The letters in the
message au tomatical ly change colors according to the color controls you plac·
ed in the PRINT statement.

Now try making up some examples of your own, mixing any nu mber of colors
within a single PRINT statement. Don't lorget the second set of colors that you
can get by holding down the ~ key while you press a color key

TIP:
After you RUN a program with color or mode (reverse) changes, you' ll notice

that the READY prompt and any add itional text you key in is the same as the
last color or mode change you made. To get back to the normal display, press
these keys together:

RUN/STOP and RESTORE

60

COLOR CHRS CODES

Before you start reading this section, take a look at Appendix F, which lists

the CHRS codes for all keys on the keyboard.

As you looked over the list of CHRS codes, you probably noticed that each

color has a unique code, just like all the other keys and the keyboard controls. If

you print the codes themselves by using the CHRS function mentioned in the

last chapter, you can get the same results you got by typing CTRL or [CKJ and
the color key in a PRINT statement.

For example, try this:

NEW

10 PRINT CHR$(147) : REM < CLR/HOME >

20 PRINT CHR$(28):-'CHR$(28) CHANGES ME TO?"

RUN

CHR$(28) CHANGES ME TO?

When you RUN this program, the screen clears before the message in line 20

is PRINTed. The text should be red now.

In many cases, you'll find that it's much easier to use the CHRS function to

change colors, especially if you want to experiment. The next page shows

another way to get a rainbow of colors. There are a number of similar lines in

the program (40 through 110). so use the editing keys to spare yourself a lot of
typing. See the notes at the end of the program listing to refresh your memory

on editing procedures.

NEW

1 REM AUTOMATIC COLOR BARS

5 PRINT CHR$(147) : REM CHR$(147)= CLR/HOME

10 PRINT CHRS(18); " ";:REM REVERSE BAR

20 CL = INT(8*RND(1))+1

30 ON CL GOTO 40.50.60,70.80.90.100,110

40 PRINT CHRS(5);: GOTO 10

50 PRINT CHRS(28):: GOTO 10

60 PRINT CHRS(30);: GOTO 10

70 PRINT CHRS(31):: GOTO 10

80 PRINT CHR$(144);: GOTO 10

90 PRINT CHRS(156);: GOTO 10

100 PRINT CHRS(158);: GOTO 10

110 PRINT CHR$(159);: GOTO 10

Type lines 5 through 40 normally. Your display should look like this:

1 REM AUTOMATIC COLOR BARS

5 PRINT CHR$(147): REM CHR$(147)= CLR/HOME

10 PRINT CHRS(18); " ";:REM REVERSE BARS

20 CL = INT(8*RND{1))+1

30 ON CL GOTO 40,50,60,70,80,90,100,110

40 PRINT CHR${5);: GOTO 10

61

v

v

v

COLOR CHR$ CODES
Before you start reading this section, take a look at Appendix F, wh ich lists

the CHRS codes for all keys on the keyboard .
As you looked over the list of CHR$ codes, you probably noticed that each

color has a unique code, just like all the other keys and the keyboard controls. If
you print the codes themselves by using the CHR$ function mentioned in the
last chapter, you can get the same results you got by typing CTRL or ~ and
the color key in a PRINT statement.

For example, try this:

NEW
10 PRINT CHR$(147) : REM < CLR/HOM E >
20 PRINT CHR$(28);"CHR$(28) CHANGES ME TO?"
RUN

CHRS(28) CHANGES ME TO?

When you RUN this program, the screen c lears before the message in line 20
is PRINTed. The text should be red now.

In many cases, you ' ll find that it's much easier to use the CHRS funct ion to
change colors, especially if you want to experiment. The next page shows
another way to get a rainbow of colors. There are a number of similar lines in
the program (40 through 110), so use the editing keys to spare yourself a lot of
typing. See the notes at the end of the program listing to refresh your memory
on editing procedures.

NEW
1 REM AUTOMATIC COLOR BARS
5 PRINT CHR$(147) : REM CHR$(147) = CLR/HOME
10 PRINT CHRS(18); " ";:REM REVERSE BAR
20 CL = INT(8· RND(1»+1
30 ON CL GOTO 40,50,60,70,80,90,100,1 10
40 PRINT CHRS(5);: GOTO 10
50 PRINT CHRS(28);: GOTO 10
60 PRINT CHRS(30);: GOTO 10
70 PRINT CHR$(31);: GOTO 10
80 PRINT CHRS(144);: GOTO 10
90 PRINT CHRS(156);: GOTO 10
100 PRINT CHR$(158);: GOTO 10
11 0 PRINT CHRS(159);: GOTO 10

Type lines 5 through 40 normally. Your display should look like this:

1 REM AUTOMATIC COLOR BARS
5 PRINT CHR$(147): REM CHR$(147)= CLR/HOME
10 PRINT CHRS(18); " " ;:REM REVERSE BARS

v 20 CL = INT(8· RND(1»+ 1
30 ON CL GOTO 40,50,60,70,80,90,100,11 0

v 40 PRINT CHR$(5);: GOTO 10

•
v

61

EDITING NOTES:

Use the < CRSR-up > key to position the cursor on line 40. Then type 5 over

the 4 of 40. Now use the < CRSR-right > key to move over to the 5 in the CHRi

parentheses. Press SHIFT and INST/DEL to open up a space, and key in 28.

Now just press RETURN with the cursor anywhere on the line.

The display should look like this now:

NEW

1 REM AUTOMATIC COLOR BARS

5 PRINT CHR${147): REM CHR$(147)= CLR/HOME

10 PRINT CHR$(18); " " ;:REM REVERSE BAR

20 CL = INT(8*RND<1))+1

30 ON CL GOTO 40,50,60,70,80,90,100,110

50 PRINT CHR$(28);: GOTO 10

Don't worry about line 40; it's still there, as you can see by LISTing the pro

gram. Follow the same steps to modify line 40 with a new line number and

CHR$ code until you've entered all the remaining lines. As a final check, LIST

the entire program to make sure all the lines are right before you RUN it.

You probably understand the color bar program except for line 30. Here's a

brief explanation of how this program works.

Line 5 prints the CHR$ code for CLR/HOME.

Line 10 turns on reverse type and prints 5 spaces, which turn out to be a bar

since they're reversed. The first time through the program, the bar is light blue,

the normal screen display color.

Line 20 uses the random function to select at random a color between 1 and

8.

Line 30 uses a variation of the IF/THEN statement, called ON/GOTO, which

lets the program choose from as list of line numbers where the program will go

next. If the ON variable (in this case CL) has a value of 1, the program goes to

the first line number listed (here it's line 40). If the variable has a value of 2. the

program goes to the second line listed, and so on.

Lines 40 through 110 just convert the random key colors to the appropriate

CHR$ code for that color and return the program to line 10 to PRINT a section

of the bar in that color. Then the whole process starts again.

See if you can figure out how to produce 16 random colors. Expand

ON/GOTO to handle the additional colors and add the remaining CHR$ codes.

62

EDITING NOTES:
Use Ihe < CRSR-up > key to position the cursor on line 40. Then type 5 over

the 4 of 40. Now use the < CRSR-right > key to move over to the 5 in the CHRS
parentheses. Press SH IFT and INST/DEL to open up a space, and key in 2S.
Now just press RETURN with the cursor anywhere on the line.

The display should look like th is now:

NEW

1 RE M AUTOMATIC COLOR BARS
5 PRINT CHR$(147): REM CHR$(147} = CLR/HOM E
10 PRINT CHR$(1S); " " ;: REM REVERSE BAR
20 CL = INT(S ·RND(1))+ 1
30 ON CL GOTO 40,50,60, 70,SO,90, 1 00,1 10
50 PRINT CHR$(2S);: GOTO 10

Don't worry about line 40; it's still there, as you can see by liSTing the pro·
gram. Fol low the same steps to mod ify line 40 with a new line number and
CHR$ code until you've entered al l the remaining lines. As a fina l check, LIST
the enti re program to make sure all the lines are right before you RUN it.

You probably understand the color bar program except for line 30. Here's a
brief explanation of how this prog ram works.

line 5 pri nts the CHR$ code for CLR/HOM E.
line 10 turns on reverse type and prints 5 spaces, wh ich turn out to be a bar

since they're reversed. The first time through the program, the bar is light blue,
the normal screen display color.

Line 20 uses the random function to select at random a color between 1 and
S.

line 30 uses a variation of the IFITHEN statement, called ON/GOTO, which
lets the program choose from as list of line numbers where the program will go
next. If Ihe ON variable (in this case CL) has a value of 1, the program goes to
the first line number listed (here it 's line 40). If the variable has a value of 2, the
program goes to the second line listed, and so on.

lines 40 through 110 just convert the random key colors to the appropriate
CHR$ code for that color and return the program to line 10 to PRINT a section
of the bar in that color. Then the whole process starts again .

See if you can figure out how to produce 16 random colors. Expand
ON/GOTO to handle the additional colors and add the remaining CHR$ codes.

62

HOW TO USE PEEKS AND POKES

PEEKS and POKES let you search around inside your computer's memory

and stick things in exactly where you want them.

You'll recall that in Chapter 4 we explained variables as being like little slots

in the computer's memory, with the variable name as the slot's address. Well,

imagine some more specially defined slots in the computer that stand for

specific memory locations and that have numbers for addresses.

Your 64 looks at these memory locations to see what the screen's

background and border colors should be, what characters to display on the

screen and where to display them, etc.

You can change the screen colors, define and move objects, and even create

music by POKEing a different value into the specific memory slots.

Imagine some memory slots looking something like this:

53280

2

BORDER

COLOR

53281

1

BACKGROUND

COLOR

53282 53283

The first two slots are the memory locations for the border and background

colors on your screen. We've put 2, the value for RED in the border color box,

and 1, the value for WHITE in the background color box. Now try typing this:

POKE 53281,7 RETURN

The background color of your screen wil! change to yellow because we put

the value 7, for yellow, in the location that controls backgound color.

Try POKEing different values into the background color location and see

what result you get. Here's a list of the values to POKE for each color available

on your 64:

0

1

2

3

4

5

6

7

BLACK

WHITE

RED

CYAN

PURPLE

GREEN

BLUE

YELLOW

8

9

10

11

12

13

14

15

ORANGE

BROWN

light RED

GRAY 1

GRAY 2

light GREEN

light BLUE

GRAY 3

Here's a little program that you can use to display various border and

background color combinations:

NEW

10 FOR BA = 0TO 15

20 FOR BO = 0TO 15

30 POKE 53280.BA

40 POKE 53281,BO

50 FOR X = 1 TO 500: NEXT X

60 NEXT BO: NEXT BA

RUN

63

v

v

HOW TO USE PEEKS AND POKES
PEEKS and POKES let you search around inside your computer's memory

and stick things in exactly where you want them.
You'll recall that in Chapter 4 we explained variables as being like little slots

in the computer's memory, with the variable name as the slot 's address. Well ,
imagine some more specially defined slots in the computer that stand for
specific memory locations and that have numbers for addresses.

Your 64 looks at these memory local ions to see what the screen's
background and border colors should be, what characters to display on the
screen and where to display them, etc.

You can change the screen colors, define and move objects, and even create
music by POKEing a different value into the specific memory slots.

Imagine some memory slots looking something like this:

I 53~80 I I 53~81 I 53282 '-"'53"'2"'83;;--1

BORDER BACKGROUND
COLOR COLOR

The first two slots are the memory locations for the border and background
colors on your screen. We've put 2, the value for RED in the border color box,
and 1, the value for WHITE in the background color box. Now try typing this:

POKE 53281,7 RETURN

The background color of your screen wil l change to yel low because we put
the value 7, for yellow, in the location that controls backgound color.

Try POKEing different values into the background color location and see
what result you get . Here's a list of the values to POKE for each color available
on your 64:

0 BLACK 8 ORANGE
1 WHITE 9 BROWN
2 RED 10 light RED
3 CYAN 11 GRAY 1
4 PURPLE 12 GRAY 2
5 GREEN 13 light GREEN
6 BLUE 14 light BLU E
7 YELLOW 15 GRAY 3

Here's a little program that you can use to display various border and
background color combinations:

NEW
10 FOR BA = 0 TO 15
20 FOR BO = 0 TO 15
30 POKE 53280,BA
40 POKE 53281,BO
50 FOR X = 1 TO 500: NEXT X
60 NEXT BO: NEXT BA
RU N

63

This program uses two simple loops to POKE various values to change the

background and border colors. Line 50 contains a DELAY loop, which just

slows the program down a little bit.

If you're curious about what value is currently in the memory location for

background color, try this:

?PEEK (53280) AND 15

PEEK looks at a whole byte, but colors only use half a byte, called a nybble.

To PEEK just this nybble, you have to add the AND 15 to your PEEK statement.

If you used this PEEK after RUNning the previous program, you'd get 15 as the

answer because the last border color POKEd was GRAY 3, which is 15.
In general, PEEK lets you see what value is currently in a specific memory

slot. Try adding this line to your program to display the values of BORDER and

BACKGROUND as the program RUNs.

25 PRINT CHR$(147); "BORDER = "; PEEK(53280) AND 15,

"BACKGROUND = "; PEEK (53281) AND 15

SCREEN GRAPHICS

So far when you've PRINTed information, the computer has handled the in

formation sequentially: one character PRINTed after the next, starting from the

current cursor position, except when you asked for a new line, or used a comma

in PRINT formatting.

You can PRINT data in a particular place by starting from a known place on

the screen and PRINTing the correct number of cursor controls to format the

display. But this takes time and program steps.

But just as there are certain locations in the 64's memory to control color,
there are also memory locations that you can use to control screen locations.

64

This program uses two simple loops to POKE various values to change the
background and border colors. Line 50 contains a DELAY loop, which just
slows the program down a little bit.

If you're curious about what value is currently in the memory location for
background color, try this:

?PEEK (53280) AND 15

PEEK looks at a whole byte, but colors only use half a byte, called a nybble.
To PEEK just this nybble, you have to add the AND 15 to your PEEK statement.
If you used this PEEK after RUNning the previous program, you'd get 15 as the
answer because the last border color POKEd was GRAY 3, which is 15.

In general, PEEK lets you see what value is currently in a specific memory
slot. Try adding th is line to you r program to display the values of BORDER and
BACKGROUND as the program RUNs.

25 PRINT CHR$(147); "BORDER = "; PEEK(53280) AND 15,
" BACKGROUND = "; PEEK (53281) AND 15

SCREEN GRAPHICS
So far when you've PRINTed information, the computer has handled the in·

formation sequentially: one character PRINTed after the next, starting from the
current cursor position, except when you asked for a new line, or used a comma
in PRINT formatting.

You can PRINT data in a particular place by starting from a known place on
the screen and PRINTing the correct number of cursor controls to format the
display. But this takes time and program steps.

But just as there are certain locations in the 64's memory to control color,
there are also memory locations that you can use to control screen locations.

64

_

SCREEN MEMORY MAP

The 64's screen can hold 1000 characters (40 columns by 25 lines), so there

are 1000 memory locations set aside to represent what is on the screen. Imag

ine the screen as a grid, 40 by 25, with each square standing for one memory

location.

Each memory location can contain one of the 256 different characters the 64

can display (see Appendix E). Each of these 256 characters is represented by a

number from 0 to 255. If you POKE the value for a character into a specific

screen memory location, that character will be displayed in that specific screen

location.

Here's a grid that represents your screen, complete with the numbers of each

screen memory location.

COLUMN

20 39

1063

.064

104

144

184

m

264

304

344

3S4

424

464

504

544

584

624

664

704

744

784

824

8G4

904

944

9E4

\
mi

65

v

v

v

v

v

SCREEN MEMORY MAP
The 64's screen can hold 1000 characters (40 columns by 25 lines), so there

are 1000 memory locations set aside to represent what is on the screen. Imag
ine the screen as a grid, 40 by 25, with each square standing for one memory
location.

Each memory location can contain one of the 256 different characters the 64
can display (see Appendix E). Each of these 256 characters is represented by a
number from 0 to 255. If you POKE the value for a character into a speci fi c
screen memory location, that character wi ll be displayed in that specific screen
location.

Here's a grid that represents your screen, complete with the numbers of each
screen memory location.

1024
106'
IID~

IlU
1184
122J
1264
1304
1344
1384
1m
1464
ISD~
15u
158 ~

!62~

166J
110J
1744
1784
1824
IBM
190J
19H
19M

10
COLUMH

10

65

JO 39

106)

t
202]

JO i

10

"

The 64's screen memory normally begins at memory location 1024 and ends
at location 2023. Location 1024 is the upper left corner of the screen. Location
1025 is the position of the next character to the right, and so on. Location 1063
is the right-most position of the first row. Following the last character in a row,

the next location is the left-most character on the next row down.
Suppose you want to control a ball bouncing on the screen. The ball is in the

middle of the screen, column 29, row 12. The formula for calculating the

memory location on the screen is:

POINT = 1024 + X + 40 ■ Y— row

I column

where X is the column and Y is the row.
Therefore, the memory location of the ball is:

POINT = 1024 + 20 + 480—row (40x12)

POINT = 1524 I -column

Clear the screen with SHIFT and CLR/HOME and type:

POKE 1524,81—character code

I— location

This POKE statement makes a ball appear in the middle of the screen. You
have placed a character directly into screen memory without using the PRINT
statement. However, you can't see the ball yet because it's the same color as

the screen background.

COLOR MEMORY MAP

You can change the color of the ball that appeared by altering another range

of memory. Type:

POKE 55796.2—color

I location

This changes the ball's color to red.
Every spot on the 64's screen has TWO memory locations: one for the

character code, and one for the color code. The color memory map begins at
location 55296 (upper left corner), and continues on for 1000 locations. You use
the same color codes. 0 through 15, that you used to change border and

background colors, to directly change character color.
We can modify the formula for calculating screen memory locations to give

us the locations to POKE colors. Here's the new formula:

COLOR PRINT = 55296 + X + 40 * Y—row
I column

66

The 64's screen memory normally begins at memory location 1024 and ends
at location 2023. Location 1024 is the upper left corner of the screen. Location
1025 is the position of the next character to the right, and so on. Location 1063
is the right·most position of the first row. Following the last character in a row,
the next location is the left·most character on the next row down.

Suppose you want to control a ball bouncing on the screen. The ball is in the
middle of the screen, column 29, row 12. The formula for calculating the
memory location on the screen is:

POINT = 1024 + X + 40' y - row
I column

where X is the colu mn and Y is the roV/.
Therefore, the memory location of the ball is:

POINT = 1024 + 20 + 480 - row (40x12)
POINT = 1524 I column

Clear the screen with SHIFT and CLR/HOME and type:

POKE 1524,81- character code
L- Iocation

This POKE statement makes a ball appear in the middle of the screen. You
have placed a character directly into screen memory without using the PRINT
statement. However, you can't see the ball yet because it's the same color as
the screen background.

COLOR MEMORY MAP
You can change the color of the ball that appeared by altering another range

of memory. Type:

POKE 55796,2- color
L-Iocation

Th is changes the ball's color to red.
Every spot on the 64's screen has TWO memory locations: one for the

character code, and one for the color code. The color memory map begins at
location 55296 (upper left corner), and continues on for 1000 locations. You use
the same color codes, 0 through 15, that you used to change border and
background colors, to directly change character color.

We can modify the formula for calculating screen memory locat ions to give
us the locations to POKE colors. Here's the new formula:

COLOR PRINT = 55296 + X + 40 • Y - row
I column

66

MORE BOUNCING BALLS

Here's a revised bouncing ball program that directly prints on the screen us

ing POKEs rather than cursor controls within PRINT statements. When you

RUN this version, you'll see that it's much more flexible than the earlier pro

gram and it leads up to programming more sophisticated animation.

NEW

10 PRINT" SHIFT CLR/HOME "

20 POKE 53280,7 : POKE 53281,6

30

40

50

60

70

B0

90

100

110

120

X = 1 : Y - 1

DX = 1 :DY =

POKE 1024 +

FOR T = 1 TC

POKE 1024 +

X = X + DX

IFX < = 0 OR

Y = Y + DY

IF Y < = OOF

GOTO 50

: 1

X +

10 :

X +

X>

! Y>

40*Y,81

NEXT

40*Y,32

= 39 THEN DX =

= 24 THEN DY =

-DX

-DY

Line 10 clears the screen.

Line 20 sets the background color to blue and the border color to yellow.

The X and Y variables in line 30 keep track of the ball's current row and col

umn position. The DX and DY variables in line 40 are the horizontal and vertical

direction of the ball's movement. When a + 1 is added to the value of X, the ball

moves to the right; when - 1 is added, the ball moves to the left. A + 1 added to

Y moves the ball down a row, and a - 1 added to Y moves the ball up a row.

Line 50 puts the ball on the screen at the current X,Y position. Line 60 is a

delay loop, which is included to keep the ball on the screen long enough for you

to be able to see it.

Line 70 erases the ball by putting a space (code 32) where the ball was on the

screen.

Line 80 adds the direction factor to X.

Line 90 tests to see if the ball has reached one of the side walls, and reverses

the ball's direction if there's a bounce. Lines 100 and 110 do the same thing for

the top and bottom walls.

Line 120 sends the ball back to display and moves the ball again.

You can change the ball to any other character by changing the code in line

50 from 81 to another character code.

If you change DX or DY to 0 the ball bounces straight instead of diagonally.

We can also add a little intelligence to the bouncing ball program. So far the

only thing you checked for is whether the ball is going out of bounds on the

screen. Try adding the following lines to the program:

21 FOR L = 1 TO 10

25 POKE 1024 + INT(RND(1)* 1000).166 CHRSCODE

27 NEXT L

115 IF PEEK(1024 + X + 40"Y) = 166 THEN DX - - DX : GOTO 80

Lines 21 to 27 put ten blocks on the screen in random positions. Line 115

PEEKs to see if the ball is about to bounce into a block, and, if so, it changes

the ball's direction.

67

v

v

v

v

v

v

MORE BOUNCING BALLS
Here's a revised bouncing ball program that directly prints on the screen us·

ing POKEs rather than cursor controls within PRINT statements. When you
RUN this version, you'll see that it's much more flexible than the earlier pro·
gram and it leads up to programming more sophisticated animation.

NEW
10 PRINT" SHIFT CLR/HOME "
20 POKE 53280,7 : POKE 53281,6
30 X=l:Y=l
40 OX = 1 : OY = 1
50 POKE 1024 + X + 40'Y,81
60 FOR T = 1 TO 10 : NEXT
70 POKE 1024 + X + 40'Y,32
80 X = X + OX
90 IFX<= OORX>= 39 THEN OX = -OX
100 Y = Y + OY
110 IF Y < = 0 OR Y> = 24 THEN OY = - OY
120 GOTO 50

Line 10 clears the screen.
Line 20 sets the background color to blue and the border color to yellow.
The X and Y variables in line 30 keep track of the bali's current row and col·

umn position. The OX and DY variables in line 40 are the horizontal and vertical
direction of the bali's movemenL When a + 1 is added to the value of X, the ball
moves to the right; when - 1 is added, the ball moves to the lefL A + 1 added to
Y moves the ball down a row, and a - 1 added to Y moves the ball up a row.

Line 50 puts the ball on the screen at the current X,Y position . Line 60 is a
delay loop, which is included to keep the ball on the screen long enough for you
to be able to see it.

Line 70 erases the ball by putting a space (code 32) where the ball was on the
screen.

Line 80 adds the direction factor to X.
Line 90 tests to see if the bal l has reached one of the side walls, and reverses

the ball's direction if there 's a bounce. Lines 100 and 110 do the same thing for
the top and bottom walls.

Line 120 sends the ball back to display and moves the ball again.
You can change the ball to any other character by changing the code in line

50 from 81 to another character code.
If you change OX or OY to 0 the ball bounces straight instead of diagonally.
We can also add a little intelligence to the bouncing ball program. So far the

only thing you checked for is whether the ball is going out of bounds on the
screen. Try adding the following lines to the program:

21 FOR L = 1 TO 10
25 POKE 1024 + INT(RNO(1)'1000),166--CHRSCOOE
27 NEXT L
115 IF PEEK(1024 + X + 40 ' Y) = 166 TH EN OX = - OX: GOTO 80

Lines 21 to 27 put ten blocks on the screen in random positions. Line 115
PEEKs to see if the ball is about to bounce into a block, and, if so, it changes
the bal l's direction.

67

—

—

—

-

~

**

n
()

n

n

CHAPTER 7

INTRODUCTION TO SPRITES

• Bits, Bytes and Sprites

• Creating Sprites

• More on Sprites: Colors and Extra Movement

In previous chapters, we've shown you how to use graphic symbols in PRINT

statements to create animation and other visual effects.

In chapter 6, we also showed you how to POKE character codes in specific

screen memory locations, which put characters directly on the screen in the

place you selected.

In both of these cases, you have to create objects from existing graphic sym

bols, so these methods take a lot of work. When you want to move the object,

you must use a number of program statements to keep track of the object and

move it to a new place. And sometimes the shape and resolution of the object

isn't as good as you'd like it to be because of the limitations of using graphic

symbols.

You can eliminate a lot of these problems by using sprites in animated se

quences. A sprite is a high-resolution porgrammable object that you can make

into just about any shape by using BASIC commands. Ail you have to do to
move the object is simply tell the computer the position where you'd like the

sprite to go. The computer takes care of the rest.
But this isn't all you can do with sprites. For example, you can change their

color, you can tell if one object collides with another, you can make them go in
front and behind each other, and you can easily expand their size.
You have to learn a few more details about your 64 and the way it handles

numbers before you can use sprites. It's not difficult, though, so just follow the

examples and you'll be making your own sprites do amazing things in no time.

68

CHAPTER 7
INTRODUCTION TO SPRITES
• Bits, Bytes and Sprites

• Creating Sprites

• More on Sprites: Colors and Extra Movement

In previous chapters, we've shown you how to use graphic symbols in PRINT
statements to create animation and other visual effects.

In chapter 6, we also showed you how to POKE character codes in specific
screen memory locations, which put characters directly on the screen in the
place you selected.

In both of these cases, you have to create objects from existing graphic sym
bols, so these methods take a lot of work. When you want to move the object,
you must use a number of program statements to keep track of the object and
move it to a new place. And sometimes the shape and resolution of the object
isn't as good as you 'd like it to be because of the limitations of using graphic
symbols.

You can eliminate a lot of these problems by using sprites in animated se
quences. A sprite is a high-resolution porgrammable object that you can make
into just about any shape by using BASIC commands. All you have to do to
move the object is simply tell the computer the position where you'd like the
sprite to go. The computer takes care of the rest.

But this isn't all you can do with sprites. For example, you can change their
color, you can tell if one object collides with another, you can make them go in
front and behind each other, and you can easi ly expand their size.

You have to learn a few more details about your 64 and the way it hand les
numbers before you can use sprites. It 's not difficult, though, so just follow the
examples and you' ll be making your own sprites do amazing things in no time.

68

BITS, BYTES, AND SPRITES

Before you can use sprites, it's important that you understand a few general

things about how computers work, so here's a little about binary arithmetic.

Think of your computer's memory as a collection of BYTES, which break

down into eight BITS per byte. A bit, which is the smallest amount of informa

tion a computer can store, can have only two values: ON or OFF. When a bit is

ON, it has the value of 1: when a bit is OFF, it has the value of 0.

When you program your computer, what you're doing is turning bits ON or

OFF. Since there are so many bits, and since each different configuration of ON

and OFF bits sends a different message to the computer, you can do incredible

things with your 64.

If you have two bits combined as a unit of meaning, you have four possible

values. This illustration shows how the number of possible values increases

with the number of bits:

NO. OF

BITS

1

2

3

NO. OF

VALUES

2 t 1

= 2

2 t2

= 4

2 t 3

= 8

POSSIBLE COMBINATIONS

ON 1

OFF 0

ON and ON 1 1

ON and OFF 1 0

OFF and ON 0 1

OFF and OFF 0 0

ON and ON and ON 111

ON and ON and OFF 1 1 0

ON and OFF and ON 10 1

ON and OFF and OFF 1 0 0

OFF and ON and ON 0 11

OFF and OFF and ON 00 1

OFF and ON and OFF 0 1 0

OFF and OFF and OFF 0 00

As you can see, the number of possible values equals 2 raised to the power

of the number of bits. In other words, if you have 8 bits,you have 2t8,or 256, dif

ferent combinations of bits. Eight bits equal a BYTE, so a byte can store 256 dif

ferent values.

When all eight bits are OFF, the byte equals zero: when all eight bits are ON.

the byte equals 255 (since zero counts as the lowest of the 256 combinations,

naturally the highest value is 255 rather than 256).

Any combination of a byte's ON's and OFF's, or 1's and 0's, converts to a

decimal (i.e., base 10) value between 0 and 255. Here's a way to figure out the

value of the byte when you have different combinations of ON and OFF bits:

Draw a table for the eight bits and fill in 1's for ON bits and 0's for OFF bits.

Across the top of the table, write 128, 64, 32, 16, 8, 4, 2, and 1. These numbers

are 2 17, 2 t 6, 2 t 5, 2 t 4, 2 t 3, 2 t 2,2 11, 2 t 0. or 2 to the power of each of

the eight bits, with the bits numbered 0 through 7. For example:

128

1

64

0

32

1

16

1

8

0

4

1

2

0

1

1

Now add up the values of the ON bits to find the value of the byte:

128 + 32 + 16 + 4 + 1 = 181

69

v

v

v

v

v

BITS, BYTES, AND SPRITES
Before you can use sprites, it's important that you understand a few general

things about how computers work, so here's a little about binary ari thmetic.
Think of your computer's memory as a collection of BYTES, which break

down into eight BITS per byte. A bit, which is the smallest amount of informa·
tion a computer can store, can have only two val ues: ON or OFF. When a bit is
ON, it has the value of 1; when a bi t is OFF, it has the value of O.

When you program your computer, what you're doing is turning bi ts ON or
OFF. Since Ihere are so many bits, and since each different configuration of ON
and OFF bits sends a different message to the computer, you can do inc redible
things wi th your 64.

If you have two bits combined as a un it of mean ing, you have four possible
values. Th is illustration shows how the number of poss ible values increases
with the number of bits:

NO. OF NO. OF
BITS VALUES POSSIBLE COMBINATIONS

1 2 t 1 ON 1
= 2 OFF 0

2 2 t 2 ON and ON 1 1
= 4 ON and OFF 1 0

OFF and ON o 1
OFF and OFF 00

3 213 ON and ON and ON 1 1 1
= 8 ON and ON and OFF 1 1 0

ON and OFF and ON 1 0 1
ON and OFF and OFF 1 00
OFF and ON and ON o 1 1
OFF and OFF and ON 001
OFF and ON and OFF o 1 0
OFF and OFF and OFF 000

As you can see, the number of possible values equals 2 raised to the power
of the number of bits. In other words, if you have 8 bits,You have 218,or 256,dif
ferent combinations of bits. Eight bits equal a BYTE, so a byte can store 256 dif
ferent values.

When all eight bits are OFF, the byte equals zero; when all eight bits are ON,
the byte equals 255 (since zero counts as the lowest of the 256 combinations,
naturally the highest value is 255 rather than 256).

Any combination of a byte's ON's and OFF's, or 1 's and O's, converts to a
decimal (i .e., base 10) value between 0 and 255. Here's a way to figure out the
value of the byte when you have different combinations of ON and OFF bits:

Draw a table for the eight bits and fill in 1 's for ON bits and O's for OFF bits.
Across the top of the table, write 128, 64, 32, 16, 8, 4, 2, and 1. These numbers
are 2 17, 2 16, 2 t 5, 2 t 4,213.2 12, 2 11 , 210, or 2 to the power of each of
the eight bits, with the bits numbered 0 through 7. For example:

128 64 32 16 8 4 2
101 101 0

Now add up Ihe values of the ON bits to find the value of the byte:

128 + 32 + 16 + 4 + 1 = 181

69

—

Here's a table showing BINARY to DECIMAL conversion. A zero indicates

that a bit is OFF, and a 1 shows that a bit is ON. To find out the value of the en

tire byte, just add up the DECIMAL value of each ON bit, just as we did above.

BINARY TO DECIMAL CONVERSION

128

0

0

0

0

0

0

0

1

64

0

0

0

0

0

0

1

0

32

0

0

0

0

0

1

0

0

Decimal Value

16

0

0

0

0

J

0

0

0

8

0

0

0

1

0

0

0

0

4

0

0

1

0

0

0

0

0

2

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

2|0

7\ 1

2] 2

2T3

2?4

2T5

2|6

2f7

—

-

~

TIP:

Converting binary numbers to their decimal values is the basis for creating

data to represent and manipulate sprites. Here's a program that does these

conversions (or you. Since you'll be using this program often, you should enter

and save it.

5 REM BINARY TO DECIMAL CONVERTER

10 INPUT "ENTER 8-BIT BINARY NUMBER :";A$

12 IF LEN (A$)< > 8 THEN PRINT "8 BITS PLEASE...": GOTO 10

15 TL = 0 :C = 0

20 FOR X = 8 TO 1 STEP - 1 : C = C + 1

30 TL = TL + VAL(MID$(A$.C.1))*2 t(X-1)

40 NEXTX

50 PRINT AS;" BINARY •■;" = ";TL;" DECIMAL"

60 GOTO 10

At line 10 you enter a binary number as the string A$. Line 12 uses the LEN

(length) function to check to be sure you entered 8 binary digits. If you didn't,

the program asks for more and repeats line 10.

In line 15, TL keeps track of the binary number's decimal value, and C in

dicates which bit is being worked on as the program goes through the loop.

Line 30 updates the value of TL. Appendix C explains the VALand MIDS func

tions.

Line 50 PRINTS the binary and decimal values of the byte. Line 60 returns the

program to the beginning.

70

Here's a tabte showing BINARY to DECtMAL conversion. A zero indicates
that a bit is OFF, and a 1 shows that a bit is ON. To find out the value of the en
tire byte, just add up the DECtMAL value of each ON bit, just as we did above.

BINARY TO DECIMAL CONVERSION

Decimal Value
128 6' 32 16 8 • 2 1
0 0 0 0 0 0 0 1 210
0 0 0 0 0 0 1 0 211
0 0 0 0 0 1 0 0 212
0 0 0 0 1 0 0 0 213
0 0 0 1 0 0 0 0 21'
0 0 1 0 0 0 0 0 2)5
0 1 0 0 - 0 0 0 0 216
1 0 0 0 0 0 0 0 217

TIP:
Converting binary numbers to their decimal values is the basis for creating

data to represent and manipulate sprites. Here's a program that does these
conversions for you. Since you'll be using this program often, you should enter
and save it.

5 REM BINARY TO DECIMAL CONVERTER
10 INPUT " ENTER 8-BIT BINARY NUMBER :";A$
12 IF LEN (A$) < > 8 THEN PRINT "8 BITS PLEASE ... ": GOTO 10
15 TL = 0: C = 0
20 FOR X = 8 TO 1 STEP - 1 : C = C + 1
30 TL = TL + VAL(MIDS(A$,C,I»'2 t(X-l)
40 NEXT X
50 PRINT AS;" BINARY " ;" = ";TL;" DECIMAL"
60 GOTO 10

At line 10 you enter a binary number as the string A$. Line 12 uses the LEN
(length) function to check to be sure you entered 8 binary digits. If you didn't,
the program asks for more and repeats line 10.

In line 15, TL keeps track of the binary number's decimal val ue, and C in·
dicates which bit is being worked on as the program goes through the loop.

Line 30 updates the value of TL. Appendix C explains the VAL and MID$ func
tions.

Line 50 PRINTs the binary and decimal values of the byte. Line 60 returns the
program to the beginning.

70

A block of bytes strung together makes up a REGISTER. For sprite-making,

each register is only one byte long. Each register controls a different function.

For example, the ENABLE REGISTER controls whether the sprite is ON or OFF;

the EXPAND X REGISTER can make the sprite longer, etc. When you work with

sprites, keep in mind that a REGISTER is a BYTE that does a specific job.

A series of registers makes up a chart called a REGISTER MAP. You can find

the register map for the VIC chip in Appendix P.

Now, another important thing about bytes is that each byte has a specific ad

dress in the computer's memory, so you can go to a specific byte if you know

its address. You used this in the last chapter when we introduced PEEKing and

POKEing.

Sprites use only some of your computer's bytes. When you work with sprites,

you're in closer contact with bytes than you are when you program in BASIC

because you're working directly with byte addresses. When you work with

sprites, you are directly controlling which bits are ON and which are OFF.

To understand how to use sprites, you need to be able to figure exactly which

bytes you want to use. In this chapter, we'll give you formulas for finding the

bytes you want, and we'll give you sample programs for creating sprites. The

Commodore 64 Programmer's Reference Guide goes into extensive detail on

sprites.

71

v

v

v

'-'

'-'

v

v

v

v

'-'

v

v

V

V

v

v

v

A block of bytes strung together makes up a REGISTER. For sprite·making,
each register is only one byte long. Each register controls a different function.
For examp le, the ENABLE REGISTER control s whether the sprite is ON or OFF;
the EXPAND X REGISTER can make the sprite longer, etc. When you work with
sprites, keep in mind that a REGISTER is a BYTE that does a specific job.

A series of regi sters makes up a chart called a REGISTER MAP. You can find
the register map for the VIC chip in Appendix P.

Now, another important thing about bytes is that each byte has a speci fi c ad·
dress in the computer's memory, so you can go to a specific byte if you know
its address. You used this in the last chapter when we introduced PEEKing and
POKEing.

Sprites use only some of you r computer's bytes. When you work with sprites,
you're in closer contact with bytes than you are when you program in BASIC
because you're worki ng directly with byte addresses. When you work with
sprites, you are directly con tro lling which bits are ON and which are OFF.

To understand how to use sprites, you need to be able to figure exactly which
bytes you want to use. In this chapter, we' ll give you formu las for findi ng the
bytes you want, and we'll give you sample programs for creating sprites. The
Commodore 64 Programmer's Reference Guide goes into extensive detail on
sprites.

71

~-

CREATING SPRITES

Sprites are controlled by their own video display chip (VIC-II chip) in the 64.

The chip does all the work of creating and keeping track of characters and

graphics, creating colors, and moving the graphics around. Ail you have to do is

tell the computer three things about the sprite:

• What it should look like

• What color it should be

• Where it should appear

The sprite's display chip has 46 different ON/OFF locations that act like inter

nal memory locations. Each of these locations breaks down into a series of 8

bytes, and each byte can be either ON or OFF. So this means you have 368

ON/OFF locations for sprites. By POKEing the appropriate decimal value in the

proper memory location, you can control the formation and movement of your

sprites. We'll give you more detail aboul this later.

In addition to showing you sprite display chip locations, we'll show you how

to use some of the 64's main memory to store data that defines the sprites.

Finally, we'll use eight memory locations directly after the screen memory to

tell the computer exactly which memory area each sprite will get its data from.

Sounds like a lot of details, but don't worry, you'll get the hang of it as we go

through some examples.

Before you get started, here are some important things to know about

sprites:

• Sprites are usually displayed in a special high resolution mode which turns

the screen into a 320 dot wide by 200 dot high area.

• Each sprite object is 24 dots wide by 21 dots high.

• You can control up to eight sprites at a time. The sprites are numbered 0 to 7.

• Each sprite has individual color control.

• There's a sprite multi-color mode.

• You can use sprite-to-sprite and sprite-to-background collision detection.

But first you need to know what VIC-II chip locations control the functions

you need. Remember that the sprites' chip has 46 different ON /OFF locations.

Here's a partial map that shows some of these locations, which are called

registers. Appendix P has a complete VIC chip register map. but the registers

you'll need for sprites are listed here:

Registers Description

0 X coordinate of sprite 0

1 Y coordinate of sprite 0

2-15 X and Y coordinates, paired like registers 0 and 1 for sprites

1-7

16 Most significant Bit — X coordinate

21 Sprite appear: A= appear, 0= disappear

23 Expand sprite in Y direction

29 Expand sprite in X direction

39-46 Sprite 0-7 color

72

CREATING SPRITES
Sprites are control ted by their own video display chip (VIC·II chip) in the 64.

The chip does all the work of creating and keeping track of characters and
graphics, creating colors. and moving the graphics around. All you have to do is
tell the computer three things about the sprite:

• What it should look like
• What color it should be
• Where it should appear

The sprite's display chip has 46 different ON/OFF locations that act like inter·
nal memory locat ions. Each of these locations breaks down into a series of 8
bytes, and each byte can be either ON or OFF. So this means you have 368
ON/OFF locations for sprites. By POKEing the appropriate decimal val ue in the
proper memory location, you can control the formation and movement of your
sprites. We'll give you more detail about this later.

In addition to showing you sprite display chip locations, we' ll show you how
to use some of the 64's main memory to store data that defines the sprites.
Finally, we' ll use eight memory locations directly after the screen memory to
tell the computer exactly which memory area each sprite will get its data from.

Sounds like a lot of details, but don't worry, you'll get the hang of it as we go '"'
through some examples.

Before you get started, here are some important things to know about 0.
sprites:

• Sprites are usually displayed in a special high resolution mode which turns
the screen into a 320 dot wide by 200 dot high area.

• Each sprite object is 24 dots wide by 21 dots high.
• You can control up to eight sprites at a time. The sprites are numbered 0 to 7.
• Each sprite has individual color contro1. n
• There's a sprite multi-color mode.
• You can use sprite·ia-sprite and sprite-to-background col lision detection. n

But first you need to know what VIC·II chip locations control the functions
you need. Remember that the sprites' ch ip has 46 different ON /O FF locations.
Here's a partial map that shows some of these locations, which are called
registers. Appendix P has a complete VIC chip register map, but the registers
you'll need for sprites are listed here:

Registers
o
1
2·15

16
21
23
29
39-46

Description
X coordinate of sprite 0
Y coordinate of sprite 0
X and Y coordinates, paired like registers 0 and 1 for sprites
1·7
Most signi fi cant Bit - X coordi nate
Sprite appear: A = appear, 0 = disappear
Expand sprite in Y direction
Expand sprite in X direction
Sprite 0·7 color

72

Now we'll show you how to write a program to create and move a sprite ob

ject. Here are some things you'll learn to do:

• Make the sprite(s) appear on the screen by POKEing into location 21. the

register that turns ON sprites.

• Set the sprite pointer (memory locations 2040-2047) to show where sprite

data should be read from.

• POKE actual data into memory.

• Move the sprite around by using a loop to update X and Y coordinates.

• Expand the sprite object, change colors, perform a variety of special tasks.

Suppose you want to create a balloon and have it float around. You can

design the balloon in a 24 by 21 dot grid (see page 74).

The next step is to convert the graphic design into lata the computer can

use. Use a piece of lined paper or graphic paper to set ud a sample grid that is

21 spaces down and 24 spaces across. Divide the 24 squares across the top in

to three sections, and number the squares in each sec'ion with this series of

numbers: 128,64,32, 16,8,4.2,1 (see the illustration). ~ i-3se numbers are 2 t 7,

2 16, 2 t 5, 2 14, 2 13, 2 t 2, 2 11, 2 10, in other word , 2 to the power of the

number of the sprite you're using. Recall that the eight sprites are numbers 0

through 7.

Number the squares down the left side 1-21 for each row. Write the word data

at the end of each row. Now fill in the grid with any design, or use the balloon

that we've drawn. It's easiest to outline the shape first and then go back and fill

in the grid.

Think of the squares you filled in as ON, and substitute a 1 for each filled

square. Think of the squares that aren't filled as OFF. and give each of them a

zero.

Now you need to separate each row into thirds so you can convert the ONs

and OFFs into pieces of data the computer can read. Dividing the rows is sim

ple since you've already split each row into three sections.

Now each section of each row has eight squares, and each set of eight

squares is equal to one piece of data called a BYTE. This means you have three

bytes per row.

Starting on the first row of the balloon drawing and working from the left, the

first eight squares are blank (0), so the value for that series (byte) is 0.

73

v

v

v

v

v

v

v

Now we'll show you how to write a prog ram to create and move a sprite ob
ject. Here are some things you'll learn to do:

o Make the sprite(s) appear on the screen by POKEing into location 21 , the
register that turns ON sprites.

o Set the sprite pOinter (memory locations 2040-2047) to show where sprite
data should be read from.

o POKE actual data into memory.
o Move the sprite around by using a loop to update X and Y coordinates.
o Expand the sprite object, change colors, perform a variety of special tasks.

Suppose you want to create a balloon and have it float around. You can
design the balloon in a 24 by 21 dot grid (see page 74).

The nex t step is to convert the graphic design into data the computer can
use. Use a piece of lined paper or graphic paper to set up a sample grid that is
21 spaces down and 24 spaces across. Divide the 24 squares across the top in·
to three sections, and number the squares in each section with this series of
numbers: 128,64, 32, 16, 8,4, 2, 1 (see the illustration). T'lese numbers are 2 t 7,
2 t 6,2 t 5, 2 t 4,2 t 3, 2 t 2, 2 t 1,2 to, in other word 2 to the power of the
number of the sprite you're using. Recall that the eigh t sprites are numbers 0
through 7.

Number the squares down the left side 1-21 for each row. Write the word data
at the end of each row. Now fill in the grid with any design, or use the balloon
that we've drawn. It 's easiest to outline the shape first and then go back and fill
in the grid.

Think of the squares you filled in as ON, and substitute a 1 for each filled
square. Think of the squares that aren't filled as OFF, and give each of them a
zero.

Now you need to separate each row into thirds so you can convert the ONs
and OFFs into pieces of data the computer can read. Dividing the rows is sim·
pie since you've already split each row into three sections.

Now each section of each row has eight squares, and each set of eight
squares is equal to one piece of data called a BYTE. This means you have three
bytes per row.

Starting on the first row of the balloon drawing and working from the left, the
first eight squares are blank (0), so the value for that series (byte) is O.

73

-

SERIES

1

SERIES

: 2 I
128 32 8 2 128 32 8 2 128 ;

64 16 4 11 64 16 4 11 64

SERIES

3

16 A 1

10 15

COLUMN

The middle series of squares looks like this (remember that a 1 is a filled dot

and a 0 is a blank dot):

128

0

64

1

SZ

1

16

1

8 4

1

2

1

1

1

t t t t r
0+64+32+16+8

t t t
4+ 2+1 = 127

74

SERIES
I

118 31 8
64 16

4+m+t
5 +-1-+++
6 +-1-+++
) +-1-+++

~ 1:0 tt!tj::j:
~ II

11 mSH 13

14+t++t+ t-+-
15 ++:t+rn:t+ 16 -t
I) ++++ 1-++-++
18 +t++t+I+++
19 ++++I-++-+++-
10 + +++ I-++-+++-
11 +-II-+I-+-++t+++

I
COLUMN

SERIES
3

31 8 1

The middle series of squares looks li ke this (remember that a 1 is a fil led dot
and a a is a blank dot):

128 64 32 16 8 4 2

o
i i i i i i i i
o + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127

74

n

The third series of eight squares also contains only blanks, so it also equals

zero. So, the data for the first line is:

DATAO, 127,0

The three series of dots that make up row two are calculated like this:

Series 1:

Series 2:

0

>

0

1

0

}

0

1

0

1

0

1

0

]

1

1

1

f T t t t t T t
128+64+32 + 16+8 +4 +2 + 1 = 255

Series 3: I I

T T
128 + 64

0 0 0 0 0

= 192

The data for the second row is:

DATA 1,255, 192

Use this method to convert the three series of eight squares in each of the re

maining rows.

Once you have done the rest of the conversions, you have the data you need

to make the balloon.

Type in the following program:

1

5

10

11

12

20

30

40

50

60

70

200

210

220

230

REM UP, UP, AND AWAY

PRINT "(CLR/HOME)"

V = 53248: REM START OF DISPLAY CHIP

POKE V + 21,4 : REM ENABLE SPRITE 2

POKE 2042,13 : REM SPRITE 2 DATA FROM 13TH BLK

FOR N = 0 TO 62: READ Q : POKE 832+ N,Q: NEXT

FOR X = 0 TO 200 J
POKE V + 4,X: REM UPDATE X COORDINATES

POKE V + 5,X: REM UPDATE Y COORDINATES

NEXTX

GOTO 30

DATA 0,127,0,1,255,192,3,255,224,3,231,224

DATA 7,217,240,7,223,240,7,217,240,3,231,224

DATA 3,255,224,3,255,224,2,255,160,1,127,64

DATA 1,62,64,0,156,128,0,156,128,0,73,0,0,73,0

240 DATA 0,62,0,0,62,0,0,62,0,0,28,0

75

v

v

v

The third series of eight squares also contains only blanks, so it also equals
zero. So, the data for the first line is:

DATA 0, 127, °
The three series of dots that make up row two are calculated like this:

Series 1: I 0 I 0 0 0 0 0 0
~

Series 2, eel 1 1 1 1

i i i i i 1 i 1
128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 255

Series 3: I 1 I 0 0 0 0 0 0

i 1
128 + 64 192

The data for the second row is:

DATA 1, 255, 192

Use this method to convert the three series of eight squares in each of the re
maining rows.

Once you have done the rest of the conversions, you have the data you need
to make the balloon.

Type in the fol lowing program:

1 REM UP, UP, AND AWAY
5 PRINT "(CLRlHOME)"
10 V = 53248 : REM START OF DISPLAY CHIP
11 POKE V + 21,4 : REM ENABLE SPRITE 2
12 POKE 2042,13 : REM SPRITE 2 DATA FROM 13TH BLK
20 FOR N = ° TO 62: READ Q: POKE 832+ N,Q: NEXT
30 FOR X = ° TO 200
40 POKE V + 4,X: REM UPDATE X COORDINATES
50 POKE V + 5,X: REM UPDATE Y COORDINATES

GETS ITS INFO.
FROM DATA

60 NEXT X
70 GOTO 30

INFO. READ IN
FROMQ

200 DATA 0,127,0,1,255,192,3,255,224,3,231,224
210 DATA 7,217,240,7,223,240,7,217,240,3,231 ,224
220 DATA 3,255,224,3,255,224,2,255,160,1,127,64
230 DATA 1,62,64,0,156,128,0,156,128,0,73,0,0,73,0
240 DATA 0,62,0,0,62,0,0,62,0,0,28,0

75

If you typed everything correctly, your balloon is sailing across the screen.

To understand what happened, you need to know where each sprite defini

tion is located in memory.

Recall that each sprite is 24 by 21 dots, which equals 504 dots, which in turn

equals 63 bytes (504/8 bits). So each sprite is 63 bytes plus 1 byte which is the
sprite's place holder, or pointer. The pointers for each of the eight possible

sprites are located together as the last eight bytes of the SCREEN MEMORY.

Normally, the pointers begin at location 2040 for sprite 0. through 2047 for

sprite 7:

2040 2041 2042 2043 2044 2045 2046 2047

sprite

0 1 2 3 4 5 6

sprite

7

Line 10 in the program sets V to the VIC chip's starting memory location.
Then later in the program you can get the VIC chip memory location you want

just by adding the appropriate register number to V.
Line 11 makes sprite 2 appear by POKEing a 4 into the SPRITE ENABLE

REGISTER (21). Why POKE a 4? Because 4 is the decimal value for 2 to the se

cond power. Recall that the decimal value for a sprite is 2 to the power of the
number of the sprite. If you wanted to turn ON sprite 3, you'd use this state
ment: POKE V + 21,8. You turn a sprite ON by POKEing the decimal value for

the sprite into the sprite enable register (21). Here's how register 21 looks after

line 11 turns ON sprite 2:

REG.

21

128

0

7

64

0

6

32

0

5

16

0

4

8

0

3

4

1

2

2

0

1

1

0

0

decima

sprite

number

If you wanted to turn ON both sprites 2 and 3. you'd add 8 and 4. the decimal

values for the sprites, and use this statement: POKE V + 21,12

Line 12 tells the computer where to find the data for sprite two. Recall that

the pointer for sprite 2 is memory location 2042. This line POKEs a 13 into sprite

2's pointer, which means that sprite 2's data will be kept in the 13th series of

sprite bytes.

Line 20 puts data into the 63 bytes that make up a sprite. READ Q gets the

data from the DATA statements in lines 200 through 240. The 832 in the POKE
statement is the location of the 13th block of sprite bytes. As the loop in line 20

READs data, the values are POKEd into the 63 sprite bytes located in block 13.

Lines 30 through 50 control the sprite's movement across the screen. Line 40

POKEs the value of X into the VIC chip register location (4) that represents the

sprite 2's X coordinate. The X coordinate represents horizontal movement. Line

50 POKEs the current value of X into the register location (5) that stands for

sprite 2's Y coordinate, or vertical movement. This loop moves the sprite DOWN

and TO THE RIGHT.

Line 70 starts the program over again.

Lines 200 through 240 contain the data for the sprite.

Try adding the following line and RUN the program again:

25 POKE V + 23,4: POKE V-f 29,4: REM EXPAND SPRITE

76

If you typed everything correctly, your balloon is sailing across the screen.
To understand what happened, you need to know where each sprite defini·

tion is located in memory.
Recall that each sprite is 24 by 21 dots, which equals 504 dots, which in turn

equals 63 bytes (504/8 bits). So each sprite is 63 bytes plus 1 byte which is the
sprite's place holder, or pOinter. The painters for each of the eight possible
sprites are located together as the last eight bytes of the SCREEN MEMORY.
Normally, the pOinters begin at location 2040 for sprite 0, through 2047 for
sprite 7:

2040 2041 2042 2043 2044 2045 2046 2047

sprite
2 3 4 5 6 7

line 10 in the program sets V to the VIC chip's starting memory location.
Then later in the program you can get the VIC chip memory location you want
just by adding the appropriate register number to V.

line 11 makes sprite 2 appear by POKEing a 4 into the SPRITE ENABLE
REGISTER (21). Why POKE a 4? Because 4 is the decimal value for 2 to the se·
cond power. Recall that the decimal value for a sprite is 2 to the power of the
number of the sprite. If you wanted to turn ON sprite 3, you'd use this state·
ment: POKE V + 21,8. You turn a sprite ON by POKEing the decimal value for
the sprite into the sprite enable register (21). Here's how register 21 looks after (]
line 11 turns ON sprite 2:

R~; 1

1

:

8

1

6

0

4

1 302 1 : 1 : 1 4 1 : 1

7 6 5 4 3 2

o
o

1 decimal
values

sprite
number

If you wanted to turn ON both sprites 2 and 3, you'd add 8 and 4, the decimal
values for the sprites, and use this statement: POKE V + 21,12

Line 12 tells the computer where to lind the data for sprite two. Recall that
the pOinter for sprite 2 is memory location 2042. This line POKEs a 13 into spri te
2's pOinter, which means that sprite 2's data will be kept in the 13th series of
sprite bytes.

line 20 puts data into the 63 bytes that make up a sprite. READ Q gets the
data from the DATA statements in lines 200 through 240. The 832 in the POKE
statement is the location of the 13th block of sprile bytes. As the loop in line 20
READs data, the values are POKEd into the 63 sprite bytes located in block 13.

lines 30 through 50 control the sprite's movement across the screen. line 40
POKEs the value of X into the VIC chip register location (4) that represents the
sprite 2'5 X coordinate. The X coordinate represents horizontal movement. Line
50 POKEs the current value of X into the register location (5) that stands for
sprite 2's Y coordinate, or vert ical movement. This loop moves the sprite DOWN
and TO THE RIGHT.

line 70 starts the program over again.
lines 200 through 240 contain the data for the sprite.
Try adding the following line and RUN the program again:

25 POKE V + 23,4: POKE V + 29,4: REM EXPAND SPRITE

76

Now the balloon has doubled in size because you POKEd the decimal value
for sprite 2 into register 23, which controls a sprite's expansion in the Y, or ver
tical, direction, and into register 29. which controls a sprite's expansion in the
X, or horizontal direction.

Now try adding sprite 3 to your screen by entering these lines:

11 POKE V + 21,12

12 POKE 2042.13: POKE 2043.13

30 FOR X = 1 TO 190

45 POKE V + 6,X

55 POKE V + 7,190 - X

Line 11 turns ON sprites 2 and 3 by POKEing their combined decimal values
(4 and 8) into the sprite enable register (21).

Line 12 tells the computer to find the data for the sprites in the 13th block of
VIC chip memory. Recall that 2042 is sprite 2's pointer, and 2043 is sprite 3's.

Lines 45 and 55 move sprite 3 around by POKEing values into sprite 3's X and
Y coordinates (V + 6 and V + 7).

The following lines put sprite 4 on the screen, too:

11 POKE V + 21,28

12 POKE 2042.13: POKE 2043.13: POKE 2044,13

25 POKE V + 23,12: POKE V + 29 12
48 POKE V + 8,X

58 POKE V + 9,100

Line 11 turns ON sprites 2,3, and 4 by POKEing their combined decimal
values (4, 8, and 16) into the sprite enable register (21).

Line 12 tells the computer to find the data for all three sprites in the 13th
block of memory.

Line 25 doubles the size of sprites 2 and 3 by POKEing their combined

decimal value into the registers that control sprite expansion (23 and 29).
Lh.e 48 moves sprite 4 along the X axis (horizontally).

Line 58 positions sprite 4 halfway down the screen at location 100. Before,
we've changed the Y coordinate throughout the program by using a loop (see

line 50 in the original program). But now the value for the Y coordinate for sprite
4 (V + 9) stays the same during the program. This means that sprite 4 only
moves horizontally.

77

v

v

v

v

v

Now the balloon has doubled in size because you POKEd the decimal value
for sprite 2 into register 23, which controls a sprite's expansion in the Y, or ver·
tical, direction, and into register 29, which controls a sprite 's expansion in the
X, or horizontal direction.

Now try adding sprite 3 to your screen by entering these lines:

11 POKE V + 21 ,12
12 POKE 2042,13: POKE 2043,13
30 FOR X = 1 TO 190
45 POKE V + 6,X
55 POKE V + 7,190 - X

Line 11 turns ON sprites 2 and 3 by POKEing their combined decimal values
(4 and 8) into the sprite enable register (21).

Line 12 te lls the computer to find the data for the sprites in the 13th block of
VIC chip memory. Recall that 2042 is sprite 2's pOinter, and 2043 is sprite 3's.

Lines 45 and 55 move sprite 3 around by POKEing values into sprite 3's X and
Y coordinates (V + 6 and V + 7).

The following lines put sprite 4 on the screen, too:

11 POKE V + 21 ,28
12 POKE 2042,13: POKE 2043,13: POKE 2044,13
25 POKE V + 23,12: POKE V + 29,12
48 POKE V + 8,X
58 POKE V + 9,100

Line 11 turns ON sprites 2,3, and 4 by POKEing their combined decimal
val ues (4, 8, and 16) into the spri te enable register (21).

Line 12 tells the computer to find the data for all three sprites in the 13th
block of memory.

Line 25 doubles the size of sprites 2 and 3 by POKEing their combined
decimal value into the registers that control sprite expansion (23 and 29).

Li,.e 48 moves sprite 4 along the X axis (horizontally).
Line 58 positions sprite 4 halfway down the screen at location 100. Before,

we've changed the Y coordinate throughout the program by using a loop (see
line 50 in the original program). But now the value for the Y coordinate for sprite
4 01 + 9) stays the same during the program. This means that sprite 4 only
moves horizontally.

77

MORE ON SPRITES: COLOR AND EXTRA MOVEMENT

Changing a sprite's color is even easier than moving it around the screen.
You can use any of the 64's 16 colors with your sprites. The 16 colors are

numbered 0 through 15. Chapter 6 and Appendix G list the colors and their

codes. . ,_
Suppose you want to change sprite 1 's color to light green, whose code is 13.

Just enter this statement: POKE V + 45,13 (assuming you set V to 53248, the

VIC chip starting memory location).

When you ran the sprite program in this chapter, you probably noticed that
the sprites never moved all the way to the right edge of the screen. This hap
pens because the X direction register can't hold a value over 255, but the screen

is 320 dots wide.
There's a register on the memory map that lets you move an object across

the entire screen. This register, location 16, is called the MOST SIGNIFICANT
BIT (MSB) of the sprite's X direction location. In effect, this bit lets you move

the sprite to a horizontal spot between 256 and 320.
Here's how the MSB works: after you've moved the sprite to X location 255,

POKE the sprite's decimal value into register 16. For example, to move sprite 6
to horizontal locations 256 through 320, use this statement:

POKE V + 16,64

Then use a loop to move sprite 6 the 64 spaces from location 256 to 320:

FOR X = 0 TO 63: POKE V + 64,X: NEXT

The following program revises the original balloon program so that sprite 2

moves all the way across the screen:

10 V = 53248: POKE V + 21,4 : POKE 2042,13
20 FOR N = 0 TO 62 : READ Q : POKE 832+ N,Q : NEXT

25 POKE V+ 5, 100

30 FOR X = 0 TO 255

40 POKEV + 4.X

50 NEXT

60 POKE V+16,4

70 FOR X = 0 TO 63

80 POKEV+4, X

90 NEXT

100 POKE V+ 16,0

110 GOTO 30

Line 60 sets the most significant bit for sprite 2.
Lines 70 through 90 contain the loop that moves sprite 2 across screen loca

tions 256 through 320.

Line 100 turns OFF the MSB so that sprite 2 can go back to the left edge of
the screen. In other words, when the MSB is ON, the sprite can only move from

locations 256 through 320. You have to turn the MSB back OFF before you can

move the sprite from locations 0 through 255.
The best way to learn about sprites is to experiment with them. The Com

modore 64 Programmer's Reference Guide has more information about sprites.

78

MORE ON SPRITES: COLOR AND EXTRA MOVEMENT
Changing a sprite's color is even easier than moving it around the screen.

You can use any of the 64's 16 colors with your sprites. The 16 colors are
numbered 0 through 15. Chapter 6 and Appendix G list the colors and their
codes.

Suppose you want to change sprite 1 's color to light green, whose code is 13.
Just enter this statement: POKE V + 45,13 (assuming you set V to 53248, the
VIC chip starting memory location).

When you ran the spri te program in this chapter, you probably noticed that
the sprites never moved all the way to the right edge of the screen. This hap·
pens because the X direction register can't hold a value over 255, but the screen
is 320 dots wide.

There's a register on the memory map that lets you move an object across
the enti re screen. This reg ister, location 16, is called the MOST SIGNIFICANT
BIT (MSB) of the sprite's X direction location . In effect, thi s bit lets you move
the sprite to a horizontal spot between 256 and 320.

Here's how the MSB works: after you've moved the sprite to X location 255,
POKE the sprite's decimal value into register 16. For example, to move sprite 6
to horizontal locations 256 through 320, use this statement:

POKE V + 16,64

Then use a loop to move sprite 6 the 64 spaces from location 256 to 320:

FOR X = 0 TO 63: POKE V + 64,X: NEXT

The following program revises the original balloon program so that sprite 2
moves all the way across the screen:

10 V=53248: POKE V+21,4: POKE 2042,13
20 FOR N = 0 TO 62: READ Q : POKE 832+ N,Q : NEXT
25 POKE V + 5, 100
30 FOR X = 0 TO 255
40 POKE V+4,X
50 NEXT
60 POKE V+ 16,4
70 FOR X = 0 TO 63
80 POKE V+ 4, X
90 NEXT
100 POKE V + 16,0
110 GOTO 30

line 60 sets the most sign ificant bit for sprite 2.
lines 70 through 90 contain the loop that moves sprite 2 across screen loca·

tions 256 through 320.
line 100 turns OFF the MSB so that sprite 2 can go back to the left edge of

the screen. In other words, when the MSB is ON, the sprite can only move from
locations 256 through 320. You have to turn the MSB back OFF before you can
move the sprite from locations 0 through 255.

The best way to learn about sprites is to experiment with them. The Com·
modore 64 Programmer's Reference Guide has more information about sprites.

78

'"'
r..

CHAPTER

MAKING MUSIC
ON YOUR COMPUTER:

FOR NON-PROGRAMMERS

CHAPTER 8

MAKING MUSIC ON YOUR COMPUTER:

FOR NON-PROGRAMMERS

• Structure of a Sound Program

• Sample Sound Program

• Playing a Song on Your 64

• Creating Sound Effects

Your 64's sound-making features let you make music and sound effects. This

chapter is an introduction to using your computer's sound chip, the SID chip.

The Commodore 64 Programmer's Reference Guide has extensive information

about music-makinng.

STRUCTURE OF A SOUND PROGRAM

Before we begin explaining how to program the sound chip, we want you to

understand a little about the important SID chip memory locations associated

with sound-making. These locations include:

• Volume

• Waveform

• High and low frequency

• The envelope generator:

Attack

Decay

Sustain

Release

VOLUME: There are 16 volume ievels. To set the volume, POKE the level you

want (0-15) at memory location 54296. Zero turns the volume OFF.
You only have to set the volume once at the beginning of your program. This

volume setting controls all three of the 64's voices.

WAVEFORM: The waveform control STARTS and STOPS EACH NOTE. Each
voice has its own waveform memory location that lets you define four different
types of waveform by POKEing the start/stop numbers for the waveform you

want. There are four waveform types-

-

-

Sawtooth:

79

CHAPTER 8

MAKING MUSIC ON YOUR COMPUTER:
FOR NON·PROGRAMMERS
• Structure of a Sound Program

• Sample Sound Program

• Playing a Song on Your 64

• Creating Sound Effecls

Your 64's sound·making fealures lei you make music and sound effects. This
chapter is an introduction to using your computer's sound chip, the SID chip.
The Commodore 64 Programmer's Reference Guide has extensive information
about music·makinng.

STRUCTURE OF A SOUND PROGRAM
Before we begin explaining how to program the sound chip, we want you to

understand a little about the important SID chip memory locations associated
with sound-making. These locations include:

• Volume
• Waveform
• High and low frequency
• The envelope generator:

Attack
Decay
Sustain
Rel ease

VOLUME: There are 16 volume levels. To set the volume, POKE the level you
want (0·15) at memory location 54296. Zero turns the volume OFF.

You only have to set the volume once at the beginning of your program. This
volume sett ing controls all three of the 64's voices.

WAVEFORM: The waveform control STARTS and STOPS EACH NOTE. Each
voice has its own waveform memory location that lets you define four different
types of waveform by POKEing the start/stop numbers for the waveform you
want. There are four waveform types'

Sawtooth:

79

Triangular:

Pulse (variable rectangular waves):

—PULSE WIDTH-

White noise (used mainly for sound effects):

60

v

v

v

v

v

Triangular:

Pulse (variable rectangular waves):

r PUlSE WIDU. -

~ '-- '--

White noise (used mainly for sound effects):

80

This chart shows the waveform memory locations for each voice:

WAVEFORM MEMORY LOCATIONS

VOICE 1

54276

VOICE 2

54283

VOICE 3

54290

This chart shows each waveform's start and stop numbers. These are the
numbers you POKE into the memory location for the voice you're programming:

NOTE START/STOP NUMBERS

TRIANGLE

ON/OFF

17/16

SAWTOOTH

ON/OFF

33/32

PULSE

ON/OFF

65/64

NOISE

ON/OFF

129/128

For example, this statement STARTS a sawtooth waveform in voice 1, and

STOPS a triangle waveform in voice 2:

POKE 54276,33: POKE 54283,16

FREQUENCY: A sound's pitch is determined by the FREQUENCY of the sound

waves you produce when you make music. For each note in a music or sound

program, you must include two separate POKEs: one for the high frequency

byte, and one for the low frequency byte. The MUSICAL NOTE VALUE TABLE in

Appendix M shows you the POKEs you need to play any note in the 64's eight

octave range.

The high and low frequency memory locations are different for each voice

you use, so you can program all three voices independently. This lets you

create 3-voice music and exotic sound effects.

Here's a chart of the memory locations for each voice's high and low frequen

cy bytes:

VOICE

1

1

2

2

3

3

FREQUENCY

HIGH

LOW

HIGH

LOW

HIGH

LOW

POKE NUMBER

54273

54272

54280

54279

54287

54286

81

This chart shows the waveform memory locations for each voice:

WAVEFORM MEMORY LOCATIONS

VOICE 1 VOICE 2 VO ICE 3

54276 54283 54290

This chart shows each waveform's start and stop numbers. These are the
numbers you POKE into the memory location for the voice you're programming:

NOTE START/STOP NUMBERS

TRIANGLE SAWTOOTH PULSE NOISE
ON/OFF ON/OFF ON/OFF ON/OFF

17/16 33/32 65/64 129/128

For example, th is statement STARTS a sawtooth waveform In vOice 1, and
STOPS a triangle waveform in voice 2:

POKE 54276,33: POKE 54283,16

FREQUENCY: A sound's pitch is determined by the FREQUENCY of the sound
waves you produce when you make music. For each note in a music or sound
program, you must include two separate POKEs: one for the high frequency
byte, and one for the low frequency byte. The MUSICAL NOTE VALUE TABLE in
Appendix M shows you the POKEs you need to play any note in the 64's eight
octave range.

The high and low frequency memory locations are different for each voice
you use, so you can program all three voices independently. This lets you
create 3-voice music and exotic sound effects.

Here's a chart of the memory locations for each voice's high and low frequen
cy bytes:

VOICE FREQUENCY POKE NUMBER

1 HIG H 54273

1 LOW 54272

2 HIGH 54280

2 LOW 54279

3 HIGH 54287

3 LOW 54286

81

Appendix M contains a list of all the high and low frequency POKE values for

each note. Each note in each of the eight octaves has two different numbers.

To play a musical note, you must POKE the note's high frequency value into

the high frequency location of the voice you want, and POKE the note's low fre

quency value into the voice's low frequency location. For example, here's how

to POKE a C note from the fifth octave in voice 1:

10 POKE 54273,33 set high frequency

15 POKE 54272,135 set low frequency

Use this line to POKE the same note in voice 2:

10 POKE 54280,33: POKE 54279,135

Here's a short program that POKEs C in voice 1:

5FORL = 54272TO54296:POKEL,0:NEXT clear SID chip

10V=54296:W=54276:A = 54277: use variables to save

S = 54278:H = 54273:L = 54272 typing time

20 POKEV,15:POKEA,190:POKES,89 POKE vol, attach/decay

sustain/release

30 POKEH,33:POKEL,135 POKE hi/lo freq. notes

40 POKEW.33:FORT= 1TO200:NEXT start note, let it play

50 POKEW.32 stop note

The ENVELOPE GENERATOR: when a note is first struck, it rises from zero

volume to its peak volume. The RATE at which this rise occurs is called the

ATTACK. Then the note falls from the peak to some middle-range volume. The

RATE of the note's fall is called the DECAY. The mid-range volume itself is call

ed the SUSTAIN LEVEL When the note stops playing, it falls from the SUSTAIN

level to zero volume. The RATE of this fall is called the RELEASE. Here's a

sketch of the four phases of a note:

SUSTAIN LEVEL---/ 1

NOTE: ATTACK, DECAY, and RELEASE are RATES. SUSTAIN is a LEVEL.

82

v

'-' Appendix M contains a list of all the high and low frequency POKE values for

v

v

v

v

v

each note. Each note in each of the eight octaves has two different numbers.
To playa musical note, you must POKE the note's high frequency value into

the high frequency location of the voice you want , and POKE the note's low fre·
quency value into the voice's low frequency location. For example, here's how
to POKE a C note from the fifth octave in voice 1:

10 POKE 54273,33 set high frequency
15 POKE 54272,135 set low frequency

Use this line to POKE the same note in voice 2:

10 POKE 54280,33: POKE 54279,135

Here's a short program that POKEs C in voice 1:

5 FORL = 54272 TO 54296:POKEL,0:NEXT clear SID chip
10 V = 54296:W = 54276:A = 54277: use variables to save

S = 54278:H = 54273:L = 54272 typing time
20 POKEV,15:POKEA,190:POKES,89 POKE VOl, attach/decay

sustain/release
30 POKEH,33:POKEL,135 POKE hi/lo freq. notes
40 POKEW,33:FORT = H0200:NEXT start note, let it play
50 POKEW,32 stop note

The ENVELOPE GENERATOR: when a note is firs t struck, it rises from zero
volume to its peak volume. The RATE at which this rise occurs is called the
ATTACK. Then the note falls from the peak to some middle·range volume. The
RATE of the note's fall is called the DECAY. The mid·range vol ume itself is call·
ed the SUSTAIN LEVEL. When the note stops playing, it falls from the SUSTAIN
level to zero vol ume. The RATE of this fall is called the RELEASE. Here's a
sketch of the four phases of a note:

SUSTAIN LEVEL -- --....,---~. ----,. , '
,

A : 0 : 5

,
I
, R :

NOTE: ATTACK, DECAY, and RELEASE are RATES. SUSTAIN is a LEVEL.

82

In this chapter we'll refer to the ATTACK/DECAY memory locations, and the

SUSTAIN/RELEASE memory locations. The reason we use these pairings is

that each of the four settings needs only 1/2 byte, so attack and decay share a

byte, as do sustain and release.

This chart shows you the memory locations for the ATTACK/DECAY byte and

the SUSTAIN/RELEASE byte for each of the three voices:

VOICE

I

1

2

2

3

3

RATBLEVEL

attack/decay

sustain/release

attack/decay

sustain/release

attack/decay

sustain/release

POKE NUMBER

54277

54278

54284

54285

54291

54292

We mentioned before the ATTACK and DECAY rates share the same byte. So

you must COMBINE ATTACK and DECAY settings by adding them. Then you

enter the total in a POKE statement.

The ATTACK rates occupy the 2 t 7, 2 t 6, 2 t 5, and 2 t 4 bits, so the

values are 128,64. 32, and 16. DECAY rates are 2 t 3,2 t 2,2 t 1,and 2 t 0.

or 8, 4, 2, and 1. Suppose you want to set a HIGH ATTACK rate and a LOW

DECAY rate: add the high attack value (128) to the low decay value (2), and

POKE 130 to the appropriate memory location.

This chart shows you what numbers to POKE for ATTACK and DECAY rates:

HIGH

ATTACK

128

MEDIUM

ATTACK

64

LOW

ATTACK

32

LOWEST

ATTACK

16

HIGH

DECAY

8

MED.

DECAY

4

LOW

DECAY

2

LOWEST

DECAY

1

NOTE: You can increase the ATTACK rate by adding together all the ATTACK

values: 128 + 64 + 32 + 16 = 240, which is the MAXIMUM ATTACK RATE.

You can increase the DECAY rate by adding together all the DECAY values:

8 + 4 + 2 + 1 = 15, which is the MAXIMUM DECAY RATE.

If you set an attack rate with no decay rate, the decay rate is automatically

zero, and vice versa. For example, if you POKE 54277,64, you're setting a

medium attack rate with zero decay for voice 1.

Here are some sample ATTACK/DECAY POKEs:

POKE 54277,66

POKE 54284,100

POKE 54291,15

POKE 54284,255

VOICE

1

2

3

2

ATTACK

MED (64)

MED (64) +

LOW (32)

ZERO

MAX

(128+64 + 32+16

DECAY

LOW (2)

MED (4)

MAX

(8+4+2+1)

MAX

+ 8+4 + 2+1)

83

In this chapter we'll refer to the ATIACKIDECAY memory locations, and the
SUSTAIN/RELEASE memory locations. The reason we use these pai rings is
that each of the four settings needs only 1/2 byte, so attack and decay share a
byte, as do sustain and release.

This chart shows you the memory locations for the ATIACKIDECAY byte and
the SUSTAIN/RELEASE byte for each of the three voices:

VOICE RATE/LEVEL POKE NUMBER

1 attack/decay 54277

1 sustain/release 54278

2 attack/decay 54284

2 sustain/release 54285

3 attack/decay 54291

3 sustain/release 54292

We mentioned before the ATIACK and DECAY rates share the same byte. So
you must COMBINE ATIACK and DECAY settings by adding them. Then you
enter the total in a POKE statement.

The ATIACK rates occupy the 2 t 7, 2 t 6,2 t 5, and 2 t 4 bits, so the
values are 128, 64, 32, and 16. DECAY rates are 2 t 3,2 t 2, 2 t I , and 2 t 0,
or 8, 4, 2, and 1. Suppose you want to set a HIGH ATIACK rate and a LOW
DECAY rate: add Ihe high attack value (128) to Ihe low decay value (2), and
POKE 130 to Ihe appropriate memory location.

This chart shows you what numbers to POKE for ATIACK and DECAY rates:

HIGH MEDIUM LOW LOWEST HIGH MED. LOW LOWEST
AITACK AITACK AITACK AITACK DECAY DECAY DECAY DECAY

128 64 32 16 8 4 2 1

NOTE: You can increase the ATIACK rate by adding together all the ATIACK
values: 128 + 64 + 32 + 16 = 240, which is the MAXIMUM ATIACK RATE.

You can increase the DECAY rate by adding together all the DECAY values:
8 + 4 + 2 + 1 = 15, which is the MAXIMUM DECAY RATE.

If you set an attack rate with no decay rate, the decay rate is automatically
zero, and vice versa. For example, if you POKE 54277,64, you're sett ing a
medium attack rate with zero decay for voice 1.

Here are some sample ATIACKIDECAY POKEs:

VOICE ATIACK DECAY

POKE 54277,66 1 MED (64) LOW (2)

POKE 54284 ,100 2 MED (64) +
LOW (32) MED (4)

POKE 54291 ,15 3 ZERO MAX
(8+4+2+ 1)

POKE 54284,255 2 MAX MAX
(128+64 +32+ 16 +8+4+2+1)

83

Here's a sample program that illustrates what you can do with attack/decay

settings:

10 FORL=54272TO54296:POKEL0:NEXT... Clears the SID chip
20 POKE54296J5 Set maximum volume

30 POKE54277,64 Set attack/decay

40 POKE54273.162:POKE54272,37 POKE one note in voice 1

50 PRINT-PRESS ANY KEY" Screen message

60GETK$:IFK$=""THEN60 Check the keyboard

70 POKE54276,17:FORT= 1TO200:NEXT Start triangle waveform

80 POKE54276,16:FORT= 1TO50:NEXT Stop note

90GOTO50 Repeat execution

After you RUN the program a few times, try changing the ATTACK/DECAY

setting by changing line 30:

30 POKE 54277,190

Now RUN the program again and notice the difference in the note. Try other

combinations of attack and decay settings to get an idea of how you can use

different attack/decay rates to create a variety of sound effects.

SUSTAIN/RELEASE SETTING. Like ATTACK/DECAY, SUSTAIN/RELEASE

share a byte. But remember that this sharing doesn't mean that SUSTAIN and

RELEASE are alike. SUSTAIN is a LEVEL, while release, attack and decay are
RATES.

SUSTAIN is a proportion of maximum volume. You can sustain, or hold,

notes and sounds at any of 16 volume levels.

This table shows you what numbers to POKE for sustain/release values:

HIGH

SUSTAIN

128

MEDIUM

SUSTAIN

64

LOW

SUSTAIN

32

LOWEST

SUSTAIN

16

HIGH

RELEASE

8

MED.

RELEASE

4

LOW

RELEASE

2

LOWEST

RELEASE

1

NOTE: You can increase the SUSTAIN level by adding together all the SUSTAIN

values: 128 + 64 + 32 + 16 = 240, which is the MAXIMUM SUSTAIN LEVEL A
SUSTAIN level of 128 is approximately 50% of volume. You can increase the
RELEASE rate by adding together all the RELEASE values: 8 + 4 + 2 + 1 =

15, which is the MAXIMUM RELEASE RATE.

Combine the sustain level and release rate the same way you combine the at

tack and decay rates: add the two values and POKE the total to the memory
location of the voice you want.

To see the effects of the sustain level setting add this line to the last sample
program:

35 POKE 54278,128

Now RUN the program again and note the change. With line 35, we tell the

computer to sustain the note at a HIGH SUSTAIN LEVEL (128). You can vary the

duration of a note by changing the count in line 70. Remember that the sustain

level maintains a note at a proportion of the volume as the note falls from its

peak volume: this isn't the same thing as the note's duration.

To see the effect of the release rate, try changing line 35 to POKE 54278,89
(sustain = 80, release = 9).

v

v

Here's a sample program Ihal illuslrales whal you can do with allackldecay
sellings:

10 FORL = 54272T054296:POKEL,0:NEXT ... Clears Ihe SID chip
20 POKE54296,15 Sel maximum volume
30 POKE54277,64 Sel allackldecay
40 POKE54273,162:POKE54272,37 POKE one no Ie in voice 1
50 PRINT"PRESS ANY KEY" Screen message
60 GETK$:IFKS= " "THEN60 Check the keyboard
70 POKE54276,17:FORT = H0200:NEXT Slart triangle waveform
80 POKE54276,16:FORT = H050:N EXT Stop note
90 GOT050 Repeat execution

After you RUN the program a few times, try changing the ATIACKIDECAY
setting by changing line 30:

30 POKE 54277,190

Now RUN the program again and notice the difference in the note. Try other
combinations of attack and decay settings to get an idea of how you can use
different allackldecay rates to create a variety of sound effects.

SUSTAIN/RELEASE SETIING. Like ATIACKIDECAY, SUSTAIN/RELEASE
share a byte. But remember that this sharing doesn't mean that SUSTAIN and
RELEASE are alike. SUSTAIN is a LEVEL, while release, allack and decay are
RATES.

SUSTAIN is a proportion of maximum volume. You can sustain, or hold ,
notes and sounds at any of 16 volume levels.

This table shows you what numbers to POKE for sustain/re lease values:

HIGH MEDIUM LOW LOWEST HIGH MED. LOW LOWEST
SUSTAIN SUSTAIN SUSTAIN SUSTAIN RELEASE RELEASE RELEASE RELEASE

128 64 32 16 8 4 2 1

NOTE: You can increase the SUSTAIN level by adding together all the SUSTAIN
values: 128 + 64 + 32 + 16 = 240, which is the MAXIMUM SUSTAIN LEVEL. A
SUSTAIN level of 128 is approx imately 50% of volume. You can increase the
RELEASE rate by adding together all the RELEASE values: 8 + 4 + 2 + 1 =
15, which is the MAXIMUM RELEASE RATE.

Combine the sustain level and release rate the same way you combine the at
tack and decay rates: add the two values and POKE the total to the memory
location of the voice you want.

To see the effects of the sustain level selling add this line to the last sample
program:

35 POKE 54278,128

Now RUN the program again and note the change. With line 35, we tell the
computer to sustain the note at a HIGH SUSTAIN LEVEL (128). You can vary the
duration of a note by changing the count in line 70. Remember that the sustain
level maintains a note at a proportion of the volume as the note falls from its
peak volume: this isn't the same thing as the note's duration.

To see the effect of the release rate, try changi ng line 35 to POKE 54278 ,8~
(sustain = 80, release = 9).

84

SAMPLE SOUND PROGRAM

This brief sound program summarizes what you've learned so far about mak

ing music on your 64:

1. Choose the voice(s) you want to use. Recall that each voice uses different

memory locations into which you'll POKE values for waveform, attack rate,

etc You can play 1,2. or 3 voice together, but this program only uses voice 1.

2 Clear the SID chip: 5 FORL= 54272 TO 54296: POKEL,0:NEXT

3. Set VOLUME: 10 POKE54296.15

4. Set ATTACK/DECAY rates: ,-,

to define how fast a note rises

to and falls from its peak

volume level (0-255): 20 POKE54277.190

5. Set SUSTAIN/RELEASE to

define level to hold note and „

rate to release it: 30 POKE54278,248

6. Find note you want to play in

the TABLE OF MUSICAL

NOTES in App. M and enter

the HIGH-FREQ. and LOW-

FREQ. values for that note

(each note requires 2 POKEs): 40 POKE54273,16:POKE54272,195

7. Start WAVEFORM (here,

TRIANGLE): 50 POKE54276.17

8. Enter a timing loop to time be

tween notes (we use 250 for a

quarter note): 60 FORT= 1TO250:NEXT

9. STOP note by turning off

chosen waveform: 70 POKE54276,16

Here's a longer program that further demonstrates your 64's music-making

abilities:

NEW

5 REM MUSICAL SCALE

7 FORL=54272TO54296:POKEL0:NEXT clears SID chip

10 POKE 54296,15 sets volume
20 POKE54277,7:POKE54278,133 sets a/d/s/r

50 READ A READs 1st number from line 110
55 IF A= - 1 THENEND ENDS loop

60 READ B READs 2nd number
80POKE54273APOKE54272,B POKEs 1st number from line 110 as

HI-FREO and 2nd number as LOW-

FREQ.

85 POKE54276.17 starts note
90 FORT= 1TO250:NEXT:POKE54276,16 lets note play, then stops it

95 FORT= 1TO50:NEXT sets time for RELEASE, time be
tween notes

100 GOTO20 restarts program
110 DATA 16.195.18.209.21,31.22,96 lists note value ^

120 DATA 25.30.28.49,31,165,33,135 from chart in App. M. Each part of
numbers = one note (16 and 19 = ^

4th octave C)

999 DATA-1 ENDs program (see line 55)

85

SAMPLE SOUND PROGRAM
This brief sound program summarizes what you've learned so far about mak·

ing music on your 64 :

1. Choose the voice(s) you want to use. Recall that each voice uses different
memory locations into which you'll POKE values for waveform, attack rate,
etc. You can play 1,2, or3 voice together, but this program only uses voice 1.

2. Clear the SID chip: 5 FORL =54272 TO 54296: POKEL,O:NEXT
3. Set VOLUME: 10 POKE54296,15
4. Set ATIACKIDECAY rates:

to define how fas t a note rises
to and falls from its peak
volume level (0·255): 20 POKE54277,190

5. Set SUSTAI N/RE LEASE to
define level to hold note and
rate to release it : 30 POKE54278,248

6. Find note you want to play in
the TABLE OF MUSICAL
NOTES in App. M and enter
the HIGH·FREO. and LOW·
FREO. values for that note
(each note requires 2 POKEs): 40 POKE54273, 16:POKE54272, 195

7. Start WAVEFORM (here,
TRIANGLE): 50 POKE54276,17

8. Enter a timing loop to time be·
tween notes (we use 250 for a
quarter note): 60 FORT = 1T0250:NEXT

9. STOP note by turn ing off
chosen waveform: 70 POKE54276,16

Here's a longer program that further demonstrates your 64's music-making
abilities:

NEW
5 REM MUSICAL SCALE
7 FORL = 54272T054296:POKEL,0:NEXT clears SID chip
10 POKE 54296,15 sets volume
20 POKE54277,7:POKE54278,133 sets ald/s/r
50 READ A READs 1st number from line 110
55 IF A= -1 THENEND ENDs loop
60 READ B ... READs 2nd number
80 POKE54273,A:POKE54272,B POKEs 1st number from line 110 as

HI·FREO and 2nd number as LOW·
FREO.

85 POKE54276,17 starts note
90 FORT = 1T0250:NEXT:POKE54276, 16 lets note play, then stops it
95 FORT = 1T050:NEXT sets time for RELEASE, time be·

tween notes
100 GOT020 restarts prog ram
110 DATA 16,195,18,209,21,31,22,96 Iists note value
120 DATA 25,30,28,49,31,165,33,135 from chart in App. M. Each part of

numbers = one note (16 and 19 =
4th octave C)

999 DATA·1 ENDs program (see line 55)

85

_

You can change to a sawtooth wave by changing line 85 to read

POKE54276.33 and line 90 to read FORT= 1TO250:NEXT:POKE54276,32.
Changing the waveform can dramatically change the sound your computer
produces.

You can also change the sound in other ways. For example, you can change

the harpsichord-like sound in the previous program to a banjo-like sound by

changing the ATTACK/DECAY rate of each note. Do this by changing line 20 to
read:

20 POKE54277.3:POKE54278,0 creates banjo effect by setting zero
SUSTAIN

As this program demonstrates, your 64 can sound like a variety of musical in
struments.

_

86

v

v

v

v

v

v

v

You can change to a sawtooth wave by changing line 85 to read
POKE54276,33 and line 90 to read FORT; n0250:NEXT:POKE54276,32.
Changing the waveform can dramatically change Ihe sound your computer
produces.

You can also change the sound in other ways. For example, you can change
the harpsichord·like sound in the previous program to a banjo-like sound by
changing the ATTACK/DECAY rate of each note. Do this by changing line 20 to
read:

20 POKE54277,3:POKE54278,0 creates banjo effect by setting zero
SUSTAIN

As this program demonstrates, your 64 can sound like a variety of musical in
struments.

86

-•

PLAYING A SONG ON YOUR 64

The next program lets you play a line from a song, "Michael Row Your Boat

Ashore". The program uses the PULSE waveform, which is a variable width rec

tangular wave. The third and fourth POKEs in line 10 define the pulse width for

this song. w»

In this song, we use a duration count of 125 for an eighth note, 250 for a

quarter note, 375 for a dotted quarter note, 500 for a half note, and 1000 for a

whole note. When you program your own songs, you can increase or decrease «

these numbers to match a particular tempo or your own musical taste.

2 F0RL = 54272TO54296: POKEL,0: NEXT

5 S = 54272 m

10 POKES+ 24,15: POKES+ 5,88: POKES+ 3,15: POKES+ 2,15: POKES+ 6,89

20 READH: IFH = - 1THENEND fl

30 READL

40 READD

60 POKES+1.H: POKES,L: POKES + 4,65 ^

70 FORT=1TOD: NEXT: POKES+ 4,64

80 FORT=1TO50: NEXT ~

90 GOTO 20

100 DATA33,135,250,42.62.250.50.60,250.42,62.125.50.60,250

105 DATA56,99,250 m
110 DATA50,60,500,0,0,125.42.62,250,50.60,250.56,99

115 DATA1000.50.60.500 r\

120 DATA-1
'—

Line 2 clears the SID chip.

Line 5 assigns the lowest SID chip memory location to the variable S.

Throughout the rest of the program, we just add the number of the SID register

to this variable. For example, POKES+ 24,15 POKEs 15 to the volume register,

which is 54296, or 54272 + 24. m

Line 10 POKEs values into:

1. The volume register: POKES + 24,15 g

2. Voice 1, ATTACK/DELAY rates: POKES+5.88

3. Pulse width: POKES+ 3,15 and POKES+ 2,15

4. Voice 1, SUSTAIN level/RELEASE rate: POKES+ 6,89 ^

Line 20 READs the first number from the DATA statement. If that number is

- 1, the program ENDs automatically. This occurs when the final DATA state

ment (line 120) is read. /-.

Line 30 READs the second number from the DATA list.

Line 40 READs the third number from the DATA list. *

Line 60 POKEs:

1. The value for H that was assigned in the READH statement in line 20. Until

- 1 is read, this value is assigned to the HIGH FREQUENCY register. ^

2. The value for L that was assigned in the READL statement in line 30. This

value is assigned to the LOW FREQUENCY register. Together these two r<

POKEs determine the pitch for one note.

3. The value that turns ON the variable pulse waveform for voice 1.

H7

PLAYING A SONG ON YOUR 64

The next program lets you playa line from a song, " Michael Row Your Boat
Ashore" . The program uses the PULSE waveform, which is a variable width rec
tangular wave. The third and fourth POKEs in line 10 define the pulse width for
this song.

In this song, we use a duration count of 125 for an eighth note, 250 for a
quarter note, 375 for a dotted quarter note, 500 for a half note, and 1000 for a
whole note. When you program your own songs, you can increase or decrease
these numbers to match a particular tempo or your own musical taste.

2 FORL =54272T054296: POKEL,O: NEXT
5 S= 54272
10 POKES + 24,15: POKES + 5,88: POKES + 3,15: POKES + 2,15: POKES + 6,89
20 READH: IFH = - nHENEND
30 READL
40 READD
60 POKES+ 1,H: POKES,L: POKES+4,65
70 FORT = nOD: NEXT: POKES + 4,64
80 FORT = n050: NEXT
90 GOTO 20
100 DA TA33, 135,250,42,62,250,50,60,250,42,62, 125,50,60,250
105 DATA56,99,250
110 OAT A50,60,500,0,0, 125,42,62,250,50,60,250,56,99
115 DATA 1000,50,60,500
120DATA-1

Line 2 clears the SID chip.
Line 5 assigns the lowest SID chip memory location to the variable S.

Throughout the rest of the program, we just add the number of the SID register
to this variable. For example, POKES+ 24,15 POKEs 15 to the volume regis ter,
which is 54296, or 54272 + 24.

Line 10 POKEs values into:
1. The volume register: POKES + 24,15
2. Voice 1, An ACKIDELAY rates: POKES + 5,88
3. Pulse width: POKES + 3,15 and POKES + 2,15
4. Voice 1, SUSTAIN level/RELEASE rate: POKES + 6,89

Line 20 READs the first number from the DATA statement. If that number is
-1 , the program ENDs automatically. This occurs when the final DATA state
ment (line 120) is read.

Line 30 READs the second number from the DATA list.
Line 40 READs the third number from the DATA list.
Line 60 POKEs:

1. The value for H that was assigned in the READH statement in line 20. Until
- 1 is read, this value is assigned to the HIGH FREQUENCY register.

2. The value for L that was assigned in the READL statement in line 30. This
value is assigned to the LOW FREQUENCY register. Together these two
POKEs determine the pitch for one note.

3. The value that turns ON the variable pulse waveform for voice 1.

87

Line 70 uses a loop to set the duration for the note being played. The value

for D is assigned in the READ statement in line 40. As you can see, the numbers

in the DATA lists are clustered into threes: the first number {e.g., 35) is the high

frequency value for a note, the second number (e.g., 135) is the low frequency

value for the same note, and the third number {e.g., 250) sets the duration for

that note (e.g.. a quarter note C).

Line 80 is a timing loop that determines release time between notes.

Line 90 sends the program back to READ the number set for another note.

Lines 100 through 120 contain all the DATA for the line from this song.

v

v

~

'-'

'-'

'-'

v

v

'-'

'-'

v

V

v

'-'

V

'-'

v

'-'

-'

v

Line 70 uses a loop to set the duration for the note being played. The val ue
for D is assigned in the READ statement in line 40. As you can see, the numbers
in the DATA li sts are clus tered into threes: the first number (e.g. , 35) is the high
frequency val ue for a note, the second number (e.g., 135) is the low frequency
value for the same note, and the th ird number (e.g., 250) sets the duration for
that note (e.g., a quarter note C).

Une 80 is a timing loop that determines re lease time between notes.
Line 90 sends the program back to READ the number set for another note.
Lines 100 through 120 contain all the DATA for Ihe line from thi s song.

88

-

CREATING SOUND EFFECTS

Your 64's SID chip lets you create a wide variety of sound effects, such as an

explosion during a game, or a buzzer that warns you when you've made a

mistake.

Here are just a few suggestions for creating sound effects:

1. Vary rapidly between two notes to create a tremor sound.

2. Use the multivoice effects to play more than one voice at a time, with each

voice independently controlled, so you have different noises at once. Or use

one voice as an echo or response to another voice.

3. Use the different pulse widths to create different sounds.

4. Use the NOISE WAVEFORM to make white noise to accent tonal sound ef

fects, create explosion noises, gunshots, footsteps, or alarms. When you

use the noise waveform with the same musical notes that create music, you

can create different types of white noise.

5. Combine several HIGH/LOW FREQUENCIES in rapid succession across dif

ferent octaves.

6. Try POKEing the extra note settings in Appendix M. ~

Here are some sample sound effects programs. The Commodore 64 Pro

grammer's Reference Guide contains more examples as well as more informa

tion on creating sound effects.

DOLL CRYING

NEW

5 FORL= 54272TO54296:POKEL,0:NEXT Clears SID chip

10 S = 54272

20 POKES+ 24.15 Sets volume ^

30 POKES+ 4,65 Turns ON pulse waveform in

voice 1 -->-

40 POKES + 5,15 Sets attack/decay rate

50FORX=200TO5STEP-2 Sets timing loop for RELEASE or

time between notes

60 POKES-f 1,40:POKES,X:NEXT Sets hi/lo frequencies

70FORX= 150TO5STEP-2 Sets faster timing loop

80 POKES + 1.40:POKES,X:NEXT Sets hi/lo frequencies

90 POKES+ 4T64 Turns OFF pulse waveform

CREATING SOUND EFFECTS
Your 64's SID chip lets you create a wide variety of sound effects, such as an

explosion during a game, or a buzzer that warns you when you've made a
mistake.

Here are just a few suggestions for creating sound effects:

1. Vary rapidly between two notes to create a tremor sound.
2. Use the multivoice effects to play more than one voice at a time, with each

voice independently controlled , so you have different noises at once. Or use
one voice as an echo or response to another voice.

3, Use the different pulse widths to create different sounds.
4. Use the NOISE WAVEFORM to make white nOise to accent tonal sound ef·

fects , create explosion nOises, gunshots, foots teps, or alarms. When you
use the noise waveform with the same musical notes that create music, you
can create di fferent types of white noise.

5. Combine several HIGH/LOW FREQUENCIES in rapid succession across dif·
ferent octaves.

6. Try POKEing the extra note settings in Appendix M.

Here are some sample sound effects programs. The Commodore 64 Pro·
grammer's Reference Guide contains more examples as well as more informa
tion on creating sound effects.

DOLL CRYING

NEW
5 FORL= 54272T054296:POKEL,O:N EXT Clears SID chip
10 S= 54272
20 POKES+ 24,15
30 POKES+ 4,65

. Sets volume
.............. Turns ON pulse waveform in

voice 1
40 POKES+ 5,15 Sets attack/decay rate
50 FORX = 200T05STEP - 2 Sets timing loop for RELEASE or

time between notes
60 POKES + 1,40:POKES,X:NEXT. Sets hi/lo frequencies
70 FORX = 150T05STEP - 2 Sets faster liming loop
80 POKES + 1,40:POKES,X: NEXT Sets hi/lo frequencies
90 POKES + 4,64 ... Turns OFF pulse waveform

89

SHOOTING

NEW

5 FORL= 54272TO54296:POKEL,0:NEXT Clears SID chip

10 S= 54272

20FORX=15TO0STEP-1 Sets up volume loop

30POKES+24.X POKEs X to vol. register.

40 POKES+ 4,129 Starts NOISE waveform

50 POKES+ 5,15 Sets ATTACK/DECAY rate

60 POKES+ 1,40 Sets high frequency

70 POKES,200:NEXT Sets low frequency

80 POKES+ 4,128 Stops NOISE waveform

90 POKES + 5.0 POKEs 0 to attack/decay

100GOTO20 Repeats program

The loop that begins in line 20 sets up fading volume so that the sound of the

gunshot starts at high volume (15) and fades to 0 as the loops executes.

Press the RUN/STOP key to end this program.

As we've said before, the best way to learn a new area of programming is to

experiment.

90

v

v

'--'

v

v

v

v

v

v

v

v

v

v

v

V

V

V

v

v

v

SHOOTING

NEW
5 FORL= 54272T054296:POKEL,0:NEXT Clears SID chip
10 S= 54272
20 FORX= 15TOOSTEP-1 Sets up volume loop
30 POKES + 24,X POKEs X to vol. register.
40 POKES+ 4,129 Starts NOISE waveform
50 POKES+ 5,15 Sets ATTACK/DECAY rate
60 POKES + 1,40..... Sets high frequency
70 POKES,200:NEXT Sets low frequency
80 POKES+ 4,128 Stops NOISE waveform
90 POKES + 5,0 POKEs 0 to attack/decay
100 GOT020 Repeats program

The loop that begins in line 20 sets up fading volume so that the sound of the
gunshot starls at high volume (15) and fades to 0 as the loops executes.

Press the RUN/STOP key to end this program.
As we've said before, the best way to learn a new area of programming is to

experiment.

90

—

-

-

-

-

—

-

-

~

• • • • • • • • • •
CHAPTER 9 • • • • • ADVANCED

• DATA HANDLING •

CHAPTER 9

ADVANCED DATA HANDLING

• READ and DATA Statements

• Calculating Averages

• Subscripted Variables

• Dimensioning Arrays

• Simulated Dice Roll with Arrays

• Two-dimensional Arrays

READ AND DATA STATEMENTS

So far we've shown you how to assign values to variables directly (A = 2),

and how to assign values while the program is RUNning (INPUT and GET).

But often you'll find that neither way suits your needs for variable assign

ment in a program, especially when you have large amounts of data.

In the chapter 7 when we introduced sprites, we used READ and DATA

statements to assign values for sprites. Here's a short program that shows you

how these two statements work together:

10 READX

20 PRINT "X IS N0W:";X

30 GOTO 10

40 DATA 1, 34, 10.5, 16, 234.56

RUN

X

X

X

X

X

IS

IS

IS

IS

IS

NOW

NOW

NOW

NOW

NOW

?OUT OF

READY

: 1

:34

: 10.5

: 16

: 234.56

DATA ERROR IN 10

91

CHAPTER 9

ADVANCED DATA HANDLING
• READ and DATA Statements

• Calculating Averages

• Subscripted Variables

• Dimensioning Arrays

• Simulated Dice Roll with Arrays

• Two-dimensional Arrays

READ AND DATA STATEMENTS
So far we've shown you how to assign values to variables directly (A = 2),

and how to assign values while the program is RUNning (I NPUT and GET].
Bu t often you 'll find that neither way suits your needs for variable assign·

ment in a program, especially when you have large amounts of data.
In the chapter 7 when we introduced sprites, we used READ and DATA

statements to assign values for sprites. Here's a short program that shows you
how these two statements work together:

10 READ X
20 PRINT "X IS NOW :";X
30 GOTO 10
40 DATA 1, 34, 10.5, 16, 234.56

RUN

X IS NOW: 1
X IS NOW : 34
X IS NOW: 10.5
X IS NOW : 16
X IS NOW: 234.56

?OUT OF DATA ERROR IN 10
READY

•

91

Line 10 READs a value from the DATA statement at line 40 and assigns the

value to X.

Line 30 tells the computer to return to line 10, where the READ assigns the

next value in the DATA statement to X. The loop continues until all the DATA

values are read.

There are a few important rules you must remember when you use DATA

statements:

• Follow the DATA statement format precisely:

40 DATA 1, 34, 10.5, 16,234.65

Comma separates each item

• Use:

— integer numbers (e.g., 34),

— real numbers (e.g., 234.65),

— numbers expressed in scientific notation (e.g., 2.4E+04),

— words (as long as you use a string variable in the READ statement),

but DON'T use:

— variables or

— arithmetic operations

in DATA statements. The items listed below are treated as strings if you try

to READ them, and you can only READ them as strings with string variables
in the READ statement.

DATA A. 23/56, 2*5. B + 2

When you use a READ statement, you can only get values from a DATA state

ment because the two statements work as partners. Each time you READ a

value, the computer knows to move to the next value in the DATA statement. In

effect, there's a pointer in the computer that keeps track of your place in the

DATA statement. After READing the first value, the DATA statement looks like
this:

40 DATA 1. 34. 10.5, 16. 34.56
t

pointer

When the last DATA value has been assigned to the variable in the READ
statement and the computer tries to execute the loop again, the OUT OF DATA

ERROR is displayed.

Here's an example that shows one way to avoid the OUT OF DATA ERROR.

NEW

10 FOR X = 1 to 3

15 READ A$

20 PRINT "A$ IS NOW : "; A$
30 NEXT

40 DATA THIS, IS, FUN

RUN

AS IS NOW

A$ IS NOW

AS IS NOW

THIS

IS

FUN

READY

92

v

v

v

v

v

v

v

v

v

v

......,

v

v

v

v

Line 10 READs a value from Ihe DATA statement at line 40 and assigns the
value to X.

Line 30 teils the computer to re tu rn to line 10, where the READ assigns the
next value in the DATA statement to X. The loop continues until all the DATA
values are read.

There are a few important rules you must remember when you use DATA
statements:

• Follow the DATA statement format precisely:

40 DATA 1, 34, 10.5, 16, 234.65

Comma separates each item

• Use:
- integer numbers (e.g., 34),
- real numbers (e.g., 234.65),
- numbers expressed in scientif ic notation (e.g. , 2.4E + 04),
- words (as long as you use a string variable in the READ statement),
but DON 'T use:
- variables or
- arithmetic operations
in DATA statements. The items listed below are Irealed as slrings if you try
to READ them, and you can on ly READ them as strings with string variables
in the READ statement .

DATA A, 23156, 2·5, B + 2

When you use a READ statement, you can only get values from a DATA state
ment because the two slatements work as partners. Each time you READ a
value, the computer knows to move to the next val ue in the DATA statement. In
effect, there's a painter in the computer that keeps track of your place in the
DATA statement. After READing the first val ue, the DATA statement looks like
this:

40 DATA 1, 34, 10.5, 16, 34.56

p6inter

When the last DATA value has been assigned to the variable in the READ
statement and the computer tries to execute the loop again, the OUT OF DATA
ERROR is displayed.

Here's an example that shows one way to avoid the OUT OF DATA ERROR.

NEW

10 FOR X = 1 to 3
15 READ A$
20 PRINT " A$ IS NOW : "; A$
30 NEXT
40 DATA THIS, IS, FUN

RUN

A$ IS NOW: THIS
A$IS NOW : IS
A$ IS NOW: FUN
READY

92

This time we put the READ statement inside a FOR/NEXT loop that limited

the number of READings to equal the numbers of items in the DATA statement.

As long as you know how many items will be in your DATA statements, this

method is fine. But often either you won't know or you won't want to bother to

count.

Sometimes the best way to avoid an OUT OF DATA ERROR is to end your

DATA statement with a FLAG. A flag is some value that would not ordinarily ap

pear in your DATA list, such as a negative number, a very large number, a very

small number, or a special word, such as END or STOP. When you use a flag,

add an IF/THEN statement to tell the computer to branch to another part of the

program when the flag is read. For example:

10 READ A

15 IF A < OTHEN END

20 DATA 13,35,29, -999

25 PRINT "TOTAL = "; A

30 GOTO 10

This program READsand PRINTS a value for A until it reaches -999. Line 15

tells the computer to END the program immediately when a negative value is

read.

There is also a way to reuse the items in a DATA statement by RESTOREing

the data pointer to the beginning of the DATA list. Try adding this line:

45 RESTORE

to the second program in this chapter and RUN it again. You'll see that the data

pointer has been RESTOREd to the first item in the DATA list, and that you can

reREAD all the items.

CALCULATING AVERAGES

Here's a program that READs a set of numbers from a DATA list and

calculates their average. This program also uses a flag to tell the computer

when to stop READing DATA.

NEW

5 T = 0 : CT = 0

10 READX

20 IF X = - 1 THEN 50: REM CHECK FOR FLAG

25 CT = CT + 1

30 T = T + X : REM UPDATE TOTAL

40 GOTO 10 ^

50 PRINT "THERE WERE "; CT;"VALUES READ"

60 PRINT "TOTAL = ";T

70 PRINT "AVERAGE = "; T/CT

80 DATA 75, 80, 62, 91, 37, 93, 78, - 1

RUN

THERE WERE 7 VALUES READ

TOTAL = 566

AVERAGE = 80.8571429

93

This time Vie put the READ statement inside a FOR/N EXT loop that limited
the number of READings to equal the numbers of items in the DATA statement.

As long as you know how many items will be in your DATA statements, this
method is fine. But often either you won't know or you won't want to bother to
count.

Sometimes the best way to avoid an OUT OF DATA ERROR is to end you r
DATA statement with a FLAG. A flag is some value that wou ld not ordinaril y ap
pear in your DATA list, such as a negalive number, a very large number, a very
small number, or a special word, such as END or STOP. When you use a flag,
add an IFITHEN statement to tell the computer to branch to another part of the
program when the flag is read. For example:

10 READ A
15 IF A < 0 THEN END
20 DATA 13, 35, 29, -999
25 PRINT " TOTAL = " ; A
30 GOTO 10

This program READs and PRINTs a value for A until it reaches - 999. line 15
tells the computer to END the program immediately when a negative value is
read.

There is also a way to reuse the items in a DATA statement by RESTOREing
the data pOinter to the beginning of the DATA list. Try adding this line:

45 RESTORE
to the second program in this chapter and RUN it again. You 'll see that the data
pOinter has been RESTOREd to the first item in the DATA list, and that you can
reREAD all the items.

CALCULATING AVERAGES
Here's a program that READs a set of numbers from a DATA list and

calculates their average. This program also uses a flag to tell the computer
when to stop READing DATA.

NEW

5 T=O :CT=O
10 READ X
20 IF X = - 1 THEN 50: REM CHECK FOR FLAG
25CT=CT +1
30 T = T + X: REM UPDATE TOTAL
40 GOTO 10
50 PRINT "THERE WERE "; CT;"VALUES READ"
60 PRINT "TOTAL = ";T
70 PRINT " AVERAG E = " ; T/CT
80 DATA 75, 80, 62, 91 , 87, 93, 78, -1

RUN
TH ERE WERE 7 VALU ES READ
TOTAL = 566
AV ERAGE = 80.8571429

93

Line 5 sets CT. the CounTer, and T, the Total, to zero.

Line 10 READs a value from the DATA list and assigns it to X.

Line 20 checks to see if the value read to X is our flag (- 1). If it is, then the

program skips lines 25-40 and goes straight to line 50.

Line 25 adds one to CT, the counter, if the value of X is not the flag.

Line 30 adds X to T, the running total.

Line 40 sends the program back to repeat line 10.

Line 50. which isn't executed until line 10 READs the flag, PRINTS the

number of values read (CT).

Line 60 PRINTS the total of the numbers read (T).

Line 70 PRINTS the average.

You can also use more than one variable in the READ statement. You can mix

the types of DATA in a DATA list when you also mix the types of variables in the

READ statement. Here's a program that does just that. It READs a name and

some scores and then calculates the average of the scores.

NEW

10 READ N$,A,B,C

20 PRINT N$;'"S SCORES WERE: ";A;" ";B;" ";C

30 PRINT "AND THE AVERAGE IS: ";(A+ B+ C)/3

40 PRINT: GOTO 10

50 DATA MIKE, 190, 185, 165, DICK, 225, 245, 190

60 DATA JOHN, 155, 185, 205, PAUL, 160, 179, 187

RUN

MIKE'S SCORES WERE: 190 185 165

AND THE AVERAGE IS : 180

DICK'S SCORES WERE: 225 245 190

AND THE AVERAGE IS: 220

Line 10 READs a value for each of the variables. The DATA statement lists its

items in the same order that the READ statement expects to find them. In other

words, there's a name to go with the string variable, and numbers to go with the

integer variables.

94

v

v

v

v

v

v

v

line 5 sets CT, the CounTer, and T, the Total , to zero.
line 10 READs a value from the DATA list and assigns it to X.
line 20 checks to see if the value read to X is our flag (-1). If it is, then the

program skips lines 25-40 and goes straight to line 50.
line 25 adds one to CT, the counter, if the value of X is not the flag.
line 30 adds X to T, the running total.
line 40 sends the program back to repeat line 10.
line 50, which isn' t executed until li ne 10 READs the flag, PRINTs the

number of values read (CT).
line 60 PRINTs the total of the numbers read (T).
line 70 PRINTs the average.
You can also use more than one variable in the READ statement. You can mix

the types of DATA in a DATA list when you also mix the types of variables in the
READ statement. Here's a program that does just that. It READs a name and
some scores and then calculates the average of the scores.

NEW

10 READ N$,A,B,C
20 PRINT N$" " S SCORES WERE' "A" "'B'" " 'C
30 PRINT " Aim THE AVERAGE IS: ''' ;(A'; 8 + (;)13
40 PRINT: GOTO 10
50 DATA MIKE, 190, 185, 165, DICK, 225, 245, 190
60 DATA JOHN, 155, 185,205, PAUL, 160, 179, 187

RUN

MIKE'S SCORES WERE: 190 185 165
AN D THE AVERAGE IS : 180

DICK'S SCORES WERE: 225 245 190
AND THE AVERAGE IS : 220

line 10 READs a val ue for each of the variables. The DATA statement lists its
items in the same order that the READ statement expects to find them. In other
words, there's a name to go with the string variable, and numbers to go with the
integer variables.

94

SUBSCRIPTED VARIABLES

So (ar we've only used simple BASIC variables such as X and X$. It's doubtful
that you'll write a program that requires more variable names than all the com

binations of letters and numbers available in BASIC, but you might want to be
able to group variable names together when you're using groups of data.

Subscripted variables let you use variable names so that they are obviously

grouped together. For example:

A(0), A{1), A (2), A (3)

The numbers in parentheses are the SUBSCRIPTS of variable A. Be aware

that the variable A1 does NOT equal the subscripted variable A (1).

You can use variables and arithmetic operation as subscripts. For example:

A(X) A(X+1) A (4-1) A(2tX)

The expressions within the parentheses are evaluated according to the same

rules for arithmetic operations outlined in Chapter 3.

Subscripted variables, like simple variables, name a memory location within
the computer. But only subscripted variables name values that are organized in

to an ARRAY.

An ARRAY is understood by the computer to be a unit, such as a list or a

table, of related values.
The following example uses subscripted variables to calculate an average:

5 PRINT CHR$(147)

10 INPUT "HOW MANY NUMBERS :";X

20 FOR A = 1 TO X

30 PRINT "ENTER VALUE # ";A;:INPUT B(A)

40 NEXT

50 SU = 0

60 FOR A - 1 TO X ^

70 SU = SU + B(A)

80 NEXT

90 PRINT : PRINT "AVERAGE = "; SU/X

RUN

HOW MANY NUMBERS :? 5

ENTER VALUE# 1 ?125

ENTER VALUE #2 ? 167

ENTER VALUE #3 ? 189

ENTER VALUE #4 ? 167

ENTER VALUE #5 ? 158

AVERAGE = 161.2

95

SUBSCRIPTED VARIABLES
So far we've only used simple BASIC variables such as X and X$, It's doubtful

that you 'll write a program that requi res more variable names than all the com
binations of letters and numbers available in BASIC, but you might want to be
able to group variable names together when you're using groups of data,

Subscripted variables let you use variable names so that they are obviously
grouped together, For example:

A (0), A (1), A (2), A (3)

The numbers in parentheses are the SUBSCRIPTS of variable A, Be aware
that the variable A1 does NOT equal the subscri pted variable A (1),

You can use variables and arithmetic operation as subscripts. For example:

A (X) A (X + 1) A (4 - 1) A (2 t X)

The expressions within the parentheses are evaluated according to the same
rules for ari thmetic operations outlined in Chapter 3,

Subscripted variables, like simple variables, name a memory location within
the computer. But only subscripted variables name values that are organized in
to an ARRAY,

An ARRAY is understood by the computer to be a unit , such as a list or a
table, of related values,

The following example uses subscripted variables to calcu late an average:

5 PRINT CHR$(147)
10 INPUT " HOW MANY NUMBERS :";X
20 FOR A = 1 TO X
30 PRINT " ENTER VALUE # ";A;: INPUT B(A)
40 NEXT
50 SU = a
60 FOR A = 1 TO X
70 SU = SU + B(A)
80 NEXT
90 PRINT : PRINT "AVERAGE = "; SU/X

RUN

HOW MANY NUMBERS :? 5
ENTER VALUE # 1 ? 125
ENTER VALUE # 2 ? 167
ENTER VA LUE # 3 ? 189
ENTER VALUE # 4 ? 167
ENTER VALUE # 5 ? 158

AVERAGE = 161 ,2

95

Line 5 clears the screen.

Line 10 asks you to enter the total number of items you'll INPUT at line 30.

Line 20 sets up a loop that makes A the subscript for the array B. The loop

adds 1 to A for every execution. This updates array B.

Line 30 prompts you to INPUT a value for the subscripted variable B (A).

Lines 50 through 80 keep a running total (SU) of the numbers INPUT.

Line 90 PRINTs the average.

Each time the INPUT loop executes, A is increased by 1, so the next value

entered is assigned to the next element in array B. At the end of the program, ar

ray B looks like this:

B

B

B

B

B

(D

(2)

(3)

(4)

(5)

125

167

189

167

158

After you INPUT all the values, they are stored in array B. You can now ac

cess these values just by using the subscripted variables. For example, see

what happens when you add these lines:

100 PRINT B(X-1)

120 PRINT B(3)

130 PRINT B(X-3)

DIMENSIONING ARRAYS

If you try to enter more than ten numbers in an array, you'll get a DIMENSION

ERROR. Arrays of more then ten elements need to be predefined in a DIMEN

SION statement. For example, if you want an array to hold 25 values, you'd write

this statement in your program:

DIM B (25)

You can also use a variable in a DIMension statement. For example, in the

last program you could have used this statement since X equaled the total

number of values in array B:

15 DIM B (X)

But be careful when you use variables to define arrays: once an array is

DIMensioned, it can't be reDIMensioned in another part of the program. So

don't use a variable whose value will change in the program.

You can use more than one array in a program, and you can DIMension them

all on the same line:

10 DIM A (12), B (35), C (3,5)

Arrays A and B are one-dimensional arrays, but C is a two-dimensional array.

One-dimensional arrays just have ROWS of data, but two-dimensional arrays

have both rows and columns of data, just like a chart. Array C has 3 rows and 5

columns. Rows are always listed first in a DIMension statement.

96

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

Li ne 5 clears the screen.
Line 10 asks you to enter the to tal number of items you'll INPUT at li ne 30.
Li ne 20 sets up a loop that makes A the subscript for the array B. The loop

adds 1 to A for every execution. This updates array B.
Li ne 30 prompts you to INPUT a value for the subscripted variable B (A).
Li nes 50 through 80 keep a running total (SU) of the numbers INPUT.
Li ne 90 PRI NTs the average.
Each time the INPUT loop executes, A is increased by 1, so the next value

entered is assigned to the next element in array B. At the end of the prog ram, ar
ray B looks like this:

B (1) 125

B (2)

B (3)

B (4)

B (5)

167

189

167

158

After you INPUT all the values, they are stored in array B. You can now ac
cess these values just by using the subscripted variables. For example, see
what happens when you add these lines:

100 PRINT B (X - 1)
120 PRINT B (3)
130 PRINT B (X - 3)

DIMENSIONING ARRAYS
If you try to enter more than ten numbers in an array, you' ll get a DIMENSION

ERROR. Arrays of more then ten elements need to be predefined in a DIMEN
SION statement. For example, if you want an array to hold 25 values, you'd wr ite
th is statement in your prog ram:

DIM B (25)

You can also use a variable in a DIMension statement. For example, in the
last program you could have used this statement since X equaled the total
number of values in array B:

15 DIM B (X)

But be care fu l when you use variables to define arrays: once an array is
DIMensioned, it can 't be reDIMensioned in another part of the program. So
don't use a variable whose value will change in the program.

You can use more than one array in a program, and you can DIMension them
all on the same line:

10 DIM A (12), B (35), C (3,5)

Arrays A and B are one-d imensional arrays, but C is a two·d imensional array.
One-dimensional arrays just have ROWS of data, but two-dimens ional arrays
have both rows and columns of data, just like a chart. Array C has 3 rows and 5
columns. Rows are always listed first in a DIMension statemen t.

96

SIMULATED DICE ROLL WITH ARRAYS

As you begin writing more complex programs, you'll find that subscripted

variables cut down on the number of statements and make programs simpler to

write.

For example, a single subscripted variable can keep track of the number of

times each face on a die turns up in a dice roll:

1 REM DICE SIMULATION : PRINT CHR$(147)

10 INPUT "HOW MANY ROLLS:";X

20 FOR L = 1 TO X

30 R = INT(6'RND(1))+1

40 F(R) = F(R) + 1

50 NEXT L

60 PRINT "FACE", "NUMBER OF TIMES"

70 FOR C = 1 TO 6 : PRINT C, F(C): NEXT

m

Line 10 asks you how many times you'll throw the dice iin the simulated roll.

Line 20 sets up a loop to count the number of dice rolls so that the program

ends on the Xth roll.

Line 30 makes R equal to the random number rolled.

Line 40 sets up the array F, for FACE, which keeps track of how many times

each face turns up. Whatever value R acquires in the dice roll becomes the

subscript for the array, and line 40 adds one to the appropriate array variable.

For example, even/ time a 2 is thrown, F (2) is increased by one.

Line 70 PRINTs the number of times each face shows up. Here's a sample

RUN:

HOW MANY ROLLS:

FACE

1

2

3

A

5

6

? 1000

NUMBER OF TIMES

148

176

178

166

163

169

97

SIMULATED DICE ROLL WITH ARRAYS
As you begin writing more complex programs, you' ll find that subscripted

variables cut down on the number of statements and make programs simpler to
write.

For example, a single subscripted variable can keep track of the number of
times each face on a die turns up in a dice roll:

1 REM DICE SIMULATION: PRINT CHR$(147)
10 INPUT " HOW MANY ROLLS:";X
20 FOR L = 1 TO X
30 R = INT(6 "RN D(1))+ 1
40 F(R) = F(R) + 1
50 NEXT L
60 PRINT " FACE" , " NUMBER OF TIMES"
70 FOR C = 1 TO 6 : PRINT C, F(C): NEXT

Line 10 asks you how many times you'll throw the dice iin the simulated roll.
Line 20 sets up a loop to count the number of dice rolls so that the program

ends on the Xth roll.
Line 30 makes R equal to the random number rolled.
Line 40 sets up the array F, for FAC E, which keeps track of how many times

each face turns up. Whatever value R acquires in the dice roll becomes the
subscript for the array, and line 40 adds one to the appropriate array variable.
For example, every time a 2 is thrown , F (2) is increased by one.

Line 70 PRINTs the number of times each face shows up. Here's a sample
RUN:

HOW MANY ROLLS: ?

FACE
1
2
3
4
5
6

1000
NUMBER OF TIMES
148
176
178
166
163
169

97

Now we'll show you how much longer your program would be if you didn't

use an array:

10 INPUT "HOW MANY ROLLS:";X

20 FOR L = 1 TO X

INT(6*RND(1))+1

1 THEN F1

2 THEN F2

3 THEN F3

4 THEN F4

5 THEN F5

6 THEN F6

F1

F2

F3

F4

F5

F6

NEXT

NEXT

NEXT

NEXT

NEXT

NEXT

FACE", "NUMBER OF TIMES"

30 R =

40 IF R =

41 IF R =

42 IF R =

43 IF R =

44 IF R =

45 IF R =

60 PRINT

70 PRINT 1, F1

71 PRINT 2, F2

72 PRINT 3, F3

73 PRINT 4, F4

74 PRINT 5, F5

75 PRINT 6, F6

As you can see, the program has twice as many lines. The longer the pro

gram, the more space and time you can save when you use arrays.

98

v

v

v

v

v

v

v

v

v

Now we'll show you how much longer your program would be if you didn't
use an array:

10 INPUT " HOW MANY ROLLS:";X
20 FOR L = 1 TO X
30 R = INT(6 'RND(1))+ 1
40 IF R = 1 THEN F1 = F1 + 1 : NEXT
41 IF R = 2 THEN F2 = F2 + 1 : NEXT
42 IF R = 3 THEN F3 = F3 + 1 : NEXT
43 IF R = 4 THEN F4 = F4 + 1 : NEXT
44 IF R = 5 THEN F5 = F5 + 1 : NEXT
45 IF R = 6 TH EN F6 = F6 + 1 : NEXT
60 PRINT " FACE" , " NUMBER OF TIMES"
70 PRINT 1, Fl
71 PRINT 2, F2
72 PRINT 3, F3
73 PRINT 4, F4
74 PRINT 5, F5
75 PRINT 6, F6

As you can see, the program has twice as many lines. The longer the pro·
gram, the more space and time you can save when you use arrays.

98

TWO-DIMENSIONAL ARRAYS

As we mentioned before, two-dimensional arrays have both rows and
columns, like a chart or a table. Two-dimensional arrays have two subscripts:

the first one is for the ROW number; the second is for the COLUMN number.

For example:

A (4.6) has 4 ROWS

and 6 COLUMNS

Here's what array A would look like as a two-dimensional grid in memory:

-

0 1 2 3 4 5 6

You'll notice that there's a zeroth row and column, so when you DiMension A

(4,6), you're creating an array with 5 rows and 7 columns, or 35 elements.
You can access any element of a two-dimensional array by using its row and

column subscripts. For example, suppose you want to assign 255 to A (3,4):

10 LET A(3.4) = 255

Here's what the grid looks like now:

0 12 3 4 5 6

0

1

2

3

4

Two-dimensional arrays follow the same rules as one-dimensional arrays:

255

DIMensioning:

Assigning data values:

Assigning values to

other values:

PRINTing values:

DIM A (20.20)

A(1.1) = 255

AB = A(1,1)

PRINT A(1.1)

99
m

TWO·DIMENSIONAL ARRAYS
As we mentioned before, two-dimensional arrays have both rows and

columns, like a chart or a table. Two-dimensional arrays have two subscripts:
the first one is for the ROW number; the second is for the COLUMN number.
For example:

A (4,6) has 4 ROWS
and 6 COLUMN S

Here's what array A would look like as a two-dimensional grid in memory: 0.

o 2 3 4 5 6

o

2

3

4

You' ll notice that there's a zeroth row and column, so when you DIMens ion A
(4,6), you're creating an array with 5 rows and 7 colum ns, or 35 elements.

You can access any element of a two-dimensional array by using its row and
column subscripts. For example, suppose you want to assign 255 to A (3,4):

o

2

3

4

10 LET A(3,4) = 255

Here's what the grid looks like now:

o 2 3 4 5 6

255

Two-d imensional arrays follow the same rules as one·dimensional arrays:

DIMensioning: DIM A (20,20)
Assigning data values: A(1, 1) = 255
Assigning val ues to

other val ues:
PRINTing values:

AS = A(1,1)
PRINT A(1,1)

99

n
n

n

Here's an example of how two-dimensional arrays can be used. This example

keeps track of responses to a club questionnaire like this:

CLUB QUESTIONNAIRE

Q1: ARE YOU IN FAVOR OF RESOLUTION #1?

1 — YES 2 — NO 3 — UNDECIDED

Let's suppose there are four questions, so the array, which we'll call A, will be

DIMensioned A(4,3). Here's how the array table looks:

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

The program that keeps track of the responses is on the next page. This pro

gram uses many of the programming techniques that have been presented so

far.

Lines 30-65 PRINT the questions in numerical order and ask you to INPUT the

response.

Line 70 adds one to the appropriate array element. Remember that R is the

question number, and the questions are in rows. C is the response number, and

the responses are in columns.

Line 90 asks if you have another set of responses to INPUT.

Lines 110 and 120 tell the program where to go, depending on your response

to line 90.

Lines 130-170 PRINT the total number of each response.

Each time you INPUT a response at line 61, line 70 updates the right element

of the array. Recall the R is the question number and C is the response number,

so if your response to question 2 is 3 (undecided), line 70 adds one to array ele

ment A{2,3).

You'll notice that we didn't use the zeroth row and column in this example.

You don't have to use this row and column, but remember that they are always

present in even/ array you use.

YES NO UNDECIDED

100

Here's an example of how two-dimensional arrays can be used. This example
keeps track of responses to a club questionnaire like this:

CLUB QUESTIONNAIRE

Q1: ARE YOU IN FAVOR OF RESOLUTION #1?

1 - YES 2 - NO 3 - UNDECI DED

...., Let 's suppose there are four questions, so the array, which we'll call A, will be

v

v

v

v

v

DIMensioned A(4,3). Here's how the array table looks:

QUESTION 1

QUESTION 2

QUESTION 3

QUESTION 4

YES NO UNDECIDED

The program that keeps track of the responses is on the next page. This pro·
gram uses many of the programming techniques that have been presented so
far.

Lines 30-65 PRI NT the questions in numerical order and ask you to INPUT the
response.

Line 70 adds one to the appropriate array element. Remember that R is the
question number, and the questions are in rows. C is the response number, and
the responses are in columns.

Line 90 asks if you have another set of responses to INPUT.
Lines 110 and 120 tell the program where to go, depending on your response

to line 90.
Lines 130-1 70 PRINT the total number of each response.
Each time you INPUT a response at li ne 61 , li ne 70 updates the rig ht element

of the array. Recall the R is the question number and C is the response number,
so if your response to question 2 is 3 (undecided), line 70 adds one to array ele
ment A(2,3)_

You'll notice that we didn't use the zeroth row and colum n in th is example.
You don't have to use this row and column, but remember that they are always
present in every array you use.

100

SHIFT

20 PRINT" <CLR/HOME> "
30 FOR R = 1 TO 4 ~

40 PRINT "QUESTION # : "; R

50 PRINT " 1-YES 2-NO 3-UNDECIDED"

60 PRINT "WHAT WAS THE RESPNSE : ";

61 GET C: IF C <1 or C> 3 THEN 61
65 PRINT C: PRINT

70 A(R,C) = A(R,C) + : REM UPDATE ELEMENT

80 NEXT R

85 PRINT

90 PRINT "DO YOU WANT TO ENTER ANOTHER"; PRINT

"RESPONSE (Y/N)";

100 GET A$: IF A$ = " " THEN 100

110 IF AS = "Y" THEN 20

120IFAS <> "N" THEN 100
130 PRINT " <CLR/HOME > ";"THE TOTAL RESPONSES

WERE:":PRINT

140 PRINT SPC(18);"RESPONSE" ~

141 PRINT "QUESTION","YES'VNO","UNDECIDED"

142 PRINT " "

150 FOR R = 1 TO 4

160 PRINT R, A(R,1), A(R,2), A(R,3)

170 NEXT R

RUN

QUESTION # : 1

1-YES 2-NO 3-UNDECIDED

WHAT WAS THE RESPONSE : 1

QUESTION#:2 ^

1-YES 2-NO 3-UNDECIDED

WHAT WAS THE RESPONSE : 1

And so on ...

THE TOTAL RESPONSES WERE:

QUESTION

1

2

3

A

YES

6

5

7

2

RESPONSE

NO

1

2

0

4

UNDECIDED

0

0

0

1

1(11

SHIFT

20 PRINT " (CLRI HOME> "
30 FOR R = 1 TO 4
40 PRINT "QUESTION # : "; R
50 PRINT " 1·YES 2·NO 3·UNDECIDED"
60 PRINT " WHAT WAS THE RESPNSE : ";
61 GET C: IF C (1 or C> 3 THEN 61
65 PRINT C: PRINT
70 A(R,C) = A(R,C) +: REM UPDATE ELEMENT
80 NEXT R
85 PRINT
90 PRINT " DO YOU WANT TO ENTER ANOTHER": PRINT

" RESPONSE (Y I N)";
100 GET A$: IF A$ = " " THEN 100
110 IF A$ = "Y" THEN 20
120 IF A$ (> " N" THEN 100
130 PRINT " < CLRI HOME > ";"THE TOTAL RESPONSES

WERE:":PRINT
140 PRINT SPC(18);"RESPONSE"
141 PRINT "QUESTlON","YES" ,"NO","UNDECIDED"
142 PRINT"
150 FOR R = 1 TO 4
160 PRINT R, A(R,1), A(R,2), A(R,3)
170 NEXT R
RUN

QUESTION # : 1
1·YES 2·NO 3·UNDECIDED
WHAT WAS TH E RESPONSE : 1

QU ESTION # : 2
1·YES 2·NO 3·UNDECIDED
WHAT WAS THE RESPONSE : 1

And so on.

THE TOTAL RESPONSES WERE:
RESPONSE

QUESTION YES NO UN DECIDED

1 6 1 0
2 5 2 0
3 7 0 0
4 2 4 1

101

-

APPENDICES

INTRODUCTION

Now that you've gotten to know your 64, we want you to know that our

customer support does not stop here. You may not know itT but Commodore

has been in business for over 23 years. In the 1970's we introduced the first self-
contained personal computer (the PET). We have since become the leading

computer company in many countries of the world. Our ability to design and

manufacture our own computer chips lets us bring you new and better personal

computers at prices way below what you'd expect for this level of technical

excellence.

Commodore is committed to supporting you. the end user. We also assist

you by supporting the dealer who sold you your computer, magazines that

publish how-to articles showing you new applications or techniques, and soft
ware developers who produce programs on cartridge and disk for use with your

computer. We encourage you to establish or join a Commodore "user club"

where you can learn new techniques, exchange ideas and share discoveries.
We publish two separate magazines which contain programming tips, informa

tion on new products and ideas for computer applications. (See Appendix N).

In North America. Commodore provides a -Commodore Information Net- ^

work" on the CompuServe Information Service. To use this network, all you

need is your 64 computer and our low cost VICMODEM telephone interface cart

ridge (or other compatible modem).
The following APPENDICES contain charts, tables, and other information

which help you program your Executive 64 faster and more efficiently. They

also include important information on the wide variety of Commodore products

you may be interested in. and a bibliography listing of over 20 books and

magazines which can help you develop your programming skills and keep you

current on the latest information concerning your computer and peripherals.

102

APPENDICES

INTRODUCTION

Now that you've gotten to know you r 64, we want you to know that our
customer support does not stop here. You may not know it, but Commodore
has been in business for over 23 years. In the 1970's we introduced the fi rst sel f·
contained personal compu ter (the PET). We have since become the leading
computer company in many countries of the world. Our abili ty to design and
man ufactu re our own computer chips lets us bring you new and better personal
computers at prices way be low what you'd expect for this level of technical
excellence.

Commodore is committed to supporting you, the end user. We also assist
you by supporting the dealer who sold you your computer, magazines that
publish how·to articles showing you new applications or techn iques, and salt·
ware developers who produce programs on cartridge and disk for use with your
computer. We encourage you to establish or join a Commodore "user club"
where you can learn new techniques, exchange ideas and share discoveries.
We publish two separate magazines which contain programming tips, informa·
tion on new products and ideas for computer applications. (See Appendix N).

In North America, Commodore provides a "Commodore Information Net·
work" on the CompuServe Information Service. To use this network, all you
need is your 64 computer and our low cost VICMODEM telephone interface cart·
ridge (or other compatible modem).

The following APPENDICES contain charts, tables, and other information
which help you program you r Executive 64 faster and more efi iciently. They
also include important information on the wide variety of CommOdore products
you may be interested in, and a bibl iography listing of over 20 books and
magazines which can help you develop your programming skills and keep you
current on the latest information concerning your computer and peripherals.

102

APPENDIX A

AVAILABLE SOFTWARE

PROGRAMMING AIDS & COMPUTER LANGUAGES

C64 101 — ASSEMBLER 64

Designed for experienced Assembly language programmers. Package in

cludes everything needed to create, assemble, load and execute 6500 series

Assembly language code. Macro assembler • Two machine language monitors

• Editor and loaders • Support routines • User manual.

C64 103 — DISK BONUS PACK

The Commodore 64 DISK BONUS PACK introduces the experienced and in

experienced user to our exciting personal computer. You will find: entertain

ment games, utilities to assist in your programming, music and video programs

to demonstrate the abilities of the 64, and several educational and personal pro

grams.

C64 104 — SUPER EXPANDER (VSP)

The SUPER EXPANDER 64 is a powerful extension of the BASIC language.

Previously, you had to Peek or Poke specific memory registers in order to ac

cess many of the computer's features. This package provides the commands

you need to use Commodore's graphics, music, and sound capabilities.

C64 105 — LOGO

LOGO is an educational language for students. Because LOGO is so ver

satile, it is simple enough for pre-schoolers and sophisticated enough to

challenge college graduates. A small triangular cursor, called a Turtle, is used

to draw the graphics.

LOGO includes the following features: four different types of screens;

cataloging commands; a TRACE command for programming and debugging;

LIST processing; and the ability to read music, graphics, and text files previous

ly created with LOGO.

C64 106 — PILOT

PILOT for the 64 is the most powerful version of PILOT available. With this

program, you can define your own characters, create colorful, movable objects

called sprites, and create music and a variety of sound effects. This is a

superior instructional tool . . . educators can write their own software which

combines fun. entertainment, and learning. Programs written on COMMON

PILOT can also be run without any conversions. Also, a RUN-ONLY VERSION of

the program is included.

C64 107 — PET EMULATOR

Converts most software designed for Commodore PET computers to soft

ware for your 64. A valuable teaching tool utilizing your 64 and PET educational

software.

103

APPENDIX A
AVAILABLE SOFTWARE

PROGRAMMING AIDS & COMPUTER LANGUAGES

C64 101 - ASSEMBLER 64
Designed for experienced Assembly language prog rammers. Package in

cludes everything needed to create, assemble, load and execute 6500 series
Assembly language code. Macro assembler · Two machine language monitors
• Editor and loaders · Support routines · User manual.

C64 103 - DISK BONUS PACK
The Commodore 64 DISK BONUS PACK introduces the experienced and in

experienced user to our excit ing personal computer. You will find: entertain
ment games, utilities to assist in your programming, music and video programs
to demonstrate the abilit ies of the 64, and several educational and personal pro
grams.

C64 104 - SUPER EXPANDER (VSP)
The SUPER EXPANDER 64 is a powerful extension of the BASIC language.

Previously, you had to Peek or Poke speci fic memory registers in order to ac
cess many of the computer's features. This package provides the commands
you need to use Commodore's graphics, mUSiC, and sound capabilities.

C64 105 - LOGO
LOGO is an educational language for students. Because LOGO is so ver

satile, it is simple enough for pre-schoolers and sophisticated enough to
challenge college graduates. A small triangular cursor, called a Turtle, is used
to draw the graphics.

LOGO includes the following features: four different types of screens;
cataloging commands; a TRACE command for programming and debugging;
LI ST processing; and the abi lity 10 read mUSiC, graphics, and text fi les previous
ly created with LOGO.

C64 106 - PILOT
PILOT for the 64 is the most powerfu l version of PILOT available. With this

prog ram, you can define your own characters, create colorful, movable objects
called sprites, and create music and a variety of sound effects. This is a
superior instructional tool . .. educators can write their own software which
combines fun, entertainment, and learn ing. Programs written on COMMON
PILOT can also be run without any conversions. Also, a RUN-ONLY VERSION of
the program is included.

C64 107 - PET EMULATOR
Converts most software designed for Commodore PET computers to soft

ware for your 64. A valuable teaching tool utilizing your 64 and PET educational
software.

103

C64 109 — SCREEN EDITOR
Design your own screens! The Screen Editor helps you design software on

your 64 by letting you create and edit your own screens. This programming tool
is for users with some computer experience. The Screen Editor helps you

design computer applications with functions such as these: Screen field editor;

Data field definition and editing; Cursor movement from field to field, both
backwards and forwards; Quick screen design capabilities.

C64 110 — CP/M' 2.2 OPERATING SYSTEM
The CP/M' 2.2 Operating System turns your 64 into a dual processor home

computer. This system lets you expand the software applications you can use

with your 64. When you add this easy-to-install system, you can begin using

some of the many available CPIW programs, including widely used business

applications, word processing, and high level computer languages.

■CP/M is a registered trademark oi Digital Research. Inc.

BUSINESS SOFTWARE - FOR HOME AND OFFICE

C64 200 — EASY CALC 64

EasyCatc 64 is an easy-to-use electronic spread sheet. EasyCatc has editing

functions and help screens, and it lets you print bar charts and individually for
matted tables. EasyCalc also lets you view up to four pages at once on the

screen.

C64 202 — EASY FINANCE I

Shows you how to make the most out of your hard-earned money by

calculating 12 loan concepts (or you. Principal, regular payment, last payment,

and remaining balance are just some of the functions EASY FINANCE can

determine. You need absolutely no programming knowledge to use this

product.

C64 204 — EASY MAIL 64

Now your address files can be simple to manage! Keep track of names and

addresses, simplify label printing. EasyMail has all the features you need to
prepare special mailings by searching your address files for specific categories

such as zip code. Especially useful for clubs and small businesses. Here are
some of EasyMail's features: Entry, change, or deletion of name and address by
name or number; One or two abreast address labels; A complete printout of all

the data in your records; A HELP function that you can request at any time.

C64 207 — EASY SCRIPT

Powerful word processor with table producing capabilities: comprehensive

printer controls: easy up-date facilities; easy document handling and much.

much more.

C64 208 - EASY SPELL 64

Now you can produce flawless writing! EasySpell 64 offers all these features:

Automatically corrects spelling errors; Counts the words in your manuscript:

Has a built-in 20,000 word lexicon that lets you add words not already stored

there; Is designed to be used with EasyScript 64, an easy-to-use word-
processor. Because you can add to the lexicon. EasySpell can easily be

adapted for writing reports in specialized fields such as medicine, law, and

science. All you do is add the words you use to the lexicon!

104

C64 109 - SCREEN EDITOR
Design your own screens! The Screen Editor helps you design software on

your 64 by letting you create and edit your own screens. This programming tool
is for users with some computer experience. The Screen Editor helps you
design computer applications with functions such as these: Screen field editor;
Data field definition and edit ing; Cursor movement from field to field, both
backwards and forwards; Quick screen design capabi li lies.

C64 110 - CP/M 2.2 OPERATING SYSTEM
The CP/M~ 2.2 Operating System turns your 64 into a dual processor home

computer. This system lets you expand the software applications you can use
with your 64. When you add this easy-to-install system, you can begin using
some of the many available CP/M!> programs, including widely used business
applications, word processing, and high level computer languages.
' CP/M is a registered Irademal1l 01 Oigital Research, Inc

BUSINESS SOFTWARE - FOR HOME AND OFFICE

C64 200 - EASY CALC 64
EasyCalc 64 is an easy-to-use electronic spread sheet. EasyCalc has editing

functions and help screens, and it lets you print bar charts and individually for
matted tables. EasyCalc also lets you view up to fou r pages at once on the
screen.

C64 202 - EASY FINANCE I
Shows you how to make the most out of your hard-earned money by

calculating 12 loan concepts for you. Principal, regular payment, last payment,
and remaining balance are just some of the functions EASY FINANCE can
determine. You need absolutely no programming knowledge to use this
product.

C64 204 - EASY MAIL 64
Now your address files can be simple to manage! Keep track of names and

addresses, simplify label printing. EasyMaii has all the features you need to
prepare special mailings by searching your address fi les for specific categories
such as zip code. Especially useful for clubs and small businesses. Here are
some of EasyMail's features: Entry, change, or deletion of name and address by
name or number; One or two abreast address labels; A complete printout of all
the data in your records; A HELP function that you can reques t at any time.

C64 207 - EASY SCRfPT
Powerful word processor with table producing capabilities; comprehensive

printer controls; easy up-date facilities; easy document handling and much,
much more.

C64 208 - EASY SPELL 64
Now you can produce flawless wri ting ! EasySpel164 offers all these features:

Automatically corrects spelling errors; Counts the words in your manuscript;
Has a built-in 20,000 word lexicon that lets you add words not already stored
there; Is designed to be used with EasyScript 64, an easy-to-use word
processor. Because you can add to the lexicon, EasySpel1 can easily be
adapted for writing reports in specialized fields such as medicine, law, and
science. All you do is add the words you use to the lexicon!

104

C64 210 — WORD/NAME MACHINE

Commodore's most easy-to-leam and easy-to-use wordprocessing package.

Designed for beginners and perfect for letters, address lists, and notes. Some

of the features available in these companion programs, Word Machine and

Name Machine: Easy-to-understand menus that let you choose what you want

to do; Overtyping, inserting, and deleting of text; Three print formats: Draft, In

formal. Formal; Personalized form letters: Easy-to-write name and address file

that lets you select by category; Prompts for data you input into the name and

address file; Prints an easy-to-use telephone and name and address book;

Prints name and address labels.

C64 212 — EASY FINANCE II

Helps you make the right financial decisions by showing you how to make

the mosi out of sixteen investment concepts. The program calculates such

functions as future investment value, initial investment, and internal rate of

return. EASY FINANCE II is very clear and easy to use; you need absolutely no

programming knowledge to use this product.

C64 213 — EASY FINANCE III

Is an advanced version of EASY FINANCE II; it shows you how to make the

most out of sixteen more investment concepts. Financial terms and practices

are clarified and functions such as discount commercial paper, financial

management rate of return, and financial leverage and earnings per share are

calculated for you.

C64 214 — EASY FINANCE IV

Is a business managemenl package that shows managers how to make the

right decisions about production, inventory, control, compensation, and much

more. Lease purchase analysis, depreciation switch, and optimal order quantity

are some of the 21 functions this program will calculate for you.

C64 215 — EASY FINANCE V

Shows you how to make the most out of statistics such as payoff matrix

analysis, regression analysis forecasting, and apportionment by ratios. It is

completely pre-programmed and very easy to use. With just a few simple

keystrokes, you can improve your finances!

C64 216 — THE MANAGER

General data base to handle user created files. Interfaces with Wordprocess

ing, accumulates totals on screen and creates subfiles. Sorts from any field.

Powerful report printing capabilities.

C64 220 — GENERAL LEDGER

Customized Chart-of-Accounts. Convenient entry of cash receipts:

disbursements; general journal transactions. Interfaces with other accounting

modules for automated posting of G/L transactions. Maintains account

balances monthly, quarterly, yearly, previous quarters and years. Departmental

reporting and many other features.

105

v

v

v

v

v

C64 210 - WORD/NAME MACHINE
Commodore's most easy·to·learn and easy· to· use wordprocessing package.

Designed for beginners and perfect for letters, address lists, and notes. Some
of the features available in these companion programs, Word Machine and
Name Machine: Easy·to·understand menus that let you choose what you want
to do; Overtyping , inserting, and deleting of text; Three print formats: Draft , In·
formal, Formal; Personalized form letters; Easy-ta-write name and address file
that lets you select by category; Prompts for data you input into the name and
address file; Prints an easy· to· use telephone and name and address book;
Prints name and address labels.

C64 212 - EASY FINANCE II
Helps you make the right financial decisions by showing you how to make

the most out of sixteen investment concepts. The program calculates such
functions as future investment value, initial investment, and internal rate of
return. EASY FINANCE II is very clear and easy to use; you need absolutely no
programming knowledge to use this product.

C64 213 - EASY FINANCE III
Is an advanced version of EASY FINANCE II; it shows you how to make the

most out of sixteen more investment concepts. Financial terms and practices
are clarified and functions such as discount commercial paper, financial
management rate of return, and financial leverage and earnings per share are
calculated for you.

C64 214 - EASY FINANCE IV
Is a business management package that shows managers how to make the

right decisions about production, inventory, control , compensation, and much
more. Lease purchase analysis, depreciation switch, and optimal order quantity
are some of the 2t functions this program will calcu late for you.

C64 215 - EASY FINANCE V
Shows you how to make the most out of statistics such as payoff matrix

analYSiS, regression analysis forecast ing, and apportionment by ratios. It is
completely pre·programmed and very easy to use. With iust a few simple
keystrokes, you can improve your finances!

C64 216 - TH E MANAG ER
General data base to handle user created files. Interfaces with Word process·

ing, accumulates totals on screen and creates subfiles. Sorts from any field.
Powerful report printing capabili ties.

C64 220 - GENERAL LEDGER
Customized Chart·of·Accounts. Convenient entry of cash receipts;

disbursements; general journal transactions. Interfaces with other accounting
modules for automated posting of GIL transactions. Maintains account
balances monthly, quarterly, yearly, previous quarters and years. Departmental
reporting and many other features.

105

C64 221 — RECEIVABLE/BILLING

Maintains customer master file. Automatic billing with credit checking, item

descriptions, unit pricing, and extensions when interfaced with Order
Entry/Point-of-Sale and Inventory Management Modules. Flexible billing of any
item and unit price when used as stand-alone system. Automatically posts bill
ings. Interfaces with the general ledger for automated postings. Automatically
ages open receivables by 30. 60, 90 day categories.

C64 222 — ACCOUNTS PAYABLE/CHECKWRITING
Maintains vendor master file. Automatic aging of open invoices. Automatical

ly combines invoices by vendor and prints checks with full remittance detail.
Provides open item aging report by 30,60,90 day categories. Interfaces with the

general ledger for automated postings.

C64 223 — PAYROLL
Master record of each employee pay activity. Automatically calculates period

pay amount including all tax and miscellaneous deductions. Prints payroll
checks with full pay deduction detail. Comprehensive management reporting

including W2's and 941's. General ledger interface for automated postings.

C64 224 — INVENTORY MANAGEMENT
Perpetual inventory records for all stock items. Processes stock receipts,

stock issues, stock orders, and stock adjustments with full audit trail. Optional
interface to Order Entry/Point-of-Sale for automated billing of inventory items

and automated stock-on-hand reduction. Capability to selectively calculate re

order level and economic order quantity by inventory category. Assists manage

ment in parts ordering by generating shortage and re-order reports.

GAMES & RECREATION

C64 601 —JUPITER LANDER Joystick or Keyboard

You must carefully land your spacecraft on the only solid landing site on

Jupiter. As long as your fuel holds out, you can make exploratory landings to try

to find a solid place. But you must land below the yellow zone or your ship will

crash.

C64 602 — KICKMAN Joystick or Keyboard

In KICKMAN, you maneuver a clever unicyclist who scores points by catch

ing balloons, ghosts, and PAC-MAN. KICKMAN uses his head and his feet to

catch the falling objects. During some phases of the game, KICKMAN bursts

the balloons to score points.

C64 603 — SEAWOLF Paddles

As the commander of a torpedo boat, you must sink all enemy ships. Your

targets are fast-moving P.T. boats, cruisers, and freighters. You can play

SEAWOLF with one or two players.

C64 604 — SPEED/BINGO MATH Joystick or Keyboard

These two math games help you build math skills and have fun at the same

time. SPEED MATH gives you a time limit to solve a variety of math problems.

BINGO MATH asks you to solve math problems and use the answer to play

BINGO. You can play against the clock or against your friends.

106

C64 221 - RECEIVABLE/BILLING
Maintains customer master file. Automatic billing with credit checking , item

descriptions, unit pricing, and extensions when interfaced with Order
Entry/Point-o f-Sale and Inventory Management Modules. Flexi ble billing of any
item and unit price when used as stand-alone system. Automatically posts bill·
ings. Interfaces with the general ledger for automated postings. Automatically
ages open receivables by 30, 60, 90 day categories.

C64 222 - ACCOUNTS PAYABLE/CHECKWRITING
Maintains vendor master fi le. Automatic aging of open invoices. Automatical·

Iy combines invoices by vendor and prints checks with full remittance detail.
Provides open item aging report by 30, 60, 90 day categories. Interfaces with the
general ledger for automated postings.

C64 223 - PAYROLL
Master record of each employee pay activity. Automatically calculates period

pay amount including all tax and miscellaneous deductions. Prints payroll
checks with full pay deduction detail. Comprehensive management reporting
including W2's and 941 's. General ledger interface for automated postings.

C64 224 - INVENTORY MANAGEMENT
Perpetual inventory records for all stock items. Processes stock receipts,

stock issues, stock orders, and stock adjustments with full audit trail. Optional
interface to Order Entry/Point-of-Sale for automated billing of inventory items
and automated stock-on-hand reduct ion. Capability to selectively calculate re
order level and economic order quantity by inventory category. Assists manage·
ment in parts ordering by generating shortage and re-order reports.

GAMES & RECREATION

C64601 - JUPITER LANDER Joystick or Keyboard
You must carefully land your spacecraft on the only solid landing site on

Jupiter. As long as your fue l holds out, you can make exploratory landings to try
to find a solid place. But you must land below the yellow zone or your ship will
crash.

C64 602 - KICKMAN Joystick or Keyboard
. In KICKMAN, you maneuver a clever unicyclist who scores paints by catch
Ing balloons, ghosts, and PAC-MAN. KICKMAN uses his head and his feet to
catch the falling objects. During some phases of the game, KICKMAN bursts
the balloons to score pOints.

C64 603 - SEAWOLF Paddles
As the commander of a torpedo boat, you must sink all enemy ships. Your

targets are fast·moving P.T. boats, cruisers, and freighters. You can play
SEAWOLF with one or two players.

C64 604 - SPEED/BINGO MATH Joystick or Keyboard
These two math games help you bu ild math skills and have fun at the same

time. SPEED MATH gives you a time limit to solve a variety of math problems.
BINGO MATH asks you to solve math problems and use the answer to play
BINGO. You can play against the clock or against your friends.

106

C64 605 - RADAR RAT RACE Joystick or Keyboard

In RADAR RAT RACE, you are a mouse trying to score points by eating ten

pieces of cheese randomly placed in a maze. While you search for the cheese,
you're pursued by rats, and you must avoid deadly black cats. You have three
lives and limited time to score points.

C64 606 — CLOWNS Paddles

Score points in CLOWNS by popping a skyful of colored balloons. You have

two CLOWNS, one on a seesaw, and one sailing through the air bursting

balloons. When the clown comes down, you must catch him with the seesaw
and send the other clown up to pop balloons.

C64 609 - VISIBLE SOLAR SYSTEM Keyboard

You are the commander of a spaceship on a journey through our Solar
System. The ship has a cruising range of over 1 billion miles and is packed with

computerized equipment to help you discover more about the planets that you
visit.

C64 610 - TOOTH INVADERS Joystick
In this game for children, the evil D.K. spreads plaque on your teeth. You

must floss and clean the teeth before they fall out. As each tooth is cleaned, it
glows and changes color. You can kill D.K. by running over him, but he always
comes back! When you succeed in cleaning all the teeth, a shower of fluoride
rains down from a cloud.

C64 613-LAZARIAN Joystick

You are the pilot of a space fighter stationed in a remote sector of the galaxy
Your mission is to rescue stranded starships and to defend your sector against
a variety of threats. There are three phases in the game, and you get three ships
to complete your mission.

C64 614 — OMEGA RACE Joystick, Paddles, Keyboard
You are an Omegan ship competing against the Droids, the most powerful

force in the galaxy. You must destroy the enemy ships and the photon and
vapor mines the Droids have planted in space.

C64 616-LEMANS Paddle

Your car is at the pole position in the LeMans Grand Prix. You must pass as
many cars as possible to score enough points to stay in the race. The race

takes you over hazardous terrain, including icy roads, divided highways, dark
roads, and dangerous curves. You must be careful not to wreck your car as you
race to the finish line.

C64 617 - PINBALL SPECTACULAR Paddle
PINBALL SPECTACULAR is like playing pinball on your 64. This game offers

fast action and great sound effects.

C64 625-ZORKI Keyboard (Disk)
ZORK I involves the Great Underground Empire; it confronts you with perils

and predicaments ranging from the mystical to the macabre. You strive to
discover the Twenty Treasures of ZORK and escape with them and your life!

107

v

C64 605 - RADAR RAT RACE Joystick or Keyboard
In RADAR RAT RACE, you are a mouse trying to score points by eating ten

pieces of cheese randomly placed in a maze. While you search for the cheese,
you're pursued by rats, and you must avoid deadly black cats. You have three
lives and limited time to score pOints.

C64 606 - CLOWNS Paddles
Score paints in CLOWNS by popping a skyfu l of colored balloons. You have

two CLOWNS, one on a seesaw, and one sailing through the air bursting
bal loons. When the clown comes down, you must catch him with the seesaw
and send the other clown up to pop balloons.

C64 609 - VISIBLE SOLAR SYSTEM Keyboa rd
You are the commander of a spaceship on a journey through our Solar

System. The ship has a cru ising range of over 1 billion miles and is packed with
computerized equipment to help you discover more about the planets that you
visit.

C64 610 - TOOTH INVADERS Joyslick
In th is game for children, the evil O.K. spreads plaque on your teeth. You

must floss and clean the teeth before they fallout. As each tooth is c leaned , it
glows and changes color. You can kill O.K. by running over him, but he always
comes back! When you succeed in cleaning all the teeth, a shower of fluoride
rains down from a cloud.

C64 613 - LAZAR IAN Joystick
You are the pi lot of a space fighter stationed in a remote sector of the galaxy.

Your mission is to rescue stranded starships and to defend your sector against
a variety of threats. There are three phases in the game, and you get three ships
to comp lete your mission.

C64 614 - OMEGA RACE Joystick, Paddles, Keyboard
You are an Omegan ship competing against the Droids, the most powerfu l

force in the galaxy. You must destroy the enemy ships and the photon and
vapor mines the Oroids have planted in space.

C64 616 - LEMANS Paddle
Your car is at the pole position in the LeMans Grand Prix . You must pass as

many cars as possible to score enough pOints to stay in the race. The race
takes you over hazardous terrain, includ ing icy roads, divided highways, dark
roads, and dangerous curves. You must be careful not to wreck your car as you
race to the finish line.

C64 617 - PINBALL SPECTACULAR Paddle
PINBALL SPECTACULAR is like playing pinball on your 64. This game offers

fast action and great sound effects.

C64 625 - ZORK I Keyboard (Disk)
ZORK I involves the Great Underground Empire; it confronts you with perils

and predicaments ranging from the mystical to the macabre. You strive to
discover the Twenty Treasures of ZORK and escape with them and your life!

107

C64 626 — ZORK II Keyboard

ZORK II gives you a helpful robot, an elusive unicorn, a princess who needs

rescuing, and a demon who demands all of your treasure. Most of the creatures

in ZORK II cannot be harmed by your sword, bombs, or poison, as they could in

ZORK I.

C64 627 — ZORK III Keyboard

ZORK III involves a delightful and curious place with ancient high-arched

aqueduct systems, swirling mists of the Land of Shadow, and a brilliant pit of

fire. You should use logical problem-solving in this game; ZORK III gives you a

theme, morals, and meaning in your adventures.

C64 628 — DEADLINE Keyboard

You are the chief of detectives trying to solve the murder of a millionaire

philanthropist. You have twelve simulated hours to uncover the truth before the

wrong will is read to the eager heirs. The mystery is confusing, and it's easy to

get lost as you try to piece together a convincing case before it's too late.

C64 629 — STARCROSS Keyboard
STARCROSS is another mind-bending science fiction adventure game. You

are a space prospector in a one-person ship searching for black holes. You

couldn't afford the best equipment, so you must do your best with a smart-

aleck computer and a mass detector.

C64 630 — SUSPENDED Keyboard
SUSPENDED takes place on a computer-controlled planet that is facing a

catastrophe. The main computer has just malfunctioned; you take control and

guide six robots to help you manually maintain the planet while they try to

discover and repair the cause of the computer's breakdown.

ART & MUSIC

C64 402 — MUSIC MACHINE

The MUSIC MACHINE cartridge turns your 64 keyboard into a music syn
thesizer. Now you can fully use the music-making capabilities of your computer

even if you can't program it or don't know how to play music. The MUSIC

MACHINE is both fun and educational.

C64 403 — MUSIC COMPOSER
You don't have to be a musician to make music on your 64. This package

teaches you everything you need to know to play songs and create sound ef
fects on your computer. The manual also supplies sample songs for you to

play.

EDUCATION & LEARNING AIDS

C64 310 — EASYLESSON 64 and EASYQUIZ 64

EasyLesson and EasyQuiz let you use your 64 as a teaching tool. With these

two programs, you can easily create lessons and tests on topics that you

choose. Here are some of the things you can do with these education pro

grams: Create a pool of questions to use as a lesson: Classify questions into as

many as seven categories; Print out each lesson or quiz you create; Shuffle test

questions before each quiz; Give the test in either flash card or multiple choice

format.

108

C64 626 - ZORK II Keyboard
ZORK II gives you a helpful robot, an elusive unicorn, a princess who needs

rescuing, and a demon who demands all of your treasure. Most of the creatures
in ZORK II cannot be harmed by your sword , bombs, or poison, as they could in r\
ZORK I.

C64 627 - ZORK III Keyboard
ZORK III involves a del ightful and curious place with ancient high-arched

aqueduct systems, swirling mists of the Land of Shadow, and a bri lliant pit of
fire. You should use logical problem-solving in this game; ZORK II I gives you a
theme, morals, and meaning in your adventures.

C64 628 - DEADLINE Keyboard
You are the chief of delectives trying to solve the murder of a mi ll ionaire

philanthropist. You have twelve simulated hours to uncover the truth before the
wrong will is read to the eager hei rs. The mystery is confusing, and it's easy to
get lost as you try to piece together a convincing case before it's too late.

C64629 - STARCROSS Keyboard
STARCROSS is another mind-bending science fiction adventure game. You

are a space prospector in a one-person ship search ing for black holes. You
cou ldn't afford the best equipment, so you must do your best with a smart
aleck computer and a mass detector.

C64 630 - SUSPENDED Keyboard
SUSPENDED takes place on a compu ter-controlled planet that is fac ing a

catastrophe. The main computer has just malfunctioned; you take control and
guide six robots to help you manually maintain the planet while they try to
discover and repai r the cause of the com puter's breakdown.

ART & MUSIC

C64 402 - MUSIC MACHINE
The MUSIC MACHINE cartridge turns your 64 keyboard into a music syn

thesizer. Now you can fully use the music-making capabilities of your computer
even if you can't program it or don' t know how to play music. The MUSIC
MACHINE is both fun and educational.

C64 403 - MUSIC COMPOSER
You don't have to be a musician to make music on your 64. This package

teaches you everything you need to know to play songs and create sound ef
fects on your computer. The manual also suppl ies sample songs for you to
play.

EDUCATION & LEARNING AIDS

C64 310 - EASYLESSON 64 and EASYQUIZ 64
EasyLesson and EasyOuiz let you use your 64 as a teaching tool. With these

two programs, you can easily create lessons and tests on topics that you
choose. Here are some of the thi ngs you can do with these education pro
grams: Create a pool of questions to use as a lesson; C lassify ques tions into as
many as seven categories; Print out each lesson or quiz you create; Shuffle test
questions before each quiz; Give the lest in either flash card or multiple choice
format.

108

PUBLIC DOMAIN SERIES

C64 700 — BUSINESS 1

This package contains fourteen programs that cover a variety of business ap

plications. The programs include calculating interest, simulating business

operations, and simulating stock transactions.

C64 701 — GEOGRAPHY I

This educational package contains thirteen quizzes about countries, states,

and their capitals. There is also a program that lets you print out a map of

England.

C64 702 — ENGLISH I

14 programs that teach you more about English. Word games, poetry, word

definitions, and parts of speech.

C64 703 - ENGLISH II

16 programs help sharpen your language skills. Spelling and vocabulary

drills, lessons about homonyms, verb forms, and punctuation.

C64 704 — ENGLISH III

Collection of 15 programs from Commodore's English language series con

centrating on teaching you more about the parts of speech.

C64 705 — ENGLISH IV

15 more English language programs — drills on rhyming, unscrambling

words, and spelling.

C64 706 - ENGLISH V

13 programs — mostly spelling drills and games that ask you to unscramble

words. Also a quiz about some of Shakespeare's plays.

C64 707 — ENGLISH VI

This part of the English language series is made up mostly of tests on word

meanings, spelling, and vocabulary. 12 programs in all.

C64 708 — ENGLISH VII

The seventh collection of English language programs offers 3 challenging

word games.

C64 709 — MATHEMATICS I

Educational package drills you in arithmetic, gives you algebra lessons, and

challenges you with math games.

C64 710 — MATHEMATICS II

Math educational package includes 15 programs.

C64 711 — MATHEMATICS III

Collection of math education programs offers lessons and drills on metric

conversion, factoring, probability, math, and algebra. Total of 15 programs.

109

PUBLIC DOMAIN SERIES

C64 700 - BUSINESS I
This package contai ns fourteen programs that cover a variety of business ap

plications. The programs include calcu lating interest, simulating business
operations, and simulating stock transactions.

C64 701 - GEOGRAPHY I
This educat ional package contains thi rteen quizzes about countries, states,

and their capitals. There is also a program that lets you print out a map of
England.

C64 702 - ENGLISH I
14 prog rams that teach you more about Engl ish. Word games, poetry, word

defin itions, and parts of speech.

C64 703 - ENGLISH II
16 programs help sharpen your language skills. Spelli ng and vocabulary

dri lls, lessons about homonyms, verb forms, and punctuation.

C64 704 - ENGLISH III
Collection of 15 programs from Commodore's English language series con

centrating on teaching you more about the parts of speech.

C64 705 - ENGLISH IV
15 more English language programs - drills on rhyming , unscrambling

words, and spelling.

C64 706 - ENGLISH V
13 programs - mostly spelling drills and games that ask you to unscramble

words. Also a quiz about some of Shakespeare's plays.

C64 707 - ENGLISH VI
This part of the Eng lish language series is made up most ly of tests on word

meanings, spelling, and vocabulary. 12 programs in all.

C64 708 - ENGLISH VII
The seventh collection of English language programs offers 3 challenging

word games.

C64 709 - MATHEMATICS I
Educational package drills you in arithmetic, gives you algebra lessons, and

challenges you wi th math games.

C64 710 - MATHEMATICS II
Math educational package includes 15 programs.

C64 711 - MATHEMATICS III
Collection of math education programs offers lessons and drills on metric

conversion, fac toring , probabil ity, math , and algebra. Total of 15 programs.

109

C64 712 — MATHEMATICS IV

Fourteen more math education programs. Lessons and drills cover factoring

and algebra.

C64 713 — MATHEMATICS V

Fifteen more math education programs. Learn while you have fun.

C64 714 — MATHEMATICS VI

Collection of math education programs including more drills, quizzes, and

math games. 15 programs.

C64 715 — MATHEMATICS VII

Sixteen advanced math programs — prime numbers, and roots.

C64 716 — MATHEMATICS VIM

Final package in the math education series contains eleven programs. In

cludes drills, games, and lessons on algebra, trigonometry, slopes and fac

toring.

C64 717 — COMPUTER SCIENCE I

These thirteen programs show you more about using your computer. The

programs include sorting lists, drawing graphics, and creating animation.

C64 718 - SCIENCE I

Collection of science education programs, mostly about chemistry, but other

sciences included.

C64 719 — SCIENCE II

13 science programs. Lessons and quizzes cover several topics in physics

and chemistry and other sciences.

C64 720 — SCIENCE III

12 more science education programs, including a variety of scientific areas.

C64 721 — SCIENCE IV

This education software package contains an assortment of lessons and

quizzes on various sciences, particularly biology.

C64 722 — TECHNOLOGY I

This package of ten programs covers a variety of topics related to technology

and how recent advances affect our lives. You'll learn more about computers as

you have fun learning.

C64 723 — HISTORY I

This package offers four challenging quizzes on history and famous people.

There is also a fascinating simulation of nineteenth century American

elections.

C64 724 — GAMES I

Here is an opportunity to learn while you have fun on your computer! 14 fun

and educational games.

110

C64 712 - MATHEMATICS IV
Fourteen more math education programs. Lessons and drills cover factoring

and algebra.

C64 713 - MATHEMATICS V
Fifteen more math education programs. Learn while you have fun .

C64 714 - MATHEMATICS VI
Collection of math education programs including more drills, quizzes, and

math games. 15 programs.

C64 715 - MATH EMATICS VII
Sixteen advanced math programs - prime numbers, and roots.

C64 716 - MATH EMATICS VIII
Fi nal package in the math education series contains eleven programs. In·

eludes dri lls, games, and lessons on algebra, trigonometry, slopes and lac·
tari ng.

C64 717 - COMPUTER SCIENCE I
These thi rteen programs show you more about using your computer. The

programs include sorting lists, drawi ng graphics, and creating animation.

C64 718 - SCIENCE I
Collection of science education programs, mostly about chemistry, but other

sciences included.

C64 719 - SCIENCE II
13 science programs. Lessons and quizzes cover several topics in physics

and chemistry and other sciences.

C64 720 - SCIENCE III
12 more science education programs, including a variety of scientific areas.

C64 721 - SCIENCE IV
This education software package contains an assortment of lessons and

quizzes on various sciences, particu larly biology.

C64 722 - TECHNOLOGY I
This package of ten programs covers a variely of topics re lated to technology

and how recent advances affect our lives. You 'll learn more about computers as
you have fun learning.

C64 723 - HISTORY I
This package offers four challenging quizzes on history and lamous people.

There is also a fascinat ing simulation of nineteenth century American
elections.

C64 724 - GAMES I
Here is an opportunity to learn while you have fun on your computer! 14 fun

and educational games.

110

n

C64 725 — GAMES II

A collection of 13 educational games. Word guessing, logic games, math

games and a simulation of Hi-Q.

C64 726 — GAMES III

More fun and educational games that let you play and learn on your 64. Seven

games in this collection.

—

-

-

111

C64 725 - GAMES II
A col lection of 13 educational games. Word guessing , logic games, math

games and a simulation of Hi·a.

C64 726 - GAMES III
More fun and educational games that let you play and learn on you r 64. Seven

games in this collection.

111

APPENDIX B

DESCRIPTION OF DOS ERROR MESSAGES

NOTE: Error message numbers less than 20 should be ignored with the excep

tion of 01 which gives information about the number of files scratched with the

SCRATCH command.

20: READ ERROR (block header not found)

The disk controller is unable to locate the header of the requested data

block. Caused by an illegal sector number, or the header has been

destroyed.

21: READ ERROR (no sync character)

The disk controller is unable to detect a sync mark on the desired track.

Caused by misalignment of the read/writer head, no diskette is present, or

unformatted or improperly seated diskette. Can also indicate a hardware

failure.

22: READ ERROR (data block not present)

The disk controller has been requested to read or verify a data block that

was not properly written. This error message occurs in conjunction with

the BLOCK commands and indicates an illegal track and/or sector re

quest.

23: READ ERROR (checksum error in data block)

This error message indicates that there is an error in one or more of the

data bytes. The data has been read into the DOS memory, but the

checksum over the data is in error. This message may also indicate

grounding problems.

24: READ ERROR (byte decoding error)

The data or header as been read into the DOS memory, but a hardware er

ror has been created due to an invalid bit pattern In the data byte. This

message may also indicate grounding problems.

25: WRITE ERROR (write-verify error)

This message is generated if the controller detects a mismatch between

the written data and the data in the DOS memory.

26: WRITE PROTECT ON
This message is generated when the controller has been requested to

write a data block while the write protect switch is depressed. Typically,

this is caused by using a diskette with a write a protect tab over the

notch.

27: READ ERROR (checksum error in header)

The controller has detected an error in the header of the requested data

block. The block has not been read into the DOS memory. This message

may also indicate grounding problems.

112

APPENDIX B
DESCRIPTION OF DOS ERROR MESSAGES
NOTE: Error message numbers less than 20 should be ignored with the excep·
tion of 01 which gives information about the number of files scratched with the
SCRATCH command.

20: READ ERROR (block header not found)
The disk controller is unable to locate the header of the requested data
block. Caused by an illegal sector number, or the header has been
destroyed.

21 : READ ERROR (no sync character)
The disk controller is unable to detect a sync mark on the desired track.
Caused by misalignment of the read/wri ter head, no diskette is present, or
unformatted or improperly seated diskette. Can also indicate a hardware
failure.

22: READ ERROR (data block not present)
The disk controller has been requested to read or verify a data block that
was not properly wri tten. Th is error message occurs in conjunction with
the BLOCK commands and indicates an illegal track and/or sector reo
quest.

23: READ ERROR (checksum error in data block)
This error message ind icates that there is an error in one or more of the
data bytes. The data has been read into the DOS memory, bul the
checksum over the data is in error. This message may also indicate
grounding problems.

24: READ ERROR (byte decoding error)
The data or header as been read into the DOS memory, but a hardware er·
ror has been created due to an invalid bit pattern in the data byte. This
message may also ind icate grounding problems.

25: WRITE ERROR (write·verify error)
This message is generated if the controller detects a mismatch between
the written data and Ihe data in the DOS memory.

26: WRITE PROTECT ON
This message is generated when the controller has been requested to
write a data block while the wri te protect switch is depressed. Typically,
th is is caused by using a diskette wi th a write a protect tab over the
notch.

27: READ ERROR (checksum error in header) '"
The controller has detected an error in the header of the requested data
block. The block has not been read into the DOS memory. This message ,...,
may also indica te grounding problems.

112

28: WRITE ERROR (long data block)

The controller attempts to detect the sync mark of the next header after

— writing a data block. If the sync mark does not appear within a pre

determined time, the error message is generated. The error is caused by a

"-' bad diskette format (the data extends into the next block), or by hardware

failure.

w 29: DISK ID MISMATCH

This message is generated when the controller has been requested to ac

cess a diskette which has not been initialized. The message can also oc

cur if a diskette has a bad header.

30: SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command channel.

— Typically, this is caused by an illegal number of file names, or patterns are

illegally used. For example, two file names may appear on the left side of

the COPY command.

— 31: SYNTAX ERROR (invalid command)

The DOS does not recognize the command. The command must start in

the first position.

-

32: SYNTAX ERROR (invalid command)

— The command sent is longer than 58 characters.

33: SYNTAX ERROR (invalid file name)

Pattern matching is invalidly used in the OPEN or SAVE command.

~ 34: SYNTAX ERROR (no file given)

The file name was left out of a command or the DOS does not recognize it

as such. Typically, a colon (:) has been left out of the command.

39 SYNTAX ERROR (invalid command)

This error may result if the command sent to command channel (secon

dary address 15) is unrecognized by the DOS.

50: RECORD NOT PRESENT

Result of disk reading past the last record through INPUT#. or GET# com

mands. This message will also occur after positioning to a record beyond

end of file in a relative file. If the intent is to expand the file by adding the

W new record (with a PRINT# command), the error message may be ignored.

INPUT or GET should not be attempted after this error is detected without

first repositioning.

51: OVERFLOW IN RECORD

— PRINTS statement exceeds record boundary. Information is truncated.

Since the carriage return which is sent as a record terminator is counted

in the record size, this message will occur if the total characters in the

record (including the final carriage return) exceeds the defined size.

52: FILE TOO LARGE

Record position within a relative file indicates that disk overflow will

~ result.

113

v

v

v

28: WRITE ERROR (long data block)
The controller attempts to detect the sync mark of the next header after
writing a data block. If the sync mark does not appear within a pre
determined time, the error message is generated. The error is caused by a
bad diskette format (the data extends into the next block), or by hardware
failure.

29: DISK 10 MISMATCH
This message is generated when the controller has been requested to ac
cess a diskette which has not been initialized. The message can also oc
cur if a diskette has a bad header.

30: SYNTAX ERROR (general syntax)
The DOS cannot interpret the command sent to the command channel.
Typically, this is caused by an illegal number of fi le names, or patterns are
illegally used. For example, two file names may appear on the left side of
the COpy command.

31: SYNTAX ERROR (invalid command)
The DOS does not recognize the command. The command must start in
the first position.

32: SYNTAX ERROR (invalid command)
The command sent is longer than 58 characters.

33: SYNTAX ERROR (invalid file name)
Pattern matching is invalidly used in the OPEN or SAVE command.

34: SYNTAX ERROR (no file given)
The file name was left out of a command or the DOS does not recognize it
as such. Typically, a colon (:) has been left out of the command.

39 SYNTAX ERROR (invalid command)
This error may result if the command sent to command channe l (secon·
dary address 15) is unrecognized by the DOS.

50: RECORD NOT PRESENT
Result of disk reading past the last record through INPUT#, or GET# com·
mands. This message will also occur after positioning to a record beyond
end of file in a relative file. If the intent is to expand the file by adding the
new record (with a PRINT# command), the error message may be ignored.
INPUT or GET should not be attempted after this error is detected without
first repositioning.

51: OVERFLOW IN RECORD
PRINT# statement exceeds record boundary. Information is truncated.
Since the carriage return which is sent as a record terminator is counted
in the record size, this message will occur if the total characters in the
record (including the final carriage return) exceeds the defined size.

52: FILE TOO LARGE
Record position within a relative file indicates that disk overflow will
resul t.

113

60: WRITE FILE OPEN

This message is generated when a write file that has not been closed is

being opened for reading.

61: FILE NOT OPEN

This message is generated when a file is being accessed that has not

been opened in the DOS. Sometimes, in this case, a message is not

generated: the request is simply ignored.

62: FILE NOT FOUND

The requested file does not exist on the indicated drive.

63: FILE EXISTS

The file name of the file being created already exists on the diskette.

64: FILE TYPE MISMATCH

The file type does not match the file type in the directory entry for the re

quested file.

65: NO BLOCK

This message occurs in conjunclion with the B-A command. It indicates

that the block to be allocated has been previously allocated. The

parameters indicate the track and sector available with the next highest

number. If the parameters are zero (0)T then all blocks higher in number

are in use.

66: ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or block which does not exist in

the format being used. This may indicate a problem reading the pointer to

the next block.

67: ILLEGAL SYSTEM T OR S

This special error message indicates an illegal system track or sector.

70: NO CHANNEL (available)

The requested channel is not available, or all channels are in use. A max

imum of five sequential files may be opened at one time to the DOS.

Direct access channels may have six opened fifes.

71: DIRECTORY ERROR

The BAM does not match the internal count. There is a problem in the

BAM allocation or the BAM has been overwritten in DOS memory. To cor

rect this problem, reinitialize the diskette to restore the BAM in memory.

Some active files may be terminated by the corrective action. NOTE:

BAM = Block Availability Map

72: DISK FULL

Either the blocks on the diskette are used or the directory is at its entry

limit. DISK FULL is sent when two blocks are available on the 1541 to

allow the current file to be closed.

114

r.

60: WRITE FILE OPEN (')

This message is generated when a write fi le that has not been closed is ,..,
being opened for reading.

'"' 61: FILE NOT OPEN
This message is generated when a file is being accessed that has not
been opened in the DOS. Sometimes, in this case, a message is not
generated; the request is simply ignored.

62: FILE NOT FOUND
The requested file does not exist on the indicated drive.

63: FILE EXISTS
The file name of the file being created already ex ists on the diskette.

64: FILE TYPE MISMATCH
The file type does not match the file type in the directory entry for the re-
quested file.

65: NO BLOCK
This message occurs in conjunction with the B·A command. It indicates
that the block to be allocated has been previously allocated. The
parameters indicate the track and sector avai lable with the next highest
number. If the parameters are zero (0), then all blocks higher in number
are in use.

66: ILLEGAL TRACK AND SECTOR
The DOS has attempted to access a track or block which does not exist in
the format being used. This may indicate a problem reading the pOinter to
the next block.

67: ILLEGAL SYSTEM TOR S
Th is spec ial error message indicates an illegal system track or sector.

70: NO CHANNEL (available)
The requested channel is not available, or all chan nels are in use. A max- r-.
imum of five sequential files may be opened at one time to the DOS.
Direct access channels may have six opened files.

71: DIRECTORY ERROR (')

The BAM does not match the internal count. There is a problem in the

" BAM allocation or the BAM has been overwritten in DOS memory. To cor-
rect this problem, reinitialize the diskette to restore the BAM in memory.

'"' Some active files may be terminated by the corrective action. NOTE:
BAM = Block Availability Map

72: DISK FULL " Either the blocks on the diskette are used or the directory is at its entry
limi t. DISK FULL is sent when two blocks are available on the 1541 to

,...,
allow the currenl file to be closed.

114

73: DOS MISMATCH (73, CBM DOS V2.6 1541)

DOS 1 and 2 are read compatible but not write compatible. Disks may be

interchangeably read with either DOS, but a disk formatted on one ver

sion cannot be written upon with the other version because the format is

different. This error is displayed whenever an attempt is made to write

upon a disk which has been formatted in a non-compatible format. (A utili

ty routine is available to assist in converting from one format to another.)

This message may also appear after power up.

74: DRIVE NOT READY

An attempt has been made to access the 1541 single Drive Floppy Disk

without any diskettes present in either drive.

115

73: DDS MISMATCH (73, CBM DOS V2.6 1541)
DOS 1 and 2 are read compatible but not write compatible. Disks may be
interchangeably read with either DOS, but a disk formatted on one ver·
sion cannot be written upon with the other version because the format is
different. This error is displayed whenever an attempt is made to write
upon a disk which has been formatted in a non·compatible format. (A utili·
ty routine is available to assist in converting from one format to another.)
Th is message may also appear after power up.

74: DRIVE NOT READY
An attempt has been made to access the 1541 single Drive Floppy Disk
without any diskettes present in either drive.

115

APPENDIX C

EXECUTIVE 64 BASIC

This manual has given you an introduction to the BASIC languge — enough

for you to get a feel for computer programming and some of the vocabulary in

volved. This appendix gives a complete list of the rules (SYNTAX) of 64 BASIC,
along with concise descriptions. Please experiment with these commands.

Remember, you can't damage the computer by just typing in programs, and the

best way to learn computing is by experimenting.

This appendix is divided into sections according to the different types of

operations in BASIC. These include:

1. Variables and Operators: describes the different type of variables, legal

variable names, and arithmetic and logical operators.

2. Commands: describes the commands used to work with programs, such as

editing, storing, and erasing.

3. Statements: describes the BASIC program statements used in numbered

lines of programs.

4. Functions: describes the string, numeric, and print functions.

VARIABLES

The 64 uses three types of variables in BASIC. These are real numeric, in

teger numeric, and string (alphanumeric) variables.

Variable names may consist of a single letter, a letter followed by a number,

or two letters.

An integer variable is specified by using the percent (%) sign after the

variable name. String variables have the dollar sign ($) after their name.

EXAMPLES

Real Variable Names: A. A5, BZ

Integer Variable Names: A%. A5%. BZ%

String Variable Names: A$, A5S. BZS

ARRAYS are lists of variables with the same name, using numbers called

subscripts to specify the element of the array. Arrays are defined using the DIM

statement, and may contain floating point, integer, or string variables. The array

variable name is followed by a set of parentheses () enclosing the number of

variables in the list.

A(7), BZ%(11), A$(50). PT(20.20)

NOTE: There are three variable names which are reserved for use by the 64.

and may not be defined by you. These variables are: ST. Tl, and Tl$. ST is a

status variable which relates to input/output operations. The value of ST will

change if there is a problem loading a program from disk or tape.

Tl and Tl$ are variables which relate to the real-time clock built into the 64.

The variable Tl is updated every 1/60th of a second. It starts at 0 when the com

puter is turned on. and is reset only by changing the value of Tl$.

116

APPENDIX C
EXECUTIVE 64 BASIC

This manual has given you an introduction to the BASIC languge - enough
for you to get a feel for computer programming and some of the vocabulary in
volven. This appendix gives a complete list of the rules (SYNTAX) of 64 BASIC,
along with concise descriptions. Please experiment with these commands.
Remember, you can't damage the computer by just typing in programs, and the
best way to learn computing is by experimen ting.

This append ix is divided into sections according to the different types of
operations in BASIC. These include:

1. Variables and Operators: describes the different type of variables, legal
variable names, and arithmetic and logical operators.

2_ Commands: describes the commands used to work with programs, such as
editing, storing , and erasing.

3. Statements: describes the BASIC program statements used in numbered
lines of programs.

4. Functions: describes the string, numeric, and print functions.

VARIABLES
The 64 uses three types of variables in BASIC. These are real numeric, in

teger numeric , and string (alphanumeric) variables.
Variable names may consist of a single letter, a letter fol lowed by a number,

or two letters.
An integer variable is specified by using the percent (%) sign after the

variable name. String variables have the dollar sign ($) after their name.

EXAMPLES

Real Variable Names: A, A5, BZ
Integer Variable Names: A%, A5%, Bl%
String Variable Names: AS, A5$, BZ$
ARRAYS are lists of variables with the same name, using numbers called

subscripts to specify the element of the array. Arrays are defined using the DIM
statement, and may contain floating point , integer, or string variables. The array
variable name is fol lowed by a set of parentheses () enclosing the number of
variables in the list.

A(7), BZ%(1 1), AS(50), PT(20,20)

NOTE: There are three variable names which are reserved for use by the 64,
and may not be defined by you. These variables are: ST, TI, and TI$. ST is a
status variable wh ich relates to inpuUoutput operations. The value of ST will
change if there is a problem loading a program from disk or tape.

TI and TIS are variables which relate to the real ·time clock built into the 64.
The variable TI is updated every 1I60th of a second. It starts at 0 when the com
puter is turned on, and is reset only by changing the value of TIS.

116

n

n

Tl$ is a string which is constantly updated by the system. The first two

characters contain the number of hours, the 3rd and 4th characters the number

of minutes, and the 5th and 6th characters are the number of seconds. This

variable can be given any numeric value, and will be updated from that point.

TIS = "101530" sets the clock to 10:15 and 30 seconds AM.

This clock is erased when the computer is turned off, and starts at zero when

the system is turned back on.

OPERATORS

The arithmetic operators include the following signs:

+ Addition

- Subtraction

Multiplication

/ Division

t Raising to a power (exponentiation)

On a line containing more than one operator, there is a set order in which

operations always occur. If several operations are used together on the same

line, the computer assigns priorities as follows: First, exponentiation. Next,

multiplication and division, and last, addition and subtraction.

You can change the order of operations by enclosing within parentheses the

calculation to be performed first. Operations enclosed in parentheses will take

place before other operations.

There are also operations for equalities and inequalities:

= Equal To

< Less Than

> Greater Than

< - Less Than or Equal To

>= Greater Than or Equal To

< > Not Equal To

Finally, there are three logical operators:

AND

OR

NOT

These are used most often to join multiple formulas in IF ... THEN

statements. For example:

IF A = B AND C = D THEN 100 (Requires both parts to be true)

IF A = B OR C = D THEN 100 (Allows either part to be true)

COMMANDS

CONT (Continue)

This command is used to restart the execution of a program which has been

stopped by either using the STOP key, a STOP statement, or an END statement

within the program. The program will restart at the exact place from where it left

off.

117

TI$ is a siring which is constantly updated by the system. The first two
characters contain the number of hours, the 3rd and 4th characters the number
of minutes, and the 5th and 6th characters are the number of seconds. This
variable can be given any numeric value, and will be updated from that point.

TIS = " 101530" sets the clock to 10:15 and 30 seconds AM.

This clock is erased when the computer is turned off , and starts at zero when
the system is turned back on.

OPERATORS
The arithmet ic operators include the following signs:

+ Addition
Subtraction
Multiplica tion
Division

t Raising to a power (exponentiation)

On a li ne contain ing more than one operator, there is a set order in which
operations always occur. If several operations are used together on the same
li ne, the computer assigns priorities as follows: First, exponentiation. Next,
multiplication and division, and last, addition and subtraction.

You can change the order of operations by enclosing within parentheses the
calculation to be performed first. Operations enclosed in parentheses will take
place before other operations.

There are also operations for equalities and inequalities:

= Equal To
< Less Than
> Greater Than
< = Less Than or Equal To
>= Greater Than or Equal To
< '/ Not Equal To

....... Fi nally, Ihere are three logical operators:

v AND
OR

'-' NOT

_ These are used most often to join multiple formulas in IF ... THEN

v

statements. For example:

IF A = BAND C = D THEN 100 (Requires both parts to be true)

IF A = B OR C = D THEN 100 (Allows either part to be true)

COMMANDS

CO NT (Continue)

This command is used to restart the execution of a program wh ich has been
stopped by either using the STOP key, a STOP statement. or an END statement
within the program. The program will restart at the exact place from where it left
off.

117

CONT will not work if you have changed or added lines to the program (or

even just moved the cursor), or if the program halted due to an error, or if you

caused an error before trying to restart the program. In these cases you will get

a CANT CONTINUE ERROR.

LIST

The LIST command allows you to look at lines of a BASIC program in

memory. You can ask for the entire program to be displayed, or only certain line

numbers.

LIST Shows entire program

LIST 10- Shows only from line 10 until end

LIST 10 Shows only line 10

LIST - 10 Shows lines from beginning until 10

LIST 10-20 Shows line from 10 to 20, inclusive

LOAD

This command is used to transfer a program from disk into memory so the

program can be used. The command is followed by a program name enclosed

within quotes. The name is followed by a comma and a number or numeric

variable, which acts as a device number to indicate where the program is com

ing from.

The disk drive is device #8.

LOAD A$,8 Looks for program whose name is in the variable A$

LOAD "HELLO"T8 Looks for program called HELLO on the disk drive

LOAD "*",8 Looks for first program on disk

NEW

This command erases the entire program in memory, and also clears out any

variables that may have been used. Unless the program was SAVEd, it is lost.

BE CAREFUL WHEN YOU USE THIS COMMAND.

The NEW command can also be used as a BASIC program statement. When

the program reaches this line, the program is erased. This is useful if you want

to leave everything neat when the program is done.

RUN

This command causes execution of a program, once the program is loaded

into memory. If there is no line number following RUN, the computer will start

with the lowest line number. If a line number is designated, the program will

start executing from the specified line.

RUN Starts program at lowest line number

RUN 100 Starts execution at line 100

RUN X UNDEFINED STATEMENT ERROR. You must always specify

an actual line number, not a variable representation

118

CONT wil l not work if you have changed or added lines to the program (or
even just moved the cursor), or if the program halted due to an error, or if you
caused an error before trying to restart the program. In these cases you will get
a CAN 'T CONTINUE ERROR.

LIST

The LI ST command allows you to look at lines of a BASIC program in
memory. You can ask for the entire program to be displayed, or only certain line
numbers.

LIST
LIST 10 -
LIST 10
LI ST - 10
LI ST 10·20

LOAD

ShowS entire program
Shows only from line 10 until end
Shows only line 10
Shows lines from beginn ing until 10
Shows line from 10 to 20, inclusive

This command is used to transfer a program from disk into memory so the
program can be used. The command is followed by a program name enclosed
within quotes. The name is followed by a comma and a number or numeric
variable, which acts as a device number to indicate where the program is com
ing from.

The disk drive is device #S.

LOAD AS,S
LOAD " HELLO",S
LOAD " "',S

NEW

Looks for program whose name is in the variable A$
Looks for program cal led HELLO on the disk dri ve
Looks for fi rst program on disk

This command erases the entire program in memory, and also clears out any
variables that may have been used. Unless the program was SAVEd, it is lost.
BE CAREFUL WHEN YOU USE THIS COMMAND.

The NEW command can also be used as a BASIC program statement. When
the prog ram reaches this line, the prog ram is erased. This is useful if you want
to leave everything neat when the program is done.

RUN

This command causes execution of a program, once the program is loaded
into memory. If there is no line number following RUN, the computer will start
with the lowest line number. If a line number is designated, the program will
start executing from the specified line.

RUN Starts program at lowest line number
RUN 100 Starts execution at line 100
RU N X UNDEFINED STATEMENT ERROR. You must always specify

an actual line number, not a variable representation

11S

SAVE

This command will store the program currently in memory on disk.

Type SAVE followed by a name in quotes or a string variable; the computer

will give the program that name. The name is followed by a device number.

SAVE A$,8 Stores on disk with name in AS

SAVE "HELLO",8 Stores on disk with name HELLO

VERIFY

This command causes the computer to check the program on disk against
the one in memory. This is proof that the program is actually SAVEd, in case the

disk is bad, or something went wrong during the SAVE.

VERIFY followed by a program name, or a string variable, will search for that

program and then check. Device number is included with the verify command,
command.

VERIFY "HELLO",8 Searches for HELLO on disk, then checks

STATEMENTS

CLOSE

This command completes and closes any files used by OPEN statements.
The number following CLOSE is the file number to be closed.

CLOSE 2 Only file #2 is closed

CLR

This command will erase any variables in memory, but leaves the program

itself intact. This command is automatically executed when a RUN command is
given.

CMD

CMD sends the output which normally would go to the screen (i.e., PRINT

statements, LISTs, but not POKEs onto the screen) to another device instead.

This could be a printer, or a data file on disk. This device or file must be OPEN-

ed first. The CMD command must be followed by a number or numeric variable
referring to the file.

OPEN 1,4 OPENs device #4, which is the printer

CMD 1 All normal output now goes to printer

LIST The program listing now goes to the printer, not the
screen

To send output back to the screen, CLOSE the file with CLOSE 1.

DATA

This statement is followed by a list of items to be used by READ statements.

Items may be numeric values or test strings, and items are separated by com

mas. String items need not be inside quote marks unless they contain space,

colon, or comma. If two commas have nothing between them, the value will be
READ as a zero for a number, or an empty string.

DATA 12, 14.5, "HELLO, MOM", 3.14, PART1

119

SAVE

This command will store the program currently in memory on disk.
Type SAVE followed by a name in quotes or a string variable; the computer

will give the program that name. The name is followed by a device number.

SAVE A$,8
SAVE " HELLO",8

VERIFY

Stores on disk with name in A$
Stores on disk with name HELLO

Thi s command causes Ihe com puler 10 check the program on disk against
the one in memory. This is proof that the program is actually SAVEd, in case the
disk is bad, or something went wrong during the SAVE.

VERIFY followed by a program name, or a string variable, will search for that
program and then cheCk. Device nu mber is included with the veri fy command.
command.

~ VERIFY " HELLO",8 Searches for HELLO on disk, then checks

~ STATEMENTS

v

CLOSE

This command completes and closes any files used by OPEN statements.
The number following CLOSE is the file number to be c losed.

CLOSE 2 Only file #2 is closed

CLR

This command will erase any variables in memory, bu t leaves the program
itself intact. This command is automatically executed when a RUN command is
given.

CMD

CMD sends the output which normally wou ld go to the screen (i.e., PRINT
statements, LISTs, but not POKEs onto the screen) to another device ins lead.
This could be a printer, or a data file on disk. This device or file must be OPEN
ed first. The CM D command must be followed by a number or numeric variable
referring to Ihe fi le.

OPEN 1,4
CMD1
LIST

OPENs device #4, which is the printer
All normal output now goes to printer
The program listing now goes to the printer, not the
screen

To send output back to the screen, CLOSE the lile with CLOSE 1.

DATA

Th is statemen t is fol lowed by a list of items to be used by READ statements.
Items may be numeric values or test strings, and items are separated by com
mas. String items need not be inside quote marks unless they contain space,
colon , or comma. If two commas have nothing between them, the val ue wi ll be
READ as a zero for a number, or an empty string.

DATA 12, 14.5, " HELLO, MOM", 3.14, PART1

119

DEF FN

This command allows you to define a complex calculation as a function with

a short name. In the case of a long formula that is used many times within the

program, this can save time and space.

The function name will be FN and any legal variable name {1 or 2 characters

long). First you must define the function using the statement DEF followed by

the function name. Following the name is a set of parentheses enclosing a

numeric variable. Then follows the actual formula that you want to define, with

the variable in the proper spot. You can then "call" the formula, substituting any

number for the variable.

10 DEF FNA{X) = 12*(34.75 - XI.3)

20 PRINT FNA(7) t
T | 7 is inserted where

X is m lr\e formula

For this example, the result woud be 137.

DIM

When you use more than 11 elements of an array, you must execute a DIM

statement for the array. Keep in mind that the whole array takes up room in

memory, so don't create an array much larger than you'll need. To figure the

number of variables created with DIM. multiply the total number of elements

plus one in each dimension of the array.

10 DIM A$(40). B7(15), CC%(4,4,4)

41 ELEMENTS 16 ELEMENTS 125 ELEMENTS

You can dimension more than one array in a DIM statement. However, be

careful not to dimension an array more than once.

END

When a program encounters an END statement, the program halts, as if it ran

out of lines. You may use CONT to restart the program.

FOR ... TO ... STEP

This statement works with the NEXT statement to repeat a section of the pro

gram a set number of times. The format is:

FOR (Var. Name) = (Start of Count) TO (End of Count) STEP (Count By)

The loop variable will be added to or subtracted from during the program.

Without any STEP specified. STEP is assumed to be 1. The start count and end

count are the limits to the value of the loop variable.

10 FOR L = 1 TO 10 STEP .1

20 PRINT L

30 NEXT L

The end of the loop value may be followed by the word STEP and another

number or variable. In this case, the value following STEP is added each time in

stead of 1. This allows you to count backwards, or by fractions.

120

DEF FN

This command allows you to define a complex calculation as a function with
a short name. In the case of a long formula that is used many times within the
program, this can save time and space.

The function name will be FN and any legal variable name (1 or 2 characters
long). First you must define the function using the statement DEF followed by
the function name. Following the name is a set of parentheses enclosing a
numeric variable. Then follows the actual formula that you want to define, with
the variable in the proper spot. You can then " call" the formula, substituting any
number for the variable.

10 DEF FNA(X) = 12"(34.75 -
20 PRINT FNA(7)

t

XI.3)

J 7 IS Insefl e<! wnele
X IS In the rormula

For this example, the result woud be 137.

DIM

When you use more than 11 elements of an array, you must execute a DIM
statement for the array. Keep in mind that the whole array takes up room in
memory, so don't create an array much larger than yOu'll need. To figure the
number of variables created with DIM, multiply the total number of elements
plus one in each dimension of the array.

10 DIM A$(40), B7(15), CC% (4,4,4)

41 ELEMENTS 16 ELEMENTS 125 ELEM ENTS

You can dimension more than one array in a DIM statement. However, be
careful not to dimension an array more than once.

END

When a program encounters an END statement, the program halts, as if it ran
out of lines. You may use CONT to restart the program.

FOR . . . TO .. . STEP

This statement works wilh the NEXT statement to repeal a section of the pro·
gram a set number of times. The format is:

FOR (Var. Name) = (Start of Count) TO (End of Count) STEP (Count By)

The loop variable will be added to or subtracted from during the program.
Without any STEP specified , STEP is assumed to be 1. The start count and end
count are the limits to the value of the loop variable.

10 FOR L = 1 TO 10 STEP .1
20 PRINT L
30 NEXT L

The end of the loop value may be followed by the word STEP and another
number or vari able. In this case, the value foll owing STE P is added each time in
stead of 1. Th is allows you to coun t backwards, or by Iraclions.

120

GET

The GET statement allows you to get data from the keyboard, one character

at a time. When GET is executed, the character that is typed is assigned to the
variable. If no character is typed, then a null (empty) character is assigned.

GET is followed by a variable name, usually a string variable. If a numeric
variable was used and a nonnumeric key depressed, the program would halt

with an error message. The GET statement may be placed into a loop, checking

for any empty result. This loop will continue until a key is hit.

10 GET AS: IF A$ = ""THEN 10

GET#

The GET# statement is used with a previously OPENed device or file, to input
one character at a time from that device or file.

GET#1,A$

This would input one character from a data file.

GOSUB

This statement is similar to GOTO, except the computer remembers which

program line it last executed before the GOSUB. When a line with a RETURN

statement is encountered, the program jumps back to the statement im

mediately following the GOSUB. This is useful if there is a routine in your pro

gram that occurs in several parts of the program. Instead of typing the routine
over and over, execute GOSUBs each time the routine is needed.

20 GOSUB 800

GOTO OR GO TO

When a statement with the GOTO command is reached, the next line to be

executed will be the one with the line number following the word GOTO.

IF . . .THEN

IF ... THEN lets the computer analyze a situation and take two possible

courses of action, depending on the outcome. If the expression is true, the

statement following THEN is executed. This may be any BASIC statement.

If the expression is false, the program goes directly to the next line.

The expression being evaluated may be a variable or formula, in which case it

is considered true if nonzero, and false if zero. In most cases, there is an ex
pression involving relational operators (=, < , > <=>= <>

AND, OR NOT).

10 IF X > 10 THEN END

INPUT

The INPUT statement allows the program to get data from the user, assign
ing that data to a variable. The program will stop, print a question mark (?) on

the screen, and wait for the user to type in the answer and hit RETURN.

INPUT is followed by a variable name, or a list of variable names, separated

by commas. A message may be placed within quote marks, before the list of
variable names to be INPUT. If more than one variable is to be INPUT, they must
be separated by commas when typed.

10 INPUT -PLEASE ENTER YOUR FIRST NAME";A$

20 PRINT "ENTER YOUR CODE NUMBER";:!NPUT B

121

v

v

v

v

GET
The GET statement allows you to get data from the keyboard, one character

at a time. When GET is executed, the character that is typed is assigned to the
variable. If no character is typed , Ihen a null (empty) character is assigned.

GET is fol lowed by a variable name, usual ly a string variable. If a numeric
variable was used and a nonnumeric key depressed , the program would halt
with an error message. The GET statement may be placed into a loop, checking
for any empty result. This loop will continue until a key is hit .

10 GET A$: IF A$ = THEN 10

GET#
The GET# statement is used with a previously OPENed device or file, to input

one character at a time from that device or file .

GET #1 ,AS

This would input one character from a data file.

GOSUB
This statement is similar to GOTO, except the computer remembers which

program line it last executed before the GOSUB. When a line with a RETURN
statement is encountered , the program jumps back to the statement im·
mediately fo llowing the GOSUB. Th is is useful if there is a routine in you r pro·
gram that occurs in several parts of the program. Instead of typing the routine
over and over, execute GOSUBs each time the routine is needed.

20 GOSUB 800

GOTO OR GO TO
When a statement with the GOTO command is reached, the next line to be

executed will be the one with the line number following the word GOTO.

IF .. . THEN
IF ... TH EN lets the computer analyze a siluation and take two poss ible

courses of action, depending on the outcome. If the expression is true, the
statement following THEN is executed . This may be any BASIC statement.

If the expression is false, the program goes directly to the next line.
The expression being evaluated may be a variable or formula, in which case it

is considered true if nonzero, and fal se if zero. In most cases, there is an ex
pression involving relational operators (;;;; , < , > , < :;;; , > :;;; , < >
AND, OR NOT).

10 IF X > 10 THEN END

INPUT
The INPUT slatement allows the program to get data from the user, assign·

ing that data 10 a variable. The program will stop, print a question mark (?) on
the screen, and wait for the user to type in the answer and hit RETURN .

INPUT is followed by a variable name, or a list of variable names, separated
by commas. A message may be placed within quote marks, before the list of
variable names to be IN PUT. If more than one variable is to be INPUT, they must
be separated by commas when typed .

10 INPUT '·PLEASE ENTER YOUR FIRST NAME";A$
20 PRINT " ENTER YOU R CODE NUMBER" ;:INPUT B

121

INPUTtf

INPUT# is similar to INPUT, but takes data from a previously OPENed file.

10 INPUT#1, A

LET

LET is hardly ever used in programs, since it is optional, but the statement is

the heart of all BASIC programs. The variable name which is to be assigned the

result of a calculation is on the left side of the equal sign, and the formula on

the right.

10 LET A = 5

20 LET D$ = "HELLO"

NEXT

NEXT is always used in conjunction with the FOR statement. When the pro

gram reaches a NEXT statement, it checks the FOR statement to see if the limit

of the loop has been reached. If the loop is not finished, the loop variable is in

creased by the specified STEP value. If the loop is finished, execution proceeds

with the statement following NEXT.

NEXT may be followed by a variable name, or list of variable names,

separated by commas. If there are no names listed, the loop started is the one

being completed. If variables are given, they are completed in order from left to

right.

10 FOR X = 1 TO 100: NEXT

ON

This command turns the GOTO and GOSUB commands into special versions

of the IF statement. ON is followed by a formula, which is evaluated. If the

result of the calculation is one, the first line on the list is executed; if the result

is 2, the second line is executed, and so on. If the result is 0, negative, or larger

than the list of numbers, the next line executed will be the statement following

the ON statement.

10 INPUT X

20 ON X GOTO 10.20,30,40,50

OPEN

The OPEN statement allows the 64 to access devices such as the disk for

data, a printer, or even the screen. OPEN is followed by a number (0-255), to

which all following statements will refer. There is usually a second number

after the first, which is the device number.

The device numbers are:

0 Screen

4 Printer

8 Disk

122

INPUH
INPUH is simi lar to IN PUT, but takes data from a previously OPENed file.

10 IN PUT#1, A

LET
LET is hardly ever used in programs, since it is optional, but the statement is

the heart of all BASIC programs. The variable name which is to be assigned the
resuit of a calculation is on the left side of the equal sign, and the formula on
the right.

10 LET A = 5
20 LET D$ = "HELLO"

NEXT
NEXT is always used in conjunction with the FOR statement. When the pro·

gram reaches a NEXT statement , it checks the FOR statement to see if the limit
of the loop has been reached. If the loop is not finished, the loop variable is in·
creased by the specified STEP value. If the loop is finished, execution proceeds
w ith the statement following NEXT.

NEXT may be followed by a variable name, or list of variable names,
separated by commas. If there are no names listed, the loop started is the one
being completed. If variables are given, they are completed in order from left to
right.

10 FOR X = 1 TO 100: NEXT

ON
This command turns the GOTO and GOSUB commands into special versions

of the IF statement. ON is followed by a formu la, which is evaluated. If the
result of the calculation is one, the first line on the list is executed ; if the resull
is 2, the second li ne is executed, and so on. If the result is 0, negative, or larger
than the list of numbers, the next line executed wi ll be the statement fo ll owing
the ON statement.

10 INPUT X
20 ON X GOTO 10,20,30,40,50

OPEN
The OPEN statement allows the 64 to access devices such as the disk for

data, a printer, or even the screen. OPEN is followed by a number (0·255), to
which all followi ng statements will refer. There is usually a second number
after the fi rst , which is the device number.

The device numbers are:

° Screen
4 Printer
8 Disk

122

Following the device number may be a third number, separated again by a

comma, which is the secondary address.

In the case of the disk, the number refers to the buffer, or channel, number. In

the printer, the secondary address controls features like expanded printing. See

the Commodore 64 Programmer's Reference Manual for more details.

10 OPEN 1,0 OPENs the SCREEN as a device

20 OPEN 2,8,8,"D" OPENs the disk for reading, file to be searched for

is D

30 OPEN 3,4 OPENs the printer

40 OPEN 4,8,15 OPENs the data channel on the disk

Also see: CLOSE. CMD, GET#, INPUT#, and PRlNT#, system variable ST, and

Appendix B.

POKE

POKE is always followed by two numbers, or formulas. The first location is a

memory location; the second number is a decimal value from 0 to 255, which

will be placed in the memory location, replacing any previously stored value.

10 POKE 53281.0

20 S = 4096' 13

30 POKES+ 29,8

PRINT

The PRINT statement is the first one most people learn to use, but there are a

number of variations to be aware of. PRINT can be followed by:

Text String with quotes

Variable names

Functions

Punctuation marks

Punctuation marks are used to help format the data on the screen. The com

ma divides the screen into four columns, while the semicolon suppresses all

spacing. Either mark can be the last symbol on a line. This results in the next

thing PRINTed acting as if it were a continuation of the same PRINT statement.

10 PRINT "HELLO"

20 PRINT "HELLO",A$

30 PRINT A+B

40 PRINT J;

60 PRINT A,B,C,D

Also see: POS, SPC and TAB functions

PRINTS

There are a few differences between this statement and PRINT. PRINTS is

followed by a number, which refers to the device or data file previously

OPENed. This number is followed by a comma and a list to be printed. The com

ma and semicolon have the same effect as they do in PRINT. Please note that

some devices may not work with TAB and SPC.

100 PRINT#1."DATA VALUES"; A%, B1, C$

123

v

v

v

Following the device number may be a third number, separated again by a
comma, which is the secondary address.

In the case of the disk, the number refers to the buffer, or channel, number. In
the printer, the secondary address controls features like expanded printing. See
the Commodore 64 Prog rammer's Reference Manual for more details.

10 OPEN 1,0
20 OPEN 2,8,8," D"

30 OPEN 3,4
40 OPEN 4,8,15

OPEN s the SCREEN as a device
OPEN s the disk for reading , file to be searched for
is D
OPENs the printer
OPEN s the data channel on the disk

Also see: CLOSE, CMD, GET#, INPUT#, and PRINT#, system variable ST, and
Append ix B.

POKE
POKE is always followed by two numbers, or formulas. The first location is a

memory location; the second number is a decimal val ue from 0 to 255, which
wil l be placed in the memory location , rep lacing any previously stored val ue.

10 POKE 53281 ,0
20 S = 4096"1 3
30 POKE S + 29,8

PRINT
The PRINT statement is the first one most people learn to use, but there are a

number of variations to be aware of. PRINT can be fo llowed by:

Text String with quotes
Variable names
Functions
Punctuation marks

Punctuation marks are used to help format the data on the screen. The com
ma divides the screen into four columns, while the sem icolon suppresses all
spacing. Ei ther mark can be the last symbol on a line. This results in the next
thing PRINTed acting as if it were a continuation of the same PRINT statemen t.

10 PRINT " HELLO"
20 PRINT " HELLO",A$
30 PRINT A+ B
40 PRINT J ;
60 PRINT A,B,C,D

Also see: POS, SPC and TAB functions

PRINT#
There are a few differences between this statement and PRINT. PRINT# is

followed by a number, which refers to the device or data file previously
OPENed. This number is followed by a comma and a list to be printed. The com·
ma and semicolon have the same effect as they do in PRINT. Please note that
some devices may not work wi th TAB and SPC.

100 PRINT#l ,"DATA VALUES"; A%, Bl , C$

123

READ

READ is used to assign information from DATA statements to variables, so

the information may be put to use. Care must be taken to avoid READing

strings where READ is expecting a number, which will give a TYPE MISMATCH

ERROR.

REM (Remark)

REMark is a note to whomever is reading a LIST of the program. It may ex

plain a section of the program, or give additional instructions. REM statements

in no way affect the operation of the program, except to add to its length. REM

may be followed by any text.

RESTORE

When executed in a program, the pointer to which an item in a DATA state

ment will be READ next is reset to the first item in the list. This gives you the

ability to re-READ the information. RESTORE stands by itself on a line.

RETURN

This statement is always used in conjunction with GOSUB. When the pro

gram encounters a RETURN, it will go to the statement immediately following

the GOSUB command. If no GOSUB was previously issued, a RETURN

WITHOUT GOSUB ERROR will occur.

STOP

This statement will halt program execution. The message. BREAK IN xxx will

be displayed, where xxx is the line number containing STOP. The program may

be restarted by using the CONT command. STOP is normally used in debugging

a program.

SYS

SYS is followed by a decimal number or numeric value in the range 0-65535.

The program will then begin executing the machine language program starting

at that memory location. This is similar to the USR function, but does not allow

parameter passing.

WAIT

WAIT is used to halt the program until the contents of a memory location

changes in a specific way. WAIT is followed by a memory location (X) and up to

two variables. The format is:

WAIT X,Y,Z

The contents of the memory location are first exclusive-ORed with the third

number, if present, and then logically ANDed with the second number. If the

result is zero, the program goes back to that memory location and checks

again. When the result is nonzero, the program continues with the next state

ment.

NUMERIC FUNCTIONS

ABS(X) (absolute value)

ABS returns the absolute value of the number, without its sign {+ or -). The

answer is always positive.

124

READ
READ is used to assign information from DATA statements to variables, so

the information may be put to use. Care must be taken to avoid READing
strings where READ is expecting a number, wh ich will give a TYPE MISMATCH "
ERROR.

REM (Remark)
REMark is a note to whomever is reading a LIST of the program. It may ex·

plain a section of the program, or give additional instructions. REM statements
in no way affect the operation of the program, except to add to its length. REM
may be fo llowed by any text.

RESTORE
When executed in a program, the pOinter to which an item in a DATA state·

ment wi ll be READ next is reset to the first item in the list. This gives you the
ability to re·R EAD the in formation. RESTORE stands by itself on a line.

RETURN
This statement is always used in conjunction with GOSUB. When the pro·

gram encounters a RETURN , it will go to the statement immediately following
the GOSUB command. If no GOSUB was previously issued, a RETURN
WITHOUT GOSUB ERROR wi ll occur.

STOP
This statement will hal t program execution. The message, BREAK IN xxx will

be displayed, where xxx is the line number containing STOP. The program may
be restarted by USing the CONT command. STOP is normally used in debugging
a program.

SYS
SYS is followed by a decimal number or numeric value in the range 0·65535.

The program will then beg in executing the machine language program start ing
at that memory location. This is similar to the USR function, but does not allow
parameter passing.

WAIT
WAIT is used to halt the program until the contents of a memory locat ion

changes in a speci fi c way. WAIT is followed by a memory location (X) and up to
two variables. The format is:

WAIT X,Y,Z

The contents of the memory location are first exclusive·ORed with the third
number, if present, and then log ically ANDed with the second number. If the
result is zero, the program goes back to that memory location and checks
again. When the result is nonzero, the program continues with the next stale·
ment.

NUMERIC FUNCTIONS

ABS(X) (absolute value)
ABS returns the absolute value of the number, without its sign (+ or -). The

answer is always positive.

124

ATN(X) (arctangent)

Returns the angle, measured in radians, whose tangent is X.

COS(X) (cosine)

Returns the value of the cosine of X, where X is an angle measured in ra

dians.

EXP(X)

Returns the value of the mathematical constant e(2.71827183) raised to the

power of X.

FNxx(X)

Returns the value of the user-defined function xx created in a DEF FNxx(X)

statement.

INT(X)

Returns the truncated value of X, that is. with all the decimal places to the

right of the decimal point removed. The result will always be less than, or equal

to, X. Thus, any negative numbers with decimal places will become the integer

less than their current value.

LOG(X) (logarithm)

Will return the natural log of X. The natural log to the base e (see EXP(X)). To

convert to log base 10, simpy divide by LOG(10).

PEEK(X)

Used to find out contents of memory location X, in the range 0-65535, giving a

result from 0-255. PEEK is often used in conjunction with the POKE statement.

RND(X) {random number)

RND(X) returns a random number in the range 0-1. The first random number

should be generated by the formula RND(-TI) to start things off differently

every time. After this, X should be a 1 or any positive number. If X is zero, the

result will be the same random number as the last one.

A negative value for X will reseed the generator. The use of the same negative

number for X will result in the same sequence of "random" numbers.

The formula for generating a number between X and Y is:

N = RND(1)*(Y-X)+X

where.

Y is the upper limit

X is the lower range of numbers desired.

SGN(X) (sign)

This function returns the sign (positive, negative, or zero) of X. The result will

be + 1 if positive, 0 if zero, and - 1 if negative.

SIN(X) (sine)

SIN(X) is the trigonometric sine function. The result will be the sine of X,

where X is an angle in radians.

125

ATN(X) (arctangent)
Returns the angle, measured in radians, whose tangent is X.

COS(X) (cosine)
'-' Returns the value of the cosine of X, where X is an angle measured in ra·

v

v

v

v

v

v

v

v

v

dians.

EXP(X)
Returns the value of the mathemat ical constant e(2.71827183) raised to Ihe

power of X.

FN xx(X)
Returns the val ue of the user·defined function xx created in a OEF FN xx(X)

statement.

INT(X)
Returns the truncated value of X, that is, with all the decimal places to the

right of the decimal point removed . The result wil l always be less than , or equal
to, X. Thus, any negative numbers with decimal places will become the integer
less than their current value.

LOG(X) (logarithm)
Will return the natural log of X. The natural log to the base e (see EXP(X». To

convert to log base 10, simpy divide by LOG(10).

PEEK(X)
Used to find out contents of memory location X, in the range 0·65535, giving a

resuit from 0-255. PEEK is often used in conjunct ion wi th the POKE statement.

RND(X) (random number)
RND(X) returns a random number in the range 0·1. The first random number

should be generated by the form ula RND(- TI) to start things off differently
every time. After this, X should be a 1 or any positive number. If X is zero, the
result wi ll be the same random number as the last one.

A negat ive value for X will reseed the generator. The use of the same negative
number for X wi ll result in the same sequence of "random" numbers.

The form ula for generat ing a number between X and Y is:

N = RND(1), (Y - X)+ X

where,
Y is the upper limit
X is the lower range of numbers desired.

SGN(X) (sign)
This function returns the sign (positive, negat ive, or zero) of X. The result will

be + 1 if positive, 0 if zero, and - 1 if negat ive.

SIN(X) (sine)
SIN(X) is the trigonometric sine fu nction. The result will be the sine of X,

where X is an angle in radians.

125

SQR(X) {square root)

This function will return the square root of X, where X is a positive number or

0. If X is negative, an ILLEGAL QUANTITY ERROR results.

TAN(X) (tangent)

The result will be the tangent of X, where X is an angle in radians.

USR(X)

When this function is used, the program jumps to a machine language pro

gram whose starting point is contained in memory locations. The parameter X

is passed to the machine language program, which will return another value

back to the BASIC program. Refer to the Commodore 64 Programmer's

Reference Manual for more details on this function and machine language pro

gramming.

STRING FUNCTIONS

ASC(XS)
This function will return the ASCII code of the first character of X$.

CHR$(X)

This is the opposite of ASC, and returns a string character whose ASCII code

isX.

LEFTS(XS,X)

Returns a string containing the leftmost X characters of $X.

LEN{X$)

Returned will be the number of characters (including spaces and other sym

bols) in the string X$.

MID^XS.S.X)

This will return a string containing X characters starting from the Sth

character in X$.

RIGHTS(X$,X)

Returns the rightmost X characters in X$.

STRS(X)

This will return a string which is identical to the PRINTed version of X.

VAL(XS)

This function converts X$ into a number, and is essentially the inverse opera

tion from STR$. The string is examined from the leftmost character to the right,

for as many characters as are in recognizable number format.

10 X = VALC'123.456") X = 123.456

10 X = VAL("12A13B") X = 12

10 X = VAL("RIU017") X = 0

10 X = VAL("-1.23.45.67") X = -1.23

126

SQR(X) (square root)
This function will return the square root of X, where X is a positive number or

O. If X is negative, an ILLEGAL QUANTITY ERROR resuits.

TAN(X) (tangent)
The result will be the tangent of X, where X is an angle in radians.

US~ ~
When this function is used, the program jumps to a mach ine language pro·

gram whose starting point is contained in memory locations. The parameter X .-.
is passed to the machine language program, which will return another value
back to the BASIC program. Refer to the Commodore 64 Programmer's
Reference Manual for more details on this function and machine language pro
gramming.

STRING FUNCTIONS

ASC(XS)
This function will return the ASCII code of the first character of XS.

CHRS(X)
This is the opposite of ASC, and returns a string character whose ASCII code

is X.

LEFTS(XS,X)
Returns a string containing the leftmost X characters of SX.

LEN(XS)
Returned will be the number of characters (including spaces and other sym

bols) in the string XS.

MIDS(XS,S,X)
This wi ll return a string containing X characters starting from the Sth

character in X$.

RIGHTS(XS,X)
Returns the rightmost X characters in XS.

STRS(X)
This will return a string which is identical to the PRINTed version of X.

VAL(XS)
This function converts X$ into a number, and is essentially the inverse opera

tion from STR$. The string is examined from the leftmost character to the right,
for as many characters as are in recog nizable number format.

lOX = VAL(" 123.456")
10 X = VAL(" 12A13B")
10 X = VAL("RIU017")
10 X = VAL(" -1.23.45.67")

X = 123.456
X = 12
X = 0
X = - 1.23

126

OTHER FUNCTIONS

FRE(X)

This function returns the number of unused bytes available in memory,

regardless of the value of X. Note that FRE(X) will read out in negative numbers

if the number of unused bytes is over 32K.

POS<X)

This function returns the number of the column (0-39) at which the next

PRINT statement will begin on the screen. X may have any value and is not

used.

SPCpC)

This is used in a PRINT statement to skip X spaces forward.

TAB(X)

TAB is also used in a PRINT statement; the next item to be PRINTed will be

in column X.

127

OTHER FUNCTIONS

FRE(X)
This function returns the number of unused bytes avai table in memory,

regardless of the val ue of X. Note that FRE(X) will read out in negative numbers
if the number of unused bytes is over 32K.

POS(X)
This funct ion returns the number of the column (0-39) at which the next

PRINT statement wi ll begin on the screen. X may have any value and is not
used.

SPC(X)
This is used in a PRINT statement to skip X spaces forward.

TAB(X)
'-J TAB is also used in a PRINT statement ; the next item to be PRINTed wi ll be

in column X.

v

127

APPENDIX D

ABBREVIATIONS FOR BASIC KEYWORDS

As a time-saver when typing in programs and commands, Commodore's

BASIC for the 64 lets the user abbreviate most keywords. The abbreviation for

PRINT is a question mark. The abbreviations for other words are made by typing

the first one or two letters of the word, followed by the SHIFTed next letter of

the word. If the abbreviations are used in a program line, the keyword will LIST

in the full form.

Com- Abbrevi-
mand ation

Looks like

this on

screen

Com- Abbrevi-

mand ation

Looks like

this on

screen

ABS

AND

ASC

ATN

CHR$

CLR

CMD

CONT

COS

DATA

DEF

DIM

CLOSE CL

NONE

D ETTTal

i) eh3 i

COS

D Q

END E Ullbl N E 2

EXP E BfflSl X E _Aj

FN NONE FN

GET# NONE GET#

GOSUB GO Ulljil S GO V

GOTO G Ulllal O G [

IF NONE IF

INPUT NONE INPUT

INT NONE INT

128

APPENDIX D
ABBREVIATIONS FOR BASIC KEYWORDS

As a time·saver when typing in programs and commands, Commodore's
BASIC for the 64 lets the user abbreviate most keywords. The abbreviation for
PRINT is a question mark. The abbreviations for other words are made by typing
the first one or two letters of the word, followed by the SHIFTed next letter of
the word. If the abbreviations are used in a program line, the keyword will LIST
in the full form.

Look. lik. Looks like
Com- Abbrevi- this on Com- Abbrevi- this on
mond otion screen mond ation screen

ABS A EI:IID B Am END E EI:IID N E [2]
AND A EI:IID N A [2] EXP E EI:IID x E ~
ASC A EI:IID S A~ FN NONE FN

ATN A EI:IID T A[] FOR F EI:IID 0 F 0
CHR$ C EI:IID H c[] FRE F EI:IID R F [;J
CLO SE CL EI:IID 0 CLO GET G lilIID E G El

CLR C EI:IID L C D GET# NONE GET#

CMD C EI:IID M cIS! GOSUB GO EI:IID S GO~

CONT C EI:IID 0 C D Goro G EI:IID 0 G 0
cos NONE c o s IF NONE IF

DATA D EI:IID A D~ INPUT NONE IN PUT

DEF D EI:IID E DEl INPUT# I EI:IID N [2]
DIM D . ' D INT NONE INT

128

Com

mand

Abbrevi

ation

Looks like

this on

screen

Com

mand

Abbrevi

ation

Looks like

this on

screen

LEFTS

LEN

LET

LIST

LOAD

LOG

MIDS

NEW

NEXT

NOT

ON

OPEN

OR

PEEK

POKE

POS

PRINT

PRINT#

READ

REM

RESTORE

NONE

L EHE

o

NONE

NONE

NONE

NONE

NONE

NONE

RE tSIUI T

LEN

LOG

NEW

nD
ON

OR

POS

REM

RIGHTS

RND

RUN

SAVE

SGN

SIN

SPC(

SQR

STATUS

STEP

STOP

STR$

srs

TAB(

TAN

THEN

TIME

TIMES

USR

VAL

VERIFY

WAIT

S EflT;

ST

stB!!!

s eui

ST ^

s E2E

T BHT;

NONE

t E!Uj

Tl

Tl$

U EH

v ET!T

v EH

ST

T g]

TAN

Tl

Tl$

u[v)

v 5]

129

~

'-'
Looks like looks like

'-' Com· Abbrevi- this on Com- Abbrevi- this on
mond at ion screen mond ation screen

V

LEFTS
'-'

LE rmID F LEQ RIGHT$ R rmID I RW

LE N NONE LEN RND R rmID N R[ZJ
'-'

v LET L rmID E El RUN R rmID u RW

LI ST rmID W SAVE S rmID A S~

v LOAD rmID a 0 SGN S rmID G s[O

v LOG NONE LOG SI N S rmID I SEJ

V MID$ MrmID I MW SPC(S rmID P s O

NEW NONE NEW SQR S rmID Q S.
NEXT N rmID N El STATUS ST ST

NOT N rmID a NO STEP ST rmID E STD

ON NONE ON STOP S rmID T s[O

V
OPEN OrmID P 00 STRS ST rmID R STQ

v
S rmID [] OR NONE OR SYS Y S

PEEK P rmID E pEl TAB! T rmID A T~
POKE P rmID a pO TAN NONE TAN

pas NONE pas THEN T rmID H T[]

PRINT ? ? TlME TI TI
v

PRINT # P rmID R P Id TIMES TIS TIS
'-'

READ R rmID E REl USR U rmID S U~
V

REM NONE REM VAL V rmID A V~

v RESTORE RE rmID S RE~ VERIFY V rmID E vEl

V RETUR N RE rmID T RE [[] WAIT WrmID A W~

V

V

v

v

v

V
129

v

APPENDIX E

SCREEN DISPLAY CODES

The following chart lists all of the characters built into the 64's character

sets. It shows which numbers should be POKEd into screen memory (locations

1024-2023} to get a desired character. Also shown is which character cor

responds to a number PEEKed from the screen.

Two character sets are available, but only one set at a time. This means that

you cannot have characters from one set on the screen at the same time you

have characters from the,other set displayed. The sets are switched by holding

down the ETUI and 'C=' keys simultaneously.

From BASIC, POKE 53272,21 will switch to upper case mode and POKE

53272.23 switches to lower case.

Any number on the chart may also be displayed in REVERSE. The reverse

character code may be obtained by adding 128 to the values shown.

If you want to display a solid circle at location 1504, POKE the code for the

circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory location to control the color of each

character displayed on the screen (locations 55296-56295). To change the color

of the circle to yellow (color code 7) you would POKE the corresponding

memory location (55776) with the character color: POKE 55776,7.

Refer to Appendix G for the complete screen and color memory maps, along

with color codes.

NOTE: The following POKEs display the same symbol in set 1 and 2: 1. 27-64.

91-93. 96-104, 106-121, 123-127.

SCREEN CODES

SET 1 SET 2 POKE SET 1 SET 2 POKE SET 1 SET 2 POKE

@ 0 C c 3

A a 1 D d 4

F f 6

G g 7

Bb2Ee5Hh

""

130

APPENDIX E
SCREEN DISPLAY CODES

The following chart lists all of the characters built into the 64's character
sets. It shows which numbers should be POKEd into screen memory (locat ions
1024-2023) to get a desired character. Also shown is which character cor
responds to a number PEEKed from the screen .

Two character sets are available, but on ly one set at a time. This means that
you cannot have characters from one set on the screen at the same time you
have characters from the other set displayed. The sets are switched by holding
down the Ii!:W and [QJ keys simultaneously_

From BASIC, POKE 53272,21 will switch to upper case mode and POKE
53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE. The reverse
character code may be obtained by adding 128 to the values shown.

II you want to display a solid ci rcle at location 1504, POKE the code for the
circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory location to cont rol the color of each
character displayed on the screen (locations 55296·56295). To change the color
of the circle to yel low (color code 7) you would POKE the corresponding
memory location (55776) with the character color: POKE 55776,7.

Refer to Appendi x G for the complete screen and color memory maps, along
with color codes.

NOTE: The following POKEs display the same symbol in set 1 and 2: 1, 27·64,
91-93, 96-104,106-121 , 123-127.

SCREEN CODES
SET 1 SET 2 POKE SET 1 SET 2 POKE SET 1 SET 2 POKE

@

A

B

a

b

o

2

C

o
E

c

d

e

130

3

4

5

F

G

H

g

h

6

7

8

SET 1 SET 2 POKE SET 1 SET 2 POKE SET 1 SET 2 POKE

J

K

L

M

N

O

P

Q

R

S

T

U

V

w

X

Y

z

m

n

o

P

q

r

s

t

u

V

w

X

y

z

SPACE

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

m
B

B

Q
U

D

a

a

□

D

S
0

□

□

A

B

C

D

E

F

G

H

I

J

K

L

M

N

o

p

Q

R

S

T

U

V

w

X

Y

z

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

131

-'

'-'
SET 1 SET 2 POKE SET 1 SET 2 POKE SET 1 SET 2 POKE

V

V 9 % 37 ~ A 65

V J 10 & 38 CD B 66

K k 11 39 El C 67
'--'

L 12 40 El D 68
V

M m 13 41 El E 69
v

D N n 14 42 F 70
v

[] 0 0 15 + 43 G 71
V

P P 16 44 [] H 72
v Q q 17 45 W 73
v 46 ~ J 74 R 18
v

S S 19 47 EJ K 75

v T 20 0 48 0 L 76

U u 21 49 is] M 77

v V v 22 2 50 0 N 78

'-' W w 23 3 51 0 0 79

'-' X x 24 4 52 0 P 80

v y y 25 5 53 II] Q 81

v Z z 26 6 54 D R 82

v 27 7 55 ~ S 83

£ 28 8 56 [] T 84
'-'

29 9 57 W U 85 v

i 30 58 ~ V 86 v

- 31 59 D W 87
'-' l±l 32 < 60 X 88
v

[] 33 61 Y 89
v

34 > 62 [1] Z 90

35 ? 63 EB 91

$ 36 El 64 IJ 92

v

v
131

v

SET 1 SET 2 POKE

CD

3
SPACE

E
H

n
D

□

93

94

95

96

97

98

99

100

101

102

103

104

SET 1 SET 2 POKE

□

B

SET 1 SET 2 POKE

105

106

107

108

109

110

111

112

113

114

115

116

E
a
□

H
U

a 0

E

a
H

H
S

117

118

119

120

121

122

123

124

125

126

127

-

Codes from 128-255 are reversed images of codes 0-127.

—

'-

132 —

SET 1 SET 2 POKE SET 1 SET 2 POKE SET 1 SET 2 POKE

rn 93 ~ ~ ,05 [J ,17

liD 6l!l 94 0 ,06 [) , , 8

~ ~ 95 [8 ,07 U ,,9

96 C. ,08 ~ , 20

IJ 97 [g ,09 ~ ,2, .. 98 6J ' ,0 0 0 , 22

0 99 U ' , , ILJ ,23

0 ,00 ca ,,2 ~ ,24

0 ,0, El ,,3 I:J ,25

II , 02 53 ' ,4 ~ ,26

0 , 03 BJ ,,5 ~ ,27 ,....,
~ 0 ,04 ,,6

r.

Codes Irom , 28-255 are reversed Images 01 codes 0-, 27.

,32

APPENDIX F

ASCII AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT CHR$(X),

for all possible values of X. It will also show the values obtained by typing

PRINT ASC("x"), where x is any character you can type. This is useful in

evaluating the character received in a GET statement, converting upper/lower

case, and printing character based commands (like switch to upper/lower case)

that could not be enclosed in quotes.

PRINTS CHR5 PRINTS CHRS PRINTS CHR$ PRINTS CHRS

SWITCH TO

LOWER CASE

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

#

%

&

(

)

•

+

-

/

0

1

2

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

@

A

B

C

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

133

v

v

v APPENDIX F
'-' ASCII AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT CHR$(X),

'-'
for all possible values of X. It will also show the values obtained by typing
PRINT ASC(" x"), where x is any character you can type. This is useful in

v evaluating the character received in a GET statement , converting upper/lower
case, and printing character based commands (like switch to upper/lower case)

v that could not be enclosed in quotes.

"-'

v PRINTS CHA$ PRINTS CHR$ PRINTS CHA$ PAINTS CHA$

V 0 n 17 34 3 51

'-' - 18 # 35 4 52

'-' 2 • 19 $ 36 5 53

v 3 II 20 % 37 6 54

v 4 21 & 38 7 55

v - 5 22 39 8 56

6 23 40 9 57
'-'

7 24 41 58
'" DIS"'ES_~8 25 42 59
v

'H"'ES_~9 26 + 43 C 60
v

10 27 44 61
v :::> 11 - 28 45 62
v 12 ag 29 46 ? 63
v IiID!II 13 • 30 47 @ 64
v t: 14 - 31 0 48 A 65

'-' 15 lID 32 49 B 66

v 16 33 2 50 C 67

v

v

v

v

'-'

v

V

'-' 133

'-'

134

PRINTS CHRS PRINTS CHRS PRINTS CHAt PRINTS CHRS

D 68 ~ 97 @) 126 Grey 3 155

E 69 CD 98 l"1IIIJ 127 - 156

F 70 El 99 128 riI 157

G 71 EJ 100 Orange 129 - 158

H 72 Ll 101 130 - 159

I 73 g 102 131 IB 160

J 74 [] 103 132 (] 161

K 75 0 104 11 133 • 162

L 76 bJ 105 13 134 0 163

M 77 [3 106 15 135 0 164

N 78 EJ 107 17 136 0 165

0 79 0 108 12 137 II 166

P 80 IS] 109 14 138 0 167

a 81 0 11 0 16 139 ~ 168

R 82 0 111 18 140 ~ 169

S 83 0 112 1liIIII1II!m141 0 170

T 84 II 11 3 ' ~142 rn 171

U 85 0 114 143 c:. 172

v 86 ~ 115 • 144 [l3 173

W 87 0 116 III 145 6J 174

X 88 117 .. 146 Q 175

Y 89 ~ 118 III 147 ca 176

Z 90 D 11 9 II 148 E:l 177

[91 ~ 120 Brown 149 EIl 178

£ 92 121 11 . Red 150 BJ 179

J 93 [l] 122 Grev 1 151 0 180

1 94 tE 123 Grev 2 152 (] 181 - 95 IJ 124 Lt . Green 153 [J 182

El 96 CD 125 Lt . Blue 154 U 183
I

134

w

PRINTS CHRS

184

185

PRINTS CHRS

186

187

PRINTS CHRS

H 188

189

PRINTS CHRS

H
V

190

191

CODES

CODES

CODE

192-223

224-254

255

SAME AS

SAME AS

SAME AS

96-127

160-190

126

135

PRINTS CHAt PRINTS CHR$ PRINTS CHAt PRINTS CHRS

~ 184 0 186 ~ 188 ~ 190

~ 185 ~ 187 e:J 189 ~ 191

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190

v CODE 255 SAME AS 126

v

'--'

'--'

'--'

~

'-'

'--'

'--'

v

'--'

v

V

'--'

v

V

v

'--'

v

'-'

v

v

v

v

v

v

135

-

APPENDIX G

SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations control placing characters

on the screen, which locations are used to change individual character colors,

and they show character color codes.

SCREEN MEMORY MAP

COLUMN

20 H

■ -■

I

1024-

. ■ :

::■ :

--::

1184

.. I

1264

V :

mt

■ ■■■■

1424

1464

■■ :

1541

1584

■ '■

■■■ :
....

■::

1J8J

1824

■■■ I

1904

1344

1984

■

;

i

~

—

-

—

—

The actual values to POKE into a color memory location to change a

character's color are:

0 BLACK

1 WHITE

2 RED

3 CYAN

4 PURPLE

5 GREEN

6 BLUE

7 YELLOW

8 ORANGE

9 BROWN

10 Light RED

11 GRAY 1

12 GRAY 2

13 Light GREEN

14 Light BLUE

15 GRAY 3

—

—

—

136

APPENDIX G
SCREEN AND COLOR MEMORY MAPS

The fol lowing charts li st which memory locations cont rol placing characters
on the screen, which locations are used to change individual character colors,
and they show character color codes.

SCREEN MEMORY MAP

10
COLUMN

20 JO J9

1063

1024-~~1 'H ~'lqH rTl'. pt, -
I

!.::JJ 0
1064 • . , __ +1 1· - j!-! -
1\0,', ' : ' __ • :- _ , _0_ ' • • •• '- L- -~~ \I ___ , __ , __
1\8' ~ ____ ____ _ +- _
\22: __ _ _ _~. _ ._ . ~~ ____ _

126 ~ _~ __ . tI~ I '

lJOJ ~~~. r"* . L-___ - ---- , -
IH~ '-t~~-·! .-~. ' I ... +----
138' . -1--- I' - -,+-----
UN L--.......t. '-11;=-' -- +- .- - . • • .~-1.164 _ • • • • I __ I • + _ - _ -0.- •• --_._-

150~ , ._ . j +- __ !_ ' .. • _' _' . t- . ~ . ---~
15.1.1 i i '
I~J .•
162.1 -_. +- i ...

10 ~

166.1 :-:. • ___ _

:~~~ f-" +~.: ~ . ~::~~
11&! r-----[:,
1814 \....---.-_- ' 10

186 ~ I
1904 : H+rH 1 gJ~
198.1

The actual values to POKE into a color memory location to change a
character's color are:

o BLACK
1 WHITE
2 RED
3 CYAN
4 PURPLE
5 GREEN
6 BLUE
7 YELLOW

8 ORANGE
9 BROWN
10 Ught RED
11GRAY1
12 GRAY 2
13 Light GREEN
14 Ughl BLUE
15 GRAY 3

136

w
For example, to change the color of a character located at the upper left-hand

corner of the screen to red, type: POKE 55296,2.

COLOR MEMORY MAP

COLUMN

20

55335

55296-

55336

55376

55416

55456

55J96

55536

55576

55616

55656

55696

55736

55776

55816

55856

55896

55936

55976

S6016

56056

56096

56135

56 in

56215

56255

10 9

f
56295

w

137

v

v

v

v

v

v

For example, to change the color of a character located at the upper left-hand
corner o f the screen to red, type: POKE 55296,2_

m96
m36
ssm
55~16
55456
S5J96
ssm
miG
55616
55655
55696
5)136
m76
55816
mS6
55896
55936
55976
56016
56056
56096
56135
56116
56216
56155

COLOR MEMORY MAP

10

!- /-I!

L_-±-W:
, pi ! [E¢[~

I' 'f __ ...!f
--

.-H ' , ,
i , I It · , ,

- - -r:
I I

I

COLUMN
10

!ttLl

1_--;-1 :..:

-i I -
_ L

i -
- ;

+

i

_..J..

-I -

137

3D

,...

I

--
-- 1-'

I

i

39

sms
I

f
56m

10 ~

10

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions that are intrinsic to 64 BASIC may be calculated as follows:

FUNCTION

SECANT

COSECANT

COTANGENT

INVERSE SINE

INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT

HYPERBOLIC SINE

HYPERBOLIC COSINE

HYPERBOLIC TANGENT

HYPERBOLIC SECANT

HYPERBOLIC COSECANT

HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE

INVERSE HYPERBOLIC COSINE

INVERSE HYPERBOLIC TANGENT

INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

INVERSE HYPERBOLIC COTANGENT

BASIC EQUIVALENT

SEC(X)=1/COS(X)

CSC(X) = 1/SIN{X)

COT{X)=1/TAN(X)

ARCSIN(X)=ATN(X/SQR(-X'X+1))

ARCCOSfX}= -ATN<X/SQR

(-X'X+1)) + ff/2

ARCSEC(X) = ATN(X/SQR(X' X - 1))

ARCCSC(X) = ATN(XJSQR(X* X - 1))

+ (SGN(X)-TJr/2)

ARCOT(X) = ATN{X) + Jt/2

SINH(X)b (EXP(X) - EXP(- X))/2

COSH(X) = (EXP(X) + EXP(- X))/2

TANH(X) = EXP(- X)/(EXP(x) + EXP

SECH(X) = 2/(EXP(X) + EXP(- X)}

CSCH(X) = 2/{EXP(X) - EXP(- X))

COTH(X)=EXP(-X)/(EXP(X)

-EXP(-X))"2+1

ARCSINH(X)= LOG(X + SQR(X'X+ 1))

ARCCOSH(X) = LOG(X + SQR(X" X - 1))

ARCTAN H(X) = LOGf(l + X)/(1 - X))/2

ARCSECH(X) - LOG((SQR

ARCCSCH(X)= LOG((SGN(X)"SQR

(X*X+1/x)

ARCCOTH(X)=LOG((X+1)/{X-1))/2

-

138

—

APPENDIX H
DERIVING MATHEMATICAL FUNCTIONS

Functions that are intrinsic to 64 BASIC may be calculated as follows:

FUNCTION BASIC EQUIVALENT

SECANT SEqX) = lICOS(X)
COSECANT csqX) = 1ISIN(X)
COTANGENT COT(X) = 11T AN(X)
INVERSE SINE ARCSIN(X)= ATN(XlSQR(- X· X+ 1))
INVERSE COSINE ARCCOS(X) = - ATN(XlSOR

(-X·X+1)) + }[12
INVERSE SECANT ARCSEqXI=ATN(XlSQR(X ·X - 1))
INVERSE COSECANT ARCCSqX) = ATN(XlSQR(X · X - 1))

+ (SGN(X) - 1· }[12)
INVERSE COTANGENT ARCOT(X) = ATN(X) + }[12
HYPERBOLIC SINE SINH(XI = (EXP(X) - EXP(- X))12
HYPERBOLIC COSINE COSH(X) = (EXP(X) + EXPI- X))12
HYPERBOLIC TANGENT TANH(X)= EXP(- XIIIEXP(xl+ EXP

1- x))"2+ 1
HYPERBOLIC SECANT SECH(X) = 2J(EXP(X) + EXP(- X))
HYPERBOLIC COSECANT CSCH(X) = 2J(EXP(X) - EXP(- X))
HYPERBOLIC COTANGENT COTH(X) = EXP(- X)I(EXPIX)

- EXP(- X))·2+ 1
INVERSE HYPERBOLIC SINE ARCSINHIX)= LOG(X+ SQRIX· X+ 1))
INVERSE HYPERBOLIC COSINE ARCCOSH(X)= LOG(X + SQRIX · X - 1))
INVERSE HYPERBOLIC TANGENT ARCTANHIX) = LOGI(1 + X)111 - X))12
INVERSE HYPERBOLIC SECANT ARCSECHIX) = LOG((SQR

(- X· X+ 1)+ 1/X)
INVERSE HYPERBOLIC COSECANT ARCCSCHIX) = LOGI(SGN(X)" SQR

IX · X+ 11x)
INVERSE HYPERBOLIC COTANGENT ARCCOTHIX) = LOG(IX + 1)I(X - 1))1 2

138

_

APPENDIX I

PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed to show you what connections may be made to

the Executive 64.

1) Game I/O

2) Cartridge Slot

3) Audio/Video

4) Serial I/O (Disk/Printer)

5) Modulator Output

6) User Port

Control Port

Pin

1

2

3

4

5

6

7

8

9

1

Type

JOYAO

JOYA1

JOYA2

JOYA3

POT AY

BUTTON A/LP

+ 5V

GND

POT AX

Note

MAX. 50mA

Control Port

Pin

1

2

3

4

5

6

7

8

9

2

Type

JOYB0

JOYB1

JOYB2

JOYB3

POT BY

BUTTON B

+ 5V

GND

POT BX

Note

MAX. 50mA

139

v

v

v

v

v

APPENDIX I
PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed to show you what connections may be made to
the Executive 64.

1) Game 1/0
2) Cartridge Slot
3) AudiolVideo

Control Port 1

Pin Type
1 JOYAO
2 JOYAl
3 JOYA2
4 JOYA3
5 POT AY
6 sunON A1LP
7 +5V
8 GND
9 POT AX

1 2 3 4 5
o 0 000

o 0
6 7

Control Port 2

Pin
1
2
3
4
5
6
7
8
9

o 0
8 9

Type
JOYSO
JOYSI
JOYS2
JOYS3
POT BY

sunON S
+5V
GND

POT SX

4) Serial 1/0 (Disk/Printer)
5) Modulator Output
6) User Port

Note

MAX. 50mA

Note

MAX. 50mA

139

Cartridge Expansion Slot
Cartridge Expansion Slot

Pin

1

2

3

4

5

6

7

8

9

10

11

Pin

A

B

C

D

E

F

H

J

K

L

M

Type

GND

+ 5V

+ 5V

IRQ

R/W

Dot Clock

I/O 1

GAME

EXROM

I/O 2

ROML

Type

GND

ROMH

RESET

NMI

S02

A15

A14

A13

A12

A11

A10

Pin

12

13

14

15

16

17

18

19

20

21

22

Pin

N

P

R

S

T

U

V

w

X

Y

z

Type

BA

DMA

D7

D6

D5

D4

D3

D2

D1

DO

GND

Type

A9

A8

A7

A6

A5

A4

A3

A2

A1

A0

GND

Z r XWVUTSOPNMIKJHF EDCBA

140

Cartridge Expansion Slot Cartridge Expansion Slot

Pin Type Pin Type

1 GND 12 BA
2 +5V 13 DMA
3 +5V 14 D7
4 IRQ 15 D6
5 R/W 16 D5
6 Dot Clock 17 D4
7 I/O 1 18 D3
8 GAME 19 D2
9 EXROM 20 D1

10 I/O 2 21 DO
11 ROML 22 GND

Pin Type Pin Type

A GND N A9
B ROMH P A8
C RESET R A7
D NMI S A6
E S 02 T AS
F A15 U A4
H A14 V A3
J A1 3 W A2
K A12 X A1
L All Y AO
M Al0 Z GND

I :::::::::::::::::::::: I
I Y x W \I U T S"';> N III L!(J H F E DC B A

140

Audio/Video: 8 Pin

Pin

1

2

3

4

5

6

7

8

Type

LUM/SYNC

GND

AUDIO OUT

VIDEO OUT

AUDIO IN

COLOR OUT

NC

NC

Note

Luminance/SYNC (monocio) output

Composit signal output

Chroma signal output

No connection

No connection

Serial I/O

w

Pin

1

2

3

4

5

6

Type

SERIAL SRQIN

GND

SERIAL ATN IN/OUT

SERIAL CLK IN/OUT

SERIAL DATA IN/OUT

RESET

141

'-" AudiolVideo' 8 Pin

Pin Type Note

1 LUM/SYNC Luminance/SYNC (monoclo) output
2 GND
3 AUDIO OUT
4 VIDEO OUT Composit signal output

v 5 AUDIO IN
6 COLOR OUT Chroma signal output
7 NC No connection
8 NC No connection

v

v

v

Serial I/O

Pin Type

1 SERIAL SRQIN
2 GND
3 SERIAL ATN IN/O UT
4 SERIAL CLK IN/OUT
5 SERIAL DATA IN/OUT
6 RESET

v

v

v

v

141

v

User I/O

Pin

1

2

3

4

5

6

7

8

9

10

11

12

Pin

A

B

C

D

E

F

H

J

K

L

M

N

Type

GND

+ 5V

RESET

CNTl

SP1

CNT2

SP2

PC2

SER. ATN IN

9 VAC

9 VAC

GND

Type

GND

FLAG2

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

PA2

GND

Note

MAX. 100mA

MAX. 100mA

MAX. 100mA

Note

~

-

-

—

12 3 4 5 6 7 9 10 11 12

ABCDEFHJKLMN

142

User 1/0

Pi n Type Note

1 GND
2 +5V MAX.100mA
3 RESET
4 GNTI
5 SP1
6 GNT2
7 SP2
B PG2
9 SEA. ATN IN

10 9 VAG MAX.100mA
11 9 VAG MAX. 100mA
12 GND

Pin Type Note

A GND
B FLAG2
G PBO
D PB1
E PB2
F PB3
H PB4
J PB5
K PB6
L PB7
M PA2
N GND

1 2 3 .. 5 6 7 8 9 10 11 12

::::::::::::
ABC 0 E F H J K L M N

142

APPENDIX J

PROGRAMS TO TRY

We've included a number of useful programs for you to try with your 64.

These programs will prove both entertaining and useful.

100 pr i nffljotto J i «• butterf i *l d"

120 inpuf'Puant instructions";z*:ifasc<zS>=7SgDto250

130 prinf'Ptry to gue-ss the mystery 5-letter word"

140 pr i nf'Syou must guess on ly I egal 5-letter"

150 prinfwords, too..."

160 pr i nf'you will be- told the number of matches"

170 pr i nt"(or 'jots') of your guess."

130 prinf'Phint: the trick is to vary slightly"

190 print" from one guess to the next; so that"

200 print" if you guess 'batch' and get 2 jots"

210 print" you might try 'botch' or 'chart'"

220 print" for the ne>:t guess..."

250 data bxbsf,ipccz,dbdif,esfbefpggb«

260 data hpshf, i bud i , d.ju j « , kpmmz , Ibzbl

270 data sbkbi,infwfm,njnjd,boofy,qjqfs

230 data rvftu,sjwfs,gsfttrpuufs.fwfou

29 0 data ;<fbuf,fyupni,nvtiz,afcsb,gjaaz

300 data uijdl.*svol,gMpp*fUjhfsrgblfs

310 data cppui , inzjoh,trvbu,hbvaf,pxjoh

320 data uisff,tjhiu,bynft,hsvnq,bsfob

330 data rvbsu,dsffq,cfmdi,qsftt,tqbsl

3A0 data sbebs.svsbmrtnfinnifgsp>:or*s.jgu

■100 n = 50

■ilO dim n$(n),z<5),y(5)

420 for j = lton:readn«(j):ne>:tj

430 t=ti

440 t=t/1000:ift>=lthengoto44Q

450 z=rnd(-t)

500 g=O:nt=n*(rnd(l)*n+l)

510 print "Pi have a five letter word:":ifr:0goto560

520 print "guess (with legal words)"

530 print "and i'll tell you haw many"

540 print "'jots', or matching letters,"

550 pr i nt "you have...."

560 g=g+l:input "your word";zS

570 if len < z*) '■ ■ Sthenpr i nf'you must guess a

5-letter word!":goto560

5S0 v=0:h=0:m=0

590 fDrj=lto5

600 z = asc(«id«(zi,j,l)):y = asc(inid«<nt,j ,1))-1: ify = 64theny = 9

610 i f z*.65orz>90thenpr i nt" that' s not a uord ' " : goto560

620 ifz=65orr=69orz=73orz=79ors=S5or2=S9thenv=v+l

630 i f z = >jthenin = m*l

640 z< j)=z:y(j)=y:nextj

650 i fm = 5gotoS00

660 i f v = 0orv=5thenc-r i nt "come on..what kind of

a uord is that?":goto560

670 for j=lto5:y=y(j>

6S0 for k = lto5: i fy = z(k)thenh = h+l: = (k)=0:goto700

690 ne>:t k

700 next j

710 pr intliaBDDDUDUDDBBDHDDOaDD";H ; "JOTS"

720 i fg<30goto560

730 pr i nt " ! ' d-bet tf-r tell you., word was '";

143

v

v

v

v

APPENDIX J
PROGRAMS TO TRY

We've included a number of useful programs for you to try with your 64.
These programs will prove both entertaining and useful.

100 Dr i nt"~jctto jiM butt~rfi~ld'l
120 input"f' wanl i n st r uctions";o::i : i fasc(;;:t) =78got o250
130 print"~try to gu~ss th~ Myst~ry 5-\~tt~r word"
140 print "~you must 9u~ss only l ~gal 5-1.tt~r"
150 print"words, too ••• •·
160 print"you will b~ told th+ nUffib~r Df matches"
170 print"(or ' Jots ') of your gu+ss."
180 prlnt"flhlnt: UII;' trid. i s to lIarl,} sligrltly"
190 print" frOM on~ gu~ss to th~ n~ x t; so that "
200 print" if 'jOll gu~ss 'balet-,' and get 2 jots"
210 print" you Might try 'bolch' o r 'char t' "
220 print" fo r th~ n e xt gU~5S • •• "
250 data bxbsf.rpccz.dbdif,esfbe,pqgbM
260 data hpshf. ibud i ,d j l.l j llll,kp rflll'l:L., It,zb\
270 data sbkbi ,llIIfwfm.njn j d,boofy , qjqfs
~SO data r vft u,s j wfs,qsftt,puufs . fwfou
290 data wfb wf,fyupm,nvt fz,afcsb,g j aaz
300 data u i .ldl.~svol,gMpp~,u J hfs.gblfs
310 data cPPu ~.M z j oh,tr v bu.hbvaf,p x joh

320 data ulsff,tjhiu . bYhft.hsvnq,bsfob
330 data rvbsu.dsff':',cfMdi ,qsftt.tqbsl
340 data sb~bs.svsb~,tn f~M,gsp x O,e Sj 9U

400 n=50
410 d i M nS (n) ,~ (5),y (5)

420 for j=lt on:r~a dnt(j) :n~):tj

430 t=t i
440 t=t / 1000:ift > = lth~ng ot o44 0
450 z=rnd(-tl
500 g=0 :nt =n t Crnd(1 1*n+ l)
510 print " ~i hav~ a f iv p I~tt~r word :": ifr ~ Ogot oS60
520 print "gu~ ss (wit h l ~ga t wor ds)"
530 print "a nd i'li tell you h ow Many"
540 print " ' jots', or matchfng l~tt~rs, "

550 print " you have "
560 g=g+l:input " you r word "; zS
570 If \.n(zS) ~ > 5thpn pr ln t " you must gu~ss a

S-l~tt~r word ~" :gotoS 60

S80 v=O:h=O:m=O
590 forJ=lto5
600 z=asc (~id S (z ' .j,l» : y=asc(0Id S (n S ,j.l 1)-1:ify = 64th~ny = 90

610 Ifz (650r= > 90th~npr l nt "that·s not a word ~" :goto560

620 if= =6Sor==690rz= 7 3arz=790r==8Sorz=89thpnv=v+l
630 i f==yth~nM=~+l

640 : <j)= z:'::I(j) =y:n. :< tj
6S0 I fl,.::z5gotoSOO
660 .fv=Oarv=5thenpri nt "coM O? an .. what kInd a f

a ward i s that ?" : gato56 0
670 fo r j=lto5 :y= ~(j)

680 fo r k=lto5:if4=Z(kltl"l.nh=~,+1::<".) = O :got o700

6 9 0 nO?'): t k
70 0 n~ x t j
7 10 prlnt " CDDDDUDUDDDDDDDDODDD ";H; "J OTS "
72 0 I fg <30goto560
7 30 prtnt" I 'd . t,o?tt~r tpll yo u . . word was

143

~

7 40 forj-Ho5:pr i ntchr* (y (j)) ; :n*>:tj

750 pr mt :gotoS10

300 pr i nf'you got it in only"j g;"guesses."

S10 in puf'S another word" gz*

S20 r=l : i f asc (z«)'.> 7Sgo toSOO

1 re in * * * stouenc?

2 ram

3 r*w *** from pet user group

4 re la * * * 5of tusre •? >: c h a n >j e

5 r^-ni * " co t'O:: 371

6 r •=■ m s K « man tgomeruv i 11 © . pa 1S 9 3 6

7 re in

bO dim a$(26>

100 r*a"abcd«-fghi i k linnor-qrstuvw:;u~"

110 zl$ = "12345678901234t.67S90123456"

200 print"3PPenter length of string to be ss-aue-ncedP"

220 incut " in 3 >; i in u m length 15 26 "-. s'/.

2SQ if sm/.<A or eX 26 then 200

2 4 0 s=sX

300 for i=l to 5 —

310 a*< i)=mid«(zt.i,1)

320 next i m

400 rein randomize string

420 for i=l to 5 fM

430 k=int(rnd(1>»S+1)

440 tt=st(i) —

450 at<i)=at(k>

470 next i

480 gosub ?50 —

595 t=0

600 rein reverse substr i no r"»

6 05 t=i+l

610 input "Now many lo r*-v>?r$t? ";rX ,-«,

620 i f rX-0 gotu 900

630 if rZ>0 and rX =s ooto 650 ^

640 orint "must be between 1 and ";s: goto 610

650 r=int(rX/2) ^

660 for 1=1 to r

670 tt = st< i) -.

6S0 att i >=3*(r%-i+i>

6V0 at Cr%-i + 1 J=lt ^

700 ne^.t i

750 gosub 950 ^

^00 c=l: for I»2 to s

£10 if 3*(i)>3t(i-1) goto SiO

S20 c=0

S30 ne;:t i

840 if c=0 goto 600

S50 crint "0gou did it in ";t;" tries"

V00 re« check for another game

910 incut "flwant lo day again "; ut

y20 if left* (ut. 1) = "ij" or y«="ak" or y* = "l" goto 200

930 end

950 print

960 print left»(zlt.5l

970 for i=l to s: print 8*(iJiine>lt i

9S0 print "B"

9V0 return (^

This program touitesy of Gene Deals l^,

144

740 fo r J=lloS :prlnlchr i (yeJ» ;: n@ x t J
750 prlnt "" ':golo810
s ao print"ljou qot It I n on l 'J ";g;",]W?Ss ... s . "
3 10 Input"~anoth~ r ~ord " ;=i
82 0 r=l:i f asc (zt) ~ } 78goto5 00

2
3
4

6

r€'tll
r€-tll
r"'H1
r"'/Il
r @nI
r ... tll

7 rE'(11

"'''':0-
... ,. ..
- > -...
,,~ ..

SE'OUE'nc ...

f rO DI r'''' t. u s ... r orout,
soft~ar ... @):c:t,an'1o<-
t· o l ,o:: 371
mont gOtA",r lJ v I I 1 0:- • 00

~O d I to a t e 26)

18936

100 = S="abcdE'fg h i if: It(j n or,qrsl u v ,", ~:u=''

11 0 zIS =" 1 234567890 1 ~3 4 ~67390 1 ~3456"

~OO prlnt"'~~€-nt -? r ' ... ngth of s trIng t o bE' s ... a u ~nCE'd~"
~20 int,ut "Ma >: IIIlU tll l ... nath I S 26 " i s?'
~30 If s% < l or s% ~ ~6 th ... n 200
2 40 S= 57-
300 f or I =1 to s
3 10 a"I)=toIJt.(::t . l . l)
320 n ... ::t
4 00 r eto randOtol ::e s t r I ng
4:00 f o r 1=1 to s
430 f: =lntC rnd (l)rs +l)
44 0 t"= a t (I)
450 ate I)=ato.)
1,60 a to.)=t t
470 nO? i:t I
1,80 gasul, 'f~O

~Y;:j l;O
600 r ... m r ... v ... rs ... substrIng
605 t=t. +l
6 10 I nt,ut "IIOw ',lan ';! 1..0 r' €-v",rs-? " ; riC
620 If r% =O goto 900
630 If r7. ~ O a nd riC , =s goto 650
640 orlnt "toust b~ bet w n 1 and "is : go to 6 10
650 r=lnt(rZ /:!)
660 for 1=1 to r
6 70 U =a t e i)
680 at(,)=a i (r7.- 1 +1)
6YO a s (rr.-I+ })=t t
700 n o?), t I
I~{l 90Sll~' "'~O
800 c= l: for I ':~ to s
8 10 If a t (!l >a t.(I - I) goto 8 050
820 c =0
830 n ... ~: t I
8 40 If c =O goto 600
850 p r I nt "~ ~ou did it In "~ i t;" ~ triPS"
YOO r",M cho:-cf: for an oth~r gaM'"
9 10 Input "~~ant to play aga In ";4 '
'120 ' f l ... ft i Cu i.I)="IJ" or 'J t ="I')I-\" or y t =" 1 " ooto ~OO
930 o:-nd
9~0 ,.r I nt
960 print l ~ft t(zIS. s)

'i/o f o r 1= 1 to s : e,rlnt a i (ll ; : n E'>: t I
9BO [,r I nt " fI "
9'10 r ... turn

ThIS pr o ~r im (Oullesy ot G~ne Du ls

144

90 PEM PIRHO t EVBORFD

100 print's a si «j i n ai v\ i 'i n i m n '■

110 PR1HT" ;) i<l 31 I i'l !•_! H i r<_< ''I 1 iig ?.! "

12Q print11 :j m t'j i ;t| aj jj i y :«n i i>j y u

136 PRINT11 a I I I I 1 I I 1 I I 1 ["

140 PRINT" flQ JH IE fPIT IV |UII |0|P!@ J* If"

150 PRINT" p)'H.PhCE' FOR SOLO OF: FOLVPHONIC"

150 PRINT".5J-'F1 ,F3,F5,F7' OCTflVE SELECTION"

170 PRIHT1'H"F2.F4.F£,Fa' MRVEFOPM.iV

l!5i? PR1HT"HRMG Oii - SETTING UP FREQUEHCV TABLE..."

19@ 3=13*4096+1924iOIMF<26>iDIMf C255)

200 FORI=a0TO2SsPOf ES+I -O;NE;:T

210 F 1=7040 :FORI=1 rO2esF':27-I '=F1 *-5. S+30 :F1=F1. '2 f •: l.'ll

220 K*o"iP2W3ERST6V7UI900P@-*£ r"

230 FOPI = 1TOLEN'^ -F ■ :1 ■ FViC f.H tO*> K'*, I > > >■! aHEXT

240 FRINT'TJ

250 FlT=0 jOE=0 : 3U=15 sRE-S :SV=SU+ loi-REtflVafl^-lS+DE:

WV=16sH=0 :M=I :0C=4 iHB=25t;: "->"

2S9 FOR I =9T02 :POKES+5+I *7 -flT*l€+DE :P0KES+6+I*7 - SU+lS-i-RE

270 POKES-t-2-t-£*? -4000HND255 :Fi> ES+3-*-I*7 -4000. r25t" :HEi IT

2S0 POKES+24 . 15sREM+16*-64 :POt ES+23 -7

300 GETR4:IFfl*=""THEH300

310 FR=F> k- fliC'fll) ■ ■.1H:T=V-f7:CF=r5-<-T+4 :1 FFP=ZTWEM500

2-20 POKEs+^vT.ZiPEM FIHI1H DEC'iU'i

325 P0KES+5+T,ZjREM FIMI5H flTT/REL

330 P0KECR,S:P0kECR,3:REM FIX OFF

34Q PCKES+T.FP-HBfIHT-"FR.-'HE.' ;PEH SET LO

3S0 POKES+1 t-T .FP.'HB :PEM SET HI

360 POKES+&+T,SViREM SET DEC. "SUS

365 POKES+S+T,flV;FEM SET flTT/REL

370 P0KECP..MV+1 :F0RIh1T0SO*HTiNEXT
375 POKECR,WV:REH PULSE

3S0 IFP=1THEHV=V+1:IFV=3THENV=0

400 GOTO 300

500 IFhJ="S"THE1 !E-1=1 :0C=4 :G0T03S0

5 IR=2!0C=3 :OOTHi 100

M=-1 :0C-2 :OOT03G@

=-8 :OC = l :G0T030G

54@ IFPiS = "3"THEHl-J=0 iWV=lw sG0T0300

530 I FRJ= "K" THEt (Ua I : UV= ?2 : GO TO SCO

559 IFH**"M"THEHW=£:NV=e-4 :G0T030'3

570 IFh-C=" B"THENW=3jUV=!128 : GOTO 500

580 IFR*ss" "THEIiP=l-P :G0T0JO0

590 IFfl*»"3"THEH2S0

500 GOTO 500

:;:■:»-« PPIHT"HIT fl V EV"

S10 L-ETR-t: [FH.r = ""THEIi.5lij :l-iflIT FOP hi I EV

>20 PPIMTftf:RETURN

:NE::T

NOTES:

Line 100 uses (SHIFT CLR(HOME).

(CTRL 91.1CTRL)).(SHIFT B).

Line 150 uses (CRSR DOWN)

Line 240 uses (CRSR UP)

Line 500 uses (11)

Line 510 uses (13)

Line 520 uses (151

Line 530 uses (17)

Line 540 uses (12)

Line 550 uses (II)

Line 560 uses (f6)

Line 570 uses (f8)

Line 590 uses (SHIFT CLR/HOME)

v

v

v

v

v

v

v

v

v

v

v

v

:?(. PHI F-! At '0 f E','E:(IAF'(I

100 PRIIIT " ~ ~ ~J ~J ! ~j ~ ~ I ~I ~ I l ~ ~ i ••
1\(' F'PItIT" ~~ I! I ~ J I H I!.I fit i ~J ~J I I~I .I
120 PRIlIT" :1 {lJ Jlj I H !J i!J I ~J :~ I I!J :'.1 "
1 ~· C' PF.: r tIT" j I I I I I I I I I I I I "
1 ... 0 PPItIT " ;11~' 11·1 IE IF" IT I"'IU I rio IP I(!! I f 1 T"
150 PF~ IHT " .!r ';PH(E ' F(IP ·:;.I)LO OF' POL 'r'F'HOt II (;"
1'::13 PRIIIT" .tVFI.F;:. F5.F:- ' C'CTA\/ E '::·El.ECTII)H"
1:-0 PF:ItIT"!I'F2. r-·\ .Fo:: .FB · 1· IAVEF(,p r'I .~l' ·

1:;0 PR I I/T"HAti(' 011. ';ETTil"::; UP FFEC'U E IIC',' TAE:LE
! ':.n ·;=1~: + -lO :.!.l';+102-1 : [. r,.,F · ';:: '; ,.- : 011-11 ':25:"
200 FOR I =(tT02'3 :F(' f E ·;:· ... r . (1 : 'lE: :T
.:: 10 F 1 = 7" 1)41) : FOP. I"" 1 r02':- : F' :;:.:- - I '=F 1 t 5. :?+ ~:O : F I =F 1. -::: r '- 1/ 1': . : IIE::T
'::1(1 ~: J;= " ('121· ' ::EP,:".T';'r':-I.l1 :.:"X';:'I':! -- io (r"
'::::0 FOP! = I TOLEII-1 r · : 1 ·ff:,(·"lIO .t ' I' r ,r'J · "" t:t tE:: T
~ .. W PRHIT":J
~=.o HT =0 : DE=O : : .1..1<: 1 '3 : FE:.:' : ';'./.,.';:.1. ' + L'; loPE : A '.,' ".HT'" 16+C'E :

(·IV = I';' : ! j=O : 1'1 ", i : 1)(:::4 : L;E:=': ':..:: : .:-'

~.:. O FOR! "OT ')2 : F (lIE ':: - ,:.+ I t 7 . riT t I';' .. DE : POLE ': ... 6+ I ;. 7 ' :: I) " l';.,F E
: 71) POkE": ';:': .,. I + 7 • 4(u)(,t=it 10255 : POI E'; ... ;:.,. I .. :- • 4(\(":0. ' '::50::: : I IE: :T
'=: G~ ~) PQKE·:: 4 • 1 '5 : PEr·l ~ 1 .; ,:: .~ : F 0 1 E';:. +.=:-::: • 7
:;:00 (,ETA t : I FAr"." "THEil:'':'')
3 1') FR",F ' K' ~SC · A.t: , . '. 'H : T = 7 : CF' .. ·; .. T \ : J F FF' ::::THEII':.('O
:;:.~O POKE:c_ .. .£ . .. T ,: : FE!,' F r 1/ I ·;. H DEC. ',,: u·;
3~5 ?OI'r; .. 5· .. T .: : ?El-l F It I r ·::.H ATT. '!='EL
::::0 POKE (P ,:::: : POh.EC P • (\ : F'EI-! F I:' (IFF
3·'1) POI,tE '; ... T .FP-He· " ltIT· FF! . "HI::· : PEt'l ':::ET LO
J5(' POV E ·: .+l .. T .FP. ·HE: : F·E/-l ·;·ET HI
30;:0 POVE·;+,; ... T . ·3·· ... : FEtl ;ET DE':. ":;1)-;
>;-5 ;::")1 E·;+5 ... T .1'1'./ : FElt ': ET ATT. 'FEL
?7(1 POt E CP .ltl'· ... + 1 : F (lr. I", 1 T050 + HT : t IE::T
;'75 P')I E(P. J..j'·/ :FEt-l FI)L': E
:'::::1) I F ? = 1 THEtl'·/ ·' ~ 1 : ! r '· . .'", ~:THEII'.,i= ')

.11)(, I:;OT(' :;;'(11)

5(11) IFA ..: = " ii " THE I 11'1 = 1 : (n: ",4 : (·(lTI):2(")
51 (. J FA:t= " ~ " THEI Ht;.:. : (n: :=:.~ : : (,OTI): 00
,:.~(\ J FA.!:" II" THEI If·I=·1 : ,)(::.=: : (·OTI)~ ('0:'
'3:::0 I FA:t;;"II"TI-IEtU·l ",·; : 0)(,:, [: (,')T');'(":'
':.-I\) I FAx",, " !t" THEt n-l=~:' :~J''''= i':· : (.O T'):; ,:.,=.
55(' IFAI=" .\:"T I-I E tH I,. l : l l ·.'=:2 : (.o r .:I:;·(Il)
5-=0 IFH.r= " ~" T J-. E t!Ll =':: ; 1·\'/= ':: .. : ':'('j.:.:;.:,,:o
':,";"0 1 F~ r= " tI " THEtal= :; : \·1\·' = i ,:: .3 : (.I)TO:<: O:II)
5'~IJ rFA I:::" "THEliP ",I-P : (,I)T':':.(u)
'3:: ... :. I FA.r o>" ;]" T!1Et I~ ('(o

~ .• :1\) ':.OT(' ~:(.n
:.:.>:. P~· ttIT"HIT ~ I E',"
:;: \ 1) ('E TI;~ : rF~l.r", ""jHE!;;I':' : I·j "';iT F('F ~ , j E'?'
-;'::0 F·PIHT,.; . : f.ETI .IFil

NOTES:
Line 100 uses (S H IFT CLA/HOME).
(C TAL 9).(C TAL)).(SHIFT B).
Line 150 uses (CASA DOWN)
Line 240 uses (CASA UP)
Line 500 uses (11)
Line 510 uses (13)
Line 520 uses (15)

Line 530 u ses (17)
Line 540 u ses (12)
Line 550 uses (1 4)
Line 560 u ses (16)
Li ne 570 uses (18)
Line 590 uses (S HIFT CLA/HOME)

145

APPENDIX K

CONVERTING STANDARD BASIC PROGRAMS

TO EXECUTIVE 64 BASIC

If you have programs written in a BASIC other than Commodore BASIC,

some minor adjustments may be necessary before running them on the 64.

We've included some hints to make the conversion easier.

String Dimensions

Delete all statements that are used to declare the length of strings. A state

ment such as DIM AS(IJ). which dimensions a string array for J elements oi

length I, should be converted to the Commodore BASIC statement DIM AS(J).
Some BASICS use a comma or ampersand for string concatenation. Each of

these must be changed to a plus sign, which is the Commodore BASIC

operator for string concatenation.

In Commodore 64 BASIC, the MIDS, RIGHTS, and LEFTS functions are used
to take substrings of strings. Forms such as A$(1) to access the Ith character in

A$, or A$(I.J) to take a substring of AS from position I to J. must be changed as

follows:

Other BASIC Commodore BASIC

A$(l) = XS AS = LEFT$(A$,l-1) + X$+MID$(AS.I + 1)

A$(I.J) = X$ AS = LEFT$(A$,1-1)+X$+MID$(AS,J + 1)

Multiple Assignments

To set B and C equal to zero, some BASlCs allow statements of the form:

10 LET B = C = 0

Commodore BASIC on the 64 would interpret the second equal sign as a

logical operator and set B = -1 If C = 0. Instead, convert this statement to:

10C = 0 : B = 0

Multiple Statements

Some BASICS use a backslash (/) to separate multiple statements on a line.

With Commodore BASIC, separate all statements by a colon (:).

MAT Functions

Programs using the MAT functions available on some BASICS must be

rewritten using FOR . . . NEXT loops to execute properly.

146

APPENDIX K
CONVERTING STANDARD BASIC PROGRAMS
TO EXECUTIVE 64 BASIC

If you have programs written in a BASIC other than Commodore BASIC,
some minor adjustments may be necessary before running them on the 64.
We've included some hints to make the conversion easier.

String Dimensions
Delete all statements that are used to declare the length of strings, A state,

ment such as DIM A$(I ,J), which dimensions a string array for J elements of
length I, should be converted to the Commodore BASIC statement DIM AS(J),

Some BASICs use a comma or ampersand for str ing concatenation, Each of
these must be changed to a plus sign, wh ich is the Commodore BASIC
operator for string concatenation.

In Commodore 64 BASIC, the MIDS, RIGHTS, and LEFTS functions are used
to take substrings of strings, Forms such as AS(1) to access the Ith character in
A$, or A$(I ,J) to take a substring of A$ from position I to J, must be changed as
follows:

Other BASIC
A$(I) = X$
A$(I,J) = X$

Commodore BASIC
AS = LEFT$(A$,1- 1)+X$+MI D$(AS,I+1)
A$ = LEFT$(A$,1- 1)+ X$+ MID$(A$,J + 1)

Multiple Assignments
To set B and C equal to zero, some BASICs allow statements of the form :

10 LET B = C = 0

Commodore BASIC on the 64 would interpret the second equal sign as a
logical operator and set B = - 1 if C = 0, Instead, convert th is statement to:

10 C = 0: B = 0

Multiple Statements
Some BASICs use a backslash (/) to separate multiple statements on a line.

With Commodore BASIC, separate all statements by a colon (:).

MAT Functions
Programs using the MAT funct ions available on some BASICs must be

rewrillen using FOR ... NEXT loops to execute properly.

146

APPENDIX L

ERROR MESSAGES

This appendix contains a complete list of the error messages generated by

the 64. with a description of causes.

BAD DATA String data was received from an open file, but the program was ex

pecting numeric data.

BAD SUBSCRIPT The program was trying to reference an element of an array

whose number is outside of the range specified in the DIM statement.

BREAK Program execution was stopped because you hit the STOP key.

CAN'T CONTINUE The CONT command will not work, either because the pro

gram was never RUN. there has been an error, or a line has been edited.

DEVICE NOT PRESENT The required I/O device was not available for an OPEN,

CLOSE, CMD, PRINT#, INPUT#. or GET#.

DIVISION BY ZERO Division by zero is a mathematical oddity and not allowed.

EXTRA IGNORED Too many items of data were typed in response loan INPUT

statement. Only the first few items were accepted.

FILE NOT FOUND No file with that name exists.

FILE NOT OPEN The file specified in a CLOSE, CMD. PRINT#, INPUTS, or

GET#, must first be OPENed.

FILE OPEN An attempt was made to open a file using the number of an already

open file.

FORMULA TOO COMPLEX The string expression being evaluated should be
split into at least two parts for the system to work with, or a formula has too

many parentheses.

ILLEGAL DEVICE NUMBER Occurs when you try to access a device illegally

(e.g.. LOADing from keyboard, screen, or RS-232C).

ILLEGAL DIRECT The INPUT statement can only be used within a program, and

not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a function or statement

is out of the allowable range.

LOAD There is a problem with the program on disk.

MISSING FILE NAME LOADs and SAVEs from the serial port (e.g., the disk) re
quire a file name to be supplied. Key in the file name.

NEXT WITHOUT FOR This is caused by either incorrectly nesting loops or hav

ing a variable name in a NEXT statement that doesn't correspond with one in a
FOR statement.

NOT INPUT FILE An attempt was made to INPUT or GET data from a file which
was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to a file which was
specified as input only.

147

v

v

v

v

v

v

APPENDIX L
ERROR MESSAGES

This appendix contains a complete list of the error messages generated by
the 64, with a description of causes.

BAD DATA String data was received from an open file, but the program was ex·
pecting numeric data.

BAD SUBSCRIPT The program was trying to reference an element of an array
whose number is outside of the range specified in the DIM statement .

BREAK Program execution was stopped because you hit the STOP key.

CAN'T CONTINUE The CONT command wi ll not work, either because the pro·
gram was never RUN , there has been an error, or a line has been edited.

DEVICE NOT PRESENT The required 110 device was not available for an OPEN,
CLOSE, CMD, PRINT#, INPUT#, or GET#.

DIVISION BY ZERO Division by zero is a mathematical oddity and not allowed.

EXTRA IGNORED Too many items of data were typed in response to an INPUT
statement. Only the first few items were accepted.

FILE NOT FOUND No file with that name exists.

FILE NOT OPEN The fi le specified in a CLOSE, CMD, PRINT#, INPUT#, or
GET#, must lirst be OPENed.

FILE OPEN An attempt was made to open a file using the number of an already
open file.

FORMULA TOO COMPLEX The string expression being evaluated should be
split into at least two parts for the system to work wi th, or a formula has too
many parentheses.

ILLEGAL DEVICE NUMBER Occurs when you try to access a device illegally
(e.g., LOADing from keyboard , screen, or RS·232C).

ILLEGAL DIRECT The INPUT statement can only be used wi th in a program, and
not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a function or statement
is out of the allowable range.

LOAD There is a problem with the program on disk.

MISSING FILE NAME LOADs and SAVEs from the serial port (e.g., the disk) reo
quire a file name to be supplied. Key in the fil e name.

NEXT WITHOUT FOR This is caused by either incorrectly nesting loops or hav·
ing a variable name in a NEXT statement that doesn't correspond wit h one in a
FOR statement.

NOT INPUT FILE An attempt was made to INPUT or GET data from a file which
was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT data to a file which was
spec if ied as input only.

147

OUT OF DATA A READ statement was executed but there is no data left

unREAD in a DATA statement.

OUT OF MEMORY There is no more RAM available for program or variables.

This may also occur when too many FOR loops have been nested, or when

there are too many GOSUBs in effect.

OVERFLOW The result of a computation is larger than the largest number

allowed, which is 1.70141884E+3B.

REDIM'D ARRAY An array may only be DIMensioned once. If an array variable is

used before that array is DIM'd, an automatic DIM operation is performed on

that array setting the number of elements to ten, and any subsequent DIMs will

cause this error.

REDO FROM START Character data was typed in during an INPUT statement

when numeric data was expected. Just re-type the entry so that it is correct, and

the program will continue by itself.

RETURN WITHOUT GOSUB A RETURN statement was encountered, and no

GOSUB command has been issued.

STRING TOO LONG A string can contain up to 255 characters.

7SYNTAX ERROR A statement is unrecognizable by the 64. A missing or extra

parentheses, misspelled keywords, etc.

TOO MANY FILES You tried to OPEN more than 10 files at one time.

TYPE MISMATCH This error occurs when a number is used in place of a string,

or vice-versa.

UNDEF'D FUNCTION A user defined function was referenced, but it has never

been defined using the DEF FN statement.

UNDEF'D STATEMENT An attempt was made to GOTO or GOSUB or RUN a

line number that doesn't exist.

VERIFY The program on disk does not match the program currently in memory.

148

OUT OF DATA A READ statement was executed but there is no data left
unREAD in a DATA statement.

OUT OF MEMORY There is no more RAM available for program or variables.
This may also occur when too many FOR loops have been nested, or when
there are too many GOSUBs in effect.

OVERFLOW The result of a computation is larger than the largest number
al lowed, which is 1.70141884E+ 38.

REDIM'D ARRAY An array may only be DIMensioned once. If an array variable is
used before that array is OIM 'd, an automatic DIM operation is performed on
that array sett ing the number of elements to ten, and any subsequent DIMs will
cause this error.

REDO FROM START Character data was typed in during an INPUT statement
when numeric data was expected. Just re·type the entry so that it is correct, and
the program will continue by itself.

RETURN WITHOUT GOSUB A RETURN statement was encountered, and no
GOSUB command has been issued.

STRING TOO LONG A string can contain up to 255 characters.

?SYNTAX ERROR A statement is unrecognizable by the 64. A missing or extra
parentheses, misspelled keywords, etc.

TOO MANY FILES You tried to OPEN more than 10 files at one time.

TYPE MISMATCH This error occurs when a number is used in place of a string,
or vice-versa.

UNDEF'D FUNCTION A user defined function was referenced, but it has never
been defined using the DEF FN statement.

UNDEF'D STATEMENT An attempt was made to GOTO or GOSUB or RUN a
line number that doesn't exist.

VERIFY The program on disk does not match the program currently in memory.

148

APPENDIX M

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, and the values

to be POKEd into the HI FREQ and LOW FREQ registers of the sound chip to

produce the indicated note.

MUSICAL

0

1

2

3

4

5

6

7

8

9

10

11

16

17

18

19

20

21

22

23

24

25

26

27

32

33

34

35

36

37

38

39

40

41

42

43

48

NOTE

C-0

C#-0

D-0

D#-0

E-0

F-0

F#-0

G-0

G#-0

A-0

A#-0

B-0

C-1

C#-1

D-1

D#-1

E-1

F-1

F#-1

G-1

G#-1

A-1

A#-1

B-1

C-2

C#-2

D-2

D#-2

E-2

F-2

F#-2

G-2

G#-2

A-2

A#-2

B-2

C-3

268

284

301

318

337

358

379

401

425

451

477

506

536

568

602

637

675

716

758

803

851

902

955

1012

1072

1136

1204

1275

1351

1432

1517

1607

1703

1804

1911

2025

2145

OSCILLATOR FREQ

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

3

3

3

3

3

4

4

4

4

5

5

5

6

6

7

7

7

8

12

28

45

62

81

102

123

145

169

195

221

250

24

56

90

125

163

204

246

35

83

134

187

244

48

112

180

251

71

152

237

71

167

12

119

233

97

149

u

APPENDIX M
MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, and the values
to be POKEd into the HI FREQ and LOW FREQ registers of the sound chip to
produce the ind icated note.

MUSICAL NOTE OSCILLATOR FREQ

0 C·O . 268 1 12
1 C#·O 284 1 28
2 0 ·0 301 1 45
3 0 #·0 318 1 62
4 E·O 337 1 81
5 F·O 358 1 102
6 F#·O 379 1 123
7 G·O 401 1 145
8 G#·O 425 1 169
9 A·O 451 1 195

10 A#·O 477 1 221
11 B·O 506 1 250
16 C· l 536 2 24
17 C#·1 568 2 56
18 0 ·1 602 2 90
19 0 #·1 637 2 125
20 E·l 675 2 163
21 F·l 716 2 204
22 F#·l 758 2 246
23 G·l 803 3 35
24 G#·l 851 3 83
25 A· l 902 3 134
26 A#· l 955 3 187
27 B·l 1012 3 244
32 C·2 1072 4 48
33 C#·2 1136 4 11 2
34 0·2 1204 4 180
35 0#·2 1275 4 251
36 E·2 1351 5 71
37 F·2 1432 5 152
38 F#·2 1517 5 237
39 G·2 1607 6 71
40 G#·2 1703 6 167
41 A·2 1804 7 12
42 A#·2 1911 7 119
43 B·2 2025 7 233
48 C·3 2145 8 97

149

MUSICAL

49

50

51

52

53

54

55

56

57

58

59

64

65

66

67

68

69

70

71

72

73

74

75

80

81

82

83

84

85

86

87

88

89

90

91

96

97

98

99

100

101

102

103

104

105

106

NOTE

C#-3

D-3

D#-3

E-3

F-3

F#-3

G-3

G#-3

A-3

A#-3

B-3

C-4

C#-4

D-4

D#-4

E-4

F-4

F#-4

G-4

G#-4

A-4

A#-4

B-4

C-5

C#-5

D-5

D#-5

E-5

F-5

F#-5

G-5

G#-5

A-5

A#-5

B-5

C-6

C#-6

D-6

D#-6

E-6

F-6

F#-6

G-6

G#-6

A-6

A#-6

2273

2408

2551

2703

2864

3034

3215

3406

3608

3823

4050

4291

4547

4817

5103

5407

5728

6069

6430

6812

7217

7647

8101

8583

9094

9634

10207

10814

11457

12139

12860

13625

14435

15294

16203

17167

18188

19269

20415

21629

22915

24278

25721

27251

28871

30588

OSCILLATOR FREQ

8

9

9

10

11

11

12

13

14

14

15

16

17

18

19

21

22

23

25

26

28

29

31

33

35

37

39

42

44

47

50

53

56

59

63

67

71

75

79

84

89

94

100

106

112

119

225

104

247

143

48

218

143

78

24

239

210

195

195

209

239

31

96

181

30

156

49

223

165

135

134

162

223

62

193

107

60

57

99

190

75

15

12

69

191

125

131

214

121

115

199

124

150

MUSICAL NOTE OSCILLATOR FREQ
49 C#-3 2273 8 225
50 0-3 2408 9 104
51 0#-3 2551 9 247
52 E-3 2703 10 143
53 F-3 2864 11 48
54 F#-3 3034 11 218
55 G-3 3215 12 143
56 G#-3 3406 13 78
57 A-3 3608 14 24
58 A#-3 3823 14 239
59 8-3 4050 15 210
64 C-4 4291 16 195
65 C#-4 4547 17 195
66 0-4 4817 18 209
67 0#-4 5103 19 239
68 E-4 5407 21 31
69 F-4 5728 22 96
70 F#-4 6069 23 181
71 G-4 6430 25 30
72 G#-4 6812 26 156
73 A-4 7217 28 49
74 A#-4 7647 29 223
75 8-4 8101 31 165
80 C-5 8583 33 135
81 C#-5 9094 35 134
82 0-5 9634 37 162
83 0#-5 10207 39 223
84 E-5 10814 42 62
85 F-5 11457 44 193
86 F#-5 12139 47 107
87 G-5 12860 50 60
88 G#-5 13625 53 57
89 A-5 14435 56 99
90 A#-5 15294 59 190
91 8-5 16203 63 75
96 C-6 17167 67 15
97 C#-6 18188 71 12
98 0-6 19269 75 69
99 0#-6 20415 79 191

100 E-6 21629 84 125
101 F-6 22915 89 131
102 F#-6 24278 94 214
103 G-6 25721 100 121
104 G#-6 27251 106 115
105 A-6 28871 11 2 199
106 A#-6 30588 119 124

150

-

MUSICAL

107

112

113

114

115

116

117

118

119

120

121

122

123

NOTE

B-6

C-7

C#-7

D-7

D#-7

E-7

F-7

F#-7

G-7

G#-7

A-7

A#-7

B-7

32407

34334

36376

38539

40830

43258

45830

48556

51443

54502

57743

61176

64814

OSCILLATOR FREQ

126

134

142

150

159

168

179

189

200

212

225

238

253

151

30

24

139

126

250

6

172

243

230

143

248

46

FILTER SETTINGS

Location

54293

54294

54295

54296

Contents

Low cutoff frequency (0-7)

High cutoff frequency (0-255)

Resonance (bits 4-7)

Filter voice 3 (bit 2)

Filter voice 2 (bit 1)

Filter voice 1 (bit 0)

High pass (bit 6)

Bandpass (bit 5)

Low pass (bit 4)

Volume (bits 0-3)

151

MUSICAL NOTE OSCILLATOR FREQ

107 B·6 32407 126 151
112 C·7 34334 134 30
113 C#·7 36376 142 24
114 D·7 38539 150 139
115 D#·7 40830 159 126

v 116 E·7 43258 168 250
117 F·7 45830 179 6
118 F#·7 48556 189 172
119 G·7 51443 200 243
120 G#·7 54502 212 230
121 A·7 57743 225 143
122 A#·7 61176 238 248
123 B·7 64814 253 46

FILTER SETIINGS

Location Contents

v
54293 Low cutoff frequency (0·7)

54294 High cutoff frequency (0·255)

54295 Resonance (bits 4·7)
Filter voice 3 (bi t 2)
Filter voice 2 (bit 1)

v Filter voice 1 (bit 0)

54296 High pass (bit 6)
Bandpass (bit 5)
Low pass (bit 4)
Volume (bits 0·8)

v

v

v
151

APPENDIX N

BIBLIOGRAPHY

Addison-Wesley

Compute

Cowbay Computing

Creative Computing

Dilithium Press

Faulk Baker Associates

Hayden Book Co.

Howard W. Sams

Little, Brown & Co.

McGraw-Hill

"BASIC and the Personal Computer". Dwyer and

Critchfield

"Compute's First Book of PET/CBM"

"Feed Me, I'm Your PET Computer", Carol

Alexander

"Looking Good with Your PET". Carol Alexander

"Teacher's PET — Plans, Quizzes, and Answers"

"Getting Acquainted With Your VIC 20". T. Hartnell

"BASIC Basic-English Dictionary for the PET",

Larry Noonan

"PET BASIC". Tom Rugg and Phil Feldman

"MOS Programming Manuai", MOS Technology

"BASIC From the Ground Up", David E. Simon

"1 Speak BASIC to My PET". Aubrey Jones, Jr.

"Library of PET Subroutines", Nick Hampshire

"PET Graphics", Nick Hampshire

"BASIC Conversions Handbook, Apple. TRS-80, and

PET", David A. Brain, Phillip R. Oviatt. Paul J.

Paquin, and Chandler P. Stone

"The Howard W. Sams Crash Course in

Microcomputers", Louis E. Frenzel, Jr.

"Mostly BASIC: Applications for Your PET",

Howard Berenbon

"PET Interfacing". James M. Downey and Steven

M. Rogers

"VIC 20 Programmer's Reference Guide", A. Finkel.

P. Higginbottom. N. Harris, and M. Tomczyk

"Computer Games for Businesses, Schools, and

Homes". J. Victor Nagigian, and William S. Hodges

"The Computer Tutor: Learning Activities for

Homes and Schools". Gary W. Orwig, University of

Central Florida, and William S. Hodges

"Hands-On BASIC With a PET". Herbert D.

Peckman

"Home and Office Use of VisiCalc", D. Castlewitz.

and L Chisauki

152

APPENDIX N
BIBLIOGRAPHY
Addison-Wesley

Compute

Cow bay Comput ing

Creative Computing

Dilithium Press

Faulk Baker Associates

Hayden Book Co.

Howard W. Sams

Little, Brown & Co.

McGraw·Hill

" BASIC and the Personal Computer", Dwyer and
Critchfield

"Compute's First Book of PET/CBM"

"Feed Me, I'm Your PET Computer" , Carol
Alexander

" Looking Good with Your PET", Carol Alexander

"Teacher's PET - Plans, Quizzes, and Answers"

"Getting Acquainted Wi th Your VIC 20", T. Hartnell

" BASIC Basic·English Dictionary for the PET" ,
Larry Noonan

" PET BASIC" , Tom Rugg and Ph il Feldman

" MOS Programming Manual", MOS Technology

"BASIC From the Ground Up" , David E. Simon

" I Speak BASIC to My PET" , Aubrey Jones, Jr.

" Library of PET Subroutines" , Nick Hampsh ire

"PET Graphics", Nick Hampshire

" BASIC Conversions Handbook, Apple. TRS·80, and
PET", David A. Brain, Phi llip R. Oviatt , Paul J.
Paquin, and Chandler P. Stone

"The Howard W Sams Crash Course in
Microcomputers", Louis E. Frenzel, Jr.

" Mostly BASIC: Applications for Your PET",
Howard Berenbon
" PET Interfacing", James M. Downey and Steven
M. Rogers
" VIC 20 Programmer's Reference Guide", A. Finkel,
P. Higginbottom, N. Harris, and M. Tomczyk

"Computer Games for Businesses, Schools, and
Homes", J. Victor Nagigian , and Wi lliam S. Hodges

" The Computer Tutor: Learn ing Activities for
Homes and Schools" , Gary W Orwig , University of
Central Florida, and William S. Hodges

" Hands·On BASIC With a PET" . Herbert D.
Peckman

" Home and Office Use of VisiCalc", D. Castlewitz,
and l. Chisauki

t52

Osborne/McGraw-Hill

P. C. Publications

Prentice-Hall

Reston Publishing Co.

Telmas Courseware

Ratings

Total Information

Services

"PET/CBM Personal Computer Guide", Carroll S.
Donahue

"PET Fun and Games". R. Jeffries and G. Fisher

"PET and the IEEE", A. Osborne and C. Donahue

"Some Common BASIC Programs for the PET", L

Poole, M. Borchers, and C. Donahue

"Osborne CP/M User Guide", Thorn Hogan

"CBM Professional Computer Guide"

"The PET Personal Computer Guide"

"The 8086 Book". Russell Rector and George Alexy

"Beginning Self-Teaching Computer Lessons"

"The PET Personal Computer for Beginners", S.

Dunn and V. Morgan

"PET and the IEEE 488 Bus (GPIB)". Eugene Fisher

and C.W. Jensen

"PET BASIC — Training Your PET Computer",

Ramon Zamora, Wm. F. Carrie, and B. Albrecht

"PET Games and Recreation", M. Ogelsby, L

Lindsey, and D. Kunkin

"PET BASIC". Richard Huskell

"VIC Games and Recreation"

"BASIC and the Personal Computer", T. A.

Dwyer, and M. Critchfield

■'Understanding Your PET/CBM. Vol. 1,

BASIC Programming"

"Understanding Your VIC", David Schultz

Commodore Magazines provide you with the most up-to-date information for

your Executive 64. Two of the most popular publications that you should
seriously consider subscribing to are:

COMMODORE — The Microcomputer Magazine is published bi-monthly and is
available by subscription {$15.00 per year. U.S., and $25.00 per year, worldwide).

POWER/PLAY — The Home Computer Magazine is published quarterly and is
available by subscription ($10.00 per year, U.S., and $15.00 per year worldwide).

153

Osborne/McGraw·Hill " PET/CBM Personal Computer Guide", Carroll S.
Donahue

"PET Fun and Games", R. Jeffries and G. Fisher

" PET and the IEEE", A. Osborne and C. Donahue

"Some Common BASIC Programs for the PET", l.
Poole, M. Borchers, and C. Donahue

"Osborne CP/M User Guide" , Thom Hogan
"CBM Professional Computer Guide"

"The PET Personal Computer Guide"

"The 8086 Book" , Russell Rector and George Alexy

P. C. Publications " Beginning Self·Teaching Computer Lessons"

Prentice·Hall "The PET Personal Com puler for Beg inners" , S.
Dunn and V. Morgan

Reston Publishing Co. " PET and the IEEE 488 Bus (GPIB)", Eugene Fisher
and C. W. Jensen

Telmas Courseware
Ratings

Total Information
Services

" PET BASIC - Training Your PET Computer" ,
Ramon Zamora, Wm. F. Carrie, and B. Albrecht

" PET Games and Recreation", M. Ogelsby, l.
Lindsey, and D. Kunkin

" PET BASIC", Richard Huskell

" VIC Games and Recreation"

" BASIC and the Personal Computer", T. A.
Dwyer, and M. Critchfield

" Understanding Your PET/CBM, Vol. 1,
BASIC Programming"

"Understanding Your VIC", David Schultz

Commodore Magazines provide you with the most up·to·date information for
your Executive 64. Two of the most popular publications that you should
seriously consider subscribing to are:

COMMODORE - The Microcomputer Magazine is published bi·monthly and is
available by subscription ($15.00 per year, U.S., and $25.00 per year, worldwide).

POWER/PLAY - The Home Computer Magazine is published quarterly and is
available by subscription ($10.00 per year, U.S., and $15.00 per year worldwide).

153

APPENDIX 0

SPRITE REGISTER MAP

Register #

Dec Hex

0 0

l 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 0

14 E

15 F

16 10

17 11

18 12

19 13

20 14

D87

SOX7

SOY7

S1X7

S1Y7

S2X7

S2Y7

S3X7

S3Y7

S4X7

S4Y7

S5X7

S5Y7

S6X7

S6Y7

S7X7

S7Y7

S7X8

RCB

RC7

LPX7

LPY7

D86

S6X8

ECM

RC6

D85

ssxa

BMM

RC5

D84

S4X8

BLNK

RC4

D83

S3X8

RSEL

RC3

D82

S2X8

YSCL2

RC2

D81

S1X8

YSCL1

RC1

D80

SOXO

SOYO

S1XO

S1YO

S2XO

S2YO

S3XO

S3YO

S4XO

S4YO

S5XO

S5YO

S6XO

S6YO

S7XO

S7YO

S0X8

YSCLO

RCO

LPXO

LPYO

SPRITE 0 X

Component

SPRITE 0 Y

Component

SPRITE 1 X

SPRITE 1 Y

SPRITE 2 X

SPRITE 2 Y

SPRITE 3 X

SPRITE 3 Y

SPRITE 4 X

SPRITE 4 Y

SPRITE 5 X

SPRITE 5 Y

SPRITE 6 X

SPRITES Y

SPRITE 7 X

Component

SPRITE 7 Y

Component

MSB of X

COORD.

Y SCROLL

MODE

RASTER

LIGHT PEN X

LIGHT PEN Y

154

APPENDIX 0
SPRITE REGISTER MAP

Register • Dec He, DBl DM DB5 D84 D53 DB2 DBl DBO

0 0 SOX? SOXO SPRITE 0 X
Component

1 1 SOY7 SOya SPRITE 0 Y
Component

2 2 SIX? SlXO SPRITE 1 X

3 3 SlY? SIYO SPRITE 1 Y

4 4 S2X7 S2XO SPRITE 2 X

5 5 S2Yl S2YO SPRITE 2 Y

6 6 S3X7 S3XO SPRITE 3 X

7 1 S3Y7 S3YO SPRITE 3 Y

B B 54Xl 54XO SPRITE 4 X

9 9 $4Y7 S4YO SPRITE 4 Y

10 A S5Xl S5XO SPRITE 5 X

11 B S5Y7 S5YO SPRITE 5 Y

12 C S6X7 S6XO SPRITE 6 X

13 D 56Yl S6YQ SPRITE 6 y

" E S7X7 S7XO SPRITE 7 X
Component

15 F S7Y? S7YO SPRITE 7 Y
Component

16 10 S7X8 56XB ssxa 54XB S3X8 S2XB SlX8 SOXB MSB 01 X
COORD.

17 11 RCB ECM BMM BLNK ASEL YSCL2 Sell VSCLO Y sCROLL
MODE

lB 12 RCl RGG RC5 RC4 RC3 RC2 RCl RCO RASTER

19 13 lPX7 LPXQ UGHT PEN X ---- -
20 " lPY7 LPYO UGHT PEN Y

154

Register tt

Dec Hex

21 15

22 16

23 17

24 18

25 19

26 1A

27 1B

28 1C

29 1D

30 1E

31 IF

D87

SE7

N.C.

5EXY7

VS13

IRQ

N.C.

BSP7

SCM7

SEXX7

SSC7

SBC7

D86

N.C.

VS12

N.C.

N.C.

D85

RST

VS11

N.C.

N.C.

D84

MCM

VS10

N.C.

N.C.

D83

CSEL

CB13

LPIRQ

MLPi

D82

XSCL2

CB12

ISSC

MISSC

D81

XSCL1

CB11

ISBC

MISBC

D80

SEO

XSCLO

SEXYO

N.C,

RIRQ

MRIRQ

BSPO

SCMO

SEXXO

SSCO

SBCO

SPRITE

ENABLE

(ON/OFF)

X SCROLL

MODE

SPRITE

EXPAND Y

SCREEN

Character

Memory

Interupt

Request's

Interupt

Request

MASKS

Background-

Sprite

PRIORITY

Multicolor

SPRITE

SELECT

SPRITE

EXPAND X

Sprite-Sprite

COLLISION

Sprite-

Background

COLLISION

Register #

Dec

32

3:

34

35

36

37

38

Hex

20

21

22

23

24

25

26

Color

BORDER COLOR

BACKGROUND

COLOR 0

BACKGROUND

COLOR 1

BACKGROUND

COLOR 2

BACKGROUND

COLOR 3

SPRITE

MULTICOLOR 0

SPRITE

MULTICOLOR 1

Register #

Dec

39

40

41

42

43

44

45

46

Hex

27

28

29

2A

2B

2C

2D

2E

Color

SPRITE 0 COLOR

SPRITE 1 COLOR

SPRITE 2 COLOR

SPRITE 3 COLOR

SPRITE 4 COLOR

SPRITE 5 COLOR

SPRITE 6 COLOR

SPRITE 7 COLOR

155

Register •
De<: Hex 087 086 085 084 083 DB2 DBl DBO

21 15 SE7 SEO SPRITE
ENABLE
(ON/OFF)

22 16 N.C. N.C. RST MCM CSEL I"SCl2 XSCL l XSCLO X SCROLL
MODE

23 17 EXY7 SEXYQ SPRITE
EXPAND Y

24 l B VS13 VS12 VSll VSlO CB13 CB12 CBll N.C. SCREEN
Character
Memory

25 19 lRO N.C. N.C. N.C. LPIRQ lSSC Isac RIRQ Interupt
Request's

26 lA N.C. N.C. N.C. N.C. MLPI I"'SSC M1SB(MRIRQ Interupt
Reques t
MASKS

27 lB BSP7 BSPO Background·
Sprite

PRIORITY

28 lC SCM7 SCMO Multicofor
SPRITE
SELECT

29 10 EXX7 SEXXO SPRITE
EXPAND X

30 l E SSC7 SSCO Sprite·Sprite
COLLISION

31 lF SBC7 SBCO Sprite·
Background
COLLISION

Register # Register #
Dec Hex Color Dec Hex Color

32 20 BORDER COLOR 39 27 SPRITE 0 COLOR

33 21 BACKGROUND 40 2B SPRITE 1 COLOR
COLOR 0

41 29 SPRITE 2 COLOR
34 22 BACKGROUND

COLOR 1 42 2A SPRITE 3 COLOR

35 23 BACKGROUND 43 2B SPRITE ~ COLOR

COLOR 2 44 2C SPRITE 5 COLOR

36 24 BACKGROUND
COLOR 3

45 20 SPRITE 6 COLOR

37 25 SPRITE
46 2E SPRITE 7 COLOR

MUL TlCOLOR 0

38 26 SPRITE
MUL TICOLOA 1

v

155

COLOR CODES

Dec

0

1

2

3

4

5

6

7

Hex

0

1

2

3

4

5

•■

7

Color

BLACK

WHITE

RED

CYAN

PURPLE

GREEN

BLUE

YELLOW

Dec

8

9

10

11

12

13

14

15

Hex

a

9

A

B

C

D

E

F

Color

ORANGE

BROWN

LT. RED

GRAY 1

GRAY 2

LT. GREEN

LT. BLUE

GRAY 3

LEGEND

ONLY COLORS 0-7 MAY BE USED IN MULTICOLOR CHARACTER MODE

—

—

156

COLOR CODES

Dec He, Color Dec He, Color

0 0 BLACK B B ORANGE

1 1 WHIT E 9 9 BROWN

2 2 RED 10 A LT. RED

3 3 CVAN 11 B GRAY 1

4 4 PURPLE 12 C GRAY 2

5 5 GREEN 13 D LT. GREEN

6 6 BLUE 14 E LT. BLUE

7 7 YELLOW 15 F GRAY 3

LEGEND
ONLY COLORS 0-7 MAY BE USED IN MULTICOlOA CHARACTER MODE

' r.

156

APPENDIX P

6566/6567 (VIC-II) CHIP REGISTER MAP

The 6566/6567 are multi-purpose color video controller devices for use in

both computer video terminals and video game applications. Both devices con

tain 47 control registers which are accessed via a standard 8-bit micro

processor bus (65XX) and will access up to 16K of memory for display informa

tion. The various operating modes and options within each mode are described.

ADDRESS

00

01

02

03

04

05

06

07

OB

so

10

11

12

13

11

If

16

17

18

19

20

21

22

23

2*

25

2-,

27

28

29

3D

31

32

33

34

35

36

37

: =

j9

0

1

2

3

4

5

46

NOT

(100)

(SOD

(S02)

(103)

($04)

(105)

(106)

(S07)

iS08)

(109)

(SOA)

ilOB)

(IOC)

(SOD)

llOE)

(10F)

($10)

(til)

(112)

($13)

1114)

(115)

($16)

(117)

(SIB)

(119)

IDA)

'SIB)

(SIC)

(SID)

($>E>

(S1F)

(120)

(121)

(122)

(S23)

(S34)

(125)

(126)

l$27)

($38)

H29)

(12A)

(S2B)

(12C)

(J2D)

:$2E>

D&7

M0X7

M0Y7

M!X7

M1Y7

M2X7

M2Y7

M3X7

M3Y7

M4X7

M4Y7

M5X7

M5Y7

M6X7

M6Y7

M7X7

M7Y7

M7XS

P.CB

RC7

LPXB

LPY7

M7E

—

M7YE

VMI3

IRQ

—

M7DP

M7MC

M7XE

M7M

M7D

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

DB6

M0X6

M0Y6

M1X6

M1Y6

M2X6

M2Y6

M3X6

M3Y6

M4X6

M4Y6

M5X6

M5Y6

M6X6

M6Y6

M7X6

M7Y6

M6X8

ECM

RC6

LPX7

LPY6

M4E

—

M6YE

VM12

—

—

M6DP

M6MC

M6XE

M6M

M6D

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

DBS

M0X5

M0Y5

MIX5

M1Y5

M2X5

M2Y5

M3X5

M3Y5

M4X5

M4Y5

M5X5

MSY5

M6X5

M6Y5

M7X5

M7Y5

M5XB

BMM

RC5

LPX6

LPY5

M5E

RES

M5YE

VM1 1

—

—

M5DP

M5MC

M5XE

M5M

M5D

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

DB4

M0X4

M0Y4

M1X4

MIY4

M2X4

M2Y4

M3X4

M3Y4

M4X4

M4Y4

M5X4

M5Y4

M6X4

M6Y4

M7X4

M7Y4

M4X8

DEN

RC4

LPX5

LPY4

M4E

MCM

M4YE

VM10

—

—

M4DP

M4MC

M4XE

M4M

M40

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

DB3

M0X3

M0Y3

M1X3

M1Y3

M2X3

M2Y3

M3X3

M3Y3

M4X3

M4Y3

M5X3

M5Y3

M6X3

M6Y3

M7X3

M7Y3

M3X8

RSEL

RC3

LPX4

IPY3

M3E

C5EL

M3YE

CB13

ILP

EIP

M3DP

M3MC

M3XE

M3M

M3D

EC3

B0C3

B1C3

B2C3

B3C3

MM03

MM 13

M0C3

M)C3

M2C3

M3C3

M4C3

M5C3

M6C3

M7C3

•°° 3' -

DB2

M0X2

M0Y2

M1X2

MIY2

M2X2

M2Y2

M3X2

M3Y2

M4X2

M4Y2

M5X2

M5Y2

M6X2

M6Y2

M7X2

M7Y2

M2X8

Y2

RC2

LPX3

LPY2

M2E

X2

M2YE

CB)2

IMMC

EMMC

M2DP

M2MC

M3XE

M2M

M2D

EC2

B0C2

BIC2

B2C2

33C3

MM03

MM 12

M0C2

MIC2

M2C2

M3C2

M4C2

M5C2

M6C2

M7C2

I '

DB1

M0X1

M0Y1

M1X1

M1Y1

M2X1

M2Y1

M3X1

M3Y1

M4X1

M4Y1

MSX1

M5Y1

M6X1

M6Y!

M7X1

M7YI

M1X8

VI

RC1

LPX2

.PY1

MtE

XI

Ml Y£

CB1I

IMBC

EMBC

M1DP

MIMC

MIXE

M1M

MID

EC1

B0C1

B1C!

B2CI

B3C1

MM01

MM 11

M0C1

M1C!

M2CI

M3C1

M4C1

M5C1

M6C1

M7C1

DBO

MOXO

M0Y0

MIXO

M1Y0

M2X0

M2Y0

M3X0

M3Y0

M4X0

M4Y0

M5X0

M5YQ

M6X0

M6Y0

M7X0

M6Y0

M0X8

YO

RCO

LPXl

IPYO

MOE

xo

MOYE

IRST

ERST

MODP

M0MC

MOXE

MOM

MOD

ECO

BOCO

B1C0

B2C0

B3C0

MM00

MM 10

M0C0

M1C0

W2C0

M3C0

M4C0

M5C0

M6C0

M7C0

MOB

MOB

MOB

MOB

MOB

MOB

MOS

MOB

MOB

MOB

MOB

MOB

MOB

MOB

MOB

MOB

MSB

Se

Roite

Ughi

Light

MOB

Se

MOB

DESCHIPTION

0 X-po»ition

0 Y-poiition

1 X-povtion

1 Y-poiition

2 X-ponIion

2 Y-po»iliof>

3 X-po»ilion

3 Y-poiilion

* X-poiition

4 Y-poiition

5 X-pontpon

S Y-poiition

6 Y-poiition

7 X-ponrion

7 Y-poinion

of X-pontioi

» -•*!

r regnter

Pen X

Pen Y

Enable

te»t

Y-e*oond

Memory Pomteri

Interr

Enob

MOB

MOB

MOB

MOB

jpt Regiitor

b Inier'jpi

DATA Priority

Multicolor Sel

X-siponO

MOS Collision

MOB-DATA Collision

Exter,

Bkgd

Bkgd

Bkgd

Bkgo

MOB

MOS

MOB

MOB

MOB

MOB

MOB

MOB

MOB

MOB

)' Coior

00 Color

#1 Color

#2 Color

#3 Color

Multicolor #0

Multicolor #1

0 Color

1 Color

3 Color

3 Color

4 Color

5 Color

i Color

7 Color

157

v

v

v

v

APPENDIX P
6566/6567 (VIC-II) CHIP REGISTER MAP

The 6566/6567 are multi·purpose color video controller devices for use in
both computer video term inals and video game applications. Both devices con·
tain 47 control registers which are accessed via a standard 8·bit micro
processor bus (65XX) and will access up to 16K of memory for display informa·
tion. The various operating modes and options within each mode are described.

ACOI US 001 0" 0" 08' Oil 0 82 0"' 0'0 OESCII,-rION

00 ($00) MOX7 MOX6 MOX5 MOX" MOX) MOX2 MOX I Moxa MOB 0)(, OOIlI;on

01 (SO l) MOV7 MOY6 MCYS MOY" MOY) MO'(2 MOV I MOYO MOB 0 Y'CMurl ion

0' (S021 MIX] MIX6 Ml ;J(5 MI X" MIX] MIX2 MIX I M1XO MO B 1 X- POl llio n

0' (SOJ) M 1Y7 MIY6 MI l'S MIrA M 1V) M112 M1Yl MIYO MOB 1 Y, pOl ilion

0 ' (S04) M'lXl M2X6 M2XS M2X 4. M2X3 M2X2 M2X l M2XO M08 '2 X-O<I1",on

0 ' (S05) M2Y7 M2Y6 M2'(5 M'lV" M'lV) M2Y2 M2YI M2 YO MOB '2 "·oo' '''on
06 (1061 M3X7 MJX6 M)X5 M3XA M)X3 M)X2 M)XI MJXO MOB J X·oo,,,,O"
07 (S07) MlY7 M)Y6 M)Y5 M)Y" M)Y) M) Y'l M)Y1 M3'(0 Moe 3 Y·p.o l i" on

O' (S08) MJ, X7 M4X6 M4 X5 M4X4 M4X3 M4 X2 M4 XI M4XO Moe 4 X· POII' ,on

09 (S09) M4Y7 MH6 M4 Y5 M4 Y4 M4Y3 M4Y2 M4 YI M4YO MO B 4 Y.pol i, ion

10 (SOA) M5X7 .'.15 '1. 6 M5X5 M5XJ, M5X3 M5X2 .'.15'1. 1 .'.15 '1.0 Mo e 5 X·~O I " ' On

II (SOe) M5Y7 M5Y6 M5Y,5 M,5 Y4 M5Y3 M5Y2 M5Y I M5YO MO B 5 Y. i>o.n ,on

" (SOC) M6X7 M6X6 .'.16 '1. ,5 M6XJ, .'.16 '1. 3 .'.16 '1. 2 M6X I .'.16 '1.0 MOB 6 X.pO"lion

" (SOD) M6Y7 M6Y6 M6Y,5 M6Y4 M6Y3 M6Y2 M6YI M6YO MOB 6 Y· po.",on ,. (SO£) M7X7 M7X6 M7XS M7XJ, .'.17'1.3 M 7X2 .'.17 '1.1 .'.17 '1. 0 .'.loa 7 X·.,Oll' ,on

" (SOF) M7Y7 M7Y6 M7Y5 Mm M7Y3 M7Y2 M7Y I M6YO Moe 7 Y·~O I "'on

" (S IO) M7X8 M6X8 MSX8 M4X8 M3X8 M2X8 M I X8 .'.10 '1. 8 MSa o f X·pOI" ,o n

" (S 11) Re. OCM BMM OEN IISH " " '0 S •• I . ~'

IB (S 12) '07 ' CO 'CO ,C ' 'el 'C' ' C I 'CO IIotl.r ' .9'''. '

"
(S 131 l PX8 l PX7 l PX6 lPXS l PXJ, l PX3 l PX2 l PXl l.gh , p.n)(

' 0 is 141 lPY7 l PY6 lPY5 "Y< LPYJ l PY2 LPY I l PYO l 'gh, P. n Y

21 (S I S) M7! MOE M" M' E MlE M2E MI! MOE .'1108 Enobl.

" (S 16) - - RES MCM CS El X2 XI XO See !. d

" (S I7) M7YE M6YE MSYE M4 YE M3YE M2YE M IY E MO YE MOB Y-e_ r::ond ,. (S 18) VM I 3 VM I 2 VM I I VM IO Ce l 3 C 6 12 C B I I - Memory Po,n' e "

" (S 19) IRQ - - - IL' IMMC IMBC III Sf I n!e''v~ 1 II e g itle .

" (S IA) - - - - fL ' eMMC EMBC EIISf Eno b le In1etru p.

27 n i B) M 7DP M6DP MSDP M40P M3DP M20P M I DP .'.lOOP MO B-O AT A P" o to 'V

28 (S IC) M 7MC M6MC MSMC M4MC M3MC M2MC M I MC MOMC MO B Mull 'colot Se l ,. (S I D) M7xe M6XE M SX E M4XE M3x e M2XE M I XE MOM MO B X-upond

'0 IS I f) M7M M'M M5M M.M M'M M'M .'11 1M MOM MO B-MOB Collo • • on

" (S I F) M70 MOO M5 0 M. O M'O M20 M I O MOO MO B_D ATA Col l",on

" ($10) - - - - Eel EO EC I fCO hle to o . Co Ot

II (S2 1) - - - - .Oel .0<2 80C I ' DCO Bl"gd - 0 C olo . ,. (s n) - - - - 61C3 8 1C2 81C I BICO 8i;g d - I Colo.

" (S23) - - - - 82C3 82C2 B2C I BKO Bl"gd _ 2 Colo .

" (S2 4) - - - - 83C3 fl3C2 83C I B3CO Bi; gd "'3 Colo.

31 (S2 S) - - - - MM03 MM0 2 MMO' MM OO MOB Mu il ico lot ' 0

" (S26) - - - - MM I 3 MM I 2 MM I. MM I O MO B Mul" cOIOt " 3. (S2 7) - - - - MaC) MOC2 MaC I MOCO MOB 0 C o lo .

. 0 (S28) - - - - MICJ MIC2 M IC I M ICa MOB I Co lo . ., (S29) - - - - M2C3 M2C2 M2C I M2CO MO B "1 Colo. ., ($1A) - - - - M3c) M3C2 M3C ' M3CO MO B J Cole r ., (UB) - - - - M4CJ M4C2 M4CI M4CO MOB 4 Colo ' .. (SK I - - - - MSC 3 MSC2 MSC I MSCO MOB S Colo' ., ($:2 0) - - - - M6CJ M6C2 M6C I M6CO MOe 6 Colo, .. ($:2E) - - - - M7C 3 M7C2 M 7C I M7CO MOB 7 C olor

157

APPENDIX Q

EXECUTIVE 64

SOUND CONTROL SETTINGS

This handy table gives you the key numbers you need to use in your sound
programs, according to which of the 64's 3 voices you want to use. To set or ad

just a sound control in your BASIC program, just POKE the number from the se

cond column, followed by a comma (,) and a number from the chart... like this:

POKE 54276.17 (Selects a Triangle Waveform for VOICE 1).
Remember that you must set the VOLUME before you can generate sound.

POKE54296 followed by a number up to 15 to set the volume for all 3 voices.

It takes 2 separate POKEs to generate each musical note. For example
POKE54273,33:POKE54272,135 designates low C in the sample scale below.^

Also, you aren't limited to the numbers shown in the tables. If 33 doesn't
sound "right" for a low C, try 34. To provide a higher SUSTAIN or ATTACK rate

than those shown, add two or more SUSTAIN numbers together. (Examples:

POKE54277.96 combines two attack rates (32 and 64) for a combined higher at

tack rate, POKE54277.20 provides a low attack rate (16) and a medium decay

rate (4).

*-

158

APPENDIX Q
EXECUTIVE 64
SOUND CONTROL SETTINGS

This handy table gives you the key numbers you need to use in your sound
programs, according to which of the 64's 3 voices you want to use. To set or ad
just a sound control in your BASIC program, just POKE the number from the se·
cond column, followed by a comma (,) and a number from the chart ... like this:
POKE 54276,17 (Selects a Triangle Waveform for VOICE 1).

Remember that you must set the VOLUME before you can generate sound.
POKE54296 followed by a number up to 15 to set the volume for all 3 voices.

It takes 2 separate POKEs to generate each musical note. For example
POKE54273,33:POKE54272,135 designates low C in the sample scale below.

Also, you aren't limited to the numbers shown in the tables. If 33 doesn' t
sound " right " for a low C, try 34. To provide a higher SUSTAIN or ATIACK rate
than those shown, add two or more SUSTAIN numbers together. (Examples:
POKE54277,96 combines two altack rates (32 and 64) for a combined higher at·
tack rate, POKE54277,20 provides a low attack rate (16) and a medium decay ("',
rate (4).

158

TO CONTROL

THIS SETTING:

FOLLOWED BY ONE OF THESE NUMBERS

(0 to 15 ... or... 0 to 255 depending on range)

TO PLAY A NOTE D# F« G G« AM B

HIGH FREQUENCY 54273 33 35 37 39 42 44 47 50 53 56 63

LOW FREQUENCY 54272 135 134 162 223 62 193 107 60 57 99 190 75

WAVEFORM POKE TRIANGLE SAWTOOTH PULSE NOISE

54276 17 33 65 129

PULSE RATE (Pulse Waveform)

Hi PULSE

LO PULSE

54275

54274

A value ot 0 to 15 (for Pulse waveform only)

A value ot 0 to 255 (tor Pulse waveform only)

ATTACK/DECAY POKE ATK4

54277 128

ATK3

64

ATK2

32

ATK1

16

DEC4 DEC3 DEC2 DEC1

SUSTAINfRELEASE POKE

54276

SUS4

128

SUS3

64

SUS2

32

SUS1

16

REL4 REL3 REL2 REL1

TO PLAY A NOTE C# D# F# G# A#

HIGH FREQUENCY

LOW FREQUENCY

54230

54279

33

135

39

223 193

59

190

WAVEFORM POKE TRIANGLE SAWTOOTH

54283 17 33

PULSE

65

NOISE

129

PULSE RATE (Pulse Waveform)

HI PULSE

LO PULSE

54282

54281

A value ot 0 to 15 (for Pulse waveform only)

A value of 0 to 255 (for Pulse waveform only)

ATTACHJDECAY POKE ATM

54284 128

ATK3

64

ATK2

32

ATK1

16

DEC4 DEC3 DEC2 DEC1

1

SUSTAIN/RELEASE POKE

54285

SUS4 SUS3

128 64

SUS2

32

SUS1

16

REL4 REL3 REL2 REL1

TO PLAY A NOTE C# D# G# Aft

HIGH FREQUENCY 54287 35 37 42 44 47 50 53 56 59 63

LOW FREQUENCY 54286 135 134 162 223 62 193 107 60 57 99 190 75

WAVEFORM POKE TRIANGLE SAWTOOTH

54290 17 33

PULSE

65

NOISE

129

PULSE RATE (Pulse Waveform)

H! PULSE

LO PULSE

ATTACK/DECAY

54289

54288

POKE

54291

A value of 0 to 15 (for Pulse waveform only)

A value ot 0 to 255 (tor Pulse waveform only)

ATK4

128

ATK3

64

ATK2

32

ATK1

16

DEC4 DEC3

SUSTAIN/RELEASE POKE

54292

SUS4

128

SUS3

64

SUS2

32

SUS1

16

REL4 REL3

159

v

v

v

v

v

v

v

v

v

HI PULSE
LO PULSE

ATTACKJOECAY

SUSTAIN/RELEASE

SUSTAIN/RELEASE

54282
54281

SUS2 SUS, REL4 AEL3 AEl2 RELI
32 16 8 2

159

TRY THESE SETTINGS TO SIMULATE DIFFERENT INSTRUMENTS

Instrument

Piano

Flute

Harpsichord

Xylophone

Organ

Colliape

Accordian

Trumpet

Waveform

Pulse

Triangle

Sawtooth

Triangle

Triangle

Triangle

Triangle

Sawtooth

Attack/Decay

9

96

9

9

0

0

102

96

Sustain/Release

0

0

0

0

240

240

0

0

Pulse Rate

Hi-0. Lo-255

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

Not applicable

MEANINGS OF SOUND TERMS

ADSR — Attack/Decay/Sustain/Release

Attack — rale sound rises to peek volume

Decay — rale sound tails from peek volume to sustain level

Sustain — prolong rate at certain volume level

Release — rate at which volume falls trom sustain level

Waveform — "shape" o(sound wave

Pulse — tone quality of Pulse Waveform

NOTE: AttacWDecay and SustairWRelease settings should always be POKEd in your program BEFORE

the Waveform is POKEd.

~

160

TRY THESE SETTINGS TO SIMULATE DIFFERENT INSTRUMENTS

Instromenl Waveform

Piano Pulse
F lute Triangle
Harpsichord Sawtooth
Xylophone Triangle
Organ Triangle

Colliape Triangle

Accordian Triangle
Trumpet Sawtooth

MEANINGS OF SOUND TERMS

ADSA - AttackiDecaylSustainlRelease

Attack - rate sound rises to peek volume

Attack/Decay

9
96

9
9
0
0

102
96

Decay - rate sound lalls from peek volume to sustain level

Sustain - prolong rate at cenain volume level

Release - rate al which volume fa11s from sustain level

Waveform - "shape" of sound wave

Pulse - lone Quality of Pulse Waveform

Sustain/Release Pulse Rate

0 Hi.Q, Lo-255
0 Not applicable

0 Not appl icable

0 Not applicable
240 Not applicable
240 Not applicable

0 Not applicable
0 Not applicable

NOTE: Attack/Decay and Sustain/Release settings should always be POKEd In your program BEFORE

the Waveform IS POKEd.

160

APPENDIX R

6581 SOUND INTERFACE DEVICE (SID)

CHIP SPECIFICATIONS

CONCEPT
The 6581 Sound Interface Device (SID) is a single-chip. 3-voice electronic

music synthesizer/sound effects generator compatible with the 65XX and

similar microprocessor families. SID provides wide-range high-resolution con

trol of pitch (frequency), tone color (harmonic content), and dynamics (volume).

Specialized control circuitry minimizes software overhead, facilitating use in ar

cade/home video games and low-cost musical instruments.

FEATURES

• 3 TONE OSCILLATORS

Range: 0-4 kHz

• 4 WAVEFORMS PER OSCILLATOR

Triangle. Sawtooth,

Variable Pulse, Noise

• 3 AMPLITUDE MODULATORS

Range: 48 dB

• 3 ENVELOPE GENERATORS

Exponential response

Attack Rate: 2 ms-8 s

Decay Rate: 6 ms-24 s

Sustain Level: 0-peak volume

Release Rate: 6 ms-24 s

• OSCILLATOR SYNCHRONIZATION

• RING MODULATION

DESCRIPTION

The 6581 consists of three synthesizer "voices" which can be used in

dependently or in conjunction with each other (or external audio sources) to

create complex sounds. Each voice consists of a Tone Oscillator/Waveform

Generator, an Envelope Generator and an Amplitude Modulator. The Tone

Oscillator controls the pitch of the voice over a wide range. The Oscillator pro

duces four waveforms at the selected frequency, with the unique harmonic con

tent of each waveform providing simple control of tone color. The volume

dynamics of the oscillator are controlled by the Amplitude Modulator under the

direction of the Envelope Generator. When triggered, the Envelope Generator

creates an amplitude envelope with programmable rates of increasing and

decreasing volume. In addition to the three voices, a programmable Filter is pro

vided for generating complex, dynamic tone colors via subtractive syntheses.

SID allows the microprocessor to read the changing output of the third

Oscillator and third Envelope Generator. These outputs can be used as a

source of modulation information for creating vibrato, frequency/filter sweeps

and similar effects. The third oscillator can also act as a random number

generator for games. Two A/D converters are provided for interfacing SID with

potentiometers. These can be used for "paddles" in a game environment or as

front panel controls in a music synthesizer. SID can process external audio

signals, allowing multiple SID chips to be daisy-chained or mixed in complex

polyphonic systems.

161

v

v

v

APPENDIX R
6581 SOUND INTERFACE DEVICE (SID)
CHIP SPECIFICATIONS
CONCEPT

The 6581 Sound Interface Device (SID) is a single-chip, 3-voice electronic
music synthesizer/sound effects generator compatible with the 65XX and
similar microprocessor families. SID provides wide-range high-resolution con
trol of pitch (frequency), tone color (harmonic content), and dynamics (volume)_
Specialized control circuitry minimizes software overhead, facilitating use in ar·
cade/home video games and low-cost musical instruments.

FEATURES

• 3 TONE OSCILLATORS
Range: 0-4 kHz

• 4 WAVEFORMS PER OSCILLATOR
Triangle, Sawtooth,
Variable Pulse, Noise

• 3 AMPLITUDE MODULATORS
Range: 48 dB

• 3 ENVELOPE GENERATORS
Exponential response
Attack Rate: 2 ms-8 s
Decay Rate: 6 ms-24 s
Sustain Level : O-peak volume
Release Rate: 6 ms-24 s

• OSCILLATOR SYNCHRONIZATION
• RING MODULATION

DESCRIPTION
The 6581 consists of three synthesizer "voices" which can be used in

dependent ly or in con junction with each other (or external audio sources) to
create complex sounds. Each voice consists of a Tone OscillatorlWaveform
Generator, an Envelope Generator and an Amplitude Modulator_ The Tone
Oscillator controls the pitch of the voice over a wide range_ The Oscillator pro
duces four waveforms at the selected frequency, with the unique harmonic con·
tent of each waveform providing simple control of tone color. The volume
dynamics of the oscil lator are controlled by the Amplitude Modu lator under the
direction of the Envelope Generator_ When triggered, the Envelope Generator
creates an amplitude envelope with programmable rates of increasing and
decreasing vol ume. In addition to the th ree voices, a programmable Filter is pro
vided for generating complex, dynamic tone colors via subtractive syntheses.

SID allows the microprocessor to read the changing output of the third
Oscillator and third Envelope Generator. These outputs can be used as a
source of modulation information for creating vibrato, frequency/filter sweeps
and sim ilar effects. The th ird osci llator can also act as a random number
generator for games. Two AlD converters are provided for interfacing SID with
potentiometers. These can be used for "paddles" in a game environment or as
front panel controls in a music synthesizer. SID can process external audio
signals, allowing multiple SID chips to be daisy-chained or mixed in complex
polyphonic systems.

t61

r
o

a 0 0

A

0 0 0

A
D
D
R
E
S
S

0 Q 0

R
E
G
-

|
H
E
X
>

°7 P
W
~

N
O
I
S
E

A
T
K
3

P
W
r

-

N
O
I
S
E

A
T
K
a

S
T
N
3

Fi
b

P
W
,

-

N
O
I
S
E

A
T
K
3

S
T
N
a

-

F
C
,
0

R
E
S
a

3
O
F
F

P
X
,

P
Y
,

0
,

E
,

FG

P
W
6

r
L
T
L

A
T
K
?

S
T
N
?

P
W
G

-

n
x
L

A
T
K
.
i

S
T
N
?

F,
.'

~
P
W
6

-

n
_
n
_

A
I
K
,

S
T
N
.
.

F
C
,

R
E
S
;

H
P

P
X
6

P
*
6

°
6

°*
-

P
W
5

A
T
K
,

S
T
N
,

P
W
5

-

A
T
K
,

S
T
N
,

—
b

■

P
W
S

-

A
T
K
,

S
T
N
,

-

F
C
B

R
E
S
,

B
P

P
X
5

P
Y
;
,

°
i Es

-F
;

J
p
-
w
4

A
T
K
0

S
T
N
0

P
W
,

-

A
T
K
0

S
I
N
,
,

F
l
(

P
W
4

-

A
T
K
o

S
T
N
u

F
C
,

R
E
S
o

L
P

~
P
X
,

p
y
.

*
~

P
W
3

P
W
,
,

T
E
S
T

D
C
Y
3

R
L
S
3

P
W
3

P
W
,
,

T
E
S
T

D
C
Y
3

R
L
S
j

■
v
,
7
~

P
W
3

P
W
,
,

T
E
S
T

0
C
Y
3

R
L
S
3

-

P
C
s

F
I
L
I
E
X

V
O
L
3

P
X
3

P
V
j

o
3

E
j

P
W
2

D
C
Y
?

R
L
S
j

W
I
N
G

D
C
Y
y

R
L
S
;
.

F
,
o
"
"

P
W
2

P
W
,
o

D
C
Y
^

H
L
f
i
,

F
C
;
,

F
C
,

F
I
L
T

1

V
O
L
,

P
X
3

O
2 Ej

f; F9

P
W
,

S
Y
N
C

O
C
Y
,

R
L
S
,

P
W
,

P
W
9

S
Y
N
C

D
C
Y
,

H
L
S
,

P
W
,

P
W
9

S
Y
N
C

D
C
Y
,

R
I
S
,

F
C
,
"

F
C
,

f
i
l
t

;

V
O
L
,

P
X
,

p
y
,

o
, E,

_
_
£
°

~
P
W
0

P
W
a

G
A
T
E

[
>
C
Y
0

R
L
S
o

p
w
0

P
W
8

G
A
F
E

D
C
Y
0

F
I
L
S
,
,

F
o

P
W
0

P
W
B

G
A
T
E

D
C
Y
y

H
L
S
n

F
C
0

F
I
L
I

1

V
O
L
0

P
X
,
,

P
Y
0

O
o E
o

F
1
E
G
N
A
M
E

V
o
i
c
e

1

F
R
E
Q
L
O

f
r
e
o
m

P
W

L
O

1
>
W

H
I

C
O
N
T
R
O
L
R
E
G

A
T
T
A
C
K
/
n
r
C
A
Y

a
U
S
T
A
I
N
i
H
E
L
E
A
S
E

t
f
o
l
c
e

7

F
H
E
O
L
O

F
R
E
Q

H
I

P
W
L
O

P
W

H
I

C
O
N
T
R
O
L
R
E
G

A
T
I
A
C
K
I
D
E
C
A
Y

S
U
S
T
A
I
N
J
H
E
I
E
A
S
E

V
o
i
c
e

3

F
R
E
Q
L
O

F
R
E
O

H
I

P
W
L
O

W
H
I

C
O
N
T
R
O
l

H
F
C
.

A
T
T
A
C
K
I
D
E
C
A
Y

S
U
S
I
A
I
N
i
R
E
L
E
A
S
E

F
i
l
l
e
r

F
C
L
O

F
C

H
I

R
E
S
'
F
I
l
l

M
O
D
E
/
V
O
L

M
i
s
c
.

P
O
T

X

P
O
T

Y

O
S
C
3
J
R
A
N
D
O
M

E
N
V
,

R
E
G

T
Y
P
E

W
H
I
T
E
-
O
N
L
Y

W
R
I
T
E
O
N
L
Y

W
H
I
T
E
O
N
L
Y

W
H
I
T
E
O
N
L
Y

W
R
I
T
E
O
N
L
Y

W
R
I
T
F
O
N
L
Y

W
R
I
T
E
O
N
L
Y

W
F
1
H
E
O
N
L
Y

W
H
I
1
F
O
N
L
Y

W
H
I
I
E
O
N
L
Y

W
R
I
T
E
O
N
L
Y

W
R
I
I
E
O
N
L
Y

W
H
I
T
E
O
N
L
Y

W
H
I
T
E
O
N
I
Y

V
.
I
.
I

1
.
"
.
.

■

W
H
I
T
E
O
N
L
Y

W
H
I
T
E
O
N
L
Y

W
H
I
T
E
O
N
L
Y

W
R
I
T
F
O
N
L
Y

W
H
I
T
f
O
N
L
r

W
R
I
T
E
O
N
L
Y

W
H
I
T
E
O
N
t
.
V

W
R
I
I
E
O
N
L
Y

W
R
I
T
E
O
N
L
Y

W
H
I
T
E
O
N
L
Y

H
F
.
A
D
O
N
L
Y

F
1
E
A
0
0
N
L
Y

R
E
A
D
O
N
L
Y

R
E
A
O
O
N
L
Y

0 a
"

(T
J

L
T
l

Q 7
0

11
)

I
D ft
) 3 a

o
;

r
o

<°
CD r
o

C
O u
V :ersa: reeithe-

i
—
r lereaC
D 29eight-bitreo o o z —

A 1

X O i
— .REGI

A
5"

o
S o

m
i
t

>
o

o
o

r
o

a
. ll

mSID CONTROL REGISTERS
There are 29 eight-bit registers in SID which control the generation of sound.

These registers are ei ther WRITE-only or READ-only and are listed below in
Table 1.

,.. !; !:. ,.. ,.. !:. !:.
5555555

2: ::: 222:
~ :: :: 3: ::

Tob ie 1. SID Reg ister Map

"- -' ...
~ ~ ~ ~ ~

,.. !:. !:. ,.. ~ !:. ~
5555555

w Ww

~ ~ ~ ~ ~

~ !fii~t;!; I ... a o :z:

I _ _ "
.. ..:: In '" OIl

'-- ~ ! , :' g ::::

:'::~ 8o~a03il :g c;8 g:;5g 152 'Cto :> :: ::-~ !
" -

4,<>O- Cl - O - ", -o- o - e

',J Vi CI..
... ~ aJ

--,. -
J' rJ,' CI..
... ~ l:

cl ° o - - oo - _00 __ 00 -- 00 - -0 Q--O .
~ "<01 0000 -- __ 0000 __
a
o
<

<01" 00000000 -- - - --

-- OOOCl -

__ QI;>QOO

'; 000"'000 0 000000 00 __ __ _

162

- - - 0

> >
z z
0 0
o 0

.!:3 :: ::::

o - - <:I

<:> '" '" -

n

APPENDIX S

DISK and PRINTER COMMANDS and

STATEMENTS

The following BASIC commands and statements let you perform a variety of

operations on disk drives and any compatible Commodore printer.

CLOSE

TYPE: I/O Statement

FORMAT: CLOSE < file number >

Action: This statement shuts off any data file or channel to a device. The file

number is the same as when the file or device was OPENed (see OPEN state

ment and the section on INPUT/OUTPUT programming).

When working with storage devices like disks, the CLOSE operation stores

any incomplete buffers to the device. When this is not performed, the file will

be unreadable on the disk. The CLOSE operation isn't as necessary with other

devices, but it does free up memory for other files. See your external device

manual for more details.

EXAMPLES of CLOSE Statement:

10 CLOSE 1

20 CLOSE X

30 CLOSE 9 * (1 + J)

CMD

TYPE: I/O Statement

FORMAT: CMD < file number > [,string]

Action: This statement switches the primary output device from the TV

screen to the file specified. This file could be on disk, printer, or an I/O device

like the modem. The file number must be specified in a prior OPEN statement.

The string, when specified, is sent to the file. This is handy for titling printouts,

etc.

When this command is in effect, any PRINT statements and LIST commands

will not display on the screen, but will send the text in the same format to the

file.

To re-direct the output back to the screen, the PRINT# command should send

a blank line to the CMD device before CLOSEing. so it will stop expecting data

(called "un-listening" the device).

Any system error (like 7SYNTAX ERROR) will cause output to return to the

screen. Devices aren't un-listened by this, so you should send a blank like after

an error condition. (See your printer or disk manual for more details.)

163

v

v

v

APPENDIX S
DISK and PRINTER COMMANDS and
STATEMENTS

The following BASIC commands and statements let you perform a variety of
operations on disk drives and any compatible Commodore printer.

CLOSE

TYPE: I/O Statement
FORMAT: CLOSE < file number >

Action: This statement shuts off any data fi le or channel to a device. The file
number is the same as when the file or device was OPENed (see OPEN state·
ment and the section on INPUT/OUTPUT programming).

When working with storage devices like disks, the CLOSE operation stores
any incomplete buffers to the device. When this is not performed, the file will
be unreadable on the disk. The CLOSE operation isn't as necessary with other
devices, but it does free up memory for other files. See you r external device
manual for more details.

EXAMPLES of CLOSE Statement:

10 CLOSE 1
20 CLOSE X
30 CLOSE 9 • (1 + J)

CMD
TYPE: I/O Statement
FORMAT: CMD < file number > I,string)

Action: This statement switches the primary output device from the TV
screen to the file specified. This file could be on disk, printer, or an I/O device
like the modem. The file number must be specif ied in a prior OPEN statement.
The string, when specif ied, is sent to the file. This is handy for tit ling printouts,
etc.

When this command is in effect, any PRINT statements and LIST commands
wil l not display on the screen, but will send the text in the same format to the
li le.

To re·direct the output back to the screen, the PRINT# command should send
a blank line to the CMO device before CLOSEing, so it will stop expecting data
(called "un-l istening" the device).

Any system error (like ?SYNTAX ERROR) will cause output to return to the
screen. Devices aren't un-listened by this, so you should send a blank like after
an error condition. (See your printer or disk manual for more details.)

163

-■

—

EXAMPLES of CMD Statement:

OPEN 4, 4: CMD 4, "TITLE" : LIST: REM LISTS PROGRAM CN

PRINTER

PRINTS 4: CLOSE 4: REM UN-LISTENS AND CLOSES PRINTER

10 OPEN 1, 8, 4, "TEST": REM CREATE SEQ FILE fl

20 CMD 8: REM OUTPUT TO TAPE FILE, NOT SCREEN

30 FOR L = 1 TO 100

40 PRINT L: REM PUTS NUMBER IN DISK BUFFER g

50 NEXT

60 PRINTS 1: REM UNLISTEN

70 CLOSE 1: REM WRITE UNFINISHED BUFFER, PROPERLY

FINISH

GET#

TYPE: I/O Statement

FORMAT: GETS <file number> , < variable list>

Action: This statement reads characters one-at-a-time from the device or file _

specified. It works the same as the GET statement, except that the data comes

from a different place than the keyboard. If no character is received, the variable m

is set to an empty string (equal to "") or to 0 for numeric variables. Characters

used to separate data in files, like the comma (,) or Ifflim key code (ASC code

of 13), are received like any other character. _

When used with device #3 (TV screen), this statement will read characters

one by one from the screen. Each use of GET# moves the cursor 1 position to

the right. The character at the end of the logical line is changed to a CHR$ (13),

the EEII key code. #

EXAMPLES of GETS Statement

5 GETS 1, A$

10 OPEN 1, 3: GETS 1,Z7S

20 GETS 1, A, B, CS, DS

164

EXAMPLES of CMD Statement:

OPEN 4,4: CMD 4, " TITLE" : LIST: REM LISTS PROGRAM ON
PRINTER

PRINT# 4: CLOSE 4: REM UN·LlSTENS AND CLOSES PRINTER

10 OPEN 1,8,4, "TEST": REM CREATE SEQ FILE
20 CMD 8: REM OUTPUT TO TAPE FILE, NOT SCREEN
30 FOR L = 1 TO 100
40 PRINT L: REM PUTS NUMBER IN DISK BUFFER
50 NEXT
60 PRINT# 1: REM UNLISTEN
70 CLOSE 1: REM WRITE UNFINISHED BUFFER, PROPERLY

FINISH

GET#
TY PE: 1/0 Statement
FORMAT: GET# (file number>, (variable list >

Action: This statement reads characters one·at·a·time from the device or file
specified. It works the same as the GET statement, except that the data comes
from a different place than the keyboard. If no character is received, the variable
is set to an empty string (equal to lIt ') or to 0 for numeric variables. Characters
used to separate data in files, like the comma (,) or IIll!Il:II key code (ASC code
of 13), are received like any other character.

When used with device #3 (TV screen), this statemenl will read characters
one by one from the screen. Each use of GET# moves the cursor 1 position to
the right. The character at the end of the log ical line is changed to a CHR$ (13),
the Im!ID key code.

EXAMPLES of GET# Statement

5 GET# 1, AS
10 OPEN 1,3: GET# 1, Z7S
20 GET# 1, A, B, CS, OS

164

INPUT#

TYPE: I/O Statement

FORMAT INPUTS < file number> , < variable list >

Action: This is usually the fastest and easiest way to retrieve data stored in a

file on disk. The data is in the form of whole variables of up to 80 characters in

length, as opposed to the one-at-a-time method of GET#. First, the file must

have been OPENed, then INPUT# can fill the variables.

The INPUT# command assumes a variable is finished when it reads a

RETURN code (CHR$(13)), a comma (,), semicolon (;), or colon(:). Quote marks

can be used to enclose these characters when writing if they are needed (See

PRINTS statement).

If the variable type used is numeric, and non-numeric characters are received,

a BAD DATA error results. INPUTS can read strings up to 80 characters long,
beyond which a STRING TOO LONG error results.

When used with device #3 (the screen), this statement will read an entire

logical line and move the cursor down to the next line.

EXAMPLES of INPUT# Statement:

10 INPUTS 1. A

20 INPUTS 2, AS, BS

LOAD

TYPE: Command

FORMAT LOAD " < fi!e-name> " , < device > [, < address >]

Action: The LOAD statement reads the contents of a program file from disk

into memory. That way you can use the information LOADed or change the in

formation in some way. The disk unit is normally device number 8. The LOAD

closes all open files and, if it is used in direct mode, it performs a CLR (clear)

before reading the program. If LOAD is executed from within a program, the

program is RUN. This means that you can use LOAD to "chain" several pro

grams together. None of the variables are cleared during a chain operation.

If you are using fife-name pattern matching, the first file which matches the

pattern is loaded. The asterisk in quotes by itself ("*") causes the first file-name

in the disk directory to be loaded. If the file-name used does not exist or if it is

not a program file, the BASIC error message ?FILE NOT FOUND occurs.

If you use the secondary address of 1 this will cause the program to LOAD to
the memory location from which it was saved.

EXAMPLES of LOAD Command:

LOAD A$,8 (Uses the name in AS to search)

LOAD "*",8 (LOADs first program from disk)

LOAD "$",8:LIST (LOADs and LISTs disk directory)

LOAD "FUN",8 (LOAD a file from disk)
SEARCHING FOR FUN

LOADING

READY.

LOAD "GAME ONE",8,1 (LOAD a file to the specific memory

SEARCHING FOR GAME ONE location from which the program was

LOADING saved on the disk)
READY.

165

v

v

v

INPUT#
TYPE: I/O Statement
FORMAT tNPUT# < file number >, < variable list >

Action: Th is is usually the fastest and easiest way to retrieve data stored in a
file on disk. The data is in the form of whole variab les of up to 80 charac ters in
length , as opposed to the one·at·a·time method of GET#. First, the file must
have been OPENed, Ihen INPUT# can lill Ihe variables.

The INPUT# command assumes a variable is finished when it reads a
RETURN code (CHR$(13)), a comma (,), semicolon (;), or colon(:). Quote marks
can be used to enclose these characters when writing if they are needed (See
PRINT# statement).

If the variable type used is numeric, and non-numeric characters are received,
a BAD DATA error results. INPUT# can read strings up to 80 characters long,
beyond which a STRING TOO LONG error results.

When used with device #3 (the sc reen), th is statement will read an entire
logical li ne and move the cursor down to the next line.

EXAMPLES of INPUT# Statement:

10 INPUT# 1, A
20 INPUT# 2, AS, BS

LOAD
TYPE: Command
FORMAT LOAD " < file.name> " ,< device > [, < address > [

Action: The LOAD statement reads the contents of a program fi le from disk
into memory. That way you can use the information LOADed or change the in·
formation in some way. The disk unit is normally device number 8. The LOAD
closes all open fi les and, if it is used in direct mode, it performs a CLR (clear)
before reading the prog ram. If LOAD is executed from within a program, the
program is RU N. This means that you can use LOAD to "chain" several pro·
grams together. None of the variables are cleared during a chain operation.

If you are using file·name pattern matching, the first file which matches the
pattern is loaded. The asterisk in quotes by itself ('" ") causes the fi rst file·name
in the disk directory to be loaded. If the fi le·name used does not exist or if it is
not a program file, the BASIC error message ?FILE NOT FOUND occurs.

If you use the secondary address of 1 this will cause the program to LOAD 10
the memory location from which it was saved.

EXAMPLES of LOAD Command:

LOAD AS,8

LOAD UUI,S

LOAD " S" ,8:LlST

LOAD "FUN'\8
SEARCHING FOR FUN
LOADING
READY.

LOAD "GAME ONE" ,8,1
SEARCHING FOR GAME ONE
LOADING
READY.

(Uses the name in AS to search)

(LOADs first program from disk)

(LOADs and LISTs disk directory)

(LOAD a file tram disk)

(LOAD a file to the specific memory
location from which the program was
saved on the disk)

165

OPEN

TYPE: I/O Statement

FORMAT: OPEN <file-num> , <device> [,<address>] [,"<file-name)

[, <type>] [, <mode>]"]

Action: This statement OPENs a channel for input and/or output to a

peripheral device. However, you may NOT need all those parts for every OPEN

statement. Some OPEN statements require only 2 codes:

1) LOGICAL FILE NUMBER

2) DEVICE NUMBER

The / file-num) is the logical file number, which relates the OPEN, CLOSE.
CMD, GET#, INPUT#, and PRINTS statements to each other and associates

them with the file-name and the piece of equipment being used. The logical file
number can range from 1 to 255 and you can assign it any number you want in

that range.

NOTE: File numbers over 128 were really designed for other uses so it's good

practice to use only numbers beiow 127 for file numbers.

Each peripheral device (printer, disk drive) in the system has its own number

which it answers to. The ^device)) number is used with OPEN to specify on
which device the data file exists. Peripherals like disk drives or printers also

answer to several secondary addresses. Think of these as codes which tell

each device what operation to perform. The device logical file number is used

with every GET#. 1NPUT#, and PRINT#.

The file-name can also be left out, but later on in your program you can NOT

call the file by name if you have not already given it one.

For disk files, the secondary addresses 2 thru 14 are available for data-files,

but other numbers have special meanings in DOS commands. You must use a

secondary address when using your disk drive(s). (See your disk drive manual

for DOS command details.)

The <file-name) is a string of 1-16 characters and is optional for printer

files. If the file < type > is left out the type of file will automatically default to
the Program file unless the mode is given. Sequential files are OPENed for

reading <mode)> =R unless you specify that files should be OPENed for
writing <(mode> =W is specified. A file <type> can be used to OPEN an ex-
isting Relative file. Use REL for <type> with Relative files. Relative and Se

quential files are for disk only.

If you try to access a file before it is OPENed the BASIC error message ?FILE

NOT OPEN will occur. If you try to OPEN a file for reading which does not exist

the BASIC error message ?FILE NOT FOUND will occur. If a file is OPENed to

disk for writing and the file-name already exists, the DOS error message FILE

EXISTS occurs. If a file is OPENed that is already OPEN, the BASIC error

message FILE OPEN occurs. (See Printer Manual for further details.)

166

OPEN
TYPE: 110 Statement
FORMAT: OPEN (file.num), (device) [, (address)]],"(file.name)
[, (type)] [, (mode)]"]

Action: This statemen t OPEN s a channel for input andlor output to a
peripheral device. However, you may NOT need all those parts lor every OPEN
statement. Some OPEN statements require only 2 codes:

1) LOGICAL FILE NUMBER
2) DEVICE NUMBER

The (file·num) is the logical fi le number, which relates the OPEN, CLOSE,
CMD, GET#, INPUT#, and PRINT# statements to each other and associates
them with the file·name and the piece of equipment being used. The logical file
number can range from 1 to 255 and you can assign it any number you want in
that range.

NOTE: File numbers over 128 were really designed for other uses so it 's good
practice to use only numbers below 127 for file numbers.

Each peripheral device (printer, disk drive) in the system has its own number
which it answers to. The (device) number is used with OPEN to specify on
which device the data file exists. Peripherals like disk drives or printers also
answer to several secondary addresses. Think of these as codes which tell
each device what operation to perform. The device logical file number is used
with every GET#, IN PUT#, and PRINT#.

The file·name can also be left out, but later on in your program you can NOT
call the file by name if you have not already given it one.

For disk files, the secondary addresses 2 thru 14 are available for data·files,
but other numbers have special meani ngs in DOS commands. You must use a
secondary address when using your disk drivels). (See your disk drive manual
for DOS command details.)

The (file.name > is a string of 1·16 characters and is optional for printer
fi les. If the fil e (type> is left out the type of file wi ll automatically default to
the Program file un less the mode is given. Sequential files are OPENed lor
reading < made> ; R un less you specify that files should be OPENed lor
writing (made» ; W is specified. A lile (type) can be used to OPEN an ex·
isting Relative Ii Ie. Use REL lor (type) with Relative liles. Relative and Se·
quential liles are for disk only.

If you try to access a file before it is OPENed the BASIC error message ?FILE
NOT OPEN wi ll occur. If you try to OPEN a Ii Ie for reading wh ich does not exist
the BASIC error message ?FILE NOT FOUND will occur. If a file is OPENed to
disk lor writing and the file·name already exists, the DOS error message FILE
EXISTS occurs. If a Iile is OPENed that is already OPEN, the BASIC error
message FILE OPEN occu rs. (See Printer Manual lor lurther detailS.)

166

n

EXAMPLES of OPEN Statements:

10 OPEN 2, 8, 4 "DISK-OUTPUT,

SEQ,W"

10 OPEN 50, 0

10 OPEN 12, 3

10 OPEN 130,4

10 OPEN 1,2,0, CHR${10)

10 OPEN 1,4,0, "STRING"

10 OPEN 1,4,7, "STRING"

10 OPEN 1,5,7, "STRING"

10 OPEN 1,8,15, "COMMAND'

10 OPEN 1,8,1, "NAME,L" +

CHRS(X)

10 OPEN, 1,8,1,"NAME"

(Opens sequential file on disk) —

For Write

(Keyboard input)

(Screen output)

(Printer output)

(Open channel to RS-232 device)

(Send upper case/graphics to the

printer)

(Send upper/lower case to printer)

(Send upper/lower case to printer

with device #5)

(Send a command to disk)

(Relative file OPEN (1st time) where

X is the length of the relative record)

(Relative or sequential read)

PRINT#

TYPE: I/O Statement

FORMAT: PRINT#<file-number > [< variable>][<,/;> <variable>]...

Actions: The PRINT# statement is used to write data items to a logical file. It

must use the same number used to OPEN the file. Output goes to the device-

number used in the OPEN statement. The <(variable^ expressions in the

output-list can be of any type. The punctuation characters between items are

the same as with the PRINT statement and they can be used in the same way.

The effects of punctuation are different in two significant respects.

If no punctuation finishes the list, a carriage-return and a line-feed are written

at the end of the data. If a comma or semicolon terminates the output-list, the

carriage-return and line-feed are suppressed. Regardless of the punctuation,

the next PRINT# statement begins output in the next available character posi

tion. The line-feed will act as a stop when using the INPUT# statement, leaving

an empty variable when the next INPUT# is executed. The line-feed can be sup

pressed of compensated for as shown in the examples below.

The easiest way to write more than one variable to a file on disk is to set a str

ing variable to CHR$(13), and use that string in between all the other variables
when writing the file.

167

v

v

v

v

v

v

v

v

v

EXAMPLES of OPEN Statements:

10 OPEN 2, 8, 4 " DISK·OUTPUT,
SEQ,W"

10 OPEN 50, 0

10 OPEN 12, 3

10 OPEN 130, 4

10 OPEN 1,2,0, CHRS(10)

10 OPEN 1,4,0, " STRING"

10 OPEN 1,4,7, "STRING"

10 OPEN 1,5,7, "STRING"

10 OPEN 1,8,15, "COMMAND"

10 OPEN 1,8,1, "NAME,L" +
CHR$(X)

10 OPEN, 1,8,1,"NAME"

PRINT#
TYPE: I/O Statement

(Opens sequential file on disk) -
For Write

(Keyboard input)

(Screen output)

(Printer output)

(Open channel to RS·232 device)

(Send upper case/graphics to the
printer)

(Send upperllower case to printer)

(Send upperllower case to printer
with device #5)

(Send a command to disk)

(Relative file OPEN (1st time) where
X is the length of the relative record)

(Relative or sequential read)

FORMAT: PRINT# < file·number) [< variable)] [(/;) (variable>] ...

Actions: The PRINT# statement is used to write data items to a logical file. It
must use the same number used to OPEN the file. Output goes to the device·
number used in the OPEN statement. The (variable> expressions in the
output·l ist can be of any type. The punctuation characters between items are
the same as with the PRINT statement and they can be used in the same way.
The effects of punctuation are different in two significant respects.

If no punctuation finishes the list, a carriage-return and a line-feed are written
at the end of the data. If a comma or semicolon termi nates the output·list, the
carriage-return and line-feed are suppressed. Regardless of the punctuation,
the next PRINT# statement begins output in the next available character posi·
tion. The line·feed will act as a stop when using the INPUT# statement, leaving
an empty variable when the next INPUT# is executed. The line·feed can be sup·
pressed of compensated for as shown in the examples below.

The easiest way to write more than one variable to a file on disk is to set a str·
ing variable to CHRS(13), and use that string in between all the other variables
when writing the file.

167

-

EXAMPLES of PRINTS Statement

1)
10 OPEN 1,8,4, "MY FILE"

20 R$ = CHRS(13)

30 PRINTS 1,1;RS;2;RS;3;RS;4;R$;5

40 PRINTS 1,6

50 PRINTS 1,7

2)

10 COS = CHR${44): CRS = CHRS(13)

20 PRINTS 1, "AAA"CO$"BBB",

"CCC";"DDD";"EEE"CRS

"FFF"CRS;

30 INPUTS1, AS,BCDES,FS

3)
5 CR$ = CHRS(13)

10 PRINTS2, "AAA";CRS;"BBB"

20 PRINT#2, "CCC";

30 INPUTS2, A$,B$,DUMMY$,C$

-

(By Changing the CHRS(13) to

CHRS(44) you put a "," between each

varible. CHR$(59) would put a ";"

between each variable.)

AAA,BBB CCCDDDEEE

(carriage return)

FFF(carriage return)

(10 blanks)AAA

BBB

(10 blanks) CCC

~-

—

SAVE

TYPE: Command

FORMAT: SAVE " <file-name> " , <device-number> [, <address>]

Action: The SAVE command is used to store the program that is currently in
memory onto a diskette file. The program being SAVEd is only affected by the

command while the SAVE is happening. The program remains in the current

computer memory even after the SAVE operation is completed until you put

something else there by using another command. The file type will be "prg"

(program). The SAVE statement can be used in your programs and execution

will continue with the next statement after the SAVE is completed.

When saving programs onto a disk, the <file-name> must be present.

EXAMPLES of SAVE Command:

SAVE "FUN DISK",8

SAVE A$,8

(SAVES on disk (device 8 is the disk))

(Store on disk with the name AS)

-

168

EXAMPLES of PRINTH Statement

1)

2)

3)

10 OPEN 1,B,4, " MY FILE"
20 RS = CHRS(13)
30 PRINTH 1,1;RS;2;RS;3;RS;4;RS;5
40 PRINTH 1,6
50 PRINTH 1,7

10 COS = CHRS(44): CRS = CHRS(13)
20 PRINTH 1, " AAA"COS" BBB",

"CCC";" DDO";"EEE"CRS
" FFF"CRS;

30 INPUTH1, AS,BCDES,FS

5 CRS=CHRS(13)
10 PRINT#2, "AAA";CRS;"BBB"
20 PRINTH2, "CCC";

30 INPUTH2, AS,BS,DUMMYS,CS

SAVE

TYPE: Command

(By Changing the CHRS(13) to
CHRS(44) you put a "," between each
varible. CHRS(59) would put a";"
between each variable.}

AAA,BBB CCCDDDEEE
(carriage return)
FFF(carriage re turn)

(10 blanks)AAA
BBB
(10 blanks) CCC

FORMAT: SAVE" < file·name > " , < device·number > [, <address) I

Action: The SAVE command is used to store the program that is currently in
memory onto a diskette file. The program being SAVEd is only affected by the
command while the SAVE is happening. The program remains in the current
computer memory even after the SAVE operation is completed until you put
something else there by using another command . The file type will be "prg"
(program). The SAVE statement can be used in your programs and execution
will continue with the next statement after the SAVE is completed.

When saving programs onto a disk, the <file·name) must be present .

EXAMPLES of SAVE Command:

SAVE " FUN DISK" ,B

SAVE AS,B

(SAVES on disk (device B is the disk))

(Store on disk with the name AS)

168

n

_

VERIFY

TYPE: Command

FORMAT: VERIFY " <file-name> " , <device)

Action: The VERIFY command is used, in direct or program mode, to com

pare the contents of a BASIC program file on disk with the program currently in

memory. VERIFY is normally used right after a SAVE, to make sure that the pro

gram was stored correctly on tape or disk.

For disk files (device number 8), the file-name must be present. If any dif

ference in program text are found, the BASIC error message 7VERIFY ERROR
is displayed.

A program name can be given either in quotes ("") or as a string variable.

EXAMPLE of VERIFY Command:

9000 SAVE "ME",8

9010 VERIFY "ME",8 (Looks at device 8 for the program)

169

v

v

v

v

v

v

VERIFY
TYPE: Command
FORMAT: VERIFY " <file·name)", < device)

Action: The VERI FY command is used, in direct or program mode, to com·
pare the contents of a BASIC program file on disk with the program currently in
memory. VERIFY is norr]1ally used right after a SAVE, to make sure that the pro·
gram was stored correctly on tape or disk.

For disk files (device number 8), the file·name must be present. If any dif·
ference in program text are found, the BASIC error message ?VERIFY ERROR
is displayed.

A program name can be given either in quotes (''' ') or as a string variable.

EXAMPLE of VERIFY Command:

9000 SAVE " ME",B
9010 VERIFY " ME",B (Looks at device B for the program)

169

INDEX

A
Abbreviations, BASIC commands, 34, 128-129

Accessories, 9-11 ,_

Addition, 33

AND operator, 117 _

Animation, 47-48, 67

Arithmetic, Operators, 33-34, 117

Arithmetic, Formulas, 138

Arrays, 95-96 —

ASC function, 126

ASCII character codes, 133-135

B

BASIC

abbreviations, 34, 128-129

commands, 117-119

numeric functions. 33-36, 124-126

operators, 117

other functions, 127

string functions, 126

variables, 42-44, 116

Bibliography, 152-153

Binary arithmetic, 69-70

Bit. 69

Business aids, 103-105

Byte. 69

C

Calculations, 33-37

CHRS codes, 61, 126, 133-135

CHR$ function, 126

CLR statement, 119 ,_,

CLR, HOME key, 15

Clock, 116-117 ^

CLOSE statement, 30, 119, 163

Color ^

adjustment, 7-8

keys, 16

memory map, 66, 137

PEEKS and POKES,

screen and border, 63-64

Commands, BASIC, 117-119

Commodore key, (see graphics keys) 16

Connections,

optional. 9-11

rear, 1,3 '•"*

TV/Monitor, 1,9

CONT command, 117

ConTRoL key, 16

COSine function, 125

CuRSoR keys. 14

Correcting errors, 14-15

Cursor, 7

170

INDEX
A
Abbreviations , BASIC commands, 34, 128-129
Accessories, 9.-11
Addition, 33
AND operator, 117
Animation, 47-48, 67
Arit hmetic, Opera tors, 33·34, 11 7
Arithmetic , Formulas, 138
Arrays, 95-96
ASe function, 126
ASCII character codes, 133-135

B
BASIC

abbreviations, 34, 128·129
commands, 117-1 19
numeric functions, 33-36, 124-126
operators, 117
other functions, 127
string functions, 126
variables, 42-44, 116

Bibl iography, 152·153
Binary arithmetic, 69-70
Bit , 69
Business aids, 103-105
Byte, 69

C
Calculations, 33-37
CHRS codes, 61 , 126, 133-135
CHRS fu nction, 126
CLR statement, 119
CLR, HOM E key, 15
Clock,1 16-117
CLOSE statement, 30, 119, 163
Color

adjustment, 7-8
keys, 16
memory map, 66, 137
PEEKS and POKES,
screen and border, 63-64

Commands, BASIC, 117·119
Commodore key , (see graphics keys) 16
Connections,

optional, 9·"
rear, 1,3
TV/Monitor, 1,9

CaNT command, 117
ConTRol key, 16
COSine function , 125
CuRSoR keys, 14
Correcting errors, 14·15
Cursor, 7

170

D

Data, loading and saving (disk), 17-19

DATA statement, 91, 119

DEFine statement, 120

Delay loop, 64

DELete key, 14

DIMension statement, 96, 120

Directory, 20

Disk drives

commands, 18-32. 163-169

error messages. 112-115

Division, 34

Duration, (see For...Next) 45

DX-64, i

E

Editing programs, 14-15, 41, 62

END statement, 120

Equal, not-equal-to, signs, 117

Equations. 33-37, 117

Error messages, App. 8, App. L

Executive 64

installation, 3

transporting, 5

Expansion port, 1

EXPonent function, 125

Exponentiation, 34

F

Files, (disk), 17-31

Files, (Random Access), 20, 26-29

Files, (Relative), 20, 24-26

Files, (Sequential). 20, 21-24

FOR statement, 45, 120

FRE functions, 127

Function keys, 16, 52

Functions, 124-127

G

Game controls and ports, 1, 10

GET statement, 51-52. 121

GET# statement, 121, 164

Getting started, 12-20

GOSUB statement, 121

GOTO (GO TO) statement, 40, 121
Graphic keys, 13. 16

Graphic symbols, (see graphic keys) 13, 16. 64. App. E and F
Greater than, 117

H

Headering disks, 19

Hyperbolic functions, 138

171

v

v

v

v

D
Data, loading and saving (disk), 17-'9
DATA statement, 91 , 119
DEFine statement, 120
Delay loop, 64
DELete key, 14
DIMension statement, 96, 120
Directory, 20
Disk drives

commands, 18·32, 163·169
error messages, 112-115

Division, 34
Duration, (see For .. Next) 45
OX·64, i

E
Edit ing programs, 14-15, 41 , 62
END statement , 120
Equal, not-equal·to, signs, 117
Equations, 33-37, 117
Error messages, App_ 8, App. L
Executive 64

installation, 3
transporting, 5

Expansion port , 1
EXPonent function, 125
Exponentiation, 34

F
Files, (d isk), 17·31
Files, (Random Access), 20, 26-29
Files, (Relative), 20, 24-26
Files, (Sequential), 20, 21·24
FOR statement, 45, 120
FRE functions, 127
Function keys, 16,52
Functions, 124·127

G
Game controls and ports, " 10
GET statement, 51-52, 121
GET# statement, 121 , 164
Getting started, 12-20
GOSUB statement, 121
GOTO (GO TO) sta lemenl , 40, 121
Graphic keys, 13, 16
Graphic symbols, (see graphic keys) 13, 16, 64, App. E and F
Greater than, 117

H
Headering disks. 19
Hyperbolic functions, 138

171

-

IEEE-48 Interface, 9

IF...THEN statement, 121

INPUT statement. 49-50, 121

INPUT#. 30. 122, 165

INSert key, 14

INTeger function, 53-54, 125

Integer variable, 42-44, 116

I/O pinouts, 139- 142

I/O ports, 1

~

J

Joysticks. 1. 10

K
Keyboard, 12-17

m

L

LEFTS function, 126 ^>

LENgth function, 126

Less than,117 ,->

LET statement, 122

LIST command, 40, 118

LOAD command. 18, 118

LOGarithm function, 125

Loops, 40, 45

Lower case characters, 16

M

Mathematics, 33-37

formulas, 138

function table, 138

symbols. 33-34, 36, 117

Memory maps, 136-137

MIDS function, 126

Multiplication, 33

Music, 11. 79-88

N

Names ^

program, 19

variable, 42-44, 116 „

NEW command, 19, 30, 118

NEXT statement, 45, 122 ^

NOT operator. 117

Numeric variables. 42-44, 116

Numeric functions, 124-126

0

ON statement, 122 ^

OPEN statement, 19, 30. 122-123, 167-168

Operators, -^

arithmetic, 33-37, 117

logical, 117 ^

relational, 117

172

IEEE·48 Interface, 9
IF ... THEN statement, 121
INPUT statement, 49·50, 121
INPUn, 30, 122, 165
INSert key, 14
INTeger function , 53-54, 125
Integer variable, 42-44, 116
110 pinouts, 139· 142
1/0 ports, 1

J
Joysticks , I, 10

K
Keyboard, 12-17

l
LEFTS function, 126
LENgth function , 126
Less than, 117
LET sta tement, 122
LIST command, 40, 11 8
LOAD command, 18, 118
LOGarithm function, 125
Loops, 40, 45
Lower case characters , 16

M
Mathematics, 33-37

formu las, 138
function table, 138
symbols, 33-34, 36. 117

Memory maps, 136·1 37
MIDS function , 126
Multiplication, 33
Music, 1" 79·88

N
Names

program, 19
variable, 42·44, 116

NEW command, 19, 3D, 118
NEXT statement, 45, 122
NOT operator, 117
Numeric variables , 42-44, 116
Numeric funct ions, 124·126

o
ON statement, 122
OPEN statement. 19, 30. 122-123. 167-168
Operators,

arithmetic, 33·37, 117
logical , 117
re lational, 117

172

p

Packing Executive 64, 5

Parentheses, 36

PEEK (unction, 63, 125

Peripherals, 9-11, 30, App. S

POKE statement, 63, 123

Ports. I/O, 1

POS function, 127

PRINT statement. 32-38, 123

PRINTtt, 30, 123, 166

Printer commands, 30-31, App. S

Programs

editing, 14-15, 41. 62

line numbering. 39

loading/saving (disk), 17-19, 30, 118, 119, 168

Prompt, 7, 49-50

Q

Quotation marks, 32-33, 37

R

RaNDom function, 53-54, 125

Random numbers, 53-54

READ statement, 91, 124

REMark statement, 124

Reserved words, (see Command statements) 116-127
Restore key, 15

RESTORE statement, 124

Return key, 12

RETURN statement, 124

RIGHTS function, 126

RUN command, 118

RUN/STOP key, 16

S

SAVE command, 19, 30, 119, 168

Saving programs (disk), 19

Screen memory maps, 65-66. 136

SGN, function, 125

Shift key, 12-13

SINe function, 125

Sound effects, 89-90

SPC function, 127

SX-64 features, 1-2

SPRITE EDITOR, i

SPRITE graphics, 69-78

SQuaRe function, 126

STOP command, 117. 124

STOP key, 16

String variables, 42-44, 116

STR$ (unctions, 126

Subscripted variables, 95

Subtraction, 33

Syntax error, 32. App. L

SYS statement. 124

173

v

v

P
Packing Execu tive 64, 5
Parentheses, 36
PEEK function, 63, 125
Peripherals, 9-11 , 30, App. S
POKE statement, 63, 123
Ports, 110, 1
POS function , 127
PRINT statement, 32-38. 123
PRINT#, 30, 123, 166
Printer commands, 3()'31 , App. S
Programs

editing, 14·15, 41 , 62
line numbering, 39
loading/saving (disk), 17-19,30, 118, 119, 168

Prompt , 7, 49·50

a
Quotation marks, 32-33, 37

R
RaNDom function, 53-54, 125
Random numbers, 53-54
READ sta tement , 91 , 124
REMark s tatement, 124

U Reserved words, (see Command statements) 116-127
Restore key, 15

v

v

v

RESTORE statement, 124
Return key, 12
RETURN statement, 124
RIGHT$ function, 126
RUN command, 118
RUN/STOP key, 16

S
SAVE command, 19,30, 119, 168
Saving programs (disk), 19
Screen memory maps, 65·66, 136
SGN, function, 125
Shift key, 12·13
SINe function, 125
Sound effects, 89·90
SPC function, 127
SX·64 features, 1·2
SPRITE EDITOR, i
SPRITE graphics, 69·78
SQuaRe function, 126
STOP command, 117, 124
STOP key, 16
Siring variables, 42·44, 116
STA$ func tions, 126
Subscripted variables, 95
Subtraction, 33
Syntax error, 32. App. L
SYS statement, 124

173

-

T

TAB function, 127

TAN function, 126

Tl variable, 116-117

Tl$ variable. 116-117

Time clock. 116-117

TV connections, 1. 9

U

Upper/Lower Case mode, 16

USR function, 126

User defined function, (see DEF) 120

V

VALue function, 126

Variables 42-44, 116

array, 95-96

dimensions, 96

floating point, 42-44, 116 _

integer, 42-44. 116

numeric, 42-44, 116 ,-,

string ($), 42-44, 116

VERIFY command, 30, 119, 169

Voice, 79-84

^*\

W

WAIT command, 124

Z

Z-80, 10

—

174

T
TAB function, 127
TAN function, 126
TI variable, 116-117
TIS variable, 116-1 17
Time clock, 116·117
TV connections, " 9

U
Upper/Lower Case mode, 16
USR function, 126
User defined function, (see DEF) 120

V
VALue function , 126
Variables 42·44, 116

array, 95-96
dimensions, 96
floating poin t, 42·44, 116
integer, 42-44, 116
numeric, 42·44, 116
string ($1. 42·44 . 116

VERIFY command, 30, 119, 169
VOice, 79·84

W
WAIT command, 124

z
z·ao. 10

174

w

MEMO'-' MEMO

'-'

'-'

v

v

v

MEMO

--

-

"

MEMO

ECUTIVE 64 QUICK REFERENCE CARD

SIMPLE VARIABLES

XT * 1 70141 IB3E-3B

:? 938?]5e6S- 30

«S S33747

1*1 0 la 35S iMioctin

ARRAY VARIABLES

XYISI

X*(S.S.S)

rfi !iubitr.D.i 0-10) con be uiedArrayi a* gp to eleven vi

.here needed A"a I with more *non eleven element

ALGEBRAIC OPERATORS

.' Divilicn

• Addition

RELATIONAL AND LOGICAL OPERATORS

latl Thnn

- In) Than or equal la

NOT logical "Nor"

AND Log.:ol AnO

OB too:; a I Or'

EifHIIMn tauoli I I Him 0 il lolie

SYSTEM COMMANDS

IOAD "NAME" B londi n o'ogram from dill

S»E NAWE 9 iovei a program i« ilnl

RUN

BUN

END

CONT

SY5 HJUJU

WAIT X.1.Z

Jl

P'

,M

■mp*

ogra

■ V

ro..i

m. no

cull a '

Fling ol

hoc hint It

.hen (Oiled ~i«i I and

EDITING AND FORMATTING COMMANDS

LIST

LIST a B

TAB(X)

SF"C(X)

lull 1

lull 1

,..(,*

U»d

DO1H»

PRINT

■Mire pit

,om U.

md di»

in PRINT

i X alar

ig'or

A io

ing p

iron

>mn

111 or

line B

rogram iimwIiei

lin*

POS(X)

CIK/HOME

SHIFT ClINHOMl Cliorl

SHIFT INSKDEl ln,e"i

INSTiDEL Dtlfiei

C'BL When .

lelic'i

PRINT

tn uiea -v.ih SHIFT itlf

a"ii- unplav mode

ARRAYS AND STRINGS

3IM All.* t.

LEN IXII

STRilX,

KAllXi!

CHBJlXI

lEFTKAS k:

BIGHTS!Ai Xj

WDJlAJ » '■

Seri m

'•text

tirmc

Rtluin

R.lurn

ton.er

B,Wn

r.,,i nc

,x

thorot

Berurn'

Renjrn'

ot AI

3»,mum lublir.ptl lor A

> ipote Io' !X ■ I|*|Y* I)'

11 UGFIing al AlO.O Ol

, number of chorotlfr! in

i nunwnc .alue ot X

ed lo a 11-mg

, numeric .alv» ol Ai. uc

nnUWer:c cha.a^ie.

er if XI

, leftmoit X (ho-otwn of

. .ighfmniT X (horailtr!

INPUTfOUTPUT COMMANDS

INPUT A) .jB A PRINTi 1 on KIHK ond •.•].■! FQ

INPUT ABC A

GET A] (M A

DATA ABC

■nln ualu* Can olio INPUT Ai

'act*- value, no PE'UPN needed

Be Kied by BEAD HOTUWK1

BEADmg rhe DAIA

PRIM A - A PBINTi ilr.r.9 A-

PROGRAM FLOW

GOTO X Brnnthei 'o lin> X

If A-3 THEN 10 IF aiietion is Irun tHEN

IP

FOR A-l TO 10 [nduiel oil naitmenii between Ft

STfP 2 NEXT and in»etpanding MIXT. w.rh A

aomg from I Io 10 by 2 Sipd nze

NEXT A Define, end of loop A n optional

GOSUB 1000 Bionthe. io lubrouime i.oimg oi

l.ii. 2O00

BETURN Uarki end gl luhroutinr Returni i

GDSUfl

ON X GOTO A B B'onchet to Xth line number on

ill II X = I bfonin*i m A. etc

ON X GOSUB A.B Bronchei 10 tubroulm* ot xth ling

u

v

v

v

v

v

u

v

v

v

v

v

v

v

v

u

v

v

v

v

v

v

v

v

ECUTIVE 64 QUICK REFERENCE CARD

SIMPLE VARIABLES

,,__ No",. ' 0,,(/"

R.... 1Il ~1101 .. I UI ·)8

!. 2 Ue1UI8I -)'

S""'<;I J(n 0 ' 0 lH ,ho'CK""
• " " ."" tA·!), y ., " 19 ... , o. " tN.. (0-9) ""',""ble ~O"'''
ee, .. be, •• _n 1 ,100. <><, bu. _'" ' (,," , _ " •• 'Koo;I " .. "
ARRAY VARIABLES

"~
~gl. o",."M _
I .. ·o · (), _

1", .. ·0."", " ._

No",.

lIl(iJ

n eSS)

XI (SSS)

... ,,"" 01 ul> '" . I ~ .It"","" I' u",,, ,,,," 0-101 <O n be u" "
.. 10.,ci.,d ",,".> to ,100" , ,, need ' "

1>0 O''''o",oon OO

ALGEBRAIC OPERATORS

(.""" ... " .. ,
NoJ< ~ .. a''''.

RELATIONAL ANO LOGICAL OPERATORS .. ~
t." 1
G_.,. •• , I,,, ..
t .. , r ". I" ' '"
G'.",.< I~ .. n ... 1.",01 To

NOT '09",,1 N O'

AN D 1090<,,1 .. ""

OR '09 ' 0.
(. ""uOI, I I " uo 0 ,I 10" .

SYSTEM COM MANDS

tOAO NII.M! • 10<.<1 . .. "'''I/,om I..,... d,, ~

!.It.It NAoMI . So ••• " "'''9'''''' '" " .. ,
VI RIIY N Y! I ~,I, •• t~o ' "'''11'''' '' .. 0. WEd

"" RUN " .

5ro~ ,.,
CO NI

..... AII ~ T 1

(' H"'~' "'<>\I'''~ " " ",~ o. I.n.

Co",.~_. "'<>\1'0'" ~ ", ... " 1'0'"
I",~ ~~" 0'011'''''' 'w", ""I,."
V .. ".~. 'O,,'.n!. ,,/ "'. ""'

0'<>\1'''''' " " " "'9 0' 'A' "
""'iI'0'" ~o;" _. e_' .. ~" 0'
.... ... "''' ~ ~ ... " l O R." _. , l and
AHOed ,,, T " _'~'O

U~I (~ ! ."" . , "" 01 X ... ° _~
'-"9 \1 • • "b,own ••

EDITING AND FORMATIING COMMANDS

US T I .. • •• n'" . "'<>\1'0,",
UST A, I I.,,, f." A ... ~". I

C_ . .. ' _ ,0" bo L"." bon

•• '1;1 " ""'''111>'<>\1'0''' , ' 00<"''''''
V .. " ." PIII NT "0 " " S)(
"","",n. _ ", ••• "

SPCIX)

PO!o()(f I <""0'" _ "". _
CtlI/HOM! "',,,_ • • " '0 Io~ Of

SHIn Ct ll/HOMI CIoOft . " .. " OnO """' •• <" ,n

INSTIOfl 0..10, .. <"","', •. ," e .. ".~' < ~

W~.n " ,." <010, h • .
•• 1. <, • •• • , <010' tHo .. ,od '"

tHo " ""po. IIo- •• co •• on"

9'''P'''' """lay"""',
·"". n ,, ' od ~ n" <010 ' ••• .
•• f • • ', OO"OnOI •• ,t ,010'

ARRAYS AND STRINGS

DIY. At . V t !

liN J< ~ I

Sl ~ ~ (

lIfT ~ A~ "
""COH n A~ .I. ,

~" ",,, .. ,,,",,, . "b .. " .. " f". A
. ' , lo· ! ~· ,I · Y' I ' 11' "

. 1 " ,·" ... nQ o 000)
V • • ".n . .. " ... 10.' of , 00'oct.,. ,n X ~

R.'",~, ""m.'.e ' 01 ... 01 ...

..
D. ,w''' ' ASCII <ltd f.".
" '"''' ' ' ' o. H
p.,,, It " , < 0< •• " ,,' A ~

V~'u ''9'''''''''' ~ , '0< •• "
of A ~

"" w'~' Y ''''''0<', ', c l .,

INPUT/OUTPUT COMMANDS

OAI . AB C

~IAD . ~ 0' •

"1 5' 0 .. 1

''''''Oe'' ' "., "<> ~II U"N ~ _"
, ... ,""" .. 0 •• , " • • ol~. , ' "0'
co .. tHo b. ~!.O " a ~ " .

A" '\1" ' " f" DA' '". ' " A ~ O. A

.. ••• " do 'o ""'" '" '0 " ''''
",AO,ng ,". DAlA I,,, "g"'"
""'NII "" "\1 A" VOl". 0) A

'ob. dC'a

PROGRAM FLOW

I' A ~ l ' .. ! N 10 .. 0 " . , " ... ''' IN "" vl_

'oIIo~ "'1I I>On 0' . ' 0 ' I'

'0 ... " "''''' ~." "" .. ",,"'bo.
l O R A-I '0 10 Io ... w ••• " • • ' 0 ' b<o' ~ ' 0 "

~U. 1 NUl ,,"" eD"''''''~d....., NUl ""~ A
9""'9 f."",, , '0 10 t>y 1 St. " ""
.. I .. ~ ,If, • .;

H(.l A 091", "ft" 01 ioo<> •• , 0 1

G05Ue 1ODO B' o,,<~. '0 . "b'ow''''~ """ "9 '"

GOSUB

Get the most out of your Commodore computer with a subscription to
Commodore's user magazines

POWERtPLfif C'commodore
Fun, Games and Beyond with Commodore

Home Computers

Publisl

WAY.

(. omn

produ

tome,

torn pi

hurni

oted

re hiii

pplk

V in Mart h. lurii1

ilely ii» Hi

i' t ompul

Ktlls, ("dill

nu.iMon

cd In km

1 t'\i itnii; i

nj;. It provi

■s, program

nd just .ilxii

her .inif [)i

Ik exp.u

i.ible ml

iifl else (o

pn e: '-.in (HI \

COUTH

riel ol

i in • in new

iuiil-.ll-

inlort' h(imi

! ol their

The Microcomputer Magazine

Widely read liv ed

this bi-monthly \n

ilii ,1

irmation on (i

■Mac ing. and j

h issue1 ontiiin

nit pun hasin;; (onit

lipiltt'l with ((iKlill

-. huMiifssmiTi. siuden

)n provides ,1 whidf t

lore systems. proi;rjnv

inns tor tile \miIi1 r.inj>e

ires ot inli-rest loanyon

s ,tii(l liiimi-i unipiittTisls.

it sh.inil^ exclusive product

linj; lc(hni(|iies, h.trdwiiie

>l (oinmiidure s pnidui Is

tti.it use thinking

indorc r(]in|>mi>nl del lh<- musl nut ol your nm rt>-

iiirc M.iga/ini' Sulisi tiption pricf ^Ti.lHI vcir

FILL OUT AND MAIL TODAY

Name Phone

Address

City Stale Zip

Computer model:

i] Address Change. Enter new address above & enclose

present mailing label

I] Renewal subscription

I) New subscription

GET MORE INFORMATION FOR YOUR MONEY

Please sign me up for:

_ycar!s) ol POWER/PLAY a) •>!().(X)/year

_year(s) of COMMODORE at 515.00'year

Canadian and Foreign: POWER/PLAY$?5.00/year; COM-

MODORE $25.0Qtyear

Inclosed is my check or money order for $

Make check or money order payable to:

COMMODORE BUSINESS MACHINES, INC.

The Meadows, 487 Devon Park Drive, Wayne, PA 19087

)))

Get the most out of your Commodore computer with a subscription to
Commodore's user magazines

; 0 ,. , ' a

Fun, Games and Beyond with Commodore
Home Compul ers
Puhl"hcd qu,trt",h III ,\I.l f t 11 , JUII" , '>I'lllt'mllt" .111111)"1 ",.,lh'l , '()\\'[1{

P w , .. devol,'d '4111,1, lollh' "~ lllll1 g ,md f.Jprdl\ 1"p.lIlrilJl): \\wld ,,'
Commodore h'lIIlt' (wnp ulmg. It prn\,IIII' , I,rlu.rlll!- nHllJfI1"tll mOIl Ill'W
pHJclu\ h .• Ipplll ,ltUllh , g.UIlt". I 'HIgr,Illlllllr rt: 1.,\ h"II III'<' h ·,U IIII'):',II.

hUIIlI.' , t dl'~I)"'IllLJllIl ,l tllm' ,1IIe! 11I .. r ,llxlut .1I1\lh,I1': 1·1,,· (I ul1rn'I(I." " hrlln,

lurnput l' f [I .. ,'" nl'l'd tu k llll\\' It)).:1'1 1Il,l\IIIIIIII1\'I1I"\ rllt ' llI "utili rh " "

hunw IOlllpullng \"IWfWllt " '>uthillptlll!l pllt" S HI IMI I , ',tr

FILL OUT AND MAIL TODAY

Name Phone

Address ____________ _

Ci ty Sial e l ip ___ _

Compuler model: _____________ _

o Addres~ Change. Enter new dtkJ rc~~ .IUUVl.' &. cndu~c
present mailing label

o Renewal subscription
o New subscrip tion

) '))))))

The Microcomput er Magazine

\Vl t t,'lv 1I',ul 11\ ",luI ,11"" . hU" lh"'IIl"1l ,lud,'llh ,lIltl 111111H' , IJII'I,., I" " ,I, .
Ill" 1,,·mtllllhh IJUI,t.(,l1l1)1l p ft)vldl ', .r \1·h"ll· h i' ,h.lling ,·"IU'IVI· p"I<IU(1
1I11011l ll.llllllll)l\ (olllm.)(lun' 'r'h'II1 '. p,ogl ,ullmlllg I. " hlllljUt" . h.H tiW,lrt'

mlt', r.lt Itlg .• Uld .Ipplrt .111(11" hll Il lI" \\liI.· •• mg. ' 0 1 ('>1111111.11.11,, ', pI"du, h
l .1I h '''lit" t IInl,IIII' "',lItHl" 01 1111.,,,,,, 10 . In\"'1\" Ih.ll U'I·' . ,)1 I' Ihmklng
.,huul pllll h.hlJlg (IUlHIlOdllr\' l 'ljUlplllt'1l1 (. ,-1 lilt' lIlo,1 nul III roul 11111 IU'

I 11lI1p"I.·, \\ Ilh (IInHmldmt' 'l.1.'g.ll1l1t" -'lI lhl Oplll "' plllt' SI.,.I \t',lf

GET MORE INFORMATION FOR YOUR MONEY

Please ~ ign me up for :

__ yea r(~) 01 POWER/PIJW at S m.OD/year

_ycar (~) of CO,\lVv\ODOR[,"II S 15.OOIyear

Canadian and Forcign : POWER/PI.AY S1S.00lyca r; COM·
MODORE S2S.00lycar

I:ncloscd is my chcck or money o rder for S _____ _

Make chetk or money order payablc 10:

COMMODORE BUSINESS MACHINES, INC.
The Meadows, 487 Devon Pi,k Drive, Wayne, PA 19087

)))))))))))

-

(i

(i

(i

n

COMMODORE SALES CENTERS

Commodore Business Machines, Inc.
1200 Wilson Drive

Westchester, PA 19380, U.S.A.

Commodore Business Machines Ltd.

3370 Pharmacy Avenue, Agincourt,

Ontario, M1W 2K4, Canada

Commodore Business Machines (UK) Ltd
675 Ajgx Avenue, Trading Estate,

Slough Berks, SL1 4BG, England

Commodore Bueromashinen GmbH

Lvonerstrasse 38, PO 3OX710126

Frankfult 6000, West Germany

Commodore Italiana S.R.L.

Via Conservatoire 22

Milano 20122, Italy

Commodore Information Center

5 Onion Road

Lane Cove 2066 NSW, Australia

Commodore Computer B.V.

Marksingel 2e481 I N.V. Breda

Postlrus 720, 480 3aS Breda, Netherlands

Commodore AG(Schweiz)
Aeschenvorstadt 57

401 0 Basel, Switzerland

v

v

v

v

v

v

COMMODORE SALES CENTERS

Commodore Business Mochines, Inc.
1200 W;lsan Dr;ve
WeSichesler, PA 19380, US.A.

Commodore Business Mochines Ltd .
3370 Pharmacy Aven ue, Ag;ncaurl,
Onlar;o, MIW 2K4, Canada

Commodore Business Mochines (UK) Ltd.
675 Ajax Aven ue, Trading Estate,
Slough Berks, Sll 4BG , England

Commodore Bueromashinen GmbH
lyonerslroSSe 38, PO BOX 710126
Frankl ull 6000, WeSi Germony

Commodore Itoliana S.R.L.
Via COnservQlorio 22
M ;iono 201 22, 110 1'1

Commodore Information Center
5 On;on Road
lane Cove 2066 NSW, Au slral ;a

Commodore Computer B. V.
Mar s;ngel 2e4811 NY Breda
POSilru s 720, ~80 3aS Breda, NClher lands

Commodore AG(Schweiz)
Aesc henvorSi ad I 57
40 10 Basel, Swdzcr land

Commodore's SX-64 computer is portable, powerful, and versatile.

The SX-64 has all the capabilities of the best-selling Commodore 64,

plus a built-in disk drive and a 5" color monitor. The SX-B4 snaps

together to form its own carrying case, and it's light enough to carry

and use anywhere.

Like the Commodore 64, the SX-64 has 64K memory, 16 colors, a

sound chip that lets you play music on your computer, and a video chip

that lets you create complex graphics. In addition, all software designed

on disk and cartridge for the Commodore 64 runs on the SX-64.

This easy-to-read user's guide contains all the information you need to

set up your equipment, understand how to operate your new SX-64,
and learn how to create simple BASIC programs. Technical information

for beginners as well as experienced programmers is also included.

For additional programming information, consult the Commodore 64
Programmer's Reference Guide and the Commodore Peripherals Guide,

available from your bookstore or Commodore dealer.

ft commodore

COMPUTER
P/N 251249 Printed in Japan

